TPTP Problem File: ITP275^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP275^2 : TPTP v9.0.0. Released v8.0.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_Uniqueness 00039_002338
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0075_VEBT_Uniqueness_00039_002338 [Des22]
% Status : Theorem
% Rating : 1.00 v8.1.0
% Syntax : Number of formulae : 9563 (3172 unt; 598 typ; 0 def)
% Number of atoms : 27966 (10671 equ; 4 cnn)
% Maximal formula atoms : 71 ( 3 avg)
% Number of connectives : 181570 (2596 ~; 349 |;2280 &;163756 @)
% ( 0 <=>;12589 =>; 0 <=; 0 <~>)
% Maximal formula depth : 40 ( 7 avg)
% Number of types : 11 ( 10 usr)
% Number of type conns : 3342 (3342 >; 0 *; 0 +; 0 <<)
% Number of symbols : 592 ( 588 usr; 17 con; 0-9 aty)
% Number of variables : 28959 (2465 ^;25100 !; 870 ?;28959 :)
% ( 524 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 15:20:11.431
%------------------------------------------------------------------------------
% Could-be-implicit typings (16)
thf(ty_t_VEBT__Definitions_OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_t_Code__Numeral_Ointeger,type,
code_integer: $tType ).
thf(ty_t_Product__Type_Oprod,type,
product_prod: $tType > $tType > $tType ).
thf(ty_t_Extended__Nat_Oenat,type,
extended_enat: $tType ).
thf(ty_t_Complex_Ocomplex,type,
complex: $tType ).
thf(ty_t_Option_Ooption,type,
option: $tType > $tType ).
thf(ty_t_Filter_Ofilter,type,
filter: $tType > $tType ).
thf(ty_t_String_Ochar,type,
char: $tType ).
thf(ty_t_Real_Oreal,type,
real: $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Rat_Orat,type,
rat: $tType ).
thf(ty_t_Num_Onum,type,
num: $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
thf(ty_t_itself,type,
itself: $tType > $tType ).
% Explicit typings (582)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Odvd,type,
dvd:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom,type,
idom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring,type,
ring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oplus,type,
plus:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Onumeral,type,
numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Power_Opower,type,
power:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield,type,
field:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Oring__gcd,type,
ring_gcd:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oabs__if,type,
abs_if:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__1,type,
ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ouminus,type,
uminus:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Obot,type,
bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom,type,
semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Oinverse,type,
inverse:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring,type,
semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Oring__char__0,type,
ring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__ring,type,
comm_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Omult__zero,type,
mult_zero:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__Gcd,type,
semiring_Gcd:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__gcd,type,
semiring_gcd:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Olattice,type,
lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__0,type,
semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__add,type,
monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__ring__1,type,
comm_ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__divide,type,
idom_divide:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__modulo,type,
idom_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Transcendental_Oln,type,
ln:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__mult,type,
monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
thf(sy_cl_Parity_Oring__parity,type,
ring_parity:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__abs__sgn,type,
idom_abs_sgn:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__ring,type,
ordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ozero__neq__one,type,
zero_neq_one:
!>[A: $tType] : $o ).
thf(sy_cl_Enum_Ofinite__lattice,type,
finite_lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield__char__0,type,
field_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__group__add,type,
ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder__bot,type,
order_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder__top,type,
order_top:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring,type,
comm_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ozero__less__one,type,
zero_less_one:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Odivision__ring,type,
division_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield__abs__sgn,type,
field_abs_sgn:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__add,type,
semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Osemiring__numeral,type,
semiring_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom__divide,type,
semidom_divide:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom__modulo,type,
semidom_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__mult,type,
semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__0,type,
comm_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__1,type,
comm_semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring,type,
linordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__modulo,type,
semiring_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__add,type,
comm_monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Parity_Osemiring__parity,type,
semiring_parity:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__ring__abs,type,
ordered_ring_abs:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring,type,
ordered_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__add,type,
ab_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__diff,type,
comm_monoid_diff:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__mult,type,
comm_monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oalgebraic__semidom,type,
algebraic_semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1__cancel,type,
semiring_1_cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__mult,type,
ab_semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__lattice,type,
bounded_lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Odistrib__lattice,type,
distrib_lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Osemilattice__inf,type,
semilattice_inf:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Osemilattice__sup,type,
semilattice_sup:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring__0,type,
ordered_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Obanach,type,
real_Vector_banach:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring,type,
linordered_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Partial__Order_Occpo,type,
comple9053668089753744459l_ccpo:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__semigroup__add,type,
cancel_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__1,type,
linord6961819062388156250ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__comm__semiring,type,
ordere2520102378445227354miring:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ot2__space,type,
topological_t2_space:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Osemiring__bits,type,
bit_semiring_bits:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__lattice__bot,type,
bounded_lattice_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__group__add,type,
topolo1633459387980952147up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__1__cancel,type,
comm_s4317794764714335236cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring__strict,type,
linord4710134922213307826strict:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1802427076303600483id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__monoid__add,type,
topolo6943815403480290642id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__field,type,
real_V7773925162809079976_field:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__1__no__zero__divisors,type,
ring_15535105094025558882visors:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel2418104881723323429up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Olinordered__ab__group__add,type,
linord5086331880401160121up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__comm__monoid__add,type,
ordere6911136660526730532id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__monoid__mult,type,
topolo1898628316856586783d_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__vector,type,
real_V4867850818363320053vector:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Ofloor__ceiling,type,
archim2362893244070406136eiling:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__gcd__mult__normalize,type,
semiri6843258321239162965malize:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add__abs,type,
ordere166539214618696060dd_abs:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add,type,
ordere6658533253407199908up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__ab__group__add,type,
topolo1287966508704411220up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ometric__space,type,
real_V7819770556892013058_space:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__algebra,type,
real_V6157519004096292374lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors,type,
semiri3467727345109120633visors:
!>[A: $tType] : $o ).
thf(sy_cl_Boolean__Algebras_Oboolean__algebra,type,
boolea8198339166811842893lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__strict,type,
linord8928482502909563296strict:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Operfect__space,type,
topolo8386298272705272623_space:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ouniform__space,type,
topolo7287701948861334536_space:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__ring,type,
euclid5891614535332579305n_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__semigroup__mult,type,
topolo4211221413907600880p_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ocomplete__space,type,
real_V8037385150606011577_space:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__algebra__1,type,
real_V2191834092415804123ebra_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord181362715937106298miring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1__no__zero__divisors,type,
semiri2026040879449505780visors:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Oorder__topology,type,
topolo2564578578187576103pology:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Oring__bit__operations,type,
bit_ri3973907225187159222ations:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__lattice,type,
comple6319245703460814977attice:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Olinordered__ab__semigroup__add,type,
linord4140545234300271783up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__comm__monoid__add,type,
topolo5987344860129210374id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ounbounded__dense__linorder,type,
unboun7993243217541854897norder:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ouniformity__dist,type,
real_V768167426530841204y_dist:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__1__strict,type,
linord715952674999750819strict:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim462609752435547400_field:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__linorder,type,
comple5582772986160207858norder:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__div__algebra,type,
real_V5047593784448816457lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__semilattice__inf__top,type,
bounde4346867609351753570nf_top:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__semilattice__sup__bot,type,
bounde4967611905675639751up_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__field,type,
real_V3459762299906320749_field:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Odiscrete__topology,type,
topolo8865339358273720382pology:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Olinorder__topology,type,
topolo1944317154257567458pology:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Otopological__space,type,
topolo4958980785337419405_space:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__semiring,type,
euclid3725896446679973847miring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni5634975068530333245id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__comm__monoid__add,type,
ordere8940638589300402666id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__comm__monoid__add,type,
strict7427464778891057005id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__vector,type,
real_V822414075346904944vector:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__comm__semiring__strict,type,
linord2810124833399127020strict:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Osemiring__bit__operations,type,
bit_se359711467146920520ations:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add__imp__le,type,
ordere2412721322843649153imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__ab__semigroup__add,type,
ordere580206878836729694up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__comm__monoid__diff,type,
ordere1170586879665033532d_diff:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__ab__semigroup__add,type,
strict9044650504122735259up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oordered__real__vector,type,
real_V5355595471888546746vector:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra,type,
real_V4412858255891104859lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors__cancel,type,
semiri6575147826004484403cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__ring__cancel,type,
euclid8851590272496341667cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra__1,type,
real_V2822296259951069270ebra_1:
!>[A: $tType] : $o ).
thf(sy_cl_Divides_Ounique__euclidean__semiring__numeral,type,
unique1627219031080169319umeral:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__distrib__lattice,type,
comple592849572758109894attice:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__div__algebra,type,
real_V8999393235501362500lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ofirst__countable__topology,type,
topolo3112930676232923870pology:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__semiring__cancel,type,
euclid4440199948858584721cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__semiring,type,
euclid3128863361964157862miring:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Olinear__continuum__topology,type,
topolo8458572112393995274pology:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__monoid__add__imp__le,type,
ordere1937475149494474687imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Olinear__continuum,type,
condit5016429287641298734tinuum:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__ring__with__nat,type,
euclid8789492081693882211th_nat:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__semiring__with__nat,type,
euclid5411537665997757685th_nat:
!>[A: $tType] : $o ).
thf(sy_cl_Countable__Complete__Lattices_Ocountable__complete__lattice,type,
counta3822494911875563373attice:
!>[A: $tType] : $o ).
thf(sy_cl_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,type,
semiri1453513574482234551roduct:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,type,
bit_un5681908812861735899ations:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__lattice,type,
condit1219197933456340205attice:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__linorder,type,
condit6923001295902523014norder:
!>[A: $tType] : $o ).
thf(sy_c_Archimedean__Field_Oceiling,type,
archimedean_ceiling:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor,type,
archim6421214686448440834_floor:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Ofrac,type,
archimedean_frac:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Archimedean__Field_Oround,type,
archimedean_round:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_BNF__Wellorder__Constructions_OFunc,type,
bNF_Wellorder_Func:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( set @ B ) > ( set @ ( A > B ) ) ) ).
thf(sy_c_BNF__Wellorder__Constructions_OFunc__map,type,
bNF_We4925052301507509544nc_map:
!>[B: $tType,C: $tType,A: $tType,D: $tType] : ( ( set @ B ) > ( C > A ) > ( B > D ) > ( D > C ) > B > A ) ).
thf(sy_c_Basic__BNF__LFPs_Oprod_Osize__prod,type,
basic_BNF_size_prod:
!>[A: $tType,B: $tType] : ( ( A > nat ) > ( B > nat ) > ( product_prod @ A @ B ) > nat ) ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial,type,
gbinomial:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) > $o ).
thf(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: nat > int > int > int ).
thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
bit_or_not_num_neg: num > num > num ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot,type,
bit_ri4277139882892585799ns_not:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit,type,
bit_ri4674362597316999326ke_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand,type,
bit_se5824344872417868541ns_and:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit,type,
bit_se4197421643247451524op_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit,type,
bit_se8732182000553998342ip_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask,type,
bit_se2239418461657761734s_mask:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor,type,
bit_se1065995026697491101ons_or:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit,type,
bit_se4730199178511100633sh_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit,type,
bit_se5668285175392031749et_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit,type,
bit_se2584673776208193580ke_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit,type,
bit_se2638667681897837118et_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor,type,
bit_se5824344971392196577ns_xor:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit,type,
bit_se5641148757651400278ts_bit:
!>[A: $tType] : ( A > nat > $o ) ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
bit_un1837492267222099188nd_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
bit_un6178654185764691216or_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
bit_un7362597486090784418nd_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
bit_un2480387367778600638or_num: num > num > ( option @ num ) ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra,type,
boolea2506097494486148201lgebra:
!>[A: $tType] : ( ( A > A > A ) > ( A > A > A ) > ( A > A ) > A > A > $o ) ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff,type,
boolea3799213064322606851m_diff:
!>[A: $tType] : ( ( A > A > A ) > ( A > A > A ) > ( A > A ) > A > A > ( A > A > A ) > $o ) ).
thf(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > ( product_prod @ code_integer @ $o ) ).
thf(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: code_integer > code_integer > ( product_prod @ code_integer @ code_integer ) ).
thf(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: code_integer > code_integer > ( product_prod @ code_integer @ code_integer ) ).
thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Numeral_Ointeger__of__num,type,
code_integer_of_num: num > code_integer ).
thf(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
thf(sy_c_Code__Numeral_Onum__of__integer,type,
code_num_of_integer: code_integer > num ).
thf(sy_c_Complete__Lattices_OInf__class_OInf,type,
complete_Inf_Inf:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Complete__Lattices_OSup__class_OSup,type,
complete_Sup_Sup:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocnj,type,
cnj: complex > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Complex_Ocomplex_OIm,type,
im: complex > real ).
thf(sy_c_Complex_Ocomplex_ORe,type,
re: complex > real ).
thf(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
thf(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__above,type,
condit941137186595557371_above:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__below,type,
condit1013018076250108175_below:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Deriv_Odifferentiable,type,
differentiable:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Deriv_Ohas__derivative,type,
has_derivative:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Deriv_Ohas__field__derivative,type,
has_field_derivative:
!>[A: $tType] : ( ( A > A ) > A > ( filter @ A ) > $o ) ).
thf(sy_c_Divides_Oadjust__div,type,
adjust_div: ( product_prod @ int @ int ) > int ).
thf(sy_c_Divides_Oadjust__mod,type,
adjust_mod: int > int > int ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > ( product_prod @ nat @ nat ) ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > ( product_prod @ int @ int ) > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux,type,
unique5940410009612947441es_aux:
!>[A: $tType] : ( ( product_prod @ A @ A ) > $o ) ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod,type,
unique8689654367752047608divmod:
!>[A: $tType] : ( num > num > ( product_prod @ A @ A ) ) ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step,type,
unique1321980374590559556d_step:
!>[A: $tType] : ( num > ( product_prod @ A @ A ) > ( product_prod @ A @ A ) ) ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer,type,
comm_s3205402744901411588hammer:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact,type,
semiring_char_0_fact:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Fields_Oinverse__class_Oinverse,type,
inverse_inverse:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Filter_Oat__bot,type,
at_bot:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_Filter_Oat__top,type,
at_top:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_Filter_Oeventually,type,
eventually:
!>[A: $tType] : ( ( A > $o ) > ( filter @ A ) > $o ) ).
thf(sy_c_Filter_Ofiltercomap,type,
filtercomap:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ B ) > ( filter @ A ) ) ).
thf(sy_c_Filter_Ofilterlim,type,
filterlim:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Filter_Ofinite__subsets__at__top,type,
finite5375528669736107172at_top:
!>[A: $tType] : ( ( set @ A ) > ( filter @ ( set @ A ) ) ) ).
thf(sy_c_Filter_Oprincipal,type,
principal:
!>[A: $tType] : ( ( set @ A ) > ( filter @ A ) ) ).
thf(sy_c_Filter_Oprod__filter,type,
prod_filter:
!>[A: $tType,B: $tType] : ( ( filter @ A ) > ( filter @ B ) > ( filter @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Finite__Set_Ocard,type,
finite_card:
!>[B: $tType] : ( ( set @ B ) > nat ) ).
thf(sy_c_Finite__Set_Ocomp__fun__commute__on,type,
finite4664212375090638736ute_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B > B ) > $o ) ).
thf(sy_c_Finite__Set_Ofinite,type,
finite_finite:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Finite__Set_Ofold,type,
finite_fold:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > B > ( set @ A ) > B ) ).
thf(sy_c_Finite__Set_Ofolding__on,type,
finite_folding_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B > B ) > $o ) ).
thf(sy_c_Finite__Set_Ofolding__on_OF,type,
finite_folding_F:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > B > ( set @ A ) > B ) ).
thf(sy_c_Fun_Obij__betw,type,
bij_betw:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > ( set @ B ) > $o ) ).
thf(sy_c_Fun_Ocomp,type,
comp:
!>[B: $tType,C: $tType,A: $tType] : ( ( B > C ) > ( A > B ) > A > C ) ).
thf(sy_c_Fun_Ofun__upd,type,
fun_upd:
!>[A: $tType,B: $tType] : ( ( A > B ) > A > B > A > B ) ).
thf(sy_c_Fun_Oinj__on,type,
inj_on:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > $o ) ).
thf(sy_c_Fun_Ostrict__mono__on,type,
strict_mono_on:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > $o ) ).
thf(sy_c_Fun_Othe__inv__into,type,
the_inv_into:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > B > A ) ).
thf(sy_c_GCD_OGcd__class_OGcd,type,
gcd_Gcd:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_GCD_Obezw,type,
bezw: nat > nat > ( product_prod @ int @ int ) ).
thf(sy_c_GCD_Obezw__rel,type,
bezw_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_GCD_Ogcd__class_Ogcd,type,
gcd_gcd:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_GCD_Ogcd__nat__rel,type,
gcd_nat_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_GCD_Osemiring__1__class_Osemiring__char,type,
semiri4206861660011772517g_char:
!>[A: $tType] : ( ( itself @ A ) > nat ) ).
thf(sy_c_Groups_Oabs__class_Oabs,type,
abs_abs:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Oplus__class_Oplus,type,
plus_plus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Osgn__class_Osgn,type,
sgn_sgn:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Otimes__class_Otimes,type,
times_times:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Ouminus__class_Ouminus,type,
uminus_uminus:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum,type,
groups7311177749621191930dd_sum:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_H,type,
groups1027152243600224163dd_sum:
!>[C: $tType,A: $tType] : ( ( C > A ) > ( set @ C ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod,type,
groups7121269368397514597t_prod:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_H,type,
groups1962203154675924110t_prod:
!>[C: $tType,A: $tType] : ( ( C > A ) > ( set @ C ) > A ) ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum,type,
groups4207007520872428315er_sum:
!>[B: $tType,A: $tType] : ( ( B > A ) > A > ( list @ B ) > A ) ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list,type,
groups8242544230860333062m_list:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_HOL_ONO__MATCH,type,
nO_MATCH:
!>[A: $tType,B: $tType] : ( A > B > $o ) ).
thf(sy_c_HOL_OThe,type,
the:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_HOL_Oundefined,type,
undefined:
!>[A: $tType] : A ).
thf(sy_c_If,type,
if:
!>[A: $tType] : ( $o > A > A > A ) ).
thf(sy_c_Int_OAbs__Integ,type,
abs_Integ: ( product_prod @ nat @ nat ) > int ).
thf(sy_c_Int_ORep__Integ,type,
rep_Integ: int > ( product_prod @ nat @ nat ) ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Opower__int,type,
power_int:
!>[A: $tType] : ( A > int > A ) ).
thf(sy_c_Int_Oring__1__class_OInts,type,
ring_1_Ints:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Int_Oring__1__class_Oof__int,type,
ring_1_of_int:
!>[A: $tType] : ( int > A ) ).
thf(sy_c_Lattices_Oinf__class_Oinf,type,
inf_inf:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Lattices_Osemilattice__neutr__order,type,
semila1105856199041335345_order:
!>[A: $tType] : ( ( A > A > A ) > A > ( A > A > $o ) > ( A > A > $o ) > $o ) ).
thf(sy_c_Lattices_Osup__class_Osup,type,
sup_sup:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax,type,
lattic643756798349783984er_Max:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Olinorder__class_OMin,type,
lattic643756798350308766er_Min:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on,type,
lattic7623131987881927897min_on:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > B ) ).
thf(sy_c_Lattices__Big_Osemilattice__inf__class_OInf__fin,type,
lattic7752659483105999362nf_fin:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin,type,
lattic5882676163264333800up_fin:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Limits_OBfun,type,
bfun:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Limits_Oat__infinity,type,
at_infinity:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_List_Oappend,type,
append:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oarg__min__list,type,
arg_min_list:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( list @ A ) > A ) ).
thf(sy_c_List_Obind,type,
bind:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( A > ( list @ B ) ) > ( list @ B ) ) ).
thf(sy_c_List_Oconcat,type,
concat:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ A ) ) ).
thf(sy_c_List_Ocount__list,type,
count_list:
!>[A: $tType] : ( ( list @ A ) > A > nat ) ).
thf(sy_c_List_Odistinct,type,
distinct:
!>[A: $tType] : ( ( list @ A ) > $o ) ).
thf(sy_c_List_Odrop,type,
drop:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OdropWhile,type,
dropWhile:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oenumerate,type,
enumerate:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ ( product_prod @ nat @ A ) ) ) ).
thf(sy_c_List_Oextract,type,
extract:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) ) ).
thf(sy_c_List_Ofilter,type,
filter2:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Ofind,type,
find:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( option @ A ) ) ).
thf(sy_c_List_Ofolding__insort__key,type,
folding_insort_key:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( A > A > $o ) > ( set @ B ) > ( B > A ) > $o ) ).
thf(sy_c_List_Ofoldr,type,
foldr:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > ( list @ A ) > B > B ) ).
thf(sy_c_List_Olenlex,type,
lenlex:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olex,type,
lex:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olexn,type,
lexn:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > nat > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olexord,type,
lexord:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olexordp,type,
lexordp:
!>[A: $tType] : ( ( A > A > $o ) > ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Olinorder_Oinsort__key,type,
insort_key:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( B > A ) > B > ( list @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder_Osorted__key__list__of__set,type,
sorted8670434370408473282of_set:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( B > A ) > ( set @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Oinsort__key,type,
linorder_insort_key:
!>[B: $tType,A: $tType] : ( ( B > A ) > B > ( list @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Osorted__key__list__of__set,type,
linord144544945434240204of_set:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set,type,
linord4507533701916653071of_set:
!>[A: $tType] : ( ( set @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist_OCons,type,
cons:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : ( list @ A ) ).
thf(sy_c_List_Olist_Ocase__list,type,
case_list:
!>[B: $tType,A: $tType] : ( B > ( A > ( list @ A ) > B ) > ( list @ A ) > B ) ).
thf(sy_c_List_Olist_Ohd,type,
hd:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_Olist_Omap,type,
map:
!>[A: $tType,Aa: $tType] : ( ( A > Aa ) > ( list @ A ) > ( list @ Aa ) ) ).
thf(sy_c_List_Olist_Oset,type,
set2:
!>[A: $tType] : ( ( list @ A ) > ( set @ A ) ) ).
thf(sy_c_List_Olist_Osize__list,type,
size_list:
!>[A: $tType] : ( ( A > nat ) > ( list @ A ) > nat ) ).
thf(sy_c_List_Olist_Otl,type,
tl:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist__update,type,
list_update:
!>[A: $tType] : ( ( list @ A ) > nat > A > ( list @ A ) ) ).
thf(sy_c_List_Olistrel,type,
listrel:
!>[A: $tType,B: $tType] : ( ( set @ ( product_prod @ A @ B ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) ) ) ).
thf(sy_c_List_Olistrel1,type,
listrel1:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olistrel1p,type,
listrel1p:
!>[A: $tType] : ( ( A > A > $o ) > ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Olistrelp,type,
listrelp:
!>[A: $tType,B: $tType] : ( ( A > B > $o ) > ( list @ A ) > ( list @ B ) > $o ) ).
thf(sy_c_List_Olistset,type,
listset:
!>[A: $tType] : ( ( list @ ( set @ A ) ) > ( set @ ( list @ A ) ) ) ).
thf(sy_c_List_Omap__filter,type,
map_filter:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( list @ A ) > ( list @ B ) ) ).
thf(sy_c_List_Omin__list,type,
min_list:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_Omin__list__rel,type,
min_list_rel:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_On__lists,type,
n_lists:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( ( list @ A ) > nat > A ) ).
thf(sy_c_List_Onths,type,
nths:
!>[A: $tType] : ( ( list @ A ) > ( set @ nat ) > ( list @ A ) ) ).
thf(sy_c_List_Opartition,type,
partition:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ).
thf(sy_c_List_Oproduct,type,
product:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( list @ B ) > ( list @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_List_Oproduct__lists,type,
product_lists:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Oremdups,type,
remdups:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oremdups__adj,type,
remdups_adj:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oremdups__adj__rel,type,
remdups_adj_rel:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Oremove1,type,
remove1:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OremoveAll,type,
removeAll:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oreplicate,type,
replicate:
!>[A: $tType] : ( nat > A > ( list @ A ) ) ).
thf(sy_c_List_Orev,type,
rev:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Orotate,type,
rotate:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Orotate1,type,
rotate1:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oset__Cons,type,
set_Cons:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( list @ A ) ) > ( set @ ( list @ A ) ) ) ).
thf(sy_c_List_Oshuffles,type,
shuffles:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( set @ ( list @ A ) ) ) ).
thf(sy_c_List_Osorted__wrt,type,
sorted_wrt:
!>[A: $tType] : ( ( A > A > $o ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Osubseqs,type,
subseqs:
!>[A: $tType] : ( ( list @ A ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Otake,type,
take:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OtakeWhile,type,
takeWhile:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Otranspose,type,
transpose:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Otranspose__rel,type,
transpose_rel:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ ( list @ A ) ) > $o ) ).
thf(sy_c_List_Ounion,type,
union:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > ( list @ nat ) ).
thf(sy_c_List_Oupto,type,
upto: int > int > ( list @ int ) ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > ( list @ int ) > ( list @ int ) ).
thf(sy_c_List_Oupto__rel,type,
upto_rel: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) > $o ).
thf(sy_c_List_Ozip,type,
zip:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( list @ B ) > ( list @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Map_Odom,type,
dom:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ A ) ) ).
thf(sy_c_Map_Ograph,type,
graph:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Map_Omap__of,type,
map_of:
!>[A: $tType,B: $tType] : ( ( list @ ( product_prod @ A @ B ) ) > A > ( option @ B ) ) ).
thf(sy_c_Map_Omap__upds,type,
map_upds:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( list @ A ) > ( list @ B ) > A > ( option @ B ) ) ).
thf(sy_c_Map_Oran,type,
ran:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ B ) ) ).
thf(sy_c_Map_Orestrict__map,type,
restrict_map:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ A ) > A > ( option @ B ) ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Ocompow,type,
compow:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Nat_Ofunpow,type,
funpow:
!>[A: $tType] : ( nat > ( A > A ) > A > A ) ).
thf(sy_c_Nat_Onat_Ocase__nat,type,
case_nat:
!>[A: $tType] : ( A > ( nat > A ) > nat > A ) ).
thf(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
thf(sy_c_Nat_Oold_Onat_Orec__nat,type,
rec_nat:
!>[T: $tType] : ( T > ( nat > T > T ) > nat > T ) ).
thf(sy_c_Nat_Oold_Onat_Orec__set__nat,type,
rec_set_nat:
!>[T: $tType] : ( T > ( nat > T > T ) > nat > T > $o ) ).
thf(sy_c_Nat_Osemiring__1__class_ONats,type,
semiring_1_Nats:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux,type,
semiri8178284476397505188at_aux:
!>[A: $tType] : ( ( A > A ) > nat > A > A ) ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: nat > nat > ( product_prod @ nat @ nat ) ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
nat_pr5047031295181774490ux_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > ( set @ nat ) ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: ( set @ nat ) > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl,type,
neg_numeral_dbl:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec,type,
neg_numeral_dbl_dec:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc,type,
neg_numeral_dbl_inc:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Osub,type,
neg_numeral_sub:
!>[A: $tType] : ( num > num > A ) ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one2: num ).
thf(sy_c_Num_Onum_Ocase__num,type,
case_num:
!>[A: $tType] : ( A > ( num > A ) > ( num > A ) > num > A ) ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral,type,
numeral_numeral:
!>[A: $tType] : ( num > A ) ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Num_Oring__1__class_Oiszero,type,
ring_1_iszero:
!>[A: $tType] : ( A > $o ) ).
thf(sy_c_Num_Osqr,type,
sqr: num > num ).
thf(sy_c_Option_Ooption_ONone,type,
none:
!>[A: $tType] : ( option @ A ) ).
thf(sy_c_Option_Ooption_OSome,type,
some:
!>[A: $tType] : ( A > ( option @ A ) ) ).
thf(sy_c_Option_Ooption_Ocase__option,type,
case_option:
!>[B: $tType,A: $tType] : ( B > ( A > B ) > ( option @ A ) > B ) ).
thf(sy_c_Option_Ooption_Omap__option,type,
map_option:
!>[A: $tType,Aa: $tType] : ( ( A > Aa ) > ( option @ A ) > ( option @ Aa ) ) ).
thf(sy_c_Option_Ooption_Osize__option,type,
size_option:
!>[A: $tType] : ( ( A > nat ) > ( option @ A ) > nat ) ).
thf(sy_c_Option_Ooption_Othe,type,
the2:
!>[A: $tType] : ( ( option @ A ) > A ) ).
thf(sy_c_Option_Othese,type,
these:
!>[A: $tType] : ( ( set @ ( option @ A ) ) > ( set @ A ) ) ).
thf(sy_c_Order__Continuity_Ocountable__complete__lattice__class_Occlfp,type,
order_532582986084564980_cclfp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Orderings_Obot__class_Obot,type,
bot_bot:
!>[A: $tType] : A ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Omax,type,
ord_max:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Orderings_Oord__class_Omin,type,
ord_min:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Orderings_Oorder__class_Oantimono,type,
order_antimono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Omono,type,
order_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono,type,
order_strict_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Otop__class_Otop,type,
top_top:
!>[A: $tType] : A ).
thf(sy_c_Power_Opower__class_Opower,type,
power_power:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Product__Type_OPair,type,
product_Pair:
!>[A: $tType,B: $tType] : ( A > B > ( product_prod @ A @ B ) ) ).
thf(sy_c_Product__Type_OSigma,type,
product_Sigma:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > ( set @ B ) ) > ( set @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Product__Type_Oapsnd,type,
product_apsnd:
!>[B: $tType,C: $tType,A: $tType] : ( ( B > C ) > ( product_prod @ A @ B ) > ( product_prod @ A @ C ) ) ).
thf(sy_c_Product__Type_Oprod_Ocase__prod,type,
product_case_prod:
!>[A: $tType,B: $tType,C: $tType] : ( ( A > B > C ) > ( product_prod @ A @ B ) > C ) ).
thf(sy_c_Product__Type_Oprod_Ofst,type,
product_fst:
!>[A: $tType,B: $tType] : ( ( product_prod @ A @ B ) > A ) ).
thf(sy_c_Product__Type_Oprod_Osnd,type,
product_snd:
!>[A: $tType,B: $tType] : ( ( product_prod @ A @ B ) > B ) ).
thf(sy_c_Product__Type_Oproduct,type,
product_product:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( set @ B ) > ( set @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Rat_Ofield__char__0__class_ORats,type,
field_char_0_Rats:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Rat_Onormalize,type,
normalize: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > ( product_prod @ int @ int ) ).
thf(sy_c_Real__Vector__Spaces_OReals,type,
real_Vector_Reals:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear,type,
real_V3181309239436604168linear:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear__axioms,type,
real_V4916620083959148203axioms:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist,type,
real_V557655796197034286t_dist:
!>[A: $tType] : ( A > A > real ) ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm,type,
real_V7770717601297561774m_norm:
!>[A: $tType] : ( A > real ) ).
thf(sy_c_Real__Vector__Spaces_Oof__real,type,
real_Vector_of_real:
!>[A: $tType] : ( real > A ) ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR,type,
real_V8093663219630862766scaleR:
!>[A: $tType] : ( real > A > A ) ).
thf(sy_c_Relation_OId__on,type,
id_on:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Relation_Oirrefl,type,
irrefl:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > $o ) ).
thf(sy_c_Relation_Orefl__on,type,
refl_on:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( product_prod @ A @ A ) ) > $o ) ).
thf(sy_c_Relation_Orelcomp,type,
relcomp:
!>[A: $tType,B: $tType,C: $tType] : ( ( set @ ( product_prod @ A @ B ) ) > ( set @ ( product_prod @ B @ C ) ) > ( set @ ( product_prod @ A @ C ) ) ) ).
thf(sy_c_Relation_Ototal__on,type,
total_on:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( product_prod @ A @ A ) ) > $o ) ).
thf(sy_c_Rings_Odivide__class_Odivide,type,
divide_divide:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Rings_Odvd__class_Odvd,type,
dvd_dvd:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Rings_Omodulo__class_Omodulo,type,
modulo_modulo:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool,type,
zero_neq_one_of_bool:
!>[A: $tType] : ( $o > A ) ).
thf(sy_c_Series_Osuminf,type,
suminf:
!>[A: $tType] : ( ( nat > A ) > A ) ).
thf(sy_c_Series_Osummable,type,
summable:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Series_Osums,type,
sums:
!>[A: $tType] : ( ( nat > A ) > A > $o ) ).
thf(sy_c_Set_OBall,type,
ball:
!>[A: $tType] : ( ( set @ A ) > ( A > $o ) > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Set_OPow,type,
pow2:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( set @ A ) ) ) ).
thf(sy_c_Set_Ofilter,type,
filter3:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Oimage,type,
image:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > ( set @ B ) ) ).
thf(sy_c_Set_Oinsert,type,
insert:
!>[A: $tType] : ( A > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Ois__singleton,type,
is_singleton:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Set_Othe__elem,type,
the_elem:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat,type,
set_fo6178422350223883121st_nat:
!>[A: $tType] : ( ( nat > A > A ) > nat > nat > A > A ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeast,type,
set_ord_atLeast:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost,type,
set_or1337092689740270186AtMost:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan,type,
set_or7035219750837199246ssThan:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatMost,type,
set_ord_atMost:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan,type,
set_ord_greaterThan:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost,type,
set_or3652927894154168847AtMost:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan,type,
set_or5935395276787703475ssThan:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OlessThan,type,
set_ord_lessThan:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_String_Oascii__of,type,
ascii_of: char > char ).
thf(sy_c_String_Ochar_OChar,type,
char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_String_Ocomm__semiring__1__class_Oof__char,type,
comm_s6883823935334413003f_char:
!>[A: $tType] : ( char > A ) ).
thf(sy_c_String_Ointeger__of__char,type,
integer_of_char: char > code_integer ).
thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of,type,
unique5772411509450598832har_of:
!>[A: $tType] : ( A > char ) ).
thf(sy_c_Topological__Spaces_Ocontinuous,type,
topolo3448309680560233919inuous:
!>[A: $tType,B: $tType] : ( ( filter @ A ) > ( A > B ) > $o ) ).
thf(sy_c_Topological__Spaces_Ocontinuous__on,type,
topolo81223032696312382ous_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > $o ) ).
thf(sy_c_Topological__Spaces_Omonoseq,type,
topological_monoseq:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Topological__Spaces_Oopen__class_Oopen,type,
topolo1002775350975398744n_open:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ot2__space__class_OLim,type,
topolo3827282254853284352ce_Lim:
!>[F: $tType,A: $tType] : ( ( filter @ F ) > ( F > A ) > A ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within,type,
topolo174197925503356063within:
!>[A: $tType] : ( A > ( set @ A ) > ( filter @ A ) ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds,type,
topolo7230453075368039082e_nhds:
!>[A: $tType] : ( A > ( filter @ A ) ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy,type,
topolo3814608138187158403Cauchy:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_Ocauchy__filter,type,
topolo6773858410816713723filter:
!>[A: $tType] : ( ( filter @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_Ocomplete,type,
topolo2479028161051973599mplete:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_Ototally__bounded,type,
topolo6688025880775521714ounded:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity,type,
topolo7806501430040627800ormity:
!>[A: $tType] : ( filter @ ( product_prod @ A @ A ) ) ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh,type,
arcosh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh,type,
arsinh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oartanh,type,
artanh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocos,type,
cos:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh,type,
cosh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocot,type,
cot:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Odiffs,type,
diffs:
!>[A: $tType] : ( ( nat > A ) > nat > A ) ).
thf(sy_c_Transcendental_Oexp,type,
exp:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oln__class_Oln,type,
ln_ln:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr,type,
powr:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Transcendental_Osin,type,
sin:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh,type,
sinh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Otan,type,
tan:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Otanh,type,
tanh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transitive__Closure_Ontrancl,type,
transitive_ntrancl:
!>[A: $tType] : ( nat > ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Transitive__Closure_Otrancl,type,
transitive_trancl:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: ( option @ ( product_prod @ nat @ nat ) ) > nat > ( list @ vEBT_VEBT ) > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > ( list @ vEBT_VEBT ) > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > ( set @ nat ) ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__Delete_Ovebt__delete,type,
vEBT_vebt_delete: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Delete_Ovebt__delete__rel,type,
vEBT_vebt_delete_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__InsertCorrectness_OVEBT__internal_Oinsert_H,type,
vEBT_VEBT_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__InsertCorrectness_OVEBT__internal_Oinsert_H__rel,type,
vEBT_VEBT_insert_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Insert_Ovebt__insert,type,
vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
vEBT_vebt_insert_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
vEBT_VEBT_bit_concat: nat > nat > nat > nat ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
vEBT_VEBT_minNull: vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
vEBT_VEBT_set_vebt: vEBT_VEBT > ( set @ nat ) ).
thf(sy_c_VEBT__Member_Ovebt__member,type,
vEBT_vebt_member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
vEBT_vebt_member_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
vEBT_VEBT_add: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
vEBT_VEBT_greater: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
vEBT_VEBT_less: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
vEBT_VEBT_lesseq: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
vEBT_VEBT_max_in_set: ( set @ nat ) > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
vEBT_VEBT_min_in_set: ( set @ nat ) > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
vEBT_VEBT_mul: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift,type,
vEBT_V2048590022279873568_shift:
!>[A: $tType] : ( ( A > A > A ) > ( option @ A ) > ( option @ A ) > ( option @ A ) ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
vEBT_VEBT_power: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
vEBT_vebt_maxt: vEBT_VEBT > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
vEBT_vebt_mint: vEBT_VEBT > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
vEBT_is_pred_in_set: ( set @ nat ) > nat > nat > $o ).
thf(sy_c_VEBT__Pred_Ovebt__pred,type,
vEBT_vebt_pred: vEBT_VEBT > nat > ( option @ nat ) ).
thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
vEBT_vebt_pred_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
vEBT_is_succ_in_set: ( set @ nat ) > nat > nat > $o ).
thf(sy_c_VEBT__Succ_Ovebt__succ,type,
vEBT_vebt_succ: vEBT_VEBT > nat > ( option @ nat ) ).
thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
vEBT_vebt_succ_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_Wellfounded_Oaccp,type,
accp:
!>[A: $tType] : ( ( A > A > $o ) > A > $o ) ).
thf(sy_c_Wellfounded_Omax__ext,type,
max_ext:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ).
thf(sy_c_Wellfounded_Omeasure,type,
measure:
!>[A: $tType] : ( ( A > nat ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Wellfounded_Omin__ext,type,
min_ext:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ).
thf(sy_c_Wellfounded_Omlex__prod,type,
mlex_prod:
!>[A: $tType] : ( ( A > nat ) > ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Wellfounded_Opred__nat,type,
pred_nat: set @ ( product_prod @ nat @ nat ) ).
thf(sy_c_fChoice,type,
fChoice:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_deg____,type,
deg: nat ).
thf(sy_v_i____,type,
i: nat ).
thf(sy_v_m____,type,
m: nat ).
thf(sy_v_na____,type,
na: nat ).
thf(sy_v_sa____,type,
sa: vEBT_VEBT ).
thf(sy_v_summary_H____,type,
summary: vEBT_VEBT ).
thf(sy_v_summary____,type,
summary2: vEBT_VEBT ).
thf(sy_v_treeList_H____,type,
treeList: list @ vEBT_VEBT ).
thf(sy_v_treeList____,type,
treeList2: list @ vEBT_VEBT ).
thf(sy_v_x____,type,
x: nat ).
% Relevant facts (8182)
thf(fact_0_ac,axiom,
( ( size_size @ ( list @ vEBT_VEBT ) @ treeList )
= ( size_size @ ( list @ vEBT_VEBT ) @ treeList2 ) ) ).
% ac
thf(fact_1__C2_Ohyps_C_I3_J,axiom,
m = na ).
% "2.hyps"(3)
thf(fact_2__C2_Ohyps_C_I2_J,axiom,
( ( size_size @ ( list @ vEBT_VEBT ) @ treeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) ) ).
% "2.hyps"(2)
thf(fact_3_less__exp,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% less_exp
thf(fact_4_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one2 ) ).
% semiring_norm(85)
thf(fact_5_semiring__norm_I83_J,axiom,
! [N: num] :
( one2
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_6_numeral__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: num,N: num] :
( ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( ord_less @ num @ M @ N ) ) ) ).
% numeral_less_iff
thf(fact_7_member__bound,axiom,
! [Tree: vEBT_VEBT,X: nat,N: nat] :
( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_invar_vebt @ Tree @ N )
=> ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% member_bound
thf(fact_8_verit__eq__simplify_I8_J,axiom,
! [X2: num,Y2: num] :
( ( ( bit0 @ X2 )
= ( bit0 @ Y2 ) )
= ( X2 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_9_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_10_numeral__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: num,N: num] :
( ( ( numeral_numeral @ A @ M )
= ( numeral_numeral @ A @ N ) )
= ( M = N ) ) ) ).
% numeral_eq_iff
thf(fact_11_verit__eq__simplify_I10_J,axiom,
! [X2: num] :
( one2
!= ( bit0 @ X2 ) ) ).
% verit_eq_simplify(10)
thf(fact_12_local_Opower__def,axiom,
( vEBT_VEBT_power
= ( vEBT_V2048590022279873568_shift @ nat @ ( power_power @ nat ) ) ) ).
% local.power_def
thf(fact_13_min__Null__member,axiom,
! [T2: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_minNull @ T2 )
=> ~ ( vEBT_vebt_member @ T2 @ X ) ) ).
% min_Null_member
thf(fact_14__C2_Ohyps_C_I1_J,axiom,
vEBT_invar_vebt @ summary2 @ m ).
% "2.hyps"(1)
thf(fact_15_insert_H__pres__valid,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( vEBT_invar_vebt @ ( vEBT_VEBT_insert @ T2 @ X ) @ N ) ) ).
% insert'_pres_valid
thf(fact_16_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less @ num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less @ num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_17_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less @ num @ M @ one2 ) ).
% semiring_norm(75)
thf(fact_18_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less @ num @ one2 @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_19_member__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_vebt_member @ T2 @ X )
= ( member @ nat @ X @ ( vEBT_set_vebt @ T2 ) ) ) ) ).
% member_correct
thf(fact_20_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(1)
thf(fact_21_post__member__pre__member,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T2 @ X ) @ Y )
=> ( ( vEBT_vebt_member @ T2 @ Y )
| ( X = Y ) ) ) ) ) ) ).
% post_member_pre_member
thf(fact_22_valid__pres__insert,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_insert @ T2 @ X ) @ N ) ) ) ).
% valid_pres_insert
thf(fact_23_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_less @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( numeral_numeral @ extended_enat @ N ) )
= ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_24_aa,axiom,
! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ treeList ) )
=> ( vEBT_invar_vebt @ X3 @ na ) ) ).
% aa
thf(fact_25__C2_Oprems_C_I1_J,axiom,
vEBT_invar_vebt @ sa @ deg ).
% "2.prems"(1)
thf(fact_26_list__eq__iff__nth__eq,axiom,
! [A: $tType] :
( ( ^ [Y3: list @ A,Z: list @ A] : ( Y3 = Z ) )
= ( ^ [Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( nth @ A @ Xs @ I )
= ( nth @ A @ Ys @ I ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_27_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P: nat > A > $o] :
( ( ! [I: nat] :
( ( ord_less @ nat @ I @ K )
=> ? [X4: A] : ( P @ I @ X4 ) ) )
= ( ? [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ! [I: nat] :
( ( ord_less @ nat @ I @ K )
=> ( P @ I @ ( nth @ A @ Xs @ I ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_28_nth__equalityI,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( nth @ A @ Ys2 @ I2 ) ) )
=> ( Xs2 = Ys2 ) ) ) ).
% nth_equalityI
thf(fact_29_power__numeral,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [K: num,L: num] :
( ( power_power @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ nat @ L ) )
= ( numeral_numeral @ A @ ( pow @ K @ L ) ) ) ) ).
% power_numeral
thf(fact_30__C2_OIH_C_I1_J,axiom,
! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ treeList2 ) )
=> ( ( vEBT_invar_vebt @ X3 @ na )
& ! [Xa: vEBT_VEBT] :
( ( vEBT_invar_vebt @ Xa @ na )
=> ( ( ( vEBT_VEBT_set_vebt @ X3 )
= ( vEBT_VEBT_set_vebt @ Xa ) )
=> ( Xa = X3 ) ) ) ) ) ).
% "2.IH"(1)
thf(fact_31__C2_Ohyps_C_I4_J,axiom,
( deg
= ( plus_plus @ nat @ na @ m ) ) ).
% "2.hyps"(4)
thf(fact_32_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_33_valid__eq2,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_VEBT_valid @ T2 @ D2 )
=> ( vEBT_invar_vebt @ T2 @ D2 ) ) ).
% valid_eq2
thf(fact_34_valid__eq1,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_invar_vebt @ T2 @ D2 )
=> ( vEBT_VEBT_valid @ T2 @ D2 ) ) ).
% valid_eq1
thf(fact_35_set__vebt__set__vebt_H__valid,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_set_vebt @ T2 )
= ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_set_vebt'_valid
thf(fact_36_inthall,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,N: nat] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_37__C2_OIH_C_I2_J,axiom,
! [S: vEBT_VEBT] :
( ( vEBT_invar_vebt @ S @ m )
=> ( ( ( vEBT_VEBT_set_vebt @ summary2 )
= ( vEBT_VEBT_set_vebt @ S ) )
=> ( S = summary2 ) ) ) ).
% "2.IH"(2)
thf(fact_38_add__numeral__left,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [V: num,W: num,Z2: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ V ) @ ( plus_plus @ A @ ( numeral_numeral @ A @ W ) @ Z2 ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ V @ W ) ) @ Z2 ) ) ) ).
% add_numeral_left
thf(fact_39_numeral__plus__numeral,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [M: num,N: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N ) ) ) ) ).
% numeral_plus_numeral
thf(fact_40__C2_Ohyps_C_I5_J,axiom,
~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ summary2 @ X_1 ) ).
% "2.hyps"(5)
thf(fact_41__C2_Ohyps_C_I6_J,axiom,
! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ treeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ).
% "2.hyps"(6)
thf(fact_42_is__num__normalize_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% is_num_normalize(1)
thf(fact_43_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_44_Collect__mem__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( collect @ A
@ ^ [X6: A] : ( member @ A @ X6 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_45_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X5: A] :
( ( P @ X5 )
= ( Q @ X5 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_46_ext,axiom,
! [B: $tType,A: $tType,F2: A > B,G: A > B] :
( ! [X5: A] :
( ( F2 @ X5 )
= ( G @ X5 ) )
=> ( F2 = G ) ) ).
% ext
thf(fact_47_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N2: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_less @ extended_enat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_48_numeral__Bit0,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ ( bit0 @ N ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ N ) ) ) ) ).
% numeral_Bit0
thf(fact_49_nth__mem,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ A @ ( nth @ A @ Xs2 @ N ) @ ( set2 @ A @ Xs2 ) ) ) ).
% nth_mem
thf(fact_50_list__ball__nth,axiom,
! [A: $tType,N: nat,Xs2: list @ A,P: A > $o] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( P @ ( nth @ A @ Xs2 @ N ) ) ) ) ).
% list_ball_nth
thf(fact_51_in__set__conv__nth,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ I )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_52_all__nth__imp__all__set,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,X: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_53_all__set__conv__all__nth,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X6 ) ) )
= ( ! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_54_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one2 )
= X ) ).
% pow.simps(1)
thf(fact_55_neq__if__length__neq,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
!= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( Xs2 != Ys2 ) ) ).
% neq_if_length_neq
thf(fact_56_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs3: list @ A] :
( ( size_size @ ( list @ A ) @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_57_length__induct,axiom,
! [A: $tType,P: ( list @ A ) > $o,Xs2: list @ A] :
( ! [Xs3: list @ A] :
( ! [Ys3: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys3 ) @ ( size_size @ ( list @ A ) @ Xs3 ) )
=> ( P @ Ys3 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs2 ) ) ).
% length_induct
thf(fact_58_add__def,axiom,
( vEBT_VEBT_add
= ( vEBT_V2048590022279873568_shift @ nat @ ( plus_plus @ nat ) ) ) ).
% add_def
thf(fact_59_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_60_add__less__cancel__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_cancel_left
thf(fact_61_add__less__cancel__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_cancel_right
thf(fact_62_valid__insert__both__member__options__add,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ X ) @ X ) ) ) ).
% valid_insert_both_member_options_add
thf(fact_63_valid__insert__both__member__options__pres,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ Y ) @ X ) ) ) ) ) ).
% valid_insert_both_member_options_pres
thf(fact_64_ab,axiom,
! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ treeList2 ) )
=> ( ( vEBT_VEBT_set_vebt @ X3 )
= ( bot_bot @ ( set @ nat ) ) ) ) ).
% ab
thf(fact_65_pow__sum,axiom,
! [A2: nat,B2: nat] :
( ( divide_divide @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ A2 @ B2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 ) ) ).
% pow_sum
thf(fact_66__C2_Oprems_C_I2_J,axiom,
( ( vEBT_VEBT_set_vebt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ deg @ treeList2 @ summary2 ) )
= ( vEBT_VEBT_set_vebt @ sa ) ) ).
% "2.prems"(2)
thf(fact_67_high__bound__aux,axiom,
! [Ma: nat,N: nat,M: nat] :
( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N @ M ) ) )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_68_add__right__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ).
% add_right_cancel
thf(fact_69_add__left__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ).
% add_left_cancel
thf(fact_70_deg__deg__n,axiom,
! [Info: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( Deg = N ) ) ).
% deg_deg_n
thf(fact_71_not__min__Null__member,axiom,
! [T2: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ T2 )
=> ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ T2 @ X_12 ) ) ).
% not_min_Null_member
thf(fact_72_valid__member__both__member__options,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
=> ( vEBT_vebt_member @ T2 @ X ) ) ) ).
% valid_member_both_member_options
thf(fact_73_both__member__options__equiv__member,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
= ( vEBT_vebt_member @ T2 @ X ) ) ) ).
% both_member_options_equiv_member
thf(fact_74_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X6: nat,N3: nat] : ( divide_divide @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% high_def
thf(fact_75_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus @ num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus @ num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_76_semiring__norm_I2_J,axiom,
( ( plus_plus @ num @ one2 @ one2 )
= ( bit0 @ one2 ) ) ).
% semiring_norm(2)
thf(fact_77_sprop,axiom,
( ( sa
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ deg @ treeList @ summary ) )
& ( deg
= ( plus_plus @ nat @ na @ m ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ treeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) )
& ( vEBT_invar_vebt @ summary @ m )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ treeList ) )
=> ( vEBT_invar_vebt @ X3 @ na ) )
& ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ summary @ X_1 ) ) ).
% sprop
thf(fact_78__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062treeList_H_Asummary_H_O_As_A_061_ANode_ANone_Adeg_AtreeList_H_Asummary_H_A_092_060and_062_Adeg_A_061_An_A_L_Am_A_092_060and_062_Alength_AtreeList_H_A_061_A2_A_094_Am_A_092_060and_062_Ainvar__vebt_Asummary_H_Am_A_092_060and_062_A_I_092_060forall_062t_092_060in_062set_AtreeList_H_O_Ainvar__vebt_At_An_J_A_092_060and_062_A_I_092_060nexists_062i_O_Aboth__member__options_Asummary_H_Ai_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
~ ! [TreeList2: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
~ ( ( sa
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ deg @ TreeList2 @ Summary2 ) )
& ( deg
= ( plus_plus @ nat @ na @ m ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) )
& ( vEBT_invar_vebt @ Summary2 @ m )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X3 @ na ) )
& ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 ) ) ).
% \<open>\<And>thesis. (\<And>treeList' summary'. s = Node None deg treeList' summary' \<and> deg = n + m \<and> length treeList' = 2 ^ m \<and> invar_vebt summary' m \<and> (\<forall>t\<in>set treeList'. invar_vebt t n) \<and> (\<nexists>i. both_member_options summary' i) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_79_power__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( power_power @ A @ ( divide_divide @ A @ A2 @ B2 ) @ N )
= ( divide_divide @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ).
% power_divide
thf(fact_80_add__One__commute,axiom,
! [N: num] :
( ( plus_plus @ num @ one2 @ N )
= ( plus_plus @ num @ N @ one2 ) ) ).
% add_One_commute
thf(fact_81_divide__numeral__1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ one2 ) )
= A2 ) ) ).
% divide_numeral_1
thf(fact_82_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F2: A > B,P: A > $o,A2: A] :
( ! [X5: A] :
( ! [Y4: A] :
( ( ord_less @ B @ ( F2 @ Y4 ) @ ( F2 @ X5 ) )
=> ( P @ Y4 ) )
=> ( P @ X5 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_83_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F2: A > B,P: A > $o,A2: A] :
( ! [X5: A] :
( ! [Y4: A] :
( ( ord_less @ B @ ( F2 @ Y4 ) @ ( F2 @ X5 ) )
=> ( P @ Y4 ) )
=> ( P @ X5 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct
thf(fact_84_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_85_add__mono__thms__linordered__semiring_I4_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus @ A @ I3 @ K )
= ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_86_group__cancel_Oadd1,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( plus_plus @ A @ A3 @ B2 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.add1
thf(fact_87_group__cancel_Oadd2,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [B3: A,K: A,B2: A,A2: A] :
( ( B3
= ( plus_plus @ A @ K @ B2 ) )
=> ( ( plus_plus @ A @ A2 @ B3 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.add2
thf(fact_88_add_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add.assoc
thf(fact_89_add_Oleft__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ).
% add.left_cancel
thf(fact_90_add_Oright__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ).
% add.right_cancel
thf(fact_91_add_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ( ( plus_plus @ A )
= ( ^ [A4: A,B4: A] : ( plus_plus @ A @ B4 @ A4 ) ) ) ) ).
% add.commute
thf(fact_92_add_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( plus_plus @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add.left_commute
thf(fact_93_add__left__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
=> ( B2 = C2 ) ) ) ).
% add_left_imp_eq
thf(fact_94_add__right__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
=> ( B2 = C2 ) ) ) ).
% add_right_imp_eq
thf(fact_95_infinite__descent__measure,axiom,
! [A: $tType,P: A > $o,V2: A > nat,X: A] :
( ! [X5: A] :
( ~ ( P @ X5 )
=> ? [Y4: A] :
( ( ord_less @ nat @ ( V2 @ Y4 ) @ ( V2 @ X5 ) )
& ~ ( P @ Y4 ) ) )
=> ( P @ X ) ) ).
% infinite_descent_measure
thf(fact_96_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less @ nat @ X @ Y )
=> ( ord_less @ nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_97_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_98_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_99_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_100_less__not__refl3,axiom,
! [S: nat,T2: nat] :
( ( ord_less @ nat @ S @ T2 )
=> ( S != T2 ) ) ).
% less_not_refl3
thf(fact_101_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_102_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_103_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_104_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X: A,Y: A] :
( ( ( size_size @ A @ X )
!= ( size_size @ A @ Y ) )
=> ( X != Y ) ) ) ).
% size_neq_size_imp_neq
thf(fact_105_add__less__imp__less__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_imp_less_right
thf(fact_106_add__less__imp__less__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_imp_less_left
thf(fact_107_add__strict__right__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add_strict_right_mono
thf(fact_108_add__strict__left__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% add_strict_left_mono
thf(fact_109_add__strict__mono,axiom,
! [A: $tType] :
( ( strict9044650504122735259up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_strict_mono
thf(fact_110_add__mono__thms__linordered__field_I1_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I3 @ J )
& ( K = L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_111_add__mono__thms__linordered__field_I2_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( I3 = J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_112_add__mono__thms__linordered__field_I5_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I3 @ J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_113_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less @ nat @ K @ L )
=> ( ( ( plus_plus @ nat @ M @ L )
= ( plus_plus @ nat @ K @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_114_trans__less__add2,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ord_less @ nat @ I3 @ ( plus_plus @ nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_115_trans__less__add1,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ord_less @ nat @ I3 @ ( plus_plus @ nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_116_add__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_117_not__add__less2,axiom,
! [J: nat,I3: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ J @ I3 ) @ I3 ) ).
% not_add_less2
thf(fact_118_not__add__less1,axiom,
! [I3: nat,J: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ J ) @ I3 ) ).
% not_add_less1
thf(fact_119_add__less__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ K @ L )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_120_add__lessD1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ J ) @ K )
=> ( ord_less @ nat @ I3 @ K ) ) ).
% add_lessD1
thf(fact_121_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide @ nat @ ( plus_plus @ nat @ M @ M ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= M ) ).
% add_self_div_2
thf(fact_122_invar__vebt_Ointros_I2_J,axiom,
! [TreeList: list @ vEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus @ nat @ N @ M ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
=> ( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_123_both__member__options__ding,axiom,
! [Info: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_ding
thf(fact_124_div__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N ) ) ) ) ) ).
% div_exp_eq
thf(fact_125_buildup__gives__empty,axiom,
! [N: nat] :
( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% buildup_gives_empty
thf(fact_126_field__less__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ X @ ( divide_divide @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% field_less_half_sum
thf(fact_127_high__inv,axiom,
! [X: nat,N: nat,Y: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) @ X ) @ N )
= Y ) ) ).
% high_inv
thf(fact_128_field__sum__of__halves,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( plus_plus @ A @ ( divide_divide @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= X ) ) ).
% field_sum_of_halves
thf(fact_129_numeral__Bit0__div__2,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: num] :
( ( divide_divide @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( numeral_numeral @ A @ N ) ) ) ).
% numeral_Bit0_div_2
thf(fact_130_VEBT__internal_OminNull_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list @ vEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw @ Ux @ Uy ) ) ).
% VEBT_internal.minNull.simps(4)
thf(fact_131_vebt__member_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu @ Uv @ Uw ) @ X ) ).
% vebt_member.simps(2)
thf(fact_132_VEBT_Oinject_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT,Y11: option @ ( product_prod @ nat @ nat ),Y12: nat,Y13: list @ vEBT_VEBT,Y14: vEBT_VEBT] :
( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
= ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
= ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
thf(fact_133_bit__split__inv,axiom,
! [X: nat,D2: nat] :
( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X @ D2 ) @ ( vEBT_VEBT_low @ X @ D2 ) @ D2 )
= X ) ).
% bit_split_inv
thf(fact_134_mult__numeral__left__semiring__numeral,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [V: num,W: num,Z2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V ) @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ Z2 ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( times_times @ num @ V @ W ) ) @ Z2 ) ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_135_numeral__times__numeral,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [M: num,N: num] :
( ( times_times @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ ( times_times @ num @ M @ N ) ) ) ) ).
% numeral_times_numeral
thf(fact_136_low__inv,axiom,
! [X: nat,N: nat,Y: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) @ X ) @ N )
= X ) ) ).
% low_inv
thf(fact_137_bit__concat__def,axiom,
( vEBT_VEBT_bit_concat
= ( ^ [H: nat,L2: nat,D3: nat] : ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ D3 ) ) @ L2 ) ) ) ).
% bit_concat_def
thf(fact_138_distrib__right__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( semiring @ A ) )
=> ! [A2: A,B2: A,V: num] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( numeral_numeral @ A @ V ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ V ) ) @ ( times_times @ A @ B2 @ ( numeral_numeral @ A @ V ) ) ) ) ) ).
% distrib_right_numeral
thf(fact_139_distrib__left__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( semiring @ A ) )
=> ! [V: num,B2: A,C2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ V ) @ B2 ) @ ( times_times @ A @ ( numeral_numeral @ A @ V ) @ C2 ) ) ) ) ).
% distrib_left_numeral
thf(fact_140_divide__less__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) ) @ A2 )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_141_less__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W: num] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) @ B2 ) ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_142_power__add__numeral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: num,N: num] :
( ( times_times @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ M ) ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ N ) ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( plus_plus @ num @ M @ N ) ) ) ) ) ).
% power_add_numeral
thf(fact_143_power__add__numeral2,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: num,N: num,B2: A] :
( ( times_times @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ M ) ) @ ( times_times @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ N ) ) @ B2 ) )
= ( times_times @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( plus_plus @ num @ M @ N ) ) ) @ B2 ) ) ) ).
% power_add_numeral2
thf(fact_144_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_145_mult_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% mult.assoc
thf(fact_146_mult_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ( ( times_times @ A )
= ( ^ [A4: A,B4: A] : ( times_times @ A @ B4 @ A4 ) ) ) ) ).
% mult.commute
thf(fact_147_mult_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( times_times @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% mult.left_commute
thf(fact_148_div__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( divide_divide @ nat @ M @ ( times_times @ nat @ N @ Q2 ) )
= ( divide_divide @ nat @ ( divide_divide @ nat @ M @ N ) @ Q2 ) ) ).
% div_mult2_eq
thf(fact_149_power__commutes,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N: nat] :
( ( times_times @ A @ ( power_power @ A @ A2 @ N ) @ A2 )
= ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_commutes
thf(fact_150_power__mult__distrib,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( power_power @ A @ ( times_times @ A @ A2 @ B2 ) @ N )
= ( times_times @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ).
% power_mult_distrib
thf(fact_151_power__commuting__commutes,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [X: A,Y: A,N: nat] :
( ( ( times_times @ A @ X @ Y )
= ( times_times @ A @ Y @ X ) )
=> ( ( times_times @ A @ ( power_power @ A @ X @ N ) @ Y )
= ( times_times @ A @ Y @ ( power_power @ A @ X @ N ) ) ) ) ) ).
% power_commuting_commutes
thf(fact_152_power__mult,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( power_power @ A @ A2 @ ( times_times @ nat @ M @ N ) )
= ( power_power @ A @ ( power_power @ A @ A2 @ M ) @ N ) ) ) ).
% power_mult
thf(fact_153_left__add__mult__distrib,axiom,
! [I3: nat,U: nat,J: nat,K: nat] :
( ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ K ) )
= ( plus_plus @ nat @ ( times_times @ nat @ ( plus_plus @ nat @ I3 @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_154_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times @ nat @ K @ ( plus_plus @ nat @ M @ N ) )
= ( plus_plus @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_155_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times @ nat @ ( plus_plus @ nat @ M @ N ) @ K )
= ( plus_plus @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_156_less__mult__imp__div__less,axiom,
! [M: nat,I3: nat,N: nat] :
( ( ord_less @ nat @ M @ ( times_times @ nat @ I3 @ N ) )
=> ( ord_less @ nat @ ( divide_divide @ nat @ M @ N ) @ I3 ) ) ).
% less_mult_imp_div_less
thf(fact_157_mult__numeral__1,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ one2 ) @ A2 )
= A2 ) ) ).
% mult_numeral_1
thf(fact_158_mult__numeral__1__right,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( numeral_numeral @ A @ one2 ) )
= A2 ) ) ).
% mult_numeral_1_right
thf(fact_159_power__add,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( power_power @ A @ A2 @ ( plus_plus @ nat @ M @ N ) )
= ( times_times @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_add
thf(fact_160_mult__2,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [Z2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Z2 )
= ( plus_plus @ A @ Z2 @ Z2 ) ) ) ).
% mult_2
thf(fact_161_mult__2__right,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [Z2: A] :
( ( times_times @ A @ Z2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ Z2 @ Z2 ) ) ) ).
% mult_2_right
thf(fact_162_left__add__twice,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ B2 ) ) ) ).
% left_add_twice
thf(fact_163_power4__eq__xxxx,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [X: A] :
( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( times_times @ A @ ( times_times @ A @ ( times_times @ A @ X @ X ) @ X ) @ X ) ) ) ).
% power4_eq_xxxx
thf(fact_164_power2__eq__square,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( times_times @ A @ A2 @ A2 ) ) ) ).
% power2_eq_square
thf(fact_165_power__even__eq,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ A2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
= ( power_power @ A @ ( power_power @ A @ A2 @ N ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% power_even_eq
thf(fact_166_power2__sum,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A,Y: A] :
( ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) ) ) ) ).
% power2_sum
thf(fact_167_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N3: nat,TreeList3: list @ vEBT_VEBT,X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X6 @ N3 ) ) @ ( vEBT_VEBT_low @ X6 @ N3 ) ) ) ) ).
% in_children_def
thf(fact_168_mul__def,axiom,
( vEBT_VEBT_mul
= ( vEBT_V2048590022279873568_shift @ nat @ ( times_times @ nat ) ) ) ).
% mul_def
thf(fact_169_times__divide__eq__right,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% times_divide_eq_right
thf(fact_170_divide__divide__eq__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% divide_divide_eq_right
thf(fact_171_divide__divide__eq__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% divide_divide_eq_left
thf(fact_172_times__divide__eq__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( times_times @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( divide_divide @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 ) ) ) ).
% times_divide_eq_left
thf(fact_173_buildup__nothing__in__leaf,axiom,
! [N: nat,X: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_leaf
thf(fact_174_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X6: nat,N3: nat] : ( modulo_modulo @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% low_def
thf(fact_175_invar__vebt_Ointros_I3_J,axiom,
! [TreeList: list @ vEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus @ nat @ N @ M ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
=> ( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_176_buildup__gives__valid,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).
% buildup_gives_valid
thf(fact_177_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
! [A: $tType,Uu: A > A > A,Uv: option @ A] :
( ( vEBT_V2048590022279873568_shift @ A @ Uu @ ( none @ A ) @ Uv )
= ( none @ A ) ) ).
% VEBT_internal.option_shift.simps(1)
thf(fact_178_empty__Collect__eq,axiom,
! [A: $tType,P: A > $o] :
( ( ( bot_bot @ ( set @ A ) )
= ( collect @ A @ P ) )
= ( ! [X6: A] :
~ ( P @ X6 ) ) ) ).
% empty_Collect_eq
thf(fact_179_even__odd__cases,axiom,
! [X: nat] :
( ! [N2: nat] :
( X
!= ( plus_plus @ nat @ N2 @ N2 ) )
=> ~ ! [N2: nat] :
( X
!= ( plus_plus @ nat @ N2 @ ( suc @ N2 ) ) ) ) ).
% even_odd_cases
thf(fact_180_valid__0__not,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ ( zero_zero @ nat ) ) ).
% valid_0_not
thf(fact_181_valid__tree__deg__neq__0,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ ( zero_zero @ nat ) ) ).
% valid_tree_deg_neq_0
thf(fact_182_deg__not__0,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% deg_not_0
thf(fact_183_deg__SUcn__Node,axiom,
! [Tree: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N ) ) )
=> ? [Info2: option @ ( product_prod @ nat @ nat ),TreeList4: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( Tree
= ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N ) ) @ TreeList4 @ S2 ) ) ) ).
% deg_SUcn_Node
thf(fact_184_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_185_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_186_empty__iff,axiom,
! [A: $tType,C2: A] :
~ ( member @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) ).
% empty_iff
thf(fact_187_all__not__in__conv,axiom,
! [A: $tType,A3: set @ A] :
( ( ! [X6: A] :
~ ( member @ A @ X6 @ A3 ) )
= ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ).
% all_not_in_conv
thf(fact_188_Collect__empty__eq,axiom,
! [A: $tType,P: A > $o] :
( ( ( collect @ A @ P )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: A] :
~ ( P @ X6 ) ) ) ).
% Collect_empty_eq
thf(fact_189_mod__mod__trivial,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mod_trivial
thf(fact_190_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_191_add_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.right_neutral
thf(fact_192_double__zero__sym,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ A2 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_zero_sym
thf(fact_193_add__cancel__left__left,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [B2: A,A2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= A2 )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_left
thf(fact_194_add__cancel__left__right,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= A2 )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_right
thf(fact_195_add__cancel__right__left,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( plus_plus @ A @ B2 @ A2 ) )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_left
thf(fact_196_add__cancel__right__right,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( plus_plus @ A @ A2 @ B2 ) )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_right
thf(fact_197_add__eq__0__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_198_zero__eq__add__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Y: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ X @ Y ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_199_add__0,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add_0
thf(fact_200_divide__eq__0__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_eq_0_iff
thf(fact_201_divide__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( divide_divide @ A @ C2 @ A2 )
= ( divide_divide @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_left
thf(fact_202_divide__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_right
thf(fact_203_division__ring__divide__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% division_ring_divide_zero
thf(fact_204_bits__div__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% bits_div_0
thf(fact_205_bits__div__by__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% bits_div_by_0
thf(fact_206_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_207_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_208_lessI,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_209_bits__mod__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% bits_mod_0
thf(fact_210_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_211_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_212_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_213_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_214_mod__add__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_add_self1
thf(fact_215_mod__add__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_add_self2
thf(fact_216_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( zero_zero @ nat ) ) ) ) ).
% add_is_0
thf(fact_217_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% Nat.add_0_right
thf(fact_218_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times @ nat @ M @ K )
= ( times_times @ nat @ N @ K ) )
= ( ( M = N )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel2
thf(fact_219_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N ) )
= ( ( M = N )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel1
thf(fact_220_mult__0__right,axiom,
! [M: nat] :
( ( times_times @ nat @ M @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% mult_0_right
thf(fact_221_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% mult_is_0
thf(fact_222_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( modulo_modulo @ nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_223_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times @ num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times @ num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_224_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times @ num @ M @ one2 )
= M ) ).
% semiring_norm(11)
thf(fact_225_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times @ num @ one2 @ N )
= N ) ).
% semiring_norm(12)
thf(fact_226_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_227_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_228_less__add__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% less_add_same_cancel2
thf(fact_229_less__add__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% less_add_same_cancel1
thf(fact_230_add__less__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel2
thf(fact_231_add__less__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel1
thf(fact_232_sum__squares__eq__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_233_nonzero__mult__divide__mult__cancel__right2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_234_nonzero__mult__divide__mult__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_235_nonzero__mult__divide__mult__cancel__left2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_236_nonzero__mult__divide__mult__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_237_mult__divide__mult__cancel__left__if,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( zero_zero @ A ) ) )
& ( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_238_div__mult__mult1__if,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( zero_zero @ A ) ) )
& ( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_mult1_if
thf(fact_239_div__mult__mult2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% div_mult_mult2
thf(fact_240_div__mult__mult1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% div_mult_mult1
thf(fact_241_power__0__Suc,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] :
( ( power_power @ A @ ( zero_zero @ A ) @ ( suc @ N ) )
= ( zero_zero @ A ) ) ) ).
% power_0_Suc
thf(fact_242_power__zero__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [K: num] :
( ( power_power @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ nat @ K ) )
= ( zero_zero @ A ) ) ) ).
% power_zero_numeral
thf(fact_243_mod__mult__self1__is__0,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ B2 @ A2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_mult_self1_is_0
thf(fact_244_mod__mult__self2__is__0,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_mult_self2_is_0
thf(fact_245_mod__div__trivial,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_div_trivial
thf(fact_246_bits__mod__div__trivial,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% bits_mod_div_trivial
thf(fact_247_power__Suc0__right,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% power_Suc0_right
thf(fact_248_mod__mult__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self1
thf(fact_249_mod__mult__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self2
thf(fact_250_mod__mult__self3,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( times_times @ A @ C2 @ B2 ) @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self3
thf(fact_251_mod__mult__self4,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self4
thf(fact_252_less__Suc0,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_Suc0
thf(fact_253_zero__less__Suc,axiom,
! [N: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_254_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ M @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
| ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% add_gr_0
thf(fact_255_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ ( zero_zero @ nat ) )
= ( times_times @ nat @ M @ N ) )
= ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% one_eq_mult_iff
thf(fact_256_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times @ nat @ M @ N )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% mult_eq_1_iff
thf(fact_257_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= M ) ).
% div_by_Suc_0
thf(fact_258_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_259_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( times_times @ nat @ M @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_260_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_261_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( divide_divide @ nat @ M @ N )
= ( zero_zero @ nat ) ) ) ).
% div_less
thf(fact_262_power__Suc__0,axiom,
! [N: nat] :
( ( power_power @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% power_Suc_0
thf(fact_263_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power @ nat @ X @ M )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( X
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_264_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times @ nat @ M @ ( suc @ N ) )
= ( plus_plus @ nat @ M @ ( times_times @ nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_265_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( power_power @ nat @ X @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% nat_zero_less_power_iff
thf(fact_266_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K
= ( zero_zero @ nat ) )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( zero_zero @ nat ) ) )
& ( ( K
!= ( zero_zero @ nat ) )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( divide_divide @ nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_267_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% mod_by_Suc_0
thf(fact_268_num__double,axiom,
! [N: num] :
( ( times_times @ num @ ( bit0 @ one2 ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_269_power__mult__numeral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: num,N: num] :
( ( power_power @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ M ) ) @ ( numeral_numeral @ nat @ N ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( times_times @ num @ M @ N ) ) ) ) ) ).
% power_mult_numeral
thf(fact_270_divide__eq__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) )
= A2 )
= ( ( ( ( numeral_numeral @ A @ W )
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) ) )
& ( ( ( numeral_numeral @ A @ W )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_271_eq__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,W: num] :
( ( A2
= ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) ) )
= ( ( ( ( numeral_numeral @ A @ W )
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) )
= B2 ) )
& ( ( ( numeral_numeral @ A @ W )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_272_div__mult__self4,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self4
thf(fact_273_div__mult__self3,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ C2 @ B2 ) @ A2 ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self3
thf(fact_274_div__mult__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self2
thf(fact_275_div__mult__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self1
thf(fact_276_power__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A,N: nat] :
( ( ( power_power @ A @ A2 @ N )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% power_eq_0_iff
thf(fact_277_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_278_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_279_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral @ nat @ N ) )
= ( numeral_numeral @ nat @ ( plus_plus @ num @ N @ one2 ) ) ) ).
% Suc_numeral
thf(fact_280_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ M @ ( times_times @ nat @ K @ N ) ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self1
thf(fact_281_Suc__mod__mult__self2,axiom,
! [M: nat,N: nat,K: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ M @ ( times_times @ nat @ N @ K ) ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self2
thf(fact_282_Suc__mod__mult__self3,axiom,
! [K: nat,N: nat,M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ ( times_times @ nat @ K @ N ) @ M ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self3
thf(fact_283_Suc__mod__mult__self4,axiom,
! [N: nat,K: nat,M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ ( times_times @ nat @ N @ K ) @ M ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self4
thf(fact_284_zero__eq__power2,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A] :
( ( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% zero_eq_power2
thf(fact_285_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_286_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_287_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide @ nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( divide_divide @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_288_mod2__Suc__Suc,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% mod2_Suc_Suc
thf(fact_289_zero__less__power2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_power2
thf(fact_290_sum__power2__eq__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_291_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ ( plus_plus @ nat @ M @ M ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ nat ) ) ).
% add_self_mod_2
thf(fact_292_mod__Suc__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( modulo_modulo @ nat @ M @ N ) ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).
% mod_Suc_Suc_eq
thf(fact_293_mod__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( modulo_modulo @ nat @ M @ N ) ) @ N )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N ) ) ).
% mod_Suc_eq
thf(fact_294_mod__Suc,axiom,
! [M: nat,N: nat] :
( ( ( ( suc @ ( modulo_modulo @ nat @ M @ N ) )
= N )
=> ( ( modulo_modulo @ nat @ ( suc @ M ) @ N )
= ( zero_zero @ nat ) ) )
& ( ( ( suc @ ( modulo_modulo @ nat @ M @ N ) )
!= N )
=> ( ( modulo_modulo @ nat @ ( suc @ M ) @ N )
= ( suc @ ( modulo_modulo @ nat @ M @ N ) ) ) ) ) ).
% mod_Suc
thf(fact_295_vebt__buildup_Ocases,axiom,
! [X: nat] :
( ( X
!= ( zero_zero @ nat ) )
=> ( ( X
!= ( suc @ ( zero_zero @ nat ) ) )
=> ~ ! [Va: nat] :
( X
!= ( suc @ ( suc @ Va ) ) ) ) ) ).
% vebt_buildup.cases
thf(fact_296_not0__implies__Suc,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_297_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_298_Zero__not__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_299_Zero__neq__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_300_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= ( zero_zero @ nat ) ) ).
% Suc_neq_Zero
thf(fact_301_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( zero_zero @ nat ) ) ) ) ).
% zero_induct
thf(fact_302_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_303_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X5: nat] : ( P @ X5 @ ( zero_zero @ nat ) )
=> ( ! [Y5: nat] : ( P @ ( zero_zero @ nat ) @ ( suc @ Y5 ) )
=> ( ! [X5: nat,Y5: nat] :
( ( P @ X5 @ Y5 )
=> ( P @ ( suc @ X5 ) @ ( suc @ Y5 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_304_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_305_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_306_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y
!= ( zero_zero @ nat ) )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_307_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat
!= ( zero_zero @ nat ) ) ) ).
% nat.discI
thf(fact_308_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( ( zero_zero @ nat )
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_309_old_Onat_Odistinct_I2_J,axiom,
! [Nat4: nat] :
( ( suc @ Nat4 )
!= ( zero_zero @ nat ) ) ).
% old.nat.distinct(2)
thf(fact_310_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( ( zero_zero @ nat )
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_311_mod__induct,axiom,
! [P: nat > $o,N: nat,P2: nat,M: nat] :
( ( P @ N )
=> ( ( ord_less @ nat @ N @ P2 )
=> ( ( ord_less @ nat @ M @ P2 )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ N2 @ P2 )
=> ( ( P @ N2 )
=> ( P @ ( modulo_modulo @ nat @ ( suc @ N2 ) @ P2 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_312_mod__eq__self__iff__div__eq__0,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= A2 )
= ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_313_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ ( modulo_modulo @ nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_314_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less @ nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ ( zero_zero @ nat ) )
| ? [I: nat] :
( ( ord_less @ nat @ I @ N )
& ( P @ ( suc @ I ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_315_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
= ( ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_316_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less @ nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ ( zero_zero @ nat ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ N )
=> ( P @ ( suc @ I ) ) ) ) ) ).
% All_less_Suc2
thf(fact_317_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_318_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( M
= ( zero_zero @ nat ) )
| ? [J2: nat] :
( ( M
= ( suc @ J2 ) )
& ( ord_less @ nat @ J2 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_319_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ ( zero_zero @ nat ) )
= ( plus_plus @ nat @ M @ N ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% one_is_add
thf(fact_320_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% add_is_1
thf(fact_321_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu: option @ ( product_prod @ nat @ nat ),Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ ( zero_zero @ nat ) @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_322_div__less__mono,axiom,
! [A3: nat,B3: nat,N: nat] :
( ( ord_less @ nat @ A3 @ B3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( modulo_modulo @ nat @ A3 @ N )
= ( zero_zero @ nat ) )
=> ( ( ( modulo_modulo @ nat @ B3 @ N )
= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( divide_divide @ nat @ A3 @ N ) @ ( divide_divide @ nat @ B3 @ N ) ) ) ) ) ) ).
% div_less_mono
thf(fact_323_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral @ nat @ one2 )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% numeral_1_eq_Suc_0
thf(fact_324_num_Osize_I5_J,axiom,
! [X2: num] :
( ( size_size @ num @ ( bit0 @ X2 ) )
= ( plus_plus @ nat @ ( size_size @ num @ X2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size(5)
thf(fact_325_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ N @ ( times_times @ nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_326_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ N @ ( times_times @ nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_327_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( times_times @ nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_328_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
=> ( ord_less @ nat @ K @ ( power_power @ nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_329_zero__power,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N )
= ( zero_zero @ A ) ) ) ) ).
% zero_power
thf(fact_330_mod__mult__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_mult_eq
thf(fact_331_mod__mult__cong,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,A5: A,B2: A,B5: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ A5 @ C2 ) )
=> ( ( ( modulo_modulo @ A @ B2 @ C2 )
= ( modulo_modulo @ A @ B5 @ C2 ) )
=> ( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( times_times @ A @ A5 @ B5 ) @ C2 ) ) ) ) ) ).
% mod_mult_cong
thf(fact_332_mod__mult__mult2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( times_times @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_mult_mult2
thf(fact_333_mult__mod__right,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( times_times @ A @ C2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( modulo_modulo @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ).
% mult_mod_right
thf(fact_334_mod__mult__left__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_mult_left_eq
thf(fact_335_mod__mult__right__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_mult_right_eq
thf(fact_336_mod__add__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_eq
thf(fact_337_mod__add__cong,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,A5: A,B2: A,B5: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ A5 @ C2 ) )
=> ( ( ( modulo_modulo @ A @ B2 @ C2 )
= ( modulo_modulo @ A @ B5 @ C2 ) )
=> ( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A5 @ B5 ) @ C2 ) ) ) ) ) ).
% mod_add_cong
thf(fact_338_mod__add__left__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_left_eq
thf(fact_339_mod__add__right__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_right_eq
thf(fact_340_power__mod,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( modulo_modulo @ A @ ( power_power @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ N ) @ B2 )
= ( modulo_modulo @ A @ ( power_power @ A @ A2 @ N ) @ B2 ) ) ) ).
% power_mod
thf(fact_341_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_342_strict__inc__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less @ nat @ I3 @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I3 ) ) ) ) ).
% strict_inc_induct
thf(fact_343_less__Suc__induct,axiom,
! [I3: nat,J: nat,P: nat > nat > $o] :
( ( ord_less @ nat @ I3 @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J3: nat,K2: nat] :
( ( ord_less @ nat @ I2 @ J3 )
=> ( ( ord_less @ nat @ J3 @ K2 )
=> ( ( P @ I2 @ J3 )
=> ( ( P @ J3 @ K2 )
=> ( P @ I2 @ K2 ) ) ) ) )
=> ( P @ I3 @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_344_less__trans__Suc,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( suc @ I3 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_345_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_346_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_347_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ N ) @ M )
= ( ? [M5: nat] :
( ( M
= ( suc @ M5 ) )
& ( ord_less @ nat @ N @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_348_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less @ nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ N )
& ! [I: nat] :
( ( ord_less @ nat @ I @ N )
=> ( P @ I ) ) ) ) ).
% All_less_Suc
thf(fact_349_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less @ nat @ M @ N ) )
= ( ord_less @ nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_350_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( ord_less @ nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_351_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less @ nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ N )
| ? [I: nat] :
( ( ord_less @ nat @ I @ N )
& ( P @ I ) ) ) ) ).
% Ex_less_Suc
thf(fact_352_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_353_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less @ nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_354_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less @ nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_355_Suc__lessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ I3 ) @ K )
=> ~ ! [J3: nat] :
( ( ord_less @ nat @ I3 @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ).
% Suc_lessE
thf(fact_356_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_357_Nat_OlessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ( ( K
!= ( suc @ I3 ) )
=> ~ ! [J3: nat] :
( ( ord_less @ nat @ I3 @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ) ).
% Nat.lessE
thf(fact_358_nat__arith_Osuc1,axiom,
! [A3: nat,K: nat,A2: nat] :
( ( A3
= ( plus_plus @ nat @ K @ A2 ) )
=> ( ( suc @ A3 )
= ( plus_plus @ nat @ K @ ( suc @ A2 ) ) ) ) ).
% nat_arith.suc1
thf(fact_359_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_360_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N )
= ( plus_plus @ nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_361_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times @ nat @ ( suc @ K ) @ M )
= ( times_times @ nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_362_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_363_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_364_not__less__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_365_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_366_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_367_field__lbound__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D1: A,D22: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D1 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ D22 )
=> ? [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
& ( ord_less @ A @ E @ D1 )
& ( ord_less @ A @ E @ D22 ) ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_368_zero__neq__numeral,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: num] :
( ( zero_zero @ A )
!= ( numeral_numeral @ A @ N ) ) ) ).
% zero_neq_numeral
thf(fact_369_comm__monoid__add__class_Oadd__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_add_class.add_0
thf(fact_370_add_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.comm_neutral
thf(fact_371_add_Ogroup__left__neutral,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add.group_left_neutral
thf(fact_372_verit__sum__simplify,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% verit_sum_simplify
thf(fact_373_power__not__zero,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A,N: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ A2 @ N )
!= ( zero_zero @ A ) ) ) ) ).
% power_not_zero
thf(fact_374_num_Osize_I4_J,axiom,
( ( size_size @ num @ one2 )
= ( zero_zero @ nat ) ) ).
% num.size(4)
thf(fact_375_infinite__descent0__measure,axiom,
! [A: $tType,V2: A > nat,P: A > $o,X: A] :
( ! [X5: A] :
( ( ( V2 @ X5 )
= ( zero_zero @ nat ) )
=> ( P @ X5 ) )
=> ( ! [X5: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V2 @ X5 ) )
=> ( ~ ( P @ X5 )
=> ? [Y4: A] :
( ( ord_less @ nat @ ( V2 @ Y4 ) @ ( V2 @ X5 ) )
& ~ ( P @ Y4 ) ) ) )
=> ( P @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_376_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_377_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_378_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_379_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_380_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_381_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_382_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_383_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus @ nat @ ( zero_zero @ nat ) @ N )
= N ) ).
% plus_nat.add_0
thf(fact_384_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= M )
=> ( N
= ( zero_zero @ nat ) ) ) ).
% add_eq_self_zero
thf(fact_385_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N ) )
= ( ( K
= ( zero_zero @ nat ) )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_386_mult__0,axiom,
! [N: nat] :
( ( times_times @ nat @ ( zero_zero @ nat ) @ N )
= ( zero_zero @ nat ) ) ).
% mult_0
thf(fact_387_divide__neg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_neg_neg
thf(fact_388_divide__neg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_neg_pos
thf(fact_389_divide__pos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_pos_neg
thf(fact_390_divide__pos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_pos_pos
thf(fact_391_divide__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_less_0_iff
thf(fact_392_divide__less__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) )
& ( C2
!= ( zero_zero @ A ) ) ) ) ) ).
% divide_less_cancel
thf(fact_393_zero__less__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_less_divide_iff
thf(fact_394_divide__strict__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_strict_right_mono
thf(fact_395_divide__strict__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_396_nonzero__eq__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( A2
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( times_times @ A @ A2 @ C2 )
= B2 ) ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_397_nonzero__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ B2 @ C2 )
= A2 )
= ( B2
= ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_398_eq__divide__imp,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ A2 @ C2 )
= B2 )
=> ( A2
= ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% eq_divide_imp
thf(fact_399_divide__eq__imp,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( B2
= ( times_times @ A @ A2 @ C2 ) )
=> ( ( divide_divide @ A @ B2 @ C2 )
= A2 ) ) ) ) ).
% divide_eq_imp
thf(fact_400_eq__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq
thf(fact_401_divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ( divide_divide @ A @ B2 @ C2 )
= A2 )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq
thf(fact_402_frac__eq__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ X @ Y )
= ( divide_divide @ A @ W @ Z2 ) )
= ( ( times_times @ A @ X @ Z2 )
= ( times_times @ A @ W @ Y ) ) ) ) ) ) ).
% frac_eq_eq
thf(fact_403_numeral__2__eq__2,axiom,
( ( numeral_numeral @ nat @ ( bit0 @ one2 ) )
= ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% numeral_2_eq_2
thf(fact_404_split__mod,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( modulo_modulo @ nat @ M @ N ) )
= ( ( ( N
= ( zero_zero @ nat ) )
=> ( P @ M ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ! [I: nat,J2: nat] :
( ( ord_less @ nat @ J2 @ N )
=> ( ( M
= ( plus_plus @ nat @ ( times_times @ nat @ N @ I ) @ J2 ) )
=> ( P @ J2 ) ) ) ) ) ) ).
% split_mod
thf(fact_405_mod__eqE,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ B2 @ C2 ) )
=> ~ ! [D4: A] :
( B2
!= ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ D4 ) ) ) ) ) ).
% mod_eqE
thf(fact_406_div__add1__eq,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) @ ( divide_divide @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 ) ) ) ) ).
% div_add1_eq
thf(fact_407_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ( N
= ( zero_zero @ nat ) )
| ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% less_2_cases_iff
thf(fact_408_less__2__cases,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
=> ( ( N
= ( zero_zero @ nat ) )
| ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% less_2_cases
thf(fact_409_div__mult2__numeral__eq,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,K: num,L: num] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ L ) )
= ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( times_times @ num @ K @ L ) ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_410_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
=> ( ( ord_less @ A @ ( F2 @ N ) @ ( F2 @ M ) )
= ( ord_less @ nat @ N @ M ) ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_411_lift__Suc__mono__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
=> ( ( ord_less @ nat @ N @ N4 )
=> ( ord_less @ A @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_412_power__Suc,axiom,
! [A: $tType] :
( ( power @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ A2 @ ( suc @ N ) )
= ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_Suc
thf(fact_413_power__Suc2,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ A2 @ ( suc @ N ) )
= ( times_times @ A @ ( power_power @ A @ A2 @ N ) @ A2 ) ) ) ).
% power_Suc2
thf(fact_414_divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_415_less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_416_neg__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% neg_divide_less_eq
thf(fact_417_neg__less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_less_divide_eq
thf(fact_418_pos__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_divide_less_eq
thf(fact_419_pos__less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% pos_less_divide_eq
thf(fact_420_mult__imp__div__pos__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less @ A @ X @ ( times_times @ A @ Z2 @ Y ) )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 ) ) ) ) ).
% mult_imp_div_pos_less
thf(fact_421_mult__imp__less__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less @ A @ ( times_times @ A @ Z2 @ Y ) @ X )
=> ( ord_less @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_422_divide__strict__left__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_423_divide__strict__left__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_424_divide__add__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Z2 ) @ Y )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% divide_add_eq_iff
thf(fact_425_add__divide__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ X @ ( divide_divide @ A @ Y @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ) ).
% add_divide_eq_iff
thf(fact_426_add__num__frac,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Z2 @ Y ) ) @ Y ) ) ) ) ).
% add_num_frac
thf(fact_427_add__frac__num,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Z2 @ Y ) ) @ Y ) ) ) ) ).
% add_frac_num
thf(fact_428_add__frac__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ) ) ).
% add_frac_eq
thf(fact_429_add__divide__eq__if__simps_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= A2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ Z2 ) @ B2 ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_430_add__divide__eq__if__simps_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= B2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_431_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus @ nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_432_less__iff__Suc__add,axiom,
( ( ord_less @ nat )
= ( ^ [M4: nat,N3: nat] :
? [K3: nat] :
( N3
= ( suc @ ( plus_plus @ nat @ M4 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_433_less__add__Suc2,axiom,
! [I3: nat,M: nat] : ( ord_less @ nat @ I3 @ ( suc @ ( plus_plus @ nat @ M @ I3 ) ) ) ).
% less_add_Suc2
thf(fact_434_less__add__Suc1,axiom,
! [I3: nat,M: nat] : ( ord_less @ nat @ I3 @ ( suc @ ( plus_plus @ nat @ I3 @ M ) ) ) ).
% less_add_Suc1
thf(fact_435_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ~ ! [Q3: nat] :
( N
!= ( suc @ ( plus_plus @ nat @ M @ Q3 ) ) ) ) ).
% less_natE
thf(fact_436_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ ( suc @ K ) @ M ) @ ( times_times @ nat @ ( suc @ K ) @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_437_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times @ nat @ ( suc @ M ) @ N )
= ( plus_plus @ nat @ N @ ( times_times @ nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_438_not__numeral__less__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ N ) @ ( zero_zero @ A ) ) ) ).
% not_numeral_less_zero
thf(fact_439_zero__less__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] : ( ord_less @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ N ) ) ) ).
% zero_less_numeral
thf(fact_440_pos__add__strict,axiom,
! [A: $tType] :
( ( strict7427464778891057005id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_add_strict
thf(fact_441_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ! [C3: A] :
( ( B2
= ( plus_plus @ A @ A2 @ C3 ) )
=> ( C3
= ( zero_zero @ A ) ) ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_442_add__pos__pos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_pos_pos
thf(fact_443_add__neg__neg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_neg_neg
thf(fact_444_zero__less__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% zero_less_power
thf(fact_445_less__imp__add__positive,axiom,
! [I3: nat,J: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ? [K2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K2 )
& ( ( plus_plus @ nat @ I3 @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_446_mult__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ nat @ ( times_times @ nat @ I3 @ K ) @ ( times_times @ nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_447_mult__less__mono2,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ nat @ ( times_times @ nat @ K @ I3 ) @ ( times_times @ nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_448_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_449_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ord_less @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ord_less @ nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_450_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( ord_less @ nat @ M @ N )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_451_nat__power__less__imp__less,axiom,
! [I3: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ I3 )
=> ( ( ord_less @ nat @ ( power_power @ nat @ I3 @ M ) @ ( power_power @ nat @ I3 @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_452_bits__stable__imp__add__self,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( plus_plus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) ) ) ) ).
% bits_stable_imp_add_self
thf(fact_453_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( P @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_454_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_455_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_456_div__mult1__eq,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) ) @ ( divide_divide @ A @ ( times_times @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 ) ) ) ) ).
% div_mult1_eq
thf(fact_457_odd__power__less__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) @ ( zero_zero @ A ) ) ) ) ).
% odd_power_less_zero
thf(fact_458_div__mod__decomp,axiom,
! [A3: nat,N: nat] :
( A3
= ( plus_plus @ nat @ ( times_times @ nat @ ( divide_divide @ nat @ A3 @ N ) @ N ) @ ( modulo_modulo @ nat @ A3 @ N ) ) ) ).
% div_mod_decomp
thf(fact_459_mod__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( modulo_modulo @ nat @ M @ ( times_times @ nat @ N @ Q2 ) )
= ( plus_plus @ nat @ ( times_times @ nat @ N @ ( modulo_modulo @ nat @ ( divide_divide @ nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo @ nat @ M @ N ) ) ) ).
% mod_mult2_eq
thf(fact_460_linordered__field__no__ub,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X3: A] :
? [X_12: A] : ( ord_less @ A @ X3 @ X_12 ) ) ).
% linordered_field_no_ub
thf(fact_461_linordered__field__no__lb,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X3: A] :
? [Y5: A] : ( ord_less @ A @ Y5 @ X3 ) ) ).
% linordered_field_no_lb
thf(fact_462_sum__squares__gt__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) )
= ( ( X
!= ( zero_zero @ A ) )
| ( Y
!= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_463_divide__eq__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ( divide_divide @ A @ B2 @ C2 )
= ( numeral_numeral @ A @ W ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( numeral_numeral @ A @ W )
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_464_eq__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ( numeral_numeral @ A @ W )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( numeral_numeral @ A @ W )
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_465_not__psubset__empty,axiom,
! [A: $tType,A3: set @ A] :
~ ( ord_less @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) ) ).
% not_psubset_empty
thf(fact_466_emptyE,axiom,
! [A: $tType,A2: A] :
~ ( member @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ).
% emptyE
thf(fact_467_equals0D,axiom,
! [A: $tType,A3: set @ A,A2: A] :
( ( A3
= ( bot_bot @ ( set @ A ) ) )
=> ~ ( member @ A @ A2 @ A3 ) ) ).
% equals0D
thf(fact_468_equals0I,axiom,
! [A: $tType,A3: set @ A] :
( ! [Y5: A] :
~ ( member @ A @ Y5 @ A3 )
=> ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ).
% equals0I
thf(fact_469_ex__in__conv,axiom,
! [A: $tType,A3: set @ A] :
( ( ? [X6: A] : ( member @ A @ X6 @ A3 ) )
= ( A3
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% ex_in_conv
thf(fact_470_length__pos__if__in__set,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_471_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( divide_divide @ nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_472_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Q2 )
=> ( ( ord_less @ nat @ ( divide_divide @ nat @ M @ Q2 ) @ N )
= ( ord_less @ nat @ M @ ( times_times @ nat @ N @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_473_less__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ord_less @ A @ ( numeral_numeral @ A @ W ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( numeral_numeral @ A @ W ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_474_divide__less__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( numeral_numeral @ A @ W ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_475_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V ) @ N ) )
= ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( plus_plus @ num @ V @ one2 ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_476_zero__power2,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% zero_power2
thf(fact_477_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ M @ ( plus_plus @ nat @ N @ ( times_times @ nat @ N @ ( divide_divide @ nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_478_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ M @ ( plus_plus @ nat @ N @ ( times_times @ nat @ ( divide_divide @ nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_479_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide @ nat @ M @ N ) )
= ( ( ( N
= ( zero_zero @ nat ) )
=> ( P @ ( zero_zero @ nat ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ! [I: nat,J2: nat] :
( ( ord_less @ nat @ J2 @ N )
=> ( ( M
= ( plus_plus @ nat @ ( times_times @ nat @ N @ I ) @ J2 ) )
=> ( P @ I ) ) ) ) ) ) ).
% split_div
thf(fact_480_half__gt__zero__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% half_gt_zero_iff
thf(fact_481_half__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% half_gt_zero
thf(fact_482_power2__less__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ A ) ) ) ).
% power2_less_0
thf(fact_483_exp__add__not__zero__imp__right,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N ) )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
!= ( zero_zero @ A ) ) ) ) ).
% exp_add_not_zero_imp_right
thf(fact_484_exp__add__not__zero__imp__left,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N ) )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M )
!= ( zero_zero @ A ) ) ) ) ).
% exp_add_not_zero_imp_left
thf(fact_485_div__exp__mod__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat,M: nat] :
( ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N @ M ) ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_486_power__odd__eq,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
= ( times_times @ A @ A2 @ ( power_power @ A @ ( power_power @ A @ A2 @ N ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% power_odd_eq
thf(fact_487_sum__power2__gt__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( ( X
!= ( zero_zero @ A ) )
| ( Y
!= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_488_not__sum__power2__lt__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ A ) ) ) ).
% not_sum_power2_lt_zero
thf(fact_489_times__divide__times__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,Z2: A,W: A] :
( ( times_times @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ Z2 @ W ) )
= ( divide_divide @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ W ) ) ) ) ).
% times_divide_times_eq
thf(fact_490_divide__divide__times__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,Z2: A,W: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ Z2 @ W ) )
= ( divide_divide @ A @ ( times_times @ A @ X @ W ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ).
% divide_divide_times_eq
thf(fact_491_divide__divide__eq__left_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) ) ) ).
% divide_divide_eq_left'
thf(fact_492_add__divide__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% add_divide_distrib
thf(fact_493_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N @ M ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ N ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_494_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N @ M ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( vEBT_VEBT_low @ X @ N ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_495_not__mod2__eq__Suc__0__eq__0,axiom,
! [N: nat] :
( ( ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
!= ( suc @ ( zero_zero @ nat ) ) )
= ( ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ nat ) ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_496_divmod__digit__0_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_497_nonzero__mult__div__cancel__right,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_498_nonzero__mult__div__cancel__left,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ A2 )
= B2 ) ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_499_divmod__digit__0_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
=> ( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_500_member__valid__both__member__options,axiom,
! [Tree: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ Tree @ N )
=> ( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_V5719532721284313246member @ Tree @ X )
| ( vEBT_VEBT_membermima @ Tree @ X ) ) ) ) ).
% member_valid_both_member_options
thf(fact_501_mod__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% mod_0
thf(fact_502_mod__by__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% mod_by_0
thf(fact_503_mod__self,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% mod_self
thf(fact_504_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M )
!= ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_505_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
!= ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_506_buildup__nothing__in__min__max,axiom,
! [N: nat,X: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_min_max
thf(fact_507_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T3: vEBT_VEBT,X6: nat] :
( ( vEBT_V5719532721284313246member @ T3 @ X6 )
| ( vEBT_VEBT_membermima @ T3 @ X6 ) ) ) ) ).
% both_member_options_def
thf(fact_508_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide @ int @ ( numeral_numeral @ int @ ( bit0 @ V ) ) @ ( numeral_numeral @ int @ ( bit0 @ W ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ V ) @ ( numeral_numeral @ int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_509_i0__less,axiom,
! [N: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N )
= ( N
!= ( zero_zero @ extended_enat ) ) ) ).
% i0_less
thf(fact_510_mult__cancel__right,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( times_times @ A @ A2 @ C2 )
= ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_right
thf(fact_511_mult__cancel__left,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( times_times @ A @ C2 @ A2 )
= ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_left
thf(fact_512_mult__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% mult_eq_0_iff
thf(fact_513_mult__zero__right,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% mult_zero_right
thf(fact_514_mult__zero__left,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% mult_zero_left
thf(fact_515_div__by__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% div_by_0
thf(fact_516_div__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% div_0
thf(fact_517_zmod__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ ( bit0 @ V ) ) @ ( numeral_numeral @ int @ ( bit0 @ W ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ V ) @ ( numeral_numeral @ int @ W ) ) ) ) ).
% zmod_numeral_Bit0
thf(fact_518_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less @ int @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% half_negative_int_iff
thf(fact_519_psubsetD,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C2: A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ( ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ B3 ) ) ) ).
% psubsetD
thf(fact_520_psubset__trans,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less @ ( set @ A ) @ B3 @ C4 )
=> ( ord_less @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% psubset_trans
thf(fact_521_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_less @ extended_enat @ N @ ( zero_zero @ extended_enat ) ) ).
% not_iless0
thf(fact_522_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ ( times_times @ extended_enat @ M @ N ) )
= ( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ M )
& ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_523_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_524_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list @ vEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_525_mult__right__cancel,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ A2 @ C2 )
= ( times_times @ A @ B2 @ C2 ) )
= ( A2 = B2 ) ) ) ) ).
% mult_right_cancel
thf(fact_526_mult__left__cancel,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ C2 @ A2 )
= ( times_times @ A @ C2 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% mult_left_cancel
thf(fact_527_no__zero__divisors,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) ) ) ) ) ).
% no_zero_divisors
thf(fact_528_divisors__zero,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divisors_zero
thf(fact_529_mult__not__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
& ( B2
!= ( zero_zero @ A ) ) ) ) ) ).
% mult_not_zero
thf(fact_530_combine__common__factor,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,E2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) ) ) ).
% combine_common_factor
thf(fact_531_distrib__right,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% distrib_right
thf(fact_532_distrib__left,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% distrib_left
thf(fact_533_comm__semiring__class_Odistrib,axiom,
! [A: $tType] :
( ( comm_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% comm_semiring_class.distrib
thf(fact_534_ring__class_Oring__distribs_I1_J,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_535_ring__class_Oring__distribs_I2_J,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_536_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: $tType] :
( ( linord2810124833399127020strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_537_mult__less__cancel__right__disj,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_538_mult__strict__right__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_strict_right_mono
thf(fact_539_mult__strict__right__mono__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_540_mult__less__cancel__left__disj,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_541_mult__strict__left__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_strict_left_mono
thf(fact_542_mult__strict__left__mono__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_543_mult__less__cancel__left__pos,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_544_mult__less__cancel__left__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_545_zero__less__mult__pos2,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ B2 @ A2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ).
% zero_less_mult_pos2
thf(fact_546_zero__less__mult__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ).
% zero_less_mult_pos
thf(fact_547_zero__less__mult__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_less_mult_iff
thf(fact_548_mult__pos__neg2,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ B2 @ A2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_pos_neg2
thf(fact_549_mult__pos__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_pos_pos
thf(fact_550_mult__pos__neg,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_pos_neg
thf(fact_551_mult__neg__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_neg_pos
thf(fact_552_mult__less__0__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% mult_less_0_iff
thf(fact_553_not__square__less__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( times_times @ A @ A2 @ A2 ) @ ( zero_zero @ A ) ) ) ).
% not_square_less_zero
thf(fact_554_mult__neg__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_neg_neg
thf(fact_555_add__less__zeroD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( plus_plus @ A @ X @ Y ) @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ X @ ( zero_zero @ A ) )
| ( ord_less @ A @ Y @ ( zero_zero @ A ) ) ) ) ) ).
% add_less_zeroD
thf(fact_556_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_557_cong__exp__iff__simps_I9_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q2 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_558_cong__exp__iff__simps_I4_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ one2 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_559_mod__eq__0D,axiom,
! [M: nat,D2: nat] :
( ( ( modulo_modulo @ nat @ M @ D2 )
= ( zero_zero @ nat ) )
=> ? [Q3: nat] :
( M
= ( times_times @ nat @ D2 @ Q3 ) ) ) ).
% mod_eq_0D
thf(fact_560_nat__mod__eq__iff,axiom,
! [X: nat,N: nat,Y: nat] :
( ( ( modulo_modulo @ nat @ X @ N )
= ( modulo_modulo @ nat @ Y @ N ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus @ nat @ X @ ( times_times @ nat @ N @ Q1 ) )
= ( plus_plus @ nat @ Y @ ( times_times @ nat @ N @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_561_not__sum__squares__lt__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) @ ( zero_zero @ A ) ) ) ).
% not_sum_squares_lt_zero
thf(fact_562_cong__exp__iff__simps_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num,Q2: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
= ( zero_zero @ A ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ Q2 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(2)
thf(fact_563_cong__exp__iff__simps_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ one2 ) )
= ( zero_zero @ A ) ) ) ).
% cong_exp_iff_simps(1)
thf(fact_564_cong__exp__iff__simps_I8_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_565_cong__exp__iff__simps_I6_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q2: num,N: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_566_cancel__div__mod__rules_I2_J,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ C2 )
= ( plus_plus @ A @ A2 @ C2 ) ) ) ).
% cancel_div_mod_rules(2)
thf(fact_567_cancel__div__mod__rules_I1_J,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ C2 )
= ( plus_plus @ A @ A2 @ C2 ) ) ) ).
% cancel_div_mod_rules(1)
thf(fact_568_mod__div__decomp,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( A2
= ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% mod_div_decomp
thf(fact_569_div__mult__mod__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) )
= A2 ) ) ).
% div_mult_mod_eq
thf(fact_570_mod__div__mult__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) )
= A2 ) ) ).
% mod_div_mult_eq
thf(fact_571_mod__mult__div__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) )
= A2 ) ) ).
% mod_mult_div_eq
thf(fact_572_mult__div__mod__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [B2: A,A2: A] :
( ( plus_plus @ A @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) )
= A2 ) ) ).
% mult_div_mod_eq
thf(fact_573_pos2,axiom,
ord_less @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ).
% pos2
thf(fact_574_double__eq__0__iff,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( plus_plus @ A @ A2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_eq_0_iff
thf(fact_575_unset__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2638667681897837118et_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% unset_bit_0
thf(fact_576_vebt__insert_Osimps_I3_J,axiom,
! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S ) @ X )
= ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S ) ) ).
% vebt_insert.simps(3)
thf(fact_577_set__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se5668285175392031749et_bit @ A @ ( suc @ N ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5668285175392031749et_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_578_flip__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se8732182000553998342ip_bit @ A @ ( suc @ N ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se8732182000553998342ip_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_579_unset__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se2638667681897837118et_bit @ A @ ( suc @ N ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2638667681897837118et_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_580_vebt__insert_Osimps_I2_J,axiom,
! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S ) @ X )
= ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S ) ) ).
% vebt_insert.simps(2)
thf(fact_581_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M3: nat] : ( P @ M3 @ ( zero_zero @ nat ) )
=> ( ! [M3: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( P @ N2 @ ( modulo_modulo @ nat @ M3 @ N2 ) )
=> ( P @ M3 @ N2 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_582_Leaf__0__not,axiom,
! [A2: $o,B2: $o] :
~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A2 @ B2 ) @ ( zero_zero @ nat ) ) ).
% Leaf_0_not
thf(fact_583_VEBT_Oinject_I2_J,axiom,
! [X21: $o,X22: $o,Y21: $o,Y22: $o] :
( ( ( vEBT_Leaf @ X21 @ X22 )
= ( vEBT_Leaf @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% VEBT.inject(2)
thf(fact_584_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se2638667681897837118et_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% unset_bit_negative_int_iff
thf(fact_585_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se5668285175392031749et_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% set_bit_negative_int_iff
thf(fact_586_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se8732182000553998342ip_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% flip_bit_negative_int_iff
thf(fact_587_zdiv__mono__strict,axiom,
! [A3: int,B3: int,N: int] :
( ( ord_less @ int @ A3 @ B3 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ( ( modulo_modulo @ int @ A3 @ N )
= ( zero_zero @ int ) )
=> ( ( ( modulo_modulo @ int @ B3 @ N )
= ( zero_zero @ int ) )
=> ( ord_less @ int @ ( divide_divide @ int @ A3 @ N ) @ ( divide_divide @ int @ B3 @ N ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_588_div__mod__decomp__int,axiom,
! [A3: int,N: int] :
( A3
= ( plus_plus @ int @ ( times_times @ int @ ( divide_divide @ int @ A3 @ N ) @ N ) @ ( modulo_modulo @ int @ A3 @ N ) ) ) ).
% div_mod_decomp_int
thf(fact_589_div__neg__pos__less0,axiom,
! [A2: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_neg_pos_less0
thf(fact_590_neg__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_591_pos__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_592_zmod__eq__0__iff,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo @ int @ M @ D2 )
= ( zero_zero @ int ) )
= ( ? [Q4: int] :
( M
= ( times_times @ int @ D2 @ Q4 ) ) ) ) ).
% zmod_eq_0_iff
thf(fact_593_zmod__eq__0D,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo @ int @ M @ D2 )
= ( zero_zero @ int ) )
=> ? [Q3: int] :
( M
= ( times_times @ int @ D2 @ Q3 ) ) ) ).
% zmod_eq_0D
thf(fact_594_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times @ int @ K @ ( zero_zero @ int ) )
= ( zero_zero @ int ) ) ).
% times_int_code(1)
thf(fact_595_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times @ int @ ( zero_zero @ int ) @ L )
= ( zero_zero @ int ) ) ).
% times_int_code(2)
thf(fact_596_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_times @ extended_enat @ M @ N )
= ( zero_zero @ extended_enat ) )
= ( ( M
= ( zero_zero @ extended_enat ) )
| ( N
= ( zero_zero @ extended_enat ) ) ) ) ).
% imult_is_0
thf(fact_597_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less @ int @ ( modulo_modulo @ int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_598_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less @ int @ L @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_599_zmult__zless__mono2,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less @ int @ I3 @ J )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ord_less @ int @ ( times_times @ int @ K @ I3 ) @ ( times_times @ int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_600_less__int__code_I1_J,axiom,
~ ( ord_less @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ) ).
% less_int_code(1)
thf(fact_601_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus @ int @ ( zero_zero @ int ) @ L )
= L ) ).
% plus_int_code(2)
thf(fact_602_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus @ int @ K @ ( zero_zero @ int ) )
= K ) ).
% plus_int_code(1)
thf(fact_603_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_plus @ extended_enat @ M @ N )
= ( zero_zero @ extended_enat ) )
= ( ( M
= ( zero_zero @ extended_enat ) )
& ( N
= ( zero_zero @ extended_enat ) ) ) ) ).
% iadd_is_0
thf(fact_604_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times @ int @ W @ ( plus_plus @ int @ Z1 @ Z22 ) )
= ( plus_plus @ int @ ( times_times @ int @ W @ Z1 ) @ ( times_times @ int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_605_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times @ int @ ( plus_plus @ int @ Z1 @ Z22 ) @ W )
= ( plus_plus @ int @ ( times_times @ int @ Z1 @ W ) @ ( times_times @ int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_606_VEBT_Osize_I4_J,axiom,
! [X21: $o,X22: $o] :
( ( size_size @ vEBT_VEBT @ ( vEBT_Leaf @ X21 @ X22 ) )
= ( zero_zero @ nat ) ) ).
% VEBT.size(4)
thf(fact_607_VEBT_Odistinct_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT,X21: $o,X22: $o] :
( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
!= ( vEBT_Leaf @ X21 @ X22 ) ) ).
% VEBT.distinct(1)
thf(fact_608_VEBT_Oexhaust,axiom,
! [Y: vEBT_VEBT] :
( ! [X112: option @ ( product_prod @ nat @ nat ),X122: nat,X132: list @ vEBT_VEBT,X142: vEBT_VEBT] :
( Y
!= ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
=> ~ ! [X212: $o,X222: $o] :
( Y
!= ( vEBT_Leaf @ X212 @ X222 ) ) ) ).
% VEBT.exhaust
thf(fact_609_VEBT__internal_OminNull_Osimps_I3_J,axiom,
! [Uu: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).
% VEBT_internal.minNull.simps(3)
thf(fact_610_VEBT__internal_OminNull_Osimps_I2_J,axiom,
! [Uv: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).
% VEBT_internal.minNull.simps(2)
thf(fact_611_VEBT__internal_OminNull_Osimps_I1_J,axiom,
vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).
% VEBT_internal.minNull.simps(1)
thf(fact_612_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_613_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ ( zero_zero @ nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_614_invar__vebt_Ointros_I1_J,axiom,
! [A2: $o,B2: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ).
% invar_vebt.intros(1)
thf(fact_615_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ ( zero_zero @ nat ) ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_616_VEBT__internal_OminNull_Oelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( X
!= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).
% VEBT_internal.minNull.elims(2)
thf(fact_617_realpow__pos__nth2,axiom,
! [A2: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ( ( power_power @ real @ R @ ( suc @ N ) )
= A2 ) ) ) ).
% realpow_pos_nth2
thf(fact_618_realpow__pos__nth,axiom,
! [N: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ( ( power_power @ real @ R @ N )
= A2 ) ) ) ) ).
% realpow_pos_nth
thf(fact_619_realpow__pos__nth__unique,axiom,
! [N: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [X5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X5 )
& ( ( power_power @ real @ X5 @ N )
= A2 )
& ! [Y4: real] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ Y4 )
& ( ( power_power @ real @ Y4 @ N )
= A2 ) )
=> ( Y4 = X5 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_620_Euclid__induct,axiom,
! [P: nat > nat > $o,A2: nat,B2: nat] :
( ! [A6: nat,B6: nat] :
( ( P @ A6 @ B6 )
= ( P @ B6 @ A6 ) )
=> ( ! [A6: nat] : ( P @ A6 @ ( zero_zero @ nat ) )
=> ( ! [A6: nat,B6: nat] :
( ( P @ A6 @ B6 )
=> ( P @ A6 @ ( plus_plus @ nat @ A6 @ B6 ) ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% Euclid_induct
thf(fact_621_four__x__squared,axiom,
! [X: real] :
( ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( power_power @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% four_x_squared
thf(fact_622_VEBT__internal_Oinsert_H_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,X: nat] :
( ( vEBT_VEBT_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X ) ) ).
% VEBT_internal.insert'.simps(1)
thf(fact_623_option_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( option @ A ) @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(3)
thf(fact_624_set__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5668285175392031749et_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% set_bit_0
thf(fact_625_signed__take__bit__Suc,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( suc @ N ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4674362597316999326ke_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_626_maxt__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( none @ nat ) )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% maxt_corr_help_empty
thf(fact_627_add__scale__eq__noteq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [R2: A,A2: A,B2: A,C2: A,D2: A] :
( ( R2
!= ( zero_zero @ A ) )
=> ( ( ( A2 = B2 )
& ( C2 != D2 ) )
=> ( ( plus_plus @ A @ A2 @ ( times_times @ A @ R2 @ C2 ) )
!= ( plus_plus @ A @ B2 @ ( times_times @ A @ R2 @ D2 ) ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_628_mult__less__iff1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ Z2 ) )
= ( ord_less @ A @ X @ Y ) ) ) ) ).
% mult_less_iff1
thf(fact_629_mint__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% mint_corr_help_empty
thf(fact_630_num_Osize__gen_I2_J,axiom,
! [X2: num] :
( ( size_num @ ( bit0 @ X2 ) )
= ( plus_plus @ nat @ ( size_num @ X2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size_gen(2)
thf(fact_631_concat__bit__Suc,axiom,
! [N: nat,K: int,L: int] :
( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
= ( plus_plus @ int @ ( modulo_modulo @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_concat_bit @ N @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ L ) ) ) ) ).
% concat_bit_Suc
thf(fact_632_deg__1__Leafy,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( N
= ( one_one @ nat ) )
=> ? [A6: $o,B6: $o] :
( T2
= ( vEBT_Leaf @ A6 @ B6 ) ) ) ) ).
% deg_1_Leafy
thf(fact_633_deg__1__Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ ( one_one @ nat ) )
=> ? [A6: $o,B6: $o] :
( T2
= ( vEBT_Leaf @ A6 @ B6 ) ) ) ).
% deg_1_Leaf
thf(fact_634_deg1Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ ( one_one @ nat ) )
= ( ? [A4: $o,B4: $o] :
( T2
= ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ).
% deg1Leaf
thf(fact_635_minminNull,axiom,
! [T2: vEBT_VEBT] :
( ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) )
=> ( vEBT_VEBT_minNull @ T2 ) ) ).
% minminNull
thf(fact_636_minNullmin,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ T2 )
=> ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) ) ) ).
% minNullmin
thf(fact_637_power__one__right,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( one_one @ nat ) )
= A2 ) ) ).
% power_one_right
thf(fact_638_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( one_one @ nat )
= ( times_times @ nat @ M @ N ) )
= ( ( M
= ( one_one @ nat ) )
& ( N
= ( one_one @ nat ) ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_639_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times @ nat @ M @ N )
= ( one_one @ nat ) )
= ( ( M
= ( one_one @ nat ) )
& ( N
= ( one_one @ nat ) ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_640_real__divide__square__eq,axiom,
! [R2: real,A2: real] :
( ( divide_divide @ real @ ( times_times @ real @ R2 @ A2 ) @ ( times_times @ real @ R2 @ R2 ) )
= ( divide_divide @ real @ A2 @ R2 ) ) ).
% real_divide_square_eq
thf(fact_641_mult_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.right_neutral
thf(fact_642_mult__1,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% mult_1
thf(fact_643_div__by__1,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% div_by_1
thf(fact_644_bits__div__by__1,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% bits_div_by_1
thf(fact_645_power__one,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [N: nat] :
( ( power_power @ A @ ( one_one @ A ) @ N )
= ( one_one @ A ) ) ) ).
% power_one
thf(fact_646_less__one,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( one_one @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_one
thf(fact_647_signed__take__bit__of__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ N @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% signed_take_bit_of_0
thf(fact_648_concat__bit__0,axiom,
! [K: int,L: int] :
( ( bit_concat_bit @ ( zero_zero @ nat ) @ K @ L )
= L ) ).
% concat_bit_0
thf(fact_649_mult__cancel__left1,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,B2: A] :
( ( C2
= ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left1
thf(fact_650_mult__cancel__left2,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,A2: A] :
( ( ( times_times @ A @ C2 @ A2 )
= C2 )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left2
thf(fact_651_mult__cancel__right1,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,B2: A] :
( ( C2
= ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right1
thf(fact_652_mult__cancel__right2,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [A2: A,C2: A] :
( ( ( times_times @ A @ A2 @ C2 )
= C2 )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right2
thf(fact_653_div__self,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ).
% div_self
thf(fact_654_zero__eq__1__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% zero_eq_1_divide_iff
thf(fact_655_one__divide__eq__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ( divide_divide @ A @ ( one_one @ A ) @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% one_divide_eq_0_iff
thf(fact_656_eq__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ( one_one @ A )
= ( divide_divide @ A @ B2 @ A2 ) )
= ( ( A2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% eq_divide_eq_1
thf(fact_657_divide__eq__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ( divide_divide @ A @ B2 @ A2 )
= ( one_one @ A ) )
= ( ( A2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_eq_1
thf(fact_658_divide__self__if,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( A2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) )
& ( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ) ).
% divide_self_if
thf(fact_659_divide__self,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ).
% divide_self
thf(fact_660_one__eq__divide__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( one_one @ A )
= ( divide_divide @ A @ A2 @ B2 ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% one_eq_divide_iff
thf(fact_661_divide__eq__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( one_one @ A ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_1_iff
thf(fact_662_numeral__eq__one__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: num] :
( ( ( numeral_numeral @ A @ N )
= ( one_one @ A ) )
= ( N = one2 ) ) ) ).
% numeral_eq_one_iff
thf(fact_663_one__eq__numeral__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: num] :
( ( ( one_one @ A )
= ( numeral_numeral @ A @ N ) )
= ( one2 = N ) ) ) ).
% one_eq_numeral_iff
thf(fact_664_power__inject__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ( power_power @ A @ A2 @ M )
= ( power_power @ A @ A2 @ N ) )
= ( M = N ) ) ) ) ).
% power_inject_exp
thf(fact_665_mod__by__1,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% mod_by_1
thf(fact_666_bits__mod__by__1,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% bits_mod_by_1
thf(fact_667_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less @ real @ ( zero_zero @ real ) @ ( times_times @ real @ X @ X ) ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% not_real_square_gt_zero
thf(fact_668_signed__take__bit__Suc__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( suc @ N ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% signed_take_bit_Suc_1
thf(fact_669_signed__take__bit__numeral__of__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: num] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( numeral_numeral @ nat @ K ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% signed_take_bit_numeral_of_1
thf(fact_670_concat__bit__negative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less @ int @ ( bit_concat_bit @ N @ K @ L ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ).
% concat_bit_negative_iff
thf(fact_671_zero__less__divide__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_less_divide_1_iff
thf(fact_672_less__divide__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% less_divide_eq_1_pos
thf(fact_673_less__divide__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% less_divide_eq_1_neg
thf(fact_674_divide__less__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% divide_less_eq_1_pos
thf(fact_675_divide__less__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% divide_less_eq_1_neg
thf(fact_676_divide__less__0__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% divide_less_0_1_iff
thf(fact_677_nonzero__divide__mult__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_678_nonzero__divide__mult__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ B2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_679_power__strict__increasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,X: nat,Y: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ B2 )
=> ( ( ord_less @ A @ ( power_power @ A @ B2 @ X ) @ ( power_power @ A @ B2 @ Y ) )
= ( ord_less @ nat @ X @ Y ) ) ) ) ).
% power_strict_increasing_iff
thf(fact_680_Suc__1,axiom,
( ( suc @ ( one_one @ nat ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ).
% Suc_1
thf(fact_681_Suc__times__numeral__mod__eq,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral @ nat @ K )
!= ( one_one @ nat ) )
=> ( ( modulo_modulo @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ K ) @ N ) ) @ ( numeral_numeral @ nat @ K ) )
= ( one_one @ nat ) ) ) ).
% Suc_times_numeral_mod_eq
thf(fact_682_one__add__one,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% one_add_one
thf(fact_683_power__strict__decreasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,M: nat,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ B2 @ ( one_one @ A ) )
=> ( ( ord_less @ A @ ( power_power @ A @ B2 @ M ) @ ( power_power @ A @ B2 @ N ) )
= ( ord_less @ nat @ N @ M ) ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_684_bits__one__mod__two__eq__one,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% bits_one_mod_two_eq_one
thf(fact_685_one__mod__two__eq__one,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% one_mod_two_eq_one
thf(fact_686_signed__take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N ) @ ( numeral_numeral @ int @ ( bit0 @ K ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_Suc_bit0
thf(fact_687_numeral__plus__one,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ N ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ N @ one2 ) ) ) ) ).
% numeral_plus_one
thf(fact_688_one__plus__numeral,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ N ) ) ) ) ).
% one_plus_numeral
thf(fact_689_one__less__numeral__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] :
( ( ord_less @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) )
= ( ord_less @ num @ one2 @ N ) ) ) ).
% one_less_numeral_iff
thf(fact_690_bits__1__div__2,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% bits_1_div_2
thf(fact_691_one__div__two__eq__zero,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% one_div_two_eq_zero
thf(fact_692_not__mod__2__eq__0__eq__1,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ A ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_693_not__mod__2__eq__1__eq__0,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( one_one @ A ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_694_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ nat ) ) ) ).
% mod2_gr_0
thf(fact_695_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ? [N2: nat] : ( ord_less @ real @ ( power_power @ real @ X @ N2 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_696_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ? [N2: nat] : ( ord_less @ real @ Y @ ( power_power @ real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_697_one__reorient,axiom,
! [A: $tType] :
( ( one @ A )
=> ! [X: A] :
( ( ( one_one @ A )
= X )
= ( X
= ( one_one @ A ) ) ) ) ).
% one_reorient
thf(fact_698_signed__take__bit__add,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri4674362597316999326ke_bit @ int @ N @ ( plus_plus @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ L ) ) )
= ( bit_ri4674362597316999326ke_bit @ int @ N @ ( plus_plus @ int @ K @ L ) ) ) ).
% signed_take_bit_add
thf(fact_699_signed__take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri4674362597316999326ke_bit @ int @ N @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ L ) ) )
= ( bit_ri4674362597316999326ke_bit @ int @ N @ ( times_times @ int @ K @ L ) ) ) ).
% signed_take_bit_mult
thf(fact_700_zero__neq__one,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_zero @ A )
!= ( one_one @ A ) ) ) ).
% zero_neq_one
thf(fact_701_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(4)
thf(fact_702_comm__monoid__mult__class_Omult__1,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_mult_class.mult_1
thf(fact_703_mult_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.comm_neutral
thf(fact_704_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus @ int @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) @ Z2 )
!= ( zero_zero @ int ) ) ).
% odd_nonzero
thf(fact_705_nat__mult__1,axiom,
! [N: nat] :
( ( times_times @ nat @ ( one_one @ nat ) @ N )
= N ) ).
% nat_mult_1
thf(fact_706_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times @ nat @ N @ ( one_one @ nat ) )
= N ) ).
% nat_mult_1_right
thf(fact_707_zero__one__enat__neq_I1_J,axiom,
( ( zero_zero @ extended_enat )
!= ( one_one @ extended_enat ) ) ).
% zero_one_enat_neq(1)
thf(fact_708_concat__bit__assoc,axiom,
! [N: nat,K: int,M: nat,L: int,R2: int] :
( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
= ( bit_concat_bit @ ( plus_plus @ nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R2 ) ) ).
% concat_bit_assoc
thf(fact_709_not__one__less__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_less_zero
thf(fact_710_zero__less__one,axiom,
! [A: $tType] :
( ( zero_less_one @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_less_one
thf(fact_711_less__numeral__extra_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(1)
thf(fact_712_not__numeral__less__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ N ) @ ( one_one @ A ) ) ) ).
% not_numeral_less_one
thf(fact_713_less__1__mult,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ ( one_one @ A ) @ M )
=> ( ( ord_less @ A @ ( one_one @ A ) @ N )
=> ( ord_less @ A @ ( one_one @ A ) @ ( times_times @ A @ M @ N ) ) ) ) ) ).
% less_1_mult
thf(fact_714_less__add__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A] : ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% less_add_one
thf(fact_715_add__mono1,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( plus_plus @ A @ B2 @ ( one_one @ A ) ) ) ) ) ).
% add_mono1
thf(fact_716_right__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( one_one @ A ) )
= ( A2 = B2 ) ) ) ) ).
% right_inverse_eq
thf(fact_717_one__plus__numeral__commute,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [X: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% one_plus_numeral_commute
thf(fact_718_numeral__One,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ( ( numeral_numeral @ A @ one2 )
= ( one_one @ A ) ) ) ).
% numeral_One
thf(fact_719_left__right__inverse__power,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [X: A,Y: A,N: nat] :
( ( ( times_times @ A @ X @ Y )
= ( one_one @ A ) )
=> ( ( times_times @ A @ ( power_power @ A @ X @ N ) @ ( power_power @ A @ Y @ N ) )
= ( one_one @ A ) ) ) ) ).
% left_right_inverse_power
thf(fact_720_power__one__over,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ N )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_one_over
thf(fact_721_power__0,axiom,
! [A: $tType] :
( ( power @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% power_0
thf(fact_722_numerals_I1_J,axiom,
( ( numeral_numeral @ nat @ one2 )
= ( one_one @ nat ) ) ).
% numerals(1)
thf(fact_723_One__nat__def,axiom,
( ( one_one @ nat )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% One_nat_def
thf(fact_724_Suc__eq__plus1,axiom,
( suc
= ( ^ [N3: nat] : ( plus_plus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ).
% Suc_eq_plus1
thf(fact_725_plus__1__eq__Suc,axiom,
( ( plus_plus @ nat @ ( one_one @ nat ) )
= suc ) ).
% plus_1_eq_Suc
thf(fact_726_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus @ nat @ ( one_one @ nat ) ) ) ).
% Suc_eq_plus1_left
thf(fact_727_vebt__mint_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu @ Uv @ Uw ) )
= ( none @ nat ) ) ).
% vebt_mint.simps(2)
thf(fact_728_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times @ nat @ M @ N ) )
=> ( ( N
= ( one_one @ nat ) )
| ( M
= ( zero_zero @ nat ) ) ) ) ).
% mult_eq_self_implies_10
thf(fact_729_vebt__maxt_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu @ Uv @ Uw ) )
= ( none @ nat ) ) ).
% vebt_maxt.simps(2)
thf(fact_730_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less @ int @ ( plus_plus @ int @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) @ Z2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ Z2 @ ( zero_zero @ int ) ) ) ).
% odd_less_0_iff
thf(fact_731_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,D2: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D2 )
= ( D2
= ( one_one @ nat ) ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_732_zero__less__two,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ) ).
% zero_less_two
thf(fact_733_less__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% less_divide_eq_1
thf(fact_734_divide__less__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ A2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ A2 @ B2 ) )
| ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_less_eq_1
thf(fact_735_div__add__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% div_add_self1
thf(fact_736_div__add__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% div_add_self2
thf(fact_737_gt__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) @ B2 ) ) ) ).
% gt_half_sum
thf(fact_738_less__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ A2 @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ) ) ) ).
% less_half_sum
thf(fact_739_power__gt1__lemma,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% power_gt1_lemma
thf(fact_740_power__less__power__Suc,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% power_less_power_Suc
thf(fact_741_power__gt1,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ ( suc @ N ) ) ) ) ) ).
% power_gt1
thf(fact_742_power__0__left,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N )
= ( one_one @ A ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N )
= ( zero_zero @ A ) ) ) ) ) ).
% power_0_left
thf(fact_743_power__less__imp__less__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ) ).
% power_less_imp_less_exp
thf(fact_744_power__strict__increasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,N5: nat,A2: A] :
( ( ord_less @ nat @ N @ N5 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ A2 @ N5 ) ) ) ) ) ).
% power_strict_increasing
thf(fact_745_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( P @ ( one_one @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_746_option_Osize__neq,axiom,
! [A: $tType,X: option @ A] :
( ( size_size @ ( option @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% option.size_neq
thf(fact_747_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ( divide_divide @ nat @ M @ N )
= M )
= ( N
= ( one_one @ nat ) ) ) ) ).
% div_eq_dividend_iff
thf(fact_748_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( divide_divide @ nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_749_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ M )
=> ( ( ( times_times @ int @ M @ N )
= ( one_one @ int ) )
= ( ( M
= ( one_one @ int ) )
& ( N
= ( one_one @ int ) ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_750_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ ( one_one @ int ) @ K )
=> ( ord_less @ int @ ( divide_divide @ int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_751_vebt__member_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( ( ( X
= ( zero_zero @ nat ) )
=> A2 )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> B2 )
& ( X
= ( one_one @ nat ) ) ) ) ) ) ).
% vebt_member.simps(1)
thf(fact_752_vebt__insert_Osimps_I1_J,axiom,
! [X: nat,A2: $o,B2: $o] :
( ( ( X
= ( zero_zero @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ $true @ B2 ) ) )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ A2 @ $true ) ) )
& ( ( X
!= ( one_one @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ A2 @ B2 ) ) ) ) ) ) ).
% vebt_insert.simps(1)
thf(fact_753_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( ( ( X
= ( zero_zero @ nat ) )
=> A2 )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> B2 )
& ( X
= ( one_one @ nat ) ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_754_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ).
% signed_take_bit_int_less_exp
thf(fact_755_power__Suc__less,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% power_Suc_less
thf(fact_756_power__Suc__less__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ ( suc @ N ) ) @ ( one_one @ A ) ) ) ) ) ).
% power_Suc_less_one
thf(fact_757_power__strict__decreasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,N5: nat,A2: A] :
( ( ord_less @ nat @ N @ N5 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N5 ) @ ( power_power @ A @ A2 @ N ) ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_758_one__power2,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( power_power @ A @ ( one_one @ A ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% one_power2
thf(fact_759_one__less__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% one_less_power
thf(fact_760_nat__1__add__1,axiom,
( ( plus_plus @ nat @ ( one_one @ nat ) @ ( one_one @ nat ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ).
% nat_1_add_1
thf(fact_761_num_Osize__gen_I1_J,axiom,
( ( size_num @ one2 )
= ( zero_zero @ nat ) ) ).
% num.size_gen(1)
thf(fact_762_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ( P @ ( one_one @ nat ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_763_Suc__times__mod__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ( modulo_modulo @ nat @ ( suc @ ( times_times @ nat @ M @ N ) ) @ M )
= ( one_one @ nat ) ) ) ).
% Suc_times_mod_eq
thf(fact_764_add__0__iff,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [B2: A,A2: A] :
( ( B2
= ( plus_plus @ A @ B2 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% add_0_iff
thf(fact_765_crossproduct__noteq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( A2 != B2 )
& ( C2 != D2 ) )
= ( ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) )
!= ( plus_plus @ A @ ( times_times @ A @ A2 @ D2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% crossproduct_noteq
thf(fact_766_crossproduct__eq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [W: A,Y: A,X: A,Z2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ W @ Y ) @ ( times_times @ A @ X @ Z2 ) )
= ( plus_plus @ A @ ( times_times @ A @ W @ Z2 ) @ ( times_times @ A @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z2 ) ) ) ) ).
% crossproduct_eq
thf(fact_767_set__n__deg__not__0,axiom,
! [TreeList: list @ vEBT_VEBT,N: nat,M: nat] :
( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ord_less_eq @ nat @ ( one_one @ nat ) @ N ) ) ) ).
% set_n_deg_not_0
thf(fact_768_misiz,axiom,
! [T2: vEBT_VEBT,N: nat,M: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( some @ nat @ M )
= ( vEBT_vebt_mint @ T2 ) )
=> ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% misiz
thf(fact_769_dbl__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% dbl_simps(3)
thf(fact_770_even__succ__mod__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( modulo_modulo @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_771_even__succ__div__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_772_divmod__digit__1_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
=> ( ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) @ ( one_one @ A ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_773_VEBT__internal_Oinsert_H_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_VEBT_insert @ X @ Xa2 )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( Y
!= ( vEBT_vebt_insert @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) ) )
=> ~ ! [Info2: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) )
=> ~ ( ( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) @ Xa2 )
=> ( Y
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) @ Xa2 )
=> ( Y
= ( vEBT_vebt_insert @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.insert'.elims
thf(fact_774_one__mod__2__pow__eq,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: nat] :
( ( modulo_modulo @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% one_mod_2_pow_eq
thf(fact_775_arith__geo__mean,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [U: A,X: A,Y: A] :
( ( ( power_power @ A @ U @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( times_times @ A @ X @ Y ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ U @ ( divide_divide @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_776_maxt__member,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% maxt_member
thf(fact_777_maxbmo,axiom,
! [T2: vEBT_VEBT,X: nat] :
( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_V8194947554948674370ptions @ T2 @ X ) ) ).
% maxbmo
thf(fact_778_add__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( plus_plus @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_add @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% add_shift
thf(fact_779_mul__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( times_times @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_mul @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% mul_shift
thf(fact_780_max__in__set__def,axiom,
( vEBT_VEBT_max_in_set
= ( ^ [Xs: set @ nat,X6: nat] :
( ( member @ nat @ X6 @ Xs )
& ! [Y6: nat] :
( ( member @ nat @ Y6 @ Xs )
=> ( ord_less_eq @ nat @ Y6 @ X6 ) ) ) ) ) ).
% max_in_set_def
thf(fact_781_min__in__set__def,axiom,
( vEBT_VEBT_min_in_set
= ( ^ [Xs: set @ nat,X6: nat] :
( ( member @ nat @ X6 @ Xs )
& ! [Y6: nat] :
( ( member @ nat @ Y6 @ Xs )
=> ( ord_less_eq @ nat @ X6 @ Y6 ) ) ) ) ) ).
% min_in_set_def
thf(fact_782_power__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( power_power @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_power @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% power_shift
thf(fact_783_mint__member,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% mint_member
thf(fact_784_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq @ num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq @ num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_785_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq @ num @ one2 @ N ) ).
% semiring_norm(68)
thf(fact_786_subset__empty,axiom,
! [A: $tType,A3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) )
= ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_empty
thf(fact_787_empty__subsetI,axiom,
! [A: $tType,A3: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ A3 ) ).
% empty_subsetI
thf(fact_788_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd @ nat @ M @ ( one_one @ nat ) )
= ( M
= ( one_one @ nat ) ) ) ).
% nat_dvd_1_iff_1
thf(fact_789_psubsetI,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( A3 != B3 )
=> ( ord_less @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% psubsetI
thf(fact_790_mint__corr__help,axiom,
! [T2: vEBT_VEBT,N: nat,Mini: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ Mini ) )
=> ( ( vEBT_vebt_member @ T2 @ X )
=> ( ord_less_eq @ nat @ Mini @ X ) ) ) ) ).
% mint_corr_help
thf(fact_791_maxt__corr__help,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ Maxi ) )
=> ( ( vEBT_vebt_member @ T2 @ X )
=> ( ord_less_eq @ nat @ X @ Maxi ) ) ) ) ).
% maxt_corr_help
thf(fact_792_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_793_numeral__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: num,N: num] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( ord_less_eq @ num @ M @ N ) ) ) ).
% numeral_le_iff
thf(fact_794_add__le__cancel__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_cancel_left
thf(fact_795_add__le__cancel__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_cancel_right
thf(fact_796_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq @ num @ ( bit0 @ M ) @ one2 ) ).
% semiring_norm(69)
thf(fact_797_dvd__0__right,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] : ( dvd_dvd @ A @ A2 @ ( zero_zero @ A ) ) ) ).
% dvd_0_right
thf(fact_798_dvd__0__left__iff,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( zero_zero @ A ) @ A2 )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% dvd_0_left_iff
thf(fact_799_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( M
= ( suc @ ( zero_zero @ nat ) ) ) ) ).
% dvd_1_iff_1
thf(fact_800_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) ).
% dvd_1_left
thf(fact_801_dvd__add__triv__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_triv_left_iff
thf(fact_802_dvd__add__triv__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_triv_right_iff
thf(fact_803_div__dvd__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( divide_divide @ A @ C2 @ A2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ) ).
% div_dvd_div
thf(fact_804_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq @ nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_805_le0,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% le0
thf(fact_806_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A2 ) ).
% bot_nat_0.extremum
thf(fact_807_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ( K
= ( zero_zero @ nat ) )
| ( dvd_dvd @ nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_808_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_809_not__None__eq,axiom,
! [A: $tType,X: option @ A] :
( ( X
!= ( none @ A ) )
= ( ? [Y6: A] :
( X
= ( some @ A @ Y6 ) ) ) ) ).
% not_None_eq
thf(fact_810_not__Some__eq,axiom,
! [A: $tType,X: option @ A] :
( ( ! [Y6: A] :
( X
!= ( some @ A @ Y6 ) ) )
= ( X
= ( none @ A ) ) ) ).
% not_Some_eq
thf(fact_811_of__bool__eq_I1_J,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_neq_one_of_bool @ A @ $false )
= ( zero_zero @ A ) ) ) ).
% of_bool_eq(1)
thf(fact_812_of__bool__eq__0__iff,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: $o] :
( ( ( zero_neq_one_of_bool @ A @ P )
= ( zero_zero @ A ) )
= ~ P ) ) ).
% of_bool_eq_0_iff
thf(fact_813_of__bool__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [P: $o,Q: $o] :
( ( ord_less @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) )
= ( ~ P
& Q ) ) ) ).
% of_bool_less_iff
thf(fact_814_concat__bit__nonnegative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_concat_bit @ N @ K @ L ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ).
% concat_bit_nonnegative_iff
thf(fact_815_unset__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2638667681897837118et_bit @ int @ N @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% unset_bit_nonnegative_int_iff
thf(fact_816_dbl__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% dbl_simps(2)
thf(fact_817_set__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5668285175392031749et_bit @ int @ N @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% set_bit_nonnegative_int_iff
thf(fact_818_flip__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se8732182000553998342ip_bit @ int @ N @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% flip_bit_nonnegative_int_iff
thf(fact_819_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_820_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_821_le__add__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% le_add_same_cancel2
thf(fact_822_le__add__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% le_add_same_cancel1
thf(fact_823_add__le__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_le_same_cancel2
thf(fact_824_add__le__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_le_same_cancel1
thf(fact_825_dvd__times__right__cancel__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ B2 @ A2 ) @ ( times_times @ A @ C2 @ A2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_826_dvd__times__left__cancel__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_827_dvd__mult__cancel__right,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_mult_cancel_right
thf(fact_828_dvd__mult__cancel__left,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_mult_cancel_left
thf(fact_829_dvd__add__times__triv__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ ( times_times @ A @ C2 @ A2 ) @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_830_dvd__add__times__triv__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ ( times_times @ A @ C2 @ A2 ) ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_831_unit__prod,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% unit_prod
thf(fact_832_dvd__mult__div__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ A2 ) )
= B2 ) ) ) ).
% dvd_mult_div_cancel
thf(fact_833_dvd__div__mult__self,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% dvd_div_mult_self
thf(fact_834_div__add,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ) ).
% div_add
thf(fact_835_unit__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% unit_div
thf(fact_836_unit__div__1__unit,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( one_one @ A ) ) ) ) ).
% unit_div_1_unit
thf(fact_837_unit__div__1__div__1,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= A2 ) ) ) ).
% unit_div_1_div_1
thf(fact_838_dvd__imp__mod__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( modulo_modulo @ A @ B2 @ A2 )
= ( zero_zero @ A ) ) ) ) ).
% dvd_imp_mod_0
thf(fact_839_zero__less__of__bool__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_neq_one_of_bool @ A @ P ) )
= P ) ) ).
% zero_less_of_bool_iff
thf(fact_840_of__bool__less__one__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] :
( ( ord_less @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( one_one @ A ) )
= ~ P ) ) ).
% of_bool_less_one_iff
thf(fact_841_Suc__0__mod__eq,axiom,
! [N: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( zero_neq_one_of_bool @ nat
@ ( N
!= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_842_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_neg_neg_trivial
thf(fact_843_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ L )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_pos_pos_trivial
thf(fact_844_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ L )
=> ( ( modulo_modulo @ int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_845_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ K )
=> ( ( modulo_modulo @ int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_846_mint__sound,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X )
=> ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ X ) ) ) ) ).
% mint_sound
thf(fact_847_mint__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X ) ) ) ).
% mint_corr
thf(fact_848_maxt__sound,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X )
=> ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) ) ) ) ).
% maxt_sound
thf(fact_849_maxt__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X ) ) ) ).
% maxt_corr
thf(fact_850_dbl__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ).
% dbl_simps(5)
thf(fact_851_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( numeral_numeral @ extended_enat @ N ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_852_divide__le__0__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% divide_le_0_1_iff
thf(fact_853_zero__le__divide__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_le_divide_1_iff
thf(fact_854_numeral__le__one__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ N ) @ ( one_one @ A ) )
= ( ord_less_eq @ num @ N @ one2 ) ) ) ).
% numeral_le_one_iff
thf(fact_855_divide__le__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_856_le__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W: num] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W ) ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) @ B2 ) ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_857_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_858_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% even_Suc
thf(fact_859_unit__div__mult__self,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% unit_div_mult_self
thf(fact_860_unit__mult__div__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ B2 @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( divide_divide @ A @ B2 @ A2 ) ) ) ) ).
% unit_mult_div_div
thf(fact_861_pow__divides__pow__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% pow_divides_pow_iff
thf(fact_862_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( times_times @ nat @ M @ N ) )
= ( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
& ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_863_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_864_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_865_lesseq__shift,axiom,
( ( ord_less_eq @ nat )
= ( ^ [X6: nat,Y6: nat] : ( vEBT_VEBT_lesseq @ ( some @ nat @ X6 ) @ ( some @ nat @ Y6 ) ) ) ) ).
% lesseq_shift
thf(fact_866_divide__le__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% divide_le_eq_1_neg
thf(fact_867_divide__le__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% divide_le_eq_1_pos
thf(fact_868_le__divide__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% le_divide_eq_1_neg
thf(fact_869_le__divide__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% le_divide_eq_1_pos
thf(fact_870_even__mult__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_mult_iff
thf(fact_871_power__increasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,X: nat,Y: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ B2 @ X ) @ ( power_power @ A @ B2 @ Y ) )
= ( ord_less_eq @ nat @ X @ Y ) ) ) ) ).
% power_increasing_iff
thf(fact_872_power__mono__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ) ).
% power_mono_iff
thf(fact_873_even__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_add
thf(fact_874_odd__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) )
= ( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
!= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ) ).
% odd_add
thf(fact_875_even__mod__2__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ).
% even_mod_2_iff
thf(fact_876_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( divide_divide @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_877_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( divide_divide @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_878_odd__of__bool__self,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [P2: $o] :
( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( zero_neq_one_of_bool @ A @ P2 ) ) )
= P2 ) ) ).
% odd_of_bool_self
thf(fact_879_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_880_succ__member,axiom,
! [T2: vEBT_VEBT,X: nat,Y: nat] :
( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Y )
= ( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less @ nat @ X @ Y )
& ! [Z3: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z3 )
& ( ord_less @ nat @ X @ Z3 ) )
=> ( ord_less_eq @ nat @ Y @ Z3 ) ) ) ) ).
% succ_member
thf(fact_881_pred__member,axiom,
! [T2: vEBT_VEBT,X: nat,Y: nat] :
( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Y )
= ( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less @ nat @ Y @ X )
& ! [Z3: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z3 )
& ( ord_less @ nat @ Z3 @ X ) )
=> ( ord_less_eq @ nat @ Z3 @ Y ) ) ) ) ).
% pred_member
thf(fact_882_zero__le__power__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W: num] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W ) ) )
= ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_883_power2__eq__iff__nonneg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( X = Y ) ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_884_power2__less__eq__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% power2_less_eq_zero_iff
thf(fact_885_power__decreasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,M: nat,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ B2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ B2 @ M ) @ ( power_power @ A @ B2 @ N ) )
= ( ord_less_eq @ nat @ N @ M ) ) ) ) ) ).
% power_decreasing_iff
thf(fact_886_power__less__zero__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W: num] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W ) ) @ ( zero_zero @ A ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_887_power__less__zero__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( zero_zero @ A ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% power_less_zero_eq
thf(fact_888_even__plus__one__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_plus_one_iff
thf(fact_889_of__bool__half__eq__0,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [B2: $o] :
( ( divide_divide @ A @ ( zero_neq_one_of_bool @ A @ B2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% of_bool_half_eq_0
thf(fact_890_zero__less__power__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W: num] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W ) ) )
= ( ( ( numeral_numeral @ nat @ W )
= ( zero_zero @ nat ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( A2
!= ( zero_zero @ A ) ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_891_even__succ__div__2,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_succ_div_2
thf(fact_892_even__succ__div__two,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_succ_div_two
thf(fact_893_odd__succ__div__two,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ) ).
% odd_succ_div_two
thf(fact_894_even__power,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ A2 @ N ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% even_power
thf(fact_895_odd__two__times__div__two__succ,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( one_one @ A ) )
= A2 ) ) ) ).
% odd_two_times_div_two_succ
thf(fact_896_power__le__zero__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W: num] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W ) ) @ ( zero_zero @ A ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ W ) )
& ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
& ( A2
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_897_one__div__2__pow__eq,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: nat] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( zero_neq_one_of_bool @ A
@ ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% one_div_2_pow_eq
thf(fact_898_bits__1__div__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N: nat] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( zero_neq_one_of_bool @ A
@ ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% bits_1_div_exp
thf(fact_899_flip__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se8732182000553998342ip_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_900_zero__less__eq__of__bool,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% zero_less_eq_of_bool
thf(fact_901_dvd__power__le,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A,Y: A,N: nat,M: nat] :
( ( dvd_dvd @ A @ X @ Y )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( dvd_dvd @ A @ ( power_power @ A @ X @ N ) @ ( power_power @ A @ Y @ M ) ) ) ) ) ).
% dvd_power_le
thf(fact_902_power__le__dvd,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N: nat,B2: A,M: nat] :
( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N ) @ B2 )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( dvd_dvd @ A @ ( power_power @ A @ A2 @ M ) @ B2 ) ) ) ) ).
% power_le_dvd
thf(fact_903_le__imp__power__dvd,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( dvd_dvd @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% le_imp_power_dvd
thf(fact_904_verit__la__disequality,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
| ~ ( ord_less_eq @ A @ A2 @ B2 )
| ~ ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% verit_la_disequality
thf(fact_905_verit__comp__simplify1_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(2)
thf(fact_906_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq @ nat @ Y5 @ B2 ) )
=> ? [X5: nat] :
( ( P @ X5 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ X5 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_907_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_908_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_909_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_910_le__trans,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I3 @ K ) ) ) ).
% le_trans
thf(fact_911_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_912_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F2 @ ( suc @ N2 ) ) @ ( F2 @ N2 ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_913_lift__Suc__mono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_914_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ M )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ( dvd_dvd @ int @ M @ N )
=> ( ( dvd_dvd @ int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_915_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd @ nat @ K @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_916_power__increasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,N5: nat,A2: A] :
( ( ord_less_eq @ nat @ N @ N5 )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ A2 @ N5 ) ) ) ) ) ).
% power_increasing
thf(fact_917_zdvd__imp__le,axiom,
! [Z2: int,N: int] :
( ( dvd_dvd @ int @ Z2 @ N )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less_eq @ int @ Z2 @ N ) ) ) ).
% zdvd_imp_le
thf(fact_918_power__dvd__imp__le,axiom,
! [I3: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ ( power_power @ nat @ I3 @ M ) @ ( power_power @ nat @ I3 @ N ) )
=> ( ( ord_less @ nat @ ( one_one @ nat ) @ I3 )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_919_of__bool__conj,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [P: $o,Q: $o] :
( ( zero_neq_one_of_bool @ A
@ ( P
& Q ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) ) ) ) ).
% of_bool_conj
thf(fact_920_dvd__field__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [A4: A,B4: A] :
( ( A4
= ( zero_zero @ A ) )
=> ( B4
= ( zero_zero @ A ) ) ) ) ) ) ).
% dvd_field_iff
thf(fact_921_dvd__0__left,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( zero_zero @ A ) @ A2 )
=> ( A2
= ( zero_zero @ A ) ) ) ) ).
% dvd_0_left
thf(fact_922_option_Odistinct_I1_J,axiom,
! [A: $tType,X2: A] :
( ( none @ A )
!= ( some @ A @ X2 ) ) ).
% option.distinct(1)
thf(fact_923_option_OdiscI,axiom,
! [A: $tType,Option: option @ A,X2: A] :
( ( Option
= ( some @ A @ X2 ) )
=> ( Option
!= ( none @ A ) ) ) ).
% option.discI
thf(fact_924_option_Oexhaust,axiom,
! [A: $tType,Y: option @ A] :
( ( Y
!= ( none @ A ) )
=> ~ ! [X23: A] :
( Y
!= ( some @ A @ X23 ) ) ) ).
% option.exhaust
thf(fact_925_split__option__ex,axiom,
! [A: $tType] :
( ( ^ [P3: ( option @ A ) > $o] :
? [X7: option @ A] : ( P3 @ X7 ) )
= ( ^ [P4: ( option @ A ) > $o] :
( ( P4 @ ( none @ A ) )
| ? [X6: A] : ( P4 @ ( some @ A @ X6 ) ) ) ) ) ).
% split_option_ex
thf(fact_926_split__option__all,axiom,
! [A: $tType] :
( ( ^ [P3: ( option @ A ) > $o] :
! [X7: option @ A] : ( P3 @ X7 ) )
= ( ^ [P4: ( option @ A ) > $o] :
( ( P4 @ ( none @ A ) )
& ! [X6: A] : ( P4 @ ( some @ A @ X6 ) ) ) ) ) ).
% split_option_all
thf(fact_927_combine__options__cases,axiom,
! [A: $tType,B: $tType,X: option @ A,P: ( option @ A ) > ( option @ B ) > $o,Y: option @ B] :
( ( ( X
= ( none @ A ) )
=> ( P @ X @ Y ) )
=> ( ( ( Y
= ( none @ B ) )
=> ( P @ X @ Y ) )
=> ( ! [A6: A,B6: B] :
( ( X
= ( some @ A @ A6 ) )
=> ( ( Y
= ( some @ B @ B6 ) )
=> ( P @ X @ Y ) ) )
=> ( P @ X @ Y ) ) ) ) ).
% combine_options_cases
thf(fact_928_dvd__productE,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [P2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ P2 @ ( times_times @ A @ A2 @ B2 ) )
=> ~ ! [X5: A,Y5: A] :
( ( P2
= ( times_times @ A @ X5 @ Y5 ) )
=> ( ( dvd_dvd @ A @ X5 @ A2 )
=> ~ ( dvd_dvd @ A @ Y5 @ B2 ) ) ) ) ) ).
% dvd_productE
thf(fact_929_division__decomp,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
=> ? [B7: A,C5: A] :
( ( A2
= ( times_times @ A @ B7 @ C5 ) )
& ( dvd_dvd @ A @ B7 @ B2 )
& ( dvd_dvd @ A @ C5 @ C2 ) ) ) ) ).
% division_decomp
thf(fact_930_dvdE,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ~ ! [K2: A] :
( A2
!= ( times_times @ A @ B2 @ K2 ) ) ) ) ).
% dvdE
thf(fact_931_dvdI,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ! [A2: A,B2: A,K: A] :
( ( A2
= ( times_times @ A @ B2 @ K ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% dvdI
thf(fact_932_dvd__def,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [B4: A,A4: A] :
? [K3: A] :
( A4
= ( times_times @ A @ B4 @ K3 ) ) ) ) ) ).
% dvd_def
thf(fact_933_dvd__mult,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult
thf(fact_934_dvd__mult2,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult2
thf(fact_935_dvd__mult__left,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
=> ( dvd_dvd @ A @ A2 @ C2 ) ) ) ).
% dvd_mult_left
thf(fact_936_dvd__triv__left,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) ) ) ).
% dvd_triv_left
thf(fact_937_mult__dvd__mono,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ D2 )
=> ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ).
% mult_dvd_mono
thf(fact_938_dvd__mult__right,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
=> ( dvd_dvd @ A @ B2 @ C2 ) ) ) ).
% dvd_mult_right
thf(fact_939_dvd__triv__right,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ A2 ) ) ) ).
% dvd_triv_right
thf(fact_940_dvd__add,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ C2 )
=> ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ) ).
% dvd_add
thf(fact_941_dvd__add__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_add_left_iff
thf(fact_942_dvd__add__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_add_right_iff
thf(fact_943_dvd__div__eq__iff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_944_dvd__div__eq__cancel,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
=> ( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_945_div__div__div__same,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [D2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ D2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ D2 ) @ ( divide_divide @ A @ B2 @ D2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_div_div_same
thf(fact_946_dvd__power__same,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A,Y: A,N: nat] :
( ( dvd_dvd @ A @ X @ Y )
=> ( dvd_dvd @ A @ ( power_power @ A @ X @ N ) @ ( power_power @ A @ Y @ N ) ) ) ) ).
% dvd_power_same
thf(fact_947_gcd__nat_Oextremum,axiom,
! [A2: nat] : ( dvd_dvd @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% gcd_nat.extremum
thf(fact_948_gcd__nat_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
& ( ( zero_zero @ nat )
!= A2 ) ) ).
% gcd_nat.extremum_strict
thf(fact_949_gcd__nat_Oextremum__unique,axiom,
! [A2: nat] :
( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% gcd_nat.extremum_unique
thf(fact_950_gcd__nat_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ( dvd_dvd @ nat @ A2 @ ( zero_zero @ nat ) )
& ( A2
!= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_951_gcd__nat_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_952_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_953_zero__le,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_954_verit__comp__simplify1_I3_J,axiom,
! [B: $tType] :
( ( linorder @ B )
=> ! [B5: B,A5: B] :
( ( ~ ( ord_less_eq @ B @ B5 @ A5 ) )
= ( ord_less @ B @ A5 @ B5 ) ) ) ).
% verit_comp_simplify1(3)
thf(fact_955_mod__mod__cancel,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( modulo_modulo @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ C2 )
= ( modulo_modulo @ A @ A2 @ C2 ) ) ) ) ).
% mod_mod_cancel
thf(fact_956_dvd__mod,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [K: A,M: A,N: A] :
( ( dvd_dvd @ A @ K @ M )
=> ( ( dvd_dvd @ A @ K @ N )
=> ( dvd_dvd @ A @ K @ ( modulo_modulo @ A @ M @ N ) ) ) ) ) ).
% dvd_mod
thf(fact_957_dvd__mod__iff,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ C2 @ A2 ) ) ) ) ).
% dvd_mod_iff
thf(fact_958_dvd__mod__imp__dvd,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( dvd_dvd @ A @ C2 @ A2 ) ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_959_add__mono__thms__linordered__semiring_I3_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I3 @ J )
& ( K = L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_960_add__mono__thms__linordered__semiring_I2_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( I3 = J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_961_add__mono__thms__linordered__semiring_I1_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I3 @ J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_962_add__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_mono
thf(fact_963_add__left__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% add_left_mono
thf(fact_964_less__eqE,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ~ ! [C3: A] :
( B2
!= ( plus_plus @ A @ A2 @ C3 ) ) ) ) ).
% less_eqE
thf(fact_965_add__right__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add_right_mono
thf(fact_966_le__iff__add,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,B4: A] :
? [C6: A] :
( B4
= ( plus_plus @ A @ A4 @ C6 ) ) ) ) ) ).
% le_iff_add
thf(fact_967_add__le__imp__le__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_imp_le_left
thf(fact_968_add__le__imp__le__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_imp_le_right
thf(fact_969_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_970_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq @ num @ X @ one2 )
= ( X = one2 ) ) ).
% le_num_One_iff
thf(fact_971_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R3: nat > nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ! [X5: nat] : ( R3 @ X5 @ X5 )
=> ( ! [X5: nat,Y5: nat,Z4: nat] :
( ( R3 @ X5 @ Y5 )
=> ( ( R3 @ Y5 @ Z4 )
=> ( R3 @ X5 @ Z4 ) ) )
=> ( ! [N2: nat] : ( R3 @ N2 @ ( suc @ N2 ) )
=> ( R3 @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_972_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_973_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M2 ) @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_974_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq @ nat @ M @ N ) )
= ( ord_less_eq @ nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_975_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_976_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq @ nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_977_Suc__le__D,axiom,
! [N: nat,M6: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ M6 )
=> ? [M3: nat] :
( M6
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_978_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_979_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_980_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% Suc_leD
thf(fact_981_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_982_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_983_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_984_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% less_eq_nat.simps(1)
thf(fact_985_less__mono__imp__le__mono,axiom,
! [F2: nat > nat,I3: nat,J: nat] :
( ! [I2: nat,J3: nat] :
( ( ord_less @ nat @ I2 @ J3 )
=> ( ord_less @ nat @ ( F2 @ I2 ) @ ( F2 @ J3 ) ) )
=> ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ ( F2 @ I3 ) @ ( F2 @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_986_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_987_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_988_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M4: nat,N3: nat] :
( ( ord_less @ nat @ M4 @ N3 )
| ( M4 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_989_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_990_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M4: nat,N3: nat] :
( ( ord_less_eq @ nat @ M4 @ N3 )
& ( M4 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_991_less__eq__real__def,axiom,
( ( ord_less_eq @ real )
= ( ^ [X6: real,Y6: real] :
( ( ord_less @ real @ X6 @ Y6 )
| ( X6 = Y6 ) ) ) ) ).
% less_eq_real_def
thf(fact_992_less__eq__int__code_I1_J,axiom,
ord_less_eq @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ).
% less_eq_int_code(1)
thf(fact_993_subset__code_I1_J,axiom,
! [A: $tType,Xs2: list @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ B3 )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( member @ A @ X6 @ B3 ) ) ) ) ).
% subset_code(1)
thf(fact_994_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq @ nat @ M @ N )
=> ~ ( ord_less_eq @ nat @ K @ N ) ) ) ).
% add_leE
thf(fact_995_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq @ nat @ N @ ( plus_plus @ nat @ N @ M ) ) ).
% le_add1
thf(fact_996_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq @ nat @ N @ ( plus_plus @ nat @ M @ N ) ) ).
% le_add2
thf(fact_997_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% add_leD1
thf(fact_998_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
=> ( ord_less_eq @ nat @ K @ N ) ) ).
% add_leD2
thf(fact_999_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq @ nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus @ nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1000_add__le__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less_eq @ nat @ K @ L )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1001_add__le__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1002_trans__le__add1,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ I3 @ ( plus_plus @ nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1003_trans__le__add2,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ I3 @ ( plus_plus @ nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1004_nat__le__iff__add,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M4: nat,N3: nat] :
? [K3: nat] :
( N3
= ( plus_plus @ nat @ M4 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1005_mult__le__mono2,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ K @ I3 ) @ ( times_times @ nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_1006_mult__le__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I3 @ K ) @ ( times_times @ nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_1007_mult__le__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less_eq @ nat @ K @ L )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I3 @ K ) @ ( times_times @ nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_1008_le__square,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ M ) ) ).
% le_square
thf(fact_1009_le__cube,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ ( times_times @ nat @ M @ M ) ) ) ).
% le_cube
thf(fact_1010_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ K ) @ ( divide_divide @ nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_1011_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_1012_subset__iff__psubset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ( ord_less @ ( set @ A ) @ A7 @ B8 )
| ( A7 = B8 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_1013_subset__psubset__trans,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less @ ( set @ A ) @ B3 @ C4 )
=> ( ord_less @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% subset_psubset_trans
thf(fact_1014_subset__not__subset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A7 @ B8 )
& ~ ( ord_less_eq @ ( set @ A ) @ B8 @ A7 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_1015_psubset__subset__trans,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ C4 )
=> ( ord_less @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% psubset_subset_trans
thf(fact_1016_psubset__imp__subset,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% psubset_imp_subset
thf(fact_1017_psubset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A7 @ B8 )
& ( A7 != B8 ) ) ) ) ).
% psubset_eq
thf(fact_1018_psubsetE,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ B3 @ A3 ) ) ) ).
% psubsetE
thf(fact_1019_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_1020_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_less_eq @ extended_enat @ N @ ( zero_zero @ extended_enat ) )
= ( N
= ( zero_zero @ extended_enat ) ) ) ).
% ile0_eq
thf(fact_1021_i0__lb,axiom,
! [N: extended_enat] : ( ord_less_eq @ extended_enat @ ( zero_zero @ extended_enat ) @ N ) ).
% i0_lb
thf(fact_1022_dvd__power__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [X: A,M: nat,N: nat] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ N ) )
= ( ( dvd_dvd @ A @ X @ ( one_one @ A ) )
| ( ord_less_eq @ nat @ M @ N ) ) ) ) ) ).
% dvd_power_iff
thf(fact_1023_power__decreasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,N5: nat,A2: A] :
( ( ord_less_eq @ nat @ N @ N5 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N5 ) @ ( power_power @ A @ A2 @ N ) ) ) ) ) ) ).
% power_decreasing
thf(fact_1024_power__le__imp__le__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ) ).
% power_le_imp_le_exp
thf(fact_1025_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
! [A: $tType,F2: A > A > A,A2: A,B2: A] :
( ( vEBT_V2048590022279873568_shift @ A @ F2 @ ( some @ A @ A2 ) @ ( some @ A @ B2 ) )
= ( some @ A @ ( F2 @ A2 @ B2 ) ) ) ).
% VEBT_internal.option_shift.simps(3)
thf(fact_1026_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ K @ L ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( ( L
= ( zero_zero @ int ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) )
| ( ord_less @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_1027_unset__bit__less__eq,axiom,
! [N: nat,K: int] : ( ord_less_eq @ int @ ( bit_se2638667681897837118et_bit @ int @ N @ K ) @ K ) ).
% unset_bit_less_eq
thf(fact_1028_set__bit__greater__eq,axiom,
! [K: int,N: nat] : ( ord_less_eq @ int @ K @ ( bit_se5668285175392031749et_bit @ int @ N @ K ) ) ).
% set_bit_greater_eq
thf(fact_1029_of__bool__odd__eq__mod__2,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( zero_neq_one_of_bool @ A
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_1030_power__mono__odd,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: A,B2: A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ).
% power_mono_odd
thf(fact_1031_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ( dvd_dvd @ nat @ ( power_power @ nat @ K @ M ) @ ( power_power @ nat @ K @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_1032_split__of__bool__asm,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: A > $o,P2: $o] :
( ( P @ ( zero_neq_one_of_bool @ A @ P2 ) )
= ( ~ ( ( P2
& ~ ( P @ ( one_one @ A ) ) )
| ( ~ P2
& ~ ( P @ ( zero_zero @ A ) ) ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_1033_split__of__bool,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: A > $o,P2: $o] :
( ( P @ ( zero_neq_one_of_bool @ A @ P2 ) )
= ( ( P2
=> ( P @ ( one_one @ A ) ) )
& ( ~ P2
=> ( P @ ( zero_zero @ A ) ) ) ) ) ) ).
% split_of_bool
thf(fact_1034_of__bool__def,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_neq_one_of_bool @ A )
= ( ^ [P5: $o] : ( if @ A @ P5 @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ) ) ).
% of_bool_def
thf(fact_1035_not__is__unit__0,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ~ ( dvd_dvd @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% not_is_unit_0
thf(fact_1036_dvd__div__eq__0__iff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1037_unit__mult__right__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( times_times @ A @ B2 @ A2 )
= ( times_times @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_mult_right_cancel
thf(fact_1038_unit__mult__left__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( times_times @ A @ A2 @ B2 )
= ( times_times @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_mult_left_cancel
thf(fact_1039_mult__unit__dvd__iff_H,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_1040_dvd__mult__unit__iff_H,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_1041_mult__unit__dvd__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% mult_unit_dvd_iff
thf(fact_1042_dvd__mult__unit__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_mult_unit_iff
thf(fact_1043_is__unit__mult__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) )
= ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
& ( dvd_dvd @ A @ B2 @ ( one_one @ A ) ) ) ) ) ).
% is_unit_mult_iff
thf(fact_1044_div__mult__div__if__dvd,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,D2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( dvd_dvd @ A @ D2 @ C2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( divide_divide @ A @ C2 @ D2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_1045_dvd__mult__imp__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 )
=> ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult_imp_div
thf(fact_1046_dvd__div__mult2__eq,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% dvd_div_mult2_eq
thf(fact_1047_div__div__eq__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% div_div_eq_right
thf(fact_1048_div__mult__swap,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% div_mult_swap
thf(fact_1049_dvd__div__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( divide_divide @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 ) ) ) ) ).
% dvd_div_mult
thf(fact_1050_div__plus__div__distrib__dvd__right,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_1051_div__plus__div__distrib__dvd__left,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_1052_unit__div__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= ( divide_divide @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_div_cancel
thf(fact_1053_div__unit__dvd__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% div_unit_dvd_iff
thf(fact_1054_dvd__div__unit__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_div_unit_iff
thf(fact_1055_div__power,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,N: nat] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( power_power @ A @ ( divide_divide @ A @ A2 @ B2 ) @ N )
= ( divide_divide @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ).
% div_power
thf(fact_1056_mod__0__imp__dvd,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% mod_0_imp_dvd
thf(fact_1057_dvd__eq__mod__eq__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [A4: A,B4: A] :
( ( modulo_modulo @ A @ B4 @ A4 )
= ( zero_zero @ A ) ) ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_1058_mod__eq__0__iff__dvd,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% mod_eq_0_iff_dvd
thf(fact_1059_zero__le__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ N ) ) ) ).
% zero_le_numeral
thf(fact_1060_not__numeral__le__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ N ) @ ( zero_zero @ A ) ) ) ).
% not_numeral_le_zero
thf(fact_1061_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( dvd_dvd @ nat @ M @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ M ) ) ) ).
% dvd_pos_nat
thf(fact_1062_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N )
=> ~ ( dvd_dvd @ nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_1063_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: $tType] :
( ( ordere2520102378445227354miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1064_zero__le__mult__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_mult_iff
thf(fact_1065_mult__nonneg__nonpos2,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ B2 @ A2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_1066_mult__nonpos__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonpos_nonneg
thf(fact_1067_mult__nonneg__nonpos,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos
thf(fact_1068_mult__nonneg__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_1069_split__mult__neg__le,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ).
% split_mult_neg_le
thf(fact_1070_mult__le__0__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% mult_le_0_iff
thf(fact_1071_mult__right__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_right_mono
thf(fact_1072_mult__right__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_right_mono_neg
thf(fact_1073_mult__left__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_left_mono
thf(fact_1074_mult__nonpos__nonpos,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_1075_mult__left__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_left_mono_neg
thf(fact_1076_split__mult__pos__le,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% split_mult_pos_le
thf(fact_1077_zero__le__square,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ A2 ) ) ) ).
% zero_le_square
thf(fact_1078_mult__mono_H,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_mono'
thf(fact_1079_mult__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_mono
thf(fact_1080_add__nonpos__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_1081_add__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_1082_add__nonpos__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_nonpos_nonpos
thf(fact_1083_add__nonneg__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_1084_add__increasing2,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_increasing2
thf(fact_1085_add__decreasing2,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% add_decreasing2
thf(fact_1086_add__increasing,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_increasing
thf(fact_1087_add__decreasing,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% add_decreasing
thf(fact_1088_not__one__le__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_le_zero
thf(fact_1089_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1090_zero__less__one__class_Ozero__le__one,axiom,
! [A: $tType] :
( ( zero_less_one @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_less_one_class.zero_le_one
thf(fact_1091_add__less__le__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_less_le_mono
thf(fact_1092_add__le__less__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_le_less_mono
thf(fact_1093_add__mono__thms__linordered__field_I3_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I3 @ J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_1094_add__mono__thms__linordered__field_I4_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I3: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I3 @ J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_1095_divide__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_le_0_iff
thf(fact_1096_divide__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_right_mono
thf(fact_1097_zero__le__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1098_divide__nonneg__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1099_divide__nonneg__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1100_divide__nonpos__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1101_divide__nonpos__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1102_divide__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( divide_divide @ A @ A2 @ C2 ) ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1103_one__le__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: num] : ( ord_less_eq @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) ) ) ).
% one_le_numeral
thf(fact_1104_power__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ).
% power_mono
thf(fact_1105_zero__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% zero_le_power
thf(fact_1106_one__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% one_le_power
thf(fact_1107_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ M )
=> ( ( ord_less @ int @ M @ N )
=> ~ ( dvd_dvd @ int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_1108_bezout__add__nat,axiom,
! [A2: nat,B2: nat] :
? [D4: nat,X5: nat,Y5: nat] :
( ( dvd_dvd @ nat @ D4 @ A2 )
& ( dvd_dvd @ nat @ D4 @ B2 )
& ( ( ( times_times @ nat @ A2 @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y5 ) @ D4 ) )
| ( ( times_times @ nat @ B2 @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y5 ) @ D4 ) ) ) ) ).
% bezout_add_nat
thf(fact_1109_bezout__lemma__nat,axiom,
! [D2: nat,A2: nat,B2: nat,X: nat,Y: nat] :
( ( dvd_dvd @ nat @ D2 @ A2 )
=> ( ( dvd_dvd @ nat @ D2 @ B2 )
=> ( ( ( ( times_times @ nat @ A2 @ X )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y ) @ D2 ) )
| ( ( times_times @ nat @ B2 @ X )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y ) @ D2 ) ) )
=> ? [X5: nat,Y5: nat] :
( ( dvd_dvd @ nat @ D2 @ A2 )
& ( dvd_dvd @ nat @ D2 @ ( plus_plus @ nat @ A2 @ B2 ) )
& ( ( ( times_times @ nat @ A2 @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ Y5 ) @ D2 ) )
| ( ( times_times @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y5 ) @ D2 ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_1110_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ A2 ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_1111_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ N ) )
=> ( ( K
!= ( zero_zero @ int ) )
=> ( dvd_dvd @ int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_1112_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_1113_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_1114_dec__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( P @ I3 )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I3 @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_1115_inc__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I3 @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% inc_induct
thf(fact_1116_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_1117_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_1118_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_1119_less__eq__Suc__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat] : ( ord_less_eq @ nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_1120_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_1121_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1122_dbl__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A )
= ( ^ [X6: A] : ( plus_plus @ A @ X6 @ X6 ) ) ) ) ).
% dbl_def
thf(fact_1123_zdvd__period,axiom,
! [A2: int,D2: int,X: int,T2: int,C2: int] :
( ( dvd_dvd @ int @ A2 @ D2 )
=> ( ( dvd_dvd @ int @ A2 @ ( plus_plus @ int @ X @ T2 ) )
= ( dvd_dvd @ int @ A2 @ ( plus_plus @ int @ ( plus_plus @ int @ X @ ( times_times @ int @ C2 @ D2 ) ) @ T2 ) ) ) ) ).
% zdvd_period
thf(fact_1124_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( ( dvd_dvd @ int @ K @ ( plus_plus @ int @ N @ ( times_times @ int @ K @ M ) ) )
= ( dvd_dvd @ int @ K @ N ) ) ).
% zdvd_reduce
thf(fact_1125_mono__nat__linear__lb,axiom,
! [F2: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less @ nat @ M3 @ N2 )
=> ( ord_less @ nat @ ( F2 @ M3 ) @ ( F2 @ N2 ) ) )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( F2 @ M ) @ K ) @ ( F2 @ ( plus_plus @ nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1126_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ ( suc @ K ) @ M ) @ ( times_times @ nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_1127_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ N ) @ ( divide_divide @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_1128_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( one_one @ int ) @ Z2 )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1129_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ N @ ( divide_divide @ nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_1130_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ ( divide_divide @ nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_1131_mod__Suc__le__divisor,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ ( suc @ N ) ) @ N ) ).
% mod_Suc_le_divisor
thf(fact_1132_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ M )
=> ( ord_less_eq @ int @ ( modulo_modulo @ int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_1133_zero__le__even__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% zero_le_even_power
thf(fact_1134_zero__le__odd__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ).
% zero_le_odd_power
thf(fact_1135_zero__le__power__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) )
= ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_le_power_eq
thf(fact_1136_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
! [A: $tType,Uw: A > A > A,V: A] :
( ( vEBT_V2048590022279873568_shift @ A @ Uw @ ( some @ A @ V ) @ ( none @ A ) )
= ( none @ A ) ) ).
% VEBT_internal.option_shift.simps(2)
thf(fact_1137_VEBT__internal_Ooption__shift_Oelims,axiom,
! [A: $tType,X: A > A > A,Xa2: option @ A,Xb: option @ A,Y: option @ A] :
( ( ( vEBT_V2048590022279873568_shift @ A @ X @ Xa2 @ Xb )
= Y )
=> ( ( ( Xa2
= ( none @ A ) )
=> ( Y
!= ( none @ A ) ) )
=> ( ( ? [V3: A] :
( Xa2
= ( some @ A @ V3 ) )
=> ( ( Xb
= ( none @ A ) )
=> ( Y
!= ( none @ A ) ) ) )
=> ~ ! [A6: A] :
( ( Xa2
= ( some @ A @ A6 ) )
=> ! [B6: A] :
( ( Xb
= ( some @ A @ B6 ) )
=> ( Y
!= ( some @ A @ ( X @ A6 @ B6 ) ) ) ) ) ) ) ) ).
% VEBT_internal.option_shift.elims
thf(fact_1138_unit__dvdE,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ~ ( ( A2
!= ( zero_zero @ A ) )
=> ! [C3: A] :
( B2
!= ( times_times @ A @ A2 @ C3 ) ) ) ) ) ).
% unit_dvdE
thf(fact_1139_dvd__div__div__eq__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ D2 )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= ( divide_divide @ A @ D2 @ C2 ) )
= ( ( times_times @ A @ B2 @ C2 )
= ( times_times @ A @ A2 @ D2 ) ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_1140_dvd__div__iff__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_1141_div__dvd__iff__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_1142_dvd__div__eq__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= C2 )
= ( B2
= ( times_times @ A @ C2 @ A2 ) ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_1143_unit__div__eq__0__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% unit_div_eq_0_iff
thf(fact_1144_even__numeral,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N: num] : ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ N ) ) ) ) ).
% even_numeral
thf(fact_1145_is__unit__div__mult2__eq,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_1146_unit__div__mult__swap,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% unit_div_mult_swap
thf(fact_1147_unit__div__commute,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% unit_div_commute
thf(fact_1148_div__mult__unit2,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% div_mult_unit2
thf(fact_1149_unit__eq__div2,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( A2
= ( divide_divide @ A @ C2 @ B2 ) )
= ( ( times_times @ A @ A2 @ B2 )
= C2 ) ) ) ) ).
% unit_eq_div2
thf(fact_1150_unit__eq__div1,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= C2 )
= ( A2
= ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% unit_eq_div1
thf(fact_1151_is__unit__power__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,N: nat] :
( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N ) @ ( one_one @ A ) )
= ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% is_unit_power_iff
thf(fact_1152_unit__imp__mod__eq__0,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% unit_imp_mod_eq_0
thf(fact_1153_mult__le__cancel__left,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_le_cancel_left
thf(fact_1154_mult__le__cancel__right,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_le_cancel_right
thf(fact_1155_mult__left__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semiring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_left_less_imp_less
thf(fact_1156_mult__strict__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_1157_mult__less__cancel__left,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_left
thf(fact_1158_mult__right__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semiring @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_right_less_imp_less
thf(fact_1159_mult__strict__mono_H,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_1160_mult__less__cancel__right,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_right
thf(fact_1161_mult__le__cancel__left__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_1162_mult__le__cancel__left__pos,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_1163_mult__left__le__imp__le,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_left_le_imp_le
thf(fact_1164_mult__right__le__imp__le,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_right_le_imp_le
thf(fact_1165_mult__le__less__imp__less,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_1166_mult__less__le__imp__less,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_1167_mult__le__cancel__iff1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ Z2 ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mult_le_cancel_iff1
thf(fact_1168_mult__le__cancel__iff2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ Z2 @ X ) @ ( times_times @ A @ Z2 @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mult_le_cancel_iff2
thf(fact_1169_field__le__epsilon,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ! [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
=> ( ord_less_eq @ A @ X @ ( plus_plus @ A @ Y @ E ) ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% field_le_epsilon
thf(fact_1170_add__strict__increasing2,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_strict_increasing2
thf(fact_1171_add__strict__increasing,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_strict_increasing
thf(fact_1172_add__pos__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_pos_nonneg
thf(fact_1173_add__nonpos__neg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_nonpos_neg
thf(fact_1174_add__nonneg__pos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_nonneg_pos
thf(fact_1175_add__neg__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_neg_nonpos
thf(fact_1176_frac__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,W: A,Z2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less_eq @ A @ W @ Z2 )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_le
thf(fact_1177_frac__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W: A,Z2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less_eq @ A @ W @ Z2 )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_less
thf(fact_1178_frac__less2,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less @ A @ W @ Z2 )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_less2
thf(fact_1179_divide__le__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% divide_le_cancel
thf(fact_1180_divide__nonneg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_neg
thf(fact_1181_divide__nonneg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_pos
thf(fact_1182_divide__nonpos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_neg
thf(fact_1183_divide__nonpos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_pos
thf(fact_1184_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_1185_div__positive,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_positive
thf(fact_1186_sum__squares__le__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) @ ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_1187_sum__squares__ge__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) ) ) ).
% sum_squares_ge_zero
thf(fact_1188_mult__left__le,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [C2: A,A2: A] :
( ( ord_less_eq @ A @ C2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ A2 ) ) ) ) ).
% mult_left_le
thf(fact_1189_mult__le__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_one
thf(fact_1190_mult__right__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ X @ Y ) @ X ) ) ) ) ) ).
% mult_right_le_one_le
thf(fact_1191_mult__left__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ Y @ X ) @ X ) ) ) ) ) ).
% mult_left_le_one_le
thf(fact_1192_power__less__imp__less__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% power_less_imp_less_base
thf(fact_1193_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_1194_discrete,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A] : ( ord_less_eq @ A @ ( plus_plus @ A @ A4 @ ( one_one @ A ) ) ) ) ) ) ).
% discrete
thf(fact_1195_power__le__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( one_one @ A ) ) ) ) ) ).
% power_le_one
thf(fact_1196_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( dvd_dvd @ nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_1197_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( dvd_dvd @ nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_1198_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ N @ M ) @ M )
= ( N
= ( one_one @ nat ) ) ) ) ).
% dvd_mult_cancel2
thf(fact_1199_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ M @ N ) @ M )
= ( N
= ( one_one @ nat ) ) ) ) ).
% dvd_mult_cancel1
thf(fact_1200_power__inject__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ( power_power @ A @ A2 @ ( suc @ N ) )
= ( power_power @ A @ B2 @ ( suc @ N ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( A2 = B2 ) ) ) ) ) ).
% power_inject_base
thf(fact_1201_power__le__imp__le__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( suc @ N ) ) @ ( power_power @ A @ B2 @ ( suc @ N ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% power_le_imp_le_base
thf(fact_1202_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( modulo_modulo @ A @ A2 @ B2 )
= A2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_1203_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_1204_bezout__add__strong__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ? [D4: nat,X5: nat,Y5: nat] :
( ( dvd_dvd @ nat @ D4 @ A2 )
& ( dvd_dvd @ nat @ D4 @ B2 )
& ( ( times_times @ nat @ A2 @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y5 ) @ D4 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_1205_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( modulo_modulo @ nat @ M @ N ) )
= ( ~ ( dvd_dvd @ nat @ N @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_1206_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less @ nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_eq @ nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_1207_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1208_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ K @ N ) @ ( divide_divide @ nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_1209_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ M @ N ) )
= ( ( ord_less_eq @ nat @ N @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_1210_nat__one__le__power,axiom,
! [I3: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ I3 )
=> ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( power_power @ nat @ I3 @ N ) ) ) ).
% nat_one_le_power
thf(fact_1211_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_1212_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1213_zdiv__mono1,axiom,
! [A2: int,A5: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A5 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A5 @ B2 ) ) ) ) ).
% zdiv_mono1
thf(fact_1214_zdiv__mono2,axiom,
! [A2: int,B5: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( ord_less_eq @ int @ B5 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A2 @ B5 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_1215_zdiv__eq__0__iff,axiom,
! [I3: int,K: int] :
( ( ( divide_divide @ int @ I3 @ K )
= ( zero_zero @ int ) )
= ( ( K
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I3 )
& ( ord_less @ int @ I3 @ K ) )
| ( ( ord_less_eq @ int @ I3 @ ( zero_zero @ int ) )
& ( ord_less @ int @ K @ I3 ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_1216_zdiv__mono1__neg,axiom,
! [A2: int,A5: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A5 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A5 @ B2 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_1217_zdiv__mono2__neg,axiom,
! [A2: int,B5: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( ord_less_eq @ int @ B5 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B5 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_1218_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) )
= ( ( K
= ( zero_zero @ int ) )
| ( L
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) )
| ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
& ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ) ).
% div_int_pos_iff
thf(fact_1219_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ L @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_1220_div__nonneg__neg__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonneg_neg_le0
thf(fact_1221_div__nonpos__pos__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonpos_pos_le0
thf(fact_1222_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I3: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ I3 @ K ) )
= ( ord_less_eq @ int @ K @ I3 ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_1223_neg__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_1224_pos__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_1225_nonneg1__imp__zdiv__pos__iff,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ( ord_less_eq @ int @ B2 @ A2 )
& ( ord_less @ int @ ( zero_zero @ int ) @ B2 ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_1226_mod__eq__nat1E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo @ nat @ M @ Q2 )
= ( modulo_modulo @ nat @ N @ Q2 ) )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ~ ! [S2: nat] :
( M
!= ( plus_plus @ nat @ N @ ( times_times @ nat @ Q2 @ S2 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_1227_mod__eq__nat2E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo @ nat @ M @ Q2 )
= ( modulo_modulo @ nat @ N @ Q2 ) )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ~ ! [S2: nat] :
( N
!= ( plus_plus @ nat @ M @ ( times_times @ nat @ Q2 @ S2 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_1228_nat__mod__eq__lemma,axiom,
! [X: nat,N: nat,Y: nat] :
( ( ( modulo_modulo @ nat @ X @ N )
= ( modulo_modulo @ nat @ Y @ N ) )
=> ( ( ord_less_eq @ nat @ Y @ X )
=> ? [Q3: nat] :
( X
= ( plus_plus @ nat @ Y @ ( times_times @ nat @ N @ Q3 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_1229_zdiv__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ C2 )
=> ( ( divide_divide @ int @ A2 @ ( times_times @ int @ B2 @ C2 ) )
= ( divide_divide @ int @ ( divide_divide @ int @ A2 @ B2 ) @ C2 ) ) ) ).
% zdiv_zmult2_eq
thf(fact_1230_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_1231_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( modulo_modulo @ int @ K @ L ) @ ( zero_zero @ int ) ) ) ).
% neg_mod_sign
thf(fact_1232_neg__mod__conj,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
& ( ord_less @ int @ B2 @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ).
% neg_mod_conj
thf(fact_1233_pos__mod__conj,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ A2 @ B2 ) )
& ( ord_less @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ B2 ) ) ) ).
% pos_mod_conj
thf(fact_1234_zmod__trivial__iff,axiom,
! [I3: int,K: int] :
( ( ( modulo_modulo @ int @ I3 @ K )
= I3 )
= ( ( K
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I3 )
& ( ord_less @ int @ I3 @ K ) )
| ( ( ord_less_eq @ int @ I3 @ ( zero_zero @ int ) )
& ( ord_less @ int @ K @ I3 ) ) ) ) ).
% zmod_trivial_iff
thf(fact_1235_power__le__zero__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( zero_zero @ A ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
& ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( A2
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_1236_option_Osize_I4_J,axiom,
! [A: $tType,X2: A] :
( ( size_size @ ( option @ A ) @ ( some @ A @ X2 ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(4)
thf(fact_1237_even__zero,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( zero_zero @ A ) ) ) ).
% even_zero
thf(fact_1238_is__unit__div__mult__cancel__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ A2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_1239_is__unit__div__mult__cancel__left,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_1240_is__unitE,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ~ ( ( A2
!= ( zero_zero @ A ) )
=> ! [B6: A] :
( ( B6
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B6 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ ( one_one @ A ) @ A2 )
= B6 )
=> ( ( ( divide_divide @ A @ ( one_one @ A ) @ B6 )
= A2 )
=> ( ( ( times_times @ A @ A2 @ B6 )
= ( one_one @ A ) )
=> ( ( divide_divide @ A @ C2 @ A2 )
!= ( times_times @ A @ C2 @ B6 ) ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_1241_evenE,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ~ ! [B6: A] :
( A2
!= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B6 ) ) ) ) ).
% evenE
thf(fact_1242_odd__even__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 )
=> ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% odd_even_add
thf(fact_1243_odd__one,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( one_one @ A ) ) ) ).
% odd_one
thf(fact_1244_bit__eq__rec,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( ^ [Y3: A,Z: A] : ( Y3 = Z ) )
= ( ^ [A4: A,B4: A] :
( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A4 )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B4 ) )
& ( ( divide_divide @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( divide_divide @ A @ B4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_1245_dvd__power,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N: nat,X: A] :
( ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
| ( X
= ( one_one @ A ) ) )
=> ( dvd_dvd @ A @ X @ ( power_power @ A @ X @ N ) ) ) ) ).
% dvd_power
thf(fact_1246_field__le__mult__one__interval,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ! [Z4: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z4 )
=> ( ( ord_less @ A @ Z4 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ Z4 @ X ) @ Y ) ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% field_le_mult_one_interval
thf(fact_1247_mult__le__cancel__left1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_1248_mult__le__cancel__left2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ C2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_1249_mult__le__cancel__right1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_1250_mult__le__cancel__right2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ C2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_1251_mult__less__cancel__left1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_1252_mult__less__cancel__left2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ C2 )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_1253_mult__less__cancel__right1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_1254_mult__less__cancel__right2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ C2 )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_1255_divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_1256_le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_1257_divide__left__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_left_mono
thf(fact_1258_neg__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% neg_divide_le_eq
thf(fact_1259_neg__le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_le_divide_eq
thf(fact_1260_pos__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_divide_le_eq
thf(fact_1261_pos__le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% pos_le_divide_eq
thf(fact_1262_mult__imp__div__pos__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ X @ ( times_times @ A @ Z2 @ Y ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 ) ) ) ) ).
% mult_imp_div_pos_le
thf(fact_1263_mult__imp__le__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ Z2 @ Y ) @ X )
=> ( ord_less_eq @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_1264_divide__left__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_1265_divide__le__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ A2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ A2 @ B2 ) )
| ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_le_eq_1
thf(fact_1266_le__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% le_divide_eq_1
thf(fact_1267_even__signed__take__bit__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4674362597316999326ke_bit @ A @ M @ A2 ) )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ).
% even_signed_take_bit_iff
thf(fact_1268_convex__bound__le,axiom,
! [A: $tType] :
( ( linord6961819062388156250ring_1 @ A )
=> ! [X: A,A2: A,Y: A,U: A,V: A] :
( ( ord_less_eq @ A @ X @ A2 )
=> ( ( ord_less_eq @ A @ Y @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ U )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ V )
=> ( ( ( plus_plus @ A @ U @ V )
= ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ U @ X ) @ ( times_times @ A @ V @ Y ) ) @ A2 ) ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1269_power__Suc__le__self,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( suc @ N ) ) @ A2 ) ) ) ) ).
% power_Suc_le_self
thf(fact_1270_power__eq__imp__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ( power_power @ A @ A2 @ N )
= ( power_power @ A @ B2 @ N ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1271_power__eq__iff__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ( power_power @ A @ A2 @ N )
= ( power_power @ A @ B2 @ N ) )
= ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1272_self__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ A @ A2 @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% self_le_power
thf(fact_1273_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ ( zero_zero @ int ) ) ).
% not_exp_less_eq_0_int
thf(fact_1274_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_1275_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_1276_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ord_less_eq @ nat @ M @ ( power_power @ nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_1277_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ K )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_1278_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ K @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) )
= ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_1279_vebt__mint_Osimps_I1_J,axiom,
! [A2: $o,B2: $o] :
( ( A2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( B2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_mint.simps(1)
thf(fact_1280_vebt__maxt_Osimps_I1_J,axiom,
! [B2: $o,A2: $o] :
( ( B2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( A2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_maxt.simps(1)
thf(fact_1281_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq @ real @ ( one_one @ real ) @ ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_1282_div__nat__eqI,axiom,
! [N: nat,Q2: nat,M: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ N @ Q2 ) @ M )
=> ( ( ord_less @ nat @ M @ ( times_times @ nat @ N @ ( suc @ Q2 ) ) )
=> ( ( divide_divide @ nat @ M @ N )
= Q2 ) ) ) ).
% div_nat_eqI
thf(fact_1283_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Q2 )
=> ( ( ord_less_eq @ nat @ M @ ( divide_divide @ nat @ N @ Q2 ) )
= ( ord_less_eq @ nat @ ( times_times @ nat @ M @ Q2 ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_1284_q__pos__lemma,axiom,
! [B5: int,Q5: int,R4: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( times_times @ int @ B5 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ R4 @ B5 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ Q5 ) ) ) ) ).
% q_pos_lemma
thf(fact_1285_zdiv__mono2__lemma,axiom,
! [B2: int,Q2: int,R2: int,B5: int,Q5: int,R4: int] :
( ( ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 )
= ( plus_plus @ int @ ( times_times @ int @ B5 @ Q5 ) @ R4 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( times_times @ int @ B5 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ R4 @ B5 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( ord_less_eq @ int @ B5 @ B2 )
=> ( ord_less_eq @ int @ Q2 @ Q5 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_1286_zdiv__mono2__neg__lemma,axiom,
! [B2: int,Q2: int,R2: int,B5: int,Q5: int,R4: int] :
( ( ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 )
= ( plus_plus @ int @ ( times_times @ int @ B5 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ ( plus_plus @ int @ ( times_times @ int @ B5 @ Q5 ) @ R4 ) @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R4 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( ord_less_eq @ int @ B5 @ B2 )
=> ( ord_less_eq @ int @ Q5 @ Q2 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_1287_unique__quotient__lemma,axiom,
! [B2: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q5 ) @ R4 ) @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R4 )
=> ( ( ord_less @ int @ R4 @ B2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ord_less_eq @ int @ Q5 @ Q2 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_1288_unique__quotient__lemma__neg,axiom,
! [B2: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q5 ) @ R4 ) @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( ord_less @ int @ B2 @ R4 )
=> ( ord_less_eq @ int @ Q2 @ Q5 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_1289_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ ( plus_plus @ int @ K @ L ) @ ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
= ( plus_plus @ int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_1290_even__two__times__div__two,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= A2 ) ) ) ).
% even_two_times_div_two
thf(fact_1291_even__iff__mod__2__eq__zero,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_1292_odd__iff__mod__2__eq__one,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_1293_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% odd_pos
thf(fact_1294_divide__le__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( numeral_numeral @ A @ W ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_1295_le__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ W ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( numeral_numeral @ A @ W ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_1296_convex__bound__lt,axiom,
! [A: $tType] :
( ( linord715952674999750819strict @ A )
=> ! [X: A,A2: A,Y: A,U: A,V: A] :
( ( ord_less @ A @ X @ A2 )
=> ( ( ord_less @ A @ Y @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ U )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ V )
=> ( ( ( plus_plus @ A @ U @ V )
= ( one_one @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ U @ X ) @ ( times_times @ A @ V @ Y ) ) @ A2 ) ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_1297_power2__le__imp__le,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% power2_le_imp_le
thf(fact_1298_power2__eq__imp__eq,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( X = Y ) ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1299_zero__le__power2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% zero_le_power2
thf(fact_1300_even__unset__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
| ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% even_unset_bit_iff
thf(fact_1301_even__set__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
& ( M
!= ( zero_zero @ nat ) ) ) ) ) ).
% even_set_bit_iff
thf(fact_1302_power__strict__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ) ).
% power_strict_mono
thf(fact_1303_even__flip__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
!= ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% even_flip_bit_iff
thf(fact_1304_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_1305_split__div_H,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide @ nat @ M @ N ) )
= ( ( ( N
= ( zero_zero @ nat ) )
& ( P @ ( zero_zero @ nat ) ) )
| ? [Q4: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ N @ Q4 ) @ M )
& ( ord_less @ nat @ M @ ( times_times @ nat @ N @ ( suc @ Q4 ) ) )
& ( P @ Q4 ) ) ) ) ).
% split_div'
thf(fact_1306_verit__le__mono__div,axiom,
! [A3: nat,B3: nat,N: nat] :
( ( ord_less @ nat @ A3 @ B3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ nat
@ ( plus_plus @ nat @ ( divide_divide @ nat @ A3 @ N )
@ ( if @ nat
@ ( ( modulo_modulo @ nat @ B3 @ N )
= ( zero_zero @ nat ) )
@ ( one_one @ nat )
@ ( zero_zero @ nat ) ) )
@ ( divide_divide @ nat @ B3 @ N ) ) ) ) ).
% verit_le_mono_div
thf(fact_1307_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide @ int @ N @ K ) )
= ( ( ( K
= ( zero_zero @ int ) )
=> ( P @ ( zero_zero @ int ) ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ! [I: int,J2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J2 )
& ( ord_less @ int @ J2 @ K )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ I ) ) )
& ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ! [I: int,J2: int] :
( ( ( ord_less @ int @ K @ J2 )
& ( ord_less_eq @ int @ J2 @ ( zero_zero @ int ) )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ I ) ) ) ) ) ).
% split_zdiv
thf(fact_1308_int__div__neg__eq,axiom,
! [A2: int,B2: int,Q2: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( divide_divide @ int @ A2 @ B2 )
= Q2 ) ) ) ) ).
% int_div_neg_eq
thf(fact_1309_int__div__pos__eq,axiom,
! [A2: int,B2: int,Q2: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( divide_divide @ int @ A2 @ B2 )
= Q2 ) ) ) ) ).
% int_div_pos_eq
thf(fact_1310_split__zmod,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( modulo_modulo @ int @ N @ K ) )
= ( ( ( K
= ( zero_zero @ int ) )
=> ( P @ N ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ! [I: int,J2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J2 )
& ( ord_less @ int @ J2 @ K )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ J2 ) ) )
& ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ! [I: int,J2: int] :
( ( ( ord_less @ int @ K @ J2 )
& ( ord_less_eq @ int @ J2 @ ( zero_zero @ int ) )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ J2 ) ) ) ) ) ).
% split_zmod
thf(fact_1311_int__mod__neg__eq,axiom,
! [A2: int,B2: int,Q2: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( modulo_modulo @ int @ A2 @ B2 )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_1312_int__mod__pos__eq,axiom,
! [A2: int,B2: int,Q2: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( modulo_modulo @ int @ A2 @ B2 )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_1313_verit__le__mono__div__int,axiom,
! [A3: int,B3: int,N: int] :
( ( ord_less @ int @ A3 @ B3 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less_eq @ int
@ ( plus_plus @ int @ ( divide_divide @ int @ A3 @ N )
@ ( if @ int
@ ( ( modulo_modulo @ int @ B3 @ N )
= ( zero_zero @ int ) )
@ ( one_one @ int )
@ ( zero_zero @ int ) ) )
@ ( divide_divide @ int @ B3 @ N ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_1314_zmod__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ C2 )
=> ( ( modulo_modulo @ int @ A2 @ ( times_times @ int @ B2 @ C2 ) )
= ( plus_plus @ int @ ( times_times @ int @ B2 @ ( modulo_modulo @ int @ ( divide_divide @ int @ A2 @ B2 ) @ C2 ) ) @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ).
% zmod_zmult2_eq
thf(fact_1315_bits__induct,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [P: A > $o,A2: A] :
( ! [A6: A] :
( ( ( divide_divide @ A @ A6 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A6 )
=> ( P @ A6 ) )
=> ( ! [A6: A,B6: $o] :
( ( P @ A6 )
=> ( ( ( divide_divide @ A @ ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ B6 ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A6 ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A6 )
=> ( P @ ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ B6 ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A6 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% bits_induct
thf(fact_1316_oddE,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ~ ! [B6: A] :
( A2
!= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B6 ) @ ( one_one @ A ) ) ) ) ) ).
% oddE
thf(fact_1317_parity__cases,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ A ) ) )
=> ~ ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( one_one @ A ) ) ) ) ) ).
% parity_cases
thf(fact_1318_mod2__eq__if,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ) ).
% mod2_eq_if
thf(fact_1319_power2__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ X @ Y ) ) ) ) ).
% power2_less_imp_less
thf(fact_1320_sum__power2__le__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1321_sum__power2__ge__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1322_zero__le__even__power_H,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% zero_le_even_power'
thf(fact_1323_ex__power__ivl2,axiom,
! [B2: nat,K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
& ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_1324_ex__power__ivl1,axiom,
! [B2: nat,K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ K )
=> ? [N2: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
& ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_1325_L2__set__mult__ineq__lemma,axiom,
! [A2: real,C2: real,B2: real,D2: real] : ( ord_less_eq @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( times_times @ real @ A2 @ C2 ) ) @ ( times_times @ real @ B2 @ D2 ) ) @ ( plus_plus @ real @ ( times_times @ real @ ( power_power @ real @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ D2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ real @ ( power_power @ real @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ C2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_1326_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ( ( P @ ( divide_divide @ int @ N @ K ) @ ( modulo_modulo @ int @ N @ K ) )
= ( ! [I: int,J2: int] :
( ( ( ord_less @ int @ K @ J2 )
& ( ord_less_eq @ int @ J2 @ ( zero_zero @ int ) )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ I @ J2 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_1327_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( P @ ( divide_divide @ int @ N @ K ) @ ( modulo_modulo @ int @ N @ K ) )
= ( ! [I: int,J2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J2 )
& ( ord_less @ int @ J2 @ K )
& ( N
= ( plus_plus @ int @ ( times_times @ int @ K @ I ) @ J2 ) ) )
=> ( P @ I @ J2 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_1328_exp__mod__exp,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N: nat] :
( ( modulo_modulo @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ M @ N ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ) ).
% exp_mod_exp
thf(fact_1329_zero__less__power__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) )
= ( ( N
= ( zero_zero @ nat ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( A2
!= ( zero_zero @ A ) ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_less_power_eq
thf(fact_1330_sum__squares__bound,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sum_squares_bound
thf(fact_1331_odd__0__le__power__imp__0__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1332_neg__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( divide_divide @ int @ ( plus_plus @ int @ B2 @ ( one_one @ int ) ) @ A2 ) ) ) ).
% neg_zdiv_mult_2
thf(fact_1333_pos__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( divide_divide @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( divide_divide @ int @ B2 @ A2 ) ) ) ).
% pos_zdiv_mult_2
thf(fact_1334_pos__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( modulo_modulo @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ B2 @ A2 ) ) ) ) ) ).
% pos_zmod_mult_2
thf(fact_1335_mod__double__modulus,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ M )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ( modulo_modulo @ A @ X @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( modulo_modulo @ A @ X @ M ) )
| ( ( modulo_modulo @ A @ X @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( plus_plus @ A @ ( modulo_modulo @ A @ X @ M ) @ M ) ) ) ) ) ) ).
% mod_double_modulus
thf(fact_1336_VEBT__internal_Oinsert_H_Osimps_I2_J,axiom,
! [Deg: nat,X: nat,Info: option @ ( product_prod @ nat @ nat ),TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) @ X )
=> ( ( vEBT_VEBT_insert @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) )
& ( ~ ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) @ X )
=> ( ( vEBT_VEBT_insert @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% VEBT_internal.insert'.simps(2)
thf(fact_1337_less__shift,axiom,
( ( ord_less @ nat )
= ( ^ [X6: nat,Y6: nat] : ( vEBT_VEBT_less @ ( some @ nat @ X6 ) @ ( some @ nat @ Y6 ) ) ) ) ).
% less_shift
thf(fact_1338_greater__shift,axiom,
( ( ord_less @ nat )
= ( ^ [Y6: nat,X6: nat] : ( vEBT_VEBT_greater @ ( some @ nat @ X6 ) @ ( some @ nat @ Y6 ) ) ) ) ).
% greater_shift
thf(fact_1339_helpypredd,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Y ) )
=> ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% helpypredd
thf(fact_1340_helpyd,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Y ) )
=> ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% helpyd
thf(fact_1341_power__minus__is__div,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq @ nat @ B2 @ A2 )
=> ( ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( divide_divide @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% power_minus_is_div
thf(fact_1342_incr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus @ int @ X5 @ D2 ) ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus @ int @ X3 @ ( times_times @ int @ K @ D2 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1343_even__even__mod__4__iff,axiom,
! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_1344_div2__even__ext__nat,axiom,
! [X: nat,Y: nat] :
( ( ( divide_divide @ nat @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ X )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Y ) )
=> ( X = Y ) ) ) ).
% div2_even_ext_nat
thf(fact_1345_unity__coeff__ex,axiom,
! [A: $tType] :
( ( ( dvd @ A )
& ( semiring_0 @ A ) )
=> ! [P: A > $o,L: A] :
( ( ? [X6: A] : ( P @ ( times_times @ A @ L @ X6 ) ) )
= ( ? [X6: A] :
( ( dvd_dvd @ A @ L @ ( plus_plus @ A @ X6 @ ( zero_zero @ A ) ) )
& ( P @ X6 ) ) ) ) ) ).
% unity_coeff_ex
thf(fact_1346_subset__antisym,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( A3 = B3 ) ) ) ).
% subset_antisym
thf(fact_1347_subsetI,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ( member @ A @ X5 @ B3 ) )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% subsetI
thf(fact_1348_succ__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% succ_corr
thf(fact_1349_pred__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Px: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Px ) )
= ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Px ) ) ) ).
% pred_corr
thf(fact_1350_succ__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% succ_correct
thf(fact_1351_pred__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% pred_correct
thf(fact_1352_diff__self,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% diff_self
thf(fact_1353_diff__0__right,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% diff_0_right
thf(fact_1354_zero__diff,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% zero_diff
thf(fact_1355_diff__zero,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% diff_zero
thf(fact_1356_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1357_add__diff__cancel__right_H,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% add_diff_cancel_right'
thf(fact_1358_add__diff__cancel__right,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ A2 @ B2 ) ) ) ).
% add_diff_cancel_right
thf(fact_1359_add__diff__cancel__left_H,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ A2 )
= B2 ) ) ).
% add_diff_cancel_left'
thf(fact_1360_add__diff__cancel__left,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( minus_minus @ A @ A2 @ B2 ) ) ) ).
% add_diff_cancel_left
thf(fact_1361_diff__add__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% diff_add_cancel
thf(fact_1362_add__diff__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% add_diff_cancel
thf(fact_1363_minus__mod__self2,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ B2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% minus_mod_self2
thf(fact_1364_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus @ nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_1365_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_1366_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( zero_zero @ nat ) @ N )
= ( zero_zero @ nat ) ) ).
% diff_0_eq_0
thf(fact_1367_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ M )
= ( zero_zero @ nat ) ) ).
% diff_self_eq_0
thf(fact_1368_diff__diff__cancel,axiom,
! [I3: nat,N: nat] :
( ( ord_less_eq @ nat @ I3 @ N )
=> ( ( minus_minus @ nat @ N @ ( minus_minus @ nat @ N @ I3 ) )
= I3 ) ) ).
% diff_diff_cancel
thf(fact_1369_diff__diff__left,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I3 @ J ) @ K )
= ( minus_minus @ nat @ I3 @ ( plus_plus @ nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1370_diff__ge__0__iff__ge,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% diff_ge_0_iff_ge
thf(fact_1371_diff__gt__0__iff__gt,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ).
% diff_gt_0_iff_gt
thf(fact_1372_le__add__diff__inverse2,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ) ).
% le_add_diff_inverse2
thf(fact_1373_le__add__diff__inverse,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( plus_plus @ A @ B2 @ ( minus_minus @ A @ A2 @ B2 ) )
= A2 ) ) ) ).
% le_add_diff_inverse
thf(fact_1374_diff__add__zero,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( zero_zero @ A ) ) ) ).
% diff_add_zero
thf(fact_1375_diff__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(9)
thf(fact_1376_right__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ring @ A ) )
=> ! [V: num,B2: A,C2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V ) @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ V ) @ B2 ) @ ( times_times @ A @ ( numeral_numeral @ A @ V ) @ C2 ) ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1377_left__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ring @ A ) )
=> ! [A2: A,B2: A,V: num] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( numeral_numeral @ A @ V ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ V ) ) @ ( times_times @ A @ B2 @ ( numeral_numeral @ A @ V ) ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1378_div__diff,axiom,
! [A: $tType] :
( ( idom_modulo @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ) ).
% div_diff
thf(fact_1379_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) )
= ( ord_less @ nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1380_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1381_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) ) ) ).
% diff_is_0_eq'
thf(fact_1382_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( plus_plus @ nat @ I3 @ ( minus_minus @ nat @ J @ K ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I3 @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1383_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I3 )
= ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I3 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1384_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ I3 @ ( minus_minus @ nat @ J @ K ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I3 @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1385_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( suc @ N ) @ ( one_one @ nat ) )
= N ) ).
% diff_Suc_1
thf(fact_1386_Suc__pred,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( suc @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) )
= N ) ) ).
% Suc_pred
thf(fact_1387_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( suc @ ( minus_minus @ nat @ J @ K ) ) @ I3 )
= ( minus_minus @ nat @ ( suc @ J ) @ ( plus_plus @ nat @ K @ I3 ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1388_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ I3 @ ( suc @ ( minus_minus @ nat @ J @ K ) ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I3 @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1389_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( suc @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1390_even__diff,axiom,
! [A: $tType] :
( ( ring_parity @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% even_diff
thf(fact_1391_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( suc @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_1392_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ M @ N ) )
= ( ( ord_less @ nat @ M @ N )
| ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_1393_semiring__parity__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ A ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_1394_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_1395_complete__real,axiom,
! [S3: set @ real] :
( ? [X3: real] : ( member @ real @ X3 @ S3 )
=> ( ? [Z5: real] :
! [X5: real] :
( ( member @ real @ X5 @ S3 )
=> ( ord_less_eq @ real @ X5 @ Z5 ) )
=> ? [Y5: real] :
( ! [X3: real] :
( ( member @ real @ X3 @ S3 )
=> ( ord_less_eq @ real @ X3 @ Y5 ) )
& ! [Z5: real] :
( ! [X5: real] :
( ( member @ real @ X5 @ S3 )
=> ( ord_less_eq @ real @ X5 @ Z5 ) )
=> ( ord_less_eq @ real @ Y5 @ Z5 ) ) ) ) ) ).
% complete_real
thf(fact_1396_verit__la__generic,axiom,
! [A2: int,X: int] :
( ( ord_less_eq @ int @ A2 @ X )
| ( A2 = X )
| ( ord_less_eq @ int @ X @ A2 ) ) ).
% verit_la_generic
thf(fact_1397_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ K @ M )
=> ( ( dvd_dvd @ nat @ K @ N )
=> ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_1398_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd @ nat @ M @ N )
=> ( ( dvd_dvd @ nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_1399_Collect__mono__iff,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) )
= ( ! [X6: A] :
( ( P @ X6 )
=> ( Q @ X6 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1400_set__eq__subset,axiom,
! [A: $tType] :
( ( ^ [Y3: set @ A,Z: set @ A] : ( Y3 = Z ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A7 @ B8 )
& ( ord_less_eq @ ( set @ A ) @ B8 @ A7 ) ) ) ) ).
% set_eq_subset
thf(fact_1401_subset__trans,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ C4 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% subset_trans
thf(fact_1402_Collect__mono,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X5: A] :
( ( P @ X5 )
=> ( Q @ X5 ) )
=> ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) ) ) ).
% Collect_mono
thf(fact_1403_subset__refl,axiom,
! [A: $tType,A3: set @ A] : ( ord_less_eq @ ( set @ A ) @ A3 @ A3 ) ).
% subset_refl
thf(fact_1404_subset__iff,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
! [T3: A] :
( ( member @ A @ T3 @ A7 )
=> ( member @ A @ T3 @ B8 ) ) ) ) ).
% subset_iff
thf(fact_1405_equalityD2,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( A3 = B3 )
=> ( ord_less_eq @ ( set @ A ) @ B3 @ A3 ) ) ).
% equalityD2
thf(fact_1406_equalityD1,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( A3 = B3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% equalityD1
thf(fact_1407_subset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
! [X6: A] :
( ( member @ A @ X6 @ A7 )
=> ( member @ A @ X6 @ B8 ) ) ) ) ).
% subset_eq
thf(fact_1408_equalityE,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( A3 = B3 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ~ ( ord_less_eq @ ( set @ A ) @ B3 @ A3 ) ) ) ).
% equalityE
thf(fact_1409_subsetD,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C2: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ B3 ) ) ) ).
% subsetD
thf(fact_1410_in__mono,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,X: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( member @ A @ X @ A3 )
=> ( member @ A @ X @ B3 ) ) ) ).
% in_mono
thf(fact_1411_diff__eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( A2 = B2 )
= ( C2 = D2 ) ) ) ) ).
% diff_eq_diff_eq
thf(fact_1412_diff__right__commute,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A2 @ C2 ) @ B2 )
= ( minus_minus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% diff_right_commute
thf(fact_1413_diff__commute,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I3 @ J ) @ K )
= ( minus_minus @ nat @ ( minus_minus @ nat @ I3 @ K ) @ J ) ) ).
% diff_commute
thf(fact_1414_inf__period_I1_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [P: A > $o,D5: A,Q: A > $o] :
( ! [X5: A,K2: A] :
( ( P @ X5 )
= ( P @ ( minus_minus @ A @ X5 @ ( times_times @ A @ K2 @ D5 ) ) ) )
=> ( ! [X5: A,K2: A] :
( ( Q @ X5 )
= ( Q @ ( minus_minus @ A @ X5 @ ( times_times @ A @ K2 @ D5 ) ) ) )
=> ! [X3: A,K4: A] :
( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) )
& ( Q @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_1415_inf__period_I2_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [P: A > $o,D5: A,Q: A > $o] :
( ! [X5: A,K2: A] :
( ( P @ X5 )
= ( P @ ( minus_minus @ A @ X5 @ ( times_times @ A @ K2 @ D5 ) ) ) )
=> ( ! [X5: A,K2: A] :
( ( Q @ X5 )
= ( Q @ ( minus_minus @ A @ X5 @ ( times_times @ A @ K2 @ D5 ) ) ) )
=> ! [X3: A,K4: A] :
( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) )
| ( Q @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_1416_diff__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,D2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ D2 @ C2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% diff_mono
thf(fact_1417_diff__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ C2 @ A2 ) @ ( minus_minus @ A @ C2 @ B2 ) ) ) ) ).
% diff_left_mono
thf(fact_1418_diff__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ C2 ) ) ) ) ).
% diff_right_mono
thf(fact_1419_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
= ( ord_less_eq @ A @ C2 @ D2 ) ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1420_eq__iff__diff__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( ^ [Y3: A,Z: A] : ( Y3 = Z ) )
= ( ^ [A4: A,B4: A] :
( ( minus_minus @ A @ A4 @ B4 )
= ( zero_zero @ A ) ) ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_1421_diff__strict__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,D2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ D2 @ C2 )
=> ( ord_less @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% diff_strict_mono
thf(fact_1422_diff__eq__diff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
= ( ord_less @ A @ C2 @ D2 ) ) ) ) ).
% diff_eq_diff_less
thf(fact_1423_diff__strict__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ord_less @ A @ ( minus_minus @ A @ C2 @ A2 ) @ ( minus_minus @ A @ C2 @ B2 ) ) ) ) ).
% diff_strict_left_mono
thf(fact_1424_diff__strict__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ C2 ) ) ) ) ).
% diff_strict_right_mono
thf(fact_1425_right__diff__distrib_H,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% right_diff_distrib'
thf(fact_1426_left__diff__distrib_H,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( times_times @ A @ ( minus_minus @ A @ B2 @ C2 ) @ A2 )
= ( minus_minus @ A @ ( times_times @ A @ B2 @ A2 ) @ ( times_times @ A @ C2 @ A2 ) ) ) ) ).
% left_diff_distrib'
thf(fact_1427_right__diff__distrib,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% right_diff_distrib
thf(fact_1428_left__diff__distrib,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% left_diff_distrib
thf(fact_1429_add__diff__add,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) )
= ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( minus_minus @ A @ C2 @ D2 ) ) ) ) ).
% add_diff_add
thf(fact_1430_diff__diff__eq,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% diff_diff_eq
thf(fact_1431_add__implies__diff,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ( plus_plus @ A @ C2 @ B2 )
= A2 )
=> ( C2
= ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% add_implies_diff
thf(fact_1432_diff__add__eq__diff__diff__swap,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( minus_minus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1433_diff__add__eq,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_add_eq
thf(fact_1434_diff__diff__eq2,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_diff_eq2
thf(fact_1435_add__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% add_diff_eq
thf(fact_1436_eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( A2
= ( minus_minus @ A @ C2 @ B2 ) )
= ( ( plus_plus @ A @ A2 @ B2 )
= C2 ) ) ) ).
% eq_diff_eq
thf(fact_1437_diff__eq__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= C2 )
= ( A2
= ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_eq_eq
thf(fact_1438_group__cancel_Osub1,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( minus_minus @ A @ A3 @ B2 )
= ( plus_plus @ A @ K @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.sub1
thf(fact_1439_diff__divide__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% diff_divide_distrib
thf(fact_1440_dvd__diff__commute,axiom,
! [A: $tType] :
( ( euclid5891614535332579305n_ring @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( minus_minus @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) ) ) ) ).
% dvd_diff_commute
thf(fact_1441_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I3: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus @ nat @ K @ I3 ) ) ) ) ).
% zero_induct_lemma
thf(fact_1442_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% minus_nat.diff_0
thf(fact_1443_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) )
=> ( ( ( minus_minus @ nat @ N @ M )
= ( zero_zero @ nat ) )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_1444_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ord_less @ nat @ M @ L )
=> ( ord_less @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_1445_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( minus_minus @ nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1446_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N @ M ) )
= ( ( ord_less @ nat @ N @ M )
| ( dvd_dvd @ nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_1447_mod__diff__eq,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_diff_eq
thf(fact_1448_mod__diff__cong,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,A5: A,B2: A,B5: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ A5 @ C2 ) )
=> ( ( ( modulo_modulo @ A @ B2 @ C2 )
= ( modulo_modulo @ A @ B5 @ C2 ) )
=> ( ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( minus_minus @ A @ A5 @ B5 ) @ C2 ) ) ) ) ) ).
% mod_diff_cong
thf(fact_1449_mod__diff__left__eq,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_diff_left_eq
thf(fact_1450_mod__diff__right__eq,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_diff_right_eq
thf(fact_1451_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N ) )
=> ( ( dvd_dvd @ nat @ K @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( dvd_dvd @ nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_1452_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N ) )
=> ( ( dvd_dvd @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( dvd_dvd @ nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_1453_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ( minus_minus @ nat @ M @ K )
= ( minus_minus @ nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_1454_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_1455_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( minus_minus @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1456_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ L ) @ ( minus_minus @ nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_1457_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_1458_le__diff__iff_H,axiom,
! [A2: nat,C2: nat,B2: nat] :
( ( ord_less_eq @ nat @ A2 @ C2 )
=> ( ( ord_less_eq @ nat @ B2 @ C2 )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ C2 @ A2 ) @ ( minus_minus @ nat @ C2 @ B2 ) )
= ( ord_less_eq @ nat @ B2 @ A2 ) ) ) ) ).
% le_diff_iff'
thf(fact_1459_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_1460_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( dvd_dvd @ nat @ M @ N )
= ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_1461_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1462_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1463_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) )
= ( minus_minus @ nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1464_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
= ( minus_minus @ nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1465_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times @ nat @ ( minus_minus @ nat @ M @ N ) @ K )
= ( minus_minus @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1466_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times @ nat @ K @ ( minus_minus @ nat @ M @ N ) )
= ( minus_minus @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_1467_bezout1__nat,axiom,
! [A2: nat,B2: nat] :
? [D4: nat,X5: nat,Y5: nat] :
( ( dvd_dvd @ nat @ D4 @ A2 )
& ( dvd_dvd @ nat @ D4 @ B2 )
& ( ( ( minus_minus @ nat @ ( times_times @ nat @ A2 @ X5 ) @ ( times_times @ nat @ B2 @ Y5 ) )
= D4 )
| ( ( minus_minus @ nat @ ( times_times @ nat @ B2 @ X5 ) @ ( times_times @ nat @ A2 @ Y5 ) )
= D4 ) ) ) ).
% bezout1_nat
thf(fact_1468_le__iff__diff__le__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,B4: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ A4 @ B4 ) @ ( zero_zero @ A ) ) ) ) ) ).
% le_iff_diff_le_0
thf(fact_1469_less__iff__diff__less__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,B4: A] : ( ord_less @ A @ ( minus_minus @ A @ A4 @ B4 ) @ ( zero_zero @ A ) ) ) ) ) ).
% less_iff_diff_less_0
thf(fact_1470_inf__period_I3_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [D2: A,D5: A,T2: A] :
( ( dvd_dvd @ A @ D2 @ D5 )
=> ! [X3: A,K4: A] :
( ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ X3 @ T2 ) )
= ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) @ T2 ) ) ) ) ) ).
% inf_period(3)
thf(fact_1471_inf__period_I4_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [D2: A,D5: A,T2: A] :
( ( dvd_dvd @ A @ D2 @ D5 )
=> ! [X3: A,K4: A] :
( ( ~ ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ X3 @ T2 ) ) )
= ( ~ ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ ( minus_minus @ A @ X3 @ ( times_times @ A @ K4 @ D5 ) ) @ T2 ) ) ) ) ) ) ).
% inf_period(4)
thf(fact_1472_add__le__add__imp__diff__le,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I3: A,K: A,N: A,J: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ N )
=> ( ( ord_less_eq @ A @ N @ ( plus_plus @ A @ J @ K ) )
=> ( ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ N )
=> ( ( ord_less_eq @ A @ N @ ( plus_plus @ A @ J @ K ) )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ N @ K ) @ J ) ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1473_add__le__imp__le__diff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I3: A,K: A,N: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ I3 @ K ) @ N )
=> ( ord_less_eq @ A @ I3 @ ( minus_minus @ A @ N @ K ) ) ) ) ).
% add_le_imp_le_diff
thf(fact_1474_diff__le__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_le_eq
thf(fact_1475_le__diff__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( minus_minus @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% le_diff_eq
thf(fact_1476_diff__add,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% diff_add
thf(fact_1477_le__add__diff,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ C2 @ ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% le_add_diff
thf(fact_1478_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_1479_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ C2 @ B2 ) @ A2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_1480_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ ( plus_plus @ A @ C2 @ B2 ) @ A2 )
= ( plus_plus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_1481_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ C2 )
= ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_1482_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 )
= ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ C2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_1483_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_1484_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ A2 @ ( minus_minus @ A @ B2 @ A2 ) )
= B2 ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_1485_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ( minus_minus @ A @ B2 @ A2 )
= C2 )
= ( B2
= ( plus_plus @ A @ C2 @ A2 ) ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_1486_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A] :
( ~ ( ord_less @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ B2 @ ( minus_minus @ A @ A2 @ B2 ) )
= A2 ) ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1487_diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( ord_less @ A @ A2 @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_less_eq
thf(fact_1488_less__diff__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( minus_minus @ A @ C2 @ B2 ) )
= ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% less_diff_eq
thf(fact_1489_square__diff__square__factored,axiom,
! [A: $tType] :
( ( comm_ring @ A )
=> ! [X: A,Y: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) )
= ( times_times @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ A @ X @ Y ) ) ) ) ).
% square_diff_square_factored
thf(fact_1490_eq__add__iff2,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( C2
= ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% eq_add_iff2
thf(fact_1491_eq__add__iff1,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 )
= D2 ) ) ) ).
% eq_add_iff1
thf(fact_1492_mult__diff__mult,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [X: A,Y: A,A2: A,B2: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ Y ) @ ( times_times @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( times_times @ A @ X @ ( minus_minus @ A @ Y @ B2 ) ) @ ( times_times @ A @ ( minus_minus @ A @ X @ A2 ) @ B2 ) ) ) ) ).
% mult_diff_mult
thf(fact_1493_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_1494_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( ( suc @ ( minus_minus @ nat @ M @ ( suc @ N ) ) )
= ( minus_minus @ nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_1495_mod__eq__dvd__iff,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ C2 @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% mod_eq_dvd_iff
thf(fact_1496_dvd__minus__mod,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [B2: A,A2: A] : ( dvd_dvd @ A @ B2 @ ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% dvd_minus_mod
thf(fact_1497_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_1498_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1499_diff__less__mono,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( ord_less @ nat @ A2 @ B2 )
=> ( ( ord_less_eq @ nat @ C2 @ A2 )
=> ( ord_less @ nat @ ( minus_minus @ nat @ A2 @ C2 ) @ ( minus_minus @ nat @ B2 @ C2 ) ) ) ) ).
% diff_less_mono
thf(fact_1500_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less @ nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1501_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus @ nat @ N @ ( plus_plus @ nat @ N @ M ) )
= ( zero_zero @ nat ) ) ).
% diff_add_0
thf(fact_1502_less__diff__conv,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I3 @ ( minus_minus @ nat @ J @ K ) )
= ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1503_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less @ nat @ M @ N )
=> ( ( plus_plus @ nat @ N @ ( minus_minus @ nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1504_le__diff__conv,axiom,
! [J: nat,K: nat,I3: nat] :
( ( ord_less_eq @ nat @ ( minus_minus @ nat @ J @ K ) @ I3 )
= ( ord_less_eq @ nat @ J @ ( plus_plus @ nat @ I3 @ K ) ) ) ).
% le_diff_conv
thf(fact_1505_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( ord_less_eq @ nat @ I3 @ ( minus_minus @ nat @ J @ K ) )
= ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1506_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ I3 @ J ) @ K )
= ( plus_plus @ nat @ I3 @ ( minus_minus @ nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1507_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I3 ) @ K )
= ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I3 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1508_Nat_Ole__imp__diff__is__add,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ( minus_minus @ nat @ J @ I3 )
= K )
= ( J
= ( plus_plus @ nat @ K @ I3 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1509_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_1510_mod__geq,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less @ nat @ M @ N )
=> ( ( modulo_modulo @ nat @ M @ N )
= ( modulo_modulo @ nat @ ( minus_minus @ nat @ M @ N ) @ N ) ) ) ).
% mod_geq
thf(fact_1511_mod__if,axiom,
( ( modulo_modulo @ nat )
= ( ^ [M4: nat,N3: nat] : ( if @ nat @ ( ord_less @ nat @ M4 @ N3 ) @ M4 @ ( modulo_modulo @ nat @ ( minus_minus @ nat @ M4 @ N3 ) @ N3 ) ) ) ) ).
% mod_if
thf(fact_1512_le__mod__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( modulo_modulo @ nat @ M @ N )
= ( modulo_modulo @ nat @ ( minus_minus @ nat @ M @ N ) @ N ) ) ) ).
% le_mod_geq
thf(fact_1513_mod__eq__dvd__iff__nat,axiom,
! [N: nat,M: nat,Q2: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( ( modulo_modulo @ nat @ M @ Q2 )
= ( modulo_modulo @ nat @ N @ Q2 ) )
= ( dvd_dvd @ nat @ Q2 @ ( minus_minus @ nat @ M @ N ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_1514_VEBT__internal_OminNull_Osimps_I5_J,axiom,
! [Uz: product_prod @ nat @ nat,Va2: nat,Vb: list @ vEBT_VEBT,Vc: vEBT_VEBT] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz ) @ Va2 @ Vb @ Vc ) ) ).
% VEBT_internal.minNull.simps(5)
thf(fact_1515_ordered__ring__class_Ole__add__iff2,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ C2 @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_1516_ordered__ring__class_Ole__add__iff1,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_1517_less__add__iff1,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% less_add_iff1
thf(fact_1518_less__add__iff2,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less @ A @ C2 @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% less_add_iff2
thf(fact_1519_add__divide__eq__if__simps_I4_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= A2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ A2 @ Z2 ) @ B2 ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_1520_diff__frac__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ) ) ).
% diff_frac_eq
thf(fact_1521_diff__divide__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ X @ ( divide_divide @ A @ Y @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ) ).
% diff_divide_eq_iff
thf(fact_1522_divide__diff__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ X @ Z2 ) @ Y )
= ( divide_divide @ A @ ( minus_minus @ A @ X @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% divide_diff_eq_iff
thf(fact_1523_square__diff__one__factored,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ X ) @ ( one_one @ A ) )
= ( times_times @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) @ ( minus_minus @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% square_diff_one_factored
thf(fact_1524_minus__div__mult__eq__mod,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% minus_div_mult_eq_mod
thf(fact_1525_minus__mod__eq__div__mult,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) ) ) ).
% minus_mod_eq_div_mult
thf(fact_1526_minus__mod__eq__mult__div,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_1527_minus__mult__div__eq__mod,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% minus_mult_div_eq_mod
thf(fact_1528_diff__Suc__less,axiom,
! [N: nat,I3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ ( minus_minus @ nat @ N @ ( suc @ I3 ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_1529_nat__diff__split,axiom,
! [P: nat > $o,A2: nat,B2: nat] :
( ( P @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( ( ( ord_less @ nat @ A2 @ B2 )
=> ( P @ ( zero_zero @ nat ) ) )
& ! [D3: nat] :
( ( A2
= ( plus_plus @ nat @ B2 @ D3 ) )
=> ( P @ D3 ) ) ) ) ).
% nat_diff_split
thf(fact_1530_nat__diff__split__asm,axiom,
! [P: nat > $o,A2: nat,B2: nat] :
( ( P @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( ~ ( ( ( ord_less @ nat @ A2 @ B2 )
& ~ ( P @ ( zero_zero @ nat ) ) )
| ? [D3: nat] :
( ( A2
= ( plus_plus @ nat @ B2 @ D3 ) )
& ~ ( P @ D3 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1531_less__diff__conv2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ J @ K ) @ I3 )
= ( ord_less @ nat @ J @ ( plus_plus @ nat @ I3 @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1532_nat__eq__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ J @ I3 )
=> ( ( ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M )
= ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I3 @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1533_nat__eq__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M )
= ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1534_nat__le__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ J @ I3 )
=> ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I3 @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1535_nat__le__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1536_nat__diff__add__eq1,axiom,
! [J: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ J @ I3 )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I3 @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1537_nat__diff__add__eq2,axiom,
! [I3: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( minus_minus @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1538_dvd__minus__add,axiom,
! [Q2: nat,N: nat,R2: nat,M: nat] :
( ( ord_less_eq @ nat @ Q2 @ N )
=> ( ( ord_less_eq @ nat @ Q2 @ ( times_times @ nat @ R2 @ M ) )
=> ( ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N @ Q2 ) )
= ( dvd_dvd @ nat @ M @ ( plus_plus @ nat @ N @ ( minus_minus @ nat @ ( times_times @ nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_1539_minf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ( ord @ C )
=> ! [F3: D] :
? [Z4: C] :
! [X3: C] :
( ( ord_less @ C @ X3 @ Z4 )
=> ( F3 = F3 ) ) ) ).
% minf(11)
thf(fact_1540_minf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ~ ( ord_less @ A @ T2 @ X3 ) ) ) ).
% minf(7)
thf(fact_1541_minf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( ord_less @ A @ X3 @ T2 ) ) ) ).
% minf(5)
thf(fact_1542_minf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( X3 != T2 ) ) ) ).
% minf(4)
thf(fact_1543_minf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( X3 != T2 ) ) ) ).
% minf(3)
thf(fact_1544_minf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P6: A > $o,Q: A > $o,Q6: A > $o] :
( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P6 @ X3 )
| ( Q6 @ X3 ) ) ) ) ) ) ) ).
% minf(2)
thf(fact_1545_minf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P6: A > $o,Q: A > $o,Q6: A > $o] :
( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ X5 @ Z5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P6 @ X3 )
& ( Q6 @ X3 ) ) ) ) ) ) ) ).
% minf(1)
thf(fact_1546_pinf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ( ord @ C )
=> ! [F3: D] :
? [Z4: C] :
! [X3: C] :
( ( ord_less @ C @ Z4 @ X3 )
=> ( F3 = F3 ) ) ) ).
% pinf(11)
thf(fact_1547_pinf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( ord_less @ A @ T2 @ X3 ) ) ) ).
% pinf(7)
thf(fact_1548_pinf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ~ ( ord_less @ A @ X3 @ T2 ) ) ) ).
% pinf(5)
thf(fact_1549_pinf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( X3 != T2 ) ) ) ).
% pinf(4)
thf(fact_1550_pinf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( X3 != T2 ) ) ) ).
% pinf(3)
thf(fact_1551_pinf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P6: A > $o,Q: A > $o,Q6: A > $o] :
( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P6 @ X3 )
| ( Q6 @ X3 ) ) ) ) ) ) ) ).
% pinf(2)
thf(fact_1552_pinf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P6: A > $o,Q: A > $o,Q6: A > $o] :
( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [Z5: A] :
! [X5: A] :
( ( ord_less @ A @ Z5 @ X5 )
=> ( ( Q @ X5 )
= ( Q6 @ X5 ) ) )
=> ? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P6 @ X3 )
& ( Q6 @ X3 ) ) ) ) ) ) ) ).
% pinf(1)
thf(fact_1553_mod__nat__eqI,axiom,
! [R2: nat,N: nat,M: nat] :
( ( ord_less @ nat @ R2 @ N )
=> ( ( ord_less_eq @ nat @ R2 @ M )
=> ( ( dvd_dvd @ nat @ N @ ( minus_minus @ nat @ M @ R2 ) )
=> ( ( modulo_modulo @ nat @ M @ N )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_1554_VEBT__internal_OminNull_Ocases,axiom,
! [X: vEBT_VEBT] :
( ( X
!= ( vEBT_Leaf @ $false @ $false ) )
=> ( ! [Uv2: $o] :
( X
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.cases
thf(fact_1555_vebt__member_Osimps_I3_J,axiom,
! [V: product_prod @ nat @ nat,Uy: list @ vEBT_VEBT,Uz: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( zero_zero @ nat ) @ Uy @ Uz ) @ X ) ).
% vebt_member.simps(3)
thf(fact_1556_modulo__nat__def,axiom,
( ( modulo_modulo @ nat )
= ( ^ [M4: nat,N3: nat] : ( minus_minus @ nat @ M4 @ ( times_times @ nat @ ( divide_divide @ nat @ M4 @ N3 ) @ N3 ) ) ) ) ).
% modulo_nat_def
thf(fact_1557_VEBT__internal_OminNull_Oelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ! [Uv2: $o] :
( X
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ).
% VEBT_internal.minNull.elims(3)
thf(fact_1558_conj__le__cong,axiom,
! [X: int,X8: int,P: $o,P6: $o] :
( ( X = X8 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> ( P = P6 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
& P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
& P6 ) ) ) ) ).
% conj_le_cong
thf(fact_1559_imp__le__cong,axiom,
! [X: int,X8: int,P: $o,P6: $o] :
( ( X = X8 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> ( P = P6 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> P6 ) ) ) ) ).
% imp_le_cong
thf(fact_1560_frac__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A,W: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W @ Z2 ) )
= ( ord_less_eq @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% frac_le_eq
thf(fact_1561_frac__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A,W: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W @ Z2 ) )
= ( ord_less @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% frac_less_eq
thf(fact_1562_power2__commute,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A] :
( ( power_power @ A @ ( minus_minus @ A @ X @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ ( minus_minus @ A @ Y @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% power2_commute
thf(fact_1563_power__diff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,N: nat,M: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( ( power_power @ A @ A2 @ ( minus_minus @ nat @ M @ N ) )
= ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) ) ) ) ) ) ).
% power_diff
thf(fact_1564_div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ~ ( ord_less @ nat @ M @ N )
=> ( ( divide_divide @ nat @ M @ N )
= ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M @ N ) @ N ) ) ) ) ) ).
% div_geq
thf(fact_1565_div__if,axiom,
( ( divide_divide @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( ( ord_less @ nat @ M4 @ N3 )
| ( N3
= ( zero_zero @ nat ) ) )
@ ( zero_zero @ nat )
@ ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M4 @ N3 ) @ N3 ) ) ) ) ) ).
% div_if
thf(fact_1566_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( N
= ( suc @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% Suc_pred'
thf(fact_1567_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N )
= ( minus_minus @ nat @ M @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1568_add__eq__if,axiom,
( ( plus_plus @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( M4
= ( zero_zero @ nat ) )
@ N3
@ ( suc @ ( plus_plus @ nat @ ( minus_minus @ nat @ M4 @ ( one_one @ nat ) ) @ N3 ) ) ) ) ) ).
% add_eq_if
thf(fact_1569_vebt__member_Osimps_I4_J,axiom,
! [V: product_prod @ nat @ nat,Vb: list @ vEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb @ Vc ) @ X ) ).
% vebt_member.simps(4)
thf(fact_1570_nat__less__add__iff1,axiom,
! [J: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ J @ I3 )
=> ( ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I3 @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_1571_nat__less__add__iff2,axiom,
! [I3: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I3 @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N ) )
= ( ord_less @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1572_mult__eq__if,axiom,
( ( times_times @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( M4
= ( zero_zero @ nat ) )
@ ( zero_zero @ nat )
@ ( plus_plus @ nat @ N3 @ ( times_times @ nat @ ( minus_minus @ nat @ M4 @ ( one_one @ nat ) ) @ N3 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1573_VEBT__internal_OminNull_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Y: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ Y )
=> ( ( ? [Uv2: $o] :
( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> Y )
=> ( ( ? [Uu2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> Y )
=> ( ( ? [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ Y )
=> ~ ( ? [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> Y ) ) ) ) ) ) ).
% VEBT_internal.minNull.elims(1)
thf(fact_1574_scaling__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [U: A,V: A,R2: A,S: A] :
( ( ord_less_eq @ A @ U @ V )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ R2 )
=> ( ( ord_less_eq @ A @ R2 @ S )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ U @ ( divide_divide @ A @ ( times_times @ A @ R2 @ ( minus_minus @ A @ V @ U ) ) @ S ) ) @ V ) ) ) ) ) ).
% scaling_mono
thf(fact_1575_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N: nat,M: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N @ M ) )
!= ( zero_zero @ A ) ) ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1576_power__diff__power__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,N: nat,M: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( ( ord_less_eq @ nat @ N @ M )
=> ( ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) )
= ( power_power @ A @ A2 @ ( minus_minus @ nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq @ nat @ N @ M )
=> ( ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1577_power__eq__if,axiom,
! [A: $tType] :
( ( power @ A )
=> ( ( power_power @ A )
= ( ^ [P5: A,M4: nat] :
( if @ A
@ ( M4
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( times_times @ A @ P5 @ ( power_power @ A @ P5 @ ( minus_minus @ nat @ M4 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% power_eq_if
thf(fact_1578_power__minus__mult,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [N: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( times_times @ A @ ( power_power @ A @ A2 @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) @ A2 )
= ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_minus_mult
thf(fact_1579_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N ) @ ( minus_minus @ nat @ ( power_power @ nat @ K @ M ) @ ( power_power @ nat @ K @ N ) ) ) ) ).
% diff_le_diff_pow
thf(fact_1580_le__div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( ( divide_divide @ nat @ M @ N )
= ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M @ N ) @ N ) ) ) ) ) ).
% le_div_geq
thf(fact_1581_even__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( suc @ ( zero_zero @ nat ) ) )
=> ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_1582_minf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ~ ( ord_less_eq @ A @ T2 @ X3 ) ) ) ).
% minf(8)
thf(fact_1583_minf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ Z4 )
=> ( ord_less_eq @ A @ X3 @ T2 ) ) ) ).
% minf(6)
thf(fact_1584_pinf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ( ord_less_eq @ A @ T2 @ X3 ) ) ) ).
% pinf(8)
thf(fact_1585_pinf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z4: A] :
! [X3: A] :
( ( ord_less @ A @ Z4 @ X3 )
=> ~ ( ord_less_eq @ A @ X3 @ T2 ) ) ) ).
% pinf(6)
thf(fact_1586_list__decode_Ocases,axiom,
! [X: nat] :
( ( X
!= ( zero_zero @ nat ) )
=> ~ ! [N2: nat] :
( X
!= ( suc @ N2 ) ) ) ).
% list_decode.cases
thf(fact_1587_power2__diff,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A] :
( ( power_power @ A @ ( minus_minus @ A @ X @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) ) ) ) ).
% power2_diff
thf(fact_1588_mult__exp__mod__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N @ M ) ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_1589_zdvd__mono,axiom,
! [K: int,M: int,T2: int] :
( ( K
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ M @ T2 )
= ( dvd_dvd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ T2 ) ) ) ) ).
% zdvd_mono
thf(fact_1590_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( divide_divide @ int @ ( power_power @ int @ K @ M ) @ K )
= ( power_power @ int @ K @ ( minus_minus @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_1591_divmod__digit__1_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
=> ( ( minus_minus @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_1592_even__mask__div__iff_H,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% even_mask_div_iff'
thf(fact_1593_even__mask__div__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) )
= ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
= ( zero_zero @ A ) )
| ( ord_less_eq @ nat @ M @ N ) ) ) ) ).
% even_mask_div_iff
thf(fact_1594_exp__div__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N: nat] :
( ( divide_divide @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A
@ ( zero_neq_one_of_bool @ A
@ ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M )
!= ( zero_zero @ A ) )
& ( ord_less_eq @ nat @ N @ M ) ) )
@ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ M @ N ) ) ) ) ) ).
% exp_div_exp_eq
thf(fact_1595_even__mult__exp__div__exp__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) )
= ( ( ord_less @ nat @ N @ M )
| ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
= ( zero_zero @ A ) )
| ( ( ord_less_eq @ nat @ M @ N )
& ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_1596_minf_I10_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z4: B] :
! [X3: B] :
( ( ord_less @ B @ X3 @ Z4 )
=> ( ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) )
= ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) ) ) ) ) ).
% minf(10)
thf(fact_1597_minf_I9_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z4: B] :
! [X3: B] :
( ( ord_less @ B @ X3 @ Z4 )
=> ( ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) )
= ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) ) ) ) ).
% minf(9)
thf(fact_1598_pinf_I10_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z4: B] :
! [X3: B] :
( ( ord_less @ B @ Z4 @ X3 )
=> ( ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) )
= ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) ) ) ) ) ).
% pinf(10)
thf(fact_1599_pinf_I9_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z4: B] :
! [X3: B] :
( ( ord_less @ B @ Z4 @ X3 )
=> ( ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) )
= ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X3 @ S ) ) ) ) ) ).
% pinf(9)
thf(fact_1600_both__member__options__from__chilf__to__complete__tree,axiom,
! [X: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_1601_member__inv,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
& ( ( X = Mi )
| ( X = Ma )
| ( ( ord_less @ nat @ X @ Ma )
& ( ord_less @ nat @ Mi @ X )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
& ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% member_inv
thf(fact_1602_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
| ( X = Mi )
| ( X = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_1603_mintlistlength,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( Mi != Ma )
=> ( ( ord_less @ nat @ Mi @ Ma )
& ? [M3: nat] :
( ( ( some @ nat @ M3 )
= ( vEBT_vebt_mint @ Summary ) )
& ( ord_less @ nat @ M3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% mintlistlength
thf(fact_1604_succ__list__to__short,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList: list @ vEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( none @ nat ) ) ) ) ) ).
% succ_list_to_short
thf(fact_1605_pred__list__to__short,axiom,
! [Deg: nat,X: nat,Ma: nat,TreeList: list @ vEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( none @ nat ) ) ) ) ) ).
% pred_list_to_short
thf(fact_1606_vebt__pred_Osimps_I3_J,axiom,
! [B2: $o,A2: $o,Va2: nat] :
( ( B2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_pred.simps(3)
thf(fact_1607_vebt__succ_Osimps_I1_J,axiom,
! [B2: $o,Uu: $o] :
( ( B2
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B2 ) @ ( zero_zero @ nat ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B2 ) @ ( zero_zero @ nat ) )
= ( none @ nat ) ) ) ) ).
% vebt_succ.simps(1)
thf(fact_1608_Diff__empty,axiom,
! [A: $tType,A3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) )
= A3 ) ).
% Diff_empty
thf(fact_1609_empty__Diff,axiom,
! [A: $tType,A3: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ A3 )
= ( bot_bot @ ( set @ A ) ) ) ).
% empty_Diff
thf(fact_1610_Diff__cancel,axiom,
! [A: $tType,A3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ A3 )
= ( bot_bot @ ( set @ A ) ) ) ).
% Diff_cancel
thf(fact_1611_idiff__0__right,axiom,
! [N: extended_enat] :
( ( minus_minus @ extended_enat @ N @ ( zero_zero @ extended_enat ) )
= N ) ).
% idiff_0_right
thf(fact_1612_idiff__0,axiom,
! [N: extended_enat] :
( ( minus_minus @ extended_enat @ ( zero_zero @ extended_enat ) @ N )
= ( zero_zero @ extended_enat ) ) ).
% idiff_0
thf(fact_1613_mi__eq__ma__no__ch,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi = Ma )
=> ( ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
& ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 ) ) ) ) ).
% mi_eq_ma_no_ch
thf(fact_1614_geqmaxNone,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq @ nat @ Ma @ X )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( none @ nat ) ) ) ) ).
% geqmaxNone
thf(fact_1615_insert__simp__mima,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
| ( X = Ma ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% insert_simp_mima
thf(fact_1616_Diff__eq__empty__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( minus_minus @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% Diff_eq_empty_iff
thf(fact_1617_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
& ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_1618_succ__min,axiom,
! [Deg: nat,X: nat,Mi: nat,Ma: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( some @ nat @ Mi ) ) ) ) ).
% succ_min
thf(fact_1619_pred__max,axiom,
! [Deg: nat,Ma: nat,X: nat,Mi: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( some @ nat @ Ma ) ) ) ) ).
% pred_max
thf(fact_1620_Diff__mono,axiom,
! [A: $tType,A3: set @ A,C4: set @ A,D5: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ A ) @ D5 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ ( minus_minus @ ( set @ A ) @ C4 @ D5 ) ) ) ) ).
% Diff_mono
thf(fact_1621_Diff__subset,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ A3 ) ).
% Diff_subset
thf(fact_1622_double__diff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ C4 )
=> ( ( minus_minus @ ( set @ A ) @ B3 @ ( minus_minus @ ( set @ A ) @ C4 @ A3 ) )
= A3 ) ) ) ).
% double_diff
thf(fact_1623_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus @ int @ K @ ( zero_zero @ int ) )
= K ) ).
% minus_int_code(1)
thf(fact_1624_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times @ int @ W @ ( minus_minus @ int @ Z1 @ Z22 ) )
= ( minus_minus @ int @ ( times_times @ int @ W @ Z1 ) @ ( times_times @ int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1625_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times @ int @ ( minus_minus @ int @ Z1 @ Z22 ) @ W )
= ( minus_minus @ int @ ( times_times @ int @ Z1 @ W ) @ ( times_times @ int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1626_psubset__imp__ex__mem,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ? [B6: A] : ( member @ A @ B6 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_1627_signed__take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri4674362597316999326ke_bit @ int @ N @ ( minus_minus @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ L ) ) )
= ( bit_ri4674362597316999326ke_bit @ int @ N @ ( minus_minus @ int @ K @ L ) ) ) ).
% signed_take_bit_diff
thf(fact_1628_add__diff__assoc__enat,axiom,
! [Z2: extended_enat,Y: extended_enat,X: extended_enat] :
( ( ord_less_eq @ extended_enat @ Z2 @ Y )
=> ( ( plus_plus @ extended_enat @ X @ ( minus_minus @ extended_enat @ Y @ Z2 ) )
= ( minus_minus @ extended_enat @ ( plus_plus @ extended_enat @ X @ Y ) @ Z2 ) ) ) ).
% add_diff_assoc_enat
thf(fact_1629_minusinfinity,axiom,
! [D2: int,P1: int > $o,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X5: int,K2: int] :
( ( P1 @ X5 )
= ( P1 @ ( minus_minus @ int @ X5 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less @ int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P1 @ X5 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_1630_plusinfinity,axiom,
! [D2: int,P6: int > $o,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus @ int @ X5 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less @ int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ? [X_1: int] : ( P6 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_1631_vebt__mint_Ocases,axiom,
! [X: vEBT_VEBT] :
( ! [A6: $o,B6: $o] :
( X
!= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).
% vebt_mint.cases
thf(fact_1632_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va2: list @ vEBT_VEBT,Vb: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ Va2 @ Vb ) @ X )
= ( ( X = Mi )
| ( X = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_1633_vebt__mint_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list @ vEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some @ nat @ Mi ) ) ).
% vebt_mint.simps(3)
thf(fact_1634_vebt__maxt_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list @ vEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some @ nat @ Ma ) ) ).
% vebt_maxt.simps(3)
thf(fact_1635_decr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( minus_minus @ int @ X5 @ D2 ) ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus @ int @ X3 @ ( times_times @ int @ K @ D2 ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1636_mod__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ L @ K )
=> ( ( modulo_modulo @ int @ K @ L )
= ( modulo_modulo @ int @ ( minus_minus @ int @ K @ L ) @ L ) ) ) ) ).
% mod_pos_geq
thf(fact_1637_vebt__insert_Osimps_I4_J,axiom,
! [V: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ X ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) ) ).
% vebt_insert.simps(4)
thf(fact_1638_even__diff__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( minus_minus @ int @ K @ L ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( plus_plus @ int @ K @ L ) ) ) ).
% even_diff_iff
thf(fact_1639_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( plus_plus @ int @ ( divide_divide @ int @ ( minus_minus @ int @ K @ L ) @ L ) @ ( one_one @ int ) ) ) ) ) ).
% div_pos_geq
thf(fact_1640_signed__take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ K )
=> ( ord_less_eq @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( minus_minus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N ) ) ) ) ) ).
% signed_take_bit_int_less_eq
thf(fact_1641_vebt__mint_Oelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_mint @ X )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( Y
= ( none @ nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat] :
( ? [Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( some @ nat @ Mi2 ) ) ) ) ) ) ).
% vebt_mint.elims
thf(fact_1642_vebt__maxt_Oelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat] :
( ? [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( some @ nat @ Ma2 ) ) ) ) ) ) ).
% vebt_maxt.elims
thf(fact_1643_neg__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( minus_minus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( plus_plus @ int @ B2 @ ( one_one @ int ) ) @ A2 ) ) @ ( one_one @ int ) ) ) ) ).
% neg_zmod_mult_2
thf(fact_1644_is__succ__in__set__def,axiom,
( vEBT_is_succ_in_set
= ( ^ [Xs: set @ nat,X6: nat,Y6: nat] :
( ( member @ nat @ Y6 @ Xs )
& ( ord_less @ nat @ X6 @ Y6 )
& ! [Z3: nat] :
( ( member @ nat @ Z3 @ Xs )
=> ( ( ord_less @ nat @ X6 @ Z3 )
=> ( ord_less_eq @ nat @ Y6 @ Z3 ) ) ) ) ) ) ).
% is_succ_in_set_def
thf(fact_1645_is__pred__in__set__def,axiom,
( vEBT_is_pred_in_set
= ( ^ [Xs: set @ nat,X6: nat,Y6: nat] :
( ( member @ nat @ Y6 @ Xs )
& ( ord_less @ nat @ Y6 @ X6 )
& ! [Z3: nat] :
( ( member @ nat @ Z3 @ Xs )
=> ( ( ord_less @ nat @ Z3 @ X6 )
=> ( ord_less_eq @ nat @ Z3 @ Y6 ) ) ) ) ) ) ).
% is_pred_in_set_def
thf(fact_1646_vebt__succ_Osimps_I4_J,axiom,
! [V: product_prod @ nat @ nat,Vc: list @ vEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( zero_zero @ nat ) @ Vc @ Vd ) @ Ve )
= ( none @ nat ) ) ).
% vebt_succ.simps(4)
thf(fact_1647_vebt__pred_Osimps_I5_J,axiom,
! [V: product_prod @ nat @ nat,Vd: list @ vEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( zero_zero @ nat ) @ Vd @ Ve ) @ Vf )
= ( none @ nat ) ) ).
% vebt_pred.simps(5)
thf(fact_1648_vebt__succ_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
= ( none @ nat ) ) ).
% vebt_succ.simps(2)
thf(fact_1649_vebt__pred_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o] :
( ( vEBT_vebt_pred @ ( vEBT_Leaf @ Uu @ Uv ) @ ( zero_zero @ nat ) )
= ( none @ nat ) ) ).
% vebt_pred.simps(1)
thf(fact_1650_vebt__pred_Osimps_I4_J,axiom,
! [Uy: nat,Uz: list @ vEBT_VEBT,Va2: vEBT_VEBT,Vb: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy @ Uz @ Va2 ) @ Vb )
= ( none @ nat ) ) ).
% vebt_pred.simps(4)
thf(fact_1651_vebt__succ_Osimps_I3_J,axiom,
! [Ux: nat,Uy: list @ vEBT_VEBT,Uz: vEBT_VEBT,Va2: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux @ Uy @ Uz ) @ Va2 )
= ( none @ nat ) ) ).
% vebt_succ.simps(3)
thf(fact_1652_invar__vebt_Ointros_I4_J,axiom,
! [TreeList: list @ vEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus @ nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
=> ( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
=> ( ( ord_less @ nat @ Mi @ X5 )
& ( ord_less_eq @ nat @ X5 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_1653_invar__vebt_Ointros_I5_J,axiom,
! [TreeList: list @ vEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X5 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus @ nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
=> ( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
=> ( ( ord_less @ nat @ Mi @ X5 )
& ( ord_less_eq @ nat @ X5 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_1654_vebt__succ_Osimps_I5_J,axiom,
! [V: product_prod @ nat @ nat,Vg: list @ vEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg @ Vh ) @ Vi )
= ( none @ nat ) ) ).
% vebt_succ.simps(5)
thf(fact_1655_vebt__pred_Osimps_I6_J,axiom,
! [V: product_prod @ nat @ nat,Vh: list @ vEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh @ Vi ) @ Vj )
= ( none @ nat ) ) ).
% vebt_pred.simps(6)
thf(fact_1656_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( ( vEBT_invar_vebt @ A1 @ A22 )
=> ( ( ? [A6: $o,B6: $o] :
( A1
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( A22
!= ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [TreeList4: list @ vEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_invar_vebt @ X3 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary3 @ M3 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( M3 = N2 )
=> ( ( Deg2
= ( plus_plus @ nat @ N2 @ M3 ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X_1 )
=> ~ ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList4: list @ vEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_invar_vebt @ X3 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary3 @ M3 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( M3
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus @ nat @ N2 @ M3 ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X_1 )
=> ~ ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList4: list @ vEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_invar_vebt @ X3 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary3 @ M3 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( M3 = N2 )
=> ( ( Deg2
= ( plus_plus @ nat @ N2 @ M3 ) )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
=> ( ( ord_less_eq @ nat @ Mi2 @ Ma2 )
=> ( ( ord_less @ nat @ Ma2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ ( vEBT_VEBT_low @ X3 @ N2 ) ) )
=> ( ( ord_less @ nat @ Mi2 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList4: list @ vEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_invar_vebt @ X3 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary3 @ M3 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( M3
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus @ nat @ N2 @ M3 ) )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
=> ( ( ord_less_eq @ nat @ Mi2 @ Ma2 )
=> ( ( ord_less @ nat @ Ma2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I4 ) @ ( vEBT_VEBT_low @ X3 @ N2 ) ) )
=> ( ( ord_less @ nat @ Mi2 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_1657_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A12: vEBT_VEBT,A23: nat] :
( ( ? [A4: $o,B4: $o] :
( A12
= ( vEBT_Leaf @ A4 @ B4 ) )
& ( A23
= ( suc @ ( zero_zero @ nat ) ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary4: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ A23 @ TreeList3 @ Summary4 ) )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X6 @ N3 ) )
& ( vEBT_invar_vebt @ Summary4 @ N3 )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
& ( A23
= ( plus_plus @ nat @ N3 @ N3 ) )
& ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary4 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary4: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ A23 @ TreeList3 @ Summary4 ) )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X6 @ N3 ) )
& ( vEBT_invar_vebt @ Summary4 @ ( suc @ N3 ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
& ( A23
= ( plus_plus @ nat @ N3 @ ( suc @ N3 ) ) )
& ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary4 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary4: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary4 ) )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X6 @ N3 ) )
& ( vEBT_invar_vebt @ Summary4 @ N3 )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
& ( A23
= ( plus_plus @ nat @ N3 @ N3 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary4 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X6: nat] :
( ( ( ( vEBT_VEBT_high @ X6 @ N3 )
= I )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ X6 @ N3 ) ) )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary4: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary4 ) )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X6 @ N3 ) )
& ( vEBT_invar_vebt @ Summary4 @ ( suc @ N3 ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
& ( A23
= ( plus_plus @ nat @ N3 @ ( suc @ N3 ) ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary4 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X6: nat] :
( ( ( ( vEBT_VEBT_high @ X6 @ N3 )
= I )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ X6 @ N3 ) ) )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_1658_vebt__pred_Osimps_I2_J,axiom,
! [A2: $o,Uw: $o] :
( ( A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ Uw ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ Uw ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( none @ nat ) ) ) ) ).
% vebt_pred.simps(2)
thf(fact_1659_real__average__minus__first,axiom,
! [A2: real,B2: real] :
( ( minus_minus @ real @ ( divide_divide @ real @ ( plus_plus @ real @ A2 @ B2 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ A2 )
= ( divide_divide @ real @ ( minus_minus @ real @ B2 @ A2 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% real_average_minus_first
thf(fact_1660_real__average__minus__second,axiom,
! [B2: real,A2: real] :
( ( minus_minus @ real @ ( divide_divide @ real @ ( plus_plus @ real @ B2 @ A2 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ A2 )
= ( divide_divide @ real @ ( minus_minus @ real @ B2 @ A2 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% real_average_minus_second
thf(fact_1661_nested__mint,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,N: nat,Va2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( N
= ( suc @ ( suc @ Va2 ) ) )
=> ( ~ ( ord_less @ nat @ Ma @ Mi )
=> ( ( Ma != Mi )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Va2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide @ nat @ Va2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ).
% nested_mint
thf(fact_1662_divmod__step__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [L: num,R2: A,Q2: A] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ L ) @ R2 )
=> ( ( unique1321980374590559556d_step @ A @ L @ ( product_Pair @ A @ A @ Q2 @ R2 ) )
= ( product_Pair @ A @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q2 ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ R2 @ ( numeral_numeral @ A @ L ) ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ L ) @ R2 )
=> ( ( unique1321980374590559556d_step @ A @ L @ ( product_Pair @ A @ A @ Q2 @ R2 ) )
= ( product_Pair @ A @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q2 ) @ R2 ) ) ) ) ) ).
% divmod_step_eq
thf(fact_1663_del__single__cont,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
& ( X = Ma ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% del_single_cont
thf(fact_1664_delt__out__of__range,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% delt_out_of_range
thf(fact_1665_inrange,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq @ ( set @ nat ) @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ nat ) ) ) ) ) ).
% inrange
thf(fact_1666_summaxma,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi != Ma )
=> ( ( the2 @ nat @ ( vEBT_vebt_maxt @ Summary ) )
= ( vEBT_VEBT_high @ Ma @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% summaxma
thf(fact_1667_delete__pres__valid,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ T2 @ X ) @ N ) ) ).
% delete_pres_valid
thf(fact_1668_dele__bmo__cont__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ T2 @ X ) @ Y )
= ( ( X != Y )
& ( vEBT_V8194947554948674370ptions @ T2 @ Y ) ) ) ) ).
% dele_bmo_cont_corr
thf(fact_1669_dele__member__cont__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_delete @ T2 @ X ) @ Y )
= ( ( X != Y )
& ( vEBT_vebt_member @ T2 @ Y ) ) ) ) ).
% dele_member_cont_corr
thf(fact_1670_DiffI,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ A3 )
=> ( ~ ( member @ A @ C2 @ B3 )
=> ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% DiffI
thf(fact_1671_Diff__iff,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= ( ( member @ A @ C2 @ A3 )
& ~ ( member @ A @ C2 @ B3 ) ) ) ).
% Diff_iff
thf(fact_1672_Diff__idemp,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ B3 )
= ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) ).
% Diff_idemp
thf(fact_1673_atLeastatMost__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_1674_atLeastatMost__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_1675_atLeastatMost__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastatMost_empty
thf(fact_1676_option_Ocollapse,axiom,
! [A: $tType,Option: option @ A] :
( ( Option
!= ( none @ A ) )
=> ( ( some @ A @ ( the2 @ A @ Option ) )
= Option ) ) ).
% option.collapse
thf(fact_1677_DiffE,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
=> ~ ( ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ B3 ) ) ) ).
% DiffE
thf(fact_1678_DiffD1,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
=> ( member @ A @ C2 @ A3 ) ) ).
% DiffD1
thf(fact_1679_DiffD2,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
=> ~ ( member @ A @ C2 @ B3 ) ) ).
% DiffD2
thf(fact_1680_VEBT__internal_Ooption__shift_Ocases,axiom,
! [A: $tType,X: product_prod @ ( A > A > A ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) )] :
( ! [Uu2: A > A > A,Uv2: option @ A] :
( X
!= ( product_Pair @ ( A > A > A ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ Uu2 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( none @ A ) @ Uv2 ) ) )
=> ( ! [Uw2: A > A > A,V3: A] :
( X
!= ( product_Pair @ ( A > A > A ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ Uw2 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( some @ A @ V3 ) @ ( none @ A ) ) ) )
=> ~ ! [F4: A > A > A,A6: A,B6: A] :
( X
!= ( product_Pair @ ( A > A > A ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ F4 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( some @ A @ A6 ) @ ( some @ A @ B6 ) ) ) ) ) ) ).
% VEBT_internal.option_shift.cases
thf(fact_1681_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
! [A: $tType,X: product_prod @ ( A > A > $o ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) )] :
( ! [Uu2: A > A > $o,Uv2: option @ A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ Uu2 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( none @ A ) @ Uv2 ) ) )
=> ( ! [Uw2: A > A > $o,V3: A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ Uw2 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( some @ A @ V3 ) @ ( none @ A ) ) ) )
=> ~ ! [F4: A > A > $o,X5: A,Y5: A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( product_prod @ ( option @ A ) @ ( option @ A ) ) @ F4 @ ( product_Pair @ ( option @ A ) @ ( option @ A ) @ ( some @ A @ X5 ) @ ( some @ A @ Y5 ) ) ) ) ) ) ).
% VEBT_internal.option_comp_shift.cases
thf(fact_1682_option_Oexpand,axiom,
! [A: $tType,Option: option @ A,Option2: option @ A] :
( ( ( Option
= ( none @ A ) )
= ( Option2
= ( none @ A ) ) )
=> ( ( ( Option
!= ( none @ A ) )
=> ( ( Option2
!= ( none @ A ) )
=> ( ( the2 @ A @ Option )
= ( the2 @ A @ Option2 ) ) ) )
=> ( Option = Option2 ) ) ) ).
% option.expand
thf(fact_1683_ex__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M4: nat] :
( ( ord_less_eq @ nat @ M4 @ N )
& ( P @ M4 ) ) )
= ( ? [X6: nat] :
( ( member @ nat @ X6 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
& ( P @ X6 ) ) ) ) ).
% ex_nat_less
thf(fact_1684_all__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M4: nat] :
( ( ord_less_eq @ nat @ M4 @ N )
=> ( P @ M4 ) ) )
= ( ! [X6: nat] :
( ( member @ nat @ X6 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
=> ( P @ X6 ) ) ) ) ).
% all_nat_less
thf(fact_1685_VEBT__internal_Oinsert_H_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A6: $o,B6: $o,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ X5 ) )
=> ~ ! [Info2: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) @ X5 ) ) ) ).
% VEBT_internal.insert'.cases
thf(fact_1686_option_Oexhaust__sel,axiom,
! [A: $tType,Option: option @ A] :
( ( Option
!= ( none @ A ) )
=> ( Option
= ( some @ A @ ( the2 @ A @ Option ) ) ) ) ).
% option.exhaust_sel
thf(fact_1687_atLeastatMost__psubset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ~ ( ord_less_eq @ A @ A2 @ B2 )
| ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 )
& ( ( ord_less @ A @ C2 @ A2 )
| ( ord_less @ A @ B2 @ D2 ) ) ) )
& ( ord_less_eq @ A @ C2 @ D2 ) ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1688_VEBT__internal_Onaive__member_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A6: $o,B6: $o,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ X5 ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT,S2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) @ X5 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_1689_VEBT__internal_Omembermima_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ X5 ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) @ X5 ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT,Vd2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) @ X5 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_1690_vebt__member_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A6: $o,B6: $o,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ X5 ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ X5 ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ X5 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ X5 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ X5 ) ) ) ) ) ) ).
% vebt_member.cases
thf(fact_1691_vebt__insert_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A6: $o,B6: $o,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ X5 ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) @ X5 ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) @ X5 ) )
=> ( ! [V3: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) @ X5 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ X5 ) ) ) ) ) ) ).
% vebt_insert.cases
thf(fact_1692_vebt__pred_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,Uv2: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ ( zero_zero @ nat ) ) )
=> ( ! [A6: $o,Uw2: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ Uw2 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [A6: $o,B6: $o,Va: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( suc @ Va ) ) ) )
=> ( ! [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT,Vb2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) @ Vb2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) @ Vf2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) @ Vj2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ X5 ) ) ) ) ) ) ) ) ).
% vebt_pred.cases
thf(fact_1693_vebt__succ_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,B6: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ B6 ) @ ( zero_zero @ nat ) ) )
=> ( ! [Uv2: $o,Uw2: $o,N2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) )
=> ( ! [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT,Va3: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) @ Va3 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT,Ve2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) @ Ve2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) @ Vi2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ X5 ) ) ) ) ) ) ) ).
% vebt_succ.cases
thf(fact_1694_del__x__mi__lets__in__not__minNull,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_not_minNull
thf(fact_1695_del__x__not__mi__newnode__not__nil,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList: list @ vEBT_VEBT,Newlist: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_newnode_not_nil
thf(fact_1696_vebt__delete_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A6: $o,B6: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( zero_zero @ nat ) ) )
=> ( ! [A6: $o,B6: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [A6: $o,B6: $o,N2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( suc @ N2 ) ) ) )
=> ( ! [Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,Uu2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) @ Uu2 ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst: list @ vEBT_VEBT,Smry: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) @ X5 ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr: list @ vEBT_VEBT,Sm: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) @ X5 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT,X5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ X5 ) ) ) ) ) ) ) ) ).
% vebt_delete.cases
thf(fact_1697_vebt__delete_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,Tr2: list @ vEBT_VEBT,Sm2: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) ) ).
% vebt_delete.simps(6)
thf(fact_1698_vebt__delete_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,TrLst2: list @ vEBT_VEBT,Smry2: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) ) ).
% vebt_delete.simps(5)
thf(fact_1699_delete__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T2 @ X ) )
= ( minus_minus @ ( set @ nat ) @ ( vEBT_set_vebt @ T2 ) @ ( insert @ nat @ X @ ( bot_bot @ ( set @ nat ) ) ) ) ) ) ).
% delete_correct
thf(fact_1700_succ__less__length__list,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList: list @ vEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% succ_less_length_list
thf(fact_1701_set__vebt_H__def,axiom,
( vEBT_VEBT_set_vebt
= ( ^ [T3: vEBT_VEBT] : ( collect @ nat @ ( vEBT_vebt_member @ T3 ) ) ) ) ).
% set_vebt'_def
thf(fact_1702_insert__absorb2,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ( insert @ A @ X @ ( insert @ A @ X @ A3 ) )
= ( insert @ A @ X @ A3 ) ) ).
% insert_absorb2
thf(fact_1703_insert__iff,axiom,
! [A: $tType,A2: A,B2: A,A3: set @ A] :
( ( member @ A @ A2 @ ( insert @ A @ B2 @ A3 ) )
= ( ( A2 = B2 )
| ( member @ A @ A2 @ A3 ) ) ) ).
% insert_iff
thf(fact_1704_insertCI,axiom,
! [A: $tType,A2: A,B3: set @ A,B2: A] :
( ( ~ ( member @ A @ A2 @ B3 )
=> ( A2 = B2 ) )
=> ( member @ A @ A2 @ ( insert @ A @ B2 @ B3 ) ) ) ).
% insertCI
thf(fact_1705_list__update__overwrite,axiom,
! [A: $tType,Xs2: list @ A,I3: nat,X: A,Y: A] :
( ( list_update @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ I3 @ Y )
= ( list_update @ A @ Xs2 @ I3 @ Y ) ) ).
% list_update_overwrite
thf(fact_1706_pred__empty,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( none @ nat ) )
= ( ( collect @ nat
@ ^ [Y6: nat] :
( ( vEBT_vebt_member @ T2 @ Y6 )
& ( ord_less @ nat @ Y6 @ X ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% pred_empty
thf(fact_1707_succ__empty,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( none @ nat ) )
= ( ( collect @ nat
@ ^ [Y6: nat] :
( ( vEBT_vebt_member @ T2 @ Y6 )
& ( ord_less @ nat @ X @ Y6 ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% succ_empty
thf(fact_1708_delete__correct_H,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T2 @ X ) )
= ( minus_minus @ ( set @ nat ) @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( insert @ nat @ X @ ( bot_bot @ ( set @ nat ) ) ) ) ) ) ).
% delete_correct'
thf(fact_1709_singletonI,axiom,
! [A: $tType,A2: A] : ( member @ A @ A2 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% singletonI
thf(fact_1710_insert__subset,axiom,
! [A: $tType,X: A,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ B3 )
= ( ( member @ A @ X @ B3 )
& ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% insert_subset
thf(fact_1711_insert__Diff1,axiom,
! [A: $tType,X: A,B3: set @ A,A3: set @ A] :
( ( member @ A @ X @ B3 )
=> ( ( minus_minus @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ B3 )
= ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% insert_Diff1
thf(fact_1712_Diff__insert0,axiom,
! [A: $tType,X: A,A3: set @ A,B3: set @ A] :
( ~ ( member @ A @ X @ A3 )
=> ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ B3 ) )
= ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% Diff_insert0
thf(fact_1713_length__list__update,axiom,
! [A: $tType,Xs2: list @ A,I3: nat,X: A] :
( ( size_size @ ( list @ A ) @ ( list_update @ A @ Xs2 @ I3 @ X ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_list_update
thf(fact_1714_nth__list__update__neq,axiom,
! [A: $tType,I3: nat,J: nat,Xs2: list @ A,X: A] :
( ( I3 != J )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ J )
= ( nth @ A @ Xs2 @ J ) ) ) ).
% nth_list_update_neq
thf(fact_1715_list__update__id,axiom,
! [A: $tType,Xs2: list @ A,I3: nat] :
( ( list_update @ A @ Xs2 @ I3 @ ( nth @ A @ Xs2 @ I3 ) )
= Xs2 ) ).
% list_update_id
thf(fact_1716_singleton__conv,axiom,
! [A: $tType,A2: A] :
( ( collect @ A
@ ^ [X6: A] : ( X6 = A2 ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% singleton_conv
thf(fact_1717_singleton__conv2,axiom,
! [A: $tType,A2: A] :
( ( collect @ A
@ ( ^ [Y3: A,Z: A] : ( Y3 = Z )
@ A2 ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% singleton_conv2
thf(fact_1718_singleton__insert__inj__eq_H,axiom,
! [A: $tType,A2: A,A3: set @ A,B2: A] :
( ( ( insert @ A @ A2 @ A3 )
= ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( A2 = B2 )
& ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_1719_singleton__insert__inj__eq,axiom,
! [A: $tType,B2: A,A2: A,A3: set @ A] :
( ( ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) )
= ( insert @ A @ A2 @ A3 ) )
= ( ( A2 = B2 )
& ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_1720_atLeastAtMost__singleton__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( insert @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( A2 = B2 )
& ( B2 = C2 ) ) ) ) ).
% atLeastAtMost_singleton_iff
thf(fact_1721_atLeastAtMost__singleton,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
( ( set_or1337092689740270186AtMost @ A @ A2 @ A2 )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastAtMost_singleton
thf(fact_1722_insert__Diff__single,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( insert @ A @ A2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( insert @ A @ A2 @ A3 ) ) ).
% insert_Diff_single
thf(fact_1723_list__update__beyond,axiom,
! [A: $tType,Xs2: list @ A,I3: nat,X: A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I3 )
=> ( ( list_update @ A @ Xs2 @ I3 @ X )
= Xs2 ) ) ).
% list_update_beyond
thf(fact_1724_nth__list__update__eq,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ I3 )
= X ) ) ).
% nth_list_update_eq
thf(fact_1725_set__swap,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,J: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( set2 @ A @ ( list_update @ A @ ( list_update @ A @ Xs2 @ I3 @ ( nth @ A @ Xs2 @ J ) ) @ J @ ( nth @ A @ Xs2 @ I3 ) ) )
= ( set2 @ A @ Xs2 ) ) ) ) ).
% set_swap
thf(fact_1726_del__x__not__mia,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
@ ( vEBT_vebt_delete @ Summary @ H2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ).
% del_x_not_mia
thf(fact_1727_del__x__not__mi__new__node__nil,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList: list @ vEBT_VEBT,Sn: vEBT_VEBT,Summary: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H2 ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ Sn )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_new_node_nil
thf(fact_1728_del__x__not__mi,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList: list @ vEBT_VEBT,Newlist: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi
thf(fact_1729_del__x__mia,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if @ nat
@ ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if @ nat
@ ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).
% del_x_mia
thf(fact_1730_del__x__mi__lets__in__minNull,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT,Sn: vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ Sn )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_minNull
thf(fact_1731_del__x__mi__lets__in,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in
thf(fact_1732_del__x__mi,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list @ vEBT_VEBT,L: nat] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) )
@ ( vEBT_vebt_delete @ Summary @ H2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ H2 ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi
thf(fact_1733_del__in__range,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_eq @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).
% del_in_range
thf(fact_1734_pred__less__length__list,axiom,
! [Deg: nat,X: nat,Ma: nat,TreeList: list @ vEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% pred_less_length_list
thf(fact_1735_pred__lesseq__max,axiom,
! [Deg: nat,X: nat,Ma: nat,Mi: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% pred_lesseq_max
thf(fact_1736_succ__greatereq__min,axiom,
! [Deg: nat,Mi: nat,X: nat,Ma: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% succ_greatereq_min
thf(fact_1737_set__diff__eq,axiom,
! [A: $tType] :
( ( minus_minus @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A7 )
& ~ ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% set_diff_eq
thf(fact_1738_minus__set__def,axiom,
! [A: $tType] :
( ( minus_minus @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ( minus_minus @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 )
@ ^ [X6: A] : ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% minus_set_def
thf(fact_1739_mult__commute__abs,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [C2: A] :
( ( ^ [X6: A] : ( times_times @ A @ X6 @ C2 ) )
= ( times_times @ A @ C2 ) ) ) ).
% mult_commute_abs
thf(fact_1740_Collect__subset,axiom,
! [A: $tType,A3: set @ A,P: A > $o] :
( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( P @ X6 ) ) )
@ A3 ) ).
% Collect_subset
thf(fact_1741_less__eq__set__def,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ord_less_eq @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 )
@ ^ [X6: A] : ( member @ A @ X6 @ B8 ) ) ) ) ).
% less_eq_set_def
thf(fact_1742_less__set__def,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ord_less @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 )
@ ^ [X6: A] : ( member @ A @ X6 @ B8 ) ) ) ) ).
% less_set_def
thf(fact_1743_empty__def,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
= ( collect @ A
@ ^ [X6: A] : $false ) ) ).
% empty_def
thf(fact_1744_list__update__swap,axiom,
! [A: $tType,I3: nat,I5: nat,Xs2: list @ A,X: A,X8: A] :
( ( I3 != I5 )
=> ( ( list_update @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ I5 @ X8 )
= ( list_update @ A @ ( list_update @ A @ Xs2 @ I5 @ X8 ) @ I3 @ X ) ) ) ).
% list_update_swap
thf(fact_1745_Collect__conv__if,axiom,
! [A: $tType,P: A > $o,A2: A] :
( ( ( P @ A2 )
=> ( ( collect @ A
@ ^ [X6: A] :
( ( X6 = A2 )
& ( P @ X6 ) ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( ~ ( P @ A2 )
=> ( ( collect @ A
@ ^ [X6: A] :
( ( X6 = A2 )
& ( P @ X6 ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Collect_conv_if
thf(fact_1746_Collect__conv__if2,axiom,
! [A: $tType,P: A > $o,A2: A] :
( ( ( P @ A2 )
=> ( ( collect @ A
@ ^ [X6: A] :
( ( A2 = X6 )
& ( P @ X6 ) ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( ~ ( P @ A2 )
=> ( ( collect @ A
@ ^ [X6: A] :
( ( A2 = X6 )
& ( P @ X6 ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Collect_conv_if2
thf(fact_1747_mk__disjoint__insert,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( member @ A @ A2 @ A3 )
=> ? [B9: set @ A] :
( ( A3
= ( insert @ A @ A2 @ B9 ) )
& ~ ( member @ A @ A2 @ B9 ) ) ) ).
% mk_disjoint_insert
thf(fact_1748_insert__commute,axiom,
! [A: $tType,X: A,Y: A,A3: set @ A] :
( ( insert @ A @ X @ ( insert @ A @ Y @ A3 ) )
= ( insert @ A @ Y @ ( insert @ A @ X @ A3 ) ) ) ).
% insert_commute
thf(fact_1749_insert__Collect,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( insert @ A @ A2 @ ( collect @ A @ P ) )
= ( collect @ A
@ ^ [U2: A] :
( ( U2 != A2 )
=> ( P @ U2 ) ) ) ) ).
% insert_Collect
thf(fact_1750_insert__eq__iff,axiom,
! [A: $tType,A2: A,A3: set @ A,B2: A,B3: set @ A] :
( ~ ( member @ A @ A2 @ A3 )
=> ( ~ ( member @ A @ B2 @ B3 )
=> ( ( ( insert @ A @ A2 @ A3 )
= ( insert @ A @ B2 @ B3 ) )
= ( ( ( A2 = B2 )
=> ( A3 = B3 ) )
& ( ( A2 != B2 )
=> ? [C7: set @ A] :
( ( A3
= ( insert @ A @ B2 @ C7 ) )
& ~ ( member @ A @ B2 @ C7 )
& ( B3
= ( insert @ A @ A2 @ C7 ) )
& ~ ( member @ A @ A2 @ C7 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_1751_insert__absorb,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( member @ A @ A2 @ A3 )
=> ( ( insert @ A @ A2 @ A3 )
= A3 ) ) ).
% insert_absorb
thf(fact_1752_insert__ident,axiom,
! [A: $tType,X: A,A3: set @ A,B3: set @ A] :
( ~ ( member @ A @ X @ A3 )
=> ( ~ ( member @ A @ X @ B3 )
=> ( ( ( insert @ A @ X @ A3 )
= ( insert @ A @ X @ B3 ) )
= ( A3 = B3 ) ) ) ) ).
% insert_ident
thf(fact_1753_insert__compr,axiom,
! [A: $tType] :
( ( insert @ A )
= ( ^ [A4: A,B8: set @ A] :
( collect @ A
@ ^ [X6: A] :
( ( X6 = A4 )
| ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% insert_compr
thf(fact_1754_Set_Oset__insert,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ( member @ A @ X @ A3 )
=> ~ ! [B9: set @ A] :
( ( A3
= ( insert @ A @ X @ B9 ) )
=> ( member @ A @ X @ B9 ) ) ) ).
% Set.set_insert
thf(fact_1755_insertI2,axiom,
! [A: $tType,A2: A,B3: set @ A,B2: A] :
( ( member @ A @ A2 @ B3 )
=> ( member @ A @ A2 @ ( insert @ A @ B2 @ B3 ) ) ) ).
% insertI2
thf(fact_1756_insertI1,axiom,
! [A: $tType,A2: A,B3: set @ A] : ( member @ A @ A2 @ ( insert @ A @ A2 @ B3 ) ) ).
% insertI1
thf(fact_1757_insertE,axiom,
! [A: $tType,A2: A,B2: A,A3: set @ A] :
( ( member @ A @ A2 @ ( insert @ A @ B2 @ A3 ) )
=> ( ( A2 != B2 )
=> ( member @ A @ A2 @ A3 ) ) ) ).
% insertE
thf(fact_1758_lambda__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ( ( ^ [H: A] : ( zero_zero @ A ) )
= ( times_times @ A @ ( zero_zero @ A ) ) ) ) ).
% lambda_zero
thf(fact_1759_lambda__one,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( ^ [X6: A] : X6 )
= ( times_times @ A @ ( one_one @ A ) ) ) ) ).
% lambda_one
thf(fact_1760_set__update__subset__insert,axiom,
! [A: $tType,Xs2: list @ A,I3: nat,X: A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) ) @ ( insert @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_update_subset_insert
thf(fact_1761_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T3: vEBT_VEBT] : ( collect @ nat @ ( vEBT_V8194947554948674370ptions @ T3 ) ) ) ) ).
% set_vebt_def
thf(fact_1762_singletonD,axiom,
! [A: $tType,B2: A,A2: A] :
( ( member @ A @ B2 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
=> ( B2 = A2 ) ) ).
% singletonD
thf(fact_1763_singleton__iff,axiom,
! [A: $tType,B2: A,A2: A] :
( ( member @ A @ B2 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( B2 = A2 ) ) ).
% singleton_iff
thf(fact_1764_doubleton__eq__iff,axiom,
! [A: $tType,A2: A,B2: A,C2: A,D2: A] :
( ( ( insert @ A @ A2 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( insert @ A @ C2 @ ( insert @ A @ D2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( ( ( A2 = C2 )
& ( B2 = D2 ) )
| ( ( A2 = D2 )
& ( B2 = C2 ) ) ) ) ).
% doubleton_eq_iff
thf(fact_1765_insert__not__empty,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( insert @ A @ A2 @ A3 )
!= ( bot_bot @ ( set @ A ) ) ) ).
% insert_not_empty
thf(fact_1766_singleton__inject,axiom,
! [A: $tType,A2: A,B2: A] :
( ( ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) )
= ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) )
=> ( A2 = B2 ) ) ).
% singleton_inject
thf(fact_1767_insert__mono,axiom,
! [A: $tType,C4: set @ A,D5: set @ A,A2: A] :
( ( ord_less_eq @ ( set @ A ) @ C4 @ D5 )
=> ( ord_less_eq @ ( set @ A ) @ ( insert @ A @ A2 @ C4 ) @ ( insert @ A @ A2 @ D5 ) ) ) ).
% insert_mono
thf(fact_1768_subset__insert,axiom,
! [A: $tType,X: A,A3: set @ A,B3: set @ A] :
( ~ ( member @ A @ X @ A3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ X @ B3 ) )
= ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% subset_insert
thf(fact_1769_subset__insertI,axiom,
! [A: $tType,B3: set @ A,A2: A] : ( ord_less_eq @ ( set @ A ) @ B3 @ ( insert @ A @ A2 @ B3 ) ) ).
% subset_insertI
thf(fact_1770_subset__insertI2,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ B3 ) ) ) ).
% subset_insertI2
thf(fact_1771_insert__Diff__if,axiom,
! [A: $tType,X: A,B3: set @ A,A3: set @ A] :
( ( ( member @ A @ X @ B3 )
=> ( ( minus_minus @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ B3 )
= ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) )
& ( ~ ( member @ A @ X @ B3 )
=> ( ( minus_minus @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ B3 )
= ( insert @ A @ X @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ).
% insert_Diff_if
thf(fact_1772_numeral__code_I2_J,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ ( bit0 @ N ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ N ) ) ) ) ).
% numeral_code(2)
thf(fact_1773_power__numeral__even,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [Z2: A,W: num] :
( ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ ( bit0 @ W ) ) )
= ( times_times @ A @ ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ W ) ) @ ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ W ) ) ) ) ) ).
% power_numeral_even
thf(fact_1774_subset__singletonD,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ( A3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% subset_singletonD
thf(fact_1775_subset__singleton__iff,axiom,
! [A: $tType,X9: set @ A,A2: A] :
( ( ord_less_eq @ ( set @ A ) @ X9 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( X9
= ( bot_bot @ ( set @ A ) ) )
| ( X9
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% subset_singleton_iff
thf(fact_1776_atLeastAtMost__singleton_H,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% atLeastAtMost_singleton'
thf(fact_1777_Diff__insert__absorb,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ~ ( member @ A @ X @ A3 )
=> ( ( minus_minus @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= A3 ) ) ).
% Diff_insert_absorb
thf(fact_1778_Diff__insert2,axiom,
! [A: $tType,A3: set @ A,A2: A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) @ B3 ) ) ).
% Diff_insert2
thf(fact_1779_insert__Diff,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( member @ A @ A2 @ A3 )
=> ( ( insert @ A @ A2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= A3 ) ) ).
% insert_Diff
thf(fact_1780_Diff__insert,axiom,
! [A: $tType,A3: set @ A,A2: A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Diff_insert
thf(fact_1781_subset__Diff__insert,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,X: A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ ( insert @ A @ X @ C4 ) ) )
= ( ( ord_less_eq @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ C4 ) )
& ~ ( member @ A @ X @ A3 ) ) ) ).
% subset_Diff_insert
thf(fact_1782_set__update__subsetI,axiom,
! [A: $tType,Xs2: list @ A,A3: set @ A,X: A,I3: nat] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) ) @ A3 ) ) ) ).
% set_update_subsetI
thf(fact_1783_Diff__single__insert,axiom,
! [A: $tType,A3: set @ A,X: A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ X @ B3 ) ) ) ).
% Diff_single_insert
thf(fact_1784_subset__insert__iff,axiom,
! [A: $tType,A3: set @ A,X: A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ X @ B3 ) )
= ( ( ( member @ A @ X @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ B3 ) )
& ( ~ ( member @ A @ X @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% subset_insert_iff
thf(fact_1785_atLeast0__atMost__Suc,axiom,
! [N: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) )
= ( insert @ nat @ ( suc @ N ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_1786_atLeastAtMost__insertL,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( insert @ nat @ M @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N ) )
= ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ).
% atLeastAtMost_insertL
thf(fact_1787_atLeastAtMostSuc__conv,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) )
= ( insert @ nat @ ( suc @ N ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_1788_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( set_or1337092689740270186AtMost @ nat @ M @ N )
= ( insert @ nat @ M @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_1789_set__update__memI,axiom,
! [A: $tType,N: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ A @ X @ ( set2 @ A @ ( list_update @ A @ Xs2 @ N @ X ) ) ) ) ).
% set_update_memI
thf(fact_1790_list__update__same__conv,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( list_update @ A @ Xs2 @ I3 @ X )
= Xs2 )
= ( ( nth @ A @ Xs2 @ I3 )
= X ) ) ) ).
% list_update_same_conv
thf(fact_1791_nth__list__update,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,J: nat,X: A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( I3 = J )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ J )
= X ) )
& ( ( I3 != J )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ J )
= ( nth @ A @ Xs2 @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_1792_psubset__insert__iff,axiom,
! [A: $tType,A3: set @ A,X: A,B3: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ ( insert @ A @ X @ B3 ) )
= ( ( ( member @ A @ X @ B3 )
=> ( ord_less @ ( set @ A ) @ A3 @ B3 ) )
& ( ~ ( member @ A @ X @ B3 )
=> ( ( ( member @ A @ X @ A3 )
=> ( ord_less @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ B3 ) )
& ( ~ ( member @ A @ X @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_1793_periodic__finite__ex,axiom,
! [D2: int,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus @ int @ X5 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ( ? [X4: int] : ( P @ X4 ) )
= ( ? [X6: int] :
( ( member @ int @ X6 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D2 ) )
& ( P @ X6 ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_1794_aset_I7_J,axiom,
! [D5: int,A3: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ T2 @ X3 )
=> ( ord_less @ int @ T2 @ ( plus_plus @ int @ X3 @ D5 ) ) ) ) ) ).
% aset(7)
thf(fact_1795_aset_I5_J,axiom,
! [D5: int,T2: int,A3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ T2 @ A3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ X3 @ T2 )
=> ( ord_less @ int @ ( plus_plus @ int @ X3 @ D5 ) @ T2 ) ) ) ) ) ).
% aset(5)
thf(fact_1796_aset_I4_J,axiom,
! [D5: int,T2: int,A3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ T2 @ A3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X3 != T2 )
=> ( ( plus_plus @ int @ X3 @ D5 )
!= T2 ) ) ) ) ) ).
% aset(4)
thf(fact_1797_aset_I3_J,axiom,
! [D5: int,T2: int,A3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ ( plus_plus @ int @ T2 @ ( one_one @ int ) ) @ A3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X3 = T2 )
=> ( ( plus_plus @ int @ X3 @ D5 )
= T2 ) ) ) ) ) ).
% aset(3)
thf(fact_1798_bset_I7_J,axiom,
! [D5: int,T2: int,B3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ T2 @ B3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ T2 @ X3 )
=> ( ord_less @ int @ T2 @ ( minus_minus @ int @ X3 @ D5 ) ) ) ) ) ) ).
% bset(7)
thf(fact_1799_bset_I5_J,axiom,
! [D5: int,B3: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ X3 @ T2 )
=> ( ord_less @ int @ ( minus_minus @ int @ X3 @ D5 ) @ T2 ) ) ) ) ).
% bset(5)
thf(fact_1800_bset_I4_J,axiom,
! [D5: int,T2: int,B3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ T2 @ B3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X3 != T2 )
=> ( ( minus_minus @ int @ X3 @ D5 )
!= T2 ) ) ) ) ) ).
% bset(4)
thf(fact_1801_bset_I3_J,axiom,
! [D5: int,T2: int,B3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ ( minus_minus @ int @ T2 @ ( one_one @ int ) ) @ B3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X3 = T2 )
=> ( ( minus_minus @ int @ X3 @ D5 )
= T2 ) ) ) ) ) ).
% bset(3)
thf(fact_1802_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option @ ( product_prod @ nat @ nat ),V: nat,TreeList: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S ) @ X )
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_1803_aset_I8_J,axiom,
! [D5: int,A3: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ T2 @ X3 )
=> ( ord_less_eq @ int @ T2 @ ( plus_plus @ int @ X3 @ D5 ) ) ) ) ) ).
% aset(8)
thf(fact_1804_aset_I6_J,axiom,
! [D5: int,T2: int,A3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ ( plus_plus @ int @ T2 @ ( one_one @ int ) ) @ A3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A3 )
=> ( X3
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ X3 @ T2 )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ X3 @ D5 ) @ T2 ) ) ) ) ) ).
% aset(6)
thf(fact_1805_bset_I8_J,axiom,
! [D5: int,T2: int,B3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ( member @ int @ ( minus_minus @ int @ T2 @ ( one_one @ int ) ) @ B3 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ T2 @ X3 )
=> ( ord_less_eq @ int @ T2 @ ( minus_minus @ int @ X3 @ D5 ) ) ) ) ) ) ).
% bset(8)
thf(fact_1806_bset_I6_J,axiom,
! [D5: int,B3: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ! [X3: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B3 )
=> ( X3
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ X3 @ T2 )
=> ( ord_less_eq @ int @ ( minus_minus @ int @ X3 @ D5 ) @ T2 ) ) ) ) ).
% bset(6)
thf(fact_1807_cpmi,axiom,
! [D5: int,P: int > $o,P6: int > $o,B3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less @ int @ X5 @ Z5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb3: int] :
( ( member @ int @ Xb3 @ B3 )
=> ( X5
!= ( plus_plus @ int @ Xb3 @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( minus_minus @ int @ X5 @ D5 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus @ int @ X5 @ ( times_times @ int @ K2 @ D5 ) ) ) )
=> ( ( ? [X4: int] : ( P @ X4 ) )
= ( ? [X6: int] :
( ( member @ int @ X6 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
& ( P6 @ X6 ) )
| ? [X6: int] :
( ( member @ int @ X6 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
& ? [Y6: int] :
( ( member @ int @ Y6 @ B3 )
& ( P @ ( plus_plus @ int @ Y6 @ X6 ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_1808_cppi,axiom,
! [D5: int,P: int > $o,P6: int > $o,A3: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D5 )
=> ( ? [Z5: int] :
! [X5: int] :
( ( ord_less @ int @ Z5 @ X5 )
=> ( ( P @ X5 )
= ( P6 @ X5 ) ) )
=> ( ! [X5: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
=> ! [Xb3: int] :
( ( member @ int @ Xb3 @ A3 )
=> ( X5
!= ( minus_minus @ int @ Xb3 @ Xa ) ) ) )
=> ( ( P @ X5 )
=> ( P @ ( plus_plus @ int @ X5 @ D5 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( P6 @ X5 )
= ( P6 @ ( minus_minus @ int @ X5 @ ( times_times @ int @ K2 @ D5 ) ) ) )
=> ( ( ? [X4: int] : ( P @ X4 ) )
= ( ? [X6: int] :
( ( member @ int @ X6 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
& ( P6 @ X6 ) )
| ? [X6: int] :
( ( member @ int @ X6 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D5 ) )
& ? [Y6: int] :
( ( member @ int @ Y6 @ A3 )
& ( P @ ( minus_minus @ int @ Y6 @ X6 ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_1809_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList: list @ vEBT_VEBT,Vd: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V ) @ TreeList @ Vd ) @ X )
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_1810_vebt__member_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va2: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( ( X != Mi )
=> ( ( X != Ma )
=> ( ~ ( ord_less @ nat @ X @ Mi )
& ( ~ ( ord_less @ nat @ X @ Mi )
=> ( ~ ( ord_less @ nat @ Ma @ X )
& ( ~ ( ord_less @ nat @ Ma @ X )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.simps(5)
thf(fact_1811_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList: list @ vEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc ) @ X )
= ( ( X = Mi )
| ( X = Ma )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_1812_vebt__delete_Osimps_I7_J,axiom,
! [X: nat,Mi: nat,Ma: nat,Va2: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) ) )
& ( ~ ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( ( ( X = Mi )
& ( X = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) ) )
& ( ~ ( ( X = Mi )
& ( X = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) ) ) ) ) ) ) ).
% vebt_delete.simps(7)
thf(fact_1813_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_1814_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_1815_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( Y
= ( ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> Y )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ( Y
= ( ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_1816_vebt__delete_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X @ Xa2 )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ B6 ) ) ) )
=> ( ! [A6: $o] :
( ? [B6: $o] :
( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( Y
!= ( vEBT_Leaf @ A6 @ $false ) ) ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ? [N2: nat] :
( Xa2
= ( suc @ ( suc @ N2 ) ) )
=> ( Y
!= ( vEBT_Leaf @ A6 @ B6 ) ) ) )
=> ( ! [Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( Y
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst: list @ vEBT_VEBT,Smry: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr: list @ vEBT_VEBT,Sm: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ~ ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( ( ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary3 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.elims
thf(fact_1817_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_1818_vebt__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Summary3: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(2)
thf(fact_1819_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Uu2: $o,Uv2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_1820_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> Y )
=> ( ( ? [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> Y )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ( Y
= ( ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_1821_vebt__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Summary3: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(3)
thf(fact_1822_vebt__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( Y
= ( ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> Y )
=> ( ( ? [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> Y )
=> ( ( ? [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> Y )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT] :
( ? [Summary3: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( Y
= ( ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(1)
thf(fact_1823_vebt__pred_Osimps_I7_J,axiom,
! [Ma: nat,X: nat,Mi: nat,Va2: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( some @ nat @ Ma ) ) )
& ( ~ ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% vebt_pred.simps(7)
thf(fact_1824_vebt__succ_Osimps_I6_J,axiom,
! [X: nat,Mi: nat,Ma: nat,Va2: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( some @ nat @ Mi ) ) )
& ( ~ ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% vebt_succ.simps(6)
thf(fact_1825_vebt__delete_Osimps_I3_J,axiom,
! [A2: $o,B2: $o,N: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ N ) ) )
= ( vEBT_Leaf @ A2 @ B2 ) ) ).
% vebt_delete.simps(3)
thf(fact_1826_vebt__delete_Osimps_I1_J,axiom,
! [A2: $o,B2: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( zero_zero @ nat ) )
= ( vEBT_Leaf @ $false @ B2 ) ) ).
% vebt_delete.simps(1)
thf(fact_1827_vebt__delete_Osimps_I4_J,axiom,
! [Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList @ Summary ) @ Uu )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList @ Summary ) ) ).
% vebt_delete.simps(4)
thf(fact_1828_vebt__pred_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_pred @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
!= ( none @ nat ) ) ) )
=> ( ! [A6: $o] :
( ? [Uw2: $o] :
( X
= ( vEBT_Leaf @ A6 @ Uw2 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ~ ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ? [Va: nat] :
( Xa2
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ~ ( ( ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( some @ nat @ Ma2 ) ) )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi2 @ Xa2 ) @ ( some @ nat @ Mi2 ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.elims
thf(fact_1829_vebt__succ_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y )
=> ( ! [Uu2: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ B6 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ~ ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N2: nat] :
( Xa2
= ( suc @ N2 ) )
=> ( Y
!= ( none @ nat ) ) ) )
=> ( ( ? [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ~ ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( some @ nat @ Mi2 ) ) )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.elims
thf(fact_1830_vebt__delete_Osimps_I2_J,axiom,
! [A2: $o,B2: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( vEBT_Leaf @ A2 @ $false ) ) ).
% vebt_delete.simps(2)
thf(fact_1831_insert__simp__excp,axiom,
! [Mi: nat,Deg: nat,TreeList: list @ vEBT_VEBT,X: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( ord_less @ nat @ X @ Mi )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ ( ord_max @ nat @ Mi @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_excp
thf(fact_1832_insert__simp__norm,axiom,
! [X: nat,Deg: nat,TreeList: list @ vEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( ( ord_less @ nat @ Mi @ X )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( ord_max @ nat @ X @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_norm
thf(fact_1833_insert__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( sup_sup @ ( set @ nat ) @ ( vEBT_set_vebt @ T2 ) @ ( insert @ nat @ X @ ( bot_bot @ ( set @ nat ) ) ) )
= ( vEBT_set_vebt @ ( vEBT_vebt_insert @ T2 @ X ) ) ) ) ) ).
% insert_correct
thf(fact_1834_insert__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( sup_sup @ ( set @ nat ) @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( insert @ nat @ X @ ( bot_bot @ ( set @ nat ) ) ) )
= ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_insert @ T2 @ X ) ) ) ) ) ).
% insert_corr
thf(fact_1835_vebt__insert_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( vEBT_Leaf @ $true @ B6 ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A6 @ $true ) ) )
& ( ( Xa2
!= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A6 @ B6 ) ) ) ) ) ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) )
=> ( Y
!= ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) )
=> ( Y
!= ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) ) )
=> ( ! [V3: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( Y
!= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary3 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) ) ) ) ) ) ) ) ).
% vebt_insert.elims
thf(fact_1836_vebt__succ_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ B6 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( Y
= ( none @ nat ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ B6 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N2: nat] :
( ( Xa2
= ( suc @ N2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( some @ nat @ Mi2 ) ) )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.pelims
thf(fact_1837_vebt__pred_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_pred @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [A6: $o,Uw2: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ Uw2 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ Uw2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ! [Va: nat] :
( ( Xa2
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( suc @ Va ) ) ) ) ) ) )
=> ( ! [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( ( ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( some @ nat @ Ma2 ) ) )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi2 @ Xa2 ) @ ( some @ nat @ Mi2 ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.pelims
thf(fact_1838_UnCI,axiom,
! [A: $tType,C2: A,B3: set @ A,A3: set @ A] :
( ( ~ ( member @ A @ C2 @ B3 )
=> ( member @ A @ C2 @ A3 ) )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% UnCI
thf(fact_1839_Un__iff,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( ( member @ A @ C2 @ A3 )
| ( member @ A @ C2 @ B3 ) ) ) ).
% Un_iff
thf(fact_1840_Un__empty,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( sup_sup @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ( A3
= ( bot_bot @ ( set @ A ) ) )
& ( B3
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Un_empty
thf(fact_1841_Un__subset__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( ( ord_less_eq @ ( set @ A ) @ A3 @ C4 )
& ( ord_less_eq @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Un_subset_iff
thf(fact_1842_Un__insert__left,axiom,
! [A: $tType,A2: A,B3: set @ A,C4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( insert @ A @ A2 @ B3 ) @ C4 )
= ( insert @ A @ A2 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Un_insert_left
thf(fact_1843_Un__insert__right,axiom,
! [A: $tType,A3: set @ A,A2: A,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( insert @ A @ A2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% Un_insert_right
thf(fact_1844_Un__Diff__cancel,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) )
= ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ).
% Un_Diff_cancel
thf(fact_1845_Un__Diff__cancel2,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) @ A3 )
= ( sup_sup @ ( set @ A ) @ B3 @ A3 ) ) ).
% Un_Diff_cancel2
thf(fact_1846_max__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_max @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_max @ nat @ M @ N ) ) ) ).
% max_Suc_Suc
thf(fact_1847_max__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( ord_max @ nat @ A2 @ B2 )
= ( zero_zero @ nat ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_1848_max__nat_Oleft__neutral,axiom,
! [A2: nat] :
( ( ord_max @ nat @ ( zero_zero @ nat ) @ A2 )
= A2 ) ).
% max_nat.left_neutral
thf(fact_1849_max__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( zero_zero @ nat )
= ( ord_max @ nat @ A2 @ B2 ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_1850_max__nat_Oright__neutral,axiom,
! [A2: nat] :
( ( ord_max @ nat @ A2 @ ( zero_zero @ nat ) )
= A2 ) ).
% max_nat.right_neutral
thf(fact_1851_max__0L,axiom,
! [N: nat] :
( ( ord_max @ nat @ ( zero_zero @ nat ) @ N )
= N ) ).
% max_0L
thf(fact_1852_max__0R,axiom,
! [N: nat] :
( ( ord_max @ nat @ N @ ( zero_zero @ nat ) )
= N ) ).
% max_0R
thf(fact_1853_max__number__of_I1_J,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ V ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ U ) ) ) ) ) ).
% max_number_of(1)
thf(fact_1854_max__0__1_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(3)
thf(fact_1855_max__0__1_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( numeral_numeral @ A @ X ) @ ( zero_zero @ A ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(4)
thf(fact_1856_max__0__1_I2_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_max @ A @ ( one_one @ A ) @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% max_0_1(2)
thf(fact_1857_max__0__1_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_max @ A @ ( zero_zero @ A ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% max_0_1(1)
thf(fact_1858_max__0__1_I5_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(5)
thf(fact_1859_max__0__1_I6_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(6)
thf(fact_1860_Collect__disj__eq,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ( collect @ A
@ ^ [X6: A] :
( ( P @ X6 )
| ( Q @ X6 ) ) )
= ( sup_sup @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) ) ) ).
% Collect_disj_eq
thf(fact_1861_Un__def,axiom,
! [A: $tType] :
( ( sup_sup @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A7 )
| ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% Un_def
thf(fact_1862_UnE,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
=> ( ~ ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ B3 ) ) ) ).
% UnE
thf(fact_1863_UnI1,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% UnI1
thf(fact_1864_UnI2,axiom,
! [A: $tType,C2: A,B3: set @ A,A3: set @ A] :
( ( member @ A @ C2 @ B3 )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% UnI2
thf(fact_1865_bex__Un,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,P: A > $o] :
( ( ? [X6: A] :
( ( member @ A @ X6 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
& ( P @ X6 ) ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( P @ X6 ) )
| ? [X6: A] :
( ( member @ A @ X6 @ B3 )
& ( P @ X6 ) ) ) ) ).
% bex_Un
thf(fact_1866_ball__Un,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,P: A > $o] :
( ( ! [X6: A] :
( ( member @ A @ X6 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
=> ( P @ X6 ) ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( P @ X6 ) )
& ! [X6: A] :
( ( member @ A @ X6 @ B3 )
=> ( P @ X6 ) ) ) ) ).
% ball_Un
thf(fact_1867_Un__assoc,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( sup_sup @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Un_assoc
thf(fact_1868_Un__absorb,axiom,
! [A: $tType,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ A3 )
= A3 ) ).
% Un_absorb
thf(fact_1869_Un__commute,axiom,
! [A: $tType] :
( ( sup_sup @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] : ( sup_sup @ ( set @ A ) @ B8 @ A7 ) ) ) ).
% Un_commute
thf(fact_1870_Un__left__absorb,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ).
% Un_left_absorb
thf(fact_1871_Un__left__commute,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) )
= ( sup_sup @ ( set @ A ) @ B3 @ ( sup_sup @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Un_left_commute
thf(fact_1872_max__add__distrib__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ X @ ( ord_max @ A @ Y @ Z2 ) )
= ( ord_max @ A @ ( plus_plus @ A @ X @ Y ) @ ( plus_plus @ A @ X @ Z2 ) ) ) ) ).
% max_add_distrib_right
thf(fact_1873_max__add__distrib__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ord_max @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( plus_plus @ A @ Y @ Z2 ) ) ) ) ).
% max_add_distrib_left
thf(fact_1874_max__diff__distrib__left,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( minus_minus @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ord_max @ A @ ( minus_minus @ A @ X @ Z2 ) @ ( minus_minus @ A @ Y @ Z2 ) ) ) ) ).
% max_diff_distrib_left
thf(fact_1875_nat__add__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus @ nat @ M @ ( ord_max @ nat @ N @ Q2 ) )
= ( ord_max @ nat @ ( plus_plus @ nat @ M @ N ) @ ( plus_plus @ nat @ M @ Q2 ) ) ) ).
% nat_add_max_right
thf(fact_1876_nat__add__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus @ nat @ ( ord_max @ nat @ M @ N ) @ Q2 )
= ( ord_max @ nat @ ( plus_plus @ nat @ M @ Q2 ) @ ( plus_plus @ nat @ N @ Q2 ) ) ) ).
% nat_add_max_left
thf(fact_1877_nat__mult__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times @ nat @ ( ord_max @ nat @ M @ N ) @ Q2 )
= ( ord_max @ nat @ ( times_times @ nat @ M @ Q2 ) @ ( times_times @ nat @ N @ Q2 ) ) ) ).
% nat_mult_max_left
thf(fact_1878_nat__mult__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times @ nat @ M @ ( ord_max @ nat @ N @ Q2 ) )
= ( ord_max @ nat @ ( times_times @ nat @ M @ N ) @ ( times_times @ nat @ M @ Q2 ) ) ) ).
% nat_mult_max_right
thf(fact_1879_Un__empty__right,axiom,
! [A: $tType,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) )
= A3 ) ).
% Un_empty_right
thf(fact_1880_Un__empty__left,axiom,
! [A: $tType,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ B3 )
= B3 ) ).
% Un_empty_left
thf(fact_1881_subset__Un__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( ( sup_sup @ ( set @ A ) @ A7 @ B8 )
= B8 ) ) ) ).
% subset_Un_eq
thf(fact_1882_subset__UnE,axiom,
! [A: $tType,C4: set @ A,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ C4 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
=> ~ ! [A8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A8 @ A3 )
=> ! [B10: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B10 @ B3 )
=> ( C4
!= ( sup_sup @ ( set @ A ) @ A8 @ B10 ) ) ) ) ) ).
% subset_UnE
thf(fact_1883_Un__absorb2,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( sup_sup @ ( set @ A ) @ A3 @ B3 )
= A3 ) ) ).
% Un_absorb2
thf(fact_1884_Un__absorb1,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( sup_sup @ ( set @ A ) @ A3 @ B3 )
= B3 ) ) ).
% Un_absorb1
thf(fact_1885_Un__upper2,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] : ( ord_less_eq @ ( set @ A ) @ B3 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ).
% Un_upper2
thf(fact_1886_Un__upper1,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ).
% Un_upper1
thf(fact_1887_Un__least,axiom,
! [A: $tType,A3: set @ A,C4: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ C4 )
=> ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ C4 ) ) ) ).
% Un_least
thf(fact_1888_Un__mono,axiom,
! [A: $tType,A3: set @ A,C4: set @ A,B3: set @ A,D5: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ D5 )
=> ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ ( sup_sup @ ( set @ A ) @ C4 @ D5 ) ) ) ) ).
% Un_mono
thf(fact_1889_Un__Diff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ C4 ) @ ( minus_minus @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Un_Diff
thf(fact_1890_max__def__raw,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_max @ A )
= ( ^ [A4: A,B4: A] : ( if @ A @ ( ord_less_eq @ A @ A4 @ B4 ) @ B4 @ A4 ) ) ) ) ).
% max_def_raw
thf(fact_1891_insert__def,axiom,
! [A: $tType] :
( ( insert @ A )
= ( ^ [A4: A] :
( sup_sup @ ( set @ A )
@ ( collect @ A
@ ^ [X6: A] : ( X6 = A4 ) ) ) ) ) ).
% insert_def
thf(fact_1892_nat__minus__add__max,axiom,
! [N: nat,M: nat] :
( ( plus_plus @ nat @ ( minus_minus @ nat @ N @ M ) @ M )
= ( ord_max @ nat @ N @ M ) ) ).
% nat_minus_add_max
thf(fact_1893_singleton__Un__iff,axiom,
! [A: $tType,X: A,A3: set @ A,B3: set @ A] :
( ( ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) )
= ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( ( ( A3
= ( bot_bot @ ( set @ A ) ) )
& ( B3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
| ( ( A3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
& ( B3
= ( bot_bot @ ( set @ A ) ) ) )
| ( ( A3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
& ( B3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% singleton_Un_iff
thf(fact_1894_Un__singleton__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,X: A] :
( ( ( sup_sup @ ( set @ A ) @ A3 @ B3 )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( ( A3
= ( bot_bot @ ( set @ A ) ) )
& ( B3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
| ( ( A3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
& ( B3
= ( bot_bot @ ( set @ A ) ) ) )
| ( ( A3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
& ( B3
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% Un_singleton_iff
thf(fact_1895_insert__is__Un,axiom,
! [A: $tType] :
( ( insert @ A )
= ( ^ [A4: A] : ( sup_sup @ ( set @ A ) @ ( insert @ A @ A4 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% insert_is_Un
thf(fact_1896_Diff__partition,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( sup_sup @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) )
= B3 ) ) ).
% Diff_partition
thf(fact_1897_Diff__subset__conv,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( ord_less_eq @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Diff_subset_conv
thf(fact_1898_simp__from__to,axiom,
( ( set_or1337092689740270186AtMost @ int )
= ( ^ [I: int,J2: int] : ( if @ ( set @ int ) @ ( ord_less @ int @ J2 @ I ) @ ( bot_bot @ ( set @ int ) ) @ ( insert @ int @ I @ ( set_or1337092689740270186AtMost @ int @ ( plus_plus @ int @ I @ ( one_one @ int ) ) @ J2 ) ) ) ) ) ).
% simp_from_to
thf(fact_1899_vebt__insert_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va2: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) @ X )
= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
& ~ ( ( X = Mi )
| ( X = Ma ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ X @ Mi ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ Ma ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList @ Summary ) ) ) ).
% vebt_insert.simps(5)
thf(fact_1900_vebt__delete_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ B6 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( Y
= ( vEBT_Leaf @ A6 @ $false ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ! [N2: nat] :
( ( Xa2
= ( suc @ ( suc @ N2 ) ) )
=> ( ( Y
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
=> ( ! [Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst: list @ vEBT_VEBT,Smry: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr: list @ vEBT_VEBT,Sm: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( ( ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList4 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary3 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary3 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.pelims
thf(fact_1901_vebt__insert_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( vEBT_Leaf @ $true @ B6 ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A6 @ $true ) ) )
& ( ( Xa2
!= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A6 @ B6 ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) ) ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) )
=> ( ( Y
= ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S2 ) @ Xa2 ) ) ) )
=> ( ! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) )
=> ( ( Y
= ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S2 ) @ Xa2 ) ) ) )
=> ( ! [V3: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( Y
= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_update @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary3 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary3 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_insert.pelims
thf(fact_1902_insert_H__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_set_vebt @ ( vEBT_VEBT_insert @ T2 @ X ) )
= ( inf_inf @ ( set @ nat ) @ ( sup_sup @ ( set @ nat ) @ ( vEBT_set_vebt @ T2 ) @ ( insert @ nat @ X @ ( bot_bot @ ( set @ nat ) ) ) ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ nat ) ) ) ) ) ) ).
% insert'_correct
thf(fact_1903_VEBT__internal_Oinsert_H_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_VEBT_insert @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Y
= ( vEBT_vebt_insert @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) ) ) )
=> ~ ! [Info2: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( ( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) @ Xa2 )
=> ( Y
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) ) )
& ( ~ ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) @ Xa2 )
=> ( Y
= ( vEBT_vebt_insert @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.insert'.pelims
thf(fact_1904_vebt__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Y
= ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( Y
= ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(1)
thf(fact_1905_vebt__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ Xa2 ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(3)
thf(fact_1906_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( Y
= ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ( ( Y
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) @ Xa2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_1907_Int__iff,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= ( ( member @ A @ C2 @ A3 )
& ( member @ A @ C2 @ B3 ) ) ) ).
% Int_iff
thf(fact_1908_IntI,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ A3 )
=> ( ( member @ A @ C2 @ B3 )
=> ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% IntI
thf(fact_1909_max__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_max @ extended_enat @ Q2 @ ( zero_zero @ extended_enat ) )
= Q2 ) ).
% max_enat_simps(2)
thf(fact_1910_max__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_max @ extended_enat @ ( zero_zero @ extended_enat ) @ Q2 )
= Q2 ) ).
% max_enat_simps(3)
thf(fact_1911_Int__subset__iff,axiom,
! [A: $tType,C4: set @ A,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ C4 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= ( ( ord_less_eq @ ( set @ A ) @ C4 @ A3 )
& ( ord_less_eq @ ( set @ A ) @ C4 @ B3 ) ) ) ).
% Int_subset_iff
thf(fact_1912_Int__insert__right__if1,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ A2 @ A3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( insert @ A @ A2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% Int_insert_right_if1
thf(fact_1913_Int__insert__right__if0,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ~ ( member @ A @ A2 @ A3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% Int_insert_right_if0
thf(fact_1914_insert__inter__insert,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ A3 ) @ ( insert @ A @ A2 @ B3 ) )
= ( insert @ A @ A2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% insert_inter_insert
thf(fact_1915_Int__insert__left__if1,axiom,
! [A: $tType,A2: A,C4: set @ A,B3: set @ A] :
( ( member @ A @ A2 @ C4 )
=> ( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ B3 ) @ C4 )
= ( insert @ A @ A2 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) ) ).
% Int_insert_left_if1
thf(fact_1916_Int__insert__left__if0,axiom,
! [A: $tType,A2: A,C4: set @ A,B3: set @ A] :
( ~ ( member @ A @ A2 @ C4 )
=> ( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ B3 ) @ C4 )
= ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Int_insert_left_if0
thf(fact_1917_Un__Int__eq_I1_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ S3 @ T4 ) @ S3 )
= S3 ) ).
% Un_Int_eq(1)
thf(fact_1918_Un__Int__eq_I2_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ S3 @ T4 ) @ T4 )
= T4 ) ).
% Un_Int_eq(2)
thf(fact_1919_Un__Int__eq_I3_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( inf_inf @ ( set @ A ) @ S3 @ ( sup_sup @ ( set @ A ) @ S3 @ T4 ) )
= S3 ) ).
% Un_Int_eq(3)
thf(fact_1920_Un__Int__eq_I4_J,axiom,
! [A: $tType,T4: set @ A,S3: set @ A] :
( ( inf_inf @ ( set @ A ) @ T4 @ ( sup_sup @ ( set @ A ) @ S3 @ T4 ) )
= T4 ) ).
% Un_Int_eq(4)
thf(fact_1921_Int__Un__eq_I1_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ S3 @ T4 ) @ S3 )
= S3 ) ).
% Int_Un_eq(1)
thf(fact_1922_Int__Un__eq_I2_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ S3 @ T4 ) @ T4 )
= T4 ) ).
% Int_Un_eq(2)
thf(fact_1923_Int__Un__eq_I3_J,axiom,
! [A: $tType,S3: set @ A,T4: set @ A] :
( ( sup_sup @ ( set @ A ) @ S3 @ ( inf_inf @ ( set @ A ) @ S3 @ T4 ) )
= S3 ) ).
% Int_Un_eq(3)
thf(fact_1924_Int__Un__eq_I4_J,axiom,
! [A: $tType,T4: set @ A,S3: set @ A] :
( ( sup_sup @ ( set @ A ) @ T4 @ ( inf_inf @ ( set @ A ) @ S3 @ T4 ) )
= T4 ) ).
% Int_Un_eq(4)
thf(fact_1925_disjoint__insert_I2_J,axiom,
! [A: $tType,A3: set @ A,B2: A,B3: set @ A] :
( ( ( bot_bot @ ( set @ A ) )
= ( inf_inf @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ B3 ) ) )
= ( ~ ( member @ A @ B2 @ A3 )
& ( ( bot_bot @ ( set @ A ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% disjoint_insert(2)
thf(fact_1926_disjoint__insert_I1_J,axiom,
! [A: $tType,B3: set @ A,A2: A,A3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ B3 @ ( insert @ A @ A2 @ A3 ) )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( member @ A @ A2 @ B3 )
& ( ( inf_inf @ ( set @ A ) @ B3 @ A3 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% disjoint_insert(1)
thf(fact_1927_insert__disjoint_I2_J,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ( ( bot_bot @ ( set @ A ) )
= ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ A3 ) @ B3 ) )
= ( ~ ( member @ A @ A2 @ B3 )
& ( ( bot_bot @ ( set @ A ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% insert_disjoint(2)
thf(fact_1928_insert__disjoint_I1_J,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ A3 ) @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( member @ A @ A2 @ B3 )
& ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% insert_disjoint(1)
thf(fact_1929_Diff__disjoint,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Diff_disjoint
thf(fact_1930_Int__left__commute,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) )
= ( inf_inf @ ( set @ A ) @ B3 @ ( inf_inf @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Int_left_commute
thf(fact_1931_Int__left__absorb,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ).
% Int_left_absorb
thf(fact_1932_Int__commute,axiom,
! [A: $tType] :
( ( inf_inf @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] : ( inf_inf @ ( set @ A ) @ B8 @ A7 ) ) ) ).
% Int_commute
thf(fact_1933_Int__absorb,axiom,
! [A: $tType,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ A3 )
= A3 ) ).
% Int_absorb
thf(fact_1934_Int__assoc,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Int_assoc
thf(fact_1935_IntD2,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
=> ( member @ A @ C2 @ B3 ) ) ).
% IntD2
thf(fact_1936_IntD1,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
=> ( member @ A @ C2 @ A3 ) ) ).
% IntD1
thf(fact_1937_IntE,axiom,
! [A: $tType,C2: A,A3: set @ A,B3: set @ A] :
( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
=> ~ ( ( member @ A @ C2 @ A3 )
=> ~ ( member @ A @ C2 @ B3 ) ) ) ).
% IntE
thf(fact_1938_Int__def,axiom,
! [A: $tType] :
( ( inf_inf @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A7 )
& ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% Int_def
thf(fact_1939_Int__Collect,axiom,
! [A: $tType,X: A,A3: set @ A,P: A > $o] :
( ( member @ A @ X @ ( inf_inf @ ( set @ A ) @ A3 @ ( collect @ A @ P ) ) )
= ( ( member @ A @ X @ A3 )
& ( P @ X ) ) ) ).
% Int_Collect
thf(fact_1940_Collect__conj__eq,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ( collect @ A
@ ^ [X6: A] :
( ( P @ X6 )
& ( Q @ X6 ) ) )
= ( inf_inf @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) ) ) ).
% Collect_conj_eq
thf(fact_1941_Int__emptyI,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ~ ( member @ A @ X5 @ B3 ) )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% Int_emptyI
thf(fact_1942_disjoint__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ~ ( member @ A @ X6 @ B3 ) ) ) ) ).
% disjoint_iff
thf(fact_1943_Int__empty__left,axiom,
! [A: $tType,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ B3 )
= ( bot_bot @ ( set @ A ) ) ) ).
% Int_empty_left
thf(fact_1944_Int__empty__right,axiom,
! [A: $tType,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Int_empty_right
thf(fact_1945_disjoint__iff__not__equal,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ! [Y6: A] :
( ( member @ A @ Y6 @ B3 )
=> ( X6 != Y6 ) ) ) ) ) ).
% disjoint_iff_not_equal
thf(fact_1946_Int__mono,axiom,
! [A: $tType,A3: set @ A,C4: set @ A,B3: set @ A,D5: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ D5 )
=> ( ord_less_eq @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ ( inf_inf @ ( set @ A ) @ C4 @ D5 ) ) ) ) ).
% Int_mono
thf(fact_1947_Int__lower1,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ A3 ) ).
% Int_lower1
thf(fact_1948_Int__lower2,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ B3 ) ).
% Int_lower2
thf(fact_1949_Int__absorb1,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= B3 ) ) ).
% Int_absorb1
thf(fact_1950_Int__absorb2,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= A3 ) ) ).
% Int_absorb2
thf(fact_1951_Int__greatest,axiom,
! [A: $tType,C4: set @ A,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ C4 @ A3 )
=> ( ( ord_less_eq @ ( set @ A ) @ C4 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ C4 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% Int_greatest
thf(fact_1952_Int__Collect__mono,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,P: A > $o,Q: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ( P @ X5 )
=> ( Q @ X5 ) ) )
=> ( ord_less_eq @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ ( collect @ A @ P ) ) @ ( inf_inf @ ( set @ A ) @ B3 @ ( collect @ A @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_1953_Int__insert__right,axiom,
! [A: $tType,A2: A,A3: set @ A,B3: set @ A] :
( ( ( member @ A @ A2 @ A3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( insert @ A @ A2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) )
& ( ~ ( member @ A @ A2 @ A3 )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ B3 ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% Int_insert_right
thf(fact_1954_Int__insert__left,axiom,
! [A: $tType,A2: A,C4: set @ A,B3: set @ A] :
( ( ( member @ A @ A2 @ C4 )
=> ( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ B3 ) @ C4 )
= ( insert @ A @ A2 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) )
& ( ~ ( member @ A @ A2 @ C4 )
=> ( ( inf_inf @ ( set @ A ) @ ( insert @ A @ A2 @ B3 ) @ C4 )
= ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) ) ).
% Int_insert_left
thf(fact_1955_Un__Int__distrib2,axiom,
! [A: $tType,B3: set @ A,C4: set @ A,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) @ A3 )
= ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ B3 @ A3 ) @ ( sup_sup @ ( set @ A ) @ C4 @ A3 ) ) ) ).
% Un_Int_distrib2
thf(fact_1956_Int__Un__distrib2,axiom,
! [A: $tType,B3: set @ A,C4: set @ A,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) @ A3 )
= ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ B3 @ A3 ) @ ( inf_inf @ ( set @ A ) @ C4 @ A3 ) ) ) ).
% Int_Un_distrib2
thf(fact_1957_Un__Int__distrib,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) )
= ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ ( sup_sup @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Un_Int_distrib
thf(fact_1958_Int__Un__distrib,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) )
= ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ ( inf_inf @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Int_Un_distrib
thf(fact_1959_Un__Int__crazy,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) @ ( inf_inf @ ( set @ A ) @ C4 @ A3 ) )
= ( inf_inf @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) ) @ ( sup_sup @ ( set @ A ) @ C4 @ A3 ) ) ) ).
% Un_Int_crazy
thf(fact_1960_Diff__Int__distrib2,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ C4 ) @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Diff_Int_distrib2
thf(fact_1961_Diff__Int__distrib,axiom,
! [A: $tType,C4: set @ A,A3: set @ A,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ C4 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ C4 @ A3 ) @ ( inf_inf @ ( set @ A ) @ C4 @ B3 ) ) ) ).
% Diff_Int_distrib
thf(fact_1962_Diff__Diff__Int,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ).
% Diff_Diff_Int
thf(fact_1963_Diff__Int2,axiom,
! [A: $tType,A3: set @ A,C4: set @ A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ C4 ) @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) )
= ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ C4 ) @ B3 ) ) ).
% Diff_Int2
thf(fact_1964_Int__Diff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( inf_inf @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ A ) @ B3 @ C4 ) ) ) ).
% Int_Diff
thf(fact_1965_Int__Diff__disjoint,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Int_Diff_disjoint
thf(fact_1966_Diff__triv,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( minus_minus @ ( set @ A ) @ A3 @ B3 )
= A3 ) ) ).
% Diff_triv
thf(fact_1967_Un__Int__assoc__eq,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ C4 )
= ( inf_inf @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) ) )
= ( ord_less_eq @ ( set @ A ) @ C4 @ A3 ) ) ).
% Un_Int_assoc_eq
thf(fact_1968_Un__Diff__Int,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= A3 ) ).
% Un_Diff_Int
thf(fact_1969_Int__Diff__Un,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= A3 ) ).
% Int_Diff_Un
thf(fact_1970_Diff__Int,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B3 @ C4 ) )
= ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ ( minus_minus @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Diff_Int
thf(fact_1971_Diff__Un,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,C4: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( sup_sup @ ( set @ A ) @ B3 @ C4 ) )
= ( inf_inf @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) @ ( minus_minus @ ( set @ A ) @ A3 @ C4 ) ) ) ).
% Diff_Un
thf(fact_1972_vebt__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList4 @ Summary3 ) @ Xa2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(2)
thf(fact_1973_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) @ Xa2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_1974_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A6 @ B6 ) @ Xa2 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A6 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B6 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList4: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList4 @ S2 ) @ Xa2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_1975_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Xa2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) @ Xa2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_1976_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ( ( Y
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_1977_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList4: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList4 @ Vc2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList4: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList4 @ Vd2 ) @ Xa2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList4 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_1978_max__bot2,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_max @ A @ X @ ( bot_bot @ A ) )
= X ) ) ).
% max_bot2
thf(fact_1979_max__bot,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_max @ A @ ( bot_bot @ A ) @ X )
= X ) ) ).
% max_bot
thf(fact_1980_max_Oabsorb3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= A2 ) ) ) ).
% max.absorb3
thf(fact_1981_max_Oabsorb4,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= B2 ) ) ) ).
% max.absorb4
thf(fact_1982_bot__apply,axiom,
! [C: $tType,D: $tType] :
( ( bot @ C )
=> ( ( bot_bot @ ( D > C ) )
= ( ^ [X6: D] : ( bot_bot @ C ) ) ) ) ).
% bot_apply
thf(fact_1983_inf__bot__left,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A )
=> ! [X: A] :
( ( inf_inf @ A @ ( bot_bot @ A ) @ X )
= ( bot_bot @ A ) ) ) ).
% inf_bot_left
thf(fact_1984_inf__bot__right,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A )
=> ! [X: A] :
( ( inf_inf @ A @ X @ ( bot_bot @ A ) )
= ( bot_bot @ A ) ) ) ).
% inf_bot_right
thf(fact_1985_sup__bot__left,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [X: A] :
( ( sup_sup @ A @ ( bot_bot @ A ) @ X )
= X ) ) ).
% sup_bot_left
thf(fact_1986_sup__bot__right,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [X: A] :
( ( sup_sup @ A @ X @ ( bot_bot @ A ) )
= X ) ) ).
% sup_bot_right
thf(fact_1987_bot__eq__sup__iff,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [X: A,Y: A] :
( ( ( bot_bot @ A )
= ( sup_sup @ A @ X @ Y ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( bot_bot @ A ) ) ) ) ) ).
% bot_eq_sup_iff
thf(fact_1988_sup__eq__bot__iff,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [X: A,Y: A] :
( ( ( sup_sup @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( bot_bot @ A ) ) ) ) ) ).
% sup_eq_bot_iff
thf(fact_1989_sup__bot_Oeq__neutr__iff,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [A2: A,B2: A] :
( ( ( sup_sup @ A @ A2 @ B2 )
= ( bot_bot @ A ) )
= ( ( A2
= ( bot_bot @ A ) )
& ( B2
= ( bot_bot @ A ) ) ) ) ) ).
% sup_bot.eq_neutr_iff
thf(fact_1990_sup__bot_Oleft__neutral,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [A2: A] :
( ( sup_sup @ A @ ( bot_bot @ A ) @ A2 )
= A2 ) ) ).
% sup_bot.left_neutral
thf(fact_1991_sup__bot_Oneutr__eq__iff,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ A )
= ( sup_sup @ A @ A2 @ B2 ) )
= ( ( A2
= ( bot_bot @ A ) )
& ( B2
= ( bot_bot @ A ) ) ) ) ) ).
% sup_bot.neutr_eq_iff
thf(fact_1992_sup__bot_Oright__neutral,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ! [A2: A] :
( ( sup_sup @ A @ A2 @ ( bot_bot @ A ) )
= A2 ) ) ).
% sup_bot.right_neutral
thf(fact_1993_max__less__iff__conj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ( ord_less @ A @ X @ Z2 )
& ( ord_less @ A @ Y @ Z2 ) ) ) ) ).
% max_less_iff_conj
thf(fact_1994_bot__set__def,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
= ( collect @ A @ ( bot_bot @ ( A > $o ) ) ) ) ).
% bot_set_def
thf(fact_1995_bot__nat__def,axiom,
( ( bot_bot @ nat )
= ( zero_zero @ nat ) ) ).
% bot_nat_def
thf(fact_1996_bot__enat__def,axiom,
( ( bot_bot @ extended_enat )
= ( zero_zero @ extended_enat ) ) ).
% bot_enat_def
thf(fact_1997_lt__ex,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
? [Y5: A] : ( ord_less @ A @ Y5 @ X ) ) ).
% lt_ex
thf(fact_1998_gt__ex,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
? [X_12: A] : ( ord_less @ A @ X @ X_12 ) ) ).
% gt_ex
thf(fact_1999_dense,axiom,
! [A: $tType] :
( ( dense_order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [Z4: A] :
( ( ord_less @ A @ X @ Z4 )
& ( ord_less @ A @ Z4 @ Y ) ) ) ) ).
% dense
thf(fact_2000_less__imp__neq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% less_imp_neq
thf(fact_2001_order_Oasym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% order.asym
thf(fact_2002_ord__eq__less__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% ord_eq_less_trans
thf(fact_2003_ord__less__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( B2 = C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% ord_less_eq_trans
thf(fact_2004_less__induct,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,A2: A] :
( ! [X5: A] :
( ! [Y4: A] :
( ( ord_less @ A @ Y4 @ X5 )
=> ( P @ Y4 ) )
=> ( P @ X5 ) )
=> ( P @ A2 ) ) ) ).
% less_induct
thf(fact_2005_antisym__conv3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ~ ( ord_less @ A @ Y @ X )
=> ( ( ~ ( ord_less @ A @ X @ Y ) )
= ( X = Y ) ) ) ) ).
% antisym_conv3
thf(fact_2006_linorder__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ( X != Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_cases
thf(fact_2007_dual__order_Oasym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ A2 @ B2 ) ) ) ).
% dual_order.asym
thf(fact_2008_dual__order_Oirrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% dual_order.irrefl
thf(fact_2009_exists__least__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( ( ^ [P3: A > $o] :
? [X7: A] : ( P3 @ X7 ) )
= ( ^ [P4: A > $o] :
? [N3: A] :
( ( P4 @ N3 )
& ! [M4: A] :
( ( ord_less @ A @ M4 @ N3 )
=> ~ ( P4 @ M4 ) ) ) ) ) ) ).
% exists_least_iff
thf(fact_2010_linorder__less__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > A > $o,A2: A,B2: A] :
( ! [A6: A,B6: A] :
( ( ord_less @ A @ A6 @ B6 )
=> ( P @ A6 @ B6 ) )
=> ( ! [A6: A] : ( P @ A6 @ A6 )
=> ( ! [A6: A,B6: A] :
( ( P @ B6 @ A6 )
=> ( P @ A6 @ B6 ) )
=> ( P @ A2 @ B2 ) ) ) ) ) ).
% linorder_less_wlog
thf(fact_2011_order_Ostrict__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans
thf(fact_2012_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less @ A @ X @ Y ) )
= ( ( ord_less @ A @ Y @ X )
| ( X = Y ) ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_2013_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans
thf(fact_2014_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( A2 != B2 ) ) ) ).
% order.strict_implies_not_eq
thf(fact_2015_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( A2 != B2 ) ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_2016_linorder__neqE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE
thf(fact_2017_order__less__asym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_asym
thf(fact_2018_linorder__neq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
= ( ( ord_less @ A @ X @ Y )
| ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neq_iff
thf(fact_2019_order__less__asym_H,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% order_less_asym'
thf(fact_2020_order__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_less_trans
thf(fact_2021_ord__eq__less__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( A2
= ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X5: B,Y5: B] :
( ( ord_less @ B @ X5 @ Y5 )
=> ( ord_less @ A @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_2022_ord__less__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,B2: A,F2: A > B,C2: B] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ( F2 @ B2 )
= C2 )
=> ( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ord_less @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ B @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% ord_less_eq_subst
thf(fact_2023_order__less__irrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] :
~ ( ord_less @ A @ X @ X ) ) ).
% order_less_irrefl
thf(fact_2024_order__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X5: B,Y5: B] :
( ( ord_less @ B @ X5 @ Y5 )
=> ( ord_less @ A @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_less_subst1
thf(fact_2025_order__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ord_less @ C @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_less_subst2
thf(fact_2026_order__less__not__sym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_not_sym
thf(fact_2027_order__less__imp__triv,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,P: $o] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ X )
=> P ) ) ) ).
% order_less_imp_triv
thf(fact_2028_linorder__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
| ( X = Y )
| ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_less_linear
thf(fact_2029_order__less__imp__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% order_less_imp_not_eq
thf(fact_2030_order__less__imp__not__eq2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( Y != X ) ) ) ).
% order_less_imp_not_eq2
thf(fact_2031_order__less__imp__not__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_imp_not_less
thf(fact_2032_bot__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( bot @ B )
=> ( ( bot_bot @ ( A > B ) )
= ( ^ [X6: A] : ( bot_bot @ B ) ) ) ) ).
% bot_fun_def
thf(fact_2033_leD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less @ A @ X @ Y ) ) ) ).
% leD
thf(fact_2034_leI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% leI
thf(fact_2035_nless__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( ord_less @ A @ A2 @ B2 ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% nless_le
thf(fact_2036_antisym__conv1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% antisym_conv1
thf(fact_2037_antisym__conv2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ~ ( ord_less @ A @ X @ Y ) )
= ( X = Y ) ) ) ) ).
% antisym_conv2
thf(fact_2038_dense__ge,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z2: A,Y: A] :
( ! [X5: A] :
( ( ord_less @ A @ Z2 @ X5 )
=> ( ord_less_eq @ A @ Y @ X5 ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ).
% dense_ge
thf(fact_2039_dense__le,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Y: A,Z2: A] :
( ! [X5: A] :
( ( ord_less @ A @ X5 @ Y )
=> ( ord_less_eq @ A @ X5 @ Z2 ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ).
% dense_le
thf(fact_2040_less__le__not__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [X6: A,Y6: A] :
( ( ord_less_eq @ A @ X6 @ Y6 )
& ~ ( ord_less_eq @ A @ Y6 @ X6 ) ) ) ) ) ).
% less_le_not_le
thf(fact_2041_not__le__imp__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ~ ( ord_less_eq @ A @ Y @ X )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% not_le_imp_less
thf(fact_2042_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,B4: A] :
( ( ord_less @ A @ A4 @ B4 )
| ( A4 = B4 ) ) ) ) ) ).
% order.order_iff_strict
thf(fact_2043_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,B4: A] :
( ( ord_less_eq @ A @ A4 @ B4 )
& ( A4 != B4 ) ) ) ) ) ).
% order.strict_iff_order
thf(fact_2044_order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans1
thf(fact_2045_order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans2
thf(fact_2046_order_Ostrict__iff__not,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,B4: A] :
( ( ord_less_eq @ A @ A4 @ B4 )
& ~ ( ord_less_eq @ A @ B4 @ A4 ) ) ) ) ) ).
% order.strict_iff_not
thf(fact_2047_dense__ge__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ X )
=> ( ! [W2: A] :
( ( ord_less @ A @ Z2 @ W2 )
=> ( ( ord_less @ A @ W2 @ X )
=> ( ord_less_eq @ A @ Y @ W2 ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_ge_bounded
thf(fact_2048_dense__le__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ! [W2: A] :
( ( ord_less @ A @ X @ W2 )
=> ( ( ord_less @ A @ W2 @ Y )
=> ( ord_less_eq @ A @ W2 @ Z2 ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_le_bounded
thf(fact_2049_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B4: A,A4: A] :
( ( ord_less @ A @ B4 @ A4 )
| ( A4 = B4 ) ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_2050_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A4: A] :
( ( ord_less_eq @ A @ B4 @ A4 )
& ( A4 != B4 ) ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_2051_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans1
thf(fact_2052_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans2
thf(fact_2053_dual__order_Ostrict__iff__not,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A4: A] :
( ( ord_less_eq @ A @ B4 @ A4 )
& ~ ( ord_less_eq @ A @ A4 @ B4 ) ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_2054_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% order.strict_implies_order
thf(fact_2055_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% dual_order.strict_implies_order
thf(fact_2056_order__le__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X6: A,Y6: A] :
( ( ord_less @ A @ X6 @ Y6 )
| ( X6 = Y6 ) ) ) ) ) ).
% order_le_less
thf(fact_2057_order__less__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [X6: A,Y6: A] :
( ( ord_less_eq @ A @ X6 @ Y6 )
& ( X6 != Y6 ) ) ) ) ) ).
% order_less_le
thf(fact_2058_linorder__not__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less_eq @ A @ X @ Y ) )
= ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_not_le
thf(fact_2059_linorder__not__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less @ A @ X @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linorder_not_less
thf(fact_2060_order__less__imp__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% order_less_imp_le
thf(fact_2061_order__le__neq__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% order_le_neq_trans
thf(fact_2062_order__neq__le__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( A2 != B2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% order_neq_le_trans
thf(fact_2063_order__le__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_le_less_trans
thf(fact_2064_order__less__le__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_less_le_trans
thf(fact_2065_order__le__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less_eq @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X5: B,Y5: B] :
( ( ord_less @ B @ X5 @ Y5 )
=> ( ord_less @ A @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_2066_order__le__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X5: A,Y5: A] :
( ( ord_less_eq @ A @ X5 @ Y5 )
=> ( ord_less_eq @ C @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_le_less_subst2
thf(fact_2067_order__less__le__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C2 )
=> ( ! [X5: B,Y5: B] :
( ( ord_less_eq @ B @ X5 @ Y5 )
=> ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_2068_order__less__le__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ord_less @ C @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_less_le_subst2
thf(fact_2069_linorder__le__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_le_less_linear
thf(fact_2070_order__le__imp__less__or__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ X @ Y )
| ( X = Y ) ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_2071_bot_Oextremum__uniqueI,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( bot_bot @ A ) )
=> ( A2
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_uniqueI
thf(fact_2072_bot_Oextremum__unique,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( bot_bot @ A ) )
= ( A2
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_unique
thf(fact_2073_bot_Oextremum,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( bot_bot @ A ) @ A2 ) ) ).
% bot.extremum
thf(fact_2074_bot_Oextremum__strict,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ ( bot_bot @ A ) ) ) ).
% bot.extremum_strict
thf(fact_2075_bot_Onot__eq__extremum,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( A2
!= ( bot_bot @ A ) )
= ( ord_less @ A @ ( bot_bot @ A ) @ A2 ) ) ) ).
% bot.not_eq_extremum
thf(fact_2076_less__infI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less @ A @ A2 @ X )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% less_infI1
thf(fact_2077_less__infI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,X: A,A2: A] :
( ( ord_less @ A @ B2 @ X )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% less_infI2
thf(fact_2078_inf_Oabsorb3,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= A2 ) ) ) ).
% inf.absorb3
thf(fact_2079_inf_Oabsorb4,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= B2 ) ) ) ).
% inf.absorb4
thf(fact_2080_inf_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% inf.strict_boundedE
thf(fact_2081_inf_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,B4: A] :
( ( A4
= ( inf_inf @ A @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ) ).
% inf.strict_order_iff
thf(fact_2082_inf_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ C2 )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.strict_coboundedI1
thf(fact_2083_inf_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.strict_coboundedI2
thf(fact_2084_sup_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.strict_coboundedI2
thf(fact_2085_sup_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ A2 )
=> ( ord_less @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.strict_coboundedI1
thf(fact_2086_sup_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A4: A] :
( ( A4
= ( sup_sup @ A @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ) ).
% sup.strict_order_iff
thf(fact_2087_sup_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( sup_sup @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% sup.strict_boundedE
thf(fact_2088_sup_Oabsorb4,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= B2 ) ) ) ).
% sup.absorb4
thf(fact_2089_sup_Oabsorb3,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= A2 ) ) ) ).
% sup.absorb3
thf(fact_2090_less__supI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,B2: A,A2: A] :
( ( ord_less @ A @ X @ B2 )
=> ( ord_less @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% less_supI2
thf(fact_2091_less__supI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less @ A @ X @ A2 )
=> ( ord_less @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% less_supI1
thf(fact_2092_max_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.strict_coboundedI2
thf(fact_2093_max_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ A2 )
=> ( ord_less @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.strict_coboundedI1
thf(fact_2094_max_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A4: A] :
( ( A4
= ( ord_max @ A @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ) ).
% max.strict_order_iff
thf(fact_2095_max_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( ord_max @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% max.strict_boundedE
thf(fact_2096_less__max__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ ( ord_max @ A @ X @ Y ) )
= ( ( ord_less @ A @ Z2 @ X )
| ( ord_less @ A @ Z2 @ Y ) ) ) ) ).
% less_max_iff_disj
thf(fact_2097_boolean__algebra_Oconj__zero__left,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A] :
( ( inf_inf @ A @ ( bot_bot @ A ) @ X )
= ( bot_bot @ A ) ) ) ).
% boolean_algebra.conj_zero_left
thf(fact_2098_boolean__algebra_Oconj__zero__right,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A] :
( ( inf_inf @ A @ X @ ( bot_bot @ A ) )
= ( bot_bot @ A ) ) ) ).
% boolean_algebra.conj_zero_right
thf(fact_2099_Bolzano,axiom,
! [A2: real,B2: real,P: real > real > $o] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [A6: real,B6: real,C3: real] :
( ( P @ A6 @ B6 )
=> ( ( P @ B6 @ C3 )
=> ( ( ord_less_eq @ real @ A6 @ B6 )
=> ( ( ord_less_eq @ real @ B6 @ C3 )
=> ( P @ A6 @ C3 ) ) ) ) )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [A6: real,B6: real] :
( ( ( ord_less_eq @ real @ A6 @ X5 )
& ( ord_less_eq @ real @ X5 @ B6 )
& ( ord_less @ real @ ( minus_minus @ real @ B6 @ A6 ) @ D6 ) )
=> ( P @ A6 @ B6 ) ) ) ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% Bolzano
thf(fact_2100_Suc__if__eq,axiom,
! [A: $tType,F2: nat > A,H2: nat > A,G: A,N: nat] :
( ! [N2: nat] :
( ( F2 @ ( suc @ N2 ) )
= ( H2 @ N2 ) )
=> ( ( ( F2 @ ( zero_zero @ nat ) )
= G )
=> ( ( ( N
= ( zero_zero @ nat ) )
=> ( ( F2 @ N )
= G ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( F2 @ N )
= ( H2 @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% Suc_if_eq
thf(fact_2101_set__union,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( set2 @ A @ ( union @ A @ Xs2 @ Ys2 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) ) ) ).
% set_union
thf(fact_2102_divides__aux__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q2: A,R2: A] :
( ( unique5940410009612947441es_aux @ A @ ( product_Pair @ A @ A @ Q2 @ R2 ) )
= ( R2
= ( zero_zero @ A ) ) ) ) ).
% divides_aux_eq
thf(fact_2103_sup__nat__def,axiom,
( ( sup_sup @ nat )
= ( ord_max @ nat ) ) ).
% sup_nat_def
thf(fact_2104_inf__set__def,axiom,
! [A: $tType] :
( ( inf_inf @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ( inf_inf @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 )
@ ^ [X6: A] : ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% inf_set_def
thf(fact_2105_sup__set__def,axiom,
! [A: $tType] :
( ( sup_sup @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] :
( collect @ A
@ ( sup_sup @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 )
@ ^ [X6: A] : ( member @ A @ X6 @ B8 ) ) ) ) ) ).
% sup_set_def
thf(fact_2106_sup__enat__def,axiom,
( ( sup_sup @ extended_enat )
= ( ord_max @ extended_enat ) ) ).
% sup_enat_def
thf(fact_2107_boolean__algebra_Odisj__zero__right,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A] :
( ( sup_sup @ A @ X @ ( bot_bot @ A ) )
= X ) ) ).
% boolean_algebra.disj_zero_right
thf(fact_2108_diff__shunt__var,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( minus_minus @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ).
% diff_shunt_var
thf(fact_2109_neg__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q2: int,R2: int] :
( ( ord_less_eq @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( eucl_rel_int @ ( plus_plus @ int @ A2 @ ( one_one @ int ) ) @ B2 @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) @ ( product_Pair @ int @ int @ Q2 @ ( minus_minus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ R2 ) @ ( one_one @ int ) ) ) ) ) ) ).
% neg_eucl_rel_int_mult_2
thf(fact_2110_product__nth,axiom,
! [A: $tType,B: $tType,N: nat,Xs2: list @ A,Ys2: list @ B] :
( ( ord_less @ nat @ N @ ( times_times @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) )
=> ( ( nth @ ( product_prod @ A @ B ) @ ( product @ A @ B @ Xs2 @ Ys2 ) @ N )
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ ( divide_divide @ nat @ N @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) @ ( nth @ B @ Ys2 @ ( modulo_modulo @ nat @ N @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) ) ) ) ).
% product_nth
thf(fact_2111_vebt__buildup_Oelims,axiom,
! [X: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X
= ( suc @ ( zero_zero @ nat ) ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_2112_triangle__def,axiom,
( nat_triangle
= ( ^ [N3: nat] : ( divide_divide @ nat @ ( times_times @ nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% triangle_def
thf(fact_2113_obtain__set__succ,axiom,
! [X: nat,Z2: nat,A3: set @ nat,B3: set @ nat] :
( ( ord_less @ nat @ X @ Z2 )
=> ( ( vEBT_VEBT_max_in_set @ A3 @ Z2 )
=> ( ( finite_finite @ nat @ B3 )
=> ( ( A3 = B3 )
=> ? [X_12: nat] : ( vEBT_is_succ_in_set @ A3 @ X @ X_12 ) ) ) ) ) ).
% obtain_set_succ
thf(fact_2114_obtain__set__pred,axiom,
! [Z2: nat,X: nat,A3: set @ nat] :
( ( ord_less @ nat @ Z2 @ X )
=> ( ( vEBT_VEBT_min_in_set @ A3 @ Z2 )
=> ( ( finite_finite @ nat @ A3 )
=> ? [X_12: nat] : ( vEBT_is_pred_in_set @ A3 @ X @ X_12 ) ) ) ) ).
% obtain_set_pred
thf(fact_2115_pos__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q2: int,R2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) @ ( product_Pair @ int @ int @ Q2 @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ R2 ) ) ) ) ) ) ).
% pos_eucl_rel_int_mult_2
thf(fact_2116_intind,axiom,
! [A: $tType,I3: nat,N: nat,P: A > $o,X: A] :
( ( ord_less @ nat @ I3 @ N )
=> ( ( P @ X )
=> ( P @ ( nth @ A @ ( replicate @ A @ N @ X ) @ I3 ) ) ) ) ).
% intind
thf(fact_2117_set__vebt__finite,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( finite_finite @ nat @ ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_finite
thf(fact_2118_pred__none__empty,axiom,
! [Xs2: set @ nat,A2: nat] :
( ~ ? [X_12: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A2 @ X_12 )
=> ( ( finite_finite @ nat @ Xs2 )
=> ~ ? [X3: nat] :
( ( member @ nat @ X3 @ Xs2 )
& ( ord_less @ nat @ X3 @ A2 ) ) ) ) ).
% pred_none_empty
thf(fact_2119_succ__none__empty,axiom,
! [Xs2: set @ nat,A2: nat] :
( ~ ? [X_12: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A2 @ X_12 )
=> ( ( finite_finite @ nat @ Xs2 )
=> ~ ? [X3: nat] :
( ( member @ nat @ X3 @ Xs2 )
& ( ord_less @ nat @ A2 @ X3 ) ) ) ) ).
% succ_none_empty
thf(fact_2120_List_Ofinite__set,axiom,
! [A: $tType,Xs2: list @ A] : ( finite_finite @ A @ ( set2 @ A @ Xs2 ) ) ).
% List.finite_set
thf(fact_2121_replicate__eq__replicate,axiom,
! [A: $tType,M: nat,X: A,N: nat,Y: A] :
( ( ( replicate @ A @ M @ X )
= ( replicate @ A @ N @ Y ) )
= ( ( M = N )
& ( ( M
!= ( zero_zero @ nat ) )
=> ( X = Y ) ) ) ) ).
% replicate_eq_replicate
thf(fact_2122_length__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( size_size @ ( list @ A ) @ ( replicate @ A @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_2123_triangle__0,axiom,
( ( nat_triangle @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% triangle_0
thf(fact_2124_infinite__Icc__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Icc_iff
thf(fact_2125_Ball__set__replicate,axiom,
! [A: $tType,N: nat,A2: A,P: A > $o] :
( ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ ( replicate @ A @ N @ A2 ) ) )
=> ( P @ X6 ) ) )
= ( ( P @ A2 )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% Ball_set_replicate
thf(fact_2126_Bex__set__replicate,axiom,
! [A: $tType,N: nat,A2: A,P: A > $o] :
( ( ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ ( replicate @ A @ N @ A2 ) ) )
& ( P @ X6 ) ) )
= ( ( P @ A2 )
& ( N
!= ( zero_zero @ nat ) ) ) ) ).
% Bex_set_replicate
thf(fact_2127_in__set__replicate,axiom,
! [A: $tType,X: A,N: nat,Y: A] :
( ( member @ A @ X @ ( set2 @ A @ ( replicate @ A @ N @ Y ) ) )
= ( ( X = Y )
& ( N
!= ( zero_zero @ nat ) ) ) ) ).
% in_set_replicate
thf(fact_2128_nth__replicate,axiom,
! [A: $tType,I3: nat,N: nat,X: A] :
( ( ord_less @ nat @ I3 @ N )
=> ( ( nth @ A @ ( replicate @ A @ N @ X ) @ I3 )
= X ) ) ).
% nth_replicate
thf(fact_2129_length__product,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( size_size @ ( list @ ( product_prod @ A @ B ) ) @ ( product @ A @ B @ Xs2 @ Ys2 ) )
= ( times_times @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) ).
% length_product
thf(fact_2130_triangle__Suc,axiom,
! [N: nat] :
( ( nat_triangle @ ( suc @ N ) )
= ( plus_plus @ nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).
% triangle_Suc
thf(fact_2131_set__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N @ X ) )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_replicate
thf(fact_2132_bounded__nat__set__is__finite,axiom,
! [N5: set @ nat,N: nat] :
( ! [X5: nat] :
( ( member @ nat @ X5 @ N5 )
=> ( ord_less @ nat @ X5 @ N ) )
=> ( finite_finite @ nat @ N5 ) ) ).
% bounded_nat_set_is_finite
thf(fact_2133_finite__nat__set__iff__bounded,axiom,
( ( finite_finite @ nat )
= ( ^ [N6: set @ nat] :
? [M4: nat] :
! [X6: nat] :
( ( member @ nat @ X6 @ N6 )
=> ( ord_less @ nat @ X6 @ M4 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_2134_finite__list,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ? [Xs3: list @ A] :
( ( set2 @ A @ Xs3 )
= A3 ) ) ).
% finite_list
thf(fact_2135_finite__M__bounded__by__nat,axiom,
! [P: nat > $o,I3: nat] :
( finite_finite @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( P @ K3 )
& ( ord_less @ nat @ K3 @ I3 ) ) ) ) ).
% finite_M_bounded_by_nat
thf(fact_2136_finite__lists__length__eq,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( finite_finite @ A @ A3 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_2137_eucl__rel__int__by0,axiom,
! [K: int] : ( eucl_rel_int @ K @ ( zero_zero @ int ) @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ K ) ) ).
% eucl_rel_int_by0
thf(fact_2138_mod__int__unique,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
=> ( ( modulo_modulo @ int @ K @ L )
= R2 ) ) ).
% mod_int_unique
thf(fact_2139_replicate__eqI,axiom,
! [A: $tType,Xs2: list @ A,N: nat,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= N )
=> ( ! [Y5: A] :
( ( member @ A @ Y5 @ ( set2 @ A @ Xs2 ) )
=> ( Y5 = X ) )
=> ( Xs2
= ( replicate @ A @ N @ X ) ) ) ) ).
% replicate_eqI
thf(fact_2140_replicate__length__same,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( X5 = X ) )
=> ( ( replicate @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ X )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_2141_infinite__Icc,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Icc
thf(fact_2142_finite__lists__length__le,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( finite_finite @ A @ A3 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_2143_eucl__rel__int__dividesI,axiom,
! [L: int,K: int,Q2: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ( K
= ( times_times @ int @ Q2 @ L ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q2 @ ( zero_zero @ int ) ) ) ) ) ).
% eucl_rel_int_dividesI
thf(fact_2144_eucl__rel__int,axiom,
! [K: int,L: int] : ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ ( divide_divide @ int @ K @ L ) @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% eucl_rel_int
thf(fact_2145_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( finite_finite @ nat
@ ( collect @ nat
@ ^ [D3: nat] : ( dvd_dvd @ nat @ D3 @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_2146_subset__eq__atLeast0__atMost__finite,axiom,
! [N5: set @ nat,N: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N5 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
=> ( finite_finite @ nat @ N5 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_2147_set__replicate__Suc,axiom,
! [A: $tType,N: nat,X: A] :
( ( set2 @ A @ ( replicate @ A @ ( suc @ N ) @ X ) )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ).
% set_replicate_Suc
thf(fact_2148_set__replicate__conv__if,axiom,
! [A: $tType,N: nat,X: A] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N @ X ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N @ X ) )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% set_replicate_conv_if
thf(fact_2149_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
= ( ( K
= ( plus_plus @ int @ ( times_times @ int @ L @ Q2 ) @ R2 ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
& ( ord_less @ int @ R2 @ L ) ) )
& ( ~ ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ R2 )
& ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) ) ) )
& ( ~ ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( Q2
= ( zero_zero @ int ) ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_2150_vebt__buildup_Osimps_I3_J,axiom,
! [Va2: nat] :
( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_2151_finite__Collect__less__nat,axiom,
! [K: nat] :
( finite_finite @ nat
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less @ nat @ N3 @ K ) ) ) ).
% finite_Collect_less_nat
thf(fact_2152_finite__roots__unity,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [N: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N )
=> ( finite_finite @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( power_power @ A @ Z3 @ N )
= ( one_one @ A ) ) ) ) ) ) ).
% finite_roots_unity
thf(fact_2153_finite__induct__select,axiom,
! [A: $tType,S3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ S3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [T5: set @ A] :
( ( ord_less @ ( set @ A ) @ T5 @ S3 )
=> ( ( P @ T5 )
=> ? [X3: A] :
( ( member @ A @ X3 @ ( minus_minus @ ( set @ A ) @ S3 @ T5 ) )
& ( P @ ( insert @ A @ X3 @ T5 ) ) ) ) )
=> ( P @ S3 ) ) ) ) ).
% finite_induct_select
thf(fact_2154_remove__induct,axiom,
! [A: $tType,P: ( set @ A ) > $o,B3: set @ A] :
( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ( ~ ( finite_finite @ A @ B3 )
=> ( P @ B3 ) )
=> ( ! [A9: set @ A] :
( ( finite_finite @ A @ A9 )
=> ( ( A9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ A9 @ B3 )
=> ( ! [X3: A] :
( ( member @ A @ X3 @ A9 )
=> ( P @ ( minus_minus @ ( set @ A ) @ A9 @ ( insert @ A @ X3 @ ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( P @ A9 ) ) ) ) )
=> ( P @ B3 ) ) ) ) ).
% remove_induct
thf(fact_2155_finite__remove__induct,axiom,
! [A: $tType,B3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ B3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [A9: set @ A] :
( ( finite_finite @ A @ A9 )
=> ( ( A9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ A9 @ B3 )
=> ( ! [X3: A] :
( ( member @ A @ X3 @ A9 )
=> ( P @ ( minus_minus @ ( set @ A ) @ A9 @ ( insert @ A @ X3 @ ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( P @ A9 ) ) ) ) )
=> ( P @ B3 ) ) ) ) ).
% finite_remove_induct
thf(fact_2156_set__encode__insert,axiom,
! [A3: set @ nat,N: nat] :
( ( finite_finite @ nat @ A3 )
=> ( ~ ( member @ nat @ N @ A3 )
=> ( ( nat_set_encode @ ( insert @ nat @ N @ A3 ) )
= ( plus_plus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( nat_set_encode @ A3 ) ) ) ) ) ).
% set_encode_insert
thf(fact_2157_infinite__remove,axiom,
! [A: $tType,S3: set @ A,A2: A] :
( ~ ( finite_finite @ A @ S3 )
=> ~ ( finite_finite @ A @ ( minus_minus @ ( set @ A ) @ S3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% infinite_remove
thf(fact_2158_set__encode__empty,axiom,
( ( nat_set_encode @ ( bot_bot @ ( set @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% set_encode_empty
thf(fact_2159_finite__maxlen,axiom,
! [A: $tType,M7: set @ ( list @ A )] :
( ( finite_finite @ ( list @ A ) @ M7 )
=> ? [N2: nat] :
! [X3: list @ A] :
( ( member @ ( list @ A ) @ X3 @ M7 )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ X3 ) @ N2 ) ) ) ).
% finite_maxlen
thf(fact_2160_finite__divisors__int,axiom,
! [I3: int] :
( ( I3
!= ( zero_zero @ int ) )
=> ( finite_finite @ int
@ ( collect @ int
@ ^ [D3: int] : ( dvd_dvd @ int @ D3 @ I3 ) ) ) ) ).
% finite_divisors_int
thf(fact_2161_set__encode__inf,axiom,
! [A3: set @ nat] :
( ~ ( finite_finite @ nat @ A3 )
=> ( ( nat_set_encode @ A3 )
= ( zero_zero @ nat ) ) ) ).
% set_encode_inf
thf(fact_2162_finite_OemptyI,axiom,
! [A: $tType] : ( finite_finite @ A @ ( bot_bot @ ( set @ A ) ) ) ).
% finite.emptyI
thf(fact_2163_infinite__imp__nonempty,axiom,
! [A: $tType,S3: set @ A] :
( ~ ( finite_finite @ A @ S3 )
=> ( S3
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% infinite_imp_nonempty
thf(fact_2164_even__set__encode__iff,axiom,
! [A3: set @ nat] :
( ( finite_finite @ nat @ A3 )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( nat_set_encode @ A3 ) )
= ( ~ ( member @ nat @ ( zero_zero @ nat ) @ A3 ) ) ) ) ).
% even_set_encode_iff
thf(fact_2165_finite__has__maximal,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X5: A] :
( ( member @ A @ X5 @ A3 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A3 )
=> ( ( ord_less_eq @ A @ X5 @ Xa )
=> ( X5 = Xa ) ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_2166_finite__has__minimal,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X5: A] :
( ( member @ A @ X5 @ A3 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A3 )
=> ( ( ord_less_eq @ A @ Xa @ X5 )
=> ( X5 = Xa ) ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_2167_finite_Ocases,axiom,
! [A: $tType,A2: set @ A] :
( ( finite_finite @ A @ A2 )
=> ( ( A2
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ! [A9: set @ A] :
( ? [A6: A] :
( A2
= ( insert @ A @ A6 @ A9 ) )
=> ~ ( finite_finite @ A @ A9 ) ) ) ) ).
% finite.cases
thf(fact_2168_finite_Osimps,axiom,
! [A: $tType] :
( ( finite_finite @ A )
= ( ^ [A4: set @ A] :
( ( A4
= ( bot_bot @ ( set @ A ) ) )
| ? [A7: set @ A,B4: A] :
( ( A4
= ( insert @ A @ B4 @ A7 ) )
& ( finite_finite @ A @ A7 ) ) ) ) ) ).
% finite.simps
thf(fact_2169_finite__induct,axiom,
! [A: $tType,F3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ F3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,F5: set @ A] :
( ( finite_finite @ A @ F5 )
=> ( ~ ( member @ A @ X5 @ F5 )
=> ( ( P @ F5 )
=> ( P @ ( insert @ A @ X5 @ F5 ) ) ) ) )
=> ( P @ F3 ) ) ) ) ).
% finite_induct
thf(fact_2170_finite__ne__induct,axiom,
! [A: $tType,F3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ F3 )
=> ( ( F3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] : ( P @ ( insert @ A @ X5 @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ! [X5: A,F5: set @ A] :
( ( finite_finite @ A @ F5 )
=> ( ( F5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ~ ( member @ A @ X5 @ F5 )
=> ( ( P @ F5 )
=> ( P @ ( insert @ A @ X5 @ F5 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_2171_infinite__finite__induct,axiom,
! [A: $tType,P: ( set @ A ) > $o,A3: set @ A] :
( ! [A9: set @ A] :
( ~ ( finite_finite @ A @ A9 )
=> ( P @ A9 ) )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,F5: set @ A] :
( ( finite_finite @ A @ F5 )
=> ( ~ ( member @ A @ X5 @ F5 )
=> ( ( P @ F5 )
=> ( P @ ( insert @ A @ X5 @ F5 ) ) ) ) )
=> ( P @ A3 ) ) ) ) ).
% infinite_finite_induct
thf(fact_2172_finite__subset__induct_H,axiom,
! [A: $tType,F3: set @ A,A3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ F3 )
=> ( ( ord_less_eq @ ( set @ A ) @ F3 @ A3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A,F5: set @ A] :
( ( finite_finite @ A @ F5 )
=> ( ( member @ A @ A6 @ A3 )
=> ( ( ord_less_eq @ ( set @ A ) @ F5 @ A3 )
=> ( ~ ( member @ A @ A6 @ F5 )
=> ( ( P @ F5 )
=> ( P @ ( insert @ A @ A6 @ F5 ) ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_2173_finite__subset__induct,axiom,
! [A: $tType,F3: set @ A,A3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ F3 )
=> ( ( ord_less_eq @ ( set @ A ) @ F3 @ A3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A,F5: set @ A] :
( ( finite_finite @ A @ F5 )
=> ( ( member @ A @ A6 @ A3 )
=> ( ~ ( member @ A @ A6 @ F5 )
=> ( ( P @ F5 )
=> ( P @ ( insert @ A @ A6 @ F5 ) ) ) ) ) )
=> ( P @ F3 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_2174_finite__empty__induct,axiom,
! [A: $tType,A3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A3 )
=> ( ( P @ A3 )
=> ( ! [A6: A,A9: set @ A] :
( ( finite_finite @ A @ A9 )
=> ( ( member @ A @ A6 @ A9 )
=> ( ( P @ A9 )
=> ( P @ ( minus_minus @ ( set @ A ) @ A9 @ ( insert @ A @ A6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) )
=> ( P @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% finite_empty_induct
thf(fact_2175_infinite__coinduct,axiom,
! [A: $tType,X9: ( set @ A ) > $o,A3: set @ A] :
( ( X9 @ A3 )
=> ( ! [A9: set @ A] :
( ( X9 @ A9 )
=> ? [X3: A] :
( ( member @ A @ X3 @ A9 )
& ( ( X9 @ ( minus_minus @ ( set @ A ) @ A9 @ ( insert @ A @ X3 @ ( bot_bot @ ( set @ A ) ) ) ) )
| ~ ( finite_finite @ A @ ( minus_minus @ ( set @ A ) @ A9 @ ( insert @ A @ X3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) )
=> ~ ( finite_finite @ A @ A3 ) ) ) ).
% infinite_coinduct
thf(fact_2176_arcosh__1,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arcosh @ A @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% arcosh_1
thf(fact_2177_finite__nth__roots,axiom,
! [N: nat,C2: complex] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( finite_finite @ complex
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= C2 ) ) ) ) ).
% finite_nth_roots
thf(fact_2178_finite__linorder__min__induct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [B6: A,A9: set @ A] :
( ( finite_finite @ A @ A9 )
=> ( ! [X3: A] :
( ( member @ A @ X3 @ A9 )
=> ( ord_less @ A @ B6 @ X3 ) )
=> ( ( P @ A9 )
=> ( P @ ( insert @ A @ B6 @ A9 ) ) ) ) )
=> ( P @ A3 ) ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_2179_finite__linorder__max__induct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [B6: A,A9: set @ A] :
( ( finite_finite @ A @ A9 )
=> ( ! [X3: A] :
( ( member @ A @ X3 @ A9 )
=> ( ord_less @ A @ X3 @ B6 ) )
=> ( ( P @ A9 )
=> ( P @ ( insert @ A @ B6 @ A9 ) ) ) ) )
=> ( P @ A3 ) ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_2180_finite__ranking__induct,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [S3: set @ B,P: ( set @ B ) > $o,F2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( P @ ( bot_bot @ ( set @ B ) ) )
=> ( ! [X5: B,S4: set @ B] :
( ( finite_finite @ B @ S4 )
=> ( ! [Y4: B] :
( ( member @ B @ Y4 @ S4 )
=> ( ord_less_eq @ A @ ( F2 @ Y4 ) @ ( F2 @ X5 ) ) )
=> ( ( P @ S4 )
=> ( P @ ( insert @ B @ X5 @ S4 ) ) ) ) )
=> ( P @ S3 ) ) ) ) ) ).
% finite_ranking_induct
thf(fact_2181_arsinh__0,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arsinh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% arsinh_0
thf(fact_2182_artanh__0,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ( ( artanh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% artanh_0
thf(fact_2183_Lattices__Big_Oex__has__greatest__nat,axiom,
! [A: $tType,P: A > $o,K: A,F2: A > nat,B2: nat] :
( ( P @ K )
=> ( ! [Y5: A] :
( ( P @ Y5 )
=> ( ord_less @ nat @ ( F2 @ Y5 ) @ B2 ) )
=> ? [X5: A] :
( ( P @ X5 )
& ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ ( F2 @ Y4 ) @ ( F2 @ X5 ) ) ) ) ) ) ).
% Lattices_Big.ex_has_greatest_nat
thf(fact_2184_ex__min__if__finite,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X5: A] :
( ( member @ A @ X5 @ S3 )
& ~ ? [Xa: A] :
( ( member @ A @ Xa @ S3 )
& ( ord_less @ A @ Xa @ X5 ) ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_2185_infinite__growing,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X9: set @ A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ? [Xa: A] :
( ( member @ A @ Xa @ X9 )
& ( ord_less @ A @ X5 @ Xa ) ) )
=> ~ ( finite_finite @ A @ X9 ) ) ) ) ).
% infinite_growing
thf(fact_2186_ex__has__greatest__nat__lemma,axiom,
! [A: $tType,P: A > $o,K: A,F2: A > nat,N: nat] :
( ( P @ K )
=> ( ! [X5: A] :
( ( P @ X5 )
=> ? [Y4: A] :
( ( P @ Y4 )
& ~ ( ord_less_eq @ nat @ ( F2 @ Y4 ) @ ( F2 @ X5 ) ) ) )
=> ? [Y5: A] :
( ( P @ Y5 )
& ~ ( ord_less @ nat @ ( F2 @ Y5 ) @ ( plus_plus @ nat @ ( F2 @ K ) @ N ) ) ) ) ) ).
% ex_has_greatest_nat_lemma
thf(fact_2187_artanh__def,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ( ( artanh @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( ln_ln @ A @ ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ X6 ) @ ( minus_minus @ A @ ( one_one @ A ) @ X6 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% artanh_def
thf(fact_2188_prod_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I6: set @ B,X: B > A,Y: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( X @ I )
!= ( one_one @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( Y @ I )
!= ( one_one @ A ) ) ) ) )
=> ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( times_times @ A @ ( X @ I ) @ ( Y @ I ) )
!= ( one_one @ A ) ) ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_2189_sum_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I6: set @ B,X: B > A,Y: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( X @ I )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( Y @ I )
!= ( zero_zero @ A ) ) ) ) )
=> ( finite_finite @ B
@ ( collect @ B
@ ^ [I: B] :
( ( member @ B @ I @ I6 )
& ( ( plus_plus @ A @ ( X @ I ) @ ( Y @ I ) )
!= ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_2190_Divides_Oadjust__div__eq,axiom,
! [Q2: int,R2: int] :
( ( adjust_div @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
= ( plus_plus @ int @ Q2
@ ( zero_neq_one_of_bool @ int
@ ( R2
!= ( zero_zero @ int ) ) ) ) ) ).
% Divides.adjust_div_eq
thf(fact_2191_signed__take__bit__rec,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4674362597316999326ke_bit @ A )
= ( ^ [N3: nat,A4: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( uminus_uminus @ A @ ( modulo_modulo @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
@ ( plus_plus @ A @ ( modulo_modulo @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4674362597316999326ke_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_2192_vebt__buildup_Opelims,axiom,
! [X: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y )
=> ( ( accp @ nat @ vEBT_v4011308405150292612up_rel @ X )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( zero_zero @ nat ) ) ) )
=> ( ( ( X
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( zero_zero @ nat ) ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_2193_option_Osize__gen_I2_J,axiom,
! [A: $tType,X: A > nat,X2: A] :
( ( size_option @ A @ X @ ( some @ A @ X2 ) )
= ( plus_plus @ nat @ ( X @ X2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% option.size_gen(2)
thf(fact_2194_verit__minus__simplify_I4_J,axiom,
! [B: $tType] :
( ( group_add @ B )
=> ! [B2: B] :
( ( uminus_uminus @ B @ ( uminus_uminus @ B @ B2 ) )
= B2 ) ) ).
% verit_minus_simplify(4)
thf(fact_2195_neg__equal__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= ( uminus_uminus @ A @ B2 ) )
= ( A2 = B2 ) ) ) ).
% neg_equal_iff_equal
thf(fact_2196_add_Oinverse__inverse,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( uminus_uminus @ A @ ( uminus_uminus @ A @ A2 ) )
= A2 ) ) ).
% add.inverse_inverse
thf(fact_2197_Compl__anti__mono,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ B3 ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) ) ) ).
% Compl_anti_mono
thf(fact_2198_Compl__subset__Compl__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ ( uminus_uminus @ ( set @ A ) @ B3 ) )
= ( ord_less_eq @ ( set @ A ) @ B3 @ A3 ) ) ).
% Compl_subset_Compl_iff
thf(fact_2199_neg__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% neg_le_iff_le
thf(fact_2200_neg__equal__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( uminus_uminus @ A @ A2 )
= A2 )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% neg_equal_zero
thf(fact_2201_equal__neg__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( A2
= ( uminus_uminus @ A @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% equal_neg_zero
thf(fact_2202_neg__equal__0__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( ( uminus_uminus @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% neg_equal_0_iff_equal
thf(fact_2203_neg__0__equal__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( uminus_uminus @ A @ A2 ) )
= ( ( zero_zero @ A )
= A2 ) ) ) ).
% neg_0_equal_iff_equal
thf(fact_2204_add_Oinverse__neutral,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( uminus_uminus @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% add.inverse_neutral
thf(fact_2205_compl__less__compl__iff,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) )
= ( ord_less @ A @ Y @ X ) ) ) ).
% compl_less_compl_iff
thf(fact_2206_neg__less__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% neg_less_iff_less
thf(fact_2207_neg__numeral__eq__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( M = N ) ) ) ).
% neg_numeral_eq_iff
thf(fact_2208_mult__minus__left,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( uminus_uminus @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% mult_minus_left
thf(fact_2209_minus__mult__minus,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( times_times @ A @ A2 @ B2 ) ) ) ).
% minus_mult_minus
thf(fact_2210_mult__minus__right,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% mult_minus_right
thf(fact_2211_add__minus__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ A2 @ ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) )
= B2 ) ) ).
% add_minus_cancel
thf(fact_2212_minus__add__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( plus_plus @ A @ A2 @ B2 ) )
= B2 ) ) ).
% minus_add_cancel
thf(fact_2213_minus__add__distrib,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_add_distrib
thf(fact_2214_minus__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( minus_minus @ A @ B2 @ A2 ) ) ) ).
% minus_diff_eq
thf(fact_2215_div__minus__minus,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ).
% div_minus_minus
thf(fact_2216_ln__less__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_2217_ln__inj__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( ln_ln @ real @ X )
= ( ln_ln @ real @ Y ) )
= ( X = Y ) ) ) ) ).
% ln_inj_iff
thf(fact_2218_mod__minus__minus,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% mod_minus_minus
thf(fact_2219_Compl__disjoint,axiom,
! [A: $tType,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Compl_disjoint
thf(fact_2220_Compl__disjoint2,axiom,
! [A: $tType,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ A3 )
= ( bot_bot @ ( set @ A ) ) ) ).
% Compl_disjoint2
thf(fact_2221_real__add__minus__iff,axiom,
! [X: real,A2: real] :
( ( ( plus_plus @ real @ X @ ( uminus_uminus @ real @ A2 ) )
= ( zero_zero @ real ) )
= ( X = A2 ) ) ).
% real_add_minus_iff
thf(fact_2222_Diff__Compl,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ B3 ) )
= ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ).
% Diff_Compl
thf(fact_2223_Compl__Diff__eq,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) )
= ( sup_sup @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ B3 ) ) ).
% Compl_Diff_eq
thf(fact_2224_neg__less__eq__nonneg,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_eq_nonneg
thf(fact_2225_less__eq__neg__nonpos,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% less_eq_neg_nonpos
thf(fact_2226_neg__le__0__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_le_0_iff_le
thf(fact_2227_neg__0__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_le_iff_le
thf(fact_2228_less__neg__neg,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% less_neg_neg
thf(fact_2229_neg__less__pos,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_pos
thf(fact_2230_neg__0__less__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_less_iff_less
thf(fact_2231_neg__less__0__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_0_iff_less
thf(fact_2232_ab__left__minus,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% ab_left_minus
thf(fact_2233_add_Oright__inverse,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( zero_zero @ A ) ) ) ).
% add.right_inverse
thf(fact_2234_diff__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ).
% diff_0
thf(fact_2235_verit__minus__simplify_I3_J,axiom,
! [B: $tType] :
( ( group_add @ B )
=> ! [B2: B] :
( ( minus_minus @ B @ ( zero_zero @ B ) @ B2 )
= ( uminus_uminus @ B @ B2 ) ) ) ).
% verit_minus_simplify(3)
thf(fact_2236_add__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( uminus_uminus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_2237_mult__minus1__right,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: A] :
( ( times_times @ A @ Z2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ Z2 ) ) ) ).
% mult_minus1_right
thf(fact_2238_mult__minus1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ Z2 )
= ( uminus_uminus @ A @ Z2 ) ) ) ).
% mult_minus1
thf(fact_2239_uminus__add__conv__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( minus_minus @ A @ B2 @ A2 ) ) ) ).
% uminus_add_conv_diff
thf(fact_2240_diff__minus__eq__add,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( plus_plus @ A @ A2 @ B2 ) ) ) ).
% diff_minus_eq_add
thf(fact_2241_divide__minus1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A] :
( ( divide_divide @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ X ) ) ) ).
% divide_minus1
thf(fact_2242_div__minus1__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ A2 ) ) ) ).
% div_minus1_right
thf(fact_2243_inf__compl__bot__left1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ ( uminus_uminus @ A @ X ) @ ( inf_inf @ A @ X @ Y ) )
= ( bot_bot @ A ) ) ) ).
% inf_compl_bot_left1
thf(fact_2244_inf__compl__bot__left2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ ( uminus_uminus @ A @ X ) @ Y ) )
= ( bot_bot @ A ) ) ) ).
% inf_compl_bot_left2
thf(fact_2245_inf__compl__bot__right,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ Y @ ( uminus_uminus @ A @ X ) ) )
= ( bot_bot @ A ) ) ) ).
% inf_compl_bot_right
thf(fact_2246_boolean__algebra_Oconj__cancel__left,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A] :
( ( inf_inf @ A @ ( uminus_uminus @ A @ X ) @ X )
= ( bot_bot @ A ) ) ) ).
% boolean_algebra.conj_cancel_left
thf(fact_2247_boolean__algebra_Oconj__cancel__right,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A] :
( ( inf_inf @ A @ X @ ( uminus_uminus @ A @ X ) )
= ( bot_bot @ A ) ) ) ).
% boolean_algebra.conj_cancel_right
thf(fact_2248_minus__mod__self1,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [B2: A,A2: A] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ B2 @ A2 ) @ B2 )
= ( modulo_modulo @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% minus_mod_self1
thf(fact_2249_subset__Compl__singleton,axiom,
! [A: $tType,A3: set @ A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( ~ ( member @ A @ B2 @ A3 ) ) ) ).
% subset_Compl_singleton
thf(fact_2250_ln__le__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_2251_ln__less__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_less_zero_iff
thf(fact_2252_ln__gt__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
= ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_gt_zero_iff
thf(fact_2253_ln__eq__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ln_ln @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( one_one @ real ) ) ) ) ).
% ln_eq_zero_iff
thf(fact_2254_ln__one,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( ln_ln @ A @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% ln_one
thf(fact_2255_signed__take__bit__of__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ N @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% signed_take_bit_of_minus_1
thf(fact_2256_dbl__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_simps(1)
thf(fact_2257_add__neg__numeral__special_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% add_neg_numeral_special(7)
thf(fact_2258_add__neg__numeral__special_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% add_neg_numeral_special(8)
thf(fact_2259_diff__numeral__special_I12_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(12)
thf(fact_2260_numeral__eq__neg__one__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( N = one2 ) ) ) ).
% numeral_eq_neg_one_iff
thf(fact_2261_neg__one__eq__numeral__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N: num] :
( ( ( uminus_uminus @ A @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( N = one2 ) ) ) ).
% neg_one_eq_numeral_iff
thf(fact_2262_minus__one__mult__self,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) )
= ( one_one @ A ) ) ) ).
% minus_one_mult_self
thf(fact_2263_left__minus__one__mult__self,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat,A2: A] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ A2 ) )
= A2 ) ) ).
% left_minus_one_mult_self
thf(fact_2264_mod__minus1__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% mod_minus1_right
thf(fact_2265_max__number__of_I4_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) ) ) ) ).
% max_number_of(4)
thf(fact_2266_max__number__of_I3_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ V ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) ) ) ) ).
% max_number_of(3)
thf(fact_2267_max__number__of_I2_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( numeral_numeral @ A @ U ) ) ) ) ) ).
% max_number_of(2)
thf(fact_2268_ln__le__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_le_zero_iff
thf(fact_2269_ln__ge__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_ge_zero_iff
thf(fact_2270_semiring__norm_I168_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V: num,W: num,Y: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ Y ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ V @ W ) ) ) @ Y ) ) ) ).
% semiring_norm(168)
thf(fact_2271_diff__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N ) ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_2272_diff__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N ) ) ) ) ).
% diff_numeral_simps(2)
thf(fact_2273_semiring__norm_I172_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [V: num,W: num,Y: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ Y ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( times_times @ num @ V @ W ) ) @ Y ) ) ) ).
% semiring_norm(172)
thf(fact_2274_semiring__norm_I171_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [V: num,W: num,Y: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V ) @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ Y ) )
= ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ V @ W ) ) ) @ Y ) ) ) ).
% semiring_norm(171)
thf(fact_2275_semiring__norm_I170_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [V: num,W: num,Y: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ Y ) )
= ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ V @ W ) ) ) @ Y ) ) ) ).
% semiring_norm(170)
thf(fact_2276_mult__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N: num] :
( ( times_times @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ M @ N ) ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_2277_mult__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N: num] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ M @ N ) ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_2278_mult__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N: num] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( numeral_numeral @ A @ ( times_times @ num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_2279_neg__numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( ord_less_eq @ num @ N @ M ) ) ) ).
% neg_numeral_le_iff
thf(fact_2280_neg__numeral__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( ord_less @ num @ N @ M ) ) ) ).
% neg_numeral_less_iff
thf(fact_2281_not__neg__one__le__neg__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
( ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) )
= ( M != one2 ) ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_2282_divide__le__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) @ B2 ) ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_2283_le__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W: num] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_2284_divide__eq__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= A2 )
= ( ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) )
& ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_2285_eq__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,W: num] :
( ( A2
= ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) )
= ( ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= B2 ) )
& ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_2286_neg__numeral__less__neg__one__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( M != one2 ) ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_2287_less__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W: num] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_2288_divide__less__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W: num,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) @ B2 ) ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_2289_power2__minus,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A] :
( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% power2_minus
thf(fact_2290_add__neg__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_2291_diff__numeral__special_I10_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_2292_diff__numeral__special_I11_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% diff_numeral_special(11)
thf(fact_2293_minus__1__div__2__eq,axiom,
! [A: $tType] :
( ( euclid8789492081693882211th_nat @ A )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% minus_1_div_2_eq
thf(fact_2294_bits__minus__1__mod__2__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( modulo_modulo @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% bits_minus_1_mod_2_eq
thf(fact_2295_minus__1__mod__2__eq,axiom,
! [A: $tType] :
( ( euclid8789492081693882211th_nat @ A )
=> ( ( modulo_modulo @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% minus_1_mod_2_eq
thf(fact_2296_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
= ( power_power @ A @ A2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_2297_Parity_Oring__1__class_Opower__minus__even,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( power_power @ A @ A2 @ N ) ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_2298_power__minus__odd,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat,A2: A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( uminus_uminus @ A @ ( power_power @ A @ A2 @ N ) ) ) ) ) ).
% power_minus_odd
thf(fact_2299_diff__numeral__special_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ M @ one2 ) ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_2300_diff__numeral__special_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ N ) ) ) ) ).
% diff_numeral_special(3)
thf(fact_2301_signed__take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_Suc_minus_bit0
thf(fact_2302_dbl__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% dbl_simps(4)
thf(fact_2303_power__minus1__even,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
= ( one_one @ A ) ) ) ).
% power_minus1_even
thf(fact_2304_neg__one__even__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N )
= ( one_one @ A ) ) ) ) ).
% neg_one_even_power
thf(fact_2305_neg__one__odd__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% neg_one_odd_power
thf(fact_2306_signed__take__bit__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( uminus_uminus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_2307_verit__negate__coefficient_I3_J,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( ( uminus_uminus @ A @ A2 )
= ( uminus_uminus @ A @ B2 ) ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_2308_minus__equation__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= B2 )
= ( ( uminus_uminus @ A @ B2 )
= A2 ) ) ) ).
% minus_equation_iff
thf(fact_2309_equation__minus__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( uminus_uminus @ A @ B2 ) )
= ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% equation_minus_iff
thf(fact_2310_le__imp__neg__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_imp_neg_le
thf(fact_2311_minus__le__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ A2 ) ) ) ).
% minus_le_iff
thf(fact_2312_le__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_minus_iff
thf(fact_2313_compl__less__swap2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ Y ) @ X )
=> ( ord_less @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% compl_less_swap2
thf(fact_2314_compl__less__swap1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ ( uminus_uminus @ A @ X ) )
=> ( ord_less @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% compl_less_swap1
thf(fact_2315_minus__less__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ A2 ) ) ) ).
% minus_less_iff
thf(fact_2316_less__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( ord_less @ A @ B2 @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% less_minus_iff
thf(fact_2317_verit__negate__coefficient_I2_J,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_2318_numeral__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N: num] :
( ( numeral_numeral @ A @ M )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_2319_neg__numeral__neq__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N: num] :
( ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) )
!= ( numeral_numeral @ A @ N ) ) ) ).
% neg_numeral_neq_numeral
thf(fact_2320_square__eq__iff,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ A2 )
= ( times_times @ A @ B2 @ B2 ) )
= ( ( A2 = B2 )
| ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% square_eq_iff
thf(fact_2321_minus__mult__commute,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( times_times @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_mult_commute
thf(fact_2322_group__cancel_Oneg1,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A3: A,K: A,A2: A] :
( ( A3
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( uminus_uminus @ A @ A3 )
= ( plus_plus @ A @ ( uminus_uminus @ A @ K ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ) ).
% group_cancel.neg1
thf(fact_2323_add_Oinverse__distrib__swap,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% add.inverse_distrib_swap
thf(fact_2324_is__num__normalize_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% is_num_normalize(8)
thf(fact_2325_one__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ( ( one_one @ A )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% one_neq_neg_one
thf(fact_2326_minus__diff__minus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% minus_diff_minus
thf(fact_2327_minus__diff__commute,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ B2 ) @ A2 )
= ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% minus_diff_commute
thf(fact_2328_minus__divide__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_divide_right
thf(fact_2329_minus__divide__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ).
% minus_divide_divide
thf(fact_2330_minus__divide__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% minus_divide_left
thf(fact_2331_div__minus__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% div_minus_right
thf(fact_2332_mod__minus__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( modulo_modulo @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ) ).
% mod_minus_right
thf(fact_2333_mod__minus__cong,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A,A5: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( modulo_modulo @ A @ A5 @ B2 ) )
=> ( ( modulo_modulo @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( modulo_modulo @ A @ ( uminus_uminus @ A @ A5 ) @ B2 ) ) ) ) ).
% mod_minus_cong
thf(fact_2334_mod__minus__eq,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( uminus_uminus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ B2 )
= ( modulo_modulo @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% mod_minus_eq
thf(fact_2335_uminus__int__code_I1_J,axiom,
( ( uminus_uminus @ int @ ( zero_zero @ int ) )
= ( zero_zero @ int ) ) ).
% uminus_int_code(1)
thf(fact_2336_signed__take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_ri4674362597316999326ke_bit @ int @ N @ ( uminus_uminus @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) ) )
= ( bit_ri4674362597316999326ke_bit @ int @ N @ ( uminus_uminus @ int @ K ) ) ) ).
% signed_take_bit_minus
thf(fact_2337_Collect__imp__eq,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ( collect @ A
@ ^ [X6: A] :
( ( P @ X6 )
=> ( Q @ X6 ) ) )
= ( sup_sup @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ ( collect @ A @ P ) ) @ ( collect @ A @ Q ) ) ) ).
% Collect_imp_eq
thf(fact_2338_ln__less__self,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( ln_ln @ real @ X ) @ X ) ) ).
% ln_less_self
thf(fact_2339_neg__numeral__le__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N ) ) ) ).
% neg_numeral_le_numeral
thf(fact_2340_not__numeral__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_2341_zero__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N: num] :
( ( zero_zero @ A )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% zero_neq_neg_numeral
thf(fact_2342_not__numeral__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_2343_neg__numeral__less__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N ) ) ) ).
% neg_numeral_less_numeral
thf(fact_2344_le__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(4)
thf(fact_2345_le__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) ) ) ).
% le_minus_one_simps(2)
thf(fact_2346_neg__eq__iff__add__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= B2 )
= ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_2347_eq__neg__iff__add__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( uminus_uminus @ A @ B2 ) )
= ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_2348_add_Oinverse__unique,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ A2 )
= B2 ) ) ) ).
% add.inverse_unique
thf(fact_2349_ab__group__add__class_Oab__left__minus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% ab_group_add_class.ab_left_minus
thf(fact_2350_add__eq__0__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% add_eq_0_iff
thf(fact_2351_zero__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ( ( zero_zero @ A )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% zero_neq_neg_one
thf(fact_2352_less__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) ) ) ).
% less_minus_one_simps(2)
thf(fact_2353_less__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% less_minus_one_simps(4)
thf(fact_2354_numeral__times__minus__swap,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [W: num,X: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ W ) @ ( uminus_uminus @ A @ X ) )
= ( times_times @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_2355_nonzero__minus__divide__right,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_2356_nonzero__minus__divide__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_2357_numeral__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ N )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% numeral_neq_neg_one
thf(fact_2358_one__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N: num] :
( ( one_one @ A )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% one_neq_neg_numeral
thf(fact_2359_square__eq__1__iff,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [X: A] :
( ( ( times_times @ A @ X @ X )
= ( one_one @ A ) )
= ( ( X
= ( one_one @ A ) )
| ( X
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% square_eq_1_iff
thf(fact_2360_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ( ( minus_minus @ A )
= ( ^ [A4: A,B4: A] : ( plus_plus @ A @ A4 @ ( uminus_uminus @ A @ B4 ) ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_2361_diff__conv__add__uminus,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( minus_minus @ A )
= ( ^ [A4: A,B4: A] : ( plus_plus @ A @ A4 @ ( uminus_uminus @ A @ B4 ) ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_2362_group__cancel_Osub2,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [B3: A,K: A,B2: A,A2: A] :
( ( B3
= ( plus_plus @ A @ K @ B2 ) )
=> ( ( minus_minus @ A @ A2 @ B3 )
= ( plus_plus @ A @ ( uminus_uminus @ A @ K ) @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.sub2
thf(fact_2363_dvd__neg__div,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% dvd_neg_div
thf(fact_2364_dvd__div__neg,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% dvd_div_neg
thf(fact_2365_inf__cancel__left1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,A2: A,B2: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ X @ A2 ) @ ( inf_inf @ A @ ( uminus_uminus @ A @ X ) @ B2 ) )
= ( bot_bot @ A ) ) ) ).
% inf_cancel_left1
thf(fact_2366_inf__cancel__left2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,A2: A,B2: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ ( uminus_uminus @ A @ X ) @ A2 ) @ ( inf_inf @ A @ X @ B2 ) )
= ( bot_bot @ A ) ) ) ).
% inf_cancel_left2
thf(fact_2367_subset__Compl__self__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_Compl_self_eq
thf(fact_2368_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( times_times @ real @ U @ U ) ) @ ( times_times @ real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_2369_Compl__Un,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ ( uminus_uminus @ ( set @ A ) @ B3 ) ) ) ).
% Compl_Un
thf(fact_2370_Compl__Int,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= ( sup_sup @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ ( uminus_uminus @ ( set @ A ) @ B3 ) ) ) ).
% Compl_Int
thf(fact_2371_Diff__eq,axiom,
! [A: $tType] :
( ( minus_minus @ ( set @ A ) )
= ( ^ [A7: set @ A,B8: set @ A] : ( inf_inf @ ( set @ A ) @ A7 @ ( uminus_uminus @ ( set @ A ) @ B8 ) ) ) ) ).
% Diff_eq
thf(fact_2372_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times @ int @ M @ N )
= ( one_one @ int ) )
= ( ( ( M
= ( one_one @ int ) )
& ( N
= ( one_one @ int ) ) )
| ( ( M
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
& ( N
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_2373_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times @ int @ M @ N )
= ( one_one @ int ) )
=> ( ( M
= ( one_one @ int ) )
| ( M
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_2374_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus @ int @ ( zero_zero @ int ) @ L )
= ( uminus_uminus @ int @ L ) ) ).
% minus_int_code(2)
thf(fact_2375_zmod__zminus1__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ K ) @ L )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
!= ( zero_zero @ int ) ) ) ).
% zmod_zminus1_not_zero
thf(fact_2376_zmod__zminus2__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo @ int @ K @ ( uminus_uminus @ int @ L ) )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
!= ( zero_zero @ int ) ) ) ).
% zmod_zminus2_not_zero
thf(fact_2377_minus__real__def,axiom,
( ( minus_minus @ real )
= ( ^ [X6: real,Y6: real] : ( plus_plus @ real @ X6 @ ( uminus_uminus @ real @ Y6 ) ) ) ) ).
% minus_real_def
thf(fact_2378_ln__one__minus__pos__upper__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ ( minus_minus @ real @ ( one_one @ real ) @ X ) ) @ ( uminus_uminus @ real @ X ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_2379_ln__bound,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ X ) ) ).
% ln_bound
thf(fact_2380_ln__gt__zero__imp__gt__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_2381_ln__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% ln_less_zero
thf(fact_2382_ln__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) ) ) ).
% ln_gt_zero
thf(fact_2383_ln__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) ) ) ).
% ln_ge_zero
thf(fact_2384_neg__numeral__le__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) @ ( zero_zero @ A ) ) ) ).
% neg_numeral_le_zero
thf(fact_2385_not__zero__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] :
~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_2386_not__zero__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] :
~ ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_2387_neg__numeral__less__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) @ ( zero_zero @ A ) ) ) ).
% neg_numeral_less_zero
thf(fact_2388_le__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(3)
thf(fact_2389_le__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ).
% le_minus_one_simps(1)
thf(fact_2390_less__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% less_minus_one_simps(3)
thf(fact_2391_less__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ).
% less_minus_one_simps(1)
thf(fact_2392_not__one__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_one_le_neg_numeral
thf(fact_2393_not__numeral__le__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_numeral_le_neg_one
thf(fact_2394_neg__numeral__le__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% neg_numeral_le_neg_one
thf(fact_2395_neg__one__le__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ M ) ) ) ).
% neg_one_le_numeral
thf(fact_2396_neg__numeral__le__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) ) ) ).
% neg_numeral_le_one
thf(fact_2397_not__neg__one__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_2398_not__one__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_one_less_neg_numeral
thf(fact_2399_not__numeral__less__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_numeral_less_neg_one
thf(fact_2400_neg__one__less__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ M ) ) ) ).
% neg_one_less_numeral
thf(fact_2401_neg__numeral__less__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) ) ) ).
% neg_numeral_less_one
thf(fact_2402_nonzero__neg__divide__eq__eq2,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( C2
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) )
= ( ( times_times @ A @ C2 @ B2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_2403_nonzero__neg__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= C2 )
= ( ( uminus_uminus @ A @ A2 )
= ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_2404_minus__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) )
= A2 )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ B2 )
= ( times_times @ A @ A2 @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_2405_eq__minus__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
= ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ C2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_2406_mult__1s__ring__1_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) ) ).
% mult_1s_ring_1(1)
thf(fact_2407_mult__1s__ring__1_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [B2: A] :
( ( times_times @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) )
= ( uminus_uminus @ A @ B2 ) ) ) ).
% mult_1s_ring_1(2)
thf(fact_2408_divide__eq__minus__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_2409_uminus__numeral__One,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% uminus_numeral_One
thf(fact_2410_power__minus,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_minus
thf(fact_2411_inf__shunt,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( inf_inf @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% inf_shunt
thf(fact_2412_power__minus__Bit0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A,K: num] :
( ( power_power @ A @ ( uminus_uminus @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ K ) ) )
= ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ K ) ) ) ) ) ).
% power_minus_Bit0
thf(fact_2413_disjoint__eq__subset__Compl,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ord_less_eq @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ B3 ) ) ) ).
% disjoint_eq_subset_Compl
thf(fact_2414_Compl__insert,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ X @ A3 ) )
= ( minus_minus @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Compl_insert
thf(fact_2415_real__add__less__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( plus_plus @ real @ X @ Y ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ Y @ ( uminus_uminus @ real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_2416_real__0__less__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ Y ) )
= ( ord_less @ real @ ( uminus_uminus @ real @ X ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_2417_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ Y ) )
= ( ord_less_eq @ real @ ( uminus_uminus @ real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_2418_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ X @ Y ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ Y @ ( uminus_uminus @ real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_2419_zmod__zminus1__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( zero_zero @ int ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( minus_minus @ int @ B2 @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_2420_zmod__zminus2__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( zero_zero @ int ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( minus_minus @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ B2 ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_2421_ln__ge__zero__imp__ge__one,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_2422_ln__add__one__self__le__self,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self
thf(fact_2423_ln__mult,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ln_ln @ real @ ( times_times @ real @ X @ Y ) )
= ( plus_plus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) ) ) ) ).
% ln_mult
thf(fact_2424_ln__eq__minus__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ln_ln @ real @ X )
= ( minus_minus @ real @ X @ ( one_one @ real ) ) )
=> ( X
= ( one_one @ real ) ) ) ) ).
% ln_eq_minus_one
thf(fact_2425_ln__div,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ln_ln @ real @ ( divide_divide @ real @ X @ Y ) )
= ( minus_minus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) ) ) ) ).
% ln_div
thf(fact_2426_less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_2427_minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_2428_neg__less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_2429_neg__minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_2430_pos__less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_2431_pos__minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_2432_divide__eq__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ( divide_divide @ A @ B2 @ C2 )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_2433_eq__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) )
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_2434_minus__divide__add__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ X @ Z2 ) ) @ Y )
= ( divide_divide @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ X ) @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_2435_add__divide__eq__if__simps_I3_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= B2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( divide_divide @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_2436_minus__divide__diff__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ X @ Z2 ) ) @ Y )
= ( divide_divide @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ X ) @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_2437_add__divide__eq__if__simps_I5_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( divide_divide @ A @ ( minus_minus @ A @ A2 @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_2438_add__divide__eq__if__simps_I6_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( divide_divide @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_2439_even__minus,axiom,
! [A: $tType] :
( ( ring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( uminus_uminus @ A @ A2 ) )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ).
% even_minus
thf(fact_2440_power2__eq__iff,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [X: A,Y: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ( X = Y )
| ( X
= ( uminus_uminus @ A @ Y ) ) ) ) ) ).
% power2_eq_iff
thf(fact_2441_verit__less__mono__div__int2,axiom,
! [A3: int,B3: int,N: int] :
( ( ord_less_eq @ int @ A3 @ B3 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( uminus_uminus @ int @ N ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ B3 @ N ) @ ( divide_divide @ int @ A3 @ N ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_2442_div__eq__minus1,axiom,
! [B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ B2 )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ).
% div_eq_minus1
thf(fact_2443_ln__le__minus__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( minus_minus @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_le_minus_one
thf(fact_2444_ln__diff__le,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) @ ( divide_divide @ real @ ( minus_minus @ real @ X @ Y ) @ Y ) ) ) ) ).
% ln_diff_le
thf(fact_2445_pos__minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_2446_pos__le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_2447_neg__minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_2448_neg__le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_2449_minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_2450_le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_2451_divide__less__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_2452_less__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_2453_power2__eq__1__iff,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [A2: A] :
( ( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
= ( ( A2
= ( one_one @ A ) )
| ( A2
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% power2_eq_1_iff
thf(fact_2454_uminus__power__if,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat,A2: A] :
( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( power_power @ A @ A2 @ N ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( uminus_uminus @ A @ ( power_power @ A @ A2 @ N ) ) ) ) ) ) ).
% uminus_power_if
thf(fact_2455_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( plus_plus @ nat @ N @ K ) )
= ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( minus_minus @ nat @ N @ K ) ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_2456_realpow__square__minus__le,axiom,
! [U: real,X: real] : ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( power_power @ real @ U @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% realpow_square_minus_le
thf(fact_2457_ln__one__minus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ ( uminus_uminus @ real @ X ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( ln_ln @ real @ ( minus_minus @ real @ ( one_one @ real ) @ X ) ) ) ) ) ).
% ln_one_minus_pos_lower_bound
thf(fact_2458_minus__mod__int__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ L )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ K ) @ L )
= ( minus_minus @ int @ ( minus_minus @ int @ L @ ( one_one @ int ) ) @ ( modulo_modulo @ int @ ( minus_minus @ int @ K @ ( one_one @ int ) ) @ L ) ) ) ) ).
% minus_mod_int_eq
thf(fact_2459_zmod__minus1,axiom,
! [B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ B2 )
= ( minus_minus @ int @ B2 @ ( one_one @ int ) ) ) ) ).
% zmod_minus1
thf(fact_2460_zdiv__zminus1__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% zdiv_zminus1_eq_if
thf(fact_2461_zdiv__zminus2__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% zdiv_zminus2_eq_if
thf(fact_2462_zminus1__lemma,axiom,
! [A2: int,B2: int,Q2: int,R2: int] :
( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q2 @ R2 ) )
=> ( ( B2
!= ( zero_zero @ int ) )
=> ( eucl_rel_int @ ( uminus_uminus @ int @ A2 ) @ B2
@ ( product_Pair @ int @ int
@ ( if @ int
@ ( R2
= ( zero_zero @ int ) )
@ ( uminus_uminus @ int @ Q2 )
@ ( minus_minus @ int @ ( uminus_uminus @ int @ Q2 ) @ ( one_one @ int ) ) )
@ ( if @ int
@ ( R2
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( minus_minus @ int @ B2 @ R2 ) ) ) ) ) ) ).
% zminus1_lemma
thf(fact_2463_divide__le__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W: num] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_2464_le__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W: num,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_2465_square__le__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ) ).
% square_le_1
thf(fact_2466_minus__power__mult__self,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [A2: A,N: nat] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N ) @ ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N ) )
= ( power_power @ A @ A2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% minus_power_mult_self
thf(fact_2467_minus__one__power__iff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat] :
( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N )
= ( one_one @ A ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% minus_one_power_iff
thf(fact_2468_minus__1__div__exp__eq__int,axiom,
! [N: nat] :
( ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ).
% minus_1_div_exp_eq_int
thf(fact_2469_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ ( plus_plus @ int @ K @ L ) @ ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ K @ L )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_2470_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) ) ).
% signed_take_bit_int_greater_eq_minus_exp
thf(fact_2471_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ K )
= ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) @ K ) ) ).
% signed_take_bit_int_less_eq_self_iff
thf(fact_2472_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less @ int @ K @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) )
= ( ord_less @ int @ K @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_2473_power__minus1__odd,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% power_minus1_odd
thf(fact_2474_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ ( zero_zero @ int ) )
=> ( ( P @ ( uminus_uminus @ int @ ( one_one @ int ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( zero_zero @ int ) )
=> ( P @ ( times_times @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus @ int @ ( one_one @ int ) ) )
=> ( P @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_2475_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_ri4674362597316999326ke_bit @ int @ N @ K )
= K )
= ( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) @ K )
& ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_2476_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) @ K )
=> ( ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( bit_ri4674362597316999326ke_bit @ int @ N @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_2477_option_Osize__gen_I1_J,axiom,
! [A: $tType,X: A > nat] :
( ( size_option @ A @ X @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size_gen(1)
thf(fact_2478_ln__one__plus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ X @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) ) ) ) ).
% ln_one_plus_pos_lower_bound
thf(fact_2479_signed__take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less @ int @ K @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N ) ) ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_2480_ln__2__less__1,axiom,
ord_less @ real @ ( ln_ln @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ).
% ln_2_less_1
thf(fact_2481_and__int_Oelims,axiom,
! [X: int,Xa2: int,Y: int] :
( ( ( bit_se5824344872417868541ns_and @ int @ X @ Xa2 )
= Y )
=> ( ( ( ( member @ int @ X @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member @ int @ X @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ X @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ Xa2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_2482_and__int_Osimps,axiom,
( ( bit_se5824344872417868541ns_and @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( member @ int @ K3 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
@ ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) ) )
@ ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_2483_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_2484_tanh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( tanh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( minus_minus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ).
% tanh_ln_real
thf(fact_2485_signed__take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ ( minus_minus @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) @ ( one_one @ int ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_Suc_minus_bit1
thf(fact_2486_abs__ln__one__plus__x__minus__x__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound
thf(fact_2487_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y32: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y32 ) )
= ( X32 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_2488_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_2489_abs__idempotent,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( abs_abs @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_idempotent
thf(fact_2490_and_Oidem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ A2 )
= A2 ) ) ).
% and.idem
thf(fact_2491_and_Oleft__idem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) ) ) ).
% and.left_idem
thf(fact_2492_and_Oright__idem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) @ B2 )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) ) ) ).
% and.right_idem
thf(fact_2493_Compl__eq__Compl__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( uminus_uminus @ ( set @ A ) @ A3 )
= ( uminus_uminus @ ( set @ A ) @ B3 ) )
= ( A3 = B3 ) ) ).
% Compl_eq_Compl_iff
thf(fact_2494_Compl__iff,axiom,
! [A: $tType,C2: A,A3: set @ A] :
( ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= ( ~ ( member @ A @ C2 @ A3 ) ) ) ).
% Compl_iff
thf(fact_2495_ComplI,axiom,
! [A: $tType,C2: A,A3: set @ A] :
( ~ ( member @ A @ C2 @ A3 )
=> ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A3 ) ) ) ).
% ComplI
thf(fact_2496_abs__0,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( abs_abs @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% abs_0
thf(fact_2497_abs__0__eq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( abs_abs @ A @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_0_eq
thf(fact_2498_abs__eq__0,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ( abs_abs @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_eq_0
thf(fact_2499_abs__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ( ( abs_abs @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% abs_zero
thf(fact_2500_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_2501_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_2502_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one2 ) ).
% semiring_norm(86)
thf(fact_2503_semiring__norm_I84_J,axiom,
! [N: num] :
( one2
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_2504_abs__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] :
( ( abs_abs @ A @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ N ) ) ) ).
% abs_numeral
thf(fact_2505_abs__mult__self__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ A2 ) )
= ( times_times @ A @ A2 @ A2 ) ) ) ).
% abs_mult_self_eq
thf(fact_2506_abs__add__abs,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) )
= ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_add_abs
thf(fact_2507_abs__divide,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_divide
thf(fact_2508_abs__minus__cancel,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( uminus_uminus @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_minus_cancel
thf(fact_2509_and__zero__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% and_zero_eq
thf(fact_2510_zero__and__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% zero_and_eq
thf(fact_2511_bit_Oconj__zero__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( zero_zero @ A ) @ X )
= ( zero_zero @ A ) ) ) ).
% bit.conj_zero_left
thf(fact_2512_bit_Oconj__zero__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% bit.conj_zero_right
thf(fact_2513_tanh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tanh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% tanh_0
thf(fact_2514_tanh__real__zero__iff,axiom,
! [X: real] :
( ( ( tanh @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% tanh_real_zero_iff
thf(fact_2515_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq @ num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq @ num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_2516_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less @ num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less @ num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_2517_abs__of__nonneg,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( abs_abs @ A @ A2 )
= A2 ) ) ) ).
% abs_of_nonneg
thf(fact_2518_abs__le__self__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ A2 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% abs_le_self_iff
thf(fact_2519_abs__le__zero__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_le_zero_iff
thf(fact_2520_zero__less__abs__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( abs_abs @ A @ A2 ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_abs_iff
thf(fact_2521_abs__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num] :
( ( abs_abs @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( numeral_numeral @ A @ N ) ) ) ).
% abs_neg_numeral
thf(fact_2522_abs__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( abs_abs @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( one_one @ A ) ) ) ).
% abs_neg_one
thf(fact_2523_abs__power__minus,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( abs_abs @ A @ ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N ) )
= ( abs_abs @ A @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% abs_power_minus
thf(fact_2524_and_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ A2 )
= A2 ) ) ).
% and.left_neutral
thf(fact_2525_and_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= A2 ) ) ).
% and.right_neutral
thf(fact_2526_bit_Oconj__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= X ) ) ).
% bit.conj_one_right
thf(fact_2527_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus @ num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus @ num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_2528_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus @ num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus @ num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_2529_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times @ num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times @ num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_2530_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times @ num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times @ num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_2531_and__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
| ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% and_nonnegative_int_iff
thf(fact_2532_and__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
& ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% and_negative_int_iff
thf(fact_2533_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq @ num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq @ num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_2534_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less @ num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less @ num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_2535_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq @ num @ ( bit1 @ M ) @ one2 ) ).
% semiring_norm(70)
thf(fact_2536_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less @ num @ one2 @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_2537_tanh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( tanh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% tanh_real_neg_iff
thf(fact_2538_tanh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( tanh @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% tanh_real_pos_iff
thf(fact_2539_tanh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( tanh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% tanh_real_nonpos_iff
thf(fact_2540_tanh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( tanh @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% tanh_real_nonneg_iff
thf(fact_2541_zero__le__divide__abs__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( abs_abs @ A @ B2 ) ) )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_2542_divide__le__0__abs__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ ( abs_abs @ A @ B2 ) ) @ ( zero_zero @ A ) )
= ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_le_0_abs_iff
thf(fact_2543_abs__of__nonpos,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% abs_of_nonpos
thf(fact_2544_and__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( one_one @ A ) ) ) ).
% and_numerals(2)
thf(fact_2545_and__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% and_numerals(8)
thf(fact_2546_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide @ int @ ( numeral_numeral @ int @ ( bit1 @ V ) ) @ ( numeral_numeral @ int @ ( bit0 @ W ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ V ) @ ( numeral_numeral @ int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_2547_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus @ num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus @ num @ ( plus_plus @ num @ M @ N ) @ one2 ) ) ) ).
% semiring_norm(10)
thf(fact_2548_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus @ num @ ( bit1 @ M ) @ one2 )
= ( bit0 @ ( plus_plus @ num @ M @ one2 ) ) ) ).
% semiring_norm(8)
thf(fact_2549_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus @ num @ ( bit0 @ M ) @ one2 )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_2550_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus @ num @ one2 @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus @ num @ N @ one2 ) ) ) ).
% semiring_norm(4)
thf(fact_2551_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus @ num @ one2 @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_2552_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times @ num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus @ num @ ( plus_plus @ num @ M @ N ) @ ( bit0 @ ( times_times @ num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_2553_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq @ num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less @ num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_2554_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less @ num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq @ num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_2555_zero__less__power__abs__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N ) )
= ( ( A2
!= ( zero_zero @ A ) )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% zero_less_power_abs_iff
thf(fact_2556_and__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% and_numerals(5)
thf(fact_2557_and__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( zero_zero @ A ) ) ) ).
% and_numerals(1)
thf(fact_2558_abs__power2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% abs_power2
thf(fact_2559_power2__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( power_power @ A @ ( abs_abs @ A @ A2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% power2_abs
thf(fact_2560_and__numerals_I3_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% and_numerals(3)
thf(fact_2561_and__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( one_one @ int ) ) ).
% and_minus_numerals(2)
thf(fact_2562_and__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) @ ( one_one @ int ) )
= ( one_one @ int ) ) ).
% and_minus_numerals(6)
thf(fact_2563_and__numerals_I6_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% and_numerals(6)
thf(fact_2564_and__numerals_I4_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% and_numerals(4)
thf(fact_2565_power__even__abs__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [W: num,A2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W ) )
=> ( ( power_power @ A @ ( abs_abs @ A @ A2 ) @ ( numeral_numeral @ nat @ W ) )
= ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W ) ) ) ) ) ).
% power_even_abs_numeral
thf(fact_2566_div__Suc__eq__div__add3,axiom,
! [M: nat,N: nat] :
( ( divide_divide @ nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( divide_divide @ nat @ M @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_2567_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral @ nat @ V ) )
= ( divide_divide @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ ( numeral_numeral @ nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_2568_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo @ nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( modulo_modulo @ nat @ M @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_2569_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral @ nat @ V ) )
= ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ ( numeral_numeral @ nat @ V ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_2570_and__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) @ ( one_one @ int ) )
= ( zero_zero @ int ) ) ).
% and_minus_numerals(5)
thf(fact_2571_and__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( zero_zero @ int ) ) ).
% and_minus_numerals(1)
thf(fact_2572_and__numerals_I7_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% and_numerals(7)
thf(fact_2573_zmod__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ ( bit1 @ V ) ) @ ( numeral_numeral @ int @ ( bit0 @ W ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ V ) @ ( numeral_numeral @ int @ W ) ) ) @ ( one_one @ int ) ) ) ).
% zmod_numeral_Bit1
thf(fact_2574_signed__take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N ) @ ( numeral_numeral @ int @ ( bit1 @ K ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_Suc_bit1
thf(fact_2575_double__complement,axiom,
! [A: $tType,A3: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= A3 ) ).
% double_complement
thf(fact_2576_ComplD,axiom,
! [A: $tType,C2: A,A3: set @ A] :
( ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
=> ~ ( member @ A @ C2 @ A3 ) ) ).
% ComplD
thf(fact_2577_Compl__eq,axiom,
! [A: $tType] :
( ( uminus_uminus @ ( set @ A ) )
= ( ^ [A7: set @ A] :
( collect @ A
@ ^ [X6: A] :
~ ( member @ A @ X6 @ A7 ) ) ) ) ).
% Compl_eq
thf(fact_2578_Collect__neg__eq,axiom,
! [A: $tType,P: A > $o] :
( ( collect @ A
@ ^ [X6: A] :
~ ( P @ X6 ) )
= ( uminus_uminus @ ( set @ A ) @ ( collect @ A @ P ) ) ) ).
% Collect_neg_eq
thf(fact_2579_uminus__set__def,axiom,
! [A: $tType] :
( ( uminus_uminus @ ( set @ A ) )
= ( ^ [A7: set @ A] :
( collect @ A
@ ( uminus_uminus @ ( A > $o )
@ ^ [X6: A] : ( member @ A @ X6 @ A7 ) ) ) ) ) ).
% uminus_set_def
thf(fact_2580_and_Oassoc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) @ C2 )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_se5824344872417868541ns_and @ A @ B2 @ C2 ) ) ) ) ).
% and.assoc
thf(fact_2581_and_Ocommute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5824344872417868541ns_and @ A )
= ( ^ [A4: A,B4: A] : ( bit_se5824344872417868541ns_and @ A @ B4 @ A4 ) ) ) ) ).
% and.commute
thf(fact_2582_and_Oleft__commute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( bit_se5824344872417868541ns_and @ A @ B2 @ ( bit_se5824344872417868541ns_and @ A @ A2 @ C2 ) )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_se5824344872417868541ns_and @ A @ B2 @ C2 ) ) ) ) ).
% and.left_commute
thf(fact_2583_abs__le__D1,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% abs_le_D1
thf(fact_2584_abs__ge__self,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_self
thf(fact_2585_abs__eq__0__iff,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( ( abs_abs @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_eq_0_iff
thf(fact_2586_abs__mult,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_mult
thf(fact_2587_abs__minus__commute,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( abs_abs @ A @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ).
% abs_minus_commute
thf(fact_2588_power__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( abs_abs @ A @ ( power_power @ A @ A2 @ N ) )
= ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N ) ) ) ).
% power_abs
thf(fact_2589_verit__eq__simplify_I14_J,axiom,
! [X2: num,X32: num] :
( ( bit0 @ X2 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_2590_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one2
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_2591_and__eq__minus__1__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ( A2
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
& ( B2
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% and_eq_minus_1_iff
thf(fact_2592_abs__ge__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_zero
thf(fact_2593_abs__not__less__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ ( zero_zero @ A ) ) ) ).
% abs_not_less_zero
thf(fact_2594_abs__of__pos,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( abs_abs @ A @ A2 )
= A2 ) ) ) ).
% abs_of_pos
thf(fact_2595_abs__triangle__ineq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_triangle_ineq
thf(fact_2596_abs__mult__less,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ C2 )
=> ( ( ord_less @ A @ ( abs_abs @ A @ B2 ) @ D2 )
=> ( ord_less @ A @ ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( times_times @ A @ C2 @ D2 ) ) ) ) ) ).
% abs_mult_less
thf(fact_2597_abs__triangle__ineq2__sym,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_2598_abs__triangle__ineq3,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% abs_triangle_ineq3
thf(fact_2599_abs__triangle__ineq2,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% abs_triangle_ineq2
thf(fact_2600_nonzero__abs__divide,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% nonzero_abs_divide
thf(fact_2601_abs__leI,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_leI
thf(fact_2602_abs__le__D2,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% abs_le_D2
thf(fact_2603_abs__le__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
= ( ( ord_less_eq @ A @ A2 @ B2 )
& ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_le_iff
thf(fact_2604_abs__ge__minus__self,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_minus_self
thf(fact_2605_abs__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ B2 )
= ( ( ord_less @ A @ A2 @ B2 )
& ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_less_iff
thf(fact_2606_AND__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) ) ) ).
% AND_lower
thf(fact_2607_AND__upper1,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ X ) ) ).
% AND_upper1
thf(fact_2608_AND__upper2,axiom,
! [Y: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Y ) ) ).
% AND_upper2
thf(fact_2609_AND__upper1_H,axiom,
! [Y: int,Z2: int,Ya: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less_eq @ int @ Y @ Z2 )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ Y @ Ya ) @ Z2 ) ) ) ).
% AND_upper1'
thf(fact_2610_AND__upper2_H,axiom,
! [Y: int,Z2: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less_eq @ int @ Y @ Z2 )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Z2 ) ) ) ).
% AND_upper2'
thf(fact_2611_abs__real__def,axiom,
( ( abs_abs @ real )
= ( ^ [A4: real] : ( if @ real @ ( ord_less @ real @ A4 @ ( zero_zero @ real ) ) @ ( uminus_uminus @ real @ A4 ) @ A4 ) ) ) ).
% abs_real_def
thf(fact_2612_xor__num_Ocases,axiom,
! [X: product_prod @ num @ num] :
( ( X
!= ( product_Pair @ num @ num @ one2 @ one2 ) )
=> ( ! [N2: num] :
( X
!= ( product_Pair @ num @ num @ one2 @ ( bit0 @ N2 ) ) )
=> ( ! [N2: num] :
( X
!= ( product_Pair @ num @ num @ one2 @ ( bit1 @ N2 ) ) )
=> ( ! [M3: num] :
( X
!= ( product_Pair @ num @ num @ ( bit0 @ M3 ) @ one2 ) )
=> ( ! [M3: num,N2: num] :
( X
!= ( product_Pair @ num @ num @ ( bit0 @ M3 ) @ ( bit0 @ N2 ) ) )
=> ( ! [M3: num,N2: num] :
( X
!= ( product_Pair @ num @ num @ ( bit0 @ M3 ) @ ( bit1 @ N2 ) ) )
=> ( ! [M3: num] :
( X
!= ( product_Pair @ num @ num @ ( bit1 @ M3 ) @ one2 ) )
=> ( ! [M3: num,N2: num] :
( X
!= ( product_Pair @ num @ num @ ( bit1 @ M3 ) @ ( bit0 @ N2 ) ) )
=> ~ ! [M3: num,N2: num] :
( X
!= ( product_Pair @ num @ num @ ( bit1 @ M3 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.cases
thf(fact_2613_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one2 )
=> ( ! [X23: num] :
( Y
!= ( bit0 @ X23 ) )
=> ~ ! [X33: num] :
( Y
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_2614_dense__eq0__I,axiom,
! [A: $tType] :
( ( ( ordere166539214618696060dd_abs @ A )
& ( dense_linorder @ A ) )
=> ! [X: A] :
( ! [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ E ) )
=> ( X
= ( zero_zero @ A ) ) ) ) ).
% dense_eq0_I
thf(fact_2615_abs__mult__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( times_times @ A @ ( abs_abs @ A @ Y ) @ X )
= ( abs_abs @ A @ ( times_times @ A @ Y @ X ) ) ) ) ) ).
% abs_mult_pos
thf(fact_2616_abs__eq__mult,axiom,
! [A: $tType] :
( ( ordered_ring_abs @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
| ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
& ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
| ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ( abs_abs @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% abs_eq_mult
thf(fact_2617_abs__minus__le__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( abs_abs @ A @ A2 ) ) @ ( zero_zero @ A ) ) ) ).
% abs_minus_le_zero
thf(fact_2618_eq__abs__iff_H,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( abs_abs @ A @ B2 ) )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ( B2 = A2 )
| ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_2619_abs__eq__iff_H,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( abs_abs @ A @ A2 )
= B2 )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
& ( ( A2 = B2 )
| ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_2620_abs__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( divide_divide @ A @ ( abs_abs @ A @ X ) @ Y )
= ( abs_abs @ A @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% abs_div_pos
thf(fact_2621_zero__le__power__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N ) ) ) ).
% zero_le_power_abs
thf(fact_2622_abs__if,axiom,
! [A: $tType] :
( ( abs_if @ A )
=> ( ( abs_abs @ A )
= ( ^ [A4: A] : ( if @ A @ ( ord_less @ A @ A4 @ ( zero_zero @ A ) ) @ ( uminus_uminus @ A @ A4 ) @ A4 ) ) ) ) ).
% abs_if
thf(fact_2623_abs__of__neg,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% abs_of_neg
thf(fact_2624_abs__if__raw,axiom,
! [A: $tType] :
( ( abs_if @ A )
=> ( ( abs_abs @ A )
= ( ^ [A4: A] : ( if @ A @ ( ord_less @ A @ A4 @ ( zero_zero @ A ) ) @ ( uminus_uminus @ A @ A4 ) @ A4 ) ) ) ) ).
% abs_if_raw
thf(fact_2625_abs__diff__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,A2: A,R2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ A2 ) ) @ R2 )
= ( ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ R2 ) @ X )
& ( ord_less_eq @ A @ X @ ( plus_plus @ A @ A2 @ R2 ) ) ) ) ) ).
% abs_diff_le_iff
thf(fact_2626_abs__triangle__ineq4,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_triangle_ineq4
thf(fact_2627_abs__diff__triangle__ineq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ C2 @ D2 ) ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ C2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_2628_abs__diff__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,A2: A,R2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ A2 ) ) @ R2 )
= ( ( ord_less @ A @ ( minus_minus @ A @ A2 @ R2 ) @ X )
& ( ord_less @ A @ X @ ( plus_plus @ A @ A2 @ R2 ) ) ) ) ) ).
% abs_diff_less_iff
thf(fact_2629_and__less__eq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) @ K ) ) ).
% and_less_eq
thf(fact_2630_AND__upper1_H_H,axiom,
! [Y: int,Z2: int,Ya: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less @ int @ Y @ Z2 )
=> ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ Y @ Ya ) @ Z2 ) ) ) ).
% AND_upper1''
thf(fact_2631_AND__upper2_H_H,axiom,
! [Y: int,Z2: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less @ int @ Y @ Z2 )
=> ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Z2 ) ) ) ).
% AND_upper2''
thf(fact_2632_numeral__Bit1,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ ( bit1 @ N ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ N ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_Bit1
thf(fact_2633_eval__nat__numeral_I3_J,axiom,
! [N: num] :
( ( numeral_numeral @ nat @ ( bit1 @ N ) )
= ( suc @ ( numeral_numeral @ nat @ ( bit0 @ N ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_2634_cong__exp__iff__simps_I13_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q2 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_2635_cong__exp__iff__simps_I12_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num,N: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_2636_cong__exp__iff__simps_I10_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num,N: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_2637_power__minus__Bit1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A,K: num] :
( ( power_power @ A @ ( uminus_uminus @ A @ X ) @ ( numeral_numeral @ nat @ ( bit1 @ K ) ) )
= ( uminus_uminus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit1 @ K ) ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_2638_lemma__interval__lt,axiom,
! [A2: real,X: real,B2: real] :
( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [Y4: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y4 ) ) @ D4 )
=> ( ( ord_less @ real @ A2 @ Y4 )
& ( ord_less @ real @ Y4 @ B2 ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_2639_numeral__code_I3_J,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ ( bit1 @ N ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ N ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_code(3)
thf(fact_2640_power__numeral__odd,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [Z2: A,W: num] :
( ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ ( bit1 @ W ) ) )
= ( times_times @ A @ ( times_times @ A @ Z2 @ ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ W ) ) ) @ ( power_power @ A @ Z2 @ ( numeral_numeral @ nat @ W ) ) ) ) ) ).
% power_numeral_odd
thf(fact_2641_even__and__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_and_iff
thf(fact_2642_abs__add__one__gt__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] : ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( abs_abs @ A @ X ) ) ) ) ).
% abs_add_one_gt_zero
thf(fact_2643_even__and__iff__int,axiom,
! [K: int,L: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) )
= ( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K )
| ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L ) ) ) ).
% even_and_iff_int
thf(fact_2644_numeral__Bit1__div__2,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: num] :
( ( divide_divide @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( numeral_numeral @ A @ N ) ) ) ).
% numeral_Bit1_div_2
thf(fact_2645_odd__numeral,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N: num] :
~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ A @ ( bit1 @ N ) ) ) ) ).
% odd_numeral
thf(fact_2646_cong__exp__iff__simps_I3_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num,Q2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
!= ( zero_zero @ A ) ) ) ).
% cong_exp_iff_simps(3)
thf(fact_2647_power3__eq__cube,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
= ( times_times @ A @ ( times_times @ A @ A2 @ A2 ) @ A2 ) ) ) ).
% power3_eq_cube
thf(fact_2648_numeral__3__eq__3,axiom,
( ( numeral_numeral @ nat @ ( bit1 @ one2 ) )
= ( suc @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% numeral_3_eq_3
thf(fact_2649_Suc3__eq__add__3,axiom,
! [N: nat] :
( ( suc @ ( suc @ ( suc @ N ) ) )
= ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N ) ) ).
% Suc3_eq_add_3
thf(fact_2650_lemma__interval,axiom,
! [A2: real,X: real,B2: real] :
( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [Y4: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y4 ) ) @ D4 )
=> ( ( ord_less_eq @ real @ A2 @ Y4 )
& ( ord_less_eq @ real @ Y4 @ B2 ) ) ) ) ) ) ).
% lemma_interval
thf(fact_2651_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ nat ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( one_one @ nat ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_2652_and__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( one_one @ A ) )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% and_one_eq
thf(fact_2653_one__and__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ A2 )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% one_and_eq
thf(fact_2654_abs__le__square__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ ( abs_abs @ A @ Y ) )
= ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_2655_abs__square__eq__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
= ( ( abs_abs @ A @ X )
= ( one_one @ A ) ) ) ) ).
% abs_square_eq_1
thf(fact_2656_num_Osize__gen_I3_J,axiom,
! [X32: num] :
( ( size_num @ ( bit1 @ X32 ) )
= ( plus_plus @ nat @ ( size_num @ X32 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size_gen(3)
thf(fact_2657_num_Osize_I6_J,axiom,
! [X32: num] :
( ( size_size @ num @ ( bit1 @ X32 ) )
= ( plus_plus @ nat @ ( size_size @ num @ X32 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size(6)
thf(fact_2658_power__even__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N )
= ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_even_abs
thf(fact_2659_cong__exp__iff__simps_I11_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q2: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q2 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(11)
thf(fact_2660_cong__exp__iff__simps_I7_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q2: num,N: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N ) @ ( numeral_numeral @ A @ Q2 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(7)
thf(fact_2661_Suc__div__eq__add3__div,axiom,
! [M: nat,N: nat] :
( ( divide_divide @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( divide_divide @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ N ) ) ).
% Suc_div_eq_add3_div
thf(fact_2662_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ N ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_2663_abs__sqrt__wlog,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P: A > A > $o,X: A] :
( ! [X5: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X5 )
=> ( P @ X5 @ ( power_power @ A @ X5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ ( abs_abs @ A @ X ) @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_2664_power2__le__iff__abs__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ Y ) ) ) ) ).
% power2_le_iff_abs_le
thf(fact_2665_abs__square__le__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% abs_square_le_1
thf(fact_2666_abs__square__less__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) )
= ( ord_less @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% abs_square_less_1
thf(fact_2667_power__mono__even,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ).
% power_mono_even
thf(fact_2668_and__int__rec,axiom,
( ( bit_se5824344872417868541ns_and @ int )
= ( ^ [K3: int,L2: int] :
( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% and_int_rec
thf(fact_2669_and__int__unfold,axiom,
( ( bit_se5824344872417868541ns_and @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( K3
= ( zero_zero @ int ) )
| ( L2
= ( zero_zero @ int ) ) )
@ ( zero_zero @ int )
@ ( if @ int
@ ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ L2
@ ( if @ int
@ ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ K3
@ ( plus_plus @ int @ ( times_times @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% and_int_unfold
thf(fact_2670_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_2671_odd__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
=> ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_2672_signed__take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ ( pred_numeral @ L ) @ ( minus_minus @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) @ ( one_one @ int ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_numeral_minus_bit1
thf(fact_2673_dbl__dec__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit1 @ one2 ) ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_2674_divmod__algorithm__code_I7_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( ( ord_less_eq @ num @ M @ N )
=> ( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq @ num @ M @ N )
=> ( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( unique1321980374590559556d_step @ A @ ( bit1 @ N ) @ ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_2675_divmod__algorithm__code_I8_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( ( ord_less @ num @ M @ N )
=> ( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less @ num @ M @ N )
=> ( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( unique1321980374590559556d_step @ A @ ( bit1 @ N ) @ ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_2676_signed__take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ int @ ( bit1 @ K ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ ( pred_numeral @ L ) @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_numeral_bit1
thf(fact_2677_and__int_Opsimps,axiom,
! [K: int,L: int] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ K @ L ) )
=> ( ( ( ( member @ int @ K @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( ( bit_se5824344872417868541ns_and @ int @ K @ L )
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L ) ) ) ) ) )
& ( ~ ( ( member @ int @ K @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( ( bit_se5824344872417868541ns_and @ int @ K @ L )
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_2678_dbl__dec__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% dbl_dec_simps(3)
thf(fact_2679_zabs__less__one__iff,axiom,
! [Z2: int] :
( ( ord_less @ int @ ( abs_abs @ int @ Z2 ) @ ( one_one @ int ) )
= ( Z2
= ( zero_zero @ int ) ) ) ).
% zabs_less_one_iff
thf(fact_2680_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one2 )
= ( zero_zero @ nat ) ) ).
% pred_numeral_simps(1)
thf(fact_2681_Suc__eq__numeral,axiom,
! [N: nat,K: num] :
( ( ( suc @ N )
= ( numeral_numeral @ nat @ K ) )
= ( N
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_2682_eq__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral @ nat @ K )
= ( suc @ N ) )
= ( ( pred_numeral @ K )
= N ) ) ).
% eq_numeral_Suc
thf(fact_2683_and__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( zero_zero @ nat ) ) ).
% and_nat_numerals(1)
thf(fact_2684_and__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% and_nat_numerals(3)
thf(fact_2685_less__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N ) )
= ( ord_less @ nat @ ( pred_numeral @ K ) @ N ) ) ).
% less_numeral_Suc
thf(fact_2686_less__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ K ) )
= ( ord_less @ nat @ N @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_2687_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral @ nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_2688_le__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ K ) )
= ( ord_less_eq @ nat @ N @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_2689_le__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N ) )
= ( ord_less_eq @ nat @ ( pred_numeral @ K ) @ N ) ) ).
% le_numeral_Suc
thf(fact_2690_diff__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( minus_minus @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ K ) )
= ( minus_minus @ nat @ N @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_2691_diff__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N ) )
= ( minus_minus @ nat @ ( pred_numeral @ K ) @ N ) ) ).
% diff_numeral_Suc
thf(fact_2692_max__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_max @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ K ) )
= ( suc @ ( ord_max @ nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_2693_max__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_max @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_max @ nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% max_numeral_Suc
thf(fact_2694_dbl__dec__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( zero_zero @ A ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% dbl_dec_simps(2)
thf(fact_2695_and__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( one_one @ nat ) ) ).
% and_nat_numerals(2)
thf(fact_2696_and__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ nat ) ) ).
% and_nat_numerals(4)
thf(fact_2697_dvd__numeral__simp,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( unique5940410009612947441es_aux @ A @ ( unique8689654367752047608divmod @ A @ N @ M ) ) ) ) ).
% dvd_numeral_simp
thf(fact_2698_divmod__algorithm__code_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num] :
( ( unique8689654367752047608divmod @ A @ M @ one2 )
= ( product_Pair @ A @ A @ ( numeral_numeral @ A @ M ) @ ( zero_zero @ A ) ) ) ) ).
% divmod_algorithm_code(2)
thf(fact_2699_and__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se5824344872417868541ns_and @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% and_Suc_0_eq
thf(fact_2700_Suc__0__and__eq,axiom,
! [N: nat] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( modulo_modulo @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Suc_0_and_eq
thf(fact_2701_divmod__algorithm__code_I3_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num] :
( ( unique8689654367752047608divmod @ A @ one2 @ ( bit0 @ N ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_2702_divmod__algorithm__code_I4_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num] :
( ( unique8689654367752047608divmod @ A @ one2 @ ( bit1 @ N ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_2703_one__div__minus__numeral,axiom,
! [N: num] :
( ( divide_divide @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ one2 @ N ) ) ) ) ).
% one_div_minus_numeral
thf(fact_2704_minus__one__div__numeral,axiom,
! [N: num] :
( ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ one2 @ N ) ) ) ) ).
% minus_one_div_numeral
thf(fact_2705_signed__take__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ int @ ( bit0 @ K ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ ( pred_numeral @ L ) @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_numeral_bit0
thf(fact_2706_signed__take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ ( pred_numeral @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_numeral_minus_bit0
thf(fact_2707_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( ( abs_abs @ int @ ( times_times @ int @ M @ N ) )
= ( one_one @ int ) )
=> ( ( abs_abs @ int @ M )
= ( one_one @ int ) ) ) ).
% abs_zmult_eq_1
thf(fact_2708_numeral__eq__Suc,axiom,
( ( numeral_numeral @ nat )
= ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_2709_zabs__def,axiom,
( ( abs_abs @ int )
= ( ^ [I: int] : ( if @ int @ ( ord_less @ int @ I @ ( zero_zero @ int ) ) @ ( uminus_uminus @ int @ I ) @ I ) ) ) ).
% zabs_def
thf(fact_2710_dvd__imp__le__int,axiom,
! [I3: int,D2: int] :
( ( I3
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ D2 @ I3 )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ D2 ) @ ( abs_abs @ int @ I3 ) ) ) ) ).
% dvd_imp_le_int
thf(fact_2711_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ord_less @ int @ ( abs_abs @ int @ ( modulo_modulo @ int @ K @ L ) ) @ ( abs_abs @ int @ L ) ) ) ).
% abs_mod_less
thf(fact_2712_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K3: num] : ( minus_minus @ nat @ ( numeral_numeral @ nat @ K3 ) @ ( one_one @ nat ) ) ) ) ).
% pred_numeral_def
thf(fact_2713_zdvd__mult__cancel1,axiom,
! [M: int,N: int] :
( ( M
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ ( times_times @ int @ M @ N ) @ M )
= ( ( abs_abs @ int @ N )
= ( one_one @ int ) ) ) ) ).
% zdvd_mult_cancel1
thf(fact_2714_even__abs__add__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( plus_plus @ int @ ( abs_abs @ int @ K ) @ L ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( plus_plus @ int @ K @ L ) ) ) ).
% even_abs_add_iff
thf(fact_2715_even__add__abs__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( plus_plus @ int @ K @ ( abs_abs @ int @ L ) ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( plus_plus @ int @ K @ L ) ) ) ).
% even_add_abs_iff
thf(fact_2716_divmod__int__def,axiom,
( ( unique8689654367752047608divmod @ int )
= ( ^ [M4: num,N3: num] : ( product_Pair @ int @ int @ ( divide_divide @ int @ ( numeral_numeral @ int @ M4 ) @ ( numeral_numeral @ int @ N3 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ M4 ) @ ( numeral_numeral @ int @ N3 ) ) ) ) ) ).
% divmod_int_def
thf(fact_2717_divmod__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique8689654367752047608divmod @ A )
= ( ^ [M4: num,N3: num] : ( product_Pair @ A @ A @ ( divide_divide @ A @ ( numeral_numeral @ A @ M4 ) @ ( numeral_numeral @ A @ N3 ) ) @ ( modulo_modulo @ A @ ( numeral_numeral @ A @ M4 ) @ ( numeral_numeral @ A @ N3 ) ) ) ) ) ) ).
% divmod_def
thf(fact_2718_divmod_H__nat__def,axiom,
( ( unique8689654367752047608divmod @ nat )
= ( ^ [M4: num,N3: num] : ( product_Pair @ nat @ nat @ ( divide_divide @ nat @ ( numeral_numeral @ nat @ M4 ) @ ( numeral_numeral @ nat @ N3 ) ) @ ( modulo_modulo @ nat @ ( numeral_numeral @ nat @ M4 ) @ ( numeral_numeral @ nat @ N3 ) ) ) ) ) ).
% divmod'_nat_def
thf(fact_2719_nat__intermed__int__val,axiom,
! [M: nat,N: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ( ord_less_eq @ nat @ M @ I2 )
& ( ord_less @ nat @ I2 @ N ) )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ int @ ( F2 @ M ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ M @ I2 )
& ( ord_less_eq @ nat @ I2 @ N )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_2720_dbl__dec__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A )
= ( ^ [X6: A] : ( minus_minus @ A @ ( plus_plus @ A @ X6 @ X6 ) @ ( one_one @ A ) ) ) ) ) ).
% dbl_dec_def
thf(fact_2721_decr__lemma,axiom,
! [D2: int,X: int,Z2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ord_less @ int @ ( minus_minus @ int @ X @ ( times_times @ int @ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ X @ Z2 ) ) @ ( one_one @ int ) ) @ D2 ) ) @ Z2 ) ) ).
% decr_lemma
thf(fact_2722_incr__lemma,axiom,
! [D2: int,Z2: int,X: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ord_less @ int @ Z2 @ ( plus_plus @ int @ X @ ( times_times @ int @ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ X @ Z2 ) ) @ ( one_one @ int ) ) @ D2 ) ) ) ) ).
% incr_lemma
thf(fact_2723_nat__ivt__aux,axiom,
! [N: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ int @ ( F2 @ ( zero_zero @ nat ) ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ I2 @ N )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_2724_and__nat__unfold,axiom,
( ( bit_se5824344872417868541ns_and @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( ( M4
= ( zero_zero @ nat ) )
| ( N3
= ( zero_zero @ nat ) ) )
@ ( zero_zero @ nat )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( modulo_modulo @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_2725_and__nat__rec,axiom,
( ( bit_se5824344872417868541ns_and @ nat )
= ( ^ [M4: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M4 )
& ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_2726_nat0__intermed__int__val,axiom,
! [N: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( plus_plus @ nat @ I2 @ ( one_one @ nat ) ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ int @ ( F2 @ ( zero_zero @ nat ) ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ I2 @ N )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_2727_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ A0 @ A1 ) )
=> ( ! [K2: int,L3: int] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ K2 @ L3 ) )
=> ( ( ~ ( ( member @ int @ K2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L3 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( P @ ( divide_divide @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ K2 @ L3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% and_int.pinduct
thf(fact_2728_divmod__divmod__step,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique8689654367752047608divmod @ A )
= ( ^ [M4: num,N3: num] : ( if @ ( product_prod @ A @ A ) @ ( ord_less @ num @ M4 @ N3 ) @ ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ M4 ) ) @ ( unique1321980374590559556d_step @ A @ N3 @ ( unique8689654367752047608divmod @ A @ M4 @ ( bit0 @ N3 ) ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_2729_and__int_Opelims,axiom,
! [X: int,Xa2: int,Y: int] :
( ( ( bit_se5824344872417868541ns_and @ int @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) )
=> ~ ( ( ( ( ( member @ int @ X @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member @ int @ X @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert @ int @ ( zero_zero @ int ) @ ( insert @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ X @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ Xa2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) ) ) ) ) ).
% and_int.pelims
thf(fact_2730_upto_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp @ ( product_prod @ int @ int ) @ upto_rel @ ( product_Pair @ int @ int @ A0 @ A1 ) )
=> ( ! [I2: int,J3: int] :
( ( accp @ ( product_prod @ int @ int ) @ upto_rel @ ( product_Pair @ int @ int @ I2 @ J3 ) )
=> ( ( ( ord_less_eq @ int @ I2 @ J3 )
=> ( P @ ( plus_plus @ int @ I2 @ ( one_one @ int ) ) @ J3 ) )
=> ( P @ I2 @ J3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% upto.pinduct
thf(fact_2731_arctan__double,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( arctan @ X ) )
= ( arctan @ ( divide_divide @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_2732_dbl__inc__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ one2 ) ) ) ) ).
% dbl_inc_simps(3)
thf(fact_2733_of__int__code__if,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( ^ [K3: int] :
( if @ A
@ ( K3
= ( zero_zero @ int ) )
@ ( zero_zero @ A )
@ ( if @ A @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ A @ ( ring_1_of_int @ A @ ( uminus_uminus @ int @ K3 ) ) )
@ ( if @ A
@ ( ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( zero_zero @ int ) )
@ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ring_1_of_int @ A @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ring_1_of_int @ A @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( one_one @ A ) ) ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_2734_divmod__algorithm__code_I6_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q4: A,R5: A] : ( product_Pair @ A @ A @ Q4 @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ R5 ) @ ( one_one @ A ) ) )
@ ( unique8689654367752047608divmod @ A @ M @ N ) ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_2735_arctan__eq__zero__iff,axiom,
! [X: real] :
( ( ( arctan @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% arctan_eq_zero_iff
thf(fact_2736_arctan__zero__zero,axiom,
( ( arctan @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% arctan_zero_zero
thf(fact_2737_of__int__eq__0__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int] :
( ( ( ring_1_of_int @ A @ Z2 )
= ( zero_zero @ A ) )
= ( Z2
= ( zero_zero @ int ) ) ) ) ).
% of_int_eq_0_iff
thf(fact_2738_of__int__0__eq__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int] :
( ( ( zero_zero @ A )
= ( ring_1_of_int @ A @ Z2 ) )
= ( Z2
= ( zero_zero @ int ) ) ) ) ).
% of_int_0_eq_iff
thf(fact_2739_of__int__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A @ ( zero_zero @ int ) )
= ( zero_zero @ A ) ) ) ).
% of_int_0
thf(fact_2740_of__int__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: num] :
( ( ring_1_of_int @ A @ ( numeral_numeral @ int @ K ) )
= ( numeral_numeral @ A @ K ) ) ) ).
% of_int_numeral
thf(fact_2741_of__int__eq__numeral__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int,N: num] :
( ( ( ring_1_of_int @ A @ Z2 )
= ( numeral_numeral @ A @ N ) )
= ( Z2
= ( numeral_numeral @ int @ N ) ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_2742_of__int__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [W: int,Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ W ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ W @ Z2 ) ) ) ).
% of_int_less_iff
thf(fact_2743_of__int__mult,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W: int,Z2: int] :
( ( ring_1_of_int @ A @ ( times_times @ int @ W @ Z2 ) )
= ( times_times @ A @ ( ring_1_of_int @ A @ W ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_mult
thf(fact_2744_of__int__add,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W: int,Z2: int] :
( ( ring_1_of_int @ A @ ( plus_plus @ int @ W @ Z2 ) )
= ( plus_plus @ A @ ( ring_1_of_int @ A @ W ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_add
thf(fact_2745_arctan__less__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( arctan @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% arctan_less_zero_iff
thf(fact_2746_zero__less__arctan__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( arctan @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_less_arctan_iff
thf(fact_2747_of__int__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int,N: nat] :
( ( ring_1_of_int @ A @ ( power_power @ int @ Z2 @ N ) )
= ( power_power @ A @ ( ring_1_of_int @ A @ Z2 ) @ N ) ) ) ).
% of_int_power
thf(fact_2748_of__int__eq__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [B2: int,W: nat,X: int] :
( ( ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W )
= ( ring_1_of_int @ A @ X ) )
= ( ( power_power @ int @ B2 @ W )
= X ) ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_2749_of__int__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: int,B2: int,W: nat] :
( ( ( ring_1_of_int @ A @ X )
= ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W ) )
= ( X
= ( power_power @ int @ B2 @ W ) ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_2750_zero__le__arctan__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arctan @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_le_arctan_iff
thf(fact_2751_arctan__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( arctan @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% arctan_le_zero_iff
thf(fact_2752_dbl__inc__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% dbl_inc_simps(2)
thf(fact_2753_dbl__inc__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% dbl_inc_simps(4)
thf(fact_2754_dbl__inc__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_inc @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bit1 @ K ) ) ) ) ).
% dbl_inc_simps(5)
thf(fact_2755_dbl__dec__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_dec @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl_inc @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_2756_dbl__inc__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_inc @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl_dec @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_2757_of__int__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) ) ) ) ).
% of_int_le_0_iff
thf(fact_2758_of__int__0__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% of_int_0_le_iff
thf(fact_2759_of__int__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( zero_zero @ A ) )
= ( ord_less @ int @ Z2 @ ( zero_zero @ int ) ) ) ) ).
% of_int_less_0_iff
thf(fact_2760_of__int__0__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% of_int_0_less_iff
thf(fact_2761_of__int__numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,Z2: int] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ N ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ ( numeral_numeral @ int @ N ) @ Z2 ) ) ) ).
% of_int_numeral_le_iff
thf(fact_2762_of__int__le__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int,N: num] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( numeral_numeral @ A @ N ) )
= ( ord_less_eq @ int @ Z2 @ ( numeral_numeral @ int @ N ) ) ) ) ).
% of_int_le_numeral_iff
thf(fact_2763_of__int__less__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int,N: num] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( numeral_numeral @ A @ N ) )
= ( ord_less @ int @ Z2 @ ( numeral_numeral @ int @ N ) ) ) ) ).
% of_int_less_numeral_iff
thf(fact_2764_of__int__numeral__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,Z2: int] :
( ( ord_less @ A @ ( numeral_numeral @ A @ N ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( numeral_numeral @ int @ N ) @ Z2 ) ) ) ).
% of_int_numeral_less_iff
thf(fact_2765_of__int__1__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( one_one @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( one_one @ int ) @ Z2 ) ) ) ).
% of_int_1_less_iff
thf(fact_2766_of__int__less__1__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) )
= ( ord_less @ int @ Z2 @ ( one_one @ int ) ) ) ) ).
% of_int_less_1_iff
thf(fact_2767_numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: num,N: nat,Y: int] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N )
= ( ring_1_of_int @ A @ Y ) )
= ( ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N )
= Y ) ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_2768_of__int__eq__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Y: int,X: num,N: nat] :
( ( ( ring_1_of_int @ A @ Y )
= ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( Y
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_2769_of__int__le__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: int,W: nat,X: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less_eq @ int @ ( power_power @ int @ B2 @ W ) @ X ) ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_2770_of__int__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,B2: int,W: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ X ) @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W ) )
= ( ord_less_eq @ int @ X @ ( power_power @ int @ B2 @ W ) ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_2771_of__int__less__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: int,W: nat,X: int] :
( ( ord_less @ A @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less @ int @ ( power_power @ int @ B2 @ W ) @ X ) ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_2772_of__int__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,B2: int,W: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ X ) @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W ) )
= ( ord_less @ int @ X @ ( power_power @ int @ B2 @ W ) ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_2773_of__int__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_2774_numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N: nat,A2: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) @ A2 ) ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_2775_numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N: nat,A2: int] :
( ( ord_less @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) @ A2 ) ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_2776_of__int__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_2777_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Y: int,X: num,N: nat] :
( ( ( ring_1_of_int @ A @ Y )
= ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N ) )
= ( Y
= ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N ) ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_2778_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: num,N: nat,Y: int] :
( ( ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N )
= ( ring_1_of_int @ A @ Y ) )
= ( ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N )
= Y ) ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_2779_divmod__algorithm__code_I5_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q4: A,R5: A] : ( product_Pair @ A @ A @ Q4 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ R5 ) )
@ ( unique8689654367752047608divmod @ A @ M @ N ) ) ) ) ).
% divmod_algorithm_code(5)
thf(fact_2780_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N: nat,A2: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N ) @ A2 ) ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_2781_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N ) ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_2782_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N: nat,A2: int] :
( ( ord_less @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N ) @ A2 ) ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_2783_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N ) ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_2784_mult__of__int__commute,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: int,Y: A] :
( ( times_times @ A @ ( ring_1_of_int @ A @ X ) @ Y )
= ( times_times @ A @ Y @ ( ring_1_of_int @ A @ X ) ) ) ) ).
% mult_of_int_commute
thf(fact_2785_of__int__and__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: int,L: int] :
( ( ring_1_of_int @ A @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) )
= ( bit_se5824344872417868541ns_and @ A @ ( ring_1_of_int @ A @ K ) @ ( ring_1_of_int @ A @ L ) ) ) ) ).
% of_int_and_eq
thf(fact_2786_real__of__int__div4,axiom,
! [N: int,X: int] : ( ord_less_eq @ real @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N @ X ) ) @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N ) @ ( ring_1_of_int @ real @ X ) ) ) ).
% real_of_int_div4
thf(fact_2787_real__of__int__div,axiom,
! [D2: int,N: int] :
( ( dvd_dvd @ int @ D2 @ N )
=> ( ( ring_1_of_int @ real @ ( divide_divide @ int @ N @ D2 ) )
= ( divide_divide @ real @ ( ring_1_of_int @ real @ N ) @ ( ring_1_of_int @ real @ D2 ) ) ) ) ).
% real_of_int_div
thf(fact_2788_of__int__nonneg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_nonneg
thf(fact_2789_of__int__leD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: int,X: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ ( ring_1_of_int @ A @ N ) ) @ X )
=> ( ( N
= ( zero_zero @ int ) )
| ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% of_int_leD
thf(fact_2790_of__int__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_pos
thf(fact_2791_of__int__lessD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: int,X: A] :
( ( ord_less @ A @ ( abs_abs @ A @ ( ring_1_of_int @ A @ N ) ) @ X )
=> ( ( N
= ( zero_zero @ int ) )
| ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% of_int_lessD
thf(fact_2792_of__int__neg__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: num] :
( ( ring_1_of_int @ A @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) ) ) ).
% of_int_neg_numeral
thf(fact_2793_int__le__real__less,axiom,
( ( ord_less_eq @ int )
= ( ^ [N3: int,M4: int] : ( ord_less @ real @ ( ring_1_of_int @ real @ N3 ) @ ( plus_plus @ real @ ( ring_1_of_int @ real @ M4 ) @ ( one_one @ real ) ) ) ) ) ).
% int_le_real_less
thf(fact_2794_int__less__real__le,axiom,
( ( ord_less @ int )
= ( ^ [N3: int,M4: int] : ( ord_less_eq @ real @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N3 ) @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ M4 ) ) ) ) ).
% int_less_real_le
thf(fact_2795_dbl__inc__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A )
= ( ^ [X6: A] : ( plus_plus @ A @ ( plus_plus @ A @ X6 @ X6 ) @ ( one_one @ A ) ) ) ) ) ).
% dbl_inc_def
thf(fact_2796_real__of__int__div__aux,axiom,
! [X: int,D2: int] :
( ( divide_divide @ real @ ( ring_1_of_int @ real @ X ) @ ( ring_1_of_int @ real @ D2 ) )
= ( plus_plus @ real @ ( ring_1_of_int @ real @ ( divide_divide @ int @ X @ D2 ) ) @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( modulo_modulo @ int @ X @ D2 ) ) @ ( ring_1_of_int @ real @ D2 ) ) ) ) ).
% real_of_int_div_aux
thf(fact_2797_real__of__int__div2,axiom,
! [N: int,X: int] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( minus_minus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N ) @ ( ring_1_of_int @ real @ X ) ) @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N @ X ) ) ) ) ).
% real_of_int_div2
thf(fact_2798_real__of__int__div3,axiom,
! [N: int,X: int] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N ) @ ( ring_1_of_int @ real @ X ) ) @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N @ X ) ) ) @ ( one_one @ real ) ) ).
% real_of_int_div3
thf(fact_2799_even__of__int__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: int] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ring_1_of_int @ A @ K ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K ) ) ) ).
% even_of_int_iff
thf(fact_2800_divmod__step__nat__def,axiom,
( ( unique1321980374590559556d_step @ nat )
= ( ^ [L2: num] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [Q4: nat,R5: nat] : ( if @ ( product_prod @ nat @ nat ) @ ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ L2 ) @ R5 ) @ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Q4 ) @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ R5 @ ( numeral_numeral @ nat @ L2 ) ) ) @ ( product_Pair @ nat @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_2801_arctan__add,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( abs_abs @ real @ Y ) @ ( one_one @ real ) )
=> ( ( plus_plus @ real @ ( arctan @ X ) @ ( arctan @ Y ) )
= ( arctan @ ( divide_divide @ real @ ( plus_plus @ real @ X @ Y ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( times_times @ real @ X @ Y ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_2802_divmod__step__int__def,axiom,
( ( unique1321980374590559556d_step @ int )
= ( ^ [L2: num] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [Q4: int,R5: int] : ( if @ ( product_prod @ int @ int ) @ ( ord_less_eq @ int @ ( numeral_numeral @ int @ L2 ) @ R5 ) @ ( product_Pair @ int @ int @ ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Q4 ) @ ( one_one @ int ) ) @ ( minus_minus @ int @ R5 @ ( numeral_numeral @ int @ L2 ) ) ) @ ( product_Pair @ int @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_int_def
thf(fact_2803_divmod__step__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique1321980374590559556d_step @ A )
= ( ^ [L2: num] :
( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q4: A,R5: A] : ( if @ ( product_prod @ A @ A ) @ ( ord_less_eq @ A @ ( numeral_numeral @ A @ L2 ) @ R5 ) @ ( product_Pair @ A @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q4 ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ R5 @ ( numeral_numeral @ A @ L2 ) ) ) @ ( product_Pair @ A @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q4 ) @ R5 ) ) ) ) ) ) ).
% divmod_step_def
thf(fact_2804_floor__exists,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z4: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z4 ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ Z4 @ ( one_one @ int ) ) ) ) ) ) ).
% floor_exists
thf(fact_2805_floor__exists1,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [X5: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ X5 ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ X5 @ ( one_one @ int ) ) ) )
& ! [Y4: int] :
( ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Y4 ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ Y4 @ ( one_one @ int ) ) ) ) )
=> ( Y4 = X5 ) ) ) ) ).
% floor_exists1
thf(fact_2806_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M4: nat,N3: nat] :
( if @ ( product_prod @ nat @ nat )
@ ( ( N3
= ( zero_zero @ nat ) )
| ( ord_less @ nat @ M4 @ N3 ) )
@ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ M4 )
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [Q4: nat] : ( product_Pair @ nat @ nat @ ( suc @ Q4 ) )
@ ( divmod_nat @ ( minus_minus @ nat @ M4 @ N3 ) @ N3 ) ) ) ) ) ).
% divmod_nat_if
thf(fact_2807_divmod__BitM__2__eq,axiom,
! [M: num] :
( ( unique8689654367752047608divmod @ int @ ( bitM @ M ) @ ( bit0 @ one2 ) )
= ( product_Pair @ int @ int @ ( minus_minus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( one_one @ int ) ) ) ).
% divmod_BitM_2_eq
thf(fact_2808_set__decode__0,axiom,
! [X: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ ( nat_set_decode @ X ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ X ) ) ) ).
% set_decode_0
thf(fact_2809_set__decode__Suc,axiom,
! [N: nat,X: nat] :
( ( member @ nat @ ( suc @ N ) @ ( nat_set_decode @ X ) )
= ( member @ nat @ N @ ( nat_set_decode @ ( divide_divide @ nat @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% set_decode_Suc
thf(fact_2810_set__decode__zero,axiom,
( ( nat_set_decode @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% set_decode_zero
thf(fact_2811_dbl__dec__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_dec @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bitM @ K ) ) ) ) ).
% dbl_dec_simps(5)
thf(fact_2812_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral @ nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_2813_semiring__norm_I26_J,axiom,
( ( bitM @ one2 )
= one2 ) ).
% semiring_norm(26)
thf(fact_2814_semiring__norm_I27_J,axiom,
! [N: num] :
( ( bitM @ ( bit0 @ N ) )
= ( bit1 @ ( bitM @ N ) ) ) ).
% semiring_norm(27)
thf(fact_2815_semiring__norm_I28_J,axiom,
! [N: num] :
( ( bitM @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ N ) ) ) ).
% semiring_norm(28)
thf(fact_2816_eval__nat__numeral_I2_J,axiom,
! [N: num] :
( ( numeral_numeral @ nat @ ( bit0 @ N ) )
= ( suc @ ( numeral_numeral @ nat @ ( bitM @ N ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_2817_one__plus__BitM,axiom,
! [N: num] :
( ( plus_plus @ num @ one2 @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% one_plus_BitM
thf(fact_2818_BitM__plus__one,axiom,
! [N: num] :
( ( plus_plus @ num @ ( bitM @ N ) @ one2 )
= ( bit0 @ N ) ) ).
% BitM_plus_one
thf(fact_2819_numeral__BitM,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( numeral_numeral @ A @ ( bitM @ N ) )
= ( minus_minus @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_BitM
thf(fact_2820_odd__numeral__BitM,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [W: num] :
~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ A @ ( bitM @ W ) ) ) ) ).
% odd_numeral_BitM
thf(fact_2821_divmod__nat__def,axiom,
( divmod_nat
= ( ^ [M4: nat,N3: nat] : ( product_Pair @ nat @ nat @ ( divide_divide @ nat @ M4 @ N3 ) @ ( modulo_modulo @ nat @ M4 @ N3 ) ) ) ) ).
% divmod_nat_def
thf(fact_2822_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ ( zero_zero @ nat ) )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_2823_ex__of__int__less,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z4: int] : ( ord_less @ A @ ( ring_1_of_int @ A @ Z4 ) @ X ) ) ).
% ex_of_int_less
thf(fact_2824_ex__less__of__int,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z4: int] : ( ord_less @ A @ X @ ( ring_1_of_int @ A @ Z4 ) ) ) ).
% ex_less_of_int
thf(fact_2825_set__decode__plus__power__2,axiom,
! [N: nat,Z2: nat] :
( ~ ( member @ nat @ N @ ( nat_set_decode @ Z2 ) )
=> ( ( nat_set_decode @ ( plus_plus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ Z2 ) )
= ( insert @ nat @ N @ ( nat_set_decode @ Z2 ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_2826_set__decode__def,axiom,
( nat_set_decode
= ( ^ [X6: nat] :
( collect @ nat
@ ^ [N3: nat] :
~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ) ).
% set_decode_def
thf(fact_2827_round__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: int] :
( ( ord_less @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ Y ) )
=> ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Y ) @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) )
=> ( ( archimedean_round @ A @ X )
= Y ) ) ) ) ).
% round_unique
thf(fact_2828_round__unique_H,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,N: int] :
( ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ ( ring_1_of_int @ A @ N ) ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
=> ( ( archimedean_round @ A @ X )
= N ) ) ) ).
% round_unique'
thf(fact_2829_of__int__round__abs__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) @ X ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% of_int_round_abs_le
thf(fact_2830_of__int__round__gt,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) ) ) ).
% of_int_round_gt
thf(fact_2831_of__int__round__ge,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) ) ) ).
% of_int_round_ge
thf(fact_2832_of__int__round__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% of_int_round_le
thf(fact_2833_round__0,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% round_0
thf(fact_2834_round__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N: num] :
( ( archimedean_round @ A @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ int @ N ) ) ) ).
% round_numeral
thf(fact_2835_round__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N: num] :
( ( archimedean_round @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) ) ) ).
% round_neg_numeral
thf(fact_2836_Sum__Icc__int,axiom,
! [M: int,N: int] :
( ( ord_less_eq @ int @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ int @ int
@ ^ [X6: int] : X6
@ ( set_or1337092689740270186AtMost @ int @ M @ N ) )
= ( divide_divide @ int @ ( minus_minus @ int @ ( times_times @ int @ N @ ( plus_plus @ int @ N @ ( one_one @ int ) ) ) @ ( times_times @ int @ M @ ( minus_minus @ int @ M @ ( one_one @ int ) ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_2837_mask__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: num] :
( ( bit_se2239418461657761734s_mask @ A @ ( numeral_numeral @ nat @ N ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ ( pred_numeral @ N ) ) ) ) ) ) ).
% mask_numeral
thf(fact_2838_take__bit__rec,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A4: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ A )
@ ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_2839_tanh__real__altdef,axiom,
( ( tanh @ real )
= ( ^ [X6: real] : ( divide_divide @ real @ ( minus_minus @ real @ ( one_one @ real ) @ ( exp @ real @ ( times_times @ real @ ( uminus_uminus @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X6 ) ) ) @ ( plus_plus @ real @ ( one_one @ real ) @ ( exp @ real @ ( times_times @ real @ ( uminus_uminus @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X6 ) ) ) ) ) ) ).
% tanh_real_altdef
thf(fact_2840_or__int__unfold,axiom,
( ( bit_se1065995026697491101ons_or @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
| ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
@ ( uminus_uminus @ int @ ( one_one @ int ) )
@ ( if @ int
@ ( K3
= ( zero_zero @ int ) )
@ L2
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( plus_plus @ int @ ( ord_max @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% or_int_unfold
thf(fact_2841_or_Oright__idem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) @ B2 )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) ) ) ).
% or.right_idem
thf(fact_2842_or_Oleft__idem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) ) ) ).
% or.left_idem
thf(fact_2843_or_Oidem,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ A2 )
= A2 ) ) ).
% or.idem
thf(fact_2844_mask__nat__positive__iff,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( bit_se2239418461657761734s_mask @ nat @ N ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% mask_nat_positive_iff
thf(fact_2845_take__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% take_bit_of_0
thf(fact_2846_or_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% or.right_neutral
thf(fact_2847_or_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% or.left_neutral
thf(fact_2848_take__bit__and,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) ) ) ) ).
% take_bit_and
thf(fact_2849_take__bit__or,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) ) ) ) ).
% take_bit_or
thf(fact_2850_concat__bit__of__zero__2,axiom,
! [N: nat,K: int] :
( ( bit_concat_bit @ N @ K @ ( zero_zero @ int ) )
= ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ).
% concat_bit_of_zero_2
thf(fact_2851_sum_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B] :
( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [Uu3: B] : ( zero_zero @ A )
@ A3 )
= ( zero_zero @ A ) ) ) ).
% sum.neutral_const
thf(fact_2852_sum_Oempty,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A] :
( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( bot_bot @ ( set @ B ) ) )
= ( zero_zero @ A ) ) ) ).
% sum.empty
thf(fact_2853_sum_Oinfinite,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A] :
( ~ ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( zero_zero @ A ) ) ) ) ).
% sum.infinite
thf(fact_2854_sum__eq__0__iff,axiom,
! [A: $tType,B: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [F3: set @ B,F2: B > A] :
( ( finite_finite @ B @ F3 )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ F3 )
= ( zero_zero @ A ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ F3 )
=> ( ( F2 @ X6 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_2855_take__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% take_bit_0
thf(fact_2856_exp__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% exp_zero
thf(fact_2857_take__bit__Suc__1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% take_bit_Suc_1
thf(fact_2858_take__bit__numeral__1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% take_bit_numeral_1
thf(fact_2859_bit_Odisj__one__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_one_left
thf(fact_2860_bit_Odisj__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_one_right
thf(fact_2861_mask__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( ( bit_se2239418461657761734s_mask @ A @ N )
= ( zero_zero @ A ) )
= ( N
= ( zero_zero @ nat ) ) ) ) ).
% mask_eq_0_iff
thf(fact_2862_mask__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% mask_0
thf(fact_2863_exp__eq__one__iff,axiom,
! [X: real] :
( ( ( exp @ real @ X )
= ( one_one @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% exp_eq_one_iff
thf(fact_2864_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% or_nonnegative_int_iff
thf(fact_2865_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
| ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% or_negative_int_iff
thf(fact_2866_sum_Odelta_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum.delta'
thf(fact_2867_sum_Odelta,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum.delta
thf(fact_2868_sum_Oinsert,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ~ ( member @ B @ X @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) ) ) ) ) ) ).
% sum.insert
thf(fact_2869_take__bit__of__1__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( one_one @ A ) )
= ( zero_zero @ A ) )
= ( N
= ( zero_zero @ nat ) ) ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_2870_or__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% or_numerals(8)
thf(fact_2871_or__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% or_numerals(2)
thf(fact_2872_mask__Suc__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ A ) ) ) ).
% mask_Suc_0
thf(fact_2873_one__less__exp__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ ( exp @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% one_less_exp_iff
thf(fact_2874_exp__less__one__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( exp @ real @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% exp_less_one_iff
thf(fact_2875_exp__le__one__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% exp_le_one_iff
thf(fact_2876_one__le__exp__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ ( exp @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% one_le_exp_iff
thf(fact_2877_take__bit__minus__one__eq__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ).
% take_bit_minus_one_eq_mask
thf(fact_2878_exp__ln__iff,axiom,
! [X: real] :
( ( ( exp @ real @ ( ln_ln @ real @ X ) )
= X )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% exp_ln_iff
thf(fact_2879_exp__ln,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( exp @ real @ ( ln_ln @ real @ X ) )
= X ) ) ).
% exp_ln
thf(fact_2880_take__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_neq_one_of_bool @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% take_bit_of_Suc_0
thf(fact_2881_sum__abs__ge__zero,axiom,
! [B: $tType,A: $tType] :
( ( ordere166539214618696060dd_abs @ B )
=> ! [F2: A > B,A3: set @ A] :
( ord_less_eq @ B @ ( zero_zero @ B )
@ ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I: A] : ( abs_abs @ B @ ( F2 @ I ) )
@ A3 ) ) ) ).
% sum_abs_ge_zero
thf(fact_2882_or__numerals_I3_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% or_numerals(3)
thf(fact_2883_or__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% or_numerals(1)
thf(fact_2884_or__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% or_numerals(5)
thf(fact_2885_take__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( one_one @ A ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% take_bit_of_1
thf(fact_2886_or__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) @ ( one_one @ int ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(6)
thf(fact_2887_or__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(2)
thf(fact_2888_sum__of__bool__mult__eq,axiom,
! [A: $tType,B: $tType] :
( ( semiring_1 @ A )
=> ! [A3: set @ B,P: B > $o,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( P @ X6 ) ) @ ( F2 @ X6 ) )
@ A3 )
= ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A3 @ ( collect @ B @ P ) ) ) ) ) ) ).
% sum_of_bool_mult_eq
thf(fact_2889_sum__mult__of__bool__eq,axiom,
! [A: $tType,B: $tType] :
( ( semiring_1 @ A )
=> ! [A3: set @ B,F2: B > A,P: B > $o] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ ( zero_neq_one_of_bool @ A @ ( P @ X6 ) ) )
@ A3 )
= ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A3 @ ( collect @ B @ P ) ) ) ) ) ) ).
% sum_mult_of_bool_eq
thf(fact_2890_even__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= ( ( N
= ( zero_zero @ nat ) )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_take_bit_eq
thf(fact_2891_take__bit__Suc__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ ( zero_zero @ nat ) ) @ A2 )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_Suc_0
thf(fact_2892_or__numerals_I4_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(4)
thf(fact_2893_or__numerals_I6_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(6)
thf(fact_2894_or__numerals_I7_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(7)
thf(fact_2895_take__bit__of__exp,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: nat,N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ N @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% take_bit_of_exp
thf(fact_2896_take__bit__of__2,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_of_2
thf(fact_2897_take__bit__eq__mask,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A4: A] : ( bit_se5824344872417868541ns_and @ A @ A4 @ ( bit_se2239418461657761734s_mask @ A @ N3 ) ) ) ) ) ).
% take_bit_eq_mask
thf(fact_2898_or__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% or_eq_0_iff
thf(fact_2899_bit_Odisj__zero__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( zero_zero @ A ) )
= X ) ) ).
% bit.disj_zero_right
thf(fact_2900_or_Oleft__commute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( bit_se1065995026697491101ons_or @ A @ B2 @ ( bit_se1065995026697491101ons_or @ A @ A2 @ C2 ) )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ ( bit_se1065995026697491101ons_or @ A @ B2 @ C2 ) ) ) ) ).
% or.left_commute
thf(fact_2901_or_Ocommute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se1065995026697491101ons_or @ A )
= ( ^ [A4: A,B4: A] : ( bit_se1065995026697491101ons_or @ A @ B4 @ A4 ) ) ) ) ).
% or.commute
thf(fact_2902_or_Oassoc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) @ C2 )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ ( bit_se1065995026697491101ons_or @ A @ B2 @ C2 ) ) ) ) ).
% or.assoc
thf(fact_2903_sum_Oneutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( zero_zero @ A ) ) ) ) ).
% sum.neutral
thf(fact_2904_sum_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,A3: set @ B] :
( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
!= ( zero_zero @ A ) )
=> ~ ! [A6: B] :
( ( member @ B @ A6 @ A3 )
=> ( ( G @ A6 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_2905_take__bit__add,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( plus_plus @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% take_bit_add
thf(fact_2906_take__bit__nat__less__eq__self,axiom,
! [N: nat,M: nat] : ( ord_less_eq @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_2907_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ M @ Q2 ) @ ( bit_se2584673776208193580ke_bit @ nat @ N @ Q2 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_2908_take__bit__tightened,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A,M: nat] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ M @ B2 ) ) ) ) ) ).
% take_bit_tightened
thf(fact_2909_take__bit__of__int,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,K: int] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( ring_1_of_int @ A @ K ) )
= ( ring_1_of_int @ A @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ) ).
% take_bit_of_int
thf(fact_2910_of__int__mask__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( ring_1_of_int @ A @ ( bit_se2239418461657761734s_mask @ int @ N ) )
= ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ).
% of_int_mask_eq
thf(fact_2911_of__int__or__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: int,L: int] :
( ( ring_1_of_int @ A @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) )
= ( bit_se1065995026697491101ons_or @ A @ ( ring_1_of_int @ A @ K ) @ ( ring_1_of_int @ A @ L ) ) ) ) ).
% of_int_or_eq
thf(fact_2912_exp__not__eq__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( exp @ A @ X )
!= ( zero_zero @ A ) ) ) ).
% exp_not_eq_zero
thf(fact_2913_take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_se2584673776208193580ke_bit @ int @ N @ ( uminus_uminus @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) )
= ( bit_se2584673776208193580ke_bit @ int @ N @ ( uminus_uminus @ int @ K ) ) ) ).
% take_bit_minus
thf(fact_2914_exp__times__arg__commute,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [A3: A] :
( ( times_times @ A @ ( exp @ A @ A3 ) @ A3 )
= ( times_times @ A @ A3 @ ( exp @ A @ A3 ) ) ) ) ).
% exp_times_arg_commute
thf(fact_2915_take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2584673776208193580ke_bit @ int @ N @ ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ L ) ) )
= ( bit_se2584673776208193580ke_bit @ int @ N @ ( times_times @ int @ K @ L ) ) ) ).
% take_bit_mult
thf(fact_2916_take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2584673776208193580ke_bit @ int @ N @ ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ L ) ) )
= ( bit_se2584673776208193580ke_bit @ int @ N @ ( minus_minus @ int @ K @ L ) ) ) ).
% take_bit_diff
thf(fact_2917_bit_Odisj__conj__distrib2,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( bit_se5824344872417868541ns_and @ A @ Y @ Z2 ) @ X )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se1065995026697491101ons_or @ A @ Y @ X ) @ ( bit_se1065995026697491101ons_or @ A @ Z2 @ X ) ) ) ) ).
% bit.disj_conj_distrib2
thf(fact_2918_bit_Oconj__disj__distrib2,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se1065995026697491101ons_or @ A @ Y @ Z2 ) @ X )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se5824344872417868541ns_and @ A @ Y @ X ) @ ( bit_se5824344872417868541ns_and @ A @ Z2 @ X ) ) ) ) ).
% bit.conj_disj_distrib2
thf(fact_2919_bit_Odisj__conj__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( bit_se5824344872417868541ns_and @ A @ Y @ Z2 ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se1065995026697491101ons_or @ A @ X @ Y ) @ ( bit_se1065995026697491101ons_or @ A @ X @ Z2 ) ) ) ) ).
% bit.disj_conj_distrib
thf(fact_2920_bit_Oconj__disj__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( bit_se1065995026697491101ons_or @ A @ Y @ Z2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se5824344872417868541ns_and @ A @ X @ Y ) @ ( bit_se5824344872417868541ns_and @ A @ X @ Z2 ) ) ) ) ).
% bit.conj_disj_distrib
thf(fact_2921_concat__bit__take__bit__eq,axiom,
! [N: nat,B2: int] :
( ( bit_concat_bit @ N @ ( bit_se2584673776208193580ke_bit @ int @ N @ B2 ) )
= ( bit_concat_bit @ N @ B2 ) ) ).
% concat_bit_take_bit_eq
thf(fact_2922_concat__bit__eq__iff,axiom,
! [N: nat,K: int,L: int,R2: int,S: int] :
( ( ( bit_concat_bit @ N @ K @ L )
= ( bit_concat_bit @ N @ R2 @ S ) )
= ( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
= ( bit_se2584673776208193580ke_bit @ int @ N @ R2 ) )
& ( L = S ) ) ) ).
% concat_bit_eq_iff
thf(fact_2923_less__eq__mask,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ ( bit_se2239418461657761734s_mask @ nat @ N ) ) ).
% less_eq_mask
thf(fact_2924_sum__product,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( semiring_0 @ B )
=> ! [F2: A > B,A3: set @ A,G: C > B,B3: set @ C] :
( ( times_times @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ C @ B @ G @ B3 ) )
= ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I: A] :
( groups7311177749621191930dd_sum @ C @ B
@ ^ [J2: C] : ( times_times @ B @ ( F2 @ I ) @ ( G @ J2 ) )
@ B3 )
@ A3 ) ) ) ).
% sum_product
thf(fact_2925_sum__distrib__right,axiom,
! [A: $tType,B: $tType] :
( ( semiring_0 @ A )
=> ! [F2: B > A,A3: set @ B,R2: A] :
( ( times_times @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ R2 )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [N3: B] : ( times_times @ A @ ( F2 @ N3 ) @ R2 )
@ A3 ) ) ) ).
% sum_distrib_right
thf(fact_2926_sum__distrib__left,axiom,
! [A: $tType,B: $tType] :
( ( semiring_0 @ A )
=> ! [R2: A,F2: B > A,A3: set @ B] :
( ( times_times @ A @ R2 @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [N3: B] : ( times_times @ A @ R2 @ ( F2 @ N3 ) )
@ A3 ) ) ) ).
% sum_distrib_left
thf(fact_2927_sum_Odistrib,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,H2: B > A,A3: set @ B] :
( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ ( G @ X6 ) @ ( H2 @ X6 ) )
@ A3 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ H2 @ A3 ) ) ) ) ).
% sum.distrib
thf(fact_2928_sum__divide__distrib,axiom,
! [A: $tType,B: $tType] :
( ( field @ A )
=> ! [F2: B > A,A3: set @ B,R2: A] :
( ( divide_divide @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ R2 )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [N3: B] : ( divide_divide @ A @ ( F2 @ N3 ) @ R2 )
@ A3 ) ) ) ).
% sum_divide_distrib
thf(fact_2929_mod__sum__eq,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [F2: B > A,A2: A,A3: set @ B] :
( ( modulo_modulo @ A
@ ( groups7311177749621191930dd_sum @ B @ A
@ ^ [I: B] : ( modulo_modulo @ A @ ( F2 @ I ) @ A2 )
@ A3 )
@ A2 )
= ( modulo_modulo @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ A2 ) ) ) ).
% mod_sum_eq
thf(fact_2930_take__bit__eq__mask__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
= ( bit_se2239418461657761734s_mask @ int @ N ) )
= ( ( bit_se2584673776208193580ke_bit @ int @ N @ ( plus_plus @ int @ K @ ( one_one @ int ) ) )
= ( zero_zero @ int ) ) ) ).
% take_bit_eq_mask_iff
thf(fact_2931_sum__nonneg,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A3: set @ B,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X5 ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) ) ) ) ).
% sum_nonneg
thf(fact_2932_sum__nonpos,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A3: set @ B,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( zero_zero @ A ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( zero_zero @ A ) ) ) ) ).
% sum_nonpos
thf(fact_2933_not__exp__less__zero,axiom,
! [X: real] :
~ ( ord_less @ real @ ( exp @ real @ X ) @ ( zero_zero @ real ) ) ).
% not_exp_less_zero
thf(fact_2934_exp__gt__zero,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( exp @ real @ X ) ) ).
% exp_gt_zero
thf(fact_2935_exp__total,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ? [X5: real] :
( ( exp @ real @ X5 )
= Y ) ) ).
% exp_total
thf(fact_2936_not__exp__le__zero,axiom,
! [X: real] :
~ ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( zero_zero @ real ) ) ).
% not_exp_le_zero
thf(fact_2937_exp__ge__zero,axiom,
! [X: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( exp @ real @ X ) ) ).
% exp_ge_zero
thf(fact_2938_or__greater__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less_eq @ int @ K @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) ) ) ).
% or_greater_eq
thf(fact_2939_OR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se1065995026697491101ons_or @ int @ X @ Y ) ) ) ) ).
% OR_lower
thf(fact_2940_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N: nat,K: int] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ M @ K ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_2941_signed__take__bit__eq__iff__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( ( bit_ri4674362597316999326ke_bit @ A @ N @ A2 )
= ( bit_ri4674362597316999326ke_bit @ A @ N @ B2 ) )
= ( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ B2 ) ) ) ) ).
% signed_take_bit_eq_iff_take_bit_eq
thf(fact_2942_take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ K )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% take_bit_int_less_eq_self_iff
thf(fact_2943_take__bit__nonnegative,axiom,
! [N: nat,K: int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ).
% take_bit_nonnegative
thf(fact_2944_take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less @ int @ K @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% take_bit_int_greater_self_iff
thf(fact_2945_not__take__bit__negative,axiom,
! [N: nat,K: int] :
~ ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( zero_zero @ int ) ) ).
% not_take_bit_negative
thf(fact_2946_signed__take__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= ( if @ ( A > A ) @ ( ord_less_eq @ nat @ N @ M ) @ ( bit_se2584673776208193580ke_bit @ A @ N ) @ ( bit_ri4674362597316999326ke_bit @ A @ M ) @ A2 ) ) ) ).
% signed_take_bit_take_bit
thf(fact_2947_mult__exp__exp,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ Y ) )
= ( exp @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% mult_exp_exp
thf(fact_2948_exp__add__commuting,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A,Y: A] :
( ( ( times_times @ A @ X @ Y )
= ( times_times @ A @ Y @ X ) )
=> ( ( exp @ A @ ( plus_plus @ A @ X @ Y ) )
= ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ Y ) ) ) ) ) ).
% exp_add_commuting
thf(fact_2949_exp__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( exp @ A @ ( minus_minus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( exp @ A @ X ) @ ( exp @ A @ Y ) ) ) ) ).
% exp_diff
thf(fact_2950_take__bit__unset__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( bit_se2638667681897837118et_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_2951_take__bit__set__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( bit_se5668285175392031749et_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_2952_take__bit__flip__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( bit_se8732182000553998342ip_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_2953_plus__and__or,axiom,
! [X: int,Y: int] :
( ( plus_plus @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ ( bit_se1065995026697491101ons_or @ int @ X @ Y ) )
= ( plus_plus @ int @ X @ Y ) ) ).
% plus_and_or
thf(fact_2954_sum_Ointer__filter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A,P: B > $o] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( P @ X6 ) ) ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( if @ A @ ( P @ X6 ) @ ( G @ X6 ) @ ( zero_zero @ A ) )
@ A3 ) ) ) ) ).
% sum.inter_filter
thf(fact_2955_mask__nonnegative__int,axiom,
! [N: nat] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2239418461657761734s_mask @ int @ N ) ) ).
% mask_nonnegative_int
thf(fact_2956_not__mask__negative__int,axiom,
! [N: nat] :
~ ( ord_less @ int @ ( bit_se2239418461657761734s_mask @ int @ N ) @ ( zero_zero @ int ) ) ).
% not_mask_negative_int
thf(fact_2957_mask__Suc__exp,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se2239418461657761734s_mask @ A @ ( suc @ N ) )
= ( bit_se1065995026697491101ons_or @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ).
% mask_Suc_exp
thf(fact_2958_sum__nonneg__eq__0__iff,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X5 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 )
= ( zero_zero @ A ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ( F2 @ X6 )
= ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_2959_sum__le__included,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,T2: set @ C,G: C > A,I3: C > B,F2: B > A] :
( ( finite_finite @ B @ S )
=> ( ( finite_finite @ C @ T2 )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ T2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( G @ X5 ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S )
=> ? [Xa: C] :
( ( member @ C @ Xa @ T2 )
& ( ( I3 @ Xa )
= X5 )
& ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S ) @ ( groups7311177749621191930dd_sum @ C @ A @ G @ T2 ) ) ) ) ) ) ) ).
% sum_le_included
thf(fact_2960_sum__strict__mono__ex1,axiom,
! [A: $tType,I7: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A3: set @ I7,F2: I7 > A,G: I7 > A] :
( ( finite_finite @ I7 @ A3 )
=> ( ! [X5: I7] :
( ( member @ I7 @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ? [X3: I7] :
( ( member @ I7 @ X3 @ A3 )
& ( ord_less @ A @ ( F2 @ X3 ) @ ( G @ X3 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ I7 @ A @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ I7 @ A @ G @ A3 ) ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_2961_sum_Orelated,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [R3: A > A > $o,S3: set @ B,H2: B > A,G: B > A] :
( ( R3 @ ( zero_zero @ A ) @ ( zero_zero @ A ) )
=> ( ! [X1: A,Y1: A,X23: A,Y23: A] :
( ( ( R3 @ X1 @ X23 )
& ( R3 @ Y1 @ Y23 ) )
=> ( R3 @ ( plus_plus @ A @ X1 @ Y1 ) @ ( plus_plus @ A @ X23 @ Y23 ) ) )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( R3 @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R3 @ ( groups7311177749621191930dd_sum @ B @ A @ H2 @ S3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ) ) ).
% sum.related
thf(fact_2962_sum__strict__mono,axiom,
! [A: $tType,B: $tType] :
( ( strict7427464778891057005id_add @ A )
=> ! [A3: set @ B,F2: B > A,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less @ A @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) ) ) ) ) ) ).
% sum_strict_mono
thf(fact_2963_sum_Oinsert__if,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( ( member @ B @ X @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) ) )
& ( ~ ( member @ B @ X @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_2964_sum_Oreindex__bij__witness__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_add @ A )
=> ! [S5: set @ B,T6: set @ C,S3: set @ B,I3: C > B,J: B > C,T4: set @ C,G: B > A,H2: C > A] :
( ( finite_finite @ B @ S5 )
=> ( ( finite_finite @ C @ T6 )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ ( minus_minus @ ( set @ B ) @ S3 @ S5 ) )
=> ( ( I3 @ ( J @ A6 ) )
= A6 ) )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ ( minus_minus @ ( set @ B ) @ S3 @ S5 ) )
=> ( member @ C @ ( J @ A6 ) @ ( minus_minus @ ( set @ C ) @ T4 @ T6 ) ) )
=> ( ! [B6: C] :
( ( member @ C @ B6 @ ( minus_minus @ ( set @ C ) @ T4 @ T6 ) )
=> ( ( J @ ( I3 @ B6 ) )
= B6 ) )
=> ( ! [B6: C] :
( ( member @ C @ B6 @ ( minus_minus @ ( set @ C ) @ T4 @ T6 ) )
=> ( member @ B @ ( I3 @ B6 ) @ ( minus_minus @ ( set @ B ) @ S3 @ S5 ) ) )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ S5 )
=> ( ( G @ A6 )
= ( zero_zero @ A ) ) )
=> ( ! [B6: C] :
( ( member @ C @ B6 @ T6 )
=> ( ( H2 @ B6 )
= ( zero_zero @ A ) ) )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ S3 )
=> ( ( H2 @ ( J @ A6 ) )
= ( G @ A6 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ C @ A @ H2 @ T4 ) ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_2965_exp__gt__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( one_one @ real ) @ ( exp @ real @ X ) ) ) ).
% exp_gt_one
thf(fact_2966_take__bit__signed__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_ri4674362597316999326ke_bit @ A @ N @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ M @ A2 ) ) ) ) ).
% take_bit_signed_take_bit
thf(fact_2967_exp__minus__inverse,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ ( uminus_uminus @ A @ X ) ) )
= ( one_one @ A ) ) ) ).
% exp_minus_inverse
thf(fact_2968_take__bit__decr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
!= ( zero_zero @ int ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N @ ( minus_minus @ int @ K @ ( one_one @ int ) ) )
= ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( one_one @ int ) ) ) ) ).
% take_bit_decr_eq
thf(fact_2969_mask__Suc__double,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se2239418461657761734s_mask @ A @ ( suc @ N ) )
= ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ) ).
% mask_Suc_double
thf(fact_2970_sum__nonneg__0,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,F2: B > A,I3: B] :
( ( finite_finite @ B @ S )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ S )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S )
= ( zero_zero @ A ) )
=> ( ( member @ B @ I3 @ S )
=> ( ( F2 @ I3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_2971_sum__nonneg__leq__bound,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,F2: B > A,B3: A,I3: B] :
( ( finite_finite @ B @ S )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ S )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S )
= B3 )
=> ( ( member @ B @ I3 @ S )
=> ( ord_less_eq @ A @ ( F2 @ I3 ) @ B3 ) ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_2972_sum_Ointer__restrict,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A,B3: set @ B] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( if @ A @ ( member @ B @ X6 @ B3 ) @ ( G @ X6 ) @ ( zero_zero @ A ) )
@ A3 ) ) ) ) ).
% sum.inter_restrict
thf(fact_2973_sum_Osetdiff__irrelevant,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G
@ ( minus_minus @ ( set @ B ) @ A3
@ ( collect @ B
@ ^ [X6: B] :
( ( G @ X6 )
= ( zero_zero @ A ) ) ) ) )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_2974_less__mask,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
=> ( ord_less @ nat @ N @ ( bit_se2239418461657761734s_mask @ nat @ N ) ) ) ).
% less_mask
thf(fact_2975_take__bit__eq__mask__iff__exp__dvd,axiom,
! [N: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
= ( bit_se2239418461657761734s_mask @ int @ N ) )
= ( dvd_dvd @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ ( plus_plus @ int @ K @ ( one_one @ int ) ) ) ) ).
% take_bit_eq_mask_iff_exp_dvd
thf(fact_2976_sum__pos2,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [I6: set @ B,I3: B,F2: B > A] :
( ( finite_finite @ B @ I6 )
=> ( ( member @ B @ I3 @ I6 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I3 ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ I6 ) ) ) ) ) ) ) ).
% sum_pos2
thf(fact_2977_sum__pos,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [I6: set @ B,F2: B > A] :
( ( finite_finite @ B @ I6 )
=> ( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ I6 ) ) ) ) ) ) ).
% sum_pos
thf(fact_2978_sum_Omono__neutral__cong__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T4: set @ B,S3: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B @ T4 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ T4 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ S3 ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_2979_sum_Omono__neutral__cong__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T4: set @ B,S3: set @ B,H2: B > A,G: B > A] :
( ( finite_finite @ B @ T4 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( H2 @ X5 )
= ( zero_zero @ A ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ T4 ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_2980_sum_Omono__neutral__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T4: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T4 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ T4 )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_2981_sum_Omono__neutral__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T4: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T4 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ T4 ) ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_2982_sum_Osame__carrierI,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [C4: set @ B,A3: set @ B,B3: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B @ C4 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ B ) @ B3 @ C4 )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ ( minus_minus @ ( set @ B ) @ C4 @ A3 ) )
=> ( ( G @ A6 )
= ( zero_zero @ A ) ) )
=> ( ! [B6: B] :
( ( member @ B @ B6 @ ( minus_minus @ ( set @ B ) @ C4 @ B3 ) )
=> ( ( H2 @ B6 )
= ( zero_zero @ A ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ C4 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ C4 ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ B3 ) ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_2983_sum_Osame__carrier,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [C4: set @ B,A3: set @ B,B3: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B @ C4 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ C4 )
=> ( ( ord_less_eq @ ( set @ B ) @ B3 @ C4 )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ ( minus_minus @ ( set @ B ) @ C4 @ A3 ) )
=> ( ( G @ A6 )
= ( zero_zero @ A ) ) )
=> ( ! [B6: B] :
( ( member @ B @ B6 @ ( minus_minus @ ( set @ B ) @ C4 @ B3 ) )
=> ( ( H2 @ B6 )
= ( zero_zero @ A ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ B3 ) )
= ( ( groups7311177749621191930dd_sum @ B @ A @ G @ C4 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ C4 ) ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_2984_sum_Osubset__diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B3: set @ B,A3: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ B3 @ A3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B3 ) ) ) ) ) ) ).
% sum.subset_diff
thf(fact_2985_even__or__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
& ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_or_iff
thf(fact_2986_sum_Omono__neutral__cong,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T4: set @ B,S3: set @ B,H2: B > A,G: B > A] :
( ( finite_finite @ B @ T4 )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( H2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ S3 @ T4 ) )
=> ( ( G @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( inf_inf @ ( set @ B ) @ S3 @ T4 ) )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ T4 ) ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong
thf(fact_2987_sum_Ounion__inter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B3 ) ) ) ) ) ) ).
% sum.union_inter
thf(fact_2988_sum_OInt__Diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A,B3: set @ B] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ).
% sum.Int_Diff
thf(fact_2989_bit_Ocomplement__unique,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,X: A,Y: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ X )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ Y )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ Y )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( X = Y ) ) ) ) ) ) ).
% bit.complement_unique
thf(fact_2990_exp__ge__add__one__self__aux,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( exp @ real @ X ) ) ) ).
% exp_ge_add_one_self_aux
thf(fact_2991_lemma__exp__total,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ Y )
=> ? [X5: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X5 )
& ( ord_less_eq @ real @ X5 @ ( minus_minus @ real @ Y @ ( one_one @ real ) ) )
& ( ( exp @ real @ X5 )
= Y ) ) ) ).
% lemma_exp_total
thf(fact_2992_ln__ge__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ Y @ ( ln_ln @ real @ X ) )
= ( ord_less_eq @ real @ ( exp @ real @ Y ) @ X ) ) ) ).
% ln_ge_iff
thf(fact_2993_sum_OIf__cases,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,P: B > $o,H2: B > A,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( if @ A @ ( P @ X6 ) @ ( H2 @ X6 ) @ ( G @ X6 ) )
@ A3 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ H2 @ ( inf_inf @ ( set @ B ) @ A3 @ ( collect @ B @ P ) ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ ( uminus_uminus @ ( set @ B ) @ ( collect @ B @ P ) ) ) ) ) ) ) ) ).
% sum.If_cases
thf(fact_2994_take__bit__Suc__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_Suc_bit0
thf(fact_2995_take__bit__eq__mod,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A4: A] : ( modulo_modulo @ A @ A4 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% take_bit_eq_mod
thf(fact_2996_sum__mono2,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [B3: set @ B,A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ B3 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ B3 )
=> ( ! [B6: B] :
( ( member @ B @ B6 @ ( minus_minus @ ( set @ B ) @ B3 @ A3 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ B6 ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ B3 ) ) ) ) ) ) ).
% sum_mono2
thf(fact_2997_take__bit__nat__eq__self__iff,axiom,
! [N: nat,M: nat] :
( ( ( bit_se2584673776208193580ke_bit @ nat @ N @ M )
= M )
= ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_2998_take__bit__nat__less__exp,axiom,
! [N: nat,M: nat] : ( ord_less @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N @ M ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% take_bit_nat_less_exp
thf(fact_2999_take__bit__nat__eq__self,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( bit_se2584673776208193580ke_bit @ nat @ N @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_3000_sum_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B3 ) ) ) ) ) ) ) ).
% sum.union_inter_neutral
thf(fact_3001_sum_Oinsert__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A,X: B] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_3002_sum_Oremove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( member @ B @ X @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_3003_sum__diff1,axiom,
! [A: $tType,B: $tType] :
( ( ab_group_add @ A )
=> ! [A3: set @ B,A2: B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( ( member @ B @ A2 @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( minus_minus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( F2 @ A2 ) ) ) )
& ( ~ ( member @ B @ A2 @ A3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) ) ) ) ) ) ).
% sum_diff1
thf(fact_3004_sum__Un,axiom,
! [A: $tType,B: $tType] :
( ( ab_group_add @ A )
=> ! [A3: set @ B,B3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ) ).
% sum_Un
thf(fact_3005_sum_Ounion__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( ( inf_inf @ ( set @ B ) @ A3 @ B3 )
= ( bot_bot @ ( set @ B ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B3 ) ) ) ) ) ) ) ).
% sum.union_disjoint
thf(fact_3006_sum_Ounion__diff2,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ B3 @ A3 ) ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ) ).
% sum.union_diff2
thf(fact_3007_sum__Un2,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ B )
=> ! [A3: set @ A,B3: set @ A,F2: A > B] :
( ( finite_finite @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
=> ( ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) ) ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ) ).
% sum_Un2
thf(fact_3008_take__bit__nat__def,axiom,
( ( bit_se2584673776208193580ke_bit @ nat )
= ( ^ [N3: nat,M4: nat] : ( modulo_modulo @ nat @ M4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% take_bit_nat_def
thf(fact_3009_exp__le,axiom,
ord_less_eq @ real @ ( exp @ real @ ( one_one @ real ) ) @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ).
% exp_le
thf(fact_3010_take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ).
% take_bit_int_less_exp
thf(fact_3011_take__bit__int__def,axiom,
( ( bit_se2584673776208193580ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( modulo_modulo @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% take_bit_int_def
thf(fact_3012_sum__div__partition,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A3: set @ B,F2: B > A,B2: A] :
( ( finite_finite @ B @ A3 )
=> ( ( divide_divide @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ B2 )
= ( plus_plus @ A
@ ( groups7311177749621191930dd_sum @ B @ A
@ ^ [A4: B] : ( divide_divide @ A @ ( F2 @ A4 ) @ B2 )
@ ( inf_inf @ ( set @ B ) @ A3
@ ( collect @ B
@ ^ [A4: B] : ( dvd_dvd @ A @ B2 @ ( F2 @ A4 ) ) ) ) )
@ ( divide_divide @ A
@ ( groups7311177749621191930dd_sum @ B @ A @ F2
@ ( inf_inf @ ( set @ B ) @ A3
@ ( collect @ B
@ ^ [A4: B] :
~ ( dvd_dvd @ A @ B2 @ ( F2 @ A4 ) ) ) ) )
@ B2 ) ) ) ) ) ).
% sum_div_partition
thf(fact_3013_sum_Odelta__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A,C2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( plus_plus @ A @ ( B2 @ A2 ) @ ( groups7311177749621191930dd_sum @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_3014_tanh__altdef,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tanh @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( exp @ A @ X6 ) @ ( exp @ A @ ( uminus_uminus @ A @ X6 ) ) ) @ ( plus_plus @ A @ ( exp @ A @ X6 ) @ ( exp @ A @ ( uminus_uminus @ A @ X6 ) ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_3015_take__bit__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= ( zero_zero @ A ) )
= ( dvd_dvd @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ A2 ) ) ) ).
% take_bit_eq_0_iff
thf(fact_3016_sum__strict__mono2,axiom,
! [B: $tType,A: $tType] :
( ( ordere8940638589300402666id_add @ B )
=> ! [B3: set @ A,A3: set @ A,B2: A,F2: A > B] :
( ( finite_finite @ A @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( member @ A @ B2 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) )
=> ( ( ord_less @ B @ ( zero_zero @ B ) @ ( F2 @ B2 ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ B3 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ X5 ) ) )
=> ( ord_less @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ B3 ) ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_3017_member__le__sum,axiom,
! [B: $tType,C: $tType] :
( ( ( ordere6911136660526730532id_add @ B )
& ( semiring_1 @ B ) )
=> ! [I3: C,A3: set @ C,F2: C > B] :
( ( member @ C @ I3 @ A3 )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ ( minus_minus @ ( set @ C ) @ A3 @ ( insert @ C @ I3 @ ( bot_bot @ ( set @ C ) ) ) ) )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ X5 ) ) )
=> ( ( finite_finite @ C @ A3 )
=> ( ord_less_eq @ B @ ( F2 @ I3 ) @ ( groups7311177749621191930dd_sum @ C @ B @ F2 @ A3 ) ) ) ) ) ) ).
% member_le_sum
thf(fact_3018_take__bit__numeral__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_numeral_bit0
thf(fact_3019_take__bit__nat__less__self__iff,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N @ M ) @ M )
= ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_3020_Suc__mask__eq__exp,axiom,
! [N: nat] :
( ( suc @ ( bit_se2239418461657761734s_mask @ nat @ N ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% Suc_mask_eq_exp
thf(fact_3021_mask__nat__less__exp,axiom,
! [N: nat] : ( ord_less @ nat @ ( bit_se2239418461657761734s_mask @ nat @ N ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% mask_nat_less_exp
thf(fact_3022_exp__half__le2,axiom,
ord_less_eq @ real @ ( exp @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% exp_half_le2
thf(fact_3023_take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% take_bit_Suc_minus_bit0
thf(fact_3024_convex__sum__bound__le,axiom,
! [A: $tType,B: $tType] :
( ( linordered_idom @ B )
=> ! [I6: set @ A,X: A > B,A2: A > B,B2: B,Delta: B] :
( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( X @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ A @ B @ X @ I6 )
= ( one_one @ B ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( ord_less_eq @ B @ ( abs_abs @ B @ ( minus_minus @ B @ ( A2 @ I2 ) @ B2 ) ) @ Delta ) )
=> ( ord_less_eq @ B
@ ( abs_abs @ B
@ ( minus_minus @ B
@ ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I: A] : ( times_times @ B @ ( A2 @ I ) @ ( X @ I ) )
@ I6 )
@ B2 ) )
@ Delta ) ) ) ) ) ).
% convex_sum_bound_le
thf(fact_3025_take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ K )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_3026_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ K @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) )
= ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_3027_exp__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [Z2: A] :
( ( exp @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Z2 ) )
= ( power_power @ A @ ( exp @ A @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% exp_double
thf(fact_3028_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ) ).
% semiring_bit_operations_class.even_mask_iff
thf(fact_3029_or__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ ( one_one @ A ) )
= ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% or_one_eq
thf(fact_3030_one__or__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ A2 )
= ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% one_or_eq
thf(fact_3031_OR__upper,axiom,
! [X: int,N: nat,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ X @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ int @ Y @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ord_less @ int @ ( bit_se1065995026697491101ons_or @ int @ X @ Y ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ).
% OR_upper
thf(fact_3032_take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
= K )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_3033_take__bit__int__eq__self,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_3034_mask__nat__def,axiom,
( ( bit_se2239418461657761734s_mask @ nat )
= ( ^ [N3: nat] : ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) ) ).
% mask_nat_def
thf(fact_3035_take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( pred_numeral @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% take_bit_numeral_minus_bit0
thf(fact_3036_mask__half__int,axiom,
! [N: nat] :
( ( divide_divide @ int @ ( bit_se2239418461657761734s_mask @ int @ N ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( bit_se2239418461657761734s_mask @ int @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ).
% mask_half_int
thf(fact_3037_take__bit__incr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N @ K )
!= ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ int ) ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N @ ( plus_plus @ int @ K @ ( one_one @ int ) ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ) ).
% take_bit_incr_eq
thf(fact_3038_mask__int__def,axiom,
( ( bit_se2239418461657761734s_mask @ int )
= ( ^ [N3: nat] : ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ int ) ) ) ) ).
% mask_int_def
thf(fact_3039_take__bit__Suc__minus__1__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( suc @ N ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_Suc_minus_1_eq
thf(fact_3040_take__bit__Suc__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_Suc_bit1
thf(fact_3041_take__bit__numeral__minus__1__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ K ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ K ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_numeral_minus_1_eq
thf(fact_3042_take__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N ) @ A2 )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% take_bit_Suc
thf(fact_3043_mask__eq__exp__minus__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A )
= ( ^ [N3: nat] : ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ A ) ) ) ) ) ).
% mask_eq_exp_minus_1
thf(fact_3044_exp__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( plus_plus @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% exp_bound
thf(fact_3045_take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ K )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) @ ( minus_minus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_3046_take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_3047_or__int__rec,axiom,
( ( bit_se1065995026697491101ons_or @ int )
= ( ^ [K3: int,L2: int] :
( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
| ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% or_int_rec
thf(fact_3048_signed__take__bit__eq__take__bit__shift,axiom,
( ( bit_ri4674362597316999326ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N3 ) @ ( plus_plus @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% signed_take_bit_eq_take_bit_shift
thf(fact_3049_stable__imp__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N: nat] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= ( zero_zero @ A ) ) )
& ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ A ) ) ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_3050_take__bit__numeral__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_numeral_bit1
thf(fact_3051_real__exp__bound__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) ) ) ) ) ).
% real_exp_bound_lemma
thf(fact_3052_take__bit__minus__small__eq,axiom,
! [K: int,N: nat] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N @ ( uminus_uminus @ int @ K ) )
= ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_3053_exp__lower__Taylor__quadratic,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( divide_divide @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( exp @ real @ X ) ) ) ).
% exp_lower_Taylor_quadratic
thf(fact_3054_take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( pred_numeral @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% take_bit_numeral_minus_bit1
thf(fact_3055_take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ N @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% take_bit_Suc_minus_bit1
thf(fact_3056_or__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ one2 @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(1)
thf(fact_3057_or__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) @ ( one_one @ int ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ one2 @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(5)
thf(fact_3058_log__base__10__eq1,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ X )
= ( times_times @ real @ ( divide_divide @ real @ ( ln_ln @ real @ ( exp @ real @ ( one_one @ real ) ) ) @ ( ln_ln @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) ) ) @ ( ln_ln @ real @ X ) ) ) ) ).
% log_base_10_eq1
thf(fact_3059_log__one,axiom,
! [A2: real] :
( ( log @ A2 @ ( one_one @ real ) )
= ( zero_zero @ real ) ) ).
% log_one
thf(fact_3060_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral @ nat @ K ) ) ).
% pred_numeral_inc
thf(fact_3061_or__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(4)
thf(fact_3062_or__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(2)
thf(fact_3063_log__eq__one,axiom,
! [A2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ A2 )
= ( one_one @ real ) ) ) ) ).
% log_eq_one
thf(fact_3064_log__less__cancel__iff,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_3065_log__less__one__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ A2 ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_3066_one__less__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ ( log @ A2 @ X ) )
= ( ord_less @ real @ A2 @ X ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_3067_log__less__zero__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_3068_zero__less__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( log @ A2 @ X ) )
= ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_3069_or__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(1)
thf(fact_3070_or__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(3)
thf(fact_3071_sum_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ ( suc @ N ) @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ ( suc @ N ) @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_3072_log__le__cancel__iff,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_3073_log__le__one__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ A2 ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_3074_one__le__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ ( log @ A2 @ X ) )
= ( ord_less_eq @ real @ A2 @ X ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_3075_log__le__zero__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_3076_zero__le__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( log @ A2 @ X ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_3077_add__neg__numeral__special_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ M ) ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_3078_add__neg__numeral__special_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ N ) ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_3079_diff__numeral__special_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( numeral_numeral @ A @ ( inc @ M ) ) ) ) ).
% diff_numeral_special(6)
thf(fact_3080_diff__numeral__special_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ N ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ N ) ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_3081_sum__zero__power,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A3: set @ nat,C2: nat > A] :
( ( ( ( finite_finite @ nat @ A3 )
& ( member @ nat @ ( zero_zero @ nat ) @ A3 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ ( zero_zero @ A ) @ I ) )
@ A3 )
= ( C2 @ ( zero_zero @ nat ) ) ) )
& ( ~ ( ( finite_finite @ nat @ A3 )
& ( member @ nat @ ( zero_zero @ nat ) @ A3 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ ( zero_zero @ A ) @ I ) )
@ A3 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_zero_power
thf(fact_3082_sum__zero__power_H,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A3: set @ nat,C2: nat > A,D2: nat > A] :
( ( ( ( finite_finite @ nat @ A3 )
& ( member @ nat @ ( zero_zero @ nat ) @ A3 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( divide_divide @ A @ ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ ( zero_zero @ A ) @ I ) ) @ ( D2 @ I ) )
@ A3 )
= ( divide_divide @ A @ ( C2 @ ( zero_zero @ nat ) ) @ ( D2 @ ( zero_zero @ nat ) ) ) ) )
& ( ~ ( ( finite_finite @ nat @ A3 )
& ( member @ nat @ ( zero_zero @ nat ) @ A3 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( divide_divide @ A @ ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ ( zero_zero @ A ) @ I ) ) @ ( D2 @ I ) )
@ A3 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_zero_power'
thf(fact_3083_or__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(4)
thf(fact_3084_or__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(8)
thf(fact_3085_or__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(3)
thf(fact_3086_or__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(7)
thf(fact_3087_or__not__num__neg_Osimps_I1_J,axiom,
( ( bit_or_not_num_neg @ one2 @ one2 )
= one2 ) ).
% or_not_num_neg.simps(1)
thf(fact_3088_num__induct,axiom,
! [P: num > $o,X: num] :
( ( P @ one2 )
=> ( ! [X5: num] :
( ( P @ X5 )
=> ( P @ ( inc @ X5 ) ) )
=> ( P @ X ) ) ) ).
% num_induct
thf(fact_3089_add__inc,axiom,
! [X: num,Y: num] :
( ( plus_plus @ num @ X @ ( inc @ Y ) )
= ( inc @ ( plus_plus @ num @ X @ Y ) ) ) ).
% add_inc
thf(fact_3090_sum__cong__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ nat,F2: nat > A,G: nat > A] :
( ~ ( member @ nat @ ( zero_zero @ nat ) @ A3 )
=> ( ! [X5: nat] :
( ( member @ nat @ ( suc @ X5 ) @ A3 )
=> ( ( F2 @ ( suc @ X5 ) )
= ( G @ ( suc @ X5 ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ A3 )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ A3 ) ) ) ) ) ).
% sum_cong_Suc
thf(fact_3091_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_3092_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( plus_plus @ nat @ I @ K ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_3093_or__not__num__neg_Osimps_I4_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one2 )
= ( bit0 @ one2 ) ) ).
% or_not_num_neg.simps(4)
thf(fact_3094_or__not__num__neg_Osimps_I6_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
= ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(6)
thf(fact_3095_or__not__num__neg_Osimps_I7_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one2 )
= one2 ) ).
% or_not_num_neg.simps(7)
thf(fact_3096_or__not__num__neg_Osimps_I3_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one2 @ ( bit1 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(3)
thf(fact_3097_inc_Osimps_I1_J,axiom,
( ( inc @ one2 )
= ( bit0 @ one2 ) ) ).
% inc.simps(1)
thf(fact_3098_inc_Osimps_I3_J,axiom,
! [X: num] :
( ( inc @ ( bit1 @ X ) )
= ( bit0 @ ( inc @ X ) ) ) ).
% inc.simps(3)
thf(fact_3099_inc_Osimps_I2_J,axiom,
! [X: num] :
( ( inc @ ( bit0 @ X ) )
= ( bit1 @ X ) ) ).
% inc.simps(2)
thf(fact_3100_or__not__num__neg_Osimps_I5_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(5)
thf(fact_3101_sum__eq__Suc0__iff,axiom,
! [A: $tType,A3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ( F2 @ X6 )
= ( suc @ ( zero_zero @ nat ) ) )
& ! [Y6: A] :
( ( member @ A @ Y6 @ A3 )
=> ( ( X6 != Y6 )
=> ( ( F2 @ Y6 )
= ( zero_zero @ nat ) ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_3102_sum__SucD,axiom,
! [A: $tType,F2: A > nat,A3: set @ A,N: nat] :
( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 )
= ( suc @ N ) )
=> ? [X5: A] :
( ( member @ A @ X5 @ A3 )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ ( F2 @ X5 ) ) ) ) ).
% sum_SucD
thf(fact_3103_or__not__num__neg_Osimps_I9_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(9)
thf(fact_3104_sum__eq__1__iff,axiom,
! [A: $tType,A3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 )
= ( one_one @ nat ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ( F2 @ X6 )
= ( one_one @ nat ) )
& ! [Y6: A] :
( ( member @ A @ Y6 @ A3 )
=> ( ( X6 != Y6 )
=> ( ( F2 @ Y6 )
= ( zero_zero @ nat ) ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_3105_add__One,axiom,
! [X: num] :
( ( plus_plus @ num @ X @ one2 )
= ( inc @ X ) ) ).
% add_One
thf(fact_3106_inc__BitM__eq,axiom,
! [N: num] :
( ( inc @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% inc_BitM_eq
thf(fact_3107_BitM__inc__eq,axiom,
! [N: num] :
( ( bitM @ ( inc @ N ) )
= ( bit1 @ N ) ) ).
% BitM_inc_eq
thf(fact_3108_mult__inc,axiom,
! [X: num,Y: num] :
( ( times_times @ num @ X @ ( inc @ Y ) )
= ( plus_plus @ num @ ( times_times @ num @ X @ Y ) @ X ) ) ).
% mult_inc
thf(fact_3109_sum__power__add,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,M: nat,I6: set @ nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( power_power @ A @ X @ ( plus_plus @ nat @ M @ I ) )
@ I6 )
= ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ I6 ) ) ) ) ).
% sum_power_add
thf(fact_3110_sum_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ N @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ N @ M ) ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_3111_sum__nth__roots,axiom,
! [N: nat,C2: complex] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N )
=> ( ( groups7311177749621191930dd_sum @ complex @ complex
@ ^ [X6: complex] : X6
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= C2 ) ) )
= ( zero_zero @ complex ) ) ) ).
% sum_nth_roots
thf(fact_3112_sum__roots__unity,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N )
=> ( ( groups7311177749621191930dd_sum @ complex @ complex
@ ^ [X6: complex] : X6
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= ( one_one @ complex ) ) ) )
= ( zero_zero @ complex ) ) ) ).
% sum_roots_unity
thf(fact_3113_or__not__num__neg_Osimps_I2_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one2 @ ( bit0 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(2)
thf(fact_3114_log__base__change,axiom,
! [A2: real,B2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ B2 @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ B2 ) ) ) ) ) ).
% log_base_change
thf(fact_3115_sum__diff1__nat,axiom,
! [A: $tType,A2: A,A3: set @ A,F2: A > nat] :
( ( ( member @ A @ A2 @ A3 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) @ ( F2 @ A2 ) ) ) )
& ( ~ ( member @ A @ A2 @ A3 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) ) ) ) ).
% sum_diff1_nat
thf(fact_3116_sum__shift__lb__Suc0__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,K: nat] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_3117_sum_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_3118_sum_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N ) ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_3119_sum_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ ( suc @ N ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_3120_numeral__inc,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [X: num] :
( ( numeral_numeral @ A @ ( inc @ X ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% numeral_inc
thf(fact_3121_or__not__num__neg_Osimps_I8_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(8)
thf(fact_3122_sum_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ M )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_3123_sum__Suc__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ I ) ) @ ( F2 @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( minus_minus @ A @ ( F2 @ ( suc @ N ) ) @ ( F2 @ M ) ) ) ) ) ).
% sum_Suc_diff
thf(fact_3124_sum__Un__nat,axiom,
! [A: $tType,A3: set @ A,B3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ B3 ) ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ) ).
% sum_Un_nat
thf(fact_3125_log__mult,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( log @ A2 @ ( times_times @ real @ X @ Y ) )
= ( plus_plus @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) ) ) ) ) ) ) ).
% log_mult
thf(fact_3126_log__divide,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( log @ A2 @ ( divide_divide @ real @ X @ Y ) )
= ( minus_minus @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) ) ) ) ) ) ) ).
% log_divide
thf(fact_3127_sum_Oub__add__nat,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A,P2: nat] :
( ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ N @ P2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N @ P2 ) ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_3128_set__encode__def,axiom,
( nat_set_encode
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% set_encode_def
thf(fact_3129_or__not__num__neg_Oelims,axiom,
! [X: num,Xa2: num,Y: num] :
( ( ( bit_or_not_num_neg @ X @ Xa2 )
= Y )
=> ( ( ( X = one2 )
=> ( ( Xa2 = one2 )
=> ( Y != one2 ) ) )
=> ( ( ( X = one2 )
=> ! [M3: num] :
( ( Xa2
= ( bit0 @ M3 ) )
=> ( Y
!= ( bit1 @ M3 ) ) ) )
=> ( ( ( X = one2 )
=> ! [M3: num] :
( ( Xa2
= ( bit1 @ M3 ) )
=> ( Y
!= ( bit1 @ M3 ) ) ) )
=> ( ( ? [N2: num] :
( X
= ( bit0 @ N2 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( bit0 @ one2 ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M3: num] :
( ( Xa2
= ( bit0 @ M3 ) )
=> ( Y
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M3: num] :
( ( Xa2
= ( bit1 @ M3 ) )
=> ( Y
!= ( bit0 @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ( ( ? [N2: num] :
( X
= ( bit1 @ N2 ) )
=> ( ( Xa2 = one2 )
=> ( Y != one2 ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M3: num] :
( ( Xa2
= ( bit0 @ M3 ) )
=> ( Y
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ~ ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M3: num] :
( ( Xa2
= ( bit1 @ M3 ) )
=> ( Y
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.elims
thf(fact_3130_log__eq__div__ln__mult__log,axiom,
! [A2: real,B2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ A2 @ X )
= ( times_times @ real @ ( divide_divide @ real @ ( ln_ln @ real @ B2 ) @ ( ln_ln @ real @ A2 ) ) @ ( log @ B2 @ X ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_3131_sum__natinterval__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N: nat,F2: nat > A] :
( ( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( plus_plus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( minus_minus @ A @ ( F2 @ M ) @ ( F2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( plus_plus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_natinterval_diff
thf(fact_3132_sum__telescope_H_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( minus_minus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N ) )
= ( minus_minus @ A @ ( F2 @ N ) @ ( F2 @ M ) ) ) ) ) ).
% sum_telescope''
thf(fact_3133_mask__eq__sum__exp,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N: nat] :
( ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ A ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
@ ( collect @ nat
@ ^ [Q4: nat] : ( ord_less @ nat @ Q4 @ N ) ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_3134_sum__gp__multiplied,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [M: nat,N: nat,X: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) )
= ( minus_minus @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ ( suc @ N ) ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_3135_sum_Oin__pairs,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.in_pairs
thf(fact_3136_Suc__0__or__eq,axiom,
! [N: nat] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( plus_plus @ nat @ N @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% Suc_0_or_eq
thf(fact_3137_or__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se1065995026697491101ons_or @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( plus_plus @ nat @ N @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% or_Suc_0_eq
thf(fact_3138_or__nat__rec,axiom,
( ( bit_se1065995026697491101ons_or @ nat )
= ( ^ [M4: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M4 )
| ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_3139_mask__eq__sum__exp__nat,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
@ ( collect @ nat
@ ^ [Q4: nat] : ( ord_less @ nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_3140_gauss__sum__nat,axiom,
! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( divide_divide @ nat @ ( times_times @ nat @ N @ ( suc @ N ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% gauss_sum_nat
thf(fact_3141_or__nat__unfold,axiom,
( ( bit_se1065995026697491101ons_or @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( M4
= ( zero_zero @ nat ) )
@ N3
@ ( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ M4
@ ( plus_plus @ nat @ ( ord_max @ nat @ ( modulo_modulo @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_3142_arith__series__nat,axiom,
! [A2: nat,D2: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I: nat] : ( plus_plus @ nat @ A2 @ ( times_times @ nat @ I @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( divide_divide @ nat @ ( times_times @ nat @ ( suc @ N ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ nat @ N @ D2 ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% arith_series_nat
thf(fact_3143_Sum__Icc__nat,axiom,
! [M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( divide_divide @ nat @ ( minus_minus @ nat @ ( times_times @ nat @ N @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) @ ( times_times @ nat @ M @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Sum_Icc_nat
thf(fact_3144_log__base__10__eq2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ X )
= ( times_times @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ ( exp @ real @ ( one_one @ real ) ) ) @ ( ln_ln @ real @ X ) ) ) ) ).
% log_base_10_eq2
thf(fact_3145_sum__gp,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [N: nat,M: nat,X: A] :
( ( ( ord_less @ nat @ N @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N @ M )
=> ( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) @ M ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ ( suc @ N ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_3146_signed__take__bit__eq__take__bit__minus,axiom,
( ( bit_ri4674362597316999326ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N3 ) @ K3 ) @ ( times_times @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K3 @ N3 ) ) ) ) ) ) ).
% signed_take_bit_eq_take_bit_minus
thf(fact_3147_log2__of__power__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less_eq @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ).
% log2_of_power_le
thf(fact_3148_gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) )
= ( divide_divide @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_3149_arctan__half,axiom,
( arctan
= ( ^ [X6: real] : ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( arctan @ ( divide_divide @ real @ X6 @ ( plus_plus @ real @ ( one_one @ real ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ X6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% arctan_half
thf(fact_3150_of__nat__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( semiring_1_of_nat @ A @ N ) )
= ( M = N ) ) ) ).
% of_nat_eq_iff
thf(fact_3151_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiring_1_of_nat @ int @ M )
= ( numeral_numeral @ int @ V ) )
= ( M
= ( numeral_numeral @ nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_3152_bit__0__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( zero_zero @ A ) )
= ( bot_bot @ ( nat > $o ) ) ) ) ).
% bit_0_eq
thf(fact_3153_abs__of__nat,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat] :
( ( abs_abs @ A @ ( semiring_1_of_nat @ A @ N ) )
= ( semiring_1_of_nat @ A @ N ) ) ) ).
% abs_of_nat
thf(fact_3154_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) )
= ( semiring_1_of_nat @ int @ M ) )
= ( ( N
= ( zero_zero @ nat ) )
& ( M
= ( zero_zero @ nat ) ) ) ) ).
% negative_eq_positive
thf(fact_3155_real__sqrt__eq__zero__cancel__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_3156_real__sqrt__zero,axiom,
( ( sqrt @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% real_sqrt_zero
thf(fact_3157_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_eq_0_iff
thf(fact_3158_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( zero_zero @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( ( zero_zero @ nat )
= N ) ) ) ).
% of_nat_0_eq_iff
thf(fact_3159_of__nat__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_0
thf(fact_3160_of__nat__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_iff
thf(fact_3161_of__nat__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: num] :
( ( semiring_1_of_nat @ A @ ( numeral_numeral @ nat @ N ) )
= ( numeral_numeral @ A @ N ) ) ) ).
% of_nat_numeral
thf(fact_3162_of__nat__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% of_nat_le_iff
thf(fact_3163_of__nat__add,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ M @ N ) )
= ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_add
thf(fact_3164_of__nat__mult,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( times_times @ nat @ M @ N ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_mult
thf(fact_3165_of__nat__eq__1__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( semiring_1_of_nat @ A @ N )
= ( one_one @ A ) )
= ( N
= ( one_one @ nat ) ) ) ) ).
% of_nat_eq_1_iff
thf(fact_3166_of__nat__1__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( one_one @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( N
= ( one_one @ nat ) ) ) ) ).
% of_nat_1_eq_iff
thf(fact_3167_of__nat__1,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( one_one @ nat ) )
= ( one_one @ A ) ) ) ).
% of_nat_1
thf(fact_3168_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ( semiring_1_of_nat @ A @ X )
= ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( X
= ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_3169_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W )
= ( semiring_1_of_nat @ A @ X ) )
= ( ( power_power @ nat @ B2 @ W )
= X ) ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_3170_of__nat__power,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( power_power @ nat @ M @ N ) )
= ( power_power @ A @ ( semiring_1_of_nat @ A @ M ) @ N ) ) ) ).
% of_nat_power
thf(fact_3171_negative__zless,axiom,
! [N: nat,M: nat] : ( ord_less @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) @ ( semiring_1_of_nat @ int @ M ) ) ).
% negative_zless
thf(fact_3172_real__sqrt__lt__0__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( sqrt @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% real_sqrt_lt_0_iff
thf(fact_3173_real__sqrt__gt__0__iff,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( sqrt @ Y ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ Y ) ) ).
% real_sqrt_gt_0_iff
thf(fact_3174_real__sqrt__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sqrt @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% real_sqrt_le_0_iff
thf(fact_3175_real__sqrt__ge__0__iff,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ Y ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y ) ) ).
% real_sqrt_ge_0_iff
thf(fact_3176_real__sqrt__abs2,axiom,
! [X: real] :
( ( sqrt @ ( times_times @ real @ X @ X ) )
= ( abs_abs @ real @ X ) ) ).
% real_sqrt_abs2
thf(fact_3177_real__sqrt__mult__self,axiom,
! [A2: real] :
( ( times_times @ real @ ( sqrt @ A2 ) @ ( sqrt @ A2 ) )
= ( abs_abs @ real @ A2 ) ) ).
% real_sqrt_mult_self
thf(fact_3178_of__nat__of__bool,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [P: $o] :
( ( semiring_1_of_nat @ A @ ( zero_neq_one_of_bool @ nat @ P ) )
= ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% of_nat_of_bool
thf(fact_3179_of__nat__le__0__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_le_0_iff
thf(fact_3180_of__nat__Suc,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ M ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ M ) ) ) ) ).
% of_nat_Suc
thf(fact_3181_bit__numeral__Bit0__Suc__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( suc @ N ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ M ) @ N ) ) ) ).
% bit_numeral_Bit0_Suc_iff
thf(fact_3182_bit__numeral__Bit1__Suc__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( suc @ N ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ M ) @ N ) ) ) ).
% bit_numeral_Bit1_Suc_iff
thf(fact_3183_real__sqrt__four,axiom,
( ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% real_sqrt_four
thf(fact_3184_signed__take__bit__nonnegative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) ).
% signed_take_bit_nonnegative_iff
thf(fact_3185_signed__take__bit__negative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ).
% signed_take_bit_negative_iff
thf(fact_3186_of__nat__0__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% of_nat_0_less_iff
thf(fact_3187_of__nat__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( ord_less @ nat @ X @ ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_3188_of__nat__less__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ord_less @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less @ nat @ ( power_power @ nat @ B2 @ W ) @ X ) ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_3189_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [Y: nat,X: num,N: nat] :
( ( ( semiring_1_of_nat @ A @ Y )
= ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( Y
= ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_3190_numeral__power__eq__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [X: num,N: nat,Y: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N )
= ( semiring_1_of_nat @ A @ Y ) )
= ( ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N )
= Y ) ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_3191_of__nat__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( ord_less_eq @ nat @ X @ ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_3192_of__nat__le__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ W ) @ X ) ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_3193_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ N ) @ ( numeral_numeral @ real @ W ) )
= ( ord_less @ nat @ N @ ( numeral_numeral @ nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_3194_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less @ real @ ( numeral_numeral @ real @ W ) @ ( semiring_1_of_nat @ real @ N ) )
= ( ord_less @ nat @ ( numeral_numeral @ nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_3195_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq @ real @ ( numeral_numeral @ real @ N ) @ ( semiring_1_of_nat @ real @ M ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_3196_bit__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [W: num,N: num] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit0 @ W ) ) @ ( numeral_numeral @ nat @ N ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_numeral_simps(2)
thf(fact_3197_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
= ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ W ) ) @ N ) ) ).
% bit_minus_numeral_Bit0_Suc_iff
thf(fact_3198_bit__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [W: num,N: num] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit1 @ W ) ) @ ( numeral_numeral @ nat @ N ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_numeral_simps(3)
thf(fact_3199_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ ( numeral_numeral @ int @ W ) @ N ) ) ) ).
% bit_minus_numeral_Bit1_Suc_iff
thf(fact_3200_of__nat__zero__less__power__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ X ) @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_3201_bit__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( zero_zero @ nat ) )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% bit_0
thf(fact_3202_real__sqrt__abs,axiom,
! [X: real] :
( ( sqrt @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( abs_abs @ real @ X ) ) ).
% real_sqrt_abs
thf(fact_3203_log__pow__cancel,axiom,
! [A2: real,B2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ ( power_power @ real @ A2 @ B2 ) )
= ( semiring_1_of_nat @ real @ B2 ) ) ) ) ).
% log_pow_cancel
thf(fact_3204_bit__minus__numeral__int_I1_J,axiom,
! [W: num,N: num] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ W ) ) ) @ ( numeral_numeral @ nat @ N ) )
= ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ W ) ) @ ( pred_numeral @ N ) ) ) ).
% bit_minus_numeral_int(1)
thf(fact_3205_bit__minus__numeral__int_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ W ) ) ) @ ( numeral_numeral @ nat @ N ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ ( numeral_numeral @ int @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_minus_numeral_int(2)
thf(fact_3206_of__nat__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,I3: num,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( numeral_numeral @ A @ I3 ) @ N ) )
= ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ I3 ) @ N ) ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_3207_numeral__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I3: num,N: nat,X: nat] :
( ( ord_less @ A @ ( power_power @ A @ ( numeral_numeral @ A @ I3 ) @ N ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ I3 ) @ N ) @ X ) ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_3208_even__of__nat,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ N ) )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% even_of_nat
thf(fact_3209_of__nat__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,I3: num,N: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( numeral_numeral @ A @ I3 ) @ N ) )
= ( ord_less_eq @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ I3 ) @ N ) ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_3210_numeral__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I3: num,N: nat,X: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( numeral_numeral @ A @ I3 ) @ N ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ I3 ) @ N ) @ X ) ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_3211_bit__mod__2__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N )
= ( ( N
= ( zero_zero @ nat ) )
& ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% bit_mod_2_iff
thf(fact_3212_real__sqrt__pow2__iff,axiom,
! [X: real] :
( ( ( power_power @ real @ ( sqrt @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% real_sqrt_pow2_iff
thf(fact_3213_real__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( sqrt @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X ) ) ).
% real_sqrt_pow2
thf(fact_3214_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X: real,Y: real,Xa2: real,Ya: real] :
( ( power_power @ real @ ( sqrt @ ( times_times @ real @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ Xa2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Ya @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( times_times @ real @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ Xa2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Ya @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_squared_eq
thf(fact_3215_reals__Archimedean2,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [N2: nat] : ( ord_less @ A @ X @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% reals_Archimedean2
thf(fact_3216_real__sqrt__mult,axiom,
! [X: real,Y: real] :
( ( sqrt @ ( times_times @ real @ X @ Y ) )
= ( times_times @ real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_mult
thf(fact_3217_mult__of__nat__commute,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: nat,Y: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ X ) @ Y )
= ( times_times @ A @ Y @ ( semiring_1_of_nat @ A @ X ) ) ) ) ).
% mult_of_nat_commute
thf(fact_3218_bit__and__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
& ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) ) ) ) ).
% bit_and_iff
thf(fact_3219_bit__or__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
| ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) ) ) ) ).
% bit_or_iff
thf(fact_3220_bit__of__nat__iff__bit,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: nat,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( semiring_1_of_nat @ A @ M ) @ N )
= ( bit_se5641148757651400278ts_bit @ nat @ M @ N ) ) ) ).
% bit_of_nat_iff_bit
thf(fact_3221_bit__numeral__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ M ) @ N )
= ( bit_se5641148757651400278ts_bit @ nat @ ( numeral_numeral @ nat @ M ) @ N ) ) ) ).
% bit_numeral_iff
thf(fact_3222_bit__disjunctive__add__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,B2: A,N: nat] :
( ! [N2: nat] :
( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
| ~ ( bit_se5641148757651400278ts_bit @ A @ B2 @ N2 ) )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
| ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) ) ) ) ) ).
% bit_disjunctive_add_iff
thf(fact_3223_of__nat__or__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se1065995026697491101ons_or @ nat @ M @ N ) )
= ( bit_se1065995026697491101ons_or @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_or_eq
thf(fact_3224_bit__and__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ int @ K @ N )
& ( bit_se5641148757651400278ts_bit @ int @ L @ N ) ) ) ).
% bit_and_int_iff
thf(fact_3225_bit__unset__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
& ( M != N ) ) ) ) ).
% bit_unset_bit_iff
thf(fact_3226_bit__or__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ int @ K @ N )
| ( bit_se5641148757651400278ts_bit @ int @ L @ N ) ) ) ).
% bit_or_int_iff
thf(fact_3227_of__nat__less__of__int__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,X: int] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ N ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less @ int @ ( semiring_1_of_nat @ int @ N ) @ X ) ) ) ).
% of_nat_less_of_int_iff
thf(fact_3228_not__bit__1__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
~ ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ ( suc @ N ) ) ) ).
% not_bit_1_Suc
thf(fact_3229_bit__1__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ N )
= ( N
= ( zero_zero @ nat ) ) ) ) ).
% bit_1_iff
thf(fact_3230_bit__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: num] :
~ ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ ( numeral_numeral @ nat @ N ) ) ) ).
% bit_numeral_simps(1)
thf(fact_3231_real__sqrt__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sqrt @ X ) ) ) ).
% real_sqrt_gt_zero
thf(fact_3232_real__sqrt__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_zero
thf(fact_3233_real__sqrt__eq__zero__cancel,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( sqrt @ X )
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ).
% real_sqrt_eq_zero_cancel
thf(fact_3234_of__nat__0__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) ) ) ).
% of_nat_0_le_iff
thf(fact_3235_of__nat__less__0__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat] :
~ ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) ) ) ).
% of_nat_less_0_iff
thf(fact_3236_disjunctive__add,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ! [N2: nat] :
( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
| ~ ( bit_se5641148757651400278ts_bit @ A @ B2 @ N2 ) )
=> ( ( plus_plus @ A @ A2 @ B2 )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) ) ) ) ).
% disjunctive_add
thf(fact_3237_bit__take__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2584673776208193580ke_bit @ A @ M @ A2 ) @ N )
= ( ( ord_less @ nat @ N @ M )
& ( bit_se5641148757651400278ts_bit @ A @ A2 @ N ) ) ) ) ).
% bit_take_bit_iff
thf(fact_3238_of__nat__neq__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ N ) )
!= ( zero_zero @ A ) ) ) ).
% of_nat_neq_0
thf(fact_3239_bit__of__bool__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [B2: $o,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( zero_neq_one_of_bool @ A @ B2 ) @ N )
= ( B2
& ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% bit_of_bool_iff
thf(fact_3240_div__mult2__eq_H,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( divide_divide @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ M ) ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% div_mult2_eq'
thf(fact_3241_of__nat__less__imp__less,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_imp_less
thf(fact_3242_less__imp__of__nat__less,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% less_imp_of_nat_less
thf(fact_3243_of__nat__mono,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [I3: nat,J: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J ) ) ) ) ).
% of_nat_mono
thf(fact_3244_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( divide_divide @ nat @ M @ N ) )
= ( divide_divide @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_3245_of__nat__dvd__iff,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N: nat] :
( ( dvd_dvd @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( dvd_dvd @ nat @ M @ N ) ) ) ).
% of_nat_dvd_iff
thf(fact_3246_int__ops_I1_J,axiom,
( ( semiring_1_of_nat @ int @ ( zero_zero @ nat ) )
= ( zero_zero @ int ) ) ).
% int_ops(1)
thf(fact_3247_signed__take__bit__eq__if__positive,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,N: nat] :
( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
=> ( ( bit_ri4674362597316999326ke_bit @ A @ N @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ) ).
% signed_take_bit_eq_if_positive
thf(fact_3248_int__ops_I3_J,axiom,
! [N: num] :
( ( semiring_1_of_nat @ int @ ( numeral_numeral @ nat @ N ) )
= ( numeral_numeral @ int @ N ) ) ).
% int_ops(3)
thf(fact_3249_int__cases,axiom,
! [Z2: int] :
( ! [N2: nat] :
( Z2
!= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ! [N2: nat] :
( Z2
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) ) ) ).
% int_cases
thf(fact_3250_int__of__nat__induct,axiom,
! [P: int > $o,Z2: int] :
( ! [N2: nat] : ( P @ ( semiring_1_of_nat @ int @ N2 ) )
=> ( ! [N2: nat] : ( P @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) )
=> ( P @ Z2 ) ) ) ).
% int_of_nat_induct
thf(fact_3251_nat__int__comparison_I2_J,axiom,
( ( ord_less @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_3252_nat__int__comparison_I3_J,axiom,
( ( ord_less_eq @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_3253_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_3254_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ? [N2: nat] :
( K
= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_3255_of__nat__mod,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( modulo_modulo @ nat @ M @ N ) )
= ( modulo_modulo @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_mod
thf(fact_3256_zadd__int__left,axiom,
! [M: nat,N: nat,Z2: int] :
( ( plus_plus @ int @ ( semiring_1_of_nat @ int @ M ) @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ Z2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ M @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_3257_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ N @ M ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( semiring_1_of_nat @ int @ M ) ) ) ).
% int_plus
thf(fact_3258_int__ops_I5_J,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ A2 @ B2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% int_ops(5)
thf(fact_3259_int__ops_I7_J,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( times_times @ nat @ A2 @ B2 ) )
= ( times_times @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% int_ops(7)
thf(fact_3260_int__ops_I2_J,axiom,
( ( semiring_1_of_nat @ int @ ( one_one @ nat ) )
= ( one_one @ int ) ) ).
% int_ops(2)
thf(fact_3261_zdiv__int,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ A2 @ B2 ) )
= ( divide_divide @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% zdiv_int
thf(fact_3262_of__nat__max,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ A @ ( ord_max @ nat @ X @ Y ) )
= ( ord_max @ A @ ( semiring_1_of_nat @ A @ X ) @ ( semiring_1_of_nat @ A @ Y ) ) ) ) ).
% of_nat_max
thf(fact_3263_zmod__int,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ A2 @ B2 ) )
= ( modulo_modulo @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% zmod_int
thf(fact_3264_take__bit__of__nat,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,M: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( semiring_1_of_nat @ A @ M ) )
= ( semiring_1_of_nat @ A @ ( bit_se2584673776208193580ke_bit @ nat @ N @ M ) ) ) ) ).
% take_bit_of_nat
thf(fact_3265_of__nat__and__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se5824344872417868541ns_and @ nat @ M @ N ) )
= ( bit_se5824344872417868541ns_and @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_and_eq
thf(fact_3266_nat__less__as__int,axiom,
( ( ord_less @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_less_as_int
thf(fact_3267_nat__leq__as__int,axiom,
( ( ord_less_eq @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_leq_as_int
thf(fact_3268_of__nat__mask__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se2239418461657761734s_mask @ nat @ N ) )
= ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ).
% of_nat_mask_eq
thf(fact_3269_real__div__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( divide_divide @ real @ X @ ( sqrt @ X ) )
= ( sqrt @ X ) ) ) ).
% real_div_sqrt
thf(fact_3270_ex__less__of__nat__mult,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N2: nat] : ( ord_less @ A @ Y @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ X ) ) ) ) ).
% ex_less_of_nat_mult
thf(fact_3271_sqrt__add__le__add__sqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ X @ Y ) ) @ ( plus_plus @ real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ) ) ).
% sqrt_add_le_add_sqrt
thf(fact_3272_le__real__sqrt__sumsq,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( times_times @ real @ X @ X ) @ ( times_times @ real @ Y @ Y ) ) ) ) ).
% le_real_sqrt_sumsq
thf(fact_3273_of__nat__diff,axiom,
! [A: $tType] :
( ( semiring_1_cancel @ A )
=> ! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ M @ N ) )
= ( minus_minus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ) ).
% of_nat_diff
thf(fact_3274_bit__not__int__iff_H,axiom,
! [K: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( minus_minus @ int @ ( uminus_uminus @ int @ K ) @ ( one_one @ int ) ) @ N )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) ).
% bit_not_int_iff'
thf(fact_3275_exp__of__nat2__mult,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,N: nat] :
( ( exp @ A @ ( times_times @ A @ X @ ( semiring_1_of_nat @ A @ N ) ) )
= ( power_power @ A @ ( exp @ A @ X ) @ N ) ) ) ).
% exp_of_nat2_mult
thf(fact_3276_exp__of__nat__mult,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [N: nat,X: A] :
( ( exp @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ X ) )
= ( power_power @ A @ ( exp @ A @ X ) @ N ) ) ) ).
% exp_of_nat_mult
thf(fact_3277_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ! [Y4: real] :
? [N2: nat] : ( ord_less @ real @ Y4 @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_3278_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( M
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_3279_real__of__nat__div4,axiom,
! [N: nat,X: nat] : ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ X ) ) @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_3280_int__Suc,axiom,
! [N: nat] :
( ( semiring_1_of_nat @ int @ ( suc @ N ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( one_one @ int ) ) ) ).
% int_Suc
thf(fact_3281_int__ops_I4_J,axiom,
! [A2: nat] :
( ( semiring_1_of_nat @ int @ ( suc @ A2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( one_one @ int ) ) ) ).
% int_ops(4)
thf(fact_3282_zless__iff__Suc__zadd,axiom,
( ( ord_less @ int )
= ( ^ [W3: int,Z3: int] :
? [N3: nat] :
( Z3
= ( plus_plus @ int @ W3 @ ( semiring_1_of_nat @ int @ ( suc @ N3 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_3283_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ M ) ) )
= ( ( N
= ( zero_zero @ nat ) )
& ( M
= ( zero_zero @ nat ) ) ) ) ).
% int_zle_neg
thf(fact_3284_real__of__nat__div,axiom,
! [D2: nat,N: nat] :
( ( dvd_dvd @ nat @ D2 @ N )
=> ( ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ D2 ) )
= ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ D2 ) ) ) ) ).
% real_of_nat_div
thf(fact_3285_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_3286_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) @ ( zero_zero @ int ) ) ).
% negative_zle_0
thf(fact_3287_flip__bit__eq__if,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se8732182000553998342ip_bit @ A )
= ( ^ [N3: nat,A4: A] : ( if @ ( nat > A > A ) @ ( bit_se5641148757651400278ts_bit @ A @ A4 @ N3 ) @ ( bit_se2638667681897837118et_bit @ A ) @ ( bit_se5668285175392031749et_bit @ A ) @ N3 @ A4 ) ) ) ) ).
% flip_bit_eq_if
thf(fact_3288_sqrt2__less__2,axiom,
ord_less @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% sqrt2_less_2
thf(fact_3289_mod__mult2__eq_H,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ M ) ) @ ( semiring_1_of_nat @ A @ N ) ) ) @ ( modulo_modulo @ A @ A2 @ ( semiring_1_of_nat @ A @ M ) ) ) ) ) ).
% mod_mult2_eq'
thf(fact_3290_bit__imp__take__bit__positive,axiom,
! [N: nat,M: nat,K: int] :
( ( ord_less @ nat @ N @ M )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ N )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( bit_se2584673776208193580ke_bit @ int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_3291_field__char__0__class_Oof__nat__div,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( divide_divide @ nat @ M @ N ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ ( modulo_modulo @ nat @ M @ N ) ) ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_3292_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_concat_bit @ M @ K @ L ) @ N )
= ( ( ( ord_less @ nat @ N @ M )
& ( bit_se5641148757651400278ts_bit @ int @ K @ N ) )
| ( ( ord_less_eq @ nat @ M @ N )
& ( bit_se5641148757651400278ts_bit @ int @ L @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ).
% bit_concat_bit_iff
thf(fact_3293_pos__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% pos_int_cases
thf(fact_3294_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( K
= ( semiring_1_of_nat @ int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_3295_int__cases3,axiom,
! [K: int] :
( ( K
!= ( zero_zero @ int ) )
=> ( ! [N2: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% int_cases3
thf(fact_3296_nat__less__real__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat,M4: nat] : ( ord_less_eq @ real @ ( plus_plus @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( one_one @ real ) ) @ ( semiring_1_of_nat @ real @ M4 ) ) ) ) ).
% nat_less_real_le
thf(fact_3297_nat__le__real__less,axiom,
( ( ord_less_eq @ nat )
= ( ^ [N3: nat,M4: nat] : ( ord_less @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( plus_plus @ real @ ( semiring_1_of_nat @ real @ M4 ) @ ( one_one @ real ) ) ) ) ) ).
% nat_le_real_less
thf(fact_3298_zmult__zless__mono2__lemma,axiom,
! [I3: int,J: int,K: nat] :
( ( ord_less @ int @ I3 @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ int @ ( times_times @ int @ ( semiring_1_of_nat @ int @ K ) @ I3 ) @ ( times_times @ int @ ( semiring_1_of_nat @ int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_3299_not__zle__0__negative,axiom,
! [N: nat] :
~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) ) ).
% not_zle_0_negative
thf(fact_3300_negD,axiom,
! [X: int] :
( ( ord_less @ int @ X @ ( zero_zero @ int ) )
=> ? [N2: nat] :
( X
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) ) ) ).
% negD
thf(fact_3301_negative__zless__0,axiom,
! [N: nat] : ( ord_less @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) @ ( zero_zero @ int ) ) ).
% negative_zless_0
thf(fact_3302_int__ops_I6_J,axiom,
! [A2: nat,B2: nat] :
( ( ( ord_less @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) )
=> ( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( zero_zero @ int ) ) )
& ( ~ ( ord_less @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) )
=> ( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ) ) ).
% int_ops(6)
thf(fact_3303_real__of__nat__div__aux,axiom,
! [X: nat,D2: nat] :
( ( divide_divide @ real @ ( semiring_1_of_nat @ real @ X ) @ ( semiring_1_of_nat @ real @ D2 ) )
= ( plus_plus @ real @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ X @ D2 ) ) @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ ( modulo_modulo @ nat @ X @ D2 ) ) @ ( semiring_1_of_nat @ real @ D2 ) ) ) ) ).
% real_of_nat_div_aux
thf(fact_3304_signed__take__bit__eq__concat__bit,axiom,
( ( bit_ri4674362597316999326ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( bit_concat_bit @ N3 @ K3 @ ( uminus_uminus @ int @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K3 @ N3 ) ) ) ) ) ) ).
% signed_take_bit_eq_concat_bit
thf(fact_3305_exp__eq__0__imp__not__bit,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N: nat,A2: A] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
= ( zero_zero @ A ) )
=> ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N ) ) ) ).
% exp_eq_0_imp_not_bit
thf(fact_3306_bit__Suc,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( suc @ N ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N ) ) ) ).
% bit_Suc
thf(fact_3307_stable__imp__bit__iff__odd,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% stable_imp_bit_iff_odd
thf(fact_3308_bit__iff__idd__imp__stable,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) )
=> ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 ) ) ) ).
% bit_iff_idd_imp_stable
thf(fact_3309_real__less__rsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Y )
=> ( ord_less @ real @ X @ ( sqrt @ Y ) ) ) ).
% real_less_rsqrt
thf(fact_3310_real__le__rsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Y )
=> ( ord_less_eq @ real @ X @ ( sqrt @ Y ) ) ) ).
% real_le_rsqrt
thf(fact_3311_sqrt__le__D,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( sqrt @ X ) @ Y )
=> ( ord_less_eq @ real @ X @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% sqrt_le_D
thf(fact_3312_nat__approx__posE,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [E2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E2 )
=> ~ ! [N2: nat] :
~ ( ord_less @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ ( suc @ N2 ) ) ) @ E2 ) ) ) ).
% nat_approx_posE
thf(fact_3313_of__nat__less__two__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat] : ( ord_less @ A @ ( semiring_1_of_nat @ A @ N ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% of_nat_less_two_power
thf(fact_3314_int__bit__bound,axiom,
! [K: int] :
~ ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_eq @ nat @ N2 @ M2 )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ M2 )
= ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) )
=> ~ ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) ) ) ) ).
% int_bit_bound
thf(fact_3315_inverse__of__nat__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ M ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_3316_exp__divide__power__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [N: nat,X: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( power_power @ A @ ( exp @ A @ ( divide_divide @ A @ X @ ( semiring_1_of_nat @ A @ N ) ) ) @ N )
= ( exp @ A @ X ) ) ) ) ).
% exp_divide_power_eq
thf(fact_3317_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ C2 )
=> ( ! [M3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M3 )
=> ( ord_less_eq @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M3 ) @ X ) @ C2 ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_3318_neg__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% neg_int_cases
thf(fact_3319_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y: nat] :
( ( P @ ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ X @ Y ) ) )
= ( ( ( ord_less_eq @ nat @ Y @ X )
=> ( P @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ X ) @ ( semiring_1_of_nat @ int @ Y ) ) ) )
& ( ( ord_less @ nat @ X @ Y )
=> ( P @ ( zero_zero @ int ) ) ) ) ) ).
% zdiff_int_split
thf(fact_3320_real__of__nat__div2,axiom,
! [N: nat,X: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( minus_minus @ real @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ X ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ X ) ) ) ) ).
% real_of_nat_div2
thf(fact_3321_real__of__nat__div3,axiom,
! [N: nat,X: nat] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ X ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ X ) ) ) @ ( one_one @ real ) ) ).
% real_of_nat_div3
thf(fact_3322_log__base__pow,axiom,
! [A2: real,N: nat,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( log @ ( power_power @ real @ A2 @ N ) @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ).
% log_base_pow
thf(fact_3323_ln__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( power_power @ real @ X @ N ) )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_realpow
thf(fact_3324_log__nat__power,axiom,
! [X: real,B2: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ B2 @ ( power_power @ real @ X @ N ) )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( log @ B2 @ X ) ) ) ) ).
% log_nat_power
thf(fact_3325_bit__iff__odd,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A4: A,N3: nat] :
~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A4 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ) ).
% bit_iff_odd
thf(fact_3326_and__exp__eq__0__iff__not__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N: nat] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( zero_zero @ A ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N ) ) ) ) ).
% and_exp_eq_0_iff_not_bit
thf(fact_3327_real__sqrt__unique,axiom,
! [Y: real,X: real] :
( ( ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( sqrt @ X )
= Y ) ) ) ).
% real_sqrt_unique
thf(fact_3328_real__le__lsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ X @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( sqrt @ X ) @ Y ) ) ) ) ).
% real_le_lsqrt
thf(fact_3329_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ U )
=> ( ord_less @ real @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_3330_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X: real,Y: real] :
( ( ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= Y )
=> ( X
= ( zero_zero @ real ) ) ) ).
% real_sqrt_sum_squares_eq_cancel2
thf(fact_3331_real__sqrt__sum__squares__eq__cancel,axiom,
! [X: real,Y: real] :
( ( ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= X )
=> ( Y
= ( zero_zero @ real ) ) ) ).
% real_sqrt_sum_squares_eq_cancel
thf(fact_3332_real__sqrt__sum__squares__triangle__ineq,axiom,
! [A2: real,C2: real,B2: real,D2: real] : ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ ( plus_plus @ real @ A2 @ C2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( plus_plus @ real @ B2 @ D2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( plus_plus @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ C2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ D2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_triangle_ineq
thf(fact_3333_real__sqrt__sum__squares__ge2,axiom,
! [Y: real,X: real] : ( ord_less_eq @ real @ Y @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge2
thf(fact_3334_real__sqrt__sum__squares__ge1,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge1
thf(fact_3335_sqrt__ge__absD,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( sqrt @ Y ) )
=> ( ord_less_eq @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Y ) ) ).
% sqrt_ge_absD
thf(fact_3336_bit__int__def,axiom,
( ( bit_se5641148757651400278ts_bit @ int )
= ( ^ [K3: int,N3: nat] :
~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( divide_divide @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% bit_int_def
thf(fact_3337_log2__of__power__eq,axiom,
! [M: nat,N: nat] :
( ( M
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( semiring_1_of_nat @ real @ N )
= ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) ) ) ).
% log2_of_power_eq
thf(fact_3338_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ X ) @ ( one_one @ real ) ) @ ( power_power @ real @ ( plus_plus @ real @ X @ ( one_one @ real ) ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_3339_log__of__power__less,axiom,
! [M: nat,B2: real,N: nat] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ M ) @ ( power_power @ real @ B2 @ N ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ real @ ( log @ B2 @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% log_of_power_less
thf(fact_3340_Bernoulli__inequality,axiom,
! [X: real,N: nat] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ X ) ) @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_3341_even__bit__succ__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ) ).
% even_bit_succ_iff
thf(fact_3342_odd__bit__iff__bit__pred,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N: nat] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ N )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ) ).
% odd_bit_iff_bit_pred
thf(fact_3343_real__less__lsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ X @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( sqrt @ X ) @ Y ) ) ) ) ).
% real_less_lsqrt
thf(fact_3344_sqrt__sum__squares__le__sum,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( plus_plus @ real @ X @ Y ) ) ) ) ).
% sqrt_sum_squares_le_sum
thf(fact_3345_sqrt__even__pow2,axiom,
! [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( sqrt @ ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ N ) )
= ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sqrt_even_pow2
thf(fact_3346_sqrt__sum__squares__le__sum__abs,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( plus_plus @ real @ ( abs_abs @ real @ X ) @ ( abs_abs @ real @ Y ) ) ) ).
% sqrt_sum_squares_le_sum_abs
thf(fact_3347_real__sqrt__ge__abs2,axiom,
! [Y: real,X: real] : ( ord_less_eq @ real @ ( abs_abs @ real @ Y ) @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% real_sqrt_ge_abs2
thf(fact_3348_real__sqrt__ge__abs1,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% real_sqrt_ge_abs1
thf(fact_3349_ln__sqrt,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( sqrt @ X ) )
= ( divide_divide @ real @ ( ln_ln @ real @ X ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% ln_sqrt
thf(fact_3350_arsinh__real__def,axiom,
( ( arsinh @ real )
= ( ^ [X6: real] : ( ln_ln @ real @ ( plus_plus @ real @ X6 @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ) ) ).
% arsinh_real_def
thf(fact_3351_log__of__power__le,axiom,
! [M: nat,B2: real,N: nat] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ M ) @ ( power_power @ real @ B2 @ N ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less_eq @ real @ ( log @ B2 @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% log_of_power_le
thf(fact_3352_bit__sum__mult__2__cases,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,N: nat] :
( ! [J3: nat] :
~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( suc @ J3 ) )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ N )
= ( ( ( N
= ( zero_zero @ nat ) )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( bit_se5641148757651400278ts_bit @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) @ N ) ) ) ) ) ) ).
% bit_sum_mult_2_cases
thf(fact_3353_bit__rec,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A4: A,N3: nat] :
( ( ( N3
= ( zero_zero @ nat ) )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A4 ) )
& ( ( N3
!= ( zero_zero @ nat ) )
=> ( bit_se5641148757651400278ts_bit @ A @ ( divide_divide @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% bit_rec
thf(fact_3354_arsinh__real__aux,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ).
% arsinh_real_aux
thf(fact_3355_real__sqrt__power__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( sqrt @ X ) @ N )
= ( power_power @ real @ X @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% real_sqrt_power_even
thf(fact_3356_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X: real,Y: real,Xa2: real,Ya: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ ( times_times @ real @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ Xa2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Ya @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_ge_zero
thf(fact_3357_arith__geo__mean__sqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( times_times @ real @ X @ Y ) ) @ ( divide_divide @ real @ ( plus_plus @ real @ X @ Y ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% arith_geo_mean_sqrt
thf(fact_3358_double__arith__series,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,D2: A,N: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ I ) @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) )
= ( times_times @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ D2 ) ) ) ) ) ).
% double_arith_series
thf(fact_3359_double__gauss__sum,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) ) ) ) ).
% double_gauss_sum
thf(fact_3360_less__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ M )
=> ( ord_less @ real @ ( semiring_1_of_nat @ real @ N ) @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_3361_le__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ M )
=> ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N ) @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_3362_set__bit__eq,axiom,
( ( bit_se5668285175392031749et_bit @ int )
= ( ^ [N3: nat,K3: int] :
( plus_plus @ int @ K3
@ ( times_times @ int
@ ( zero_neq_one_of_bool @ int
@ ~ ( bit_se5641148757651400278ts_bit @ int @ K3 @ N3 ) )
@ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% set_bit_eq
thf(fact_3363_unset__bit__eq,axiom,
( ( bit_se2638667681897837118et_bit @ int )
= ( ^ [N3: nat,K3: int] : ( minus_minus @ int @ K3 @ ( times_times @ int @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K3 @ N3 ) ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% unset_bit_eq
thf(fact_3364_cos__x__y__le__one,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( abs_abs @ real @ ( divide_divide @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) @ ( one_one @ real ) ) ).
% cos_x_y_le_one
thf(fact_3365_real__sqrt__sum__squares__less,axiom,
! [X: real,U: real,Y: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ( ord_less @ real @ ( abs_abs @ real @ Y ) @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ord_less @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ U ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_3366_arcosh__real__def,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( arcosh @ real @ X )
= ( ln_ln @ real @ ( plus_plus @ real @ X @ ( sqrt @ ( minus_minus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ) ) ).
% arcosh_real_def
thf(fact_3367_take__bit__Suc__from__most,axiom,
! [N: nat,K: int] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N ) @ K )
= ( plus_plus @ int @ ( times_times @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ).
% take_bit_Suc_from_most
thf(fact_3368_arith__series,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,D2: A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ I ) @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( divide_divide @ A @ ( times_times @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ D2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% arith_series
thf(fact_3369_gauss__sum,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( divide_divide @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% gauss_sum
thf(fact_3370_double__gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_3371_log2__of__power__less,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ).
% log2_of_power_less
thf(fact_3372_Bernoulli__inequality__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ X ) ) @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ N ) ) ) ).
% Bernoulli_inequality_even
thf(fact_3373_sum__gp__offset,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,M: nat,N: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ M @ N ) ) )
= ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ M @ N ) ) )
= ( divide_divide @ A @ ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N ) ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp_offset
thf(fact_3374_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N: nat,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( semiring_1_of_nat @ real @ N ) ) @ X )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ real @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( divide_divide @ real @ X @ ( semiring_1_of_nat @ real @ N ) ) ) @ N ) @ ( exp @ real @ X ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_3375_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X: real,N: nat] :
( ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ N ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ real @ ( power_power @ real @ ( minus_minus @ real @ ( one_one @ real ) @ ( divide_divide @ real @ X @ ( semiring_1_of_nat @ real @ N ) ) ) @ N ) @ ( exp @ real @ ( uminus_uminus @ real @ X ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_3376_sqrt__sum__squares__half__less,axiom,
! [X: real,U: real,Y: real] :
( ( ord_less @ real @ X @ ( divide_divide @ real @ U @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ U @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ U ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_3377_of__nat__code__if,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ A )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [M4: nat,Q4: nat] :
( if @ A
@ ( Q4
= ( zero_zero @ nat ) )
@ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M4 ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M4 ) ) @ ( one_one @ A ) ) )
@ ( divmod_nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_3378_monoseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( topological_monoseq @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_3379_lemma__termdiff3,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [H2: A,Z2: A,K5: real,N: nat] :
( ( H2
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ Z2 @ H2 ) ) @ K5 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H2 ) @ N ) @ ( power_power @ A @ Z2 @ N ) ) @ H2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) @ ( times_times @ real @ ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) @ ( power_power @ real @ K5 @ ( minus_minus @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ H2 ) ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_3380_ln__series,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ( ln_ln @ real @ X )
= ( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ ( one_one @ real ) ) @ ( suc @ N3 ) ) ) ) ) ) ) ).
% ln_series
thf(fact_3381_arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( arctan @ X )
= ( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_3382_powser__zero,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [F2: nat > A] :
( ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) )
= ( F2 @ ( zero_zero @ nat ) ) ) ) ).
% powser_zero
thf(fact_3383_int__if,axiom,
! [P: $o,A2: nat,B2: nat] :
( ( P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ A2 ) ) )
& ( ~ P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ B2 ) ) ) ) ).
% int_if
thf(fact_3384_nat__int__comparison_I1_J,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [A4: nat,B4: nat] :
( ( semiring_1_of_nat @ int @ A4 )
= ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_3385_bit__Suc__0__iff,axiom,
! [N: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( N
= ( zero_zero @ nat ) ) ) ).
% bit_Suc_0_iff
thf(fact_3386_not__bit__Suc__0__Suc,axiom,
! [N: nat] :
~ ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( suc @ N ) ) ).
% not_bit_Suc_0_Suc
thf(fact_3387_not__bit__Suc__0__numeral,axiom,
! [N: num] :
~ ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ N ) ) ).
% not_bit_Suc_0_numeral
thf(fact_3388_lemma__NBseq__def,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [X9: A > B] :
( ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X9 @ N3 ) ) @ K6 ) ) )
= ( ? [N6: nat] :
! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X9 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% lemma_NBseq_def
thf(fact_3389_lemma__NBseq__def2,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [X9: A > B] :
( ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X9 @ N3 ) ) @ K6 ) ) )
= ( ? [N6: nat] :
! [N3: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( X9 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% lemma_NBseq_def2
thf(fact_3390_bit__nat__def,axiom,
( ( bit_se5641148757651400278ts_bit @ nat )
= ( ^ [M4: nat,N3: nat] :
~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ M4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% bit_nat_def
thf(fact_3391_monoseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( topological_monoseq @ real @ ( power_power @ real @ X ) ) ) ) ).
% monoseq_realpow
thf(fact_3392_exp__bound__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [Z2: A] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( exp @ A @ Z2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% exp_bound_half
thf(fact_3393_exp__bound__lemma,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [Z2: A] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( exp @ A @ Z2 ) ) @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( real_V7770717601297561774m_norm @ A @ Z2 ) ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_3394_norm__divide__numeral,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [A2: A,W: num] :
( ( real_V7770717601297561774m_norm @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ W ) ) )
= ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( numeral_numeral @ real @ W ) ) ) ) ).
% norm_divide_numeral
thf(fact_3395_norm__mult__numeral2,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [A2: A,W: num] :
( ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W ) ) )
= ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( numeral_numeral @ real @ W ) ) ) ) ).
% norm_mult_numeral2
thf(fact_3396_norm__mult__numeral1,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [W: num,A2: A] :
( ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ A2 ) )
= ( times_times @ real @ ( numeral_numeral @ real @ W ) @ ( real_V7770717601297561774m_norm @ A @ A2 ) ) ) ) ).
% norm_mult_numeral1
thf(fact_3397_norm__neg__numeral,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [W: num] :
( ( real_V7770717601297561774m_norm @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( numeral_numeral @ real @ W ) ) ) ).
% norm_neg_numeral
thf(fact_3398_norm__le__zero__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( zero_zero @ real ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% norm_le_zero_iff
thf(fact_3399_norm__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( real_V7770717601297561774m_norm @ A @ ( zero_zero @ A ) )
= ( zero_zero @ real ) ) ) ).
% norm_zero
thf(fact_3400_norm__eq__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( real_V7770717601297561774m_norm @ A @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% norm_eq_zero
thf(fact_3401_norm__numeral,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [W: num] :
( ( real_V7770717601297561774m_norm @ A @ ( numeral_numeral @ A @ W ) )
= ( numeral_numeral @ real @ W ) ) ) ).
% norm_numeral
thf(fact_3402_zero__less__norm__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
= ( X
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_norm_iff
thf(fact_3403_norm__not__less__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
~ ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( zero_zero @ real ) ) ) ).
% norm_not_less_zero
thf(fact_3404_norm__ge__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) ) ) ).
% norm_ge_zero
thf(fact_3405_norm__mult,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A,Y: A] :
( ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ X @ Y ) )
= ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) ) ) ).
% norm_mult
thf(fact_3406_norm__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [A2: A,B2: A] :
( ( real_V7770717601297561774m_norm @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ B2 ) ) ) ) ).
% norm_divide
thf(fact_3407_norm__power,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A,N: nat] :
( ( real_V7770717601297561774m_norm @ A @ ( power_power @ A @ X @ N ) )
= ( power_power @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ N ) ) ) ).
% norm_power
thf(fact_3408_norm__uminus__minus,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A] :
( ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ X ) @ Y ) )
= ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% norm_uminus_minus
thf(fact_3409_nonzero__norm__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ B2 ) ) ) ) ) ).
% nonzero_norm_divide
thf(fact_3410_power__eq__imp__eq__norm,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [W: A,N: nat,Z2: A] :
( ( ( power_power @ A @ W @ N )
= ( power_power @ A @ Z2 @ N ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( real_V7770717601297561774m_norm @ A @ W )
= ( real_V7770717601297561774m_norm @ A @ Z2 ) ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_3411_norm__mult__less,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [X: A,R2: real,Y: A,S: real] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ R2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Y ) @ S )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ X @ Y ) ) @ ( times_times @ real @ R2 @ S ) ) ) ) ) ).
% norm_mult_less
thf(fact_3412_norm__mult__ineq,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ X @ Y ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) ) ) ).
% norm_mult_ineq
thf(fact_3413_norm__triangle__lt,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A,E2: real] :
( ( ord_less @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) @ E2 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ E2 ) ) ) ).
% norm_triangle_lt
thf(fact_3414_norm__add__less,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,R2: real,Y: A,S: real] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ R2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Y ) @ S )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ real @ R2 @ S ) ) ) ) ) ).
% norm_add_less
thf(fact_3415_norm__power__ineq,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: A,N: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( power_power @ A @ X @ N ) ) @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ N ) ) ) ).
% norm_power_ineq
thf(fact_3416_norm__triangle__mono,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,R2: real,B2: A,S: real] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ R2 )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ B2 ) @ S )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( plus_plus @ real @ R2 @ S ) ) ) ) ) ).
% norm_triangle_mono
thf(fact_3417_norm__triangle__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) ) ) ).
% norm_triangle_ineq
thf(fact_3418_norm__triangle__le,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A,E2: real] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) @ E2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ E2 ) ) ) ).
% norm_triangle_le
thf(fact_3419_norm__add__leD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: real] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ C2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ B2 ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ C2 ) ) ) ) ).
% norm_add_leD
thf(fact_3420_norm__diff__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ B2 ) ) @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% norm_diff_ineq
thf(fact_3421_power__eq__1__iff,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [W: A,N: nat] :
( ( ( power_power @ A @ W @ N )
= ( one_one @ A ) )
=> ( ( ( real_V7770717601297561774m_norm @ A @ W )
= ( one_one @ real ) )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% power_eq_1_iff
thf(fact_3422_norm__diff__triangle__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ C2 @ D2 ) ) ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ A2 @ C2 ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_3423_square__norm__one,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ X )
= ( one_one @ real ) ) ) ) ).
% square_norm_one
thf(fact_3424_norm__power__diff,axiom,
! [A: $tType] :
( ( ( comm_monoid_mult @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [Z2: A,W: A,M: nat] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ W ) @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( power_power @ A @ Z2 @ M ) @ ( power_power @ A @ W @ M ) ) ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Z2 @ W ) ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_3425_suminf__geometric,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( ( suminf @ A @ ( power_power @ A @ C2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( minus_minus @ A @ ( one_one @ A ) @ C2 ) ) ) ) ) ).
% suminf_geometric
thf(fact_3426_suminf__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% suminf_zero
thf(fact_3427_suminf__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ! [N5: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ N5 )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( ( suminf @ A @ F2 )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ N5 ) ) ) ) ) ).
% suminf_finite
thf(fact_3428_pi__series,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( suminf @ real
@ ^ [K3: nat] : ( divide_divide @ real @ ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( one_one @ real ) ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ).
% pi_series
thf(fact_3429_lemma__termdiff2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [H2: A,Z2: A,N: nat] :
( ( H2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H2 ) @ N ) @ ( power_power @ A @ Z2 @ N ) ) @ H2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
= ( times_times @ A @ H2
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [Q4: nat] : ( times_times @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H2 ) @ Q4 ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ ( minus_minus @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) @ P5 ) ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_3430_lessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I3: A,K: A] :
( ( member @ A @ I3 @ ( set_ord_lessThan @ A @ K ) )
= ( ord_less @ A @ I3 @ K ) ) ) ).
% lessThan_iff
thf(fact_3431_lessThan__0,axiom,
( ( set_ord_lessThan @ nat @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% lessThan_0
thf(fact_3432_sum_OlessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N ) ) @ ( G @ N ) ) ) ) ).
% sum.lessThan_Suc
thf(fact_3433_single__Diff__lessThan,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A] :
( ( minus_minus @ ( set @ A ) @ ( insert @ A @ K @ ( bot_bot @ ( set @ A ) ) ) @ ( set_ord_lessThan @ A @ K ) )
= ( insert @ A @ K @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% single_Diff_lessThan
thf(fact_3434_pi__neq__zero,axiom,
( pi
!= ( zero_zero @ real ) ) ).
% pi_neq_zero
thf(fact_3435_lessThan__non__empty,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
( ( set_ord_lessThan @ A @ X )
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% lessThan_non_empty
thf(fact_3436_lessThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_lessThan @ A )
= ( ^ [U2: A] :
( collect @ A
@ ^ [X6: A] : ( ord_less @ A @ X6 @ U2 ) ) ) ) ) ).
% lessThan_def
thf(fact_3437_Iio__eq__empty__iff,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( order_bot @ A ) )
=> ! [N: A] :
( ( ( set_ord_lessThan @ A @ N )
= ( bot_bot @ ( set @ A ) ) )
= ( N
= ( bot_bot @ A ) ) ) ) ).
% Iio_eq_empty_iff
thf(fact_3438_lessThan__strict__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M: A,N: A] :
( ( ord_less @ ( set @ A ) @ ( set_ord_lessThan @ A @ M ) @ ( set_ord_lessThan @ A @ N ) )
= ( ord_less @ A @ M @ N ) ) ) ).
% lessThan_strict_subset_iff
thf(fact_3439_pi__gt__zero,axiom,
ord_less @ real @ ( zero_zero @ real ) @ pi ).
% pi_gt_zero
thf(fact_3440_pi__not__less__zero,axiom,
~ ( ord_less @ real @ pi @ ( zero_zero @ real ) ) ).
% pi_not_less_zero
thf(fact_3441_pi__ge__zero,axiom,
ord_less_eq @ real @ ( zero_zero @ real ) @ pi ).
% pi_ge_zero
thf(fact_3442_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ K ) )
= ( insert @ nat @ K @ ( set_ord_lessThan @ nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_3443_lessThan__empty__iff,axiom,
! [N: nat] :
( ( ( set_ord_lessThan @ nat @ N )
= ( bot_bot @ ( set @ nat ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% lessThan_empty_iff
thf(fact_3444_ivl__disj__int__one_I4_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(4)
thf(fact_3445_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan @ nat @ ( numeral_numeral @ nat @ K ) )
= ( insert @ nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan @ nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_3446_sum_Onat__diff__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ N @ ( suc @ I ) ) )
@ ( set_ord_lessThan @ nat @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sum.nat_diff_reindex
thf(fact_3447_Iio__Int__singleton,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,K: A] :
( ( ( ord_less @ A @ X @ K )
=> ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ K ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( ~ ( ord_less @ A @ X @ K )
=> ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ K ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Iio_Int_singleton
thf(fact_3448_pi__less__4,axiom,
ord_less @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ).
% pi_less_4
thf(fact_3449_pi__ge__two,axiom,
ord_less_eq @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ).
% pi_ge_two
thf(fact_3450_pi__half__neq__two,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
!= ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% pi_half_neq_two
thf(fact_3451_sum_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_3452_sum__lessThan__telescope,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( minus_minus @ A @ ( F2 @ M ) @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ).
% sum_lessThan_telescope
thf(fact_3453_sum__lessThan__telescope_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ ( F2 @ M ) ) ) ) ).
% sum_lessThan_telescope'
thf(fact_3454_sumr__diff__mult__const2,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [F2: nat > A,N: nat,R2: A] :
( ( minus_minus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ R2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ ( F2 @ I ) @ R2 )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sumr_diff_mult_const2
thf(fact_3455_sum_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_3456_pi__half__neq__zero,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ real ) ) ).
% pi_half_neq_zero
thf(fact_3457_pi__half__less__two,axiom,
ord_less @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% pi_half_less_two
thf(fact_3458_pi__half__le__two,axiom,
ord_less_eq @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% pi_half_le_two
thf(fact_3459_one__diff__power__eq,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N ) )
= ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% one_diff_power_eq
thf(fact_3460_power__diff__1__eq,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( minus_minus @ A @ ( power_power @ A @ X @ N ) @ ( one_one @ A ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ ( one_one @ A ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% power_diff_1_eq
thf(fact_3461_geometric__sum,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,N: nat] :
( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ X @ N ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ X @ ( one_one @ A ) ) ) ) ) ) ).
% geometric_sum
thf(fact_3462_sum__gp__strict,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N ) )
= ( semiring_1_of_nat @ A @ N ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp_strict
thf(fact_3463_lemma__termdiff1,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [Z2: A,H2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( minus_minus @ A @ ( times_times @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H2 ) @ ( minus_minus @ nat @ M @ P5 ) ) @ ( power_power @ A @ Z2 @ P5 ) ) @ ( power_power @ A @ Z2 @ M ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( times_times @ A @ ( power_power @ A @ Z2 @ P5 ) @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H2 ) @ ( minus_minus @ nat @ M @ P5 ) ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan @ nat @ M ) ) ) ) ).
% lemma_termdiff1
thf(fact_3464_pi__half__gt__zero,axiom,
ord_less @ real @ ( zero_zero @ real ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% pi_half_gt_zero
thf(fact_3465_diff__power__eq__sum,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat,Y: A] :
( ( minus_minus @ A @ ( power_power @ A @ X @ ( suc @ N ) ) @ ( power_power @ A @ Y @ ( suc @ N ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( times_times @ A @ ( power_power @ A @ X @ P5 ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N @ P5 ) ) )
@ ( set_ord_lessThan @ nat @ ( suc @ N ) ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_3466_power__diff__sumr2,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat,Y: A] :
( ( minus_minus @ A @ ( power_power @ A @ X @ N ) @ ( power_power @ A @ Y @ N ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N @ ( suc @ I ) ) ) @ ( power_power @ A @ X @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% power_diff_sumr2
thf(fact_3467_pi__half__ge__zero,axiom,
ord_less_eq @ real @ ( zero_zero @ real ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% pi_half_ge_zero
thf(fact_3468_m2pi__less__pi,axiom,
ord_less @ real @ ( uminus_uminus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_3469_arctan__ubound,axiom,
! [Y: real] : ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% arctan_ubound
thf(fact_3470_arctan__one,axiom,
( ( arctan @ ( one_one @ real ) )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ).
% arctan_one
thf(fact_3471_real__sum__nat__ivl__bounded2,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,F2: nat > A,K5: A,K: nat] :
( ! [P7: nat] :
( ( ord_less @ nat @ P7 @ N )
=> ( ord_less_eq @ A @ ( F2 @ P7 ) @ K5 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ K5 )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N @ K ) ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ K5 ) ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_3472_one__diff__power__eq_H,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N ) )
= ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( power_power @ A @ X @ ( minus_minus @ nat @ N @ ( suc @ I ) ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% one_diff_power_eq'
thf(fact_3473_minus__pi__half__less__zero,axiom,
ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ real ) ).
% minus_pi_half_less_zero
thf(fact_3474_arctan__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% arctan_bounded
thf(fact_3475_arctan__lbound,axiom,
! [Y: real] : ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) ) ).
% arctan_lbound
thf(fact_3476_sum__split__even__odd,axiom,
! [F2: nat > real,G: nat > real,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) @ ( F2 @ I ) @ ( G @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( F2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( G @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) @ ( one_one @ nat ) ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sum_split_even_odd
thf(fact_3477_machin__Euler,axiom,
( ( plus_plus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit1 @ ( bit0 @ one2 ) ) ) @ ( arctan @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit1 @ ( bit1 @ one2 ) ) ) ) ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( arctan @ ( divide_divide @ real @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) @ ( numeral_numeral @ real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ).
% machin_Euler
thf(fact_3478_machin,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( minus_minus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) @ ( arctan @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit1 @ ( bit0 @ one2 ) ) ) ) ) ) @ ( arctan @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% machin
thf(fact_3479_sum__bounds__lt__plus1,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,Mm: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( F2 @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ Mm ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ Mm ) ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_3480_sin__cos__npi,axiom,
! [N: nat] :
( ( sin @ real @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N ) ) ).
% sin_cos_npi
thf(fact_3481_sumr__cos__zero__one,axiom,
! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( cos_coeff @ M4 ) @ ( power_power @ real @ ( zero_zero @ real ) @ M4 ) )
@ ( set_ord_lessThan @ nat @ ( suc @ N ) ) )
= ( one_one @ real ) ) ).
% sumr_cos_zero_one
thf(fact_3482_ceiling__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( archimedean_ceiling @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( one_one @ int ) ) )
= ( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
& ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_3483_summable__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( summable @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_3484_sin__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sin_zero
thf(fact_3485_of__int__ceiling__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) )
= X )
= ( ? [N3: int] :
( X
= ( ring_1_of_int @ A @ N3 ) ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_3486_summable__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( summable @ A
@ ^ [N3: nat] : ( zero_zero @ A ) ) ) ).
% summable_zero
thf(fact_3487_summable__single,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [I3: nat,F2: nat > A] :
( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( R5 = I3 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ).
% summable_single
thf(fact_3488_summable__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
= ( summable @ A @ F2 ) ) ) ).
% summable_iff_shift
thf(fact_3489_ceiling__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_ceiling @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% ceiling_zero
thf(fact_3490_ceiling__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num] :
( ( archimedean_ceiling @ A @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ int @ V ) ) ) ).
% ceiling_numeral
thf(fact_3491_sin__pi,axiom,
( ( sin @ real @ pi )
= ( zero_zero @ real ) ) ).
% sin_pi
thf(fact_3492_cos__coeff__0,axiom,
( ( cos_coeff @ ( zero_zero @ nat ) )
= ( one_one @ real ) ) ).
% cos_coeff_0
thf(fact_3493_summable__cmult__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( summable @ A @ F2 ) ) ) ) ).
% summable_cmult_iff
thf(fact_3494_summable__divide__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( F2 @ N3 ) @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( summable @ A @ F2 ) ) ) ) ).
% summable_divide_iff
thf(fact_3495_summable__If__finite__set,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [A3: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ A3 )
=> ( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( member @ nat @ R5 @ A3 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ) ).
% summable_If_finite_set
thf(fact_3496_summable__If__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [P: nat > $o,F2: nat > A] :
( ( finite_finite @ nat @ ( collect @ nat @ P ) )
=> ( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( P @ R5 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ) ).
% summable_If_finite
thf(fact_3497_ceiling__add__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ Z2 ) ) ) ).
% ceiling_add_of_int
thf(fact_3498_ceiling__le__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% ceiling_le_zero
thf(fact_3499_zero__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% zero_less_ceiling
thf(fact_3500_ceiling__le__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V ) )
= ( ord_less_eq @ A @ X @ ( numeral_numeral @ A @ V ) ) ) ) ).
% ceiling_le_numeral
thf(fact_3501_ceiling__less__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) )
= ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% ceiling_less_one
thf(fact_3502_numeral__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less @ int @ ( numeral_numeral @ int @ V ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( numeral_numeral @ A @ V ) @ X ) ) ) ).
% numeral_less_ceiling
thf(fact_3503_one__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( one_one @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% one_le_ceiling
thf(fact_3504_one__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( one_one @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ).
% one_less_ceiling
thf(fact_3505_ceiling__add__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( numeral_numeral @ A @ V ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V ) ) ) ) ).
% ceiling_add_numeral
thf(fact_3506_ceiling__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num] :
( ( archimedean_ceiling @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) ) ) ).
% ceiling_neg_numeral
thf(fact_3507_ceiling__add__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) ) ) ) ).
% ceiling_add_one
thf(fact_3508_ceiling__diff__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( archimedean_ceiling @ A @ ( minus_minus @ A @ X @ ( numeral_numeral @ A @ V ) ) )
= ( minus_minus @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V ) ) ) ) ).
% ceiling_diff_numeral
thf(fact_3509_ceiling__numeral__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: num,N: nat] :
( ( archimedean_ceiling @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ).
% ceiling_numeral_power
thf(fact_3510_sin__npi,axiom,
! [N: nat] :
( ( sin @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_npi
thf(fact_3511_sin__npi2,axiom,
! [N: nat] :
( ( sin @ real @ ( times_times @ real @ pi @ ( semiring_1_of_nat @ real @ N ) ) )
= ( zero_zero @ real ) ) ).
% sin_npi2
thf(fact_3512_sin__npi__int,axiom,
! [N: int] :
( ( sin @ real @ ( times_times @ real @ pi @ ( ring_1_of_int @ real @ N ) ) )
= ( zero_zero @ real ) ) ).
% sin_npi_int
thf(fact_3513_summable__geometric__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( summable @ A @ ( power_power @ A @ C2 ) )
= ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) ) ) ) ).
% summable_geometric_iff
thf(fact_3514_ceiling__less__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_zero
thf(fact_3515_zero__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X ) ) ) ).
% zero_le_ceiling
thf(fact_3516_ceiling__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archimedean_ceiling @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ A2 ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ) ).
% ceiling_divide_eq_div_numeral
thf(fact_3517_ceiling__less__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V ) )
= ( ord_less_eq @ A @ X @ ( minus_minus @ A @ ( numeral_numeral @ A @ V ) @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_numeral
thf(fact_3518_numeral__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( numeral_numeral @ int @ V ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( numeral_numeral @ A @ V ) @ ( one_one @ A ) ) @ X ) ) ) ).
% numeral_le_ceiling
thf(fact_3519_ceiling__le__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_3520_neg__numeral__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ X ) ) ) ).
% neg_numeral_less_ceiling
thf(fact_3521_sin__two__pi,axiom,
( ( sin @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_two_pi
thf(fact_3522_sin__pi__half,axiom,
( ( sin @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) ) ).
% sin_pi_half
thf(fact_3523_sin__periodic,axiom,
! [X: real] :
( ( sin @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
= ( sin @ real @ X ) ) ).
% sin_periodic
thf(fact_3524_ceiling__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archimedean_ceiling @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( numeral_numeral @ int @ A2 ) @ ( numeral_numeral @ int @ B2 ) ) ) ) ).
% ceiling_minus_divide_eq_div_numeral
thf(fact_3525_sin__2npi,axiom,
! [N: nat] :
( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_2npi
thf(fact_3526_sin__2pi__minus,axiom,
! [X: real] :
( ( sin @ real @ ( minus_minus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ X ) )
= ( uminus_uminus @ real @ ( sin @ real @ X ) ) ) ).
% sin_2pi_minus
thf(fact_3527_sin__int__2pin,axiom,
! [N: int] :
( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ ( ring_1_of_int @ real @ N ) ) )
= ( zero_zero @ real ) ) ).
% sin_int_2pin
thf(fact_3528_ceiling__less__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) )
= ( ord_less_eq @ A @ X @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_3529_neg__numeral__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( one_one @ A ) ) @ X ) ) ) ).
% neg_numeral_le_ceiling
thf(fact_3530_sin__3over2__pi,axiom,
( ( sin @ real @ ( times_times @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) )
= ( uminus_uminus @ real @ ( one_one @ real ) ) ) ).
% sin_3over2_pi
thf(fact_3531_summable__const__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [C2: A] :
( ( summable @ A
@ ^ [Uu3: nat] : C2 )
= ( C2
= ( zero_zero @ A ) ) ) ) ).
% summable_const_iff
thf(fact_3532_summable__mult2,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 ) ) ) ) ).
% summable_mult2
thf(fact_3533_summable__mult,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) ) ) ) ).
% summable_mult
thf(fact_3534_summable__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,G: nat > A] :
( ( summable @ A @ F2 )
=> ( ( summable @ A @ G )
=> ( summable @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% summable_add
thf(fact_3535_summable__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( summable @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( F2 @ N3 ) @ C2 ) ) ) ) ).
% summable_divide
thf(fact_3536_summable__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) ) )
= ( summable @ A @ F2 ) ) ) ).
% summable_Suc_iff
thf(fact_3537_summable__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_3538_powser__insidea,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,X: A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ) ) ).
% powser_insidea
thf(fact_3539_summable__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [N5: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ N5 )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_finite
thf(fact_3540_sin__x__le__x,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( sin @ real @ X ) @ X ) ) ).
% sin_x_le_x
thf(fact_3541_ceiling__less__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( archimedean_ceiling @ A @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% ceiling_less_cancel
thf(fact_3542_summable__mult__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_mult_D
thf(fact_3543_summable__zero__power,axiom,
! [A: $tType] :
( ( ( comm_ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( summable @ A @ ( power_power @ A @ ( zero_zero @ A ) ) ) ) ).
% summable_zero_power
thf(fact_3544_suminf__mult2,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( ( times_times @ A @ ( suminf @ A @ F2 ) @ C2 )
= ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 ) ) ) ) ) ).
% suminf_mult2
thf(fact_3545_suminf__mult,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
= ( times_times @ A @ C2 @ ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_mult
thf(fact_3546_suminf__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,G: nat > A] :
( ( summable @ A @ F2 )
=> ( ( summable @ A @ G )
=> ( ( plus_plus @ A @ ( suminf @ A @ F2 ) @ ( suminf @ A @ G ) )
= ( suminf @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ) ).
% suminf_add
thf(fact_3547_suminf__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( F2 @ N3 ) @ C2 ) )
= ( divide_divide @ A @ ( suminf @ A @ F2 ) @ C2 ) ) ) ) ).
% suminf_divide
thf(fact_3548_suminf__nonneg,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_nonneg
thf(fact_3549_suminf__eq__zero__iff,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ( ( suminf @ A @ F2 )
= ( zero_zero @ A ) )
= ( ! [N3: nat] :
( ( F2 @ N3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_3550_suminf__pos,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N2: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_pos
thf(fact_3551_ceiling__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ A2 ) )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ A2 ) ) ) ).
% ceiling_le
thf(fact_3552_sin__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ pi )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero
thf(fact_3553_sin__x__ge__neg__x,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( uminus_uminus @ real @ X ) @ ( sin @ real @ X ) ) ) ).
% sin_x_ge_neg_x
thf(fact_3554_sin__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_ge_zero
thf(fact_3555_less__ceiling__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ int @ Z2 @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ X ) ) ) ).
% less_ceiling_iff
thf(fact_3556_summable__zero__power_H,axiom,
! [A: $tType] :
( ( ( ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ).
% summable_zero_power'
thf(fact_3557_summable__0__powser,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ).
% summable_0_powser
thf(fact_3558_ceiling__add__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( archimedean_ceiling @ A @ Y ) ) ) ) ).
% ceiling_add_le
thf(fact_3559_summable__powser__split__head,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% summable_powser_split_head
thf(fact_3560_powser__split__head_I3_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% powser_split_head(3)
thf(fact_3561_summable__powser__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,M: nat,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( plus_plus @ nat @ N3 @ M ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_3562_suminf__pos2,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,I3: nat] :
( ( summable @ A @ F2 )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I3 ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ).
% suminf_pos2
thf(fact_3563_suminf__pos__iff,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) )
= ( ? [I: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I ) ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_3564_of__int__ceiling__le__add__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] : ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ R2 ) ) @ ( plus_plus @ A @ R2 @ ( one_one @ A ) ) ) ) ).
% of_int_ceiling_le_add_one
thf(fact_3565_of__int__ceiling__diff__one__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ R2 ) ) @ ( one_one @ A ) ) @ R2 ) ) ).
% of_int_ceiling_diff_one_le
thf(fact_3566_powser__inside,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,X: A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ) ).
% powser_inside
thf(fact_3567_sin__eq__0__pi,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ X )
=> ( ( ord_less @ real @ X @ pi )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ) ).
% sin_eq_0_pi
thf(fact_3568_summableI__nonneg__bounded,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,X: A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) @ X )
=> ( summable @ A @ F2 ) ) ) ) ).
% summableI_nonneg_bounded
thf(fact_3569_complete__algebra__summable__geometric,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( summable @ A @ ( power_power @ A @ X ) ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_3570_summable__geometric,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( summable @ A @ ( power_power @ A @ C2 ) ) ) ) ).
% summable_geometric
thf(fact_3571_sin__zero__pi__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ pi )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% sin_zero_pi_iff
thf(fact_3572_suminf__split__head,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) ) )
= ( minus_minus @ A @ ( suminf @ A @ F2 ) @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% suminf_split_head
thf(fact_3573_ceiling__divide__eq__div,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: int,B2: int] :
( ( archimedean_ceiling @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ A2 ) @ ( ring_1_of_int @ A @ B2 ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 ) ) ) ) ).
% ceiling_divide_eq_div
thf(fact_3574_sin__zero__iff__int2,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I: int] :
( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I ) @ pi ) ) ) ) ).
% sin_zero_iff_int2
thf(fact_3575_sum__le__suminf,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,I6: set @ nat] :
( ( summable @ A @ F2 )
=> ( ( finite_finite @ nat @ I6 )
=> ( ! [N2: nat] :
( ( member @ nat @ N2 @ ( uminus_uminus @ ( set @ nat ) @ I6 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N2 ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ I6 ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ).
% sum_le_suminf
thf(fact_3576_ceiling__correct,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) ) @ ( one_one @ A ) ) @ X )
& ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) ) ) ) ) ).
% ceiling_correct
thf(fact_3577_ceiling__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ Z2 ) )
=> ( ( archimedean_ceiling @ A @ X )
= Z2 ) ) ) ) ).
% ceiling_unique
thf(fact_3578_ceiling__eq__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ( archimedean_ceiling @ A @ X )
= A2 )
= ( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ A2 ) @ ( one_one @ A ) ) @ X )
& ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ A2 ) ) ) ) ) ).
% ceiling_eq_iff
thf(fact_3579_ceiling__split,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [P: int > $o,T2: A] :
( ( P @ ( archimedean_ceiling @ A @ T2 ) )
= ( ! [I: int] :
( ( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ I ) @ ( one_one @ A ) ) @ T2 )
& ( ord_less_eq @ A @ T2 @ ( ring_1_of_int @ A @ I ) ) )
=> ( P @ I ) ) ) ) ) ).
% ceiling_split
thf(fact_3580_sin__gt__zero__02,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero_02
thf(fact_3581_mult__ceiling__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ ( times_times @ A @ A2 @ B2 ) ) @ ( times_times @ int @ ( archimedean_ceiling @ A @ A2 ) @ ( archimedean_ceiling @ A @ B2 ) ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_3582_le__ceiling__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less_eq @ int @ Z2 @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% le_ceiling_iff
thf(fact_3583_suminf__split__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A @ F2 )
= ( plus_plus @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ K ) ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_3584_suminf__minus__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
= ( minus_minus @ A @ ( suminf @ A @ F2 ) @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ K ) ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_3585_sum__less__suminf,axiom,
! [A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,N: nat] :
( ( summable @ A @ F2 )
=> ( ! [M3: nat] :
( ( ord_less_eq @ nat @ N @ M3 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ M3 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% sum_less_suminf
thf(fact_3586_ceiling__divide__upper,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q2: A,P2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q2 )
=> ( ord_less_eq @ A @ P2 @ ( times_times @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ ( divide_divide @ A @ P2 @ Q2 ) ) ) @ Q2 ) ) ) ) ).
% ceiling_divide_upper
thf(fact_3587_powser__split__head_I1_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( plus_plus @ A @ ( F2 @ ( zero_zero @ nat ) )
@ ( times_times @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ Z2 ) ) ) ) ) ).
% powser_split_head(1)
thf(fact_3588_powser__split__head_I2_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( ( times_times @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ Z2 )
= ( minus_minus @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% powser_split_head(2)
thf(fact_3589_summable__partial__sum__bound,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,E2: real] :
( ( summable @ A @ F2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ~ ! [N7: nat] :
~ ! [M2: nat] :
( ( ord_less_eq @ nat @ N7 @ M2 )
=> ! [N8: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ M2 @ N8 ) ) ) @ E2 ) ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_3590_suminf__exist__split,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [R2: real,F2: nat > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ( ( summable @ A @ F2 )
=> ? [N7: nat] :
! [N8: nat] :
( ( ord_less_eq @ nat @ N7 @ N8 )
=> ( ord_less @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( suminf @ A
@ ^ [I: nat] : ( F2 @ ( plus_plus @ nat @ I @ N8 ) ) ) )
@ R2 ) ) ) ) ) ).
% suminf_exist_split
thf(fact_3591_sin__pi__divide__n__ge__0,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ ( divide_divide @ real @ pi @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_3592_summable__power__series,axiom,
! [F2: nat > real,Z2: real] :
( ! [I2: nat] : ( ord_less_eq @ real @ ( F2 @ I2 ) @ ( one_one @ real ) )
=> ( ! [I2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ I2 ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Z2 )
=> ( ( ord_less @ real @ Z2 @ ( one_one @ real ) )
=> ( summable @ real
@ ^ [I: nat] : ( times_times @ real @ ( F2 @ I ) @ ( power_power @ real @ Z2 @ I ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_3593_sin__45,axiom,
( ( sin @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
= ( divide_divide @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% sin_45
thf(fact_3594_Abel__lemma,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [R2: real,R0: real,A2: nat > A,M7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ R2 )
=> ( ( ord_less @ real @ R2 @ R0 )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ ( A2 @ N2 ) ) @ ( power_power @ real @ R0 @ N2 ) ) @ M7 )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ ( A2 @ N3 ) ) @ ( power_power @ real @ R2 @ N3 ) ) ) ) ) ) ) ).
% Abel_lemma
thf(fact_3595_summable__ratio__test,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [C2: real,N5: nat,F2: nat > A] :
( ( ord_less @ real @ C2 @ ( one_one @ real ) )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ N5 @ N2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ ( suc @ N2 ) ) ) @ ( times_times @ real @ C2 @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N2 ) ) ) ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_ratio_test
thf(fact_3596_sum__less__suminf2,axiom,
! [A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,N: nat,I3: nat] :
( ( summable @ A @ F2 )
=> ( ! [M3: nat] :
( ( ord_less_eq @ nat @ N @ M3 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ M3 ) ) )
=> ( ( ord_less_eq @ nat @ N @ I3 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I3 ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_3597_ceiling__divide__lower,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q2: A,P2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q2 )
=> ( ord_less @ A @ ( times_times @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ ( divide_divide @ A @ P2 @ Q2 ) ) ) @ ( one_one @ A ) ) @ Q2 ) @ P2 ) ) ) ).
% ceiling_divide_lower
thf(fact_3598_ceiling__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N: int,X: A] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ N ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ N ) @ ( one_one @ A ) ) )
=> ( ( archimedean_ceiling @ A @ X )
= ( plus_plus @ int @ N @ ( one_one @ int ) ) ) ) ) ) ).
% ceiling_eq
thf(fact_3599_sin__gt__zero2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero2
thf(fact_3600_sin__lt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ pi @ X )
=> ( ( ord_less @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ord_less @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_lt_zero
thf(fact_3601_sin__30,axiom,
( ( sin @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ one2 ) ) ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% sin_30
thf(fact_3602_sin__inj__pi,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ( sin @ real @ X )
= ( sin @ real @ Y ) )
=> ( X = Y ) ) ) ) ) ) ).
% sin_inj_pi
thf(fact_3603_sin__mono__le__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( sin @ real @ X ) @ ( sin @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ) ) ).
% sin_mono_le_eq
thf(fact_3604_sin__monotone__2pi__le,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( sin @ real @ Y ) @ ( sin @ real @ X ) ) ) ) ) ).
% sin_monotone_2pi_le
thf(fact_3605_sin__60,axiom,
( ( sin @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
= ( divide_divide @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% sin_60
thf(fact_3606_sin__le__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ pi @ X )
=> ( ( ord_less @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ord_less_eq @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_le_zero
thf(fact_3607_sin__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_less_zero
thf(fact_3608_sin__mono__less__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( sin @ real @ X ) @ ( sin @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_3609_sin__monotone__2pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( sin @ real @ Y ) @ ( sin @ real @ X ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_3610_sin__total,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ? [X5: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X5 )
& ( ord_less_eq @ real @ X5 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( sin @ real @ X5 )
= Y )
& ! [Y4: real] :
( ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y4 )
& ( ord_less_eq @ real @ Y4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( sin @ real @ Y4 )
= Y ) )
=> ( Y4 = X5 ) ) ) ) ) ).
% sin_total
thf(fact_3611_sin__pi__divide__n__gt__0,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ ( divide_divide @ real @ pi @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_3612_sin__arctan,axiom,
! [X: real] :
( ( sin @ real @ ( arctan @ X ) )
= ( divide_divide @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_arctan
thf(fact_3613_sum__pos__lt__pair,axiom,
! [F2: nat > real,K: nat] :
( ( summable @ real @ F2 )
=> ( ! [D4: nat] : ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ ( F2 @ ( plus_plus @ nat @ K @ ( times_times @ nat @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) @ D4 ) ) ) @ ( F2 @ ( plus_plus @ nat @ K @ ( plus_plus @ nat @ ( times_times @ nat @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) @ D4 ) @ ( one_one @ nat ) ) ) ) ) )
=> ( ord_less @ real @ ( groups7311177749621191930dd_sum @ nat @ real @ F2 @ ( set_ord_lessThan @ nat @ K ) ) @ ( suminf @ real @ F2 ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_3614_sin__zero__iff__int,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ I )
& ( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_zero_iff_int
thf(fact_3615_sin__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ? [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_zero_lemma
thf(fact_3616_sin__zero__iff,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [N3: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) )
| ? [N3: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( uminus_uminus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% sin_zero_iff
thf(fact_3617_ceiling__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( archimedean_ceiling @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( divide_divide @ nat @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) @ ( one_one @ int ) ) ) ) ).
% ceiling_log2_div2
thf(fact_3618_ceiling__log__nat__eq__if,axiom,
! [B2: nat,N: nat,K: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
=> ( ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( archimedean_ceiling @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( one_one @ int ) ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_3619_cos__pi__eq__zero,axiom,
! [M: nat] :
( ( cos @ real @ ( divide_divide @ real @ ( times_times @ real @ pi @ ( semiring_1_of_nat @ real @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ).
% cos_pi_eq_zero
thf(fact_3620_sincos__total__2pi,axiom,
! [X: real,Y: real] :
( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ~ ! [T7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
=> ( ( ord_less @ real @ T7 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ( X
= ( cos @ real @ T7 ) )
=> ( Y
!= ( sin @ real @ T7 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_3621_sin__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( sin @ real @ X )
= ( divide_divide @ real @ ( tan @ real @ X ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( tan @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_3622_Maclaurin__exp__lt,axiom,
! [X: real,N: nat] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( abs_abs @ real @ T7 ) )
& ( ord_less @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( exp @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( divide_divide @ real @ ( power_power @ real @ X @ M4 ) @ ( semiring_char_0_fact @ real @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( exp @ real @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_3623_ceiling__log__eq__powr__iff,axiom,
! [X: real,B2: real,K: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ( archimedean_ceiling @ real @ ( log @ B2 @ X ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ K ) @ ( one_one @ int ) ) )
= ( ( ord_less @ real @ ( powr @ real @ B2 @ ( semiring_1_of_nat @ real @ K ) ) @ X )
& ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_3624_powr__eq__0__iff,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [W: A,Z2: A] :
( ( ( powr @ A @ W @ Z2 )
= ( zero_zero @ A ) )
= ( W
= ( zero_zero @ A ) ) ) ) ).
% powr_eq_0_iff
thf(fact_3625_powr__0,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [Z2: A] :
( ( powr @ A @ ( zero_zero @ A ) @ Z2 )
= ( zero_zero @ A ) ) ) ).
% powr_0
thf(fact_3626_tan__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tan @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% tan_zero
thf(fact_3627_cos__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% cos_zero
thf(fact_3628_powr__zero__eq__one,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [X: A] :
( ( ( X
= ( zero_zero @ A ) )
=> ( ( powr @ A @ X @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) )
& ( ( X
!= ( zero_zero @ A ) )
=> ( ( powr @ A @ X @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ) ) ).
% powr_zero_eq_one
thf(fact_3629_fact__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% fact_0
thf(fact_3630_powr__gt__zero,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( powr @ real @ X @ A2 ) )
= ( X
!= ( zero_zero @ real ) ) ) ).
% powr_gt_zero
thf(fact_3631_powr__nonneg__iff,axiom,
! [A2: real,X: real] :
( ( ord_less_eq @ real @ ( powr @ real @ A2 @ X ) @ ( zero_zero @ real ) )
= ( A2
= ( zero_zero @ real ) ) ) ).
% powr_nonneg_iff
thf(fact_3632_tan__pi,axiom,
( ( tan @ real @ pi )
= ( zero_zero @ real ) ) ).
% tan_pi
thf(fact_3633_fact__Suc__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ A ) ) ) ).
% fact_Suc_0
thf(fact_3634_fact__Suc,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( semiring_char_0_fact @ A @ ( suc @ N ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N ) ) @ ( semiring_char_0_fact @ A @ N ) ) ) ) ).
% fact_Suc
thf(fact_3635_powr__eq__one__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ( powr @ real @ A2 @ X )
= ( one_one @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% powr_eq_one_iff
thf(fact_3636_powr__one__gt__zero__iff,axiom,
! [X: real] :
( ( ( powr @ real @ X @ ( one_one @ real ) )
= X )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% powr_one_gt_zero_iff
thf(fact_3637_powr__one,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( one_one @ real ) )
= X ) ) ).
% powr_one
thf(fact_3638_numeral__powr__numeral__real,axiom,
! [M: num,N: num] :
( ( powr @ real @ ( numeral_numeral @ real @ M ) @ ( numeral_numeral @ real @ N ) )
= ( power_power @ real @ ( numeral_numeral @ real @ M ) @ ( numeral_numeral @ nat @ N ) ) ) ).
% numeral_powr_numeral_real
thf(fact_3639_fact__2,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% fact_2
thf(fact_3640_sin__cos__squared__add3,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ X ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ X ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add3
thf(fact_3641_log__powr__cancel,axiom,
! [A2: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ ( powr @ real @ A2 @ Y ) )
= Y ) ) ) ).
% log_powr_cancel
thf(fact_3642_powr__log__cancel,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ A2 @ ( log @ A2 @ X ) )
= X ) ) ) ) ).
% powr_log_cancel
thf(fact_3643_tan__npi,axiom,
! [N: nat] :
( ( tan @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ pi ) )
= ( zero_zero @ real ) ) ).
% tan_npi
thf(fact_3644_tan__periodic__n,axiom,
! [X: real,N: num] :
( ( tan @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ N ) @ pi ) ) )
= ( tan @ real @ X ) ) ).
% tan_periodic_n
thf(fact_3645_tan__periodic__nat,axiom,
! [X: real,N: nat] :
( ( tan @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ pi ) ) )
= ( tan @ real @ X ) ) ).
% tan_periodic_nat
thf(fact_3646_tan__periodic__int,axiom,
! [X: real,I3: int] :
( ( tan @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( ring_1_of_int @ real @ I3 ) @ pi ) ) )
= ( tan @ real @ X ) ) ).
% tan_periodic_int
thf(fact_3647_powr__numeral,axiom,
! [X: real,N: num] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( numeral_numeral @ real @ N ) )
= ( power_power @ real @ X @ ( numeral_numeral @ nat @ N ) ) ) ) ).
% powr_numeral
thf(fact_3648_cos__pi__half,axiom,
( ( cos @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ).
% cos_pi_half
thf(fact_3649_cos__two__pi,axiom,
( ( cos @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
= ( one_one @ real ) ) ).
% cos_two_pi
thf(fact_3650_cos__periodic,axiom,
! [X: real] :
( ( cos @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
= ( cos @ real @ X ) ) ).
% cos_periodic
thf(fact_3651_cos__2pi__minus,axiom,
! [X: real] :
( ( cos @ real @ ( minus_minus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ X ) )
= ( cos @ real @ X ) ) ).
% cos_2pi_minus
thf(fact_3652_tan__periodic,axiom,
! [X: real] :
( ( tan @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
= ( tan @ real @ X ) ) ).
% tan_periodic
thf(fact_3653_cos__npi2,axiom,
! [N: nat] :
( ( cos @ real @ ( times_times @ real @ pi @ ( semiring_1_of_nat @ real @ N ) ) )
= ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N ) ) ).
% cos_npi2
thf(fact_3654_cos__npi,axiom,
! [N: nat] :
( ( cos @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ pi ) )
= ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N ) ) ).
% cos_npi
thf(fact_3655_sin__cos__squared__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add
thf(fact_3656_sin__cos__squared__add2,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add2
thf(fact_3657_cos__2npi,axiom,
! [N: nat] :
( ( cos @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) )
= ( one_one @ real ) ) ).
% cos_2npi
thf(fact_3658_cos__int__2pin,axiom,
! [N: int] :
( ( cos @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ ( ring_1_of_int @ real @ N ) ) )
= ( one_one @ real ) ) ).
% cos_int_2pin
thf(fact_3659_cos__3over2__pi,axiom,
( ( cos @ real @ ( times_times @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% cos_3over2_pi
thf(fact_3660_square__powr__half,axiom,
! [X: real] :
( ( powr @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( abs_abs @ real @ X ) ) ).
% square_powr_half
thf(fact_3661_cos__npi__int,axiom,
! [N: int] :
( ( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( cos @ real @ ( times_times @ real @ pi @ ( ring_1_of_int @ real @ N ) ) )
= ( one_one @ real ) ) )
& ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( cos @ real @ ( times_times @ real @ pi @ ( ring_1_of_int @ real @ N ) ) )
= ( uminus_uminus @ real @ ( one_one @ real ) ) ) ) ) ).
% cos_npi_int
thf(fact_3662_tan__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tan @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( sin @ A @ X6 ) @ ( cos @ A @ X6 ) ) ) ) ) ).
% tan_def
thf(fact_3663_fact__nonzero,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semiri3467727345109120633visors @ A ) )
=> ! [N: nat] :
( ( semiring_char_0_fact @ A @ N )
!= ( zero_zero @ A ) ) ) ).
% fact_nonzero
thf(fact_3664_powr__powr,axiom,
! [X: real,A2: real,B2: real] :
( ( powr @ real @ ( powr @ real @ X @ A2 ) @ B2 )
= ( powr @ real @ X @ ( times_times @ real @ A2 @ B2 ) ) ) ).
% powr_powr
thf(fact_3665_powr__non__neg,axiom,
! [A2: real,X: real] :
~ ( ord_less @ real @ ( powr @ real @ A2 @ X ) @ ( zero_zero @ real ) ) ).
% powr_non_neg
thf(fact_3666_powr__less__mono2__neg,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( powr @ real @ Y @ A2 ) @ ( powr @ real @ X @ A2 ) ) ) ) ) ).
% powr_less_mono2_neg
thf(fact_3667_powr__mono2,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_mono2
thf(fact_3668_powr__ge__pzero,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( powr @ real @ X @ Y ) ) ).
% powr_ge_pzero
thf(fact_3669_fact__ge__zero,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_char_0_fact @ A @ N ) ) ) ).
% fact_ge_zero
thf(fact_3670_fact__not__neg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat] :
~ ( ord_less @ A @ ( semiring_char_0_fact @ A @ N ) @ ( zero_zero @ A ) ) ) ).
% fact_not_neg
thf(fact_3671_fact__gt__zero,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_char_0_fact @ A @ N ) ) ) ).
% fact_gt_zero
thf(fact_3672_polar__Ex,axiom,
! [X: real,Y: real] :
? [R: real,A6: real] :
( ( X
= ( times_times @ real @ R @ ( cos @ real @ A6 ) ) )
& ( Y
= ( times_times @ real @ R @ ( sin @ real @ A6 ) ) ) ) ).
% polar_Ex
thf(fact_3673_cos__arctan__not__zero,axiom,
! [X: real] :
( ( cos @ real @ ( arctan @ X ) )
!= ( zero_zero @ real ) ) ).
% cos_arctan_not_zero
thf(fact_3674_add__tan__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) )
= ( divide_divide @ A @ ( sin @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_3675_cos__one__sin__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
= ( one_one @ A ) )
=> ( ( sin @ A @ X )
= ( zero_zero @ A ) ) ) ) ).
% cos_one_sin_zero
thf(fact_3676_sin__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sin @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( sin @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% sin_add
thf(fact_3677_sin__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sin @ A @ ( minus_minus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( times_times @ A @ ( sin @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% sin_diff
thf(fact_3678_powr__mono2_H,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ Y @ A2 ) @ ( powr @ real @ X @ A2 ) ) ) ) ) ).
% powr_mono2'
thf(fact_3679_powr__less__mono2,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_less_mono2
thf(fact_3680_powr__inj,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ( powr @ real @ A2 @ X )
= ( powr @ real @ A2 @ Y ) )
= ( X = Y ) ) ) ) ).
% powr_inj
thf(fact_3681_gr__one__powr,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less @ real @ ( one_one @ real ) @ ( powr @ real @ X @ Y ) ) ) ) ).
% gr_one_powr
thf(fact_3682_ge__one__powr__ge__zero,axiom,
! [X: real,A2: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( one_one @ real ) @ ( powr @ real @ X @ A2 ) ) ) ) ).
% ge_one_powr_ge_zero
thf(fact_3683_powr__mono__both,axiom,
! [A2: real,B2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ B2 ) ) ) ) ) ) ).
% powr_mono_both
thf(fact_3684_powr__le1,axiom,
! [A2: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( one_one @ real ) ) ) ) ) ).
% powr_le1
thf(fact_3685_powr__divide,axiom,
! [X: real,Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( divide_divide @ real @ X @ Y ) @ A2 )
= ( divide_divide @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_divide
thf(fact_3686_powr__mult,axiom,
! [X: real,Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( times_times @ real @ X @ Y ) @ A2 )
= ( times_times @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_mult
thf(fact_3687_tan__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( plus_plus @ A @ X @ Y ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( plus_plus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_3688_tan__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( minus_minus @ A @ X @ Y ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( minus_minus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_3689_lemma__tan__add1,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) )
= ( divide_divide @ A @ ( cos @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_3690_divide__powr__uminus,axiom,
! [A2: real,B2: real,C2: real] :
( ( divide_divide @ real @ A2 @ ( powr @ real @ B2 @ C2 ) )
= ( times_times @ real @ A2 @ ( powr @ real @ B2 @ ( uminus_uminus @ real @ C2 ) ) ) ) ).
% divide_powr_uminus
thf(fact_3691_log__base__powr,axiom,
! [A2: real,B2: real,X: real] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( log @ ( powr @ real @ A2 @ B2 ) @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ B2 ) ) ) ).
% log_base_powr
thf(fact_3692_ln__powr,axiom,
! [X: real,Y: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ln_ln @ real @ ( powr @ real @ X @ Y ) )
= ( times_times @ real @ Y @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_powr
thf(fact_3693_log__powr,axiom,
! [X: real,B2: real,Y: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( log @ B2 @ ( powr @ real @ X @ Y ) )
= ( times_times @ real @ Y @ ( log @ B2 @ X ) ) ) ) ).
% log_powr
thf(fact_3694_cos__monotone__0__pi__le,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less_eq @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) ) ) ) ) ).
% cos_monotone_0_pi_le
thf(fact_3695_cos__mono__le__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ord_less_eq @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) )
= ( ord_less_eq @ real @ Y @ X ) ) ) ) ) ) ).
% cos_mono_le_eq
thf(fact_3696_cos__inj__pi,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ( cos @ real @ X )
= ( cos @ real @ Y ) )
=> ( X = Y ) ) ) ) ) ) ).
% cos_inj_pi
thf(fact_3697_fact__less__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N )
=> ( ord_less @ A @ ( semiring_char_0_fact @ A @ M ) @ ( semiring_char_0_fact @ A @ N ) ) ) ) ) ).
% fact_less_mono
thf(fact_3698_fact__fact__dvd__fact,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: nat,N: nat] : ( dvd_dvd @ A @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ N ) ) @ ( semiring_char_0_fact @ A @ ( plus_plus @ nat @ K @ N ) ) ) ) ).
% fact_fact_dvd_fact
thf(fact_3699_fact__mod,axiom,
! [A: $tType] :
( ( ( linordered_semidom @ A )
& ( semidom_modulo @ A ) )
=> ! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( modulo_modulo @ A @ ( semiring_char_0_fact @ A @ N ) @ ( semiring_char_0_fact @ A @ M ) )
= ( zero_zero @ A ) ) ) ) ).
% fact_mod
thf(fact_3700_powr__add,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ! [X: A,A2: A,B2: A] :
( ( powr @ A @ X @ ( plus_plus @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( powr @ A @ X @ A2 ) @ ( powr @ A @ X @ B2 ) ) ) ) ).
% powr_add
thf(fact_3701_fact__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat] : ( ord_less_eq @ A @ ( semiring_char_0_fact @ A @ N ) @ ( semiring_1_of_nat @ A @ ( power_power @ nat @ N @ N ) ) ) ) ).
% fact_le_power
thf(fact_3702_powr__diff,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ! [W: A,Z1: A,Z22: A] :
( ( powr @ A @ W @ ( minus_minus @ A @ Z1 @ Z22 ) )
= ( divide_divide @ A @ ( powr @ A @ W @ Z1 ) @ ( powr @ A @ W @ Z22 ) ) ) ) ).
% powr_diff
thf(fact_3703_cos__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cos @ A @ ( minus_minus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% cos_diff
thf(fact_3704_cos__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cos @ A @ ( plus_plus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% cos_add
thf(fact_3705_sin__zero__norm__cos__one,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( cos @ A @ X ) )
= ( one_one @ real ) ) ) ) ).
% sin_zero_norm_cos_one
thf(fact_3706_cos__two__neq__zero,axiom,
( ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ real ) ) ).
% cos_two_neq_zero
thf(fact_3707_powr__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( semiring_1_of_nat @ real @ N ) )
= ( power_power @ real @ X @ N ) ) ) ).
% powr_realpow
thf(fact_3708_less__log__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ Y @ ( log @ B2 @ X ) )
= ( ord_less @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ).
% less_log_iff
thf(fact_3709_log__less__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ B2 @ X ) @ Y )
= ( ord_less @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ).
% log_less_iff
thf(fact_3710_less__powr__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( powr @ real @ B2 @ Y ) )
= ( ord_less @ real @ ( log @ B2 @ X ) @ Y ) ) ) ) ).
% less_powr_iff
thf(fact_3711_powr__less__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( powr @ real @ B2 @ Y ) @ X )
= ( ord_less @ real @ Y @ ( log @ B2 @ X ) ) ) ) ) ).
% powr_less_iff
thf(fact_3712_cos__monotone__0__pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_3713_cos__mono__less__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ord_less @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) )
= ( ord_less @ real @ Y @ X ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_3714_tan__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tan @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( sin @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X6 ) ) @ ( plus_plus @ A @ ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X6 ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% tan_half
thf(fact_3715_cos__monotone__minus__pi__0_H,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less_eq @ real @ ( cos @ real @ Y ) @ ( cos @ real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0'
thf(fact_3716_sin__zero__abs__cos__one,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ( ( abs_abs @ real @ ( cos @ real @ X ) )
= ( one_one @ real ) ) ) ).
% sin_zero_abs_cos_one
thf(fact_3717_choose__dvd,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( dvd_dvd @ A @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N @ K ) ) ) @ ( semiring_char_0_fact @ A @ N ) ) ) ) ).
% choose_dvd
thf(fact_3718_fact__numeral,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [K: num] :
( ( semiring_char_0_fact @ A @ ( numeral_numeral @ nat @ K ) )
= ( times_times @ A @ ( numeral_numeral @ A @ K ) @ ( semiring_char_0_fact @ A @ ( pred_numeral @ K ) ) ) ) ) ).
% fact_numeral
thf(fact_3719_powr__minus__divide,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ! [X: A,A2: A] :
( ( powr @ A @ X @ ( uminus_uminus @ A @ A2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( powr @ A @ X @ A2 ) ) ) ) ).
% powr_minus_divide
thf(fact_3720_sin__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( sin @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ X ) ) @ ( cos @ A @ X ) ) ) ) ).
% sin_double
thf(fact_3721_powr__neg__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( uminus_uminus @ real @ ( one_one @ real ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ X ) ) ) ).
% powr_neg_one
thf(fact_3722_powr__mult__base,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( times_times @ real @ X @ ( powr @ real @ X @ Y ) )
= ( powr @ real @ X @ ( plus_plus @ real @ ( one_one @ real ) @ Y ) ) ) ) ).
% powr_mult_base
thf(fact_3723_cos__two__less__zero,axiom,
ord_less @ real @ ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ real ) ).
% cos_two_less_zero
thf(fact_3724_powr__le__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( powr @ real @ B2 @ Y ) @ X )
= ( ord_less_eq @ real @ Y @ ( log @ B2 @ X ) ) ) ) ) ).
% powr_le_iff
thf(fact_3725_le__powr__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ Y ) )
= ( ord_less_eq @ real @ ( log @ B2 @ X ) @ Y ) ) ) ) ).
% le_powr_iff
thf(fact_3726_log__le__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ B2 @ X ) @ Y )
= ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ).
% log_le_iff
thf(fact_3727_le__log__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ Y @ ( log @ B2 @ X ) )
= ( ord_less_eq @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ).
% le_log_iff
thf(fact_3728_cos__is__zero,axiom,
? [X5: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X5 )
& ( ord_less_eq @ real @ X5 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X5 )
= ( zero_zero @ real ) )
& ! [Y4: real] :
( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y4 )
& ( ord_less_eq @ real @ Y4 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ Y4 )
= ( zero_zero @ real ) ) )
=> ( Y4 = X5 ) ) ) ).
% cos_is_zero
thf(fact_3729_cos__two__le__zero,axiom,
ord_less_eq @ real @ ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ real ) ).
% cos_two_le_zero
thf(fact_3730_tan__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( divide_divide @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( tan @ A @ X ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( tan @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_3731_cos__monotone__minus__pi__0,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( cos @ real @ Y ) @ ( cos @ real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_3732_cos__total,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ? [X5: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X5 )
& ( ord_less_eq @ real @ X5 @ pi )
& ( ( cos @ real @ X5 )
= Y )
& ! [Y4: real] :
( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y4 )
& ( ord_less_eq @ real @ Y4 @ pi )
& ( ( cos @ real @ Y4 )
= Y ) )
=> ( Y4 = X5 ) ) ) ) ) ).
% cos_total
thf(fact_3733_square__fact__le__2__fact,axiom,
! [N: nat] : ( ord_less_eq @ real @ ( times_times @ real @ ( semiring_char_0_fact @ real @ N ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( semiring_char_0_fact @ real @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% square_fact_le_2_fact
thf(fact_3734_cos__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( cos @ real @ X )
= ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( tan @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_3735_ln__powr__bound,axiom,
! [X: real,A2: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( divide_divide @ real @ ( powr @ real @ X @ A2 ) @ A2 ) ) ) ) ).
% ln_powr_bound
thf(fact_3736_ln__powr__bound2,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( powr @ real @ ( ln_ln @ real @ X ) @ A2 ) @ ( times_times @ real @ ( powr @ real @ A2 @ A2 ) @ X ) ) ) ) ).
% ln_powr_bound2
thf(fact_3737_tan__45,axiom,
( ( tan @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
= ( one_one @ real ) ) ).
% tan_45
thf(fact_3738_add__log__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( plus_plus @ real @ Y @ ( log @ B2 @ X ) )
= ( log @ B2 @ ( times_times @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_3739_log__add__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( plus_plus @ real @ ( log @ B2 @ X ) @ Y )
= ( log @ B2 @ ( times_times @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_3740_minus__log__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( minus_minus @ real @ Y @ ( log @ B2 @ X ) )
= ( log @ B2 @ ( divide_divide @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_3741_tan__60,axiom,
( ( tan @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
= ( sqrt @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) ) ).
% tan_60
thf(fact_3742_cos__45,axiom,
( ( cos @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
= ( divide_divide @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% cos_45
thf(fact_3743_sin__cos__le1,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( abs_abs @ real @ ( plus_plus @ real @ ( times_times @ real @ ( sin @ real @ X ) @ ( sin @ real @ Y ) ) @ ( times_times @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) ) ) ) @ ( one_one @ real ) ) ).
% sin_cos_le1
thf(fact_3744_fact__num__eq__if,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [M4: nat] :
( if @ A
@ ( M4
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ M4 ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ M4 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_3745_fact__reduce,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( semiring_char_0_fact @ A @ N )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ).
% fact_reduce
thf(fact_3746_powr__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( powr @ A )
= ( ^ [X6: A,A4: A] :
( if @ A
@ ( X6
= ( zero_zero @ A ) )
@ ( zero_zero @ A )
@ ( exp @ A @ ( times_times @ A @ A4 @ ( ln_ln @ A @ X6 ) ) ) ) ) ) ) ).
% powr_def
thf(fact_3747_cos__plus__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( plus_plus @ A @ ( cos @ A @ W ) @ ( cos @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( cos @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_3748_cos__times__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( times_times @ A @ ( cos @ A @ W ) @ ( cos @ A @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( cos @ A @ ( minus_minus @ A @ W @ Z2 ) ) @ ( cos @ A @ ( plus_plus @ A @ W @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% cos_times_cos
thf(fact_3749_cos__squared__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cos_squared_eq
thf(fact_3750_sin__squared__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sin_squared_eq
thf(fact_3751_tan__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( tan @ real @ X ) ) ) ) ).
% tan_gt_zero
thf(fact_3752_lemma__tan__total,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ? [X5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X5 )
& ( ord_less @ real @ X5 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ord_less @ real @ Y @ ( tan @ real @ X5 ) ) ) ) ).
% lemma_tan_total
thf(fact_3753_lemma__tan__total1,axiom,
! [Y: real] :
? [X5: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X5 )
& ( ord_less @ real @ X5 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X5 )
= Y ) ) ).
% lemma_tan_total1
thf(fact_3754_tan__mono__lt__eq,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_3755_tan__monotone_H,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ Y @ X )
= ( ord_less @ real @ ( tan @ real @ Y ) @ ( tan @ real @ X ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_3756_tan__monotone,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( tan @ real @ Y ) @ ( tan @ real @ X ) ) ) ) ) ).
% tan_monotone
thf(fact_3757_tan__total,axiom,
! [Y: real] :
? [X5: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X5 )
& ( ord_less @ real @ X5 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X5 )
= Y )
& ! [Y4: real] :
( ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y4 )
& ( ord_less @ real @ Y4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ Y4 )
= Y ) )
=> ( Y4 = X5 ) ) ) ).
% tan_total
thf(fact_3758_tan__minus__45,axiom,
( ( tan @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) )
= ( uminus_uminus @ real @ ( one_one @ real ) ) ) ).
% tan_minus_45
thf(fact_3759_cos__double__less__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ord_less @ real @ ( cos @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) ) @ ( one_one @ real ) ) ) ) ).
% cos_double_less_one
thf(fact_3760_tan__inverse,axiom,
! [Y: real] :
( ( divide_divide @ real @ ( one_one @ real ) @ ( tan @ real @ Y ) )
= ( tan @ real @ ( minus_minus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ Y ) ) ) ).
% tan_inverse
thf(fact_3761_cos__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_gt_zero
thf(fact_3762_log__minus__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( minus_minus @ real @ ( log @ B2 @ X ) @ Y )
= ( log @ B2 @ ( times_times @ real @ X @ ( powr @ real @ B2 @ ( uminus_uminus @ real @ Y ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_3763_cos__60,axiom,
( ( cos @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% cos_60
thf(fact_3764_cos__30,axiom,
( ( cos @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ one2 ) ) ) ) )
= ( divide_divide @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% cos_30
thf(fact_3765_cos__one__2pi__int,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( one_one @ real ) )
= ( ? [X6: int] :
( X
= ( times_times @ real @ ( times_times @ real @ ( ring_1_of_int @ real @ X6 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) ) ) ) ).
% cos_one_2pi_int
thf(fact_3766_cos__double__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ W ) )
= ( minus_minus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ ( cos @ A @ W ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( one_one @ A ) ) ) ) ).
% cos_double_cos
thf(fact_3767_cos__treble__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit1 @ one2 ) ) @ X ) )
= ( minus_minus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit1 @ one2 ) ) @ ( cos @ A @ X ) ) ) ) ) ).
% cos_treble_cos
thf(fact_3768_cos__diff__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( minus_minus @ A @ ( cos @ A @ W ) @ ( cos @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( sin @ A @ ( divide_divide @ A @ ( minus_minus @ A @ Z2 @ W ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_3769_sin__diff__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( minus_minus @ A @ ( sin @ A @ W ) @ ( sin @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_3770_sin__plus__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( plus_plus @ A @ ( sin @ A @ W ) @ ( sin @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_3771_cos__times__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( times_times @ A @ ( cos @ A @ W ) @ ( sin @ A @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( sin @ A @ ( plus_plus @ A @ W @ Z2 ) ) @ ( sin @ A @ ( minus_minus @ A @ W @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% cos_times_sin
thf(fact_3772_sin__times__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( times_times @ A @ ( sin @ A @ W ) @ ( cos @ A @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( sin @ A @ ( plus_plus @ A @ W @ Z2 ) ) @ ( sin @ A @ ( minus_minus @ A @ W @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% sin_times_cos
thf(fact_3773_sin__times__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A,Z2: A] :
( ( times_times @ A @ ( sin @ A @ W ) @ ( sin @ A @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( cos @ A @ ( minus_minus @ A @ W @ Z2 ) ) @ ( cos @ A @ ( plus_plus @ A @ W @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% sin_times_sin
thf(fact_3774_cos__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( minus_minus @ A @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cos_double
thf(fact_3775_Maclaurin__cos__expansion,axiom,
! [X: real,N: nat] :
? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( cos @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( cos_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( cos @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ).
% Maclaurin_cos_expansion
thf(fact_3776_powr__half__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( sqrt @ X ) ) ) ).
% powr_half_sqrt
thf(fact_3777_powr__neg__numeral,axiom,
! [X: real,N: num] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( uminus_uminus @ real @ ( numeral_numeral @ real @ N ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ N ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_3778_tan__total__pos,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ? [X5: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X5 )
& ( ord_less @ real @ X5 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X5 )
= Y ) ) ) ).
% tan_total_pos
thf(fact_3779_tan__pos__pi2__le,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( tan @ real @ X ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_3780_tan__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( tan @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% tan_less_zero
thf(fact_3781_tan__mono__le__eq,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_3782_tan__mono__le,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) ) ) ) ) ).
% tan_mono_le
thf(fact_3783_tan__bound__pi2,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
=> ( ord_less @ real @ ( abs_abs @ real @ ( tan @ real @ X ) ) @ ( one_one @ real ) ) ) ).
% tan_bound_pi2
thf(fact_3784_tan__30,axiom,
( ( tan @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ one2 ) ) ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) ) ) ).
% tan_30
thf(fact_3785_cos__gt__zero__pi,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_3786_cos__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_ge_zero
thf(fact_3787_arctan__unique,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ( tan @ real @ X )
= Y )
=> ( ( arctan @ Y )
= X ) ) ) ) ).
% arctan_unique
thf(fact_3788_arctan__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( arctan @ ( tan @ real @ X ) )
= X ) ) ) ).
% arctan_tan
thf(fact_3789_arctan,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ ( arctan @ Y ) )
= Y ) ) ).
% arctan
thf(fact_3790_cos__one__2pi,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( one_one @ real ) )
= ( ? [X6: nat] :
( X
= ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ X6 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) )
| ? [X6: nat] :
( X
= ( uminus_uminus @ real @ ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ X6 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) ) ) ) ) ).
% cos_one_2pi
thf(fact_3791_Maclaurin__zero,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: real,N: nat,Diff: nat > A > real] :
( ( X
= ( zero_zero @ real ) )
=> ( ( N
!= ( zero_zero @ nat ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ A ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
= ( Diff @ ( zero_zero @ nat ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% Maclaurin_zero
thf(fact_3792_cos__double__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ W ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ ( sin @ A @ W ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_3793_Maclaurin__lemma,axiom,
! [H2: real,F2: real > real,J: nat > real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H2 )
=> ? [B9: real] :
( ( F2 @ H2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( J @ M4 ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ H2 @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ B9 @ ( divide_divide @ real @ ( power_power @ real @ H2 @ N ) @ ( semiring_char_0_fact @ real @ N ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_3794_Maclaurin__cos__expansion2,axiom,
! [X: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less @ real @ T7 @ X )
& ( ( cos @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( cos_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( cos @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_3795_Maclaurin__minus__cos__expansion,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ? [T7: real] :
( ( ord_less @ real @ X @ T7 )
& ( ord_less @ real @ T7 @ ( zero_zero @ real ) )
& ( ( cos @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( cos_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( cos @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_3796_tan__total__pi4,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ? [Z4: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) @ Z4 )
& ( ord_less @ real @ Z4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
& ( ( tan @ real @ Z4 )
= X ) ) ) ).
% tan_total_pi4
thf(fact_3797_cos__arctan,axiom,
! [X: real] :
( ( cos @ real @ ( arctan @ X ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_arctan
thf(fact_3798_Maclaurin__exp__le,axiom,
! [X: real,N: nat] :
? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( exp @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( divide_divide @ real @ ( power_power @ real @ X @ M4 ) @ ( semiring_char_0_fact @ real @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( exp @ real @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ).
% Maclaurin_exp_le
thf(fact_3799_sincos__total__pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ pi )
& ( X
= ( cos @ real @ T7 ) )
& ( Y
= ( sin @ real @ T7 ) ) ) ) ) ).
% sincos_total_pi
thf(fact_3800_sin__cos__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) )
=> ( ( sin @ real @ X )
= ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( cos @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_cos_sqrt
thf(fact_3801_sin__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( sin @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
= ( cos @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sin_expansion_lemma
thf(fact_3802_cos__zero__iff__int,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I: int] :
( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ I )
& ( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_zero_iff_int
thf(fact_3803_cos__coeff__def,axiom,
( cos_coeff
= ( ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( zero_zero @ real ) ) ) ) ).
% cos_coeff_def
thf(fact_3804_cos__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
=> ? [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_zero_lemma
thf(fact_3805_cos__zero__iff,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
= ( ? [N3: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) )
| ? [N3: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( uminus_uminus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% cos_zero_iff
thf(fact_3806_cos__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( cos @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
= ( uminus_uminus @ real @ ( sin @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_expansion_lemma
thf(fact_3807_sincos__total__pi__half,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( X
= ( cos @ real @ T7 ) )
& ( Y
= ( sin @ real @ T7 ) ) ) ) ) ) ).
% sincos_total_pi_half
thf(fact_3808_sincos__total__2pi__le,axiom,
! [X: real,Y: real] :
( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
& ( X
= ( cos @ real @ T7 ) )
& ( Y
= ( sin @ real @ T7 ) ) ) ) ).
% sincos_total_2pi_le
thf(fact_3809_Maclaurin__sin__expansion3,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less @ real @ T7 @ X )
& ( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( sin_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_3810_Maclaurin__sin__expansion4,axiom,
! [X: real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ X )
& ( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( sin_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_3811_Maclaurin__sin__expansion2,axiom,
! [X: real,N: nat] :
? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( sin_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ).
% Maclaurin_sin_expansion2
thf(fact_3812_Maclaurin__sin__expansion,axiom,
! [X: real,N: nat] :
? [T7: real] :
( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( sin_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T7 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ).
% Maclaurin_sin_expansion
thf(fact_3813_sin__coeff__0,axiom,
( ( sin_coeff @ ( zero_zero @ nat ) )
= ( zero_zero @ real ) ) ).
% sin_coeff_0
thf(fact_3814_fact__less__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( semiring_char_0_fact @ nat @ M ) @ ( semiring_char_0_fact @ nat @ N ) ) ) ) ).
% fact_less_mono_nat
thf(fact_3815_fact__ge__Suc__0__nat,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( semiring_char_0_fact @ nat @ N ) ) ).
% fact_ge_Suc_0_nat
thf(fact_3816_fact__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ ( suc @ M ) )
=> ( ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) )
= ( times_times @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ M @ N ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_3817_fact__div__fact__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq @ nat @ R2 @ N )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ N ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N @ R2 ) ) ) @ ( power_power @ nat @ N @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_3818_sin__coeff__Suc,axiom,
! [N: nat] :
( ( sin_coeff @ ( suc @ N ) )
= ( divide_divide @ real @ ( cos_coeff @ N ) @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) ) ) ).
% sin_coeff_Suc
thf(fact_3819_cos__coeff__Suc,axiom,
! [N: nat] :
( ( cos_coeff @ ( suc @ N ) )
= ( divide_divide @ real @ ( uminus_uminus @ real @ ( sin_coeff @ N ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) ) ) ).
% cos_coeff_Suc
thf(fact_3820_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ real ) @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_char_0_fact @ real @ N3 ) ) ) ) ) ).
% sin_coeff_def
thf(fact_3821_arcosh__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arcosh @ A )
= ( ^ [X6: A] : ( ln_ln @ A @ ( plus_plus @ A @ X6 @ ( powr @ A @ ( minus_minus @ A @ ( power_power @ A @ X6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) @ ( real_Vector_of_real @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% arcosh_def
thf(fact_3822_sin__paired,axiom,
! [X: real] :
( sums @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( sin @ real @ X ) ) ).
% sin_paired
thf(fact_3823_cos__arcsin,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ( cos @ real @ ( arcsin @ X ) )
= ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_arcsin
thf(fact_3824_sin__arccos__abs,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ Y ) @ ( one_one @ real ) )
=> ( ( sin @ real @ ( arccos @ Y ) )
= ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_arccos_abs
thf(fact_3825_arcsin__0,axiom,
( ( arcsin @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% arcsin_0
thf(fact_3826_sums__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( sums @ A
@ ^ [N3: nat] : ( zero_zero @ A )
@ ( zero_zero @ A ) ) ) ).
% sums_zero
thf(fact_3827_of__real__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real] :
( ( ( real_Vector_of_real @ A @ X )
= ( zero_zero @ A ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% of_real_eq_0_iff
thf(fact_3828_of__real__0,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( ( real_Vector_of_real @ A @ ( zero_zero @ real ) )
= ( zero_zero @ A ) ) ) ).
% of_real_0
thf(fact_3829_of__real__mult,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real,Y: real] :
( ( real_Vector_of_real @ A @ ( times_times @ real @ X @ Y ) )
= ( times_times @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ).
% of_real_mult
thf(fact_3830_of__real__numeral,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [W: num] :
( ( real_Vector_of_real @ A @ ( numeral_numeral @ real @ W ) )
= ( numeral_numeral @ A @ W ) ) ) ).
% of_real_numeral
thf(fact_3831_of__real__divide,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [X: real,Y: real] :
( ( real_Vector_of_real @ A @ ( divide_divide @ real @ X @ Y ) )
= ( divide_divide @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ).
% of_real_divide
thf(fact_3832_of__real__power,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real,N: nat] :
( ( real_Vector_of_real @ A @ ( power_power @ real @ X @ N ) )
= ( power_power @ A @ ( real_Vector_of_real @ A @ X ) @ N ) ) ) ).
% of_real_power
thf(fact_3833_of__real__add,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real,Y: real] :
( ( real_Vector_of_real @ A @ ( plus_plus @ real @ X @ Y ) )
= ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ).
% of_real_add
thf(fact_3834_arccos__1,axiom,
( ( arccos @ ( one_one @ real ) )
= ( zero_zero @ real ) ) ).
% arccos_1
thf(fact_3835_sin__of__real__pi,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( real_Vector_of_real @ A @ pi ) )
= ( zero_zero @ A ) ) ) ).
% sin_of_real_pi
thf(fact_3836_of__real__neg__numeral,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [W: num] :
( ( real_Vector_of_real @ A @ ( uminus_uminus @ real @ ( numeral_numeral @ real @ W ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ).
% of_real_neg_numeral
thf(fact_3837_powser__sums__zero__iff,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: nat > A,X: A] :
( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) )
@ X )
= ( ( A2 @ ( zero_zero @ nat ) )
= X ) ) ) ).
% powser_sums_zero_iff
thf(fact_3838_norm__of__real__add1,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: real] :
( ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( one_one @ A ) ) )
= ( abs_abs @ real @ ( plus_plus @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% norm_of_real_add1
thf(fact_3839_norm__of__real__addn,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: real,B2: num] :
( ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( numeral_numeral @ A @ B2 ) ) )
= ( abs_abs @ real @ ( plus_plus @ real @ X @ ( numeral_numeral @ real @ B2 ) ) ) ) ) ).
% norm_of_real_addn
thf(fact_3840_arccos__0,axiom,
( ( arccos @ ( zero_zero @ real ) )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% arccos_0
thf(fact_3841_arcsin__1,axiom,
( ( arcsin @ ( one_one @ real ) )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% arcsin_1
thf(fact_3842_cos__of__real__pi__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V7773925162809079976_field @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) ) ) ).
% cos_of_real_pi_half
thf(fact_3843_sin__of__real__pi__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V7773925162809079976_field @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_of_real_pi_half
thf(fact_3844_arcsin__minus__1,axiom,
( ( arcsin @ ( uminus_uminus @ real @ ( one_one @ real ) ) )
= ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% arcsin_minus_1
thf(fact_3845_sums__single,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [I3: nat,F2: nat > A] :
( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( R5 = I3 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( F2 @ I3 ) ) ) ).
% sums_single
thf(fact_3846_sums__0,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A] :
( ! [N2: nat] :
( ( F2 @ N2 )
= ( zero_zero @ A ) )
=> ( sums @ A @ F2 @ ( zero_zero @ A ) ) ) ) ).
% sums_0
thf(fact_3847_sums__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,A2: A,C2: A] :
( ( sums @ A @ F2 @ A2 )
=> ( sums @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( F2 @ N3 ) @ C2 )
@ ( divide_divide @ A @ A2 @ C2 ) ) ) ) ).
% sums_divide
thf(fact_3848_sums__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,A2: A,G: nat > A,B2: A] :
( ( sums @ A @ F2 @ A2 )
=> ( ( sums @ A @ G @ B2 )
=> ( sums @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% sums_add
thf(fact_3849_sums__mult2,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,A2: A,C2: A] :
( ( sums @ A @ F2 @ A2 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 )
@ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% sums_mult2
thf(fact_3850_sums__mult,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: nat > A,A2: A,C2: A] :
( ( sums @ A @ F2 @ A2 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) )
@ ( times_times @ A @ C2 @ A2 ) ) ) ) ).
% sums_mult
thf(fact_3851_sums__mult__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [C2: A,F2: nat > A,D2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) )
@ ( times_times @ A @ C2 @ D2 ) )
= ( sums @ A @ F2 @ D2 ) ) ) ) ).
% sums_mult_iff
thf(fact_3852_sums__mult2__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [C2: A,F2: nat > A,D2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 )
@ ( times_times @ A @ D2 @ C2 ) )
= ( sums @ A @ F2 @ D2 ) ) ) ) ).
% sums_mult2_iff
thf(fact_3853_nonzero__of__real__divide,axiom,
! [A: $tType] :
( ( real_V7773925162809079976_field @ A )
=> ! [Y: real,X: real] :
( ( Y
!= ( zero_zero @ real ) )
=> ( ( real_Vector_of_real @ A @ ( divide_divide @ real @ X @ Y ) )
= ( divide_divide @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_3854_sums__mult__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A,A2: A] :
( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) )
@ A2 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( sums @ A @ F2 @ ( divide_divide @ A @ A2 @ C2 ) ) ) ) ) ).
% sums_mult_D
thf(fact_3855_sums__Suc__imp,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ S )
=> ( sums @ A @ F2 @ S ) ) ) ) ).
% sums_Suc_imp
thf(fact_3856_sums__Suc,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,L: A] :
( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ L )
=> ( sums @ A @ F2 @ ( plus_plus @ A @ L @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% sums_Suc
thf(fact_3857_sums__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A] :
( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ S )
= ( sums @ A @ F2 @ ( plus_plus @ A @ S @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% sums_Suc_iff
thf(fact_3858_sums__zero__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [N: nat,F2: nat > A,S: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
=> ( ( F2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ( sums @ A
@ ^ [I: nat] : ( F2 @ ( plus_plus @ nat @ I @ N ) )
@ S )
= ( sums @ A @ F2 @ S ) ) ) ) ).
% sums_zero_iff_shift
thf(fact_3859_sums__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [N5: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ N5 )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( sums @ A @ F2 @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ N5 ) ) ) ) ) ).
% sums_finite
thf(fact_3860_sums__If__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [P: nat > $o,F2: nat > A] :
( ( finite_finite @ nat @ ( collect @ nat @ P ) )
=> ( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( P @ R5 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( collect @ nat @ P ) ) ) ) ) ).
% sums_If_finite
thf(fact_3861_sums__If__finite__set,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [A3: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ A3 )
=> ( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( member @ nat @ R5 @ A3 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ A3 ) ) ) ) ).
% sums_If_finite_set
thf(fact_3862_norm__less__p1,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ ( real_V7770717601297561774m_norm @ A @ X ) ) @ ( one_one @ A ) ) ) ) ) ).
% norm_less_p1
thf(fact_3863_powser__sums__if,axiom,
! [A: $tType] :
( ( ( ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [M: nat,Z2: A] :
( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( if @ A @ ( N3 = M ) @ ( one_one @ A ) @ ( zero_zero @ A ) ) @ ( power_power @ A @ Z2 @ N3 ) )
@ ( power_power @ A @ Z2 @ M ) ) ) ).
% powser_sums_if
thf(fact_3864_powser__sums__zero,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: nat > A] :
( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) )
@ ( A2 @ ( zero_zero @ nat ) ) ) ) ).
% powser_sums_zero
thf(fact_3865_sums__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,N: nat,S: A] :
( ( sums @ A
@ ^ [I: nat] : ( F2 @ ( plus_plus @ nat @ I @ N ) )
@ S )
= ( sums @ A @ F2 @ ( plus_plus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ) ).
% sums_iff_shift
thf(fact_3866_sums__iff__shift_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,N: nat,S: A] :
( ( sums @ A
@ ^ [I: nat] : ( F2 @ ( plus_plus @ nat @ I @ N ) )
@ ( minus_minus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) ) )
= ( sums @ A @ F2 @ S ) ) ) ).
% sums_iff_shift'
thf(fact_3867_sums__split__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A,N: nat] :
( ( sums @ A @ F2 @ S )
=> ( sums @ A
@ ^ [I: nat] : ( F2 @ ( plus_plus @ nat @ I @ N ) )
@ ( minus_minus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_3868_sums__If__finite__set_H,axiom,
! [A: $tType] :
( ( ( topolo1287966508704411220up_add @ A )
& ( topological_t2_space @ A ) )
=> ! [G: nat > A,S3: A,A3: set @ nat,S5: A,F2: nat > A] :
( ( sums @ A @ G @ S3 )
=> ( ( finite_finite @ nat @ A3 )
=> ( ( S5
= ( plus_plus @ A @ S3
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ A3 ) ) )
=> ( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( member @ nat @ N3 @ A3 ) @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ S5 ) ) ) ) ) ).
% sums_If_finite_set'
thf(fact_3869_arccos__lbound,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) ) ) ) ).
% arccos_lbound
thf(fact_3870_arccos__cos,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( arccos @ ( cos @ real @ X ) )
= X ) ) ) ).
% arccos_cos
thf(fact_3871_arccos__lt__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less @ real @ ( arccos @ Y ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_3872_arccos__bounded,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less_eq @ real @ ( arccos @ Y ) @ pi ) ) ) ) ).
% arccos_bounded
thf(fact_3873_sin__arccos__nonzero,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ( sin @ real @ ( arccos @ X ) )
!= ( zero_zero @ real ) ) ) ) ).
% sin_arccos_nonzero
thf(fact_3874_cos__int__times__real,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [M: int,X: real] :
( ( cos @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ M ) @ ( real_Vector_of_real @ A @ X ) ) )
= ( real_Vector_of_real @ A @ ( cos @ real @ ( times_times @ real @ ( ring_1_of_int @ real @ M ) @ X ) ) ) ) ) ).
% cos_int_times_real
thf(fact_3875_sin__int__times__real,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [M: int,X: real] :
( ( sin @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ M ) @ ( real_Vector_of_real @ A @ X ) ) )
= ( real_Vector_of_real @ A @ ( sin @ real @ ( times_times @ real @ ( ring_1_of_int @ real @ M ) @ X ) ) ) ) ) ).
% sin_int_times_real
thf(fact_3876_arccos__cos2,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ X )
=> ( ( arccos @ ( cos @ real @ X ) )
= ( uminus_uminus @ real @ X ) ) ) ) ).
% arccos_cos2
thf(fact_3877_cos__arcsin__nonzero,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ( cos @ real @ ( arcsin @ X ) )
!= ( zero_zero @ real ) ) ) ) ).
% cos_arcsin_nonzero
thf(fact_3878_geometric__sums,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( sums @ A @ ( power_power @ A @ C2 ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( minus_minus @ A @ ( one_one @ A ) @ C2 ) ) ) ) ) ).
% geometric_sums
thf(fact_3879_power__half__series,axiom,
( sums @ real
@ ^ [N3: nat] : ( power_power @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( suc @ N3 ) )
@ ( one_one @ real ) ) ).
% power_half_series
thf(fact_3880_arccos,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less_eq @ real @ ( arccos @ Y ) @ pi )
& ( ( cos @ real @ ( arccos @ Y ) )
= Y ) ) ) ) ).
% arccos
thf(fact_3881_sums__if_H,axiom,
! [G: nat > real,X: real] :
( ( sums @ real @ G @ X )
=> ( sums @ real
@ ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ real ) @ ( G @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ X ) ) ).
% sums_if'
thf(fact_3882_cos__sin__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cos @ A )
= ( ^ [X6: A] : ( sin @ A @ ( minus_minus @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ X6 ) ) ) ) ) ).
% cos_sin_eq
thf(fact_3883_sin__cos__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( sin @ A )
= ( ^ [X6: A] : ( cos @ A @ ( minus_minus @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ X6 ) ) ) ) ) ).
% sin_cos_eq
thf(fact_3884_sums__if,axiom,
! [G: nat > real,X: real,F2: nat > real,Y: real] :
( ( sums @ real @ G @ X )
=> ( ( sums @ real @ F2 @ Y )
=> ( sums @ real
@ ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( F2 @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( G @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ real @ X @ Y ) ) ) ) ).
% sums_if
thf(fact_3885_minus__sin__cos__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( uminus_uminus @ A @ ( sin @ A @ X ) )
= ( cos @ A @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_3886_arccos__le__pi2,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( arccos @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% arccos_le_pi2
thf(fact_3887_arcsin__lt__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less @ real @ ( arcsin @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_3888_arcsin__lbound,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) ) ) ) ).
% arcsin_lbound
thf(fact_3889_arcsin__ubound,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( arcsin @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% arcsin_ubound
thf(fact_3890_arcsin__bounded,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less_eq @ real @ ( arcsin @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% arcsin_bounded
thf(fact_3891_arcsin__sin,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( arcsin @ ( sin @ real @ X ) )
= X ) ) ) ).
% arcsin_sin
thf(fact_3892_cos__paired,axiom,
! [X: real] :
( sums @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( semiring_char_0_fact @ real @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) @ ( power_power @ real @ X @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( cos @ real @ X ) ) ).
% cos_paired
thf(fact_3893_le__arcsin__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ Y @ ( arcsin @ X ) )
= ( ord_less_eq @ real @ ( sin @ real @ Y ) @ X ) ) ) ) ) ) ).
% le_arcsin_iff
thf(fact_3894_arcsin__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( arcsin @ X ) @ Y )
= ( ord_less_eq @ real @ X @ ( sin @ real @ Y ) ) ) ) ) ) ) ).
% arcsin_le_iff
thf(fact_3895_arcsin__pi,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less_eq @ real @ ( arcsin @ Y ) @ pi )
& ( ( sin @ real @ ( arcsin @ Y ) )
= Y ) ) ) ) ).
% arcsin_pi
thf(fact_3896_arcsin,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less_eq @ real @ ( arcsin @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( sin @ real @ ( arcsin @ Y ) )
= Y ) ) ) ) ).
% arcsin
thf(fact_3897_arccos__cos__eq__abs__2pi,axiom,
! [Theta: real] :
~ ! [K2: int] :
( ( arccos @ ( cos @ real @ Theta ) )
!= ( abs_abs @ real @ ( minus_minus @ real @ Theta @ ( times_times @ real @ ( ring_1_of_int @ real @ K2 ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) ) ) ) ).
% arccos_cos_eq_abs_2pi
thf(fact_3898_geometric__deriv__sums,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [Z2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( one_one @ real ) )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) )
@ ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( minus_minus @ A @ ( one_one @ A ) @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_3899_arsinh__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arsinh @ A )
= ( ^ [X6: A] : ( ln_ln @ A @ ( plus_plus @ A @ X6 @ ( powr @ A @ ( plus_plus @ A @ ( power_power @ A @ X6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) @ ( real_Vector_of_real @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% arsinh_def
thf(fact_3900_sin__arccos,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ( sin @ real @ ( arccos @ X ) )
= ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_arccos
thf(fact_3901_diffs__equiv,axiom,
! [A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( ring_1 @ A ) )
=> ! [C2: nat > A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( C2 @ N3 ) ) @ ( power_power @ A @ X @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ) ).
% diffs_equiv
thf(fact_3902_floor__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( archim6421214686448440834_floor @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( semiring_1_of_nat @ int @ N ) )
= ( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
& ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_3903_pochhammer__double,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [Z2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Z2 ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N ) ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ N ) ) ) ) ).
% pochhammer_double
thf(fact_3904_mono__SucI1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X9: nat > A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( X9 @ N2 ) @ ( X9 @ ( suc @ N2 ) ) )
=> ( topological_monoseq @ A @ X9 ) ) ) ).
% mono_SucI1
thf(fact_3905_of__int__floor__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) )
= X )
= ( ? [N3: int] :
( X
= ( ring_1_of_int @ A @ N3 ) ) ) ) ) ).
% of_int_floor_cancel
thf(fact_3906_floor__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archim6421214686448440834_floor @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% floor_zero
thf(fact_3907_floor__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num] :
( ( archim6421214686448440834_floor @ A @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ int @ V ) ) ) ).
% floor_numeral
thf(fact_3908_pochhammer__0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% pochhammer_0
thf(fact_3909_pochhammer__Suc0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% pochhammer_Suc0
thf(fact_3910_zero__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% zero_le_floor
thf(fact_3911_floor__less__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% floor_less_zero
thf(fact_3912_numeral__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( numeral_numeral @ int @ V ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( numeral_numeral @ A @ V ) @ X ) ) ) ).
% numeral_le_floor
thf(fact_3913_zero__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ).
% zero_less_floor
thf(fact_3914_floor__le__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ).
% floor_le_zero
thf(fact_3915_floor__less__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V ) )
= ( ord_less @ A @ X @ ( numeral_numeral @ A @ V ) ) ) ) ).
% floor_less_numeral
thf(fact_3916_floor__less__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ).
% floor_less_one
thf(fact_3917_floor__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num] :
( ( archim6421214686448440834_floor @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) ) ) ).
% floor_neg_numeral
thf(fact_3918_floor__diff__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( archim6421214686448440834_floor @ A @ ( minus_minus @ A @ X @ ( numeral_numeral @ A @ V ) ) )
= ( minus_minus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V ) ) ) ) ).
% floor_diff_numeral
thf(fact_3919_floor__numeral__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: num,N: nat] :
( ( archim6421214686448440834_floor @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ).
% floor_numeral_power
thf(fact_3920_floor__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ A2 ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_3921_numeral__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less @ int @ ( numeral_numeral @ int @ V ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ V ) @ ( one_one @ A ) ) @ X ) ) ) ).
% numeral_less_floor
thf(fact_3922_floor__le__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V ) )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( numeral_numeral @ A @ V ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_numeral
thf(fact_3923_one__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( one_one @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) ) ) ).
% one_less_floor
thf(fact_3924_floor__le__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( ord_less @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% floor_le_one
thf(fact_3925_neg__numeral__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ X ) ) ) ).
% neg_numeral_le_floor
thf(fact_3926_floor__less__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) )
= ( ord_less @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_3927_floor__one__divide__eq__div__numeral,axiom,
! [B2: num] :
( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( divide_divide @ int @ ( one_one @ int ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_3928_floor__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archim6421214686448440834_floor @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( divide_divide @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ A2 ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_minus_divide_eq_div_numeral
thf(fact_3929_neg__numeral__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V: num,X: A] :
( ( ord_less @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( one_one @ A ) ) @ X ) ) ) ).
% neg_numeral_less_floor
thf(fact_3930_floor__le__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_neg_numeral
thf(fact_3931_floor__minus__one__divide__eq__div__numeral,axiom,
! [B2: num] :
( ( archim6421214686448440834_floor @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_minus_one_divide_eq_div_numeral
thf(fact_3932_floor__less__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% floor_less_cancel
thf(fact_3933_pochhammer__pos,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( comm_s3205402744901411588hammer @ A @ X @ N ) ) ) ) ).
% pochhammer_pos
thf(fact_3934_pochhammer__eq__0__mono,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N: nat,M: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ N )
= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( ( comm_s3205402744901411588hammer @ A @ A2 @ M )
= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_3935_pochhammer__neq__0__mono,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ M )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( ( comm_s3205402744901411588hammer @ A @ A2 @ N )
!= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_3936_floor__less__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( ord_less @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% floor_less_iff
thf(fact_3937_le__floor__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ int @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) @ ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% le_floor_add
thf(fact_3938_int__add__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( plus_plus @ int @ Z2 @ ( archim6421214686448440834_floor @ A @ X ) )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ X ) ) ) ) ).
% int_add_floor
thf(fact_3939_floor__add__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ) ).
% floor_add_int
thf(fact_3940_floor__divide__of__int__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [K: int,L: int] :
( ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ K ) @ ( ring_1_of_int @ A @ L ) ) )
= ( divide_divide @ int @ K @ L ) ) ) ).
% floor_divide_of_int_eq
thf(fact_3941_floor__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,N: nat] :
( ( X
= ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) ) )
=> ( ( archim6421214686448440834_floor @ A @ ( power_power @ A @ X @ N ) )
= ( power_power @ int @ ( archim6421214686448440834_floor @ A @ X ) @ N ) ) ) ) ).
% floor_power
thf(fact_3942_pochhammer__nonneg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( comm_s3205402744901411588hammer @ A @ X @ N ) ) ) ) ).
% pochhammer_nonneg
thf(fact_3943_pochhammer__0__left,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N: nat] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( comm_s3205402744901411588hammer @ A @ ( zero_zero @ A ) @ N )
= ( one_one @ A ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( comm_s3205402744901411588hammer @ A @ ( zero_zero @ A ) @ N )
= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_0_left
thf(fact_3944_one__add__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_add_floor
thf(fact_3945_floor__divide__of__nat__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [M: nat,N: nat] :
( ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ M @ N ) ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_3946_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less @ real @ R2 @ ( plus_plus @ real @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) @ ( one_one @ real ) ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_3947_floor__eq,axiom,
! [N: int,X: real] :
( ( ord_less @ real @ ( ring_1_of_int @ real @ N ) @ X )
=> ( ( ord_less @ real @ X @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N ) @ ( one_one @ real ) ) )
=> ( ( archim6421214686448440834_floor @ real @ X )
= N ) ) ) ).
% floor_eq
thf(fact_3948_real__of__int__floor__add__one__ge,axiom,
! [R2: real] : ( ord_less_eq @ real @ R2 @ ( plus_plus @ real @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) @ ( one_one @ real ) ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_3949_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less @ real @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_3950_real__of__int__floor__ge__diff__one,axiom,
! [R2: real] : ( ord_less_eq @ real @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) ) ).
% real_of_int_floor_ge_diff_one
thf(fact_3951_pochhammer__rec,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N ) )
= ( times_times @ A @ A2 @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ N ) ) ) ) ).
% pochhammer_rec
thf(fact_3952_diffs__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( diffs @ A )
= ( ^ [C6: nat > A,N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( C6 @ ( suc @ N3 ) ) ) ) ) ) ).
% diffs_def
thf(fact_3953_pochhammer__rec_H,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [Z2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ Z2 @ ( suc @ N ) )
= ( times_times @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ N ) ) @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N ) ) ) ) ).
% pochhammer_rec'
thf(fact_3954_pochhammer__Suc,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N ) )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ A2 @ N ) @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ N ) ) ) ) ) ).
% pochhammer_Suc
thf(fact_3955_pochhammer__of__nat__eq__0__lemma,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N: nat,K: nat] :
( ( ord_less @ nat @ N @ K )
=> ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N ) ) @ K )
= ( zero_zero @ A ) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_3956_pochhammer__of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( idom @ A ) )
=> ! [N: nat,K: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N ) ) @ K )
= ( zero_zero @ A ) )
= ( ord_less @ nat @ N @ K ) ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_3957_pochhammer__eq__0__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ N )
= ( zero_zero @ A ) )
= ( ? [K3: nat] :
( ( ord_less @ nat @ K3 @ N )
& ( A2
= ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ K3 ) ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_3958_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( idom @ A ) )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N ) ) @ K )
!= ( zero_zero @ A ) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_3959_pochhammer__product_H,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [Z2: A,N: nat,M: nat] :
( ( comm_s3205402744901411588hammer @ A @ Z2 @ ( plus_plus @ nat @ N @ M ) )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ N ) ) @ M ) ) ) ) ).
% pochhammer_product'
thf(fact_3960_floor__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ X )
=> ( ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) )
=> ( ( archim6421214686448440834_floor @ A @ X )
= Z2 ) ) ) ) ).
% floor_unique
thf(fact_3961_floor__eq__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ( archim6421214686448440834_floor @ A @ X )
= A2 )
= ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ X )
& ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ A2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% floor_eq_iff
thf(fact_3962_floor__split,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [P: int > $o,T2: A] :
( ( P @ ( archim6421214686448440834_floor @ A @ T2 ) )
= ( ! [I: int] :
( ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ I ) @ T2 )
& ( ord_less @ A @ T2 @ ( plus_plus @ A @ ( ring_1_of_int @ A @ I ) @ ( one_one @ A ) ) ) )
=> ( P @ I ) ) ) ) ) ).
% floor_split
thf(fact_3963_le__mult__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ int @ ( times_times @ int @ ( archim6421214686448440834_floor @ A @ A2 ) @ ( archim6421214686448440834_floor @ A @ B2 ) ) @ ( archim6421214686448440834_floor @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ) ).
% le_mult_floor
thf(fact_3964_less__floor__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ int @ Z2 @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% less_floor_iff
thf(fact_3965_floor__le__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_iff
thf(fact_3966_floor__correct,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) ) ) ) ) ) ).
% floor_correct
thf(fact_3967_termdiff__converges__all,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,X: A] :
( ! [X5: A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X5 @ N3 ) ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ).
% termdiff_converges_all
thf(fact_3968_floor__eq2,axiom,
! [N: int,X: real] :
( ( ord_less_eq @ real @ ( ring_1_of_int @ real @ N ) @ X )
=> ( ( ord_less @ real @ X @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N ) @ ( one_one @ real ) ) )
=> ( ( archim6421214686448440834_floor @ real @ X )
= N ) ) ) ).
% floor_eq2
thf(fact_3969_floor__divide__real__eq__div,axiom,
! [B2: int,A2: real] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ A2 @ ( ring_1_of_int @ real @ B2 ) ) )
= ( divide_divide @ int @ ( archim6421214686448440834_floor @ real @ A2 ) @ B2 ) ) ) ).
% floor_divide_real_eq_div
thf(fact_3970_pochhammer__product,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [M: nat,N: nat,Z2: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( comm_s3205402744901411588hammer @ A @ Z2 @ N )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ M ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ M ) ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ).
% pochhammer_product
thf(fact_3971_floor__divide__lower,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q2: A,P2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ P2 @ Q2 ) ) ) @ Q2 ) @ P2 ) ) ) ).
% floor_divide_lower
thf(fact_3972_pochhammer__absorb__comp,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [R2: A,K: nat] :
( ( times_times @ A @ ( minus_minus @ A @ R2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ R2 ) @ K ) )
= ( times_times @ A @ R2 @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ R2 ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% pochhammer_absorb_comp
thf(fact_3973_floor__divide__upper,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q2: A,P2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q2 )
=> ( ord_less @ A @ P2 @ ( times_times @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ P2 @ Q2 ) ) ) @ ( one_one @ A ) ) @ Q2 ) ) ) ) ).
% floor_divide_upper
thf(fact_3974_pochhammer__same,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( comm_ring_1 @ A )
& ( semiri3467727345109120633visors @ A ) )
=> ! [N: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N ) ) @ N )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( semiring_char_0_fact @ A @ N ) ) ) ) ).
% pochhammer_same
thf(fact_3975_round__def,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A )
= ( ^ [X6: A] : ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X6 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% round_def
thf(fact_3976_pochhammer__minus_H,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [B2: A,K: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ B2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ B2 ) @ K ) ) ) ) ).
% pochhammer_minus'
thf(fact_3977_pochhammer__minus,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [B2: A,K: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ B2 ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ B2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% pochhammer_minus
thf(fact_3978_termdiff__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,K5: real,C2: nat > A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ K5 )
=> ( ! [X5: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X5 ) @ K5 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X5 @ N3 ) ) ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ) ).
% termdiff_converges
thf(fact_3979_floor__log__eq__powr__iff,axiom,
! [X: real,B2: real,K: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ( archim6421214686448440834_floor @ real @ ( log @ B2 @ X ) )
= K )
= ( ( ord_less_eq @ real @ ( powr @ real @ B2 @ ( ring_1_of_int @ real @ K ) ) @ X )
& ( ord_less @ real @ X @ ( powr @ real @ B2 @ ( ring_1_of_int @ real @ ( plus_plus @ int @ K @ ( one_one @ int ) ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_3980_floor__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( archim6421214686448440834_floor @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N ) ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( one_one @ int ) ) ) ) ).
% floor_log2_div2
thf(fact_3981_fact__double,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [N: nat] :
( ( semiring_char_0_fact @ A @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) )
= ( times_times @ A @ ( times_times @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) @ ( comm_s3205402744901411588hammer @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N ) ) @ ( semiring_char_0_fact @ A @ N ) ) ) ) ).
% fact_double
thf(fact_3982_floor__log__nat__eq__if,axiom,
! [B2: nat,N: nat,K: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
=> ( ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( archim6421214686448440834_floor @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( semiring_1_of_nat @ int @ N ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_3983_monoseq__Suc,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( topological_monoseq @ A )
= ( ^ [X4: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq @ A @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ) ).
% monoseq_Suc
thf(fact_3984_mono__SucI2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X9: nat > A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( X9 @ ( suc @ N2 ) ) @ ( X9 @ N2 ) )
=> ( topological_monoseq @ A @ X9 ) ) ) ).
% mono_SucI2
thf(fact_3985_pochhammer__times__pochhammer__half,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [Z2: A,N: nat] :
( ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ ( suc @ N ) ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] : ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ K3 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ nat ) ) ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_3986_pochhammer__code,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A4: A,N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( set_fo6178422350223883121st_nat @ A
@ ^ [O: nat] : ( times_times @ A @ ( plus_plus @ A @ A4 @ ( semiring_1_of_nat @ A @ O ) ) )
@ ( zero_zero @ nat )
@ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) )
@ ( one_one @ A ) ) ) ) ) ) ).
% pochhammer_code
thf(fact_3987_round__altdef,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A )
= ( ^ [X6: A] : ( if @ int @ ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( archimedean_frac @ A @ X6 ) ) @ ( archimedean_ceiling @ A @ X6 ) @ ( archim6421214686448440834_floor @ A @ X6 ) ) ) ) ) ).
% round_altdef
thf(fact_3988_of__nat__code,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] :
( semiri8178284476397505188at_aux @ A
@ ^ [I: A] : ( plus_plus @ A @ I @ ( one_one @ A ) )
@ N3
@ ( zero_zero @ A ) ) ) ) ) ).
% of_nat_code
thf(fact_3989_prod__zero__iff,axiom,
! [A: $tType,B: $tType] :
( ( semidom @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 )
= ( zero_zero @ A ) )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ( F2 @ X6 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% prod_zero_iff
thf(fact_3990_prod_Oempty,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A] :
( ( groups7121269368397514597t_prod @ B @ A @ G @ ( bot_bot @ ( set @ B ) ) )
= ( one_one @ A ) ) ) ).
% prod.empty
thf(fact_3991_frac__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int] :
( ( archimedean_frac @ A @ ( ring_1_of_int @ A @ Z2 ) )
= ( zero_zero @ A ) ) ) ).
% frac_of_int
thf(fact_3992_prod_Oinsert,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ~ ( member @ B @ X @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( times_times @ A @ ( G @ X ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) ) ) ) ) ).
% prod.insert
thf(fact_3993_prod_OlessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N ) ) @ ( G @ N ) ) ) ) ).
% prod.lessThan_Suc
thf(fact_3994_prod_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ ( suc @ N ) @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ ( suc @ N ) @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_3995_prod_Odistrib,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A,H2: B > A,A3: set @ B] :
( ( groups7121269368397514597t_prod @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( G @ X6 ) @ ( H2 @ X6 ) )
@ A3 )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ H2 @ A3 ) ) ) ) ).
% prod.distrib
thf(fact_3996_prod__dividef,axiom,
! [A: $tType,B: $tType] :
( ( field @ A )
=> ! [F2: B > A,G: B > A,A3: set @ B] :
( ( groups7121269368397514597t_prod @ B @ A
@ ^ [X6: B] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ A3 )
= ( divide_divide @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) ) ) ).
% prod_dividef
thf(fact_3997_prod__power__distrib,axiom,
! [B: $tType,A: $tType] :
( ( comm_semiring_1 @ B )
=> ! [F2: A > B,A3: set @ A,N: nat] :
( ( power_power @ B @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ A3 ) @ N )
= ( groups7121269368397514597t_prod @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ A3 ) ) ) ).
% prod_power_distrib
thf(fact_3998_mod__prod__eq,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [F2: B > A,A2: A,A3: set @ B] :
( ( modulo_modulo @ A
@ ( groups7121269368397514597t_prod @ B @ A
@ ^ [I: B] : ( modulo_modulo @ A @ ( F2 @ I ) @ A2 )
@ A3 )
@ A2 )
= ( modulo_modulo @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ A2 ) ) ) ).
% mod_prod_eq
thf(fact_3999_prod__nonneg,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A3: set @ B,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X5 ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) ) ) ) ).
% prod_nonneg
thf(fact_4000_prod__mono,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A3: set @ B,F2: B > A,G: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) ) ) ).
% prod_mono
thf(fact_4001_prod__pos,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A3: set @ B,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ X5 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) ) ) ) ).
% prod_pos
thf(fact_4002_prod__zero,axiom,
! [B: $tType,A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ? [X3: B] :
( ( member @ B @ X3 @ A3 )
& ( ( F2 @ X3 )
= ( zero_zero @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 )
= ( zero_zero @ A ) ) ) ) ) ).
% prod_zero
thf(fact_4003_prod__atLeastAtMost__code,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [F2: nat > A,A2: nat,B2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ A2 @ B2 ) )
= ( set_fo6178422350223883121st_nat @ A
@ ^ [A4: nat] : ( times_times @ A @ ( F2 @ A4 ) )
@ A2
@ B2
@ ( one_one @ A ) ) ) ) ).
% prod_atLeastAtMost_code
thf(fact_4004_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_4005_power__sum,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [C2: A,F2: B > nat,A3: set @ B] :
( ( power_power @ A @ C2 @ ( groups7311177749621191930dd_sum @ B @ nat @ F2 @ A3 ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [A4: B] : ( power_power @ A @ C2 @ ( F2 @ A4 ) )
@ A3 ) ) ) ).
% power_sum
thf(fact_4006_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( plus_plus @ nat @ I @ K ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_4007_frac__ge__0,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( archimedean_frac @ A @ X ) ) ) ).
% frac_ge_0
thf(fact_4008_frac__lt__1,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less @ A @ ( archimedean_frac @ A @ X ) @ ( one_one @ A ) ) ) ).
% frac_lt_1
thf(fact_4009_prod__le__1,axiom,
! [B: $tType,A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A3: set @ B,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X5 ) )
& ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( one_one @ A ) ) ) )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( one_one @ A ) ) ) ) ).
% prod_le_1
thf(fact_4010_frac__1__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) )
= ( archimedean_frac @ A @ X ) ) ) ).
% frac_1_eq
thf(fact_4011_prod_Orelated,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [R3: A > A > $o,S3: set @ B,H2: B > A,G: B > A] :
( ( R3 @ ( one_one @ A ) @ ( one_one @ A ) )
=> ( ! [X1: A,Y1: A,X23: A,Y23: A] :
( ( ( R3 @ X1 @ X23 )
& ( R3 @ Y1 @ Y23 ) )
=> ( R3 @ ( times_times @ A @ X1 @ Y1 ) @ ( times_times @ A @ X23 @ Y23 ) ) )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( R3 @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
=> ( R3 @ ( groups7121269368397514597t_prod @ B @ A @ H2 @ S3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ S3 ) ) ) ) ) ) ) ).
% prod.related
thf(fact_4012_prod_Oinsert__if,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( ( member @ B @ X @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) )
& ( ~ ( member @ B @ X @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( times_times @ A @ ( G @ X ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) ) ) ) ) ) ).
% prod.insert_if
thf(fact_4013_of__nat__aux_Osimps_I2_J,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [Inc: A > A,N: nat,I3: A] :
( ( semiri8178284476397505188at_aux @ A @ Inc @ ( suc @ N ) @ I3 )
= ( semiri8178284476397505188at_aux @ A @ Inc @ N @ ( Inc @ I3 ) ) ) ) ).
% of_nat_aux.simps(2)
thf(fact_4014_of__nat__aux_Osimps_I1_J,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [Inc: A > A,I3: A] :
( ( semiri8178284476397505188at_aux @ A @ Inc @ ( zero_zero @ nat ) @ I3 )
= I3 ) ) ).
% of_nat_aux.simps(1)
thf(fact_4015_prod_Onat__diff__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ N @ ( suc @ I ) ) )
@ ( set_ord_lessThan @ nat @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% prod.nat_diff_reindex
thf(fact_4016_prod_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ N @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ N @ M ) ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_4017_less__1__prod2,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [I6: set @ A,I3: A,F2: A > B] :
( ( finite_finite @ A @ I6 )
=> ( ( member @ A @ I3 @ I6 )
=> ( ( ord_less @ B @ ( one_one @ B ) @ ( F2 @ I3 ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( ord_less_eq @ B @ ( one_one @ B ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ B @ ( one_one @ B ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ I6 ) ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_4018_less__1__prod,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [I6: set @ A,F2: A > B] :
( ( finite_finite @ A @ I6 )
=> ( ( I6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( ord_less @ B @ ( one_one @ B ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ B @ ( one_one @ B ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ I6 ) ) ) ) ) ) ).
% less_1_prod
thf(fact_4019_prod_Osubset__diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [B3: set @ B,A3: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ B3 @ A3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A3 )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ B3 ) ) ) ) ) ) ).
% prod.subset_diff
thf(fact_4020_prod_Ounion__inter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ B3 ) ) ) ) ) ) ).
% prod.union_inter
thf(fact_4021_prod_OInt__Diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,G: B > A,B3: set @ B] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A3 )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ).
% prod.Int_Diff
thf(fact_4022_prod_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_4023_prod_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N ) ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_4024_prod_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ ( suc @ N ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_4025_prod_OIf__cases,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,P: B > $o,H2: B > A,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [X6: B] : ( if @ A @ ( P @ X6 ) @ ( H2 @ X6 ) @ ( G @ X6 ) )
@ A3 )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ H2 @ ( inf_inf @ ( set @ B ) @ A3 @ ( collect @ B @ P ) ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ ( uminus_uminus @ ( set @ B ) @ ( collect @ B @ P ) ) ) ) ) ) ) ) ).
% prod.If_cases
thf(fact_4026_prod_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_4027_prod_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ M )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_4028_prod_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_4029_prod__mono__strict,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A3: set @ B,F2: B > A,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) ) ) ) ) ) ).
% prod_mono_strict
thf(fact_4030_even__prod__iff,axiom,
! [A: $tType,B: $tType] :
( ( semiring_parity @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( F2 @ X6 ) ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_4031_prod_Oinsert__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,G: B > A,X: B] :
( ( finite_finite @ B @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( insert @ B @ X @ A3 ) )
= ( times_times @ A @ ( G @ X ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ).
% prod.insert_remove
thf(fact_4032_prod_Oremove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( member @ B @ X @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A3 )
= ( times_times @ A @ ( G @ X ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% prod.remove
thf(fact_4033_prod_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) )
=> ( ( G @ X5 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ B3 ) ) ) ) ) ) ) ).
% prod.union_inter_neutral
thf(fact_4034_prod_Ounion__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( ( inf_inf @ ( set @ B ) @ A3 @ B3 )
= ( bot_bot @ ( set @ B ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ B3 ) ) ) ) ) ) ) ).
% prod.union_disjoint
thf(fact_4035_prod_Ounion__diff2,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A3: set @ B,B3: set @ B,G: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( times_times @ A @ ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ B3 @ A3 ) ) ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ) ).
% prod.union_diff2
thf(fact_4036_prod_Oub__add__nat,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A,P2: nat] :
( ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ N @ P2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N @ P2 ) ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_4037_fold__atLeastAtMost__nat_Oelims,axiom,
! [A: $tType,X: nat > A > A,Xa2: nat,Xb: nat,Xc: A,Y: A] :
( ( ( set_fo6178422350223883121st_nat @ A @ X @ Xa2 @ Xb @ Xc )
= Y )
=> ( ( ( ord_less @ nat @ Xb @ Xa2 )
=> ( Y = Xc ) )
& ( ~ ( ord_less @ nat @ Xb @ Xa2 )
=> ( Y
= ( set_fo6178422350223883121st_nat @ A @ X @ ( plus_plus @ nat @ Xa2 @ ( one_one @ nat ) ) @ Xb @ ( X @ Xa2 @ Xc ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
thf(fact_4038_fold__atLeastAtMost__nat_Osimps,axiom,
! [A: $tType] :
( ( set_fo6178422350223883121st_nat @ A )
= ( ^ [F6: nat > A > A,A4: nat,B4: nat,Acc: A] : ( if @ A @ ( ord_less @ nat @ B4 @ A4 ) @ Acc @ ( set_fo6178422350223883121st_nat @ A @ F6 @ ( plus_plus @ nat @ A4 @ ( one_one @ nat ) ) @ B4 @ ( F6 @ A4 @ Acc ) ) ) ) ) ).
% fold_atLeastAtMost_nat.simps
thf(fact_4039_prod_Odelta__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,A2: B,B2: B > A,C2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( times_times @ A @ ( B2 @ A2 ) @ ( groups7121269368397514597t_prod @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( groups7121269368397514597t_prod @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% prod.delta_remove
thf(fact_4040_frac__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( archimedean_frac @ A @ X )
= X )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
& ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% frac_eq
thf(fact_4041_frac__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% frac_add
thf(fact_4042_fact__eq__fact__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( semiring_char_0_fact @ nat @ M )
= ( times_times @ nat @ ( semiring_char_0_fact @ nat @ N )
@ ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_4043_prod__mono2,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [B3: set @ A,A3: set @ A,F2: A > B] :
( ( finite_finite @ A @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ! [B6: A] :
( ( member @ A @ B6 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) )
=> ( ord_less_eq @ B @ ( one_one @ B ) @ ( F2 @ B6 ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ A6 ) ) )
=> ( ord_less_eq @ B @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ A3 ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ B3 ) ) ) ) ) ) ) ).
% prod_mono2
thf(fact_4044_prod__Un,axiom,
! [A: $tType,B: $tType] :
( ( field @ A )
=> ! [A3: set @ B,B3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) )
=> ( ( F2 @ X5 )
!= ( zero_zero @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( divide_divide @ A @ ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ B3 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) ) ) ) ) ) ) ).
% prod_Un
thf(fact_4045_prod__diff1,axiom,
! [A: $tType,B: $tType] :
( ( semidom_divide @ A )
=> ! [A3: set @ B,F2: B > A,A2: B] :
( ( finite_finite @ B @ A3 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ A ) )
=> ( ( ( member @ B @ A2 @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( divide_divide @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( F2 @ A2 ) ) ) )
& ( ~ ( member @ B @ A2 @ A3 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) ) ) ) ) ) ) ).
% prod_diff1
thf(fact_4046_pochhammer__Suc__prod,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% pochhammer_Suc_prod
thf(fact_4047_pochhammer__prod__rev,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A4: A,N3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A4 @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N3 @ I ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N3 ) ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_4048_fact__div__fact,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ M ) @ ( semiring_char_0_fact @ nat @ N ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_4049_prod_Oin__pairs,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.in_pairs
thf(fact_4050_sum__atLeastAtMost__code,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,A2: nat,B2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ A2 @ B2 ) )
= ( set_fo6178422350223883121st_nat @ A
@ ^ [A4: nat] : ( plus_plus @ A @ ( F2 @ A4 ) )
@ A2
@ B2
@ ( zero_zero @ A ) ) ) ) ).
% sum_atLeastAtMost_code
thf(fact_4051_pochhammer__Suc__prod__rev,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N @ I ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_4052_floor__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% floor_add
thf(fact_4053_fact__code,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( set_fo6178422350223883121st_nat @ nat @ ( times_times @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 @ ( one_one @ nat ) ) ) ) ) ) ).
% fact_code
thf(fact_4054_gchoose__row__sum__weighted,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [R2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ R2 @ K3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ R2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ A @ K3 ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ M ) )
= ( times_times @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( suc @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( gbinomial @ A @ R2 @ ( suc @ M ) ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_4055_central__binomial__lower__bound,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less_eq @ real @ ( divide_divide @ real @ ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) @ N ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N ) ) ) @ ( semiring_1_of_nat @ real @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ N ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_4056_Maclaurin__sin__bound,axiom,
! [X: real,N: nat] :
( ord_less_eq @ real
@ ( abs_abs @ real
@ ( minus_minus @ real @ ( sin @ real @ X )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( sin_coeff @ M4 ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) )
@ ( times_times @ real @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ ( abs_abs @ real @ X ) @ N ) ) ) ).
% Maclaurin_sin_bound
thf(fact_4057_complex__unimodular__polar,axiom,
! [Z2: complex] :
( ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( one_one @ real ) )
=> ~ ! [T7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
=> ( ( ord_less @ real @ T7 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( Z2
!= ( complex2 @ ( cos @ real @ T7 ) @ ( sin @ real @ T7 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_4058_inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ).
% inverse_inverse_eq
thf(fact_4059_inverse__eq__iff__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
= ( A2 = B2 ) ) ) ).
% inverse_eq_iff_eq
thf(fact_4060_inverse__nonzero__iff__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_4061_inverse__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% inverse_zero
thf(fact_4062_inverse__mult__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( inverse_inverse @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ).
% inverse_mult_distrib
thf(fact_4063_inverse__eq__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A] :
( ( ( inverse_inverse @ A @ X )
= ( one_one @ A ) )
= ( X
= ( one_one @ A ) ) ) ) ).
% inverse_eq_1_iff
thf(fact_4064_inverse__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% inverse_1
thf(fact_4065_inverse__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( inverse_inverse @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ B2 @ A2 ) ) ) ).
% inverse_divide
thf(fact_4066_inverse__minus__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( inverse_inverse @ A @ A2 ) ) ) ) ).
% inverse_minus_eq
thf(fact_4067_abs__inverse,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( abs_abs @ A @ A2 ) ) ) ) ).
% abs_inverse
thf(fact_4068_binomial__Suc__n,axiom,
! [N: nat] :
( ( binomial @ ( suc @ N ) @ N )
= ( suc @ N ) ) ).
% binomial_Suc_n
thf(fact_4069_inverse__nonnegative__iff__nonnegative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_4070_inverse__nonpositive__iff__nonpositive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_4071_inverse__less__iff__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less
thf(fact_4072_inverse__less__iff__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_4073_inverse__negative__iff__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_negative_iff_negative
thf(fact_4074_inverse__positive__iff__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_positive_iff_positive
thf(fact_4075_gbinomial__0_I2_J,axiom,
! [B: $tType] :
( ( ( semiring_char_0 @ B )
& ( semidom_divide @ B ) )
=> ! [K: nat] :
( ( gbinomial @ B @ ( zero_zero @ B ) @ ( suc @ K ) )
= ( zero_zero @ B ) ) ) ).
% gbinomial_0(2)
thf(fact_4076_binomial__1,axiom,
! [N: nat] :
( ( binomial @ N @ ( suc @ ( zero_zero @ nat ) ) )
= N ) ).
% binomial_1
thf(fact_4077_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ ( zero_zero @ nat ) @ ( suc @ K ) )
= ( zero_zero @ nat ) ) ).
% binomial_0_Suc
thf(fact_4078_binomial__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( binomial @ N @ K )
= ( zero_zero @ nat ) )
= ( ord_less @ nat @ N @ K ) ) ).
% binomial_eq_0_iff
thf(fact_4079_gbinomial__0_I1_J,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A] :
( ( gbinomial @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% gbinomial_0(1)
thf(fact_4080_binomial__Suc__Suc,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( plus_plus @ nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_4081_gbinomial__Suc0,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A] :
( ( gbinomial @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% gbinomial_Suc0
thf(fact_4082_binomial__n__0,axiom,
! [N: nat] :
( ( binomial @ N @ ( zero_zero @ nat ) )
= ( one_one @ nat ) ) ).
% binomial_n_0
thf(fact_4083_inverse__le__iff__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le
thf(fact_4084_inverse__le__iff__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_4085_right__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( inverse_inverse @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ).
% right_inverse
thf(fact_4086_left__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ A2 )
= ( one_one @ A ) ) ) ) ).
% left_inverse
thf(fact_4087_inverse__eq__divide__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W: num] :
( ( inverse_inverse @ A @ ( numeral_numeral @ A @ W ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ W ) ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_4088_zero__less__binomial__iff,axiom,
! [N: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( binomial @ N @ K ) )
= ( ord_less_eq @ nat @ K @ N ) ) ).
% zero_less_binomial_iff
thf(fact_4089_prod__pos__nat__iff,axiom,
! [A: $tType,A3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( groups7121269368397514597t_prod @ A @ nat @ F2 @ A3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( F2 @ X6 ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_4090_inverse__eq__divide__neg__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W: num] :
( ( inverse_inverse @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_4091_nonzero__of__real__inverse,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( real_Vector_of_real @ A @ ( inverse_inverse @ real @ X ) )
= ( inverse_inverse @ A @ ( real_Vector_of_real @ A @ X ) ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_4092_complex__eq__cancel__iff2,axiom,
! [X: real,Y: real,Xa2: real] :
( ( ( complex2 @ X @ Y )
= ( real_Vector_of_real @ complex @ Xa2 ) )
= ( ( X = Xa2 )
& ( Y
= ( zero_zero @ real ) ) ) ) ).
% complex_eq_cancel_iff2
thf(fact_4093_complex__of__real__code,axiom,
( ( real_Vector_of_real @ complex )
= ( ^ [X6: real] : ( complex2 @ X6 @ ( zero_zero @ real ) ) ) ) ).
% complex_of_real_code
thf(fact_4094_complex__of__real__def,axiom,
( ( real_Vector_of_real @ complex )
= ( ^ [R5: real] : ( complex2 @ R5 @ ( zero_zero @ real ) ) ) ) ).
% complex_of_real_def
thf(fact_4095_Complex__mult__complex__of__real,axiom,
! [X: real,Y: real,R2: real] :
( ( times_times @ complex @ ( complex2 @ X @ Y ) @ ( real_Vector_of_real @ complex @ R2 ) )
= ( complex2 @ ( times_times @ real @ X @ R2 ) @ ( times_times @ real @ Y @ R2 ) ) ) ).
% Complex_mult_complex_of_real
thf(fact_4096_complex__of__real__mult__Complex,axiom,
! [R2: real,X: real,Y: real] :
( ( times_times @ complex @ ( real_Vector_of_real @ complex @ R2 ) @ ( complex2 @ X @ Y ) )
= ( complex2 @ ( times_times @ real @ R2 @ X ) @ ( times_times @ real @ R2 @ Y ) ) ) ).
% complex_of_real_mult_Complex
thf(fact_4097_power__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ ( inverse_inverse @ A @ A2 ) @ N )
= ( inverse_inverse @ A @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_inverse
thf(fact_4098_inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( A2 = B2 ) ) ) ).
% inverse_eq_imp_eq
thf(fact_4099_mult__commute__imp__mult__inverse__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Y: A,X: A] :
( ( ( times_times @ A @ Y @ X )
= ( times_times @ A @ X @ Y ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ Y ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ Y ) ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_4100_field__class_Ofield__inverse__zero,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% field_class.field_inverse_zero
thf(fact_4101_inverse__zero__imp__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_zero_imp_zero
thf(fact_4102_nonzero__inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( A2 = B2 ) ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_4103_nonzero__inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_4104_nonzero__imp__inverse__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
!= ( zero_zero @ A ) ) ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_4105_nonzero__norm__inverse,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_4106_norm__inverse__le__norm,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [R2: real,X: A] :
( ( ord_less_eq @ real @ R2 @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( inverse_inverse @ A @ X ) ) @ ( inverse_inverse @ real @ R2 ) ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_4107_binomial__eq__0,axiom,
! [N: nat,K: nat] :
( ( ord_less @ nat @ N @ K )
=> ( ( binomial @ N @ K )
= ( zero_zero @ nat ) ) ) ).
% binomial_eq_0
thf(fact_4108_inverse__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less
thf(fact_4109_less__imp__inverse__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less
thf(fact_4110_inverse__less__imp__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_4111_less__imp__inverse__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_4112_inverse__negative__imp__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% inverse_negative_imp_negative
thf(fact_4113_inverse__positive__imp__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ).
% inverse_positive_imp_positive
thf(fact_4114_negative__imp__inverse__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) ) ) ) ).
% negative_imp_inverse_negative
thf(fact_4115_positive__imp__inverse__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ).
% positive_imp_inverse_positive
thf(fact_4116_nonzero__inverse__mult__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_4117_Suc__times__binomial,axiom,
! [K: nat,N: nat] :
( ( times_times @ nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
= ( times_times @ nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).
% Suc_times_binomial
thf(fact_4118_Suc__times__binomial__eq,axiom,
! [N: nat,K: nat] :
( ( times_times @ nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
= ( times_times @ nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).
% Suc_times_binomial_eq
thf(fact_4119_inverse__numeral__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( numeral_numeral @ A @ one2 ) )
= ( numeral_numeral @ A @ one2 ) ) ) ).
% inverse_numeral_1
thf(fact_4120_nonzero__inverse__minus__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_4121_inverse__unique,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( one_one @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
= B2 ) ) ) ).
% inverse_unique
thf(fact_4122_divide__inverse__commute,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( divide_divide @ A )
= ( ^ [A4: A,B4: A] : ( times_times @ A @ ( inverse_inverse @ A @ B4 ) @ A4 ) ) ) ) ).
% divide_inverse_commute
thf(fact_4123_divide__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( divide_divide @ A )
= ( ^ [A4: A,B4: A] : ( times_times @ A @ A4 @ ( inverse_inverse @ A @ B4 ) ) ) ) ) ).
% divide_inverse
thf(fact_4124_field__class_Ofield__divide__inverse,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( divide_divide @ A )
= ( ^ [A4: A,B4: A] : ( times_times @ A @ A4 @ ( inverse_inverse @ A @ B4 ) ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_4125_inverse__eq__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A )
= ( divide_divide @ A @ ( one_one @ A ) ) ) ) ).
% inverse_eq_divide
thf(fact_4126_power__mult__power__inverse__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat,N: nat] :
( ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ N ) )
= ( times_times @ A @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ N ) @ ( power_power @ A @ X @ M ) ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_4127_power__mult__inverse__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat] :
( ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( inverse_inverse @ A @ X ) )
= ( times_times @ A @ ( inverse_inverse @ A @ X ) @ ( power_power @ A @ X @ M ) ) ) ) ).
% power_mult_inverse_distrib
thf(fact_4128_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times @ nat @ ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ M @ R2 ) @ K ) @ ( plus_plus @ nat @ M @ K ) ) @ ( binomial @ ( plus_plus @ nat @ M @ K ) @ K ) )
= ( times_times @ nat @ ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus @ nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_4129_mult__inverse__of__nat__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Xa2: nat,X: A] :
( ( times_times @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ Xa2 ) ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ Xa2 ) ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_4130_binomial__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq @ nat @ R2 @ N )
=> ( ord_less_eq @ nat @ ( binomial @ N @ R2 ) @ ( power_power @ nat @ N @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_4131_nonzero__abs__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( abs_abs @ A @ A2 ) ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_4132_mult__inverse__of__int__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Xa2: int,X: A] :
( ( times_times @ A @ ( inverse_inverse @ A @ ( ring_1_of_int @ A @ Xa2 ) ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ ( ring_1_of_int @ A @ Xa2 ) ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_4133_Complex__eq__numeral,axiom,
! [A2: real,B2: real,W: num] :
( ( ( complex2 @ A2 @ B2 )
= ( numeral_numeral @ complex @ W ) )
= ( ( A2
= ( numeral_numeral @ real @ W ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_numeral
thf(fact_4134_divide__real__def,axiom,
( ( divide_divide @ real )
= ( ^ [X6: real,Y6: real] : ( times_times @ real @ X6 @ ( inverse_inverse @ real @ Y6 ) ) ) ) ).
% divide_real_def
thf(fact_4135_Complex__eq__0,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( zero_zero @ complex ) )
= ( ( A2
= ( zero_zero @ real ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_0
thf(fact_4136_zero__complex_Ocode,axiom,
( ( zero_zero @ complex )
= ( complex2 @ ( zero_zero @ real ) @ ( zero_zero @ real ) ) ) ).
% zero_complex.code
thf(fact_4137_inverse__le__imp__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le
thf(fact_4138_le__imp__inverse__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le
thf(fact_4139_inverse__le__imp__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_4140_le__imp__inverse__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_4141_inverse__le__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ X ) @ ( one_one @ A ) )
= ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
| ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% inverse_le_1_iff
thf(fact_4142_zero__less__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( binomial @ N @ K ) ) ) ).
% zero_less_binomial
thf(fact_4143_one__less__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% one_less_inverse
thf(fact_4144_one__less__inverse__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ X ) )
= ( ( ord_less @ A @ ( zero_zero @ A ) @ X )
& ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_less_inverse_iff
thf(fact_4145_inverse__add,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% inverse_add
thf(fact_4146_division__ring__inverse__add,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_4147_field__class_Ofield__inverse,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ A2 )
= ( one_one @ A ) ) ) ) ).
% field_class.field_inverse
thf(fact_4148_division__ring__inverse__diff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( minus_minus @ A @ B2 @ A2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_4149_nonzero__inverse__eq__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_4150_Suc__times__binomial__add,axiom,
! [A2: nat,B2: nat] :
( ( times_times @ nat @ ( suc @ A2 ) @ ( binomial @ ( suc @ ( plus_plus @ nat @ A2 @ B2 ) ) @ ( suc @ A2 ) ) )
= ( times_times @ nat @ ( suc @ B2 ) @ ( binomial @ ( suc @ ( plus_plus @ nat @ A2 @ B2 ) ) @ A2 ) ) ) ).
% Suc_times_binomial_add
thf(fact_4151_binomial__Suc__Suc__eq__times,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( divide_divide @ nat @ ( times_times @ nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).
% binomial_Suc_Suc_eq_times
thf(fact_4152_choose__mult,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ( times_times @ nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
= ( times_times @ nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus @ nat @ N @ K ) @ ( minus_minus @ nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_4153_binomial__absorb__comp,axiom,
! [N: nat,K: nat] :
( ( times_times @ nat @ ( minus_minus @ nat @ N @ K ) @ ( binomial @ N @ K ) )
= ( times_times @ nat @ N @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ K ) ) ) ).
% binomial_absorb_comp
thf(fact_4154_gbinomial__Suc__Suc,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( plus_plus @ A @ ( gbinomial @ A @ A2 @ K ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_4155_Complex__eq__neg__numeral,axiom,
! [A2: real,B2: real,W: num] :
( ( ( complex2 @ A2 @ B2 )
= ( uminus_uminus @ complex @ ( numeral_numeral @ complex @ W ) ) )
= ( ( A2
= ( uminus_uminus @ real @ ( numeral_numeral @ real @ W ) ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_neg_numeral
thf(fact_4156_inverse__powr,axiom,
! [Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( inverse_inverse @ real @ Y ) @ A2 )
= ( inverse_inverse @ real @ ( powr @ real @ Y @ A2 ) ) ) ) ).
% inverse_powr
thf(fact_4157_complex__mult,axiom,
! [A2: real,B2: real,C2: real,D2: real] :
( ( times_times @ complex @ ( complex2 @ A2 @ B2 ) @ ( complex2 @ C2 @ D2 ) )
= ( complex2 @ ( minus_minus @ real @ ( times_times @ real @ A2 @ C2 ) @ ( times_times @ real @ B2 @ D2 ) ) @ ( plus_plus @ real @ ( times_times @ real @ A2 @ D2 ) @ ( times_times @ real @ B2 @ C2 ) ) ) ) ).
% complex_mult
thf(fact_4158_Complex__eq__1,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( one_one @ complex ) )
= ( ( A2
= ( one_one @ real ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_1
thf(fact_4159_one__complex_Ocode,axiom,
( ( one_one @ complex )
= ( complex2 @ ( one_one @ real ) @ ( zero_zero @ real ) ) ) ).
% one_complex.code
thf(fact_4160_inverse__less__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ B2 @ A2 ) )
& ( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ) ).
% inverse_less_iff
thf(fact_4161_inverse__le__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) )
& ( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ).
% inverse_le_iff
thf(fact_4162_one__le__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% one_le_inverse
thf(fact_4163_inverse__less__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ X ) @ ( one_one @ A ) )
= ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
| ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% inverse_less_1_iff
thf(fact_4164_one__le__inverse__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ X ) )
= ( ( ord_less @ A @ ( zero_zero @ A ) @ X )
& ( ord_less_eq @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_le_inverse_iff
thf(fact_4165_inverse__diff__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( minus_minus @ A @ A2 @ B2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_4166_reals__Archimedean,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N2: nat] : ( ord_less @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ ( suc @ N2 ) ) ) @ X ) ) ) ).
% reals_Archimedean
thf(fact_4167_binomial__absorption,axiom,
! [K: nat,N: nat] :
( ( times_times @ nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
= ( times_times @ nat @ N @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ K ) ) ) ).
% binomial_absorption
thf(fact_4168_gbinomial__addition__formula,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ A2 @ ( suc @ K ) )
= ( plus_plus @ A @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_addition_formula
thf(fact_4169_gbinomial__absorb__comp,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( gbinomial @ A @ A2 @ K ) )
= ( times_times @ A @ A2 @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_absorb_comp
thf(fact_4170_gbinomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [K: nat,A2: A] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ K ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ K ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_4171_gbinomial__mult__1,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ A2 @ ( gbinomial @ A @ A2 @ K ) )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_4172_gbinomial__mult__1_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ A2 )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_4173_forall__pos__mono__1,axiom,
! [P: real > $o,E2: real] :
( ! [D4: real,E: real] :
( ( ord_less @ real @ D4 @ E )
=> ( ( P @ D4 )
=> ( P @ E ) ) )
=> ( ! [N2: nat] : ( P @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono_1
thf(fact_4174_binomial__fact__lemma,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( times_times @ nat @ ( times_times @ nat @ ( semiring_char_0_fact @ nat @ K ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
= ( semiring_char_0_fact @ nat @ N ) ) ) ).
% binomial_fact_lemma
thf(fact_4175_forall__pos__mono,axiom,
! [P: real > $o,E2: real] :
( ! [D4: real,E: real] :
( ( ord_less @ real @ D4 @ E )
=> ( ( P @ D4 )
=> ( P @ E ) ) )
=> ( ! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( P @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N2 ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono
thf(fact_4176_real__arch__inverse,axiom,
! [E2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
= ( ? [N3: nat] :
( ( N3
!= ( zero_zero @ nat ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) )
& ( ord_less @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) @ E2 ) ) ) ) ).
% real_arch_inverse
thf(fact_4177_Complex__sum_H,axiom,
! [A: $tType,F2: A > real,S: set @ A] :
( ( groups7311177749621191930dd_sum @ A @ complex
@ ^ [X6: A] : ( complex2 @ ( F2 @ X6 ) @ ( zero_zero @ real ) )
@ S )
= ( complex2 @ ( groups7311177749621191930dd_sum @ A @ real @ F2 @ S ) @ ( zero_zero @ real ) ) ) ).
% Complex_sum'
thf(fact_4178_sqrt__divide__self__eq,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( divide_divide @ real @ ( sqrt @ X ) @ X )
= ( inverse_inverse @ real @ ( sqrt @ X ) ) ) ) ).
% sqrt_divide_self_eq
thf(fact_4179_ln__inverse,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( inverse_inverse @ real @ X ) )
= ( uminus_uminus @ real @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_inverse
thf(fact_4180_Complex__eq__neg__1,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) )
= ( ( A2
= ( uminus_uminus @ real @ ( one_one @ real ) ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_neg_1
thf(fact_4181_prod__int__plus__eq,axiom,
! [I3: nat,J: nat] :
( ( groups7121269368397514597t_prod @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_or1337092689740270186AtMost @ nat @ I3 @ ( plus_plus @ nat @ I3 @ J ) ) )
= ( groups7121269368397514597t_prod @ int @ int
@ ^ [X6: int] : X6
@ ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ I3 ) @ ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ I3 @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_4182_summable__exp,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( inverse_inverse @ A @ ( semiring_char_0_fact @ A @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) ) ) ).
% summable_exp
thf(fact_4183_binomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ord_less_eq @ A @ ( power_power @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N ) @ ( semiring_1_of_nat @ A @ K ) ) @ K ) @ ( semiring_1_of_nat @ A @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_4184_binomial__maximum_H,axiom,
! [N: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ K ) @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ N ) ) ).
% binomial_maximum'
thf(fact_4185_binomial__mono,axiom,
! [K: nat,K7: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K7 ) @ N )
=> ( ord_less_eq @ nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K7 ) ) ) ) ).
% binomial_mono
thf(fact_4186_binomial__antimono,axiom,
! [K: nat,K7: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ K )
=> ( ( ord_less_eq @ nat @ K7 @ N )
=> ( ord_less_eq @ nat @ ( binomial @ N @ K7 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_4187_binomial__maximum,axiom,
! [N: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% binomial_maximum
thf(fact_4188_binomial__le__pow2,axiom,
! [N: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ N @ K ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% binomial_le_pow2
thf(fact_4189_choose__reduce__nat,axiom,
! [N: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( binomial @ N @ K )
= ( plus_plus @ nat @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_4190_ex__inverse__of__nat__less,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( ord_less @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ X ) ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_4191_times__binomial__minus1__eq,axiom,
! [K: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( times_times @ nat @ K @ ( binomial @ N @ K ) )
= ( times_times @ nat @ N @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_4192_power__diff__conv__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat,N: nat] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ( power_power @ A @ X @ ( minus_minus @ nat @ N @ M ) )
= ( times_times @ A @ ( power_power @ A @ X @ N ) @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ M ) ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_4193_Suc__times__gbinomial,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) ) )
= ( times_times @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% Suc_times_gbinomial
thf(fact_4194_gbinomial__absorption,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) )
= ( times_times @ A @ A2 @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_absorption
thf(fact_4195_binomial__altdef__nat,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ N ) @ ( times_times @ nat @ ( semiring_char_0_fact @ nat @ K ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_4196_gbinomial__trinomial__revision,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,M: nat,A2: A] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( times_times @ A @ ( gbinomial @ A @ A2 @ M ) @ ( gbinomial @ A @ ( semiring_1_of_nat @ A @ M ) @ K ) )
= ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( minus_minus @ nat @ M @ K ) ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_4197_log__inverse,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ A2 @ ( inverse_inverse @ real @ X ) )
= ( uminus_uminus @ real @ ( log @ A2 @ X ) ) ) ) ) ) ).
% log_inverse
thf(fact_4198_ln__prod,axiom,
! [A: $tType,I6: set @ A,F2: A > real] :
( ( finite_finite @ A @ I6 )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ I2 ) ) )
=> ( ( ln_ln @ real @ ( groups7121269368397514597t_prod @ A @ real @ F2 @ I6 ) )
= ( groups7311177749621191930dd_sum @ A @ real
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) )
@ I6 ) ) ) ) ).
% ln_prod
thf(fact_4199_binomial__less__binomial__Suc,axiom,
! [K: nat,N: nat] :
( ( ord_less @ nat @ K @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_4200_binomial__strict__antimono,axiom,
! [K: nat,K7: nat,N: nat] :
( ( ord_less @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ N @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K ) )
=> ( ( ord_less_eq @ nat @ K7 @ N )
=> ( ord_less @ nat @ ( binomial @ N @ K7 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_4201_binomial__strict__mono,axiom,
! [K: nat,K7: nat,N: nat] :
( ( ord_less @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K7 ) @ N )
=> ( ord_less @ nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K7 ) ) ) ) ).
% binomial_strict_mono
thf(fact_4202_central__binomial__odd,axiom,
! [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( binomial @ N @ ( suc @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( binomial @ N @ ( divide_divide @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% central_binomial_odd
thf(fact_4203_binomial__addition__formula,axiom,
! [N: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( binomial @ N @ ( suc @ K ) )
= ( plus_plus @ nat @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_4204_fact__binomial,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_1_of_nat @ A @ ( binomial @ N @ K ) ) )
= ( divide_divide @ A @ ( semiring_char_0_fact @ A @ N ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N @ K ) ) ) ) ) ) ).
% fact_binomial
thf(fact_4205_binomial__fact,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( semiring_1_of_nat @ A @ ( binomial @ N @ K ) )
= ( divide_divide @ A @ ( semiring_char_0_fact @ A @ N ) @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N @ K ) ) ) ) ) ) ) ).
% binomial_fact
thf(fact_4206_gbinomial__rec,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_rec
thf(fact_4207_gbinomial__factors,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( times_times @ A @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% gbinomial_factors
thf(fact_4208_gbinomial__index__swap,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N ) ) @ ( one_one @ A ) ) @ K ) )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ N ) ) ) ) ).
% gbinomial_index_swap
thf(fact_4209_gbinomial__negated__upper,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] : ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( minus_minus @ A @ ( semiring_1_of_nat @ A @ K3 ) @ A4 ) @ ( one_one @ A ) ) @ K3 ) ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_4210_complex__norm,axiom,
! [X: real,Y: real] :
( ( real_V7770717601297561774m_norm @ complex @ ( complex2 @ X @ Y ) )
= ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% complex_norm
thf(fact_4211_exp__plus__inverse__exp,axiom,
! [X: real] : ( ord_less_eq @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( plus_plus @ real @ ( exp @ real @ X ) @ ( inverse_inverse @ real @ ( exp @ real @ X ) ) ) ) ).
% exp_plus_inverse_exp
thf(fact_4212_choose__two,axiom,
! [N: nat] :
( ( binomial @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ ( times_times @ nat @ N @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% choose_two
thf(fact_4213_gbinomial__minus,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( uminus_uminus @ A @ A2 ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_minus
thf(fact_4214_plus__inverse__ge__2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( plus_plus @ real @ X @ ( inverse_inverse @ real @ X ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_4215_real__inv__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( inverse_inverse @ real @ X ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_4216_gbinomial__reduce__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( gbinomial @ A @ A2 @ K )
= ( plus_plus @ A @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_4217_gbinomial__pochhammer,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] : ( divide_divide @ A @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ A4 ) @ K3 ) ) @ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_4218_gbinomial__pochhammer_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] : ( divide_divide @ A @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ A4 @ ( semiring_1_of_nat @ A @ K3 ) ) @ ( one_one @ A ) ) @ K3 ) @ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_4219_tan__cot,axiom,
! [X: real] :
( ( tan @ real @ ( minus_minus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X ) )
= ( inverse_inverse @ real @ ( tan @ real @ X ) ) ) ).
% tan_cot
thf(fact_4220_real__le__x__sinh,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( minus_minus @ real @ ( exp @ real @ X ) @ ( inverse_inverse @ real @ ( exp @ real @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% real_le_x_sinh
thf(fact_4221_real__le__abs__sinh,axiom,
! [X: real] : ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( abs_abs @ real @ ( divide_divide @ real @ ( minus_minus @ real @ ( exp @ real @ X ) @ ( inverse_inverse @ real @ ( exp @ real @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% real_le_abs_sinh
thf(fact_4222_gbinomial__sum__up__index,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] : ( gbinomial @ A @ ( semiring_1_of_nat @ A @ J2 ) @ K )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N ) @ ( one_one @ A ) ) @ ( plus_plus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ).
% gbinomial_sum_up_index
thf(fact_4223_gbinomial__Suc,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ A2 @ ( suc @ K ) )
= ( divide_divide @ A
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ K ) )
@ ( semiring_char_0_fact @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_Suc
thf(fact_4224_tan__sec,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( tan @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( power_power @ A @ ( inverse_inverse @ A @ ( cos @ A @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% tan_sec
thf(fact_4225_gbinomial__absorption_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( gbinomial @ A @ A2 @ K )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_4226_binomial__code,axiom,
( binomial
= ( ^ [N3: nat,K3: nat] : ( if @ nat @ ( ord_less @ nat @ N3 @ K3 ) @ ( zero_zero @ nat ) @ ( if @ nat @ ( ord_less @ nat @ N3 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K3 ) ) @ ( binomial @ N3 @ ( minus_minus @ nat @ N3 @ K3 ) ) @ ( divide_divide @ nat @ ( set_fo6178422350223883121st_nat @ nat @ ( times_times @ nat ) @ ( plus_plus @ nat @ ( minus_minus @ nat @ N3 @ K3 ) @ ( one_one @ nat ) ) @ N3 @ ( one_one @ nat ) ) @ ( semiring_char_0_fact @ nat @ K3 ) ) ) ) ) ) ).
% binomial_code
thf(fact_4227_gbinomial__code,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] :
( if @ A
@ ( K3
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( divide_divide @ A
@ ( set_fo6178422350223883121st_nat @ A
@ ^ [L2: nat] : ( times_times @ A @ ( minus_minus @ A @ A4 @ ( semiring_1_of_nat @ A @ L2 ) ) )
@ ( zero_zero @ nat )
@ ( minus_minus @ nat @ K3 @ ( one_one @ nat ) )
@ ( one_one @ A ) )
@ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ) ).
% gbinomial_code
thf(fact_4228_gbinomial__partial__row__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ A2 @ K3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ A @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( times_times @ A @ ( divide_divide @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( gbinomial @ A @ A2 @ ( plus_plus @ nat @ M @ ( one_one @ nat ) ) ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_4229_choose__odd__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] :
( if @ A
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I )
@ ( semiring_1_of_nat @ A @ ( binomial @ N @ I ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% choose_odd_sum
thf(fact_4230_choose__even__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) @ ( semiring_1_of_nat @ A @ ( binomial @ N @ I ) ) @ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% choose_even_sum
thf(fact_4231_gbinomial__r__part__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M ) ) @ ( one_one @ A ) ) ) @ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) ).
% gbinomial_r_part_sum
thf(fact_4232_sum_OatMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ).
% sum.atMost_Suc
thf(fact_4233_prod_OatMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ).
% prod.atMost_Suc
thf(fact_4234_atMost__0,axiom,
( ( set_ord_atMost @ nat @ ( zero_zero @ nat ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ).
% atMost_0
thf(fact_4235_divide__complex__def,axiom,
( ( divide_divide @ complex )
= ( ^ [X6: complex,Y6: complex] : ( times_times @ complex @ X6 @ ( inverse_inverse @ complex @ Y6 ) ) ) ) ).
% divide_complex_def
thf(fact_4236_not__empty__eq__Iic__eq__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [H2: A] :
( ( bot_bot @ ( set @ A ) )
!= ( set_ord_atMost @ A @ H2 ) ) ) ).
% not_empty_eq_Iic_eq_empty
thf(fact_4237_complex__exp__exists,axiom,
! [Z2: complex] :
? [A6: complex,R: real] :
( Z2
= ( times_times @ complex @ ( real_Vector_of_real @ complex @ R ) @ ( exp @ complex @ A6 ) ) ) ).
% complex_exp_exists
thf(fact_4238_atMost__atLeast0,axiom,
( ( set_ord_atMost @ nat )
= ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) ) ) ).
% atMost_atLeast0
thf(fact_4239_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ K ) )
= ( set_ord_atMost @ nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_4240_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost @ nat @ ( suc @ K ) )
= ( insert @ nat @ ( suc @ K ) @ ( set_ord_atMost @ nat @ K ) ) ) ).
% atMost_Suc
thf(fact_4241_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost @ nat @ ( numeral_numeral @ nat @ K ) )
= ( insert @ nat @ ( numeral_numeral @ nat @ K ) @ ( set_ord_atMost @ nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_4242_Iic__subset__Iio__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ A2 ) @ ( set_ord_lessThan @ A @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% Iic_subset_Iio_iff
thf(fact_4243_sum__choose__upper,axiom,
! [M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ K3 @ M )
@ ( set_ord_atMost @ nat @ N ) )
= ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).
% sum_choose_upper
thf(fact_4244_sum_OatMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_4245_sum__telescope,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,I3: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ ( F2 @ I ) @ ( F2 @ ( suc @ I ) ) )
@ ( set_ord_atMost @ nat @ I3 ) )
= ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ ( F2 @ ( suc @ I3 ) ) ) ) ) ).
% sum_telescope
thf(fact_4246_polyfun__eq__coeffs,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N: nat,D2: nat > A] :
( ( ! [X6: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ X6 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( D2 @ I ) @ ( power_power @ A @ X6 @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) )
= ( ! [I: nat] :
( ( ord_less_eq @ nat @ I @ N )
=> ( ( C2 @ I )
= ( D2 @ I ) ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_4247_bounded__imp__summable,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linord2810124833399127020strict @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [A2: nat > A,B3: A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ A2 @ ( set_ord_atMost @ nat @ N2 ) ) @ B3 )
=> ( summable @ A @ A2 ) ) ) ) ).
% bounded_imp_summable
thf(fact_4248_prod_OatMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_4249_sum_Onested__swap_H,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat > nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ ( A2 @ I ) @ ( set_ord_lessThan @ nat @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( A2 @ I @ J2 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J2 ) @ N ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sum.nested_swap'
thf(fact_4250_ivl__disj__un__singleton_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [U: A] :
( ( sup_sup @ ( set @ A ) @ ( set_ord_lessThan @ A @ U ) @ ( insert @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_ord_atMost @ A @ U ) ) ) ).
% ivl_disj_un_singleton(2)
thf(fact_4251_prod_Onested__swap_H,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat > nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( groups7121269368397514597t_prod @ nat @ A @ ( A2 @ I ) @ ( set_ord_lessThan @ nat @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J2: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( A2 @ I @ J2 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J2 ) @ N ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% prod.nested_swap'
thf(fact_4252_sum__choose__lower,axiom,
! [R2: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ ( plus_plus @ nat @ R2 @ K3 ) @ K3 )
@ ( set_ord_atMost @ nat @ N ) )
= ( binomial @ ( suc @ ( plus_plus @ nat @ R2 @ N ) ) @ N ) ) ).
% sum_choose_lower
thf(fact_4253_choose__rising__sum_I1_J,axiom,
! [N: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J2: nat] : ( binomial @ ( plus_plus @ nat @ N @ J2 ) @ N )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ N @ M ) @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ).
% choose_rising_sum(1)
thf(fact_4254_choose__rising__sum_I2_J,axiom,
! [N: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J2: nat] : ( binomial @ ( plus_plus @ nat @ N @ J2 ) @ N )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ N @ M ) @ ( one_one @ nat ) ) @ M ) ) ).
% choose_rising_sum(2)
thf(fact_4255_zero__polynom__imp__zero__coeffs,axiom,
! [A: $tType] :
( ( ( ab_semigroup_mult @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [C2: nat > A,N: nat,K: nat] :
( ! [W2: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ W2 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( C2 @ K )
= ( zero_zero @ A ) ) ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_4256_polyfun__eq__0,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N: nat] :
( ( ! [X6: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ X6 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) )
= ( ! [I: nat] :
( ( ord_less_eq @ nat @ I @ N )
=> ( ( C2 @ I )
= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_eq_0
thf(fact_4257_sum_OatMost__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ N ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% sum.atMost_shift
thf(fact_4258_sum__up__index__split,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_atMost @ nat @ M ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( plus_plus @ nat @ M @ N ) ) ) ) ) ) ).
% sum_up_index_split
thf(fact_4259_prod_OatMost__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ N ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ).
% prod.atMost_shift
thf(fact_4260_gbinomial__parallel__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ K3 ) ) @ K3 )
@ ( set_ord_atMost @ nat @ N ) )
= ( gbinomial @ A @ ( plus_plus @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ N ) ) @ ( one_one @ A ) ) @ N ) ) ) ).
% gbinomial_parallel_sum
thf(fact_4261_sum_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I: nat,J2: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ J2 ) @ N ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ I @ ( minus_minus @ nat @ K3 @ I ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_4262_prod_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I: nat,J2: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ J2 ) @ N ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ I @ ( minus_minus @ nat @ K3 @ I ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% prod.triangle_reindex_eq
thf(fact_4263_sum__choose__diagonal,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ ( minus_minus @ nat @ N @ K3 ) @ ( minus_minus @ nat @ M @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( suc @ N ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_4264_vandermonde,axiom,
! [M: nat,N: nat,R2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( binomial @ M @ K3 ) @ ( binomial @ N @ ( minus_minus @ nat @ R2 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R2 ) )
= ( binomial @ ( plus_plus @ nat @ M @ N ) @ R2 ) ) ).
% vandermonde
thf(fact_4265_sum__gp__basic,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N ) ) ) ) ) ).
% sum_gp_basic
thf(fact_4266_polyfun__finite__roots,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N: nat] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [X6: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ X6 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) )
= ( ? [I: nat] :
( ( ord_less_eq @ nat @ I @ N )
& ( ( C2 @ I )
!= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_finite_roots
thf(fact_4267_polyfun__roots__finite,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( finite_finite @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_4268_polyfun__linear__factor__root,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: nat > A,A2: A,N: nat] :
( ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ A2 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) )
=> ~ ! [B6: nat > A] :
~ ! [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z5 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( times_times @ A @ ( minus_minus @ A @ Z5 @ A2 )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( B6 @ I ) @ ( power_power @ A @ Z5 @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_4269_polyfun__linear__factor,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: nat > A,N: nat,A2: A] :
? [B6: nat > A] :
! [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z5 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( plus_plus @ A
@ ( times_times @ A @ ( minus_minus @ A @ Z5 @ A2 )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( B6 @ I ) @ ( power_power @ A @ Z5 @ I ) )
@ ( set_ord_lessThan @ nat @ N ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ A2 @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ) ).
% polyfun_linear_factor
thf(fact_4270_sum__power__shift,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [M: nat,N: nat,X: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_4271_sum_Otriangle__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I: nat,J2: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ I @ J2 ) @ N ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ I @ ( minus_minus @ nat @ K3 @ I ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% sum.triangle_reindex
thf(fact_4272_prod_Otriangle__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I: nat,J2: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ I @ J2 ) @ N ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ I @ ( minus_minus @ nat @ K3 @ I ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% prod.triangle_reindex
thf(fact_4273_summable__Cauchy__product,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [A2: nat > A,B2: nat > A] :
( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( A2 @ K3 ) ) )
=> ( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( B2 @ K3 ) ) )
=> ( summable @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( B2 @ ( minus_minus @ nat @ K3 @ I ) ) )
@ ( set_ord_atMost @ nat @ K3 ) ) ) ) ) ) ).
% summable_Cauchy_product
thf(fact_4274_choose__row__sum,axiom,
! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat @ ( binomial @ N ) @ ( set_ord_atMost @ nat @ N ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% choose_row_sum
thf(fact_4275_Cauchy__product,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [A2: nat > A,B2: nat > A] :
( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( A2 @ K3 ) ) )
=> ( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( B2 @ K3 ) ) )
=> ( ( times_times @ A @ ( suminf @ A @ A2 ) @ ( suminf @ A @ B2 ) )
= ( suminf @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( B2 @ ( minus_minus @ nat @ K3 @ I ) ) )
@ ( set_ord_atMost @ nat @ K3 ) ) ) ) ) ) ) ).
% Cauchy_product
thf(fact_4276_binomial,axiom,
! [A2: nat,B2: nat,N: nat] :
( ( power_power @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ N )
= ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( times_times @ nat @ ( semiring_1_of_nat @ nat @ ( binomial @ N @ K3 ) ) @ ( power_power @ nat @ A2 @ K3 ) ) @ ( power_power @ nat @ B2 @ ( minus_minus @ nat @ N @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ).
% binomial
thf(fact_4277_atLeast1__atMost__eq__remove0,axiom,
! [N: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_atMost @ nat @ N ) @ ( insert @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_4278_sum_Oin__pairs__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% sum.in_pairs_0
thf(fact_4279_polynomial__product,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [M: nat,A2: nat > A,N: nat,B2: nat > A,X: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ M @ I2 )
=> ( ( A2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [J3: nat] :
( ( ord_less @ nat @ N @ J3 )
=> ( ( B2 @ J3 )
= ( zero_zero @ A ) ) )
=> ( ( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ X @ I ) )
@ ( set_ord_atMost @ nat @ M ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] : ( times_times @ A @ ( B2 @ J2 ) @ ( power_power @ A @ X @ J2 ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [R5: nat] :
( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( A2 @ K3 ) @ ( B2 @ ( minus_minus @ nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R5 ) )
@ ( power_power @ A @ X @ R5 ) )
@ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N ) ) ) ) ) ) ) ).
% polynomial_product
thf(fact_4280_prod_Oin__pairs__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I ) ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% prod.in_pairs_0
thf(fact_4281_polyfun__eq__const,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N: nat,K: A] :
( ( ! [X6: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ X6 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= K ) )
= ( ( ( C2 @ ( zero_zero @ nat ) )
= K )
& ! [X6: nat] :
( ( member @ nat @ X6 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N ) )
=> ( ( C2 @ X6 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_eq_const
thf(fact_4282_gbinomial__sum__lower__neg,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ A2 @ K3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ M ) ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_4283_binomial__ring,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( power_power @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( binomial @ N @ K3 ) ) @ ( power_power @ A @ A2 @ K3 ) ) @ ( power_power @ A @ B2 @ ( minus_minus @ nat @ N @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% binomial_ring
thf(fact_4284_pochhammer__binomial__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( binomial @ N @ K3 ) ) @ ( comm_s3205402744901411588hammer @ A @ A2 @ K3 ) ) @ ( comm_s3205402744901411588hammer @ A @ B2 @ ( minus_minus @ nat @ N @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% pochhammer_binomial_sum
thf(fact_4285_polynomial__product__nat,axiom,
! [M: nat,A2: nat > nat,N: nat,B2: nat > nat,X: nat] :
( ! [I2: nat] :
( ( ord_less @ nat @ M @ I2 )
=> ( ( A2 @ I2 )
= ( zero_zero @ nat ) ) )
=> ( ! [J3: nat] :
( ( ord_less @ nat @ N @ J3 )
=> ( ( B2 @ J3 )
= ( zero_zero @ nat ) ) )
=> ( ( times_times @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I: nat] : ( times_times @ nat @ ( A2 @ I ) @ ( power_power @ nat @ X @ I ) )
@ ( set_ord_atMost @ nat @ M ) )
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J2: nat] : ( times_times @ nat @ ( B2 @ J2 ) @ ( power_power @ nat @ X @ J2 ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [R5: nat] :
( times_times @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( A2 @ K3 ) @ ( B2 @ ( minus_minus @ nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R5 ) )
@ ( power_power @ nat @ X @ R5 ) )
@ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_4286_choose__square__sum,axiom,
! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( power_power @ nat @ ( binomial @ N @ K3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ N ) ) ).
% choose_square_sum
thf(fact_4287_Cauchy__product__sums,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [A2: nat > A,B2: nat > A] :
( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( A2 @ K3 ) ) )
=> ( ( summable @ real
@ ^ [K3: nat] : ( real_V7770717601297561774m_norm @ A @ ( B2 @ K3 ) ) )
=> ( sums @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( B2 @ ( minus_minus @ nat @ K3 @ I ) ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( times_times @ A @ ( suminf @ A @ A2 ) @ ( suminf @ A @ B2 ) ) ) ) ) ) ).
% Cauchy_product_sums
thf(fact_4288_complex__inverse,axiom,
! [A2: real,B2: real] :
( ( inverse_inverse @ complex @ ( complex2 @ A2 @ B2 ) )
= ( complex2 @ ( divide_divide @ real @ A2 @ ( plus_plus @ real @ ( power_power @ real @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( divide_divide @ real @ ( uminus_uminus @ real @ B2 ) @ ( plus_plus @ real @ ( power_power @ real @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% complex_inverse
thf(fact_4289_sum_Ozero__middle,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [P2: nat,K: nat,G: nat > A,H2: nat > A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ P2 )
=> ( ( ord_less_eq @ nat @ K @ P2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] : ( if @ A @ ( ord_less @ nat @ J2 @ K ) @ ( G @ J2 ) @ ( if @ A @ ( J2 = K ) @ ( zero_zero @ A ) @ ( H2 @ ( minus_minus @ nat @ J2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( set_ord_atMost @ nat @ P2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] : ( if @ A @ ( ord_less @ nat @ J2 @ K ) @ ( G @ J2 ) @ ( H2 @ J2 ) )
@ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ P2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_4290_prod_Ozero__middle,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [P2: nat,K: nat,G: nat > A,H2: nat > A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ P2 )
=> ( ( ord_less_eq @ nat @ K @ P2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J2: nat] : ( if @ A @ ( ord_less @ nat @ J2 @ K ) @ ( G @ J2 ) @ ( if @ A @ ( J2 = K ) @ ( one_one @ A ) @ ( H2 @ ( minus_minus @ nat @ J2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( set_ord_atMost @ nat @ P2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J2: nat] : ( if @ A @ ( ord_less @ nat @ J2 @ K ) @ ( G @ J2 ) @ ( H2 @ J2 ) )
@ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ P2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_4291_gbinomial__partial__sum__poly,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat,A2: A,X: A,Y: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ A2 ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( uminus_uminus @ A @ A2 ) @ K3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ X ) @ K3 ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_4292_root__polyfun,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N: nat,Z2: A,A2: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N )
=> ( ( ( power_power @ A @ Z2 @ N )
= A2 )
= ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] :
( times_times @ A
@ ( if @ A
@ ( I
= ( zero_zero @ nat ) )
@ ( uminus_uminus @ A @ A2 )
@ ( if @ A @ ( I = N ) @ ( one_one @ A ) @ ( zero_zero @ A ) ) )
@ ( power_power @ A @ Z2 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) ) ) ).
% root_polyfun
thf(fact_4293_sum__gp0,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N ) )
= ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp0
thf(fact_4294_choose__alternating__linear__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat] :
( ( N
!= ( one_one @ nat ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ I ) @ ( semiring_1_of_nat @ A @ I ) ) @ ( semiring_1_of_nat @ A @ ( binomial @ N @ I ) ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) ) ).
% choose_alternating_linear_sum
thf(fact_4295_gbinomial__sum__nat__pow2,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( divide_divide @ A @ ( gbinomial @ A @ ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ M @ K3 ) ) @ K3 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_4296_gbinomial__partial__sum__poly__xpos,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat,A2: A,X: A,Y: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ A2 ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( minus_minus @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ K3 ) @ A2 ) @ ( one_one @ A ) ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_4297_polyfun__diff__alt,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N: nat,A2: nat > A,X: A,Y: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N )
=> ( ( minus_minus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ X @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ Y @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( A2 @ ( plus_plus @ nat @ ( plus_plus @ nat @ J2 @ K3 ) @ ( one_one @ nat ) ) ) @ ( power_power @ A @ Y @ K3 ) ) @ ( power_power @ A @ X @ J2 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N @ J2 ) ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_4298_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat @ ( binomial @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ nat ) ) ) @ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_4299_choose__linear__sum,axiom,
! [N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I: nat] : ( times_times @ nat @ I @ ( binomial @ N @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( times_times @ nat @ N @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% choose_linear_sum
thf(fact_4300_choose__alternating__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ I ) @ ( semiring_1_of_nat @ A @ ( binomial @ N @ I ) ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) ) ).
% choose_alternating_sum
thf(fact_4301_polyfun__extremal__lemma,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [E2: real,C2: nat > A,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: real] :
! [Z5: A] :
( ( ord_less_eq @ real @ M8 @ ( real_V7770717601297561774m_norm @ A @ Z5 ) )
=> ( ord_less_eq @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z5 @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) )
@ ( times_times @ real @ E2 @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ A @ Z5 ) @ ( suc @ N ) ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_4302_polyfun__diff,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N: nat,A2: nat > A,X: A,Y: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N )
=> ( ( minus_minus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ X @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ Y @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] :
( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( A2 @ I ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J2 ) @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J2 ) @ N ) )
@ ( power_power @ A @ X @ J2 ) )
@ ( set_ord_lessThan @ nat @ N ) ) ) ) ) ) ).
% polyfun_diff
thf(fact_4303_sin__x__sin__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] :
( if @ A
@ ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 )
& ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
@ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ).
% sin_x_sin_y
thf(fact_4304_sums__cos__x__plus__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 ) @ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) ) @ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( cos @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% sums_cos_x_plus_y
thf(fact_4305_cos__x__cos__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] :
( if @ A
@ ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 )
& ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
@ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ).
% cos_x_cos_y
thf(fact_4306_exp__first__two__terms,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A )
= ( ^ [X6: A] :
( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ X6 )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( power_power @ A @ X6 @ ( plus_plus @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% exp_first_two_terms
thf(fact_4307_of__nat__id,axiom,
( ( semiring_1_of_nat @ nat )
= ( ^ [N3: nat] : N3 ) ) ).
% of_nat_id
thf(fact_4308_scaleR__cancel__right,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,B2: real] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ B2 @ X ) )
= ( ( A2 = B2 )
| ( X
= ( zero_zero @ A ) ) ) ) ) ).
% scaleR_cancel_right
thf(fact_4309_scaleR__zero__right,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real] :
( ( real_V8093663219630862766scaleR @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% scaleR_zero_right
thf(fact_4310_mult__scaleR__right,axiom,
! [A: $tType] :
( ( real_V6157519004096292374lgebra @ A )
=> ! [X: A,A2: real,Y: A] :
( ( times_times @ A @ X @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) )
= ( real_V8093663219630862766scaleR @ A @ A2 @ ( times_times @ A @ X @ Y ) ) ) ) ).
% mult_scaleR_right
thf(fact_4311_mult__scaleR__left,axiom,
! [A: $tType] :
( ( real_V6157519004096292374lgebra @ A )
=> ! [A2: real,X: A,Y: A] :
( ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ Y )
= ( real_V8093663219630862766scaleR @ A @ A2 @ ( times_times @ A @ X @ Y ) ) ) ) ).
% mult_scaleR_left
thf(fact_4312_scaleR__cancel__left,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) )
= ( ( X = Y )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% scaleR_cancel_left
thf(fact_4313_scaleR__scaleR,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,B2: real,X: A] :
( ( real_V8093663219630862766scaleR @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) )
= ( real_V8093663219630862766scaleR @ A @ ( times_times @ real @ A2 @ B2 ) @ X ) ) ) ).
% scaleR_scaleR
thf(fact_4314_scaleR__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ real ) )
| ( X
= ( zero_zero @ A ) ) ) ) ) ).
% scaleR_eq_0_iff
thf(fact_4315_scaleR__zero__left,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( zero_zero @ real ) @ X )
= ( zero_zero @ A ) ) ) ).
% scaleR_zero_left
thf(fact_4316_scaleR__eq__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B2: A,U: real,A2: A] :
( ( ( plus_plus @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ U @ A2 ) )
= ( plus_plus @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ U @ B2 ) ) )
= ( ( A2 = B2 )
| ( U
= ( one_one @ real ) ) ) ) ) ).
% scaleR_eq_iff
thf(fact_4317_scaleR__power,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: real,Y: A,N: nat] :
( ( power_power @ A @ ( real_V8093663219630862766scaleR @ A @ X @ Y ) @ N )
= ( real_V8093663219630862766scaleR @ A @ ( power_power @ real @ X @ N ) @ ( power_power @ A @ Y @ N ) ) ) ) ).
% scaleR_power
thf(fact_4318_scaleR__collapse,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [U: real,A2: A] :
( ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ ( one_one @ real ) @ U ) @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ U @ A2 ) )
= A2 ) ) ).
% scaleR_collapse
thf(fact_4319_norm__scaleR,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: real,X: A] :
( ( real_V7770717601297561774m_norm @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) )
= ( times_times @ real @ ( abs_abs @ real @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ X ) ) ) ) ).
% norm_scaleR
thf(fact_4320_scaleR__times,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [U: num,W: num,A2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( numeral_numeral @ real @ U ) @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ A2 ) )
= ( real_V8093663219630862766scaleR @ A @ ( times_times @ real @ ( numeral_numeral @ real @ U ) @ ( numeral_numeral @ real @ W ) ) @ A2 ) ) ) ).
% scaleR_times
thf(fact_4321_inverse__scaleR__times,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [V: num,W: num,A2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ V ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ A2 ) )
= ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( numeral_numeral @ real @ W ) @ ( numeral_numeral @ real @ V ) ) @ A2 ) ) ) ).
% inverse_scaleR_times
thf(fact_4322_fraction__scaleR__times,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [U: num,V: num,W: num,A2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( numeral_numeral @ real @ U ) @ ( numeral_numeral @ real @ V ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ A2 ) )
= ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( times_times @ real @ ( numeral_numeral @ real @ U ) @ ( numeral_numeral @ real @ W ) ) @ ( numeral_numeral @ real @ V ) ) @ A2 ) ) ) ).
% fraction_scaleR_times
thf(fact_4323_scaleR__half__double,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( plus_plus @ A @ A2 @ A2 ) )
= A2 ) ) ).
% scaleR_half_double
thf(fact_4324_real__scaleR__def,axiom,
( ( real_V8093663219630862766scaleR @ real )
= ( times_times @ real ) ) ).
% real_scaleR_def
thf(fact_4325_scaleR__left__imp__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) )
=> ( X = Y ) ) ) ) ).
% scaleR_left_imp_eq
thf(fact_4326_scaleR__right__imp__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,A2: real,B2: real] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ B2 @ X ) )
=> ( A2 = B2 ) ) ) ) ).
% scaleR_right_imp_eq
thf(fact_4327_scaleR__right__distrib,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( real_V8093663219630862766scaleR @ A @ A2 @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ).
% scaleR_right_distrib
thf(fact_4328_scaleR__left_Oadd,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: real,Y: real,Xa2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ X @ Y ) @ Xa2 )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ X @ Xa2 ) @ ( real_V8093663219630862766scaleR @ A @ Y @ Xa2 ) ) ) ) ).
% scaleR_left.add
thf(fact_4329_scaleR__left__distrib,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,B2: real,X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ A2 @ B2 ) @ X )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ).
% scaleR_left_distrib
thf(fact_4330_scaleR__conv__of__real,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( ( real_V8093663219630862766scaleR @ A )
= ( ^ [R5: real] : ( times_times @ A @ ( real_Vector_of_real @ A @ R5 ) ) ) ) ) ).
% scaleR_conv_of_real
thf(fact_4331_complex__scaleR,axiom,
! [R2: real,A2: real,B2: real] :
( ( real_V8093663219630862766scaleR @ complex @ R2 @ ( complex2 @ A2 @ B2 ) )
= ( complex2 @ ( times_times @ real @ R2 @ A2 ) @ ( times_times @ real @ R2 @ B2 ) ) ) ).
% complex_scaleR
thf(fact_4332_scaleR__right__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,X: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ) ).
% scaleR_right_mono
thf(fact_4333_scaleR__right__mono__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [B2: real,A2: real,C2: A] :
( ( ord_less_eq @ real @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ C2 ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ C2 ) ) ) ) ) ).
% scaleR_right_mono_neg
thf(fact_4334_scaleR__le__cancel__left__pos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% scaleR_le_cancel_left_pos
thf(fact_4335_scaleR__le__cancel__left__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% scaleR_le_cancel_left_neg
thf(fact_4336_scaleR__le__cancel__left,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% scaleR_le_cancel_left
thf(fact_4337_scaleR__left__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [X: A,Y: A,A2: real] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ) ).
% scaleR_left_mono
thf(fact_4338_scaleR__left__mono__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [B2: A,A2: A,C2: real] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ real @ C2 @ ( zero_zero @ real ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) ) ) ) ) ).
% scaleR_left_mono_neg
thf(fact_4339_eq__vector__fraction__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,U: real,V: real,A2: A] :
( ( X
= ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ U @ V ) @ A2 ) )
= ( ( ( V
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ A ) ) )
& ( ( V
!= ( zero_zero @ real ) )
=> ( ( real_V8093663219630862766scaleR @ A @ V @ X )
= ( real_V8093663219630862766scaleR @ A @ U @ A2 ) ) ) ) ) ) ).
% eq_vector_fraction_iff
thf(fact_4340_vector__fraction__eq__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [U: real,V: real,A2: A,X: A] :
( ( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ U @ V ) @ A2 )
= X )
= ( ( ( V
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ A ) ) )
& ( ( V
!= ( zero_zero @ real ) )
=> ( ( real_V8093663219630862766scaleR @ A @ U @ A2 )
= ( real_V8093663219630862766scaleR @ A @ V @ X ) ) ) ) ) ) ).
% vector_fraction_eq_iff
thf(fact_4341_Real__Vector__Spaces_Ole__add__iff1,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,E2: A,C2: A,B2: real,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% Real_Vector_Spaces.le_add_iff1
thf(fact_4342_Real__Vector__Spaces_Ole__add__iff2,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,E2: A,C2: A,B2: real,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ C2 @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% Real_Vector_Spaces.le_add_iff2
thf(fact_4343_zero__le__scaleR__iff,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% zero_le_scaleR_iff
thf(fact_4344_scaleR__le__0__iff,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% scaleR_le_0_iff
thf(fact_4345_scaleR__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,X: A,Y: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ Y ) ) ) ) ) ) ) ).
% scaleR_mono
thf(fact_4346_scaleR__mono_H,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,C2: A,D2: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ C2 ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% scaleR_mono'
thf(fact_4347_split__scaleR__neg__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ).
% split_scaleR_neg_le
thf(fact_4348_split__scaleR__pos__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) ) ) ) ).
% split_scaleR_pos_le
thf(fact_4349_scaleR__nonneg__nonneg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) ) ) ) ) ).
% scaleR_nonneg_nonneg
thf(fact_4350_scaleR__nonneg__nonpos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ) ).
% scaleR_nonneg_nonpos
thf(fact_4351_scaleR__nonpos__nonneg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ) ).
% scaleR_nonpos_nonneg
thf(fact_4352_scaleR__nonpos__nonpos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) ) ) ) ) ).
% scaleR_nonpos_nonpos
thf(fact_4353_scaleR__left__le__one__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [X: A,A2: real] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ real @ A2 @ ( one_one @ real ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ X ) ) ) ) ).
% scaleR_left_le_one_le
thf(fact_4354_scaleR__2,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X )
= ( plus_plus @ A @ X @ X ) ) ) ).
% scaleR_2
thf(fact_4355_real__vector__eq__affinity,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [M: real,Y: A,X: A,C2: A] :
( ( M
!= ( zero_zero @ real ) )
=> ( ( Y
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ M @ X ) @ C2 ) )
= ( ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ Y ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ C2 ) )
= X ) ) ) ) ).
% real_vector_eq_affinity
thf(fact_4356_real__vector__affinity__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [M: real,X: A,C2: A,Y: A] :
( ( M
!= ( zero_zero @ real ) )
=> ( ( ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ M @ X ) @ C2 )
= Y )
= ( X
= ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ Y ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ C2 ) ) ) ) ) ) ).
% real_vector_affinity_eq
thf(fact_4357_neg__le__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less_eq @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_le_divideR_eq
thf(fact_4358_neg__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% neg_divideR_le_eq
thf(fact_4359_pos__le__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% pos_le_divideR_eq
thf(fact_4360_pos__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_divideR_le_eq
thf(fact_4361_pos__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_divideR_less_eq
thf(fact_4362_pos__less__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% pos_less_divideR_eq
thf(fact_4363_neg__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% neg_divideR_less_eq
thf(fact_4364_neg__less__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_less_divideR_eq
thf(fact_4365_nonzero__inverse__scaleR__distrib,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [A2: real,X: A] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( X
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) )
= ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ A2 ) @ ( inverse_inverse @ A @ X ) ) ) ) ) ) ).
% nonzero_inverse_scaleR_distrib
thf(fact_4366_summable__exp__generic,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( summable @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) ) ) ).
% summable_exp_generic
thf(fact_4367_sin__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( sin_coeff @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( sin @ A @ X ) ) ) ).
% sin_converges
thf(fact_4368_sin__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A )
= ( ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( sin_coeff @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) ) ) ) ) ).
% sin_def
thf(fact_4369_cos__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( cos_coeff @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( cos @ A @ X ) ) ) ).
% cos_converges
thf(fact_4370_cos__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A )
= ( ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( cos_coeff @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) ) ) ) ) ).
% cos_def
thf(fact_4371_summable__norm__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( real_V8093663219630862766scaleR @ A @ ( sin_coeff @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ).
% summable_norm_sin
thf(fact_4372_summable__norm__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( real_V8093663219630862766scaleR @ A @ ( cos_coeff @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ).
% summable_norm_cos
thf(fact_4373_neg__minus__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divideR_le_eq
thf(fact_4374_neg__le__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_le_minus_divideR_eq
thf(fact_4375_pos__minus__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_minus_divideR_le_eq
thf(fact_4376_pos__le__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_le_minus_divideR_eq
thf(fact_4377_neg__minus__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divideR_less_eq
thf(fact_4378_neg__less__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_less_minus_divideR_eq
thf(fact_4379_pos__minus__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_minus_divideR_less_eq
thf(fact_4380_pos__less__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_less_minus_divideR_eq
thf(fact_4381_exp__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) )
@ ( exp @ A @ X ) ) ) ).
% exp_converges
thf(fact_4382_exp__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A )
= ( ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X6 @ N3 ) ) ) ) ) ) ).
% exp_def
thf(fact_4383_summable__norm__exp,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ).
% summable_norm_exp
thf(fact_4384_sin__minus__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( sin_coeff @ N3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ X ) @ N3 ) ) )
@ ( sin @ A @ X ) ) ) ).
% sin_minus_converges
thf(fact_4385_cos__minus__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( cos_coeff @ N3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ X ) @ N3 ) )
@ ( cos @ A @ X ) ) ) ).
% cos_minus_converges
thf(fact_4386_exp__series__add__commuting,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A,Y: A,N: nat] :
( ( ( times_times @ A @ X @ Y )
= ( times_times @ A @ Y @ X ) )
=> ( ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ I ) ) @ ( power_power @ A @ X @ I ) ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N @ I ) ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N @ I ) ) ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ) ).
% exp_series_add_commuting
thf(fact_4387_exp__first__term,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A )
= ( ^ [X6: A] :
( plus_plus @ A @ ( one_one @ A )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( suc @ N3 ) ) ) @ ( power_power @ A @ X6 @ ( suc @ N3 ) ) ) ) ) ) ) ) ).
% exp_first_term
thf(fact_4388_exp__first__terms,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [K: nat] :
( ( exp @ A )
= ( ^ [X6: A] :
( plus_plus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X6 @ N3 ) )
@ ( set_ord_lessThan @ nat @ K ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ N3 @ K ) ) ) @ ( power_power @ A @ X6 @ ( plus_plus @ nat @ N3 @ K ) ) ) ) ) ) ) ) ).
% exp_first_terms
thf(fact_4389_exp__two__pi__i_H,axiom,
( ( exp @ complex @ ( times_times @ complex @ imaginary_unit @ ( times_times @ complex @ ( real_Vector_of_real @ complex @ pi ) @ ( numeral_numeral @ complex @ ( bit0 @ one2 ) ) ) ) )
= ( one_one @ complex ) ) ).
% exp_two_pi_i'
thf(fact_4390_exp__two__pi__i,axiom,
( ( exp @ complex @ ( times_times @ complex @ ( times_times @ complex @ ( numeral_numeral @ complex @ ( bit0 @ one2 ) ) @ ( real_Vector_of_real @ complex @ pi ) ) @ imaginary_unit ) )
= ( one_one @ complex ) ) ).
% exp_two_pi_i
thf(fact_4391_sinh__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( sinh @ A @ X ) ) ) ).
% sinh_converges
thf(fact_4392_cosh__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( zero_zero @ A ) )
@ ( cosh @ A @ X ) ) ) ).
% cosh_converges
thf(fact_4393_sinh__real__zero__iff,axiom,
! [X: real] :
( ( ( sinh @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% sinh_real_zero_iff
thf(fact_4394_sinh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( sinh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% sinh_real_neg_iff
thf(fact_4395_sinh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( sinh @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% sinh_real_pos_iff
thf(fact_4396_sinh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sinh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% sinh_real_nonpos_iff
thf(fact_4397_sinh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sinh @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% sinh_real_nonneg_iff
thf(fact_4398_sinh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sinh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sinh_0
thf(fact_4399_cosh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cosh @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% cosh_0
thf(fact_4400_complex__i__mult__minus,axiom,
! [X: complex] :
( ( times_times @ complex @ imaginary_unit @ ( times_times @ complex @ imaginary_unit @ X ) )
= ( uminus_uminus @ complex @ X ) ) ).
% complex_i_mult_minus
thf(fact_4401_divide__i,axiom,
! [X: complex] :
( ( divide_divide @ complex @ X @ imaginary_unit )
= ( times_times @ complex @ ( uminus_uminus @ complex @ imaginary_unit ) @ X ) ) ).
% divide_i
thf(fact_4402_i__squared,axiom,
( ( times_times @ complex @ imaginary_unit @ imaginary_unit )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) ) ).
% i_squared
thf(fact_4403_divide__numeral__i,axiom,
! [Z2: complex,N: num] :
( ( divide_divide @ complex @ Z2 @ ( times_times @ complex @ ( numeral_numeral @ complex @ N ) @ imaginary_unit ) )
= ( divide_divide @ complex @ ( uminus_uminus @ complex @ ( times_times @ complex @ imaginary_unit @ Z2 ) ) @ ( numeral_numeral @ complex @ N ) ) ) ).
% divide_numeral_i
thf(fact_4404_power2__i,axiom,
( ( power_power @ complex @ imaginary_unit @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) ) ).
% power2_i
thf(fact_4405_exp__pi__i_H,axiom,
( ( exp @ complex @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ pi ) ) )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) ) ).
% exp_pi_i'
thf(fact_4406_exp__pi__i,axiom,
( ( exp @ complex @ ( times_times @ complex @ ( real_Vector_of_real @ complex @ pi ) @ imaginary_unit ) )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) ) ).
% exp_pi_i
thf(fact_4407_i__even__power,axiom,
! [N: nat] :
( ( power_power @ complex @ imaginary_unit @ ( times_times @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( power_power @ complex @ ( uminus_uminus @ complex @ ( one_one @ complex ) ) @ N ) ) ).
% i_even_power
thf(fact_4408_tanh__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tanh @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( sinh @ A @ X6 ) @ ( cosh @ A @ X6 ) ) ) ) ) ).
% tanh_def
thf(fact_4409_cosh__plus__sinh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( cosh @ A @ X ) @ ( sinh @ A @ X ) )
= ( exp @ A @ X ) ) ) ).
% cosh_plus_sinh
thf(fact_4410_sinh__plus__cosh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( sinh @ A @ X ) @ ( cosh @ A @ X ) )
= ( exp @ A @ X ) ) ) ).
% sinh_plus_cosh
thf(fact_4411_cosh__real__nonzero,axiom,
! [X: real] :
( ( cosh @ real @ X )
!= ( zero_zero @ real ) ) ).
% cosh_real_nonzero
thf(fact_4412_complex__i__not__zero,axiom,
( imaginary_unit
!= ( zero_zero @ complex ) ) ).
% complex_i_not_zero
thf(fact_4413_cosh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cosh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( cosh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( sinh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% cosh_add
thf(fact_4414_sinh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sinh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( sinh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( cosh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% sinh_add
thf(fact_4415_cosh__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cosh @ A @ ( minus_minus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( times_times @ A @ ( cosh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( sinh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% cosh_diff
thf(fact_4416_sinh__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sinh @ A @ ( minus_minus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( times_times @ A @ ( sinh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( cosh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% sinh_diff
thf(fact_4417_cosh__real__pos,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( cosh @ real @ X ) ) ).
% cosh_real_pos
thf(fact_4418_cosh__real__nonpos__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ Y @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less_eq @ real @ Y @ X ) ) ) ) ).
% cosh_real_nonpos_le_iff
thf(fact_4419_cosh__real__nonneg__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ).
% cosh_real_nonneg_le_iff
thf(fact_4420_cosh__real__nonneg,axiom,
! [X: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( cosh @ real @ X ) ) ).
% cosh_real_nonneg
thf(fact_4421_sinh__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( sinh @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sinh @ A @ X ) ) @ ( cosh @ A @ X ) ) ) ) ).
% sinh_double
thf(fact_4422_i__times__eq__iff,axiom,
! [W: complex,Z2: complex] :
( ( ( times_times @ complex @ imaginary_unit @ W )
= Z2 )
= ( W
= ( uminus_uminus @ complex @ ( times_times @ complex @ imaginary_unit @ Z2 ) ) ) ) ).
% i_times_eq_iff
thf(fact_4423_cosh__real__strict__mono,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_4424_cosh__real__nonneg__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_4425_cosh__real__nonpos__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ Y @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less @ real @ Y @ X ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_4426_cosh__square__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% cosh_square_eq
thf(fact_4427_sinh__square__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% sinh_square_eq
thf(fact_4428_hyperbolic__pythagoras,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( minus_minus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% hyperbolic_pythagoras
thf(fact_4429_arcosh__cosh__real,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( arcosh @ real @ ( cosh @ real @ X ) )
= X ) ) ).
% arcosh_cosh_real
thf(fact_4430_imaginary__unit_Ocode,axiom,
( imaginary_unit
= ( complex2 @ ( zero_zero @ real ) @ ( one_one @ real ) ) ) ).
% imaginary_unit.code
thf(fact_4431_Complex__eq__i,axiom,
! [X: real,Y: real] :
( ( ( complex2 @ X @ Y )
= imaginary_unit )
= ( ( X
= ( zero_zero @ real ) )
& ( Y
= ( one_one @ real ) ) ) ) ).
% Complex_eq_i
thf(fact_4432_cosh__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( cosh @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( plus_plus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cosh_double
thf(fact_4433_Complex__mult__i,axiom,
! [A2: real,B2: real] :
( ( times_times @ complex @ ( complex2 @ A2 @ B2 ) @ imaginary_unit )
= ( complex2 @ ( uminus_uminus @ real @ B2 ) @ A2 ) ) ).
% Complex_mult_i
thf(fact_4434_i__mult__Complex,axiom,
! [A2: real,B2: real] :
( ( times_times @ complex @ imaginary_unit @ ( complex2 @ A2 @ B2 ) )
= ( complex2 @ ( uminus_uminus @ real @ B2 ) @ A2 ) ) ).
% i_mult_Complex
thf(fact_4435_Complex__eq,axiom,
( complex2
= ( ^ [A4: real,B4: real] : ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ A4 ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ B4 ) ) ) ) ) ).
% Complex_eq
thf(fact_4436_i__complex__of__real,axiom,
! [R2: real] :
( ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ R2 ) )
= ( complex2 @ ( zero_zero @ real ) @ R2 ) ) ).
% i_complex_of_real
thf(fact_4437_complex__of__real__i,axiom,
! [R2: real] :
( ( times_times @ complex @ ( real_Vector_of_real @ complex @ R2 ) @ imaginary_unit )
= ( complex2 @ ( zero_zero @ real ) @ R2 ) ) ).
% complex_of_real_i
thf(fact_4438_complex__split__polar,axiom,
! [Z2: complex] :
? [R: real,A6: real] :
( Z2
= ( times_times @ complex @ ( real_Vector_of_real @ complex @ R ) @ ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ ( cos @ real @ A6 ) ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( sin @ real @ A6 ) ) ) ) ) ) ).
% complex_split_polar
thf(fact_4439_tanh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cosh @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cosh @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( tanh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( tanh @ A @ X ) @ ( tanh @ A @ Y ) ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tanh @ A @ X ) @ ( tanh @ A @ Y ) ) ) ) ) ) ) ) ).
% tanh_add
thf(fact_4440_sinh__zero__iff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sinh @ A @ X )
= ( zero_zero @ A ) )
= ( member @ A @ ( exp @ A @ X ) @ ( insert @ A @ ( one_one @ A ) @ ( insert @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% sinh_zero_iff
thf(fact_4441_cmod__unit__one,axiom,
! [A2: real] :
( ( real_V7770717601297561774m_norm @ complex @ ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ ( cos @ real @ A2 ) ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( sin @ real @ A2 ) ) ) ) )
= ( one_one @ real ) ) ).
% cmod_unit_one
thf(fact_4442_cmod__complex__polar,axiom,
! [R2: real,A2: real] :
( ( real_V7770717601297561774m_norm @ complex @ ( times_times @ complex @ ( real_Vector_of_real @ complex @ R2 ) @ ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ ( cos @ real @ A2 ) ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( sin @ real @ A2 ) ) ) ) ) )
= ( abs_abs @ real @ R2 ) ) ).
% cmod_complex_polar
thf(fact_4443_cosh__field__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cosh @ A )
= ( ^ [Z3: A] : ( divide_divide @ A @ ( plus_plus @ A @ ( exp @ A @ Z3 ) @ ( exp @ A @ ( uminus_uminus @ A @ Z3 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cosh_field_def
thf(fact_4444_sinh__field__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( sinh @ A )
= ( ^ [Z3: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( exp @ A @ Z3 ) @ ( exp @ A @ ( uminus_uminus @ A @ Z3 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sinh_field_def
thf(fact_4445_cosh__zero__iff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cosh @ A @ X )
= ( zero_zero @ A ) )
= ( ( power_power @ A @ ( exp @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% cosh_zero_iff
thf(fact_4446_cosh__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cosh @ A )
= ( ^ [X6: A] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( plus_plus @ A @ ( exp @ A @ X6 ) @ ( exp @ A @ ( uminus_uminus @ A @ X6 ) ) ) ) ) ) ) ).
% cosh_def
thf(fact_4447_cosh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( cosh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( plus_plus @ real @ X @ ( inverse_inverse @ real @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% cosh_ln_real
thf(fact_4448_sinh__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sinh @ A )
= ( ^ [X6: A] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( minus_minus @ A @ ( exp @ A @ X6 ) @ ( exp @ A @ ( uminus_uminus @ A @ X6 ) ) ) ) ) ) ) ).
% sinh_def
thf(fact_4449_sinh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( sinh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( minus_minus @ real @ X @ ( inverse_inverse @ real @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% sinh_ln_real
thf(fact_4450_Arg__minus__ii,axiom,
( ( arg @ ( uminus_uminus @ complex @ imaginary_unit ) )
= ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% Arg_minus_ii
thf(fact_4451_csqrt__ii,axiom,
( ( csqrt @ imaginary_unit )
= ( divide_divide @ complex @ ( plus_plus @ complex @ ( one_one @ complex ) @ imaginary_unit ) @ ( real_Vector_of_real @ complex @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% csqrt_ii
thf(fact_4452_Arg__ii,axiom,
( ( arg @ imaginary_unit )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% Arg_ii
thf(fact_4453_cis__minus__pi__half,axiom,
( ( cis @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
= ( uminus_uminus @ complex @ imaginary_unit ) ) ).
% cis_minus_pi_half
thf(fact_4454_csqrt__eq__0,axiom,
! [Z2: complex] :
( ( ( csqrt @ Z2 )
= ( zero_zero @ complex ) )
= ( Z2
= ( zero_zero @ complex ) ) ) ).
% csqrt_eq_0
thf(fact_4455_csqrt__0,axiom,
( ( csqrt @ ( zero_zero @ complex ) )
= ( zero_zero @ complex ) ) ).
% csqrt_0
thf(fact_4456_cis__zero,axiom,
( ( cis @ ( zero_zero @ real ) )
= ( one_one @ complex ) ) ).
% cis_zero
thf(fact_4457_power2__csqrt,axiom,
! [Z2: complex] :
( ( power_power @ complex @ ( csqrt @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= Z2 ) ).
% power2_csqrt
thf(fact_4458_cis__pi__half,axiom,
( ( cis @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= imaginary_unit ) ).
% cis_pi_half
thf(fact_4459_cis__2pi,axiom,
( ( cis @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
= ( one_one @ complex ) ) ).
% cis_2pi
thf(fact_4460_cis__neq__zero,axiom,
! [A2: real] :
( ( cis @ A2 )
!= ( zero_zero @ complex ) ) ).
% cis_neq_zero
thf(fact_4461_cis__mult,axiom,
! [A2: real,B2: real] :
( ( times_times @ complex @ ( cis @ A2 ) @ ( cis @ B2 ) )
= ( cis @ ( plus_plus @ real @ A2 @ B2 ) ) ) ).
% cis_mult
thf(fact_4462_Arg__zero,axiom,
( ( arg @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% Arg_zero
thf(fact_4463_DeMoivre,axiom,
! [A2: real,N: nat] :
( ( power_power @ complex @ ( cis @ A2 ) @ N )
= ( cis @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ A2 ) ) ) ).
% DeMoivre
thf(fact_4464_cis__conv__exp,axiom,
( cis
= ( ^ [B4: real] : ( exp @ complex @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ B4 ) ) ) ) ) ).
% cis_conv_exp
thf(fact_4465_of__real__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( real_Vector_of_real @ complex @ ( sqrt @ X ) )
= ( csqrt @ ( real_Vector_of_real @ complex @ X ) ) ) ) ).
% of_real_sqrt
thf(fact_4466_bij__betw__roots__unity,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( bij_betw @ nat @ complex
@ ^ [K3: nat] : ( cis @ ( divide_divide @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ ( semiring_1_of_nat @ real @ K3 ) ) @ ( semiring_1_of_nat @ real @ N ) ) )
@ ( set_ord_lessThan @ nat @ N )
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= ( one_one @ complex ) ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_4467_cot__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( cot @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% cot_less_zero
thf(fact_4468_cot__periodic,axiom,
! [X: real] :
( ( cot @ real @ ( plus_plus @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
= ( cot @ real @ X ) ) ).
% cot_periodic
thf(fact_4469_arctan__def,axiom,
( arctan
= ( ^ [Y6: real] :
( the @ real
@ ^ [X6: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X6 )
& ( ord_less @ real @ X6 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X6 )
= Y6 ) ) ) ) ) ).
% arctan_def
thf(fact_4470_cot__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cot @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% cot_zero
thf(fact_4471_cot__pi,axiom,
( ( cot @ real @ pi )
= ( zero_zero @ real ) ) ).
% cot_pi
thf(fact_4472_cot__npi,axiom,
! [N: nat] :
( ( cot @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ pi ) )
= ( zero_zero @ real ) ) ).
% cot_npi
thf(fact_4473_ln__neg__is__const,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ln_ln @ real @ X )
= ( the @ real
@ ^ [X6: real] : $false ) ) ) ).
% ln_neg_is_const
thf(fact_4474_sum_Oreindex__bij__betw__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_add @ A )
=> ! [S5: set @ B,T6: set @ C,H2: B > C,S3: set @ B,T4: set @ C,G: C > A] :
( ( finite_finite @ B @ S5 )
=> ( ( finite_finite @ C @ T6 )
=> ( ( bij_betw @ B @ C @ H2 @ ( minus_minus @ ( set @ B ) @ S3 @ S5 ) @ ( minus_minus @ ( set @ C ) @ T4 @ T6 ) )
=> ( ! [A6: B] :
( ( member @ B @ A6 @ S5 )
=> ( ( G @ ( H2 @ A6 ) )
= ( zero_zero @ A ) ) )
=> ( ! [B6: C] :
( ( member @ C @ B6 @ T6 )
=> ( ( G @ B6 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( G @ ( H2 @ X6 ) )
@ S3 )
= ( groups7311177749621191930dd_sum @ C @ A @ G @ T4 ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_betw_not_neutral
thf(fact_4475_cot__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cot @ A )
= ( ^ [X6: A] : ( divide_divide @ A @ ( cos @ A @ X6 ) @ ( sin @ A @ X6 ) ) ) ) ) ).
% cot_def
thf(fact_4476_arccos__def,axiom,
( arccos
= ( ^ [Y6: real] :
( the @ real
@ ^ [X6: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X6 )
& ( ord_less_eq @ real @ X6 @ pi )
& ( ( cos @ real @ X6 )
= Y6 ) ) ) ) ) ).
% arccos_def
thf(fact_4477_pi__half,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
= ( the @ real
@ ^ [X6: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X6 )
& ( ord_less_eq @ real @ X6 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X6 )
= ( zero_zero @ real ) ) ) ) ) ).
% pi_half
thf(fact_4478_pi__def,axiom,
( pi
= ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) )
@ ( the @ real
@ ^ [X6: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X6 )
& ( ord_less_eq @ real @ X6 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X6 )
= ( zero_zero @ real ) ) ) ) ) ) ).
% pi_def
thf(fact_4479_cot__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cot @ real @ X ) ) ) ) ).
% cot_gt_zero
thf(fact_4480_tan__cot_H,axiom,
! [X: real] :
( ( tan @ real @ ( minus_minus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X ) )
= ( cot @ real @ X ) ) ).
% tan_cot'
thf(fact_4481_arcsin__def,axiom,
( arcsin
= ( ^ [Y6: real] :
( the @ real
@ ^ [X6: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X6 )
& ( ord_less_eq @ real @ X6 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( sin @ real @ X6 )
= Y6 ) ) ) ) ) ).
% arcsin_def
thf(fact_4482_infinite__imp__bij__betw,axiom,
! [A: $tType,A3: set @ A,A2: A] :
( ~ ( finite_finite @ A @ A3 )
=> ? [H3: A > A] : ( bij_betw @ A @ A @ H3 @ A3 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% infinite_imp_bij_betw
thf(fact_4483_infinite__imp__bij__betw2,axiom,
! [A: $tType,A3: set @ A,A2: A] :
( ~ ( finite_finite @ A @ A3 )
=> ? [H3: A > A] : ( bij_betw @ A @ A @ H3 @ A3 @ ( sup_sup @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% infinite_imp_bij_betw2
thf(fact_4484_bij__betw__disjoint__Un,axiom,
! [A: $tType,B: $tType,F2: A > B,A3: set @ A,C4: set @ B,G: A > B,B3: set @ A,D5: set @ B] :
( ( bij_betw @ A @ B @ F2 @ A3 @ C4 )
=> ( ( bij_betw @ A @ B @ G @ B3 @ D5 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( inf_inf @ ( set @ B ) @ C4 @ D5 )
= ( bot_bot @ ( set @ B ) ) )
=> ( bij_betw @ A @ B
@ ^ [X6: A] : ( if @ B @ ( member @ A @ X6 @ A3 ) @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( sup_sup @ ( set @ A ) @ A3 @ B3 )
@ ( sup_sup @ ( set @ B ) @ C4 @ D5 ) ) ) ) ) ) ).
% bij_betw_disjoint_Un
thf(fact_4485_bij__betw__combine,axiom,
! [A: $tType,B: $tType,F2: A > B,A3: set @ A,B3: set @ B,C4: set @ A,D5: set @ B] :
( ( bij_betw @ A @ B @ F2 @ A3 @ B3 )
=> ( ( bij_betw @ A @ B @ F2 @ C4 @ D5 )
=> ( ( ( inf_inf @ ( set @ B ) @ B3 @ D5 )
= ( bot_bot @ ( set @ B ) ) )
=> ( bij_betw @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ C4 ) @ ( sup_sup @ ( set @ B ) @ B3 @ D5 ) ) ) ) ) ).
% bij_betw_combine
thf(fact_4486_dependent__nat__choice,axiom,
! [A: $tType,P: nat > A > $o,Q: nat > A > A > $o] :
( ? [X_1: A] : ( P @ ( zero_zero @ nat ) @ X_1 )
=> ( ! [X5: A,N2: nat] :
( ( P @ N2 @ X5 )
=> ? [Y4: A] :
( ( P @ ( suc @ N2 ) @ Y4 )
& ( Q @ N2 @ X5 @ Y4 ) ) )
=> ? [F4: nat > A] :
! [N8: nat] :
( ( P @ N8 @ ( F4 @ N8 ) )
& ( Q @ N8 @ ( F4 @ N8 ) @ ( F4 @ ( suc @ N8 ) ) ) ) ) ) ).
% dependent_nat_choice
thf(fact_4487_bij__betw__empty2,axiom,
! [B: $tType,A: $tType,F2: A > B,A3: set @ A] :
( ( bij_betw @ A @ B @ F2 @ A3 @ ( bot_bot @ ( set @ B ) ) )
=> ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ).
% bij_betw_empty2
thf(fact_4488_bij__betw__empty1,axiom,
! [A: $tType,B: $tType,F2: A > B,A3: set @ B] :
( ( bij_betw @ A @ B @ F2 @ ( bot_bot @ ( set @ A ) ) @ A3 )
=> ( A3
= ( bot_bot @ ( set @ B ) ) ) ) ).
% bij_betw_empty1
thf(fact_4489_notIn__Un__bij__betw3,axiom,
! [A: $tType,B: $tType,B2: A,A3: set @ A,F2: A > B,A10: set @ B] :
( ~ ( member @ A @ B2 @ A3 )
=> ( ~ ( member @ B @ ( F2 @ B2 ) @ A10 )
=> ( ( bij_betw @ A @ B @ F2 @ A3 @ A10 )
= ( bij_betw @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) @ ( sup_sup @ ( set @ B ) @ A10 @ ( insert @ B @ ( F2 @ B2 ) @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ).
% notIn_Un_bij_betw3
thf(fact_4490_notIn__Un__bij__betw,axiom,
! [A: $tType,B: $tType,B2: A,A3: set @ A,F2: A > B,A10: set @ B] :
( ~ ( member @ A @ B2 @ A3 )
=> ( ~ ( member @ B @ ( F2 @ B2 ) @ A10 )
=> ( ( bij_betw @ A @ B @ F2 @ A3 @ A10 )
=> ( bij_betw @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) @ ( sup_sup @ ( set @ B ) @ A10 @ ( insert @ B @ ( F2 @ B2 ) @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ).
% notIn_Un_bij_betw
thf(fact_4491_bij__betw__partition,axiom,
! [A: $tType,B: $tType,F2: A > B,A3: set @ A,C4: set @ A,B3: set @ B,D5: set @ B] :
( ( bij_betw @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ C4 ) @ ( sup_sup @ ( set @ B ) @ B3 @ D5 ) )
=> ( ( bij_betw @ A @ B @ F2 @ C4 @ D5 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ C4 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( inf_inf @ ( set @ B ) @ B3 @ D5 )
= ( bot_bot @ ( set @ B ) ) )
=> ( bij_betw @ A @ B @ F2 @ A3 @ B3 ) ) ) ) ) ).
% bij_betw_partition
thf(fact_4492_bij__betw__nth__root__unity,axiom,
! [C2: complex,N: nat] :
( ( C2
!= ( zero_zero @ complex ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( bij_betw @ complex @ complex @ ( times_times @ complex @ ( times_times @ complex @ ( real_Vector_of_real @ complex @ ( root @ N @ ( real_V7770717601297561774m_norm @ complex @ C2 ) ) ) @ ( cis @ ( divide_divide @ real @ ( arg @ C2 ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) )
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= ( one_one @ complex ) ) )
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= C2 ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_4493_modulo__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N
= ( zero_zero @ nat ) ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N
= ( zero_zero @ nat ) ) )
=> ( ( ( ( sgn_sgn @ int @ K )
= ( sgn_sgn @ int @ L ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ M @ N ) ) ) ) )
& ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ L )
@ ( minus_minus @ int
@ ( semiring_1_of_nat @ int
@ ( times_times @ nat @ N
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ N @ M ) ) ) )
@ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ M @ N ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_4494_powr__int,axiom,
! [X: real,I3: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I3 )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ I3 ) )
= ( power_power @ real @ X @ ( nat2 @ I3 ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ I3 )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ I3 ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( nat2 @ ( uminus_uminus @ int @ I3 ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_4495_divide__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N
= ( zero_zero @ nat ) ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( zero_zero @ int ) ) )
& ( ~ ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N
= ( zero_zero @ nat ) ) )
=> ( ( ( ( sgn_sgn @ int @ K )
= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ M @ N ) ) ) )
& ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N ) ) )
= ( uminus_uminus @ int
@ ( semiring_1_of_nat @ int
@ ( plus_plus @ nat @ ( divide_divide @ nat @ M @ N )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_4496_sgn__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( sgn_sgn @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sgn_zero
thf(fact_4497_sgn__0,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( sgn_sgn @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sgn_0
thf(fact_4498_sgn__divide,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( sgn_sgn @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% sgn_divide
thf(fact_4499_power__sgn,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N: nat] :
( ( sgn_sgn @ A @ ( power_power @ A @ A2 @ N ) )
= ( power_power @ A @ ( sgn_sgn @ A @ A2 ) @ N ) ) ) ).
% power_sgn
thf(fact_4500_real__root__zero,axiom,
! [N: nat] :
( ( root @ N @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% real_root_zero
thf(fact_4501_inverse__sgn,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( sgn_sgn @ A @ A2 ) )
= ( sgn_sgn @ A @ A2 ) ) ) ).
% inverse_sgn
thf(fact_4502_sgn__inverse,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( sgn_sgn @ A @ A2 ) ) ) ) ).
% sgn_inverse
thf(fact_4503_sgn__greater,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( sgn_sgn @ A @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% sgn_greater
thf(fact_4504_sgn__less,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( sgn_sgn @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% sgn_less
thf(fact_4505_divide__sgn,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ A2 @ ( sgn_sgn @ A @ B2 ) )
= ( times_times @ A @ A2 @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% divide_sgn
thf(fact_4506_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral @ int @ K ) )
= ( numeral_numeral @ nat @ K ) ) ).
% nat_numeral
thf(fact_4507_real__root__Suc__0,axiom,
! [X: real] :
( ( root @ ( suc @ ( zero_zero @ nat ) ) @ X )
= X ) ).
% real_root_Suc_0
thf(fact_4508_real__root__eq__iff,axiom,
! [N: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( root @ N @ X )
= ( root @ N @ Y ) )
= ( X = Y ) ) ) ).
% real_root_eq_iff
thf(fact_4509_root__0,axiom,
! [X: real] :
( ( root @ ( zero_zero @ nat ) @ X )
= ( zero_zero @ real ) ) ).
% root_0
thf(fact_4510_sgn__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( sgn_sgn @ A @ A2 )
= ( one_one @ A ) ) ) ) ).
% sgn_pos
thf(fact_4511_abs__sgn__eq__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ).
% abs_sgn_eq_1
thf(fact_4512_nat__1,axiom,
( ( nat2 @ ( one_one @ int ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% nat_1
thf(fact_4513_sgn__mult__self__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% sgn_mult_self_eq
thf(fact_4514_real__root__eq__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( root @ N @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% real_root_eq_0_iff
thf(fact_4515_real__root__less__iff,axiom,
! [N: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ).
% real_root_less_iff
thf(fact_4516_nat__0__iff,axiom,
! [I3: int] :
( ( ( nat2 @ I3 )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ int @ I3 @ ( zero_zero @ int ) ) ) ).
% nat_0_iff
thf(fact_4517_nat__le__0,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) )
=> ( ( nat2 @ Z2 )
= ( zero_zero @ nat ) ) ) ).
% nat_le_0
thf(fact_4518_real__root__le__iff,axiom,
! [N: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ).
% real_root_le_iff
thf(fact_4519_zless__nat__conj,axiom,
! [W: int,Z2: int] :
( ( ord_less @ nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
= ( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
& ( ord_less @ int @ W @ Z2 ) ) ) ).
% zless_nat_conj
thf(fact_4520_real__root__eq__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( root @ N @ X )
= ( one_one @ real ) )
= ( X
= ( one_one @ real ) ) ) ) ).
% real_root_eq_1_iff
thf(fact_4521_real__root__one,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( root @ N @ ( one_one @ real ) )
= ( one_one @ real ) ) ) ).
% real_root_one
thf(fact_4522_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) )
= ( zero_zero @ nat ) ) ).
% nat_neg_numeral
thf(fact_4523_sgn__abs,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% sgn_abs
thf(fact_4524_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( abs_abs @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_4525_nat__zminus__int,axiom,
! [N: nat] :
( ( nat2 @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) )
= ( zero_zero @ nat ) ) ).
% nat_zminus_int
thf(fact_4526_int__nat__eq,axiom,
! [Z2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= Z2 ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= ( zero_zero @ int ) ) ) ) ).
% int_nat_eq
thf(fact_4527_of__nat__nat__take__bit__eq,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: nat,K: int] :
( ( semiring_1_of_nat @ A @ ( nat2 @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) )
= ( ring_1_of_int @ A @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ) ).
% of_nat_nat_take_bit_eq
thf(fact_4528_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R2: int] :
( ( dvd_dvd @ int @ L @ ( times_times @ int @ K @ ( sgn_sgn @ int @ R2 ) ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( R2
= ( zero_zero @ int ) ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_4529_dvd__sgn__mult__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd @ int @ L @ ( times_times @ int @ ( sgn_sgn @ int @ R2 ) @ K ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( R2
= ( zero_zero @ int ) ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_4530_mult__sgn__dvd__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ L @ ( sgn_sgn @ int @ R2 ) ) @ K )
= ( ( dvd_dvd @ int @ L @ K )
& ( ( R2
= ( zero_zero @ int ) )
=> ( K
= ( zero_zero @ int ) ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_4531_sgn__mult__dvd__iff,axiom,
! [R2: int,L: int,K: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ ( sgn_sgn @ int @ R2 ) @ L ) @ K )
= ( ( dvd_dvd @ int @ L @ K )
& ( ( R2
= ( zero_zero @ int ) )
=> ( K
= ( zero_zero @ int ) ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_4532_sgn__neg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% sgn_neg
thf(fact_4533_real__root__lt__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( root @ N @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ) ).
% real_root_lt_0_iff
thf(fact_4534_real__root__gt__0__iff,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( root @ N @ Y ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ Y ) ) ) ).
% real_root_gt_0_iff
thf(fact_4535_real__root__le__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( root @ N @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ) ).
% real_root_le_0_iff
thf(fact_4536_real__root__ge__0__iff,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N @ Y ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y ) ) ) ).
% real_root_ge_0_iff
thf(fact_4537_zero__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ).
% zero_less_nat_eq
thf(fact_4538_real__root__lt__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( root @ N @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ).
% real_root_lt_1_iff
thf(fact_4539_real__root__gt__1__iff,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( one_one @ real ) @ ( root @ N @ Y ) )
= ( ord_less @ real @ ( one_one @ real ) @ Y ) ) ) ).
% real_root_gt_1_iff
thf(fact_4540_real__root__ge__1__iff,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ ( root @ N @ Y ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ Y ) ) ) ).
% real_root_ge_1_iff
thf(fact_4541_real__root__le__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( root @ N @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ).
% real_root_le_1_iff
thf(fact_4542_of__nat__nat,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ A @ ( nat2 @ Z2 ) )
= ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_nat_nat
thf(fact_4543_sgn__of__nat,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat] :
( ( sgn_sgn @ A @ ( semiring_1_of_nat @ A @ N ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% sgn_of_nat
thf(fact_4544_diff__nat__numeral,axiom,
! [V: num,V4: num] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ V ) @ ( numeral_numeral @ nat @ V4 ) )
= ( nat2 @ ( minus_minus @ int @ ( numeral_numeral @ int @ V ) @ ( numeral_numeral @ int @ V4 ) ) ) ) ).
% diff_nat_numeral
thf(fact_4545_nat__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X: num,N: nat] :
( ( ( nat2 @ Y )
= ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) )
= ( Y
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_4546_numeral__power__eq__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: int] :
( ( ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N )
= ( nat2 @ Y ) )
= ( ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_4547_nat__ceiling__le__eq,axiom,
! [X: real,A2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) @ A2 )
= ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ A2 ) ) ) ).
% nat_ceiling_le_eq
thf(fact_4548_one__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( one_one @ int ) @ Z2 ) ) ).
% one_less_nat_eq
thf(fact_4549_real__root__pow__pos2,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos2
thf(fact_4550_nat__numeral__diff__1,axiom,
! [V: num] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ V ) @ ( one_one @ nat ) )
= ( nat2 @ ( minus_minus @ int @ ( numeral_numeral @ int @ V ) @ ( one_one @ int ) ) ) ) ).
% nat_numeral_diff_1
thf(fact_4551_nat__less__numeral__power__cancel__iff,axiom,
! [A2: int,X: num,N: nat] :
( ( ord_less @ nat @ ( nat2 @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_4552_numeral__power__less__nat__cancel__iff,axiom,
! [X: num,N: nat,A2: int] :
( ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) @ ( nat2 @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) @ A2 ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_4553_numeral__power__le__nat__cancel__iff,axiom,
! [X: num,N: nat,A2: int] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) @ ( nat2 @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) @ A2 ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_4554_nat__le__numeral__power__cancel__iff,axiom,
! [A2: int,X: num,N: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_4555_same__sgn__sgn__add,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
= ( sgn_sgn @ A @ A2 ) )
=> ( ( sgn_sgn @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( sgn_sgn @ A @ A2 ) ) ) ) ).
% same_sgn_sgn_add
thf(fact_4556_sgn__zero__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( sgn_sgn @ A @ X )
= ( zero_zero @ A ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% sgn_zero_iff
thf(fact_4557_sgn__eq__0__iff,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% sgn_eq_0_iff
thf(fact_4558_sgn__0__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% sgn_0_0
thf(fact_4559_real__root__mult__exp,axiom,
! [M: nat,N: nat,X: real] :
( ( root @ ( times_times @ nat @ M @ N ) @ X )
= ( root @ M @ ( root @ N @ X ) ) ) ).
% real_root_mult_exp
thf(fact_4560_real__root__mult,axiom,
! [N: nat,X: real,Y: real] :
( ( root @ N @ ( times_times @ real @ X @ Y ) )
= ( times_times @ real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ).
% real_root_mult
thf(fact_4561_sgn__mult,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( sgn_sgn @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% sgn_mult
thf(fact_4562_Real__Vector__Spaces_Osgn__mult,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A,Y: A] :
( ( sgn_sgn @ A @ ( times_times @ A @ X @ Y ) )
= ( times_times @ A @ ( sgn_sgn @ A @ X ) @ ( sgn_sgn @ A @ Y ) ) ) ) ).
% Real_Vector_Spaces.sgn_mult
thf(fact_4563_real__root__pos__pos__le,axiom,
! [X: real,N: nat] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N @ X ) ) ) ).
% real_root_pos_pos_le
thf(fact_4564_sgn__not__eq__imp,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
!= ( sgn_sgn @ A @ A2 ) )
=> ( ( ( sgn_sgn @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( ( ( sgn_sgn @ A @ B2 )
!= ( zero_zero @ A ) )
=> ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( sgn_sgn @ A @ B2 ) ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_4565_nat__zero__as__int,axiom,
( ( zero_zero @ nat )
= ( nat2 @ ( zero_zero @ int ) ) ) ).
% nat_zero_as_int
thf(fact_4566_nat__numeral__as__int,axiom,
( ( numeral_numeral @ nat )
= ( ^ [I: num] : ( nat2 @ ( numeral_numeral @ int @ I ) ) ) ) ).
% nat_numeral_as_int
thf(fact_4567_linordered__idom__class_Oabs__sgn,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( abs_abs @ A )
= ( ^ [K3: A] : ( times_times @ A @ K3 @ ( sgn_sgn @ A @ K3 ) ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_4568_abs__mult__sgn,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( sgn_sgn @ A @ A2 ) )
= A2 ) ) ).
% abs_mult_sgn
thf(fact_4569_sgn__mult__abs,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( abs_abs @ A @ A2 ) )
= A2 ) ) ).
% sgn_mult_abs
thf(fact_4570_mult__sgn__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ X ) @ ( abs_abs @ A @ X ) )
= X ) ) ).
% mult_sgn_abs
thf(fact_4571_int__sgnE,axiom,
! [K: int] :
~ ! [N2: nat,L3: int] :
( K
!= ( times_times @ int @ ( sgn_sgn @ int @ L3 ) @ ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% int_sgnE
thf(fact_4572_same__sgn__abs__add,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
= ( sgn_sgn @ A @ A2 ) )
=> ( ( abs_abs @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% same_sgn_abs_add
thf(fact_4573_eq__nat__nat__iff,axiom,
! [Z2: int,Z6: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z6 )
=> ( ( ( nat2 @ Z2 )
= ( nat2 @ Z6 ) )
= ( Z2 = Z6 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_4574_all__nat,axiom,
( ( ^ [P3: nat > $o] :
! [X7: nat] : ( P3 @ X7 ) )
= ( ^ [P4: nat > $o] :
! [X6: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X6 )
=> ( P4 @ ( nat2 @ X6 ) ) ) ) ) ).
% all_nat
thf(fact_4575_ex__nat,axiom,
( ( ^ [P3: nat > $o] :
? [X7: nat] : ( P3 @ X7 ) )
= ( ^ [P4: nat > $o] :
? [X6: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X6 )
& ( P4 @ ( nat2 @ X6 ) ) ) ) ) ).
% ex_nat
thf(fact_4576_nat__one__as__int,axiom,
( ( one_one @ nat )
= ( nat2 @ ( one_one @ int ) ) ) ).
% nat_one_as_int
thf(fact_4577_unset__bit__nat__def,axiom,
( ( bit_se2638667681897837118et_bit @ nat )
= ( ^ [M4: nat,N3: nat] : ( nat2 @ ( bit_se2638667681897837118et_bit @ int @ M4 @ ( semiring_1_of_nat @ int @ N3 ) ) ) ) ) ).
% unset_bit_nat_def
thf(fact_4578_nat__mask__eq,axiom,
! [N: nat] :
( ( nat2 @ ( bit_se2239418461657761734s_mask @ int @ N ) )
= ( bit_se2239418461657761734s_mask @ nat @ N ) ) ).
% nat_mask_eq
thf(fact_4579_real__root__less__mono,axiom,
! [N: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ) ).
% real_root_less_mono
thf(fact_4580_real__root__le__mono,axiom,
! [N: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ) ).
% real_root_le_mono
thf(fact_4581_real__root__power,axiom,
! [N: nat,X: real,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( root @ N @ ( power_power @ real @ X @ K ) )
= ( power_power @ real @ ( root @ N @ X ) @ K ) ) ) ).
% real_root_power
thf(fact_4582_sgn__1__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( one_one @ A ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% sgn_1_pos
thf(fact_4583_real__root__abs,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( root @ N @ ( abs_abs @ real @ X ) )
= ( abs_abs @ real @ ( root @ N @ X ) ) ) ) ).
% real_root_abs
thf(fact_4584_abs__sgn__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( A2
= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( zero_zero @ A ) ) )
& ( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ) ).
% abs_sgn_eq
thf(fact_4585_nat__mono__iff,axiom,
! [Z2: int,W: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less @ nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ W @ Z2 ) ) ) ).
% nat_mono_iff
thf(fact_4586_zless__nat__eq__int__zless,axiom,
! [M: nat,Z2: int] :
( ( ord_less @ nat @ M @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( semiring_1_of_nat @ int @ M ) @ Z2 ) ) ).
% zless_nat_eq_int_zless
thf(fact_4587_int__eq__iff,axiom,
! [M: nat,Z2: int] :
( ( ( semiring_1_of_nat @ int @ M )
= Z2 )
= ( ( M
= ( nat2 @ Z2 ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% int_eq_iff
thf(fact_4588_nat__0__le,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= Z2 ) ) ).
% nat_0_le
thf(fact_4589_nat__int__add,axiom,
! [A2: nat,B2: nat] :
( ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) )
= ( plus_plus @ nat @ A2 @ B2 ) ) ).
% nat_int_add
thf(fact_4590_sgn__mod,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ~ ( dvd_dvd @ int @ L @ K )
=> ( ( sgn_sgn @ int @ ( modulo_modulo @ int @ K @ L ) )
= ( sgn_sgn @ int @ L ) ) ) ) ).
% sgn_mod
thf(fact_4591_int__minus,axiom,
! [N: nat,M: nat] :
( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ N @ M ) )
= ( semiring_1_of_nat @ int @ ( nat2 @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( semiring_1_of_nat @ int @ M ) ) ) ) ) ).
% int_minus
thf(fact_4592_nat__abs__mult__distrib,axiom,
! [W: int,Z2: int] :
( ( nat2 @ ( abs_abs @ int @ ( times_times @ int @ W @ Z2 ) ) )
= ( times_times @ nat @ ( nat2 @ ( abs_abs @ int @ W ) ) @ ( nat2 @ ( abs_abs @ int @ Z2 ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_4593_and__nat__def,axiom,
( ( bit_se5824344872417868541ns_and @ nat )
= ( ^ [M4: nat,N3: nat] : ( nat2 @ ( bit_se5824344872417868541ns_and @ int @ ( semiring_1_of_nat @ int @ M4 ) @ ( semiring_1_of_nat @ int @ N3 ) ) ) ) ) ).
% and_nat_def
thf(fact_4594_nat__plus__as__int,axiom,
( ( plus_plus @ nat )
= ( ^ [A4: nat,B4: nat] : ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_4595_or__nat__def,axiom,
( ( bit_se1065995026697491101ons_or @ nat )
= ( ^ [M4: nat,N3: nat] : ( nat2 @ ( bit_se1065995026697491101ons_or @ int @ ( semiring_1_of_nat @ int @ M4 ) @ ( semiring_1_of_nat @ int @ N3 ) ) ) ) ) ).
% or_nat_def
thf(fact_4596_nat__times__as__int,axiom,
( ( times_times @ nat )
= ( ^ [A4: nat,B4: nat] : ( nat2 @ ( times_times @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_4597_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_4598_nat__minus__as__int,axiom,
( ( minus_minus @ nat )
= ( ^ [A4: nat,B4: nat] : ( nat2 @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_4599_nat__div__as__int,axiom,
( ( divide_divide @ nat )
= ( ^ [A4: nat,B4: nat] : ( nat2 @ ( divide_divide @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_4600_nat__mod__as__int,axiom,
( ( modulo_modulo @ nat )
= ( ^ [A4: nat,B4: nat] : ( nat2 @ ( modulo_modulo @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_4601_real__root__gt__zero,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( root @ N @ X ) ) ) ) ).
% real_root_gt_zero
thf(fact_4602_real__root__strict__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ N @ N5 )
=> ( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_4603_sqrt__def,axiom,
( sqrt
= ( root @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% sqrt_def
thf(fact_4604_sgn__if,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( sgn_sgn @ A )
= ( ^ [X6: A] :
( if @ A
@ ( X6
= ( zero_zero @ A ) )
@ ( zero_zero @ A )
@ ( if @ A @ ( ord_less @ A @ ( zero_zero @ A ) @ X6 ) @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ) ).
% sgn_if
thf(fact_4605_sgn__1__neg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% sgn_1_neg
thf(fact_4606_root__abs__power,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( abs_abs @ real @ ( root @ N @ ( power_power @ real @ Y @ N ) ) )
= ( abs_abs @ real @ Y ) ) ) ).
% root_abs_power
thf(fact_4607_of__nat__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ R2 )
=> ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ ( nat2 @ ( archim6421214686448440834_floor @ A @ R2 ) ) ) @ R2 ) ) ) ).
% of_nat_floor
thf(fact_4608_zsgn__def,axiom,
( ( sgn_sgn @ int )
= ( ^ [I: int] :
( if @ int
@ ( I
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( if @ int @ ( ord_less @ int @ ( zero_zero @ int ) @ I ) @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ) ).
% zsgn_def
thf(fact_4609_nat__less__eq__zless,axiom,
! [W: int,Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( ( ord_less @ nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ W @ Z2 ) ) ) ).
% nat_less_eq_zless
thf(fact_4610_nat__le__eq__zle,axiom,
! [W: int,Z2: int] :
( ( ( ord_less @ int @ ( zero_zero @ int ) @ W )
| ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) )
=> ( ( ord_less_eq @ nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
= ( ord_less_eq @ int @ W @ Z2 ) ) ) ).
% nat_le_eq_zle
thf(fact_4611_norm__sgn,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( X
= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( sgn_sgn @ A @ X ) )
= ( zero_zero @ real ) ) )
& ( ( X
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( sgn_sgn @ A @ X ) )
= ( one_one @ real ) ) ) ) ) ).
% norm_sgn
thf(fact_4612_nat__eq__iff2,axiom,
! [M: nat,W: int] :
( ( M
= ( nat2 @ W ) )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( W
= ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff2
thf(fact_4613_nat__eq__iff,axiom,
! [W: int,M: nat] :
( ( ( nat2 @ W )
= M )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( W
= ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff
thf(fact_4614_le__mult__nat__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ nat @ ( times_times @ nat @ ( nat2 @ ( archim6421214686448440834_floor @ A @ A2 ) ) @ ( nat2 @ ( archim6421214686448440834_floor @ A @ B2 ) ) ) @ ( nat2 @ ( archim6421214686448440834_floor @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% le_mult_nat_floor
thf(fact_4615_split__nat,axiom,
! [P: nat > $o,I3: int] :
( ( P @ ( nat2 @ I3 ) )
= ( ! [N3: nat] :
( ( I3
= ( semiring_1_of_nat @ int @ N3 ) )
=> ( P @ N3 ) )
& ( ( ord_less @ int @ I3 @ ( zero_zero @ int ) )
=> ( P @ ( zero_zero @ nat ) ) ) ) ) ).
% split_nat
thf(fact_4616_le__nat__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ nat @ N @ ( nat2 @ K ) )
= ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N ) @ K ) ) ) ).
% le_nat_iff
thf(fact_4617_nat__add__distrib,axiom,
! [Z2: int,Z6: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z6 )
=> ( ( nat2 @ ( plus_plus @ int @ Z2 @ Z6 ) )
= ( plus_plus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_4618_div__sgn__abs__cancel,axiom,
! [V: int,K: int,L: int] :
( ( V
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ V ) @ ( abs_abs @ int @ K ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ V ) @ ( abs_abs @ int @ L ) ) )
= ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) ) ) ).
% div_sgn_abs_cancel
thf(fact_4619_nat__mult__distrib,axiom,
! [Z2: int,Z6: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( nat2 @ ( times_times @ int @ Z2 @ Z6 ) )
= ( times_times @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ).
% nat_mult_distrib
thf(fact_4620_Suc__as__int,axiom,
( suc
= ( ^ [A4: nat] : ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( one_one @ int ) ) ) ) ) ).
% Suc_as_int
thf(fact_4621_nat__diff__distrib,axiom,
! [Z6: int,Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z6 )
=> ( ( ord_less_eq @ int @ Z6 @ Z2 )
=> ( ( nat2 @ ( minus_minus @ int @ Z2 @ Z6 ) )
= ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_4622_nat__diff__distrib_H,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( minus_minus @ int @ X @ Y ) )
= ( minus_minus @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_4623_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : ( ord_less_eq @ nat @ ( nat2 @ ( abs_abs @ int @ ( plus_plus @ int @ K @ L ) ) ) @ ( plus_plus @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_4624_nat__div__distrib,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( nat2 @ ( divide_divide @ int @ X @ Y ) )
= ( divide_divide @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).
% nat_div_distrib
thf(fact_4625_nat__div__distrib_H,axiom,
! [Y: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( divide_divide @ int @ X @ Y ) )
= ( divide_divide @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).
% nat_div_distrib'
thf(fact_4626_div__dvd__sgn__abs,axiom,
! [L: int,K: int] :
( ( dvd_dvd @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( times_times @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( sgn_sgn @ int @ L ) ) @ ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) ) ) ) ).
% div_dvd_sgn_abs
thf(fact_4627_nat__power__eq,axiom,
! [Z2: int,N: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( nat2 @ ( power_power @ int @ Z2 @ N ) )
= ( power_power @ nat @ ( nat2 @ Z2 ) @ N ) ) ) ).
% nat_power_eq
thf(fact_4628_nat__floor__neg,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= ( zero_zero @ nat ) ) ) ).
% nat_floor_neg
thf(fact_4629_nat__mod__distrib,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( modulo_modulo @ int @ X @ Y ) )
= ( modulo_modulo @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_mod_distrib
thf(fact_4630_div__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ) ).
% div_abs_eq_div_nat
thf(fact_4631_floor__eq3,axiom,
! [N: nat,X: real] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ N ) @ X )
=> ( ( ord_less @ real @ X @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= N ) ) ) ).
% floor_eq3
thf(fact_4632_le__nat__floor,axiom,
! [X: nat,A2: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ X ) @ A2 )
=> ( ord_less_eq @ nat @ X @ ( nat2 @ ( archim6421214686448440834_floor @ real @ A2 ) ) ) ) ).
% le_nat_floor
thf(fact_4633_mod__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( modulo_modulo @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) )
= ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ) ).
% mod_abs_eq_div_nat
thf(fact_4634_nat__take__bit__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( nat2 @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) )
= ( bit_se2584673776208193580ke_bit @ nat @ N @ ( nat2 @ K ) ) ) ) ).
% nat_take_bit_eq
thf(fact_4635_take__bit__nat__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( bit_se2584673776208193580ke_bit @ nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se2584673776208193580ke_bit @ int @ N @ K ) ) ) ) ).
% take_bit_nat_eq
thf(fact_4636_bit__nat__iff,axiom,
! [K: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( nat2 @ K ) @ N )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) ).
% bit_nat_iff
thf(fact_4637_divide__int__def,axiom,
( ( divide_divide @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( if @ int
@ ( ( sgn_sgn @ int @ K3 )
= ( sgn_sgn @ int @ L2 ) )
@ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) )
@ ( uminus_uminus @ int
@ ( semiring_1_of_nat @ int
@ ( plus_plus @ nat @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ int @ L2 @ K3 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_4638_modulo__int__def,axiom,
( ( modulo_modulo @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( if @ int
@ ( ( sgn_sgn @ int @ K3 )
= ( sgn_sgn @ int @ L2 ) )
@ ( times_times @ int @ ( sgn_sgn @ int @ L2 ) @ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) ) )
@ ( times_times @ int @ ( sgn_sgn @ int @ L2 )
@ ( minus_minus @ int
@ ( times_times @ int @ ( abs_abs @ int @ L2 )
@ ( zero_neq_one_of_bool @ int
@ ~ ( dvd_dvd @ int @ L2 @ K3 ) ) )
@ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) ) ) ) ) ) ) ) ).
% modulo_int_def
thf(fact_4639_real__root__pos__pos,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N @ X ) ) ) ) ).
% real_root_pos_pos
thf(fact_4640_real__root__strict__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ N @ N5 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less @ real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_4641_real__root__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ nat @ N @ N5 )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ord_less_eq @ real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_decreasing
thf(fact_4642_real__root__pow__pos,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos
thf(fact_4643_real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( root @ N @ ( power_power @ real @ X @ N ) )
= X ) ) ) ).
% real_root_power_cancel
thf(fact_4644_real__root__pos__unique,axiom,
! [N: nat,Y: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( power_power @ real @ Y @ N )
= X )
=> ( ( root @ N @ X )
= Y ) ) ) ) ).
% real_root_pos_unique
thf(fact_4645_odd__real__root__pow,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_power @ real @ ( root @ N @ X ) @ N )
= X ) ) ).
% odd_real_root_pow
thf(fact_4646_odd__real__root__unique,axiom,
! [N: nat,Y: real,X: real] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ( power_power @ real @ Y @ N )
= X )
=> ( ( root @ N @ X )
= Y ) ) ) ).
% odd_real_root_unique
thf(fact_4647_odd__real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( root @ N @ ( power_power @ real @ X @ N ) )
= X ) ) ).
% odd_real_root_power_cancel
thf(fact_4648_nat__2,axiom,
( ( nat2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% nat_2
thf(fact_4649_Suc__nat__eq__nat__zadd1,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( suc @ ( nat2 @ Z2 ) )
= ( nat2 @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_4650_nat__less__iff,axiom,
! [W: int,M: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( ( ord_less @ nat @ ( nat2 @ W ) @ M )
= ( ord_less @ int @ W @ ( semiring_1_of_nat @ int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_4651_nat__mult__distrib__neg,axiom,
! [Z2: int,Z6: int] :
( ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) )
=> ( ( nat2 @ ( times_times @ int @ Z2 @ Z6 ) )
= ( times_times @ nat @ ( nat2 @ ( uminus_uminus @ int @ Z2 ) ) @ ( nat2 @ ( uminus_uminus @ int @ Z6 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_4652_floor__eq4,axiom,
! [N: nat,X: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N ) @ X )
=> ( ( ord_less @ real @ X @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= N ) ) ) ).
% floor_eq4
thf(fact_4653_diff__nat__eq__if,axiom,
! [Z6: int,Z2: int] :
( ( ( ord_less @ int @ Z6 @ ( zero_zero @ int ) )
=> ( ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) )
= ( nat2 @ Z2 ) ) )
& ( ~ ( ord_less @ int @ Z6 @ ( zero_zero @ int ) )
=> ( ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) )
= ( if @ nat @ ( ord_less @ int @ ( minus_minus @ int @ Z2 @ Z6 ) @ ( zero_zero @ int ) ) @ ( zero_zero @ nat ) @ ( nat2 @ ( minus_minus @ int @ Z2 @ Z6 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_4654_real__root__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ nat @ N @ N5 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_4655_of__int__of__nat,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( ^ [K3: int] : ( if @ A @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ ( nat2 @ ( uminus_uminus @ int @ K3 ) ) ) ) @ ( semiring_1_of_nat @ A @ ( nat2 @ K3 ) ) ) ) ) ) ).
% of_int_of_nat
thf(fact_4656_nat__dvd__iff,axiom,
! [Z2: int,M: nat] :
( ( dvd_dvd @ nat @ ( nat2 @ Z2 ) @ M )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( dvd_dvd @ int @ Z2 @ ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_dvd_iff
thf(fact_4657_eucl__rel__int__remainderI,axiom,
! [R2: int,L: int,K: int,Q2: int] :
( ( ( sgn_sgn @ int @ R2 )
= ( sgn_sgn @ int @ L ) )
=> ( ( ord_less @ int @ ( abs_abs @ int @ R2 ) @ ( abs_abs @ int @ L ) )
=> ( ( K
= ( plus_plus @ int @ ( times_times @ int @ Q2 @ L ) @ R2 ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q2 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_4658_ln__root,axiom,
! [N: nat,B2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( ln_ln @ real @ ( root @ N @ B2 ) )
= ( divide_divide @ real @ ( ln_ln @ real @ B2 ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% ln_root
thf(fact_4659_log__root,axiom,
! [N: nat,A2: real,B2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( log @ B2 @ ( root @ N @ A2 ) )
= ( divide_divide @ real @ ( log @ B2 @ A2 ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ).
% log_root
thf(fact_4660_log__base__root,axiom,
! [N: nat,B2: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( log @ ( root @ N @ B2 ) @ X )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( log @ B2 @ X ) ) ) ) ) ).
% log_base_root
thf(fact_4661_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A12: int,A23: int,A32: product_prod @ int @ int] :
( ? [K3: int] :
( ( A12 = K3 )
& ( A23
= ( zero_zero @ int ) )
& ( A32
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ K3 ) ) )
| ? [L2: int,K3: int,Q4: int] :
( ( A12 = K3 )
& ( A23 = L2 )
& ( A32
= ( product_Pair @ int @ int @ Q4 @ ( zero_zero @ int ) ) )
& ( L2
!= ( zero_zero @ int ) )
& ( K3
= ( times_times @ int @ Q4 @ L2 ) ) )
| ? [R5: int,L2: int,K3: int,Q4: int] :
( ( A12 = K3 )
& ( A23 = L2 )
& ( A32
= ( product_Pair @ int @ int @ Q4 @ R5 ) )
& ( ( sgn_sgn @ int @ R5 )
= ( sgn_sgn @ int @ L2 ) )
& ( ord_less @ int @ ( abs_abs @ int @ R5 ) @ ( abs_abs @ int @ L2 ) )
& ( K3
= ( plus_plus @ int @ ( times_times @ int @ Q4 @ L2 ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_4662_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A33: product_prod @ int @ int] :
( ( eucl_rel_int @ A1 @ A22 @ A33 )
=> ( ( ( A22
= ( zero_zero @ int ) )
=> ( A33
!= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ A1 ) ) )
=> ( ! [Q3: int] :
( ( A33
= ( product_Pair @ int @ int @ Q3 @ ( zero_zero @ int ) ) )
=> ( ( A22
!= ( zero_zero @ int ) )
=> ( A1
!= ( times_times @ int @ Q3 @ A22 ) ) ) )
=> ~ ! [R: int,Q3: int] :
( ( A33
= ( product_Pair @ int @ int @ Q3 @ R ) )
=> ( ( ( sgn_sgn @ int @ R )
= ( sgn_sgn @ int @ A22 ) )
=> ( ( ord_less @ int @ ( abs_abs @ int @ R ) @ ( abs_abs @ int @ A22 ) )
=> ( A1
!= ( plus_plus @ int @ ( times_times @ int @ Q3 @ A22 ) @ R ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_4663_div__noneq__sgn__abs,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ K @ L )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) )
@ ( zero_neq_one_of_bool @ int
@ ~ ( dvd_dvd @ int @ L @ K ) ) ) ) ) ) ).
% div_noneq_sgn_abs
thf(fact_4664_root__powr__inverse,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( root @ N @ X )
= ( powr @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ N ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_4665_even__nat__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( nat2 @ K ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K ) ) ) ).
% even_nat_iff
thf(fact_4666_powr__real__of__int,axiom,
! [X: real,N: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N ) )
= ( power_power @ real @ X @ ( nat2 @ N ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N ) )
= ( inverse_inverse @ real @ ( power_power @ real @ X @ ( nat2 @ ( uminus_uminus @ int @ N ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_4667_sum__count__set,axiom,
! [A: $tType,Xs2: list @ A,X9: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ X9 )
=> ( ( finite_finite @ A @ X9 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ ( count_list @ A @ Xs2 ) @ X9 )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% sum_count_set
thf(fact_4668_arctan__inverse,axiom,
! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( arctan @ ( divide_divide @ real @ ( one_one @ real ) @ X ) )
= ( minus_minus @ real @ ( divide_divide @ real @ ( times_times @ real @ ( sgn_sgn @ real @ X ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( arctan @ X ) ) ) ) ).
% arctan_inverse
thf(fact_4669_cis__multiple__2pi,axiom,
! [N: real] :
( ( member @ real @ N @ ( ring_1_Ints @ real ) )
=> ( ( cis @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ N ) )
= ( one_one @ complex ) ) ) ).
% cis_multiple_2pi
thf(fact_4670_the__elem__def,axiom,
! [A: $tType] :
( ( the_elem @ A )
= ( ^ [X4: set @ A] :
( the @ A
@ ^ [X6: A] :
( X4
= ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% the_elem_def
thf(fact_4671_sgn__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sgn_sgn @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% sgn_le_0_iff
thf(fact_4672_zero__le__sgn__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sgn_sgn @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_le_sgn_iff
thf(fact_4673_frac__eq__0__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( archimedean_frac @ A @ X )
= ( zero_zero @ A ) )
= ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ).
% frac_eq_0_iff
thf(fact_4674_count__notin,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( count_list @ A @ Xs2 @ X )
= ( zero_zero @ nat ) ) ) ).
% count_notin
thf(fact_4675_the__elem__eq,axiom,
! [A: $tType,X: A] :
( ( the_elem @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ).
% the_elem_eq
thf(fact_4676_floor__add2,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( member @ A @ X @ ( ring_1_Ints @ A ) )
| ( member @ A @ Y @ ( ring_1_Ints @ A ) ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) ) ) ) ).
% floor_add2
thf(fact_4677_frac__gt__0__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( archimedean_frac @ A @ X ) )
= ( ~ ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ) ).
% frac_gt_0_iff
thf(fact_4678_Ints__mult,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ B2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( ring_1_Ints @ A ) ) ) ) ) ).
% Ints_mult
thf(fact_4679_Ints__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N: num] : ( member @ A @ ( numeral_numeral @ A @ N ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_numeral
thf(fact_4680_Ints__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_0
thf(fact_4681_Ints__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,N: nat] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( power_power @ A @ A2 @ N ) @ ( ring_1_Ints @ A ) ) ) ) ).
% Ints_power
thf(fact_4682_Ints__add,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ B2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( ring_1_Ints @ A ) ) ) ) ) ).
% Ints_add
thf(fact_4683_Ints__double__eq__0__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( ( plus_plus @ A @ A2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_4684_sgn__root,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( sgn_sgn @ real @ ( root @ N @ X ) )
= ( sgn_sgn @ real @ X ) ) ) ).
% sgn_root
thf(fact_4685_Ints__odd__nonzero,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ A2 )
!= ( zero_zero @ A ) ) ) ) ).
% Ints_odd_nonzero
thf(fact_4686_of__int__divide__in__Ints,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: int,A2: int] :
( ( dvd_dvd @ int @ B2 @ A2 )
=> ( member @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ A2 ) @ ( ring_1_of_int @ A @ B2 ) ) @ ( ring_1_Ints @ A ) ) ) ) ).
% of_int_divide_in_Ints
thf(fact_4687_cis__Arg,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( cis @ ( arg @ Z2 ) )
= ( sgn_sgn @ complex @ Z2 ) ) ) ).
% cis_Arg
thf(fact_4688_sgn__real__def,axiom,
( ( sgn_sgn @ real )
= ( ^ [A4: real] :
( if @ real
@ ( A4
= ( zero_zero @ real ) )
@ ( zero_zero @ real )
@ ( if @ real @ ( ord_less @ real @ ( zero_zero @ real ) @ A4 ) @ ( one_one @ real ) @ ( uminus_uminus @ real @ ( one_one @ real ) ) ) ) ) ) ).
% sgn_real_def
thf(fact_4689_count__le__length,axiom,
! [A: $tType,Xs2: list @ A,X: A] : ( ord_less_eq @ nat @ ( count_list @ A @ Xs2 @ X ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% count_le_length
thf(fact_4690_Ints__odd__less__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( ord_less @ A @ ( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% Ints_odd_less_0
thf(fact_4691_Ints__nonzero__abs__ge1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( X
!= ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( abs_abs @ A @ X ) ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_4692_Ints__nonzero__abs__less1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( ord_less @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) )
=> ( X
= ( zero_zero @ A ) ) ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_4693_Ints__eq__abs__less1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ Y @ ( ring_1_Ints @ A ) )
=> ( ( X = Y )
= ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ Y ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_4694_sin__times__pi__eq__0,axiom,
! [X: real] :
( ( ( sin @ real @ ( times_times @ real @ X @ pi ) )
= ( zero_zero @ real ) )
= ( member @ real @ X @ ( ring_1_Ints @ real ) ) ) ).
% sin_times_pi_eq_0
thf(fact_4695_sgn__power__injE,axiom,
! [A2: real,N: nat,X: real,B2: real] :
( ( ( times_times @ real @ ( sgn_sgn @ real @ A2 ) @ ( power_power @ real @ ( abs_abs @ real @ A2 ) @ N ) )
= X )
=> ( ( X
= ( times_times @ real @ ( sgn_sgn @ real @ B2 ) @ ( power_power @ real @ ( abs_abs @ real @ B2 ) @ N ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( A2 = B2 ) ) ) ) ).
% sgn_power_injE
thf(fact_4696_frac__neg,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( archimedean_frac @ A @ ( uminus_uminus @ A @ X ) )
= ( zero_zero @ A ) ) )
& ( ~ ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( archimedean_frac @ A @ ( uminus_uminus @ A @ X ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( archimedean_frac @ A @ X ) ) ) ) ) ) ).
% frac_neg
thf(fact_4697_sgn__power__root,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( times_times @ real @ ( sgn_sgn @ real @ ( root @ N @ X ) ) @ ( power_power @ real @ ( abs_abs @ real @ ( root @ N @ X ) ) @ N ) )
= X ) ) ).
% sgn_power_root
thf(fact_4698_root__sgn__power,axiom,
! [N: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( root @ N @ ( times_times @ real @ ( sgn_sgn @ real @ Y ) @ ( power_power @ real @ ( abs_abs @ real @ Y ) @ N ) ) )
= Y ) ) ).
% root_sgn_power
thf(fact_4699_le__mult__floor__Ints,axiom,
! [A: $tType,B: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( linordered_idom @ A ) )
=> ! [A2: B,B2: B] :
( ( ord_less_eq @ B @ ( zero_zero @ B ) @ A2 )
=> ( ( member @ B @ A2 @ ( ring_1_Ints @ B ) )
=> ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( times_times @ int @ ( archim6421214686448440834_floor @ B @ A2 ) @ ( archim6421214686448440834_floor @ B @ B2 ) ) ) @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ B @ ( times_times @ B @ A2 @ B2 ) ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_4700_frac__unique__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: A] :
( ( ( archimedean_frac @ A @ X )
= A2 )
= ( ( member @ A @ ( minus_minus @ A @ X @ A2 ) @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ A2 @ ( one_one @ A ) ) ) ) ) ).
% frac_unique_iff
thf(fact_4701_mult__ceiling__le__Ints,axiom,
! [A: $tType,B: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( linordered_idom @ A ) )
=> ! [A2: B,B2: B] :
( ( ord_less_eq @ B @ ( zero_zero @ B ) @ A2 )
=> ( ( member @ B @ A2 @ ( ring_1_Ints @ B ) )
=> ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ B @ ( times_times @ B @ A2 @ B2 ) ) ) @ ( ring_1_of_int @ A @ ( times_times @ int @ ( archimedean_ceiling @ B @ A2 ) @ ( archimedean_ceiling @ B @ B2 ) ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_4702_split__root,axiom,
! [P: real > $o,N: nat,X: real] :
( ( P @ ( root @ N @ X ) )
= ( ( ( N
= ( zero_zero @ nat ) )
=> ( P @ ( zero_zero @ real ) ) )
& ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ! [Y6: real] :
( ( ( times_times @ real @ ( sgn_sgn @ real @ Y6 ) @ ( power_power @ real @ ( abs_abs @ real @ Y6 ) @ N ) )
= X )
=> ( P @ Y6 ) ) ) ) ) ).
% split_root
thf(fact_4703_floor__real__def,axiom,
( ( archim6421214686448440834_floor @ real )
= ( ^ [X6: real] :
( the @ int
@ ^ [Z3: int] :
( ( ord_less_eq @ real @ ( ring_1_of_int @ real @ Z3 ) @ X6 )
& ( ord_less @ real @ X6 @ ( ring_1_of_int @ real @ ( plus_plus @ int @ Z3 @ ( one_one @ int ) ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_4704_sin__integer__2pi,axiom,
! [N: real] :
( ( member @ real @ N @ ( ring_1_Ints @ real ) )
=> ( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ N ) )
= ( zero_zero @ real ) ) ) ).
% sin_integer_2pi
thf(fact_4705_cos__integer__2pi,axiom,
! [N: real] :
( ( member @ real @ N @ ( ring_1_Ints @ real ) )
=> ( ( cos @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ N ) )
= ( one_one @ real ) ) ) ).
% cos_integer_2pi
thf(fact_4706_Arg__correct,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( ( sgn_sgn @ complex @ Z2 )
= ( cis @ ( arg @ Z2 ) ) )
& ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ ( arg @ Z2 ) )
& ( ord_less_eq @ real @ ( arg @ Z2 ) @ pi ) ) ) ).
% Arg_correct
thf(fact_4707_Arg__def,axiom,
( arg
= ( ^ [Z3: complex] :
( if @ real
@ ( Z3
= ( zero_zero @ complex ) )
@ ( zero_zero @ real )
@ ( fChoice @ real
@ ^ [A4: real] :
( ( ( sgn_sgn @ complex @ Z3 )
= ( cis @ A4 ) )
& ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ A4 )
& ( ord_less_eq @ real @ A4 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_4708_xor__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se5824344971392196577ns_xor @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ N @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_4709_Suc__0__xor__eq,axiom,
! [N: nat] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( minus_minus @ nat @ ( plus_plus @ nat @ N @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_4710_bit_Oxor__left__self,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( bit_se5824344971392196577ns_xor @ A @ X @ Y ) )
= Y ) ) ).
% bit.xor_left_self
thf(fact_4711_xor_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% xor.right_neutral
thf(fact_4712_xor_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% xor.left_neutral
thf(fact_4713_xor__self__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% xor_self_eq
thf(fact_4714_bit_Oxor__self,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ X )
= ( zero_zero @ A ) ) ) ).
% bit.xor_self
thf(fact_4715_take__bit__xor,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) ) ) ) ).
% take_bit_xor
thf(fact_4716_xor__numerals_I3_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% xor_numerals(3)
thf(fact_4717_xor__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ X ) ) ) ) ).
% xor_numerals(8)
thf(fact_4718_xor__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% xor_numerals(5)
thf(fact_4719_xor__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit0 @ Y ) ) ) ) ).
% xor_numerals(2)
thf(fact_4720_xor__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% xor_numerals(1)
thf(fact_4721_xor__numerals_I7_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ).
% xor_numerals(7)
thf(fact_4722_xor__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% xor_nat_numerals(1)
thf(fact_4723_xor__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ Y ) ) ) ).
% xor_nat_numerals(2)
thf(fact_4724_xor__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% xor_nat_numerals(3)
thf(fact_4725_xor__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ X ) ) ) ).
% xor_nat_numerals(4)
thf(fact_4726_xor__numerals_I6_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_4727_xor__numerals_I4_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_4728_some__in__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( member @ A
@ ( fChoice @ A
@ ^ [X6: A] : ( member @ A @ X6 @ A3 ) )
@ A3 )
= ( A3
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% some_in_eq
thf(fact_4729_of__nat__xor__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se5824344971392196577ns_xor @ nat @ M @ N ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_xor_eq
thf(fact_4730_of__int__xor__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: int,L: int] :
( ( ring_1_of_int @ A @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( ring_1_of_int @ A @ K ) @ ( ring_1_of_int @ A @ L ) ) ) ) ).
% of_int_xor_eq
thf(fact_4731_verit__sko__forall__indirect2,axiom,
! [A: $tType,X: A,P: A > $o,P6: A > $o] :
( ( X
= ( fChoice @ A
@ ^ [X6: A] :
~ ( P @ X6 ) ) )
=> ( ! [X5: A] :
( ( P @ X5 )
= ( P6 @ X5 ) )
=> ( ( ! [X4: A] : ( P6 @ X4 ) )
= ( P @ X ) ) ) ) ).
% verit_sko_forall_indirect2
thf(fact_4732_verit__sko__forall__indirect,axiom,
! [A: $tType,X: A,P: A > $o] :
( ( X
= ( fChoice @ A
@ ^ [X6: A] :
~ ( P @ X6 ) ) )
=> ( ( ! [X4: A] : ( P @ X4 ) )
= ( P @ X ) ) ) ).
% verit_sko_forall_indirect
thf(fact_4733_verit__sko__ex__indirect2,axiom,
! [A: $tType,X: A,P: A > $o,P6: A > $o] :
( ( X
= ( fChoice @ A @ P ) )
=> ( ! [X5: A] :
( ( P @ X5 )
= ( P6 @ X5 ) )
=> ( ( ? [X4: A] : ( P6 @ X4 ) )
= ( P @ X ) ) ) ) ).
% verit_sko_ex_indirect2
thf(fact_4734_verit__sko__ex__indirect,axiom,
! [A: $tType,X: A,P: A > $o] :
( ( X
= ( fChoice @ A @ P ) )
=> ( ( ? [X4: A] : ( P @ X4 ) )
= ( P @ X ) ) ) ).
% verit_sko_ex_indirect
thf(fact_4735_verit__sko__forall_H_H,axiom,
! [A: $tType,B3: A,A3: A,P: A > $o] :
( ( B3 = A3 )
=> ( ( ( fChoice @ A @ P )
= A3 )
= ( ( fChoice @ A @ P )
= B3 ) ) ) ).
% verit_sko_forall''
thf(fact_4736_verit__sko__forall_H,axiom,
! [A: $tType,P: A > $o,A3: $o] :
( ( ( P
@ ( fChoice @ A
@ ^ [X6: A] :
~ ( P @ X6 ) ) )
= A3 )
=> ( ( ! [X4: A] : ( P @ X4 ) )
= A3 ) ) ).
% verit_sko_forall'
thf(fact_4737_verit__sko__forall,axiom,
! [A: $tType] :
( ( ^ [P3: A > $o] :
! [X7: A] : ( P3 @ X7 ) )
= ( ^ [P4: A > $o] :
( P4
@ ( fChoice @ A
@ ^ [X6: A] :
~ ( P4 @ X6 ) ) ) ) ) ).
% verit_sko_forall
thf(fact_4738_verit__sko__ex_H,axiom,
! [A: $tType,P: A > $o,A3: $o] :
( ( ( P @ ( fChoice @ A @ P ) )
= A3 )
=> ( ( ? [X4: A] : ( P @ X4 ) )
= A3 ) ) ).
% verit_sko_ex'
thf(fact_4739_xor_Oassoc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) @ C2 )
= ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( bit_se5824344971392196577ns_xor @ A @ B2 @ C2 ) ) ) ) ).
% xor.assoc
thf(fact_4740_xor_Ocommute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5824344971392196577ns_xor @ A )
= ( ^ [A4: A,B4: A] : ( bit_se5824344971392196577ns_xor @ A @ B4 @ A4 ) ) ) ) ).
% xor.commute
thf(fact_4741_xor_Oleft__commute,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ B2 @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ C2 ) )
= ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( bit_se5824344971392196577ns_xor @ A @ B2 @ C2 ) ) ) ) ).
% xor.left_commute
thf(fact_4742_bit__xor__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
!= ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) ) ) ) ).
% bit_xor_iff
thf(fact_4743_bit_Oconj__xor__distrib2,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se5824344971392196577ns_xor @ A @ Y @ Z2 ) @ X )
= ( bit_se5824344971392196577ns_xor @ A @ ( bit_se5824344872417868541ns_and @ A @ Y @ X ) @ ( bit_se5824344872417868541ns_and @ A @ Z2 @ X ) ) ) ) ).
% bit.conj_xor_distrib2
thf(fact_4744_bit_Oconj__xor__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( bit_se5824344971392196577ns_xor @ A @ Y @ Z2 ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( bit_se5824344872417868541ns_and @ A @ X @ Y ) @ ( bit_se5824344872417868541ns_and @ A @ X @ Z2 ) ) ) ) ).
% bit.conj_xor_distrib
thf(fact_4745_even__xor__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_xor_iff
thf(fact_4746_xor__nat__unfold,axiom,
( ( bit_se5824344971392196577ns_xor @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( M4
= ( zero_zero @ nat ) )
@ N3
@ ( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ M4
@ ( plus_plus @ nat @ ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( modulo_modulo @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_4747_xor__nat__rec,axiom,
( ( bit_se5824344971392196577ns_xor @ nat )
= ( ^ [M4: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M4 ) )
!= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ nat @ ( divide_divide @ nat @ M4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_4748_one__xor__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ A2 )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) )
@ ( zero_neq_one_of_bool @ A
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% one_xor_eq
thf(fact_4749_xor__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( one_one @ A ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) )
@ ( zero_neq_one_of_bool @ A
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% xor_one_eq
thf(fact_4750_horner__sum__of__bool__2__less,axiom,
! [Bs: list @ $o] : ( ord_less @ int @ ( groups4207007520872428315er_sum @ $o @ int @ ( zero_neq_one_of_bool @ int ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Bs ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( size_size @ ( list @ $o ) @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_4751_push__bit__numeral__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( numeral_numeral @ nat @ N ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ N ) ) ) ) ) ).
% push_bit_numeral_minus_1
thf(fact_4752_bit__horner__sum__bit__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Bs: list @ $o,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Bs ) @ N )
= ( ( ord_less @ nat @ N @ ( size_size @ ( list @ $o ) @ Bs ) )
& ( nth @ $o @ Bs @ N ) ) ) ) ).
% bit_horner_sum_bit_iff
thf(fact_4753_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se4730199178511100633sh_bit @ int @ N @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_4754_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se4730199178511100633sh_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% push_bit_negative_int_iff
thf(fact_4755_push__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% push_bit_of_0
thf(fact_4756_push__bit__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,A2: A] :
( ( ( bit_se4730199178511100633sh_bit @ A @ N @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% push_bit_eq_0_iff
thf(fact_4757_push__bit__push__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) )
= ( bit_se4730199178511100633sh_bit @ A @ ( plus_plus @ nat @ M @ N ) @ A2 ) ) ) ).
% push_bit_push_bit
thf(fact_4758_push__bit__and,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) @ ( bit_se4730199178511100633sh_bit @ A @ N @ B2 ) ) ) ) ).
% push_bit_and
thf(fact_4759_push__bit__or,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) @ ( bit_se4730199178511100633sh_bit @ A @ N @ B2 ) ) ) ) ).
% push_bit_or
thf(fact_4760_push__bit__xor,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) @ ( bit_se4730199178511100633sh_bit @ A @ N @ B2 ) ) ) ) ).
% push_bit_xor
thf(fact_4761_concat__bit__of__zero__1,axiom,
! [N: nat,L: int] :
( ( bit_concat_bit @ N @ ( zero_zero @ int ) @ L )
= ( bit_se4730199178511100633sh_bit @ int @ N @ L ) ) ).
% concat_bit_of_zero_1
thf(fact_4762_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_4763_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
!= ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% xor_negative_int_iff
thf(fact_4764_push__bit__Suc__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N ) @ ( numeral_numeral @ A @ K ) )
= ( bit_se4730199178511100633sh_bit @ A @ N @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_Suc_numeral
thf(fact_4765_push__bit__Suc__minus__numeral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( bit_se4730199178511100633sh_bit @ A @ N @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ) ).
% push_bit_Suc_minus_numeral
thf(fact_4766_push__bit__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [L: num,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ K ) )
= ( bit_se4730199178511100633sh_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_numeral
thf(fact_4767_push__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se4730199178511100633sh_bit @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ).
% push_bit_of_Suc_0
thf(fact_4768_push__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N ) @ A2 )
= ( bit_se4730199178511100633sh_bit @ A @ N @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% push_bit_Suc
thf(fact_4769_push__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( one_one @ A ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% push_bit_of_1
thf(fact_4770_even__push__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) )
= ( ( N
!= ( zero_zero @ nat ) )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_push_bit_iff
thf(fact_4771_push__bit__minus__numeral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [L: num,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( bit_se4730199178511100633sh_bit @ A @ ( pred_numeral @ L ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ) ).
% push_bit_minus_numeral
thf(fact_4772_flip__bit__int__def,axiom,
( ( bit_se8732182000553998342ip_bit @ int )
= ( ^ [N3: nat,K3: int] : ( bit_se5824344971392196577ns_xor @ int @ K3 @ ( bit_se4730199178511100633sh_bit @ int @ N3 @ ( one_one @ int ) ) ) ) ) ).
% flip_bit_int_def
thf(fact_4773_bit__xor__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) @ N )
= ( ( bit_se5641148757651400278ts_bit @ int @ K @ N )
!= ( bit_se5641148757651400278ts_bit @ int @ L @ N ) ) ) ).
% bit_xor_int_iff
thf(fact_4774_push__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se4730199178511100633sh_bit @ nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se4730199178511100633sh_bit @ int @ N @ K ) ) ) ).
% push_bit_nat_eq
thf(fact_4775_push__bit__minus,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) ) ) ) ).
% push_bit_minus
thf(fact_4776_push__bit__of__int,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,K: int] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( ring_1_of_int @ A @ K ) )
= ( ring_1_of_int @ A @ ( bit_se4730199178511100633sh_bit @ int @ N @ K ) ) ) ) ).
% push_bit_of_int
thf(fact_4777_of__nat__push__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se4730199178511100633sh_bit @ nat @ M @ N ) )
= ( bit_se4730199178511100633sh_bit @ A @ M @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_push_bit
thf(fact_4778_push__bit__of__nat,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,M: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( semiring_1_of_nat @ A @ M ) )
= ( semiring_1_of_nat @ A @ ( bit_se4730199178511100633sh_bit @ nat @ N @ M ) ) ) ) ).
% push_bit_of_nat
thf(fact_4779_push__bit__add,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) @ ( bit_se4730199178511100633sh_bit @ A @ N @ B2 ) ) ) ) ).
% push_bit_add
thf(fact_4780_XOR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344971392196577ns_xor @ int @ X @ Y ) ) ) ) ).
% XOR_lower
thf(fact_4781_push__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ ( plus_plus @ nat @ M @ N ) @ ( bit_se4730199178511100633sh_bit @ A @ M @ A2 ) ) ) ) ).
% push_bit_take_bit
thf(fact_4782_take__bit__push__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) )
= ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se2584673776208193580ke_bit @ A @ ( minus_minus @ nat @ M @ N ) @ A2 ) ) ) ) ).
% take_bit_push_bit
thf(fact_4783_set__bit__nat__def,axiom,
( ( bit_se5668285175392031749et_bit @ nat )
= ( ^ [M4: nat,N3: nat] : ( bit_se1065995026697491101ons_or @ nat @ N3 @ ( bit_se4730199178511100633sh_bit @ nat @ M4 @ ( one_one @ nat ) ) ) ) ) ).
% set_bit_nat_def
thf(fact_4784_flip__bit__nat__def,axiom,
( ( bit_se8732182000553998342ip_bit @ nat )
= ( ^ [M4: nat,N3: nat] : ( bit_se5824344971392196577ns_xor @ nat @ N3 @ ( bit_se4730199178511100633sh_bit @ nat @ M4 @ ( one_one @ nat ) ) ) ) ) ).
% flip_bit_nat_def
thf(fact_4785_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_se4730199178511100633sh_bit @ int @ M @ K ) @ N )
= ( ( ord_less_eq @ nat @ M @ N )
& ( bit_se5641148757651400278ts_bit @ int @ K @ ( minus_minus @ nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_4786_xor__nat__def,axiom,
( ( bit_se5824344971392196577ns_xor @ nat )
= ( ^ [M4: nat,N3: nat] : ( nat2 @ ( bit_se5824344971392196577ns_xor @ int @ ( semiring_1_of_nat @ int @ M4 ) @ ( semiring_1_of_nat @ int @ N3 ) ) ) ) ) ).
% xor_nat_def
thf(fact_4787_bit__push__bit__iff__nat,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( bit_se4730199178511100633sh_bit @ nat @ M @ Q2 ) @ N )
= ( ( ord_less_eq @ nat @ M @ N )
& ( bit_se5641148757651400278ts_bit @ nat @ Q2 @ ( minus_minus @ nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_4788_concat__bit__eq,axiom,
( bit_concat_bit
= ( ^ [N3: nat,K3: int,L2: int] : ( plus_plus @ int @ ( bit_se2584673776208193580ke_bit @ int @ N3 @ K3 ) @ ( bit_se4730199178511100633sh_bit @ int @ N3 @ L2 ) ) ) ) ).
% concat_bit_eq
thf(fact_4789_set__bit__eq__or,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5668285175392031749et_bit @ A )
= ( ^ [N3: nat,A4: A] : ( bit_se1065995026697491101ons_or @ A @ A4 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ).
% set_bit_eq_or
thf(fact_4790_concat__bit__def,axiom,
( bit_concat_bit
= ( ^ [N3: nat,K3: int,L2: int] : ( bit_se1065995026697491101ons_or @ int @ ( bit_se2584673776208193580ke_bit @ int @ N3 @ K3 ) @ ( bit_se4730199178511100633sh_bit @ int @ N3 @ L2 ) ) ) ) ).
% concat_bit_def
thf(fact_4791_flip__bit__eq__xor,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se8732182000553998342ip_bit @ A )
= ( ^ [N3: nat,A4: A] : ( bit_se5824344971392196577ns_xor @ A @ A4 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ).
% flip_bit_eq_xor
thf(fact_4792_set__bit__int__def,axiom,
( ( bit_se5668285175392031749et_bit @ int )
= ( ^ [N3: nat,K3: int] : ( bit_se1065995026697491101ons_or @ int @ K3 @ ( bit_se4730199178511100633sh_bit @ int @ N3 @ ( one_one @ int ) ) ) ) ) ).
% set_bit_int_def
thf(fact_4793_push__bit__double,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( times_times @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ A2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% push_bit_double
thf(fact_4794_bit__iff__and__push__bit__not__eq__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A4: A,N3: nat] :
( ( bit_se5824344872417868541ns_and @ A @ A4 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) )
!= ( zero_zero @ A ) ) ) ) ) ).
% bit_iff_and_push_bit_not_eq_0
thf(fact_4795_push__bit__nat__def,axiom,
( ( bit_se4730199178511100633sh_bit @ nat )
= ( ^ [N3: nat,M4: nat] : ( times_times @ nat @ M4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% push_bit_nat_def
thf(fact_4796_push__bit__int__def,axiom,
( ( bit_se4730199178511100633sh_bit @ int )
= ( ^ [N3: nat,K3: int] : ( times_times @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% push_bit_int_def
thf(fact_4797_push__bit__eq__mult,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4730199178511100633sh_bit @ A )
= ( ^ [N3: nat,A4: A] : ( times_times @ A @ A4 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% push_bit_eq_mult
thf(fact_4798_exp__dvdE,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ A2 )
=> ~ ! [B6: A] :
( A2
!= ( bit_se4730199178511100633sh_bit @ A @ N @ B6 ) ) ) ) ).
% exp_dvdE
thf(fact_4799_push__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se4730199178511100633sh_bit @ int @ N @ ( uminus_uminus @ int @ ( one_one @ int ) ) )
= ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ).
% push_bit_minus_one
thf(fact_4800_XOR__upper,axiom,
! [X: int,N: nat,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ X @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ( ord_less @ int @ Y @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) )
=> ( ord_less @ int @ ( bit_se5824344971392196577ns_xor @ int @ X @ Y ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N ) ) ) ) ) ).
% XOR_upper
thf(fact_4801_signed__take__bit__code,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4674362597316999326ke_bit @ A )
= ( ^ [N3: nat,A4: A] : ( if @ A @ ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A4 ) @ N3 ) @ ( plus_plus @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A4 ) @ ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N3 ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A4 ) ) ) ) ) ).
% signed_take_bit_code
thf(fact_4802_xor__int__rec,axiom,
( ( bit_se5824344971392196577ns_xor @ int )
= ( ^ [K3: int,L2: int] :
( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 ) )
!= ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% xor_int_rec
thf(fact_4803_xor__int__unfold,axiom,
( ( bit_se5824344971392196577ns_xor @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ ( bit_ri4277139882892585799ns_not @ int @ L2 )
@ ( if @ int
@ ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ ( bit_ri4277139882892585799ns_not @ int @ K3 )
@ ( if @ int
@ ( K3
= ( zero_zero @ int ) )
@ L2
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
thf(fact_4804_sum__diff1_H__aux,axiom,
! [B: $tType,A: $tType] :
( ( ab_group_add @ B )
=> ! [F3: set @ A,I6: set @ A,F2: A > B,I3: A] :
( ( finite_finite @ A @ F3 )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [I: A] :
( ( member @ A @ I @ I6 )
& ( ( F2 @ I )
!= ( zero_zero @ B ) ) ) )
@ F3 )
=> ( ( ( member @ A @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I6 @ ( insert @ A @ I3 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ B @ ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I6 ) @ ( F2 @ I3 ) ) ) )
& ( ~ ( member @ A @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I6 @ ( insert @ A @ I3 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I6 ) ) ) ) ) ) ) ).
% sum_diff1'_aux
thf(fact_4805_Sum__Ico__nat,axiom,
! [M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( divide_divide @ nat @ ( minus_minus @ nat @ ( times_times @ nat @ N @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) @ ( times_times @ nat @ M @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Sum_Ico_nat
thf(fact_4806_bit_Odouble__compl,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= X ) ) ).
% bit.double_compl
thf(fact_4807_bit_Ocompl__eq__compl__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( ( bit_ri4277139882892585799ns_not @ A @ X )
= ( bit_ri4277139882892585799ns_not @ A @ Y ) )
= ( X = Y ) ) ) ).
% bit.compl_eq_compl_iff
thf(fact_4808_bit_Oxor__compl__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ Y )
= ( bit_ri4277139882892585799ns_not @ A @ ( bit_se5824344971392196577ns_xor @ A @ X @ Y ) ) ) ) ).
% bit.xor_compl_left
thf(fact_4809_bit_Oxor__compl__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ Y ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( bit_se5824344971392196577ns_xor @ A @ X @ Y ) ) ) ) ).
% bit.xor_compl_right
thf(fact_4810_atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I3: A,L: A,U: A] :
( ( member @ A @ I3 @ ( set_or7035219750837199246ssThan @ A @ L @ U ) )
= ( ( ord_less_eq @ A @ L @ I3 )
& ( ord_less @ A @ I3 @ U ) ) ) ) ).
% atLeastLessThan_iff
thf(fact_4811_atLeastLessThan__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastLessThan_empty
thf(fact_4812_atLeastLessThan__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) )
= ( ~ ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% atLeastLessThan_empty_iff2
thf(fact_4813_atLeastLessThan__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% atLeastLessThan_empty_iff
thf(fact_4814_infinite__Ico__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ico_iff
thf(fact_4815_bit_Oconj__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( zero_zero @ A ) ) ) ).
% bit.conj_cancel_left
thf(fact_4816_bit_Oconj__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( zero_zero @ A ) ) ) ).
% bit.conj_cancel_right
thf(fact_4817_sum_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [P2: B > A] :
( ( groups1027152243600224163dd_sum @ B @ A @ P2 @ ( bot_bot @ ( set @ B ) ) )
= ( zero_zero @ A ) ) ) ).
% sum.empty'
thf(fact_4818_bit_Ode__Morgan__disj,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( bit_se1065995026697491101ons_or @ A @ X @ Y ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ ( bit_ri4277139882892585799ns_not @ A @ Y ) ) ) ) ).
% bit.de_Morgan_disj
thf(fact_4819_bit_Ode__Morgan__conj,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( bit_se5824344872417868541ns_and @ A @ X @ Y ) )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ ( bit_ri4277139882892585799ns_not @ A @ Y ) ) ) ) ).
% bit.de_Morgan_conj
thf(fact_4820_bit_Ocompl__zero,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( zero_zero @ A ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.compl_zero
thf(fact_4821_bit_Ocompl__one,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% bit.compl_one
thf(fact_4822_bit_Odisj__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_cancel_right
thf(fact_4823_bit_Odisj__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_cancel_left
thf(fact_4824_bit_Oxor__one__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
= ( bit_ri4277139882892585799ns_not @ A @ X ) ) ) ).
% bit.xor_one_left
thf(fact_4825_bit_Oxor__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ X ) ) ) ).
% bit.xor_one_right
thf(fact_4826_bit_Oxor__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.xor_cancel_left
thf(fact_4827_bit_Oxor__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.xor_cancel_right
thf(fact_4828_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less @ int @ ( bit_ri4277139882892585799ns_not @ int @ K ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% not_negative_int_iff
thf(fact_4829_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ K ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% not_nonnegative_int_iff
thf(fact_4830_minus__not__numeral__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( uminus_uminus @ A @ ( bit_ri4277139882892585799ns_not @ A @ ( numeral_numeral @ A @ N ) ) )
= ( numeral_numeral @ A @ ( inc @ N ) ) ) ) ).
% minus_not_numeral_eq
thf(fact_4831_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ M ) )
= ( insert @ nat @ M @ ( bot_bot @ ( set @ nat ) ) ) ) ).
% atLeastLessThan_singleton
thf(fact_4832_even__not__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_not_iff
thf(fact_4833_push__bit__minus__one__eq__not__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ).
% push_bit_minus_one_eq_not_mask
thf(fact_4834_sum_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I6: set @ B,P2: B > A,I3: B] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( P2 @ X6 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( ( member @ B @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ P2 @ ( insert @ B @ I3 @ I6 ) )
= ( groups1027152243600224163dd_sum @ B @ A @ P2 @ I6 ) ) )
& ( ~ ( member @ B @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ P2 @ ( insert @ B @ I3 @ I6 ) )
= ( plus_plus @ A @ ( P2 @ I3 ) @ ( groups1027152243600224163dd_sum @ B @ A @ P2 @ I6 ) ) ) ) ) ) ) ).
% sum.insert'
thf(fact_4835_not__one__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% not_one_eq
thf(fact_4836_sum_Oop__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_4837_prod_Oop__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ N @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ) ).
% prod.op_ivl_Suc
thf(fact_4838_or__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( bit_se5824344872417868541ns_and @ int @ ( minus_minus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( minus_minus @ int @ ( numeral_numeral @ int @ N ) @ ( one_one @ int ) ) ) ) ) ).
% or_minus_minus_numerals
thf(fact_4839_and__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( bit_se1065995026697491101ons_or @ int @ ( minus_minus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( minus_minus @ int @ ( numeral_numeral @ int @ N ) @ ( one_one @ int ) ) ) ) ) ).
% and_minus_minus_numerals
thf(fact_4840_sum_Onon__neutral_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,I6: set @ B] :
( ( groups1027152243600224163dd_sum @ B @ A @ G
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( G @ X6 )
!= ( zero_zero @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ I6 ) ) ) ).
% sum.non_neutral'
thf(fact_4841_of__int__not__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: int] :
( ( ring_1_of_int @ A @ ( bit_ri4277139882892585799ns_not @ int @ K ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( ring_1_of_int @ A @ K ) ) ) ) ).
% of_int_not_eq
thf(fact_4842_atLeastLessThan__inj_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( B2 = D2 ) ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_4843_atLeastLessThan__inj_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( A2 = C2 ) ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_4844_atLeastLessThan__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( A2 = C2 )
& ( B2 = D2 ) ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_4845_bit__not__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_ri4277139882892585799ns_not @ int @ K ) @ N )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) ).
% bit_not_int_iff
thf(fact_4846_take__bit__not__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) ) ) ) ).
% take_bit_not_take_bit
thf(fact_4847_take__bit__not__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_ri4277139882892585799ns_not @ A @ B2 ) ) )
= ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ N @ B2 ) ) ) ) ).
% take_bit_not_iff
thf(fact_4848_of__int__not__numeral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: num] :
( ( ring_1_of_int @ A @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ K ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( numeral_numeral @ A @ K ) ) ) ) ).
% of_int_not_numeral
thf(fact_4849_infinite__Ico,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ico
thf(fact_4850_ex__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M4: nat] :
( ( ord_less @ nat @ M4 @ N )
& ( P @ M4 ) ) )
= ( ? [X6: nat] :
( ( member @ nat @ X6 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) )
& ( P @ X6 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_4851_all__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M4: nat] :
( ( ord_less @ nat @ M4 @ N )
=> ( P @ M4 ) ) )
= ( ! [X6: nat] :
( ( member @ nat @ X6 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) )
=> ( P @ X6 ) ) ) ) ).
% all_nat_less_eq
thf(fact_4852_not__diff__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ B2 ) ) ) ).
% not_diff_distrib
thf(fact_4853_not__add__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( minus_minus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ B2 ) ) ) ).
% not_add_distrib
thf(fact_4854_ivl__disj__int__two_I3_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(3)
thf(fact_4855_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or7035219750837199246ssThan @ nat @ L @ ( suc @ U ) )
= ( set_or1337092689740270186AtMost @ nat @ L @ U ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_4856_lessThan__atLeast0,axiom,
( ( set_ord_lessThan @ nat )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) ) ) ).
% lessThan_atLeast0
thf(fact_4857_atLeastLessThan0,axiom,
! [M: nat] :
( ( set_or7035219750837199246ssThan @ nat @ M @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% atLeastLessThan0
thf(fact_4858_or__eq__not__not__and,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se1065995026697491101ons_or @ A )
= ( ^ [A4: A,B4: A] : ( bit_ri4277139882892585799ns_not @ A @ ( bit_se5824344872417868541ns_and @ A @ ( bit_ri4277139882892585799ns_not @ A @ A4 ) @ ( bit_ri4277139882892585799ns_not @ A @ B4 ) ) ) ) ) ) ).
% or_eq_not_not_and
thf(fact_4859_and__eq__not__not__or,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se5824344872417868541ns_and @ A )
= ( ^ [A4: A,B4: A] : ( bit_ri4277139882892585799ns_not @ A @ ( bit_se1065995026697491101ons_or @ A @ ( bit_ri4277139882892585799ns_not @ A @ A4 ) @ ( bit_ri4277139882892585799ns_not @ A @ B4 ) ) ) ) ) ) ).
% and_eq_not_not_or
thf(fact_4860_or__int__def,axiom,
( ( bit_se1065995026697491101ons_or @ int )
= ( ^ [K3: int,L2: int] : ( bit_ri4277139882892585799ns_not @ int @ ( bit_se5824344872417868541ns_and @ int @ ( bit_ri4277139882892585799ns_not @ int @ K3 ) @ ( bit_ri4277139882892585799ns_not @ int @ L2 ) ) ) ) ) ).
% or_int_def
thf(fact_4861_sum_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% sum.shift_bounds_Suc_ivl
thf(fact_4862_sum_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( plus_plus @ nat @ I @ K ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% sum.shift_bounds_nat_ivl
thf(fact_4863_prod_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% prod.shift_bounds_Suc_ivl
thf(fact_4864_prod_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( plus_plus @ nat @ I @ K ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% prod.shift_bounds_nat_ivl
thf(fact_4865_sum_Odistrib__triv_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I6: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B @ I6 )
=> ( ( groups1027152243600224163dd_sum @ B @ A
@ ^ [I: B] : ( plus_plus @ A @ ( G @ I ) @ ( H2 @ I ) )
@ I6 )
= ( plus_plus @ A @ ( groups1027152243600224163dd_sum @ B @ A @ G @ I6 ) @ ( groups1027152243600224163dd_sum @ B @ A @ H2 @ I6 ) ) ) ) ) ).
% sum.distrib_triv'
thf(fact_4866_sum_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( comm_monoid_add @ A ) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: B > A,H2: B > A] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X5: B] :
( ( ord_less_eq @ B @ C2 @ X5 )
=> ( ( ord_less @ B @ X5 @ D2 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ A2 @ B2 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ H2 @ ( set_or7035219750837199246ssThan @ B @ C2 @ D2 ) ) ) ) ) ) ) ).
% sum.ivl_cong
thf(fact_4867_prod_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( comm_monoid_mult @ A ) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: B > A,H2: B > A] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X5: B] :
( ( ord_less_eq @ B @ C2 @ X5 )
=> ( ( ord_less @ B @ X5 @ D2 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ A2 @ B2 ) )
= ( groups7121269368397514597t_prod @ B @ A @ H2 @ ( set_or7035219750837199246ssThan @ B @ C2 @ D2 ) ) ) ) ) ) ) ).
% prod.ivl_cong
thf(fact_4868_minus__eq__not__plus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( uminus_uminus @ A )
= ( ^ [A4: A] : ( plus_plus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A4 ) @ ( one_one @ A ) ) ) ) ) ).
% minus_eq_not_plus_1
thf(fact_4869_not__eq__complement,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A )
= ( ^ [A4: A] : ( minus_minus @ A @ ( uminus_uminus @ A @ A4 ) @ ( one_one @ A ) ) ) ) ) ).
% not_eq_complement
thf(fact_4870_minus__eq__not__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( uminus_uminus @ A )
= ( ^ [A4: A] : ( bit_ri4277139882892585799ns_not @ A @ ( minus_minus @ A @ A4 @ ( one_one @ A ) ) ) ) ) ) ).
% minus_eq_not_minus_1
thf(fact_4871_sum_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,P2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ P2 )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ P2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ P2 ) ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_4872_ivl__disj__int__two_I7_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(7)
thf(fact_4873_not__int__def,axiom,
( ( bit_ri4277139882892585799ns_not @ int )
= ( ^ [K3: int] : ( minus_minus @ int @ ( uminus_uminus @ int @ K3 ) @ ( one_one @ int ) ) ) ) ).
% not_int_def
thf(fact_4874_ivl__disj__int__one_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(2)
thf(fact_4875_prod_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,P2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ P2 )
=> ( ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ P2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ P2 ) ) ) ) ) ) ).
% prod.atLeastLessThan_concat
thf(fact_4876_and__not__numerals_I1_J,axiom,
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( zero_zero @ int ) ) ).
% and_not_numerals(1)
thf(fact_4877_or__not__numerals_I1_J,axiom,
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( zero_zero @ int ) ) ) ).
% or_not_numerals(1)
thf(fact_4878_atLeast0__lessThan__Suc,axiom,
! [N: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) )
= ( insert @ nat @ N @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_4879_disjunctive__diff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [B2: A,A2: A] :
( ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ B2 @ N2 )
=> ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 ) )
=> ( ( minus_minus @ A @ A2 @ B2 )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_ri4277139882892585799ns_not @ A @ B2 ) ) ) ) ) ).
% disjunctive_diff
thf(fact_4880_take__bit__not__eq__mask__diff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) )
= ( minus_minus @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ) ).
% take_bit_not_eq_mask_diff
thf(fact_4881_minus__numeral__inc__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ N ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( numeral_numeral @ A @ N ) ) ) ) ).
% minus_numeral_inc_eq
thf(fact_4882_bit_Oxor__def,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se5824344971392196577ns_xor @ A )
= ( ^ [X6: A,Y6: A] : ( bit_se1065995026697491101ons_or @ A @ ( bit_se5824344872417868541ns_and @ A @ X6 @ ( bit_ri4277139882892585799ns_not @ A @ Y6 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( bit_ri4277139882892585799ns_not @ A @ X6 ) @ Y6 ) ) ) ) ) ).
% bit.xor_def
thf(fact_4883_bit_Oxor__def2,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se5824344971392196577ns_xor @ A )
= ( ^ [X6: A,Y6: A] : ( bit_se5824344872417868541ns_and @ A @ ( bit_se1065995026697491101ons_or @ A @ X6 @ Y6 ) @ ( bit_se1065995026697491101ons_or @ A @ ( bit_ri4277139882892585799ns_not @ A @ X6 ) @ ( bit_ri4277139882892585799ns_not @ A @ Y6 ) ) ) ) ) ) ).
% bit.xor_def2
thf(fact_4884_unset__bit__int__def,axiom,
( ( bit_se2638667681897837118et_bit @ int )
= ( ^ [N3: nat,K3: int] : ( bit_se5824344872417868541ns_and @ int @ K3 @ ( bit_ri4277139882892585799ns_not @ int @ ( bit_se4730199178511100633sh_bit @ int @ N3 @ ( one_one @ int ) ) ) ) ) ) ).
% unset_bit_int_def
thf(fact_4885_xor__int__def,axiom,
( ( bit_se5824344971392196577ns_xor @ int )
= ( ^ [K3: int,L2: int] : ( bit_se1065995026697491101ons_or @ int @ ( bit_se5824344872417868541ns_and @ int @ K3 @ ( bit_ri4277139882892585799ns_not @ int @ L2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( bit_ri4277139882892585799ns_not @ int @ K3 ) @ L2 ) ) ) ) ).
% xor_int_def
thf(fact_4886_subset__eq__atLeast0__lessThan__finite,axiom,
! [N5: set @ nat,N: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N5 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) )
=> ( finite_finite @ nat @ N5 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_4887_sum_Omono__neutral__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T4: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ T4 ) ) ) ) ) ).
% sum.mono_neutral_left'
thf(fact_4888_sum_Omono__neutral__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T4: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ T4 )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right'
thf(fact_4889_sum_Omono__neutral__cong__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T4: set @ B,H2: B > A,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( H2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 )
= ( groups1027152243600224163dd_sum @ B @ A @ H2 @ T4 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left'
thf(fact_4890_sum_Omono__neutral__cong__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T4: set @ B,G: B > A,H2: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ ( minus_minus @ ( set @ B ) @ T4 @ S3 ) )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( ( G @ X5 )
= ( H2 @ X5 ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ T4 )
= ( groups1027152243600224163dd_sum @ B @ A @ H2 @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right'
thf(fact_4891_atLeastLessThan__add__Un,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( set_or7035219750837199246ssThan @ nat @ I3 @ ( plus_plus @ nat @ J @ K ) )
= ( sup_sup @ ( set @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ I3 @ J ) @ ( set_or7035219750837199246ssThan @ nat @ J @ ( plus_plus @ nat @ J @ K ) ) ) ) ) ).
% atLeastLessThan_add_Un
thf(fact_4892_not__int__div__2,axiom,
! [K: int] :
( ( divide_divide @ int @ ( bit_ri4277139882892585799ns_not @ int @ K ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ).
% not_int_div_2
thf(fact_4893_even__not__iff__int,axiom,
! [K: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_ri4277139882892585799ns_not @ int @ K ) )
= ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K ) ) ) ).
% even_not_iff_int
thf(fact_4894_atLeastAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastAtMost_subseteq_atLeastLessThan_iff
thf(fact_4895_atLeastLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastLessThan_subseteq_atLeastAtMost_iff
thf(fact_4896_ivl__disj__un__two__touch_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(2)
thf(fact_4897_sum__shift__lb__Suc0__0__upt,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,K: nat] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_4898_sum_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( G @ N ) ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_4899_sum_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ N ) ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_4900_sum_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat,B2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ ( suc @ B2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ B2 ) ) @ ( G @ B2 ) ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_4901_not__numeral__Bit0__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( bit_ri4277139882892585799ns_not @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit1 @ N ) ) ) ) ) ).
% not_numeral_Bit0_eq
thf(fact_4902_and__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( numeral_numeral @ int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(4)
thf(fact_4903_and__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( one_one @ int ) ) ).
% and_not_numerals(2)
thf(fact_4904_prod_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( G @ N ) ) ) ) ).
% prod.atLeast0_lessThan_Suc
thf(fact_4905_sum_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I6: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( G @ X6 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( H2 @ X6 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A
@ ^ [I: B] : ( plus_plus @ A @ ( G @ I ) @ ( H2 @ I ) )
@ I6 )
= ( plus_plus @ A @ ( groups1027152243600224163dd_sum @ B @ A @ G @ I6 ) @ ( groups1027152243600224163dd_sum @ B @ A @ H2 @ I6 ) ) ) ) ) ) ).
% sum.distrib'
thf(fact_4906_atLeastLessThan__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( set_or7035219750837199246ssThan @ A )
= ( ^ [A4: A,B4: A] : ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A4 @ B4 ) @ ( insert @ A @ B4 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% atLeastLessThan_eq_atLeastAtMost_diff
thf(fact_4907_prod_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less @ nat @ M @ N )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ N ) ) ) ) ) ) ).
% prod.atLeast_Suc_lessThan
thf(fact_4908_or__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) ) ).
% or_not_numerals(4)
thf(fact_4909_or__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(2)
thf(fact_4910_prod_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat,B2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ ( suc @ B2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ B2 ) ) @ ( G @ B2 ) ) ) ) ) ).
% prod.atLeastLessThan_Suc
thf(fact_4911_sum_OG__def,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ( ( groups1027152243600224163dd_sum @ B @ A )
= ( ^ [P5: B > A,I8: set @ B] :
( if @ A
@ ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I8 )
& ( ( P5 @ X6 )
!= ( zero_zero @ A ) ) ) ) )
@ ( groups7311177749621191930dd_sum @ B @ A @ P5
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I8 )
& ( ( P5 @ X6 )
!= ( zero_zero @ A ) ) ) ) )
@ ( zero_zero @ A ) ) ) ) ) ).
% sum.G_def
thf(fact_4912_sum_Olast__plus,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( plus_plus @ A @ ( G @ N ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ) ) ).
% sum.last_plus
thf(fact_4913_prod_Olast__plus,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( times_times @ A @ ( G @ N ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ) ) ).
% prod.last_plus
thf(fact_4914_bit__minus__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ K ) @ N )
= ( bit_se5641148757651400278ts_bit @ int @ ( bit_ri4277139882892585799ns_not @ int @ ( minus_minus @ int @ K @ ( one_one @ int ) ) ) @ N ) ) ).
% bit_minus_int_iff
thf(fact_4915_not__numeral__BitM__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( bit_ri4277139882892585799ns_not @ A @ ( numeral_numeral @ A @ ( bitM @ N ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ N ) ) ) ) ) ).
% not_numeral_BitM_eq
thf(fact_4916_take__bit__not__mask__eq__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) ) )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_not_mask_eq_0
thf(fact_4917_int__numeral__or__not__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).
% int_numeral_or_not_num_neg
thf(fact_4918_int__numeral__not__or__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).
% int_numeral_not_or_num_neg
thf(fact_4919_numeral__or__not__num__eq,axiom,
! [M: num,N: num] :
( ( numeral_numeral @ int @ ( bit_or_not_num_neg @ M @ N ) )
= ( uminus_uminus @ int @ ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ).
% numeral_or_not_num_eq
thf(fact_4920_atLeastLessThanSuc,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_eq @ nat @ M @ N )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) )
= ( insert @ nat @ N @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeastLessThanSuc
thf(fact_4921_sum__Suc__diff_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ I ) ) @ ( F2 @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( minus_minus @ A @ ( F2 @ N ) @ ( F2 @ M ) ) ) ) ) ).
% sum_Suc_diff'
thf(fact_4922_push__bit__mask__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se2239418461657761734s_mask @ A @ N ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se2239418461657761734s_mask @ A @ ( plus_plus @ nat @ N @ M ) ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ M ) ) ) ) ) ).
% push_bit_mask_eq
thf(fact_4923_unset__bit__eq__and__not,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se2638667681897837118et_bit @ A )
= ( ^ [N3: nat,A4: A] : ( bit_se5824344872417868541ns_and @ A @ A4 @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ) ).
% unset_bit_eq_and_not
thf(fact_4924_sum_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ ( suc @ I ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ N @ M ) ) ) ) ).
% sum.atLeastLessThan_rev
thf(fact_4925_sum_Onested__swap,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat > nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ ( A2 @ I ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J2: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( A2 @ I @ J2 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J2 ) @ N ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% sum.nested_swap
thf(fact_4926_prod_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ ( suc @ I ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ N @ M ) ) ) ) ).
% prod.atLeastLessThan_rev
thf(fact_4927_prod_Onested__swap,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat > nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( groups7121269368397514597t_prod @ nat @ A @ ( A2 @ I ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J2: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( A2 @ I @ J2 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J2 ) @ N ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% prod.nested_swap
thf(fact_4928_sum_Onat__group,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [M4: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ M4 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ M4 @ K ) @ K ) ) )
@ ( set_ord_lessThan @ nat @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( times_times @ nat @ N @ K ) ) ) ) ) ).
% sum.nat_group
thf(fact_4929_prod_Onat__group,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,K: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [M4: nat] : ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ M4 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ M4 @ K ) @ K ) ) )
@ ( set_ord_lessThan @ nat @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( times_times @ nat @ N @ K ) ) ) ) ) ).
% prod.nat_group
thf(fact_4930_prod__Suc__fact,axiom,
! [N: nat] :
( ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) )
= ( semiring_char_0_fact @ nat @ N ) ) ).
% prod_Suc_fact
thf(fact_4931_prod__Suc__Suc__fact,axiom,
! [N: nat] :
( ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N ) )
= ( semiring_char_0_fact @ nat @ N ) ) ).
% prod_Suc_Suc_fact
thf(fact_4932_and__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ).
% and_not_numerals(5)
thf(fact_4933_ivl__disj__un__singleton_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) @ ( insert @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(6)
thf(fact_4934_and__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( numeral_numeral @ int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(7)
thf(fact_4935_or__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(3)
thf(fact_4936_sum_Ohead__if,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ) ).
% sum.head_if
thf(fact_4937_and__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( zero_zero @ int ) ) ).
% and_not_numerals(3)
thf(fact_4938_or__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( zero_zero @ int ) ) ) ).
% or_not_numerals(7)
thf(fact_4939_prod_Ohead__if,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ N @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ) ).
% prod.head_if
thf(fact_4940_bit_Ocompl__unique,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ X @ Y )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ X @ Y )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( ( bit_ri4277139882892585799ns_not @ A @ X )
= Y ) ) ) ) ).
% bit.compl_unique
thf(fact_4941_fact__prod__Suc,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ) ).
% fact_prod_Suc
thf(fact_4942_sum_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N ) @ M ) ) ) ) ).
% sum.atLeastLessThan_rev_at_least_Suc_atMost
thf(fact_4943_prod_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ I ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N ) @ M ) ) ) ) ).
% prod.atLeastLessThan_rev_at_least_Suc_atMost
thf(fact_4944_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq @ nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( numeral_numeral @ nat @ K ) )
= ( insert @ nat @ ( pred_numeral @ K ) @ ( set_or7035219750837199246ssThan @ nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( numeral_numeral @ nat @ K ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_4945_pochhammer__prod,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A4: A,N3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( plus_plus @ A @ A4 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ).
% pochhammer_prod
thf(fact_4946_signed__take__bit__eq__if__negative,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
=> ( ( bit_ri4674362597316999326ke_bit @ A @ N @ A2 )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ) ) ).
% signed_take_bit_eq_if_negative
thf(fact_4947_fact__prod__rev,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ ( minus_minus @ nat @ N3 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ) ).
% fact_prod_rev
thf(fact_4948_and__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ).
% and_not_numerals(9)
thf(fact_4949_and__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ).
% and_not_numerals(6)
thf(fact_4950_or__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ).
% or_not_numerals(6)
thf(fact_4951_bit__not__iff__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ N )
= ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N )
!= ( zero_zero @ A ) )
& ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N ) ) ) ) ).
% bit_not_iff_eq
thf(fact_4952_summable__Cauchy,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ( ( summable @ A )
= ( ^ [F6: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [N6: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ N6 @ M4 )
=> ! [N3: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F6 @ ( set_or7035219750837199246ssThan @ nat @ M4 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ).
% summable_Cauchy
thf(fact_4953_minus__exp__eq__not__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat] :
( ( uminus_uminus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ).
% minus_exp_eq_not_mask
thf(fact_4954_sums__group,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A,S: A,K: nat] :
( ( sums @ A @ F2 @ S )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( sums @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ N3 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ K ) @ K ) ) )
@ S ) ) ) ) ).
% sums_group
thf(fact_4955_take__bit__sum,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A4: A] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( bit_se4730199178511100633sh_bit @ A @ K3 @ ( zero_neq_one_of_bool @ A @ ( bit_se5641148757651400278ts_bit @ A @ A4 @ K3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ).
% take_bit_sum
thf(fact_4956_atLeast1__lessThan__eq__remove0,axiom,
! [N: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_lessThan @ nat @ N ) @ ( insert @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_4957_or__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit0 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ) ).
% or_not_numerals(5)
thf(fact_4958_fact__split,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( semiring_char_0_fact @ A @ N )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( minus_minus @ nat @ N @ K ) @ N ) ) ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N @ K ) ) ) ) ) ) ).
% fact_split
thf(fact_4959_binomial__altdef__of__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ N )
=> ( ( semiring_1_of_nat @ A @ ( binomial @ N @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N @ I ) ) @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ K @ I ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% binomial_altdef_of_nat
thf(fact_4960_gbinomial__altdef__of__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( divide_divide @ A @ ( minus_minus @ A @ A4 @ ( semiring_1_of_nat @ A @ I ) ) @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ K3 @ I ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K3 ) ) ) ) ) ).
% gbinomial_altdef_of_nat
thf(fact_4961_gbinomial__mult__fact,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ).
% gbinomial_mult_fact
thf(fact_4962_gbinomial__mult__fact_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( semiring_char_0_fact @ A @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ).
% gbinomial_mult_fact'
thf(fact_4963_gbinomial__prod__rev,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ( ( gbinomial @ A )
= ( ^ [A4: A,K3: nat] :
( divide_divide @ A
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I: nat] : ( minus_minus @ A @ A4 @ ( semiring_1_of_nat @ A @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K3 ) )
@ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_prod_rev
thf(fact_4964_sum__diff1_H,axiom,
! [B: $tType,A: $tType] :
( ( ab_group_add @ B )
=> ! [I6: set @ A,F2: A > B,I3: A] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [I: A] :
( ( member @ A @ I @ I6 )
& ( ( F2 @ I )
!= ( zero_zero @ B ) ) ) ) )
=> ( ( ( member @ A @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I6 @ ( insert @ A @ I3 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ B @ ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I6 ) @ ( F2 @ I3 ) ) ) )
& ( ~ ( member @ A @ I3 @ I6 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I6 @ ( insert @ A @ I3 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I6 ) ) ) ) ) ) ).
% sum_diff1'
thf(fact_4965_signed__take__bit__def,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4674362597316999326ke_bit @ A )
= ( ^ [N3: nat,A4: A] : ( bit_se1065995026697491101ons_or @ A @ ( bit_se2584673776208193580ke_bit @ A @ N3 @ A4 ) @ ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( bit_se5641148757651400278ts_bit @ A @ A4 @ N3 ) ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N3 ) ) ) ) ) ) ) ).
% signed_take_bit_def
thf(fact_4966_and__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ) ).
% and_not_numerals(8)
thf(fact_4967_or__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ) ).
% or_not_numerals(9)
thf(fact_4968_or__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) ) ).
% or_not_numerals(8)
thf(fact_4969_not__int__rec,axiom,
( ( bit_ri4277139882892585799ns_not @ int )
= ( ^ [K3: int] : ( plus_plus @ int @ ( zero_neq_one_of_bool @ int @ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% not_int_rec
thf(fact_4970_sum__power2,axiom,
! [K: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) )
= ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K ) @ ( one_one @ nat ) ) ) ).
% sum_power2
thf(fact_4971_horner__sum__eq__sum,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F6: B > A,A4: A,Xs: list @ B] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F6 @ ( nth @ B @ Xs @ N3 ) ) @ ( power_power @ A @ A4 @ N3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% horner_sum_eq_sum
thf(fact_4972_Chebyshev__sum__upper,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: nat,A2: nat > A,B2: nat > A] :
( ! [I2: nat,J3: nat] :
( ( ord_less_eq @ nat @ I2 @ J3 )
=> ( ( ord_less @ nat @ J3 @ N )
=> ( ord_less_eq @ A @ ( A2 @ I2 ) @ ( A2 @ J3 ) ) ) )
=> ( ! [I2: nat,J3: nat] :
( ( ord_less_eq @ nat @ I2 @ J3 )
=> ( ( ord_less @ nat @ J3 @ N )
=> ( ord_less_eq @ A @ ( B2 @ J3 ) @ ( B2 @ I2 ) ) ) )
=> ( ord_less_eq @ A
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ N )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( A2 @ K3 ) @ ( B2 @ K3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) )
@ ( times_times @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ A2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ B2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ) ) ).
% Chebyshev_sum_upper
thf(fact_4973_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A2: nat > nat,B2: nat > nat] :
( ! [I2: nat,J3: nat] :
( ( ord_less_eq @ nat @ I2 @ J3 )
=> ( ( ord_less @ nat @ J3 @ N )
=> ( ord_less_eq @ nat @ ( A2 @ I2 ) @ ( A2 @ J3 ) ) ) )
=> ( ! [I2: nat,J3: nat] :
( ( ord_less_eq @ nat @ I2 @ J3 )
=> ( ( ord_less @ nat @ J3 @ N )
=> ( ord_less_eq @ nat @ ( B2 @ J3 ) @ ( B2 @ I2 ) ) ) )
=> ( ord_less_eq @ nat
@ ( times_times @ nat @ N
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I: nat] : ( times_times @ nat @ ( A2 @ I ) @ ( B2 @ I ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) )
@ ( times_times @ nat @ ( groups7311177749621191930dd_sum @ nat @ nat @ A2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) @ ( groups7311177749621191930dd_sum @ nat @ nat @ B2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_4974_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : ( finite_finite @ int @ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U ) ) ).
% finite_atLeastZeroLessThan_int
thf(fact_4975_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( boolea3799213064322606851m_diff @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( bit_se1065995026697491101ons_or @ A ) @ ( bit_ri4277139882892585799ns_not @ A ) @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( bit_se5824344971392196577ns_xor @ A ) ) ) ).
% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_4976_Cauchy__iff2,axiom,
( ( topolo3814608138187158403Cauchy @ real )
= ( ^ [X4: nat > real] :
! [J2: nat] :
? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ M9 @ M4 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( X4 @ M4 ) @ ( X4 @ N3 ) ) ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ J2 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_4977_VEBT_Osize_I3_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size @ vEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_list @ vEBT_VEBT @ ( size_size @ vEBT_VEBT ) @ X13 ) @ ( size_size @ vEBT_VEBT @ X14 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% VEBT.size(3)
thf(fact_4978_size__list__estimation,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: nat,F2: A > nat] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less @ nat @ Y @ ( F2 @ X ) )
=> ( ord_less @ nat @ Y @ ( size_list @ A @ F2 @ Xs2 ) ) ) ) ).
% size_list_estimation
thf(fact_4979_size__list__estimation_H,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: nat,F2: A > nat] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ Y @ ( F2 @ X ) )
=> ( ord_less_eq @ nat @ Y @ ( size_list @ A @ F2 @ Xs2 ) ) ) ) ).
% size_list_estimation'
thf(fact_4980_size__list__pointwise,axiom,
! [A: $tType,Xs2: list @ A,F2: A > nat,G: A > nat] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ nat @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_eq @ nat @ ( size_list @ A @ F2 @ Xs2 ) @ ( size_list @ A @ G @ Xs2 ) ) ) ).
% size_list_pointwise
thf(fact_4981_Cauchy__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X4: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ M9 @ M4 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X4 @ M4 ) @ ( X4 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_iff
thf(fact_4982_CauchyI,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M3: nat] :
( ( ord_less_eq @ nat @ M10 @ M3 )
=> ! [N2: nat] :
( ( ord_less_eq @ nat @ M10 @ N2 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X9 @ M3 ) @ ( X9 @ N2 ) ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X9 ) ) ) ).
% CauchyI
thf(fact_4983_CauchyD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A,E2: real] :
( ( topolo3814608138187158403Cauchy @ A @ X9 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq @ nat @ M8 @ M2 )
=> ! [N8: nat] :
( ( ord_less_eq @ nat @ M8 @ N8 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X9 @ M2 ) @ ( X9 @ N8 ) ) ) @ E2 ) ) ) ) ) ) ).
% CauchyD
thf(fact_4984_VEBT_Osize__gen_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_list @ vEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% VEBT.size_gen(1)
thf(fact_4985_Collect__empty__eq__bot,axiom,
! [A: $tType,P: A > $o] :
( ( ( collect @ A @ P )
= ( bot_bot @ ( set @ A ) ) )
= ( P
= ( bot_bot @ ( A > $o ) ) ) ) ).
% Collect_empty_eq_bot
thf(fact_4986_bot__empty__eq,axiom,
! [A: $tType] :
( ( bot_bot @ ( A > $o ) )
= ( ^ [X6: A] : ( member @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% bot_empty_eq
thf(fact_4987_bot__empty__eq2,axiom,
! [B: $tType,A: $tType] :
( ( bot_bot @ ( A > B > $o ) )
= ( ^ [X6: A,Y6: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 @ Y6 ) @ ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ) ) ).
% bot_empty_eq2
thf(fact_4988_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X22: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X22 ) )
= ( zero_zero @ nat ) ) ).
% VEBT.size_gen(2)
thf(fact_4989_is__singleton__the__elem,axiom,
! [A: $tType] :
( ( is_singleton @ A )
= ( ^ [A7: set @ A] :
( A7
= ( insert @ A @ ( the_elem @ A @ A7 ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% is_singleton_the_elem
thf(fact_4990_length__subseqs,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( subseqs @ A @ Xs2 ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_subseqs
thf(fact_4991_csqrt_Osimps_I1_J,axiom,
! [Z2: complex] :
( ( re @ ( csqrt @ Z2 ) )
= ( sqrt @ ( divide_divide @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% csqrt.simps(1)
thf(fact_4992_is__singletonI,axiom,
! [A: $tType,X: A] : ( is_singleton @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ).
% is_singletonI
thf(fact_4993_cos__Arg__i__mult__zero,axiom,
! [Y: complex] :
( ( Y
!= ( zero_zero @ complex ) )
=> ( ( ( re @ Y )
= ( zero_zero @ real ) )
=> ( ( cos @ real @ ( arg @ Y ) )
= ( zero_zero @ real ) ) ) ) ).
% cos_Arg_i_mult_zero
thf(fact_4994_subseqs__refl,axiom,
! [A: $tType,Xs2: list @ A] : ( member @ ( list @ A ) @ Xs2 @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ).
% subseqs_refl
thf(fact_4995_bot2E,axiom,
! [A: $tType,B: $tType,X: A,Y: B] :
~ ( bot_bot @ ( A > B > $o ) @ X @ Y ) ).
% bot2E
thf(fact_4996_imaginary__unit_Osimps_I1_J,axiom,
( ( re @ imaginary_unit )
= ( zero_zero @ real ) ) ).
% imaginary_unit.simps(1)
thf(fact_4997_zero__complex_Osimps_I1_J,axiom,
( ( re @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% zero_complex.simps(1)
thf(fact_4998_scaleR__complex_Osimps_I1_J,axiom,
! [R2: real,X: complex] :
( ( re @ ( real_V8093663219630862766scaleR @ complex @ R2 @ X ) )
= ( times_times @ real @ R2 @ ( re @ X ) ) ) ).
% scaleR_complex.simps(1)
thf(fact_4999_is__singletonI_H,axiom,
! [A: $tType,A3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ( member @ A @ Y5 @ A3 )
=> ( X5 = Y5 ) ) )
=> ( is_singleton @ A @ A3 ) ) ) ).
% is_singletonI'
thf(fact_5000_Re__csqrt,axiom,
! [Z2: complex] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( csqrt @ Z2 ) ) ) ).
% Re_csqrt
thf(fact_5001_is__singleton__def,axiom,
! [A: $tType] :
( ( is_singleton @ A )
= ( ^ [A7: set @ A] :
? [X6: A] :
( A7
= ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% is_singleton_def
thf(fact_5002_is__singletonE,axiom,
! [A: $tType,A3: set @ A] :
( ( is_singleton @ A @ A3 )
=> ~ ! [X5: A] :
( A3
!= ( insert @ A @ X5 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% is_singletonE
thf(fact_5003_cmod__plus__Re__le__0__iff,axiom,
! [Z2: complex] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( re @ Z2 ) ) @ ( zero_zero @ real ) )
= ( ( re @ Z2 )
= ( uminus_uminus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) ) ) ).
% cmod_plus_Re_le_0_iff
thf(fact_5004_cos__n__Re__cis__pow__n,axiom,
! [N: nat,A2: real] :
( ( cos @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ A2 ) )
= ( re @ ( power_power @ complex @ ( cis @ A2 ) @ N ) ) ) ).
% cos_n_Re_cis_pow_n
thf(fact_5005_csqrt_Ocode,axiom,
( csqrt
= ( ^ [Z3: complex] :
( complex2 @ ( sqrt @ ( divide_divide @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z3 ) @ ( re @ Z3 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
@ ( times_times @ real
@ ( if @ real
@ ( ( im @ Z3 )
= ( zero_zero @ real ) )
@ ( one_one @ real )
@ ( sgn_sgn @ real @ ( im @ Z3 ) ) )
@ ( sqrt @ ( divide_divide @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z3 ) @ ( re @ Z3 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% csqrt.code
thf(fact_5006_csqrt_Osimps_I2_J,axiom,
! [Z2: complex] :
( ( im @ ( csqrt @ Z2 ) )
= ( times_times @ real
@ ( if @ real
@ ( ( im @ Z2 )
= ( zero_zero @ real ) )
@ ( one_one @ real )
@ ( sgn_sgn @ real @ ( im @ Z2 ) ) )
@ ( sqrt @ ( divide_divide @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% csqrt.simps(2)
thf(fact_5007_csqrt__of__real__nonpos,axiom,
! [X: complex] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( re @ X ) @ ( zero_zero @ real ) )
=> ( ( csqrt @ X )
= ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( sqrt @ ( abs_abs @ real @ ( re @ X ) ) ) ) ) ) ) ) ).
% csqrt_of_real_nonpos
thf(fact_5008_complex__Im__fact,axiom,
! [N: nat] :
( ( im @ ( semiring_char_0_fact @ complex @ N ) )
= ( zero_zero @ real ) ) ).
% complex_Im_fact
thf(fact_5009_complex__Im__of__int,axiom,
! [Z2: int] :
( ( im @ ( ring_1_of_int @ complex @ Z2 ) )
= ( zero_zero @ real ) ) ).
% complex_Im_of_int
thf(fact_5010_complex__Im__of__nat,axiom,
! [N: nat] :
( ( im @ ( semiring_1_of_nat @ complex @ N ) )
= ( zero_zero @ real ) ) ).
% complex_Im_of_nat
thf(fact_5011_Im__complex__of__real,axiom,
! [Z2: real] :
( ( im @ ( real_Vector_of_real @ complex @ Z2 ) )
= ( zero_zero @ real ) ) ).
% Im_complex_of_real
thf(fact_5012_Im__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( im @ ( power_power @ complex @ X @ N ) )
= ( zero_zero @ real ) ) ) ).
% Im_power_real
thf(fact_5013_complex__Im__numeral,axiom,
! [V: num] :
( ( im @ ( numeral_numeral @ complex @ V ) )
= ( zero_zero @ real ) ) ).
% complex_Im_numeral
thf(fact_5014_Im__i__times,axiom,
! [Z2: complex] :
( ( im @ ( times_times @ complex @ imaginary_unit @ Z2 ) )
= ( re @ Z2 ) ) ).
% Im_i_times
thf(fact_5015_Re__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( re @ ( power_power @ complex @ X @ N ) )
= ( power_power @ real @ ( re @ X ) @ N ) ) ) ).
% Re_power_real
thf(fact_5016_Re__i__times,axiom,
! [Z2: complex] :
( ( re @ ( times_times @ complex @ imaginary_unit @ Z2 ) )
= ( uminus_uminus @ real @ ( im @ Z2 ) ) ) ).
% Re_i_times
thf(fact_5017_csqrt__of__real__nonneg,axiom,
! [X: complex] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ X ) )
=> ( ( csqrt @ X )
= ( real_Vector_of_real @ complex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).
% csqrt_of_real_nonneg
thf(fact_5018_csqrt__minus,axiom,
! [X: complex] :
( ( ( ord_less @ real @ ( im @ X ) @ ( zero_zero @ real ) )
| ( ( ( im @ X )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ X ) ) ) )
=> ( ( csqrt @ ( uminus_uminus @ complex @ X ) )
= ( times_times @ complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).
% csqrt_minus
thf(fact_5019_zero__complex_Osimps_I2_J,axiom,
( ( im @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% zero_complex.simps(2)
thf(fact_5020_one__complex_Osimps_I2_J,axiom,
( ( im @ ( one_one @ complex ) )
= ( zero_zero @ real ) ) ).
% one_complex.simps(2)
thf(fact_5021_scaleR__complex_Osimps_I2_J,axiom,
! [R2: real,X: complex] :
( ( im @ ( real_V8093663219630862766scaleR @ complex @ R2 @ X ) )
= ( times_times @ real @ R2 @ ( im @ X ) ) ) ).
% scaleR_complex.simps(2)
thf(fact_5022_complex__is__Int__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( ring_1_Ints @ complex ) )
= ( ( ( im @ Z2 )
= ( zero_zero @ real ) )
& ? [I: int] :
( ( re @ Z2 )
= ( ring_1_of_int @ real @ I ) ) ) ) ).
% complex_is_Int_iff
thf(fact_5023_times__complex_Osimps_I2_J,axiom,
! [X: complex,Y: complex] :
( ( im @ ( times_times @ complex @ X @ Y ) )
= ( plus_plus @ real @ ( times_times @ real @ ( re @ X ) @ ( im @ Y ) ) @ ( times_times @ real @ ( im @ X ) @ ( re @ Y ) ) ) ) ).
% times_complex.simps(2)
thf(fact_5024_cmod__eq__Re,axiom,
! [Z2: complex] :
( ( ( im @ Z2 )
= ( zero_zero @ real ) )
=> ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( abs_abs @ real @ ( re @ Z2 ) ) ) ) ).
% cmod_eq_Re
thf(fact_5025_cmod__eq__Im,axiom,
! [Z2: complex] :
( ( ( re @ Z2 )
= ( zero_zero @ real ) )
=> ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( abs_abs @ real @ ( im @ Z2 ) ) ) ) ).
% cmod_eq_Im
thf(fact_5026_Im__eq__0,axiom,
! [Z2: complex] :
( ( ( abs_abs @ real @ ( re @ Z2 ) )
= ( real_V7770717601297561774m_norm @ complex @ Z2 ) )
=> ( ( im @ Z2 )
= ( zero_zero @ real ) ) ) ).
% Im_eq_0
thf(fact_5027_times__complex_Osimps_I1_J,axiom,
! [X: complex,Y: complex] :
( ( re @ ( times_times @ complex @ X @ Y ) )
= ( minus_minus @ real @ ( times_times @ real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times @ real @ ( im @ X ) @ ( im @ Y ) ) ) ) ).
% times_complex.simps(1)
thf(fact_5028_scaleR__complex_Ocode,axiom,
( ( real_V8093663219630862766scaleR @ complex )
= ( ^ [R5: real,X6: complex] : ( complex2 @ ( times_times @ real @ R5 @ ( re @ X6 ) ) @ ( times_times @ real @ R5 @ ( im @ X6 ) ) ) ) ) ).
% scaleR_complex.code
thf(fact_5029_csqrt__principal,axiom,
! [Z2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( csqrt @ Z2 ) ) )
| ( ( ( re @ ( csqrt @ Z2 ) )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( csqrt @ Z2 ) ) ) ) ) ).
% csqrt_principal
thf(fact_5030_sin__n__Im__cis__pow__n,axiom,
! [N: nat,A2: real] :
( ( sin @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ A2 ) )
= ( im @ ( power_power @ complex @ ( cis @ A2 ) @ N ) ) ) ).
% sin_n_Im_cis_pow_n
thf(fact_5031_Re__exp,axiom,
! [Z2: complex] :
( ( re @ ( exp @ complex @ Z2 ) )
= ( times_times @ real @ ( exp @ real @ ( re @ Z2 ) ) @ ( cos @ real @ ( im @ Z2 ) ) ) ) ).
% Re_exp
thf(fact_5032_Im__exp,axiom,
! [Z2: complex] :
( ( im @ ( exp @ complex @ Z2 ) )
= ( times_times @ real @ ( exp @ real @ ( re @ Z2 ) ) @ ( sin @ real @ ( im @ Z2 ) ) ) ) ).
% Im_exp
thf(fact_5033_fun__complex__eq,axiom,
! [A: $tType,F2: A > complex] :
( F2
= ( ^ [X6: A] : ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ ( re @ ( F2 @ X6 ) ) ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( im @ ( F2 @ X6 ) ) ) ) ) ) ) ).
% fun_complex_eq
thf(fact_5034_complex__eq,axiom,
! [A2: complex] :
( A2
= ( plus_plus @ complex @ ( real_Vector_of_real @ complex @ ( re @ A2 ) ) @ ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( im @ A2 ) ) ) ) ) ).
% complex_eq
thf(fact_5035_times__complex_Ocode,axiom,
( ( times_times @ complex )
= ( ^ [X6: complex,Y6: complex] : ( complex2 @ ( minus_minus @ real @ ( times_times @ real @ ( re @ X6 ) @ ( re @ Y6 ) ) @ ( times_times @ real @ ( im @ X6 ) @ ( im @ Y6 ) ) ) @ ( plus_plus @ real @ ( times_times @ real @ ( re @ X6 ) @ ( im @ Y6 ) ) @ ( times_times @ real @ ( im @ X6 ) @ ( re @ Y6 ) ) ) ) ) ) ).
% times_complex.code
thf(fact_5036_exp__eq__polar,axiom,
( ( exp @ complex )
= ( ^ [Z3: complex] : ( times_times @ complex @ ( real_Vector_of_real @ complex @ ( exp @ real @ ( re @ Z3 ) ) ) @ ( cis @ ( im @ Z3 ) ) ) ) ) ).
% exp_eq_polar
thf(fact_5037_cmod__power2,axiom,
! [Z2: complex] :
( ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% cmod_power2
thf(fact_5038_Im__power2,axiom,
! [X: complex] :
( ( im @ ( power_power @ complex @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).
% Im_power2
thf(fact_5039_Re__power2,axiom,
! [X: complex] :
( ( re @ ( power_power @ complex @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( minus_minus @ real @ ( power_power @ real @ ( re @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% Re_power2
thf(fact_5040_complex__eq__0,axiom,
! [Z2: complex] :
( ( Z2
= ( zero_zero @ complex ) )
= ( ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ) ).
% complex_eq_0
thf(fact_5041_norm__complex__def,axiom,
( ( real_V7770717601297561774m_norm @ complex )
= ( ^ [Z3: complex] : ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Z3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% norm_complex_def
thf(fact_5042_inverse__complex_Osimps_I1_J,axiom,
! [X: complex] :
( ( re @ ( inverse_inverse @ complex @ X ) )
= ( divide_divide @ real @ ( re @ X ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% inverse_complex.simps(1)
thf(fact_5043_complex__neq__0,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% complex_neq_0
thf(fact_5044_Re__divide,axiom,
! [X: complex,Y: complex] :
( ( re @ ( divide_divide @ complex @ X @ Y ) )
= ( divide_divide @ real @ ( plus_plus @ real @ ( times_times @ real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times @ real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% Re_divide
thf(fact_5045_csqrt__unique,axiom,
! [W: complex,Z2: complex] :
( ( ( power_power @ complex @ W @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= Z2 )
=> ( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ W ) )
| ( ( ( re @ W )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ W ) ) ) )
=> ( ( csqrt @ Z2 )
= W ) ) ) ).
% csqrt_unique
thf(fact_5046_csqrt__square,axiom,
! [B2: complex] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ B2 ) )
| ( ( ( re @ B2 )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ B2 ) ) ) )
=> ( ( csqrt @ ( power_power @ complex @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= B2 ) ) ).
% csqrt_square
thf(fact_5047_inverse__complex_Osimps_I2_J,axiom,
! [X: complex] :
( ( im @ ( inverse_inverse @ complex @ X ) )
= ( divide_divide @ real @ ( uminus_uminus @ real @ ( im @ X ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% inverse_complex.simps(2)
thf(fact_5048_Im__divide,axiom,
! [X: complex,Y: complex] :
( ( im @ ( divide_divide @ complex @ X @ Y ) )
= ( divide_divide @ real @ ( minus_minus @ real @ ( times_times @ real @ ( im @ X ) @ ( re @ Y ) ) @ ( times_times @ real @ ( re @ X ) @ ( im @ Y ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% Im_divide
thf(fact_5049_complex__abs__le__norm,axiom,
! [Z2: complex] : ( ord_less_eq @ real @ ( plus_plus @ real @ ( abs_abs @ real @ ( re @ Z2 ) ) @ ( abs_abs @ real @ ( im @ Z2 ) ) ) @ ( times_times @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) ) ).
% complex_abs_le_norm
thf(fact_5050_complex__unit__circle,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( plus_plus @ real @ ( power_power @ real @ ( divide_divide @ real @ ( re @ Z2 ) @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( divide_divide @ real @ ( im @ Z2 ) @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) ) ) ).
% complex_unit_circle
thf(fact_5051_inverse__complex_Ocode,axiom,
( ( inverse_inverse @ complex )
= ( ^ [X6: complex] : ( complex2 @ ( divide_divide @ real @ ( re @ X6 ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ X6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ X6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( divide_divide @ real @ ( uminus_uminus @ real @ ( im @ X6 ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ X6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ X6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% inverse_complex.code
thf(fact_5052_Complex__divide,axiom,
( ( divide_divide @ complex )
= ( ^ [X6: complex,Y6: complex] : ( complex2 @ ( divide_divide @ real @ ( plus_plus @ real @ ( times_times @ real @ ( re @ X6 ) @ ( re @ Y6 ) ) @ ( times_times @ real @ ( im @ X6 ) @ ( im @ Y6 ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Y6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Y6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( divide_divide @ real @ ( minus_minus @ real @ ( times_times @ real @ ( im @ X6 ) @ ( re @ Y6 ) ) @ ( times_times @ real @ ( re @ X6 ) @ ( im @ Y6 ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Y6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Y6 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% Complex_divide
thf(fact_5053_length__mul__elem,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),N: nat] :
( ! [X5: list @ A] :
( ( member @ ( list @ A ) @ X5 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ X5 )
= N ) )
=> ( ( size_size @ ( list @ A ) @ ( concat @ A @ Xs2 ) )
= ( times_times @ nat @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) @ N ) ) ) ).
% length_mul_elem
thf(fact_5054_Im__Reals__divide,axiom,
! [R2: complex,Z2: complex] :
( ( member @ complex @ R2 @ ( real_Vector_Reals @ complex ) )
=> ( ( im @ ( divide_divide @ complex @ R2 @ Z2 ) )
= ( divide_divide @ real @ ( times_times @ real @ ( uminus_uminus @ real @ ( re @ R2 ) ) @ ( im @ Z2 ) ) @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% Im_Reals_divide
thf(fact_5055_Re__Reals__divide,axiom,
! [R2: complex,Z2: complex] :
( ( member @ complex @ R2 @ ( real_Vector_Reals @ complex ) )
=> ( ( re @ ( divide_divide @ complex @ R2 @ Z2 ) )
= ( divide_divide @ real @ ( times_times @ real @ ( re @ R2 ) @ ( re @ Z2 ) ) @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% Re_Reals_divide
thf(fact_5056_real__eq__imaginary__iff,axiom,
! [Y: complex,X: complex] :
( ( member @ complex @ Y @ ( real_Vector_Reals @ complex ) )
=> ( ( member @ complex @ X @ ( real_Vector_Reals @ complex ) )
=> ( ( X
= ( times_times @ complex @ imaginary_unit @ Y ) )
= ( ( X
= ( zero_zero @ complex ) )
& ( Y
= ( zero_zero @ complex ) ) ) ) ) ) ).
% real_eq_imaginary_iff
thf(fact_5057_imaginary__eq__real__iff,axiom,
! [Y: complex,X: complex] :
( ( member @ complex @ Y @ ( real_Vector_Reals @ complex ) )
=> ( ( member @ complex @ X @ ( real_Vector_Reals @ complex ) )
=> ( ( ( times_times @ complex @ imaginary_unit @ Y )
= X )
= ( ( X
= ( zero_zero @ complex ) )
& ( Y
= ( zero_zero @ complex ) ) ) ) ) ) ).
% imaginary_eq_real_iff
thf(fact_5058_Reals__add,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% Reals_add
thf(fact_5059_Reals__divide,axiom,
! [A: $tType] :
( ( real_V7773925162809079976_field @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( member @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% Reals_divide
thf(fact_5060_Reals__0,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( real_Vector_Reals @ A ) ) ) ).
% Reals_0
thf(fact_5061_Reals__power,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [A2: A,N: nat] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( member @ A @ ( power_power @ A @ A2 @ N ) @ ( real_Vector_Reals @ A ) ) ) ) ).
% Reals_power
thf(fact_5062_Reals__mult,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% Reals_mult
thf(fact_5063_Reals__numeral,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [W: num] : ( member @ A @ ( numeral_numeral @ A @ W ) @ ( real_Vector_Reals @ A ) ) ) ).
% Reals_numeral
thf(fact_5064_complex__is__Real__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( real_Vector_Reals @ complex ) )
= ( ( im @ Z2 )
= ( zero_zero @ real ) ) ) ).
% complex_is_Real_iff
thf(fact_5065_nonzero__Reals__divide,axiom,
! [A: $tType] :
( ( real_V7773925162809079976_field @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( member @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ) ).
% nonzero_Reals_divide
thf(fact_5066_Complex__in__Reals,axiom,
! [X: real] : ( member @ complex @ ( complex2 @ X @ ( zero_zero @ real ) ) @ ( real_Vector_Reals @ complex ) ) ).
% Complex_in_Reals
thf(fact_5067_nonzero__Reals__inverse,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( member @ A @ ( inverse_inverse @ A @ A2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% nonzero_Reals_inverse
thf(fact_5068_series__comparison__complex,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [G: nat > complex,N5: nat,F2: nat > A] :
( ( summable @ complex @ G )
=> ( ! [N2: nat] : ( member @ complex @ ( G @ N2 ) @ ( real_Vector_Reals @ complex ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( G @ N2 ) ) )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ N5 @ N2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N2 ) ) @ ( real_V7770717601297561774m_norm @ complex @ ( G @ N2 ) ) ) )
=> ( summable @ A @ F2 ) ) ) ) ) ) ).
% series_comparison_complex
thf(fact_5069_set__n__lists,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( set2 @ ( list @ A ) @ ( n_lists @ A @ N @ Xs2 ) )
= ( collect @ ( list @ A )
@ ^ [Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Ys )
= N )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Ys ) @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% set_n_lists
thf(fact_5070_complex__mult__cnj,axiom,
! [Z2: complex] :
( ( times_times @ complex @ Z2 @ ( cnj @ Z2 ) )
= ( real_Vector_of_real @ complex @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% complex_mult_cnj
thf(fact_5071_divmod__step__integer__def,axiom,
( ( unique1321980374590559556d_step @ code_integer )
= ( ^ [L2: num] :
( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [Q4: code_integer,R5: code_integer] : ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less_eq @ code_integer @ ( numeral_numeral @ code_integer @ L2 ) @ R5 ) @ ( product_Pair @ code_integer @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ Q4 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ R5 @ ( numeral_numeral @ code_integer @ L2 ) ) ) @ ( product_Pair @ code_integer @ code_integer @ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_integer_def
thf(fact_5072_complex__cnj__mult,axiom,
! [X: complex,Y: complex] :
( ( cnj @ ( times_times @ complex @ X @ Y ) )
= ( times_times @ complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).
% complex_cnj_mult
thf(fact_5073_complex__cnj__zero,axiom,
( ( cnj @ ( zero_zero @ complex ) )
= ( zero_zero @ complex ) ) ).
% complex_cnj_zero
thf(fact_5074_complex__cnj__zero__iff,axiom,
! [Z2: complex] :
( ( ( cnj @ Z2 )
= ( zero_zero @ complex ) )
= ( Z2
= ( zero_zero @ complex ) ) ) ).
% complex_cnj_zero_iff
thf(fact_5075_complex__In__mult__cnj__zero,axiom,
! [Z2: complex] :
( ( im @ ( times_times @ complex @ Z2 @ ( cnj @ Z2 ) ) )
= ( zero_zero @ real ) ) ).
% complex_In_mult_cnj_zero
thf(fact_5076_sgn__integer__code,axiom,
( ( sgn_sgn @ code_integer )
= ( ^ [K3: code_integer] :
( if @ code_integer
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( zero_zero @ code_integer )
@ ( if @ code_integer @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ code_integer @ ( one_one @ code_integer ) ) @ ( one_one @ code_integer ) ) ) ) ) ).
% sgn_integer_code
thf(fact_5077_times__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( times_times @ code_integer @ K @ ( zero_zero @ code_integer ) )
= ( zero_zero @ code_integer ) ) ).
% times_integer_code(1)
thf(fact_5078_times__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( times_times @ code_integer @ ( zero_zero @ code_integer ) @ L )
= ( zero_zero @ code_integer ) ) ).
% times_integer_code(2)
thf(fact_5079_minus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( minus_minus @ code_integer @ ( zero_zero @ code_integer ) @ L )
= ( uminus_uminus @ code_integer @ L ) ) ).
% minus_integer_code(2)
thf(fact_5080_less__eq__integer__code_I1_J,axiom,
ord_less_eq @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ).
% less_eq_integer_code(1)
thf(fact_5081_minus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( minus_minus @ code_integer @ K @ ( zero_zero @ code_integer ) )
= K ) ).
% minus_integer_code(1)
thf(fact_5082_divmod__integer_H__def,axiom,
( ( unique8689654367752047608divmod @ code_integer )
= ( ^ [M4: num,N3: num] : ( product_Pair @ code_integer @ code_integer @ ( divide_divide @ code_integer @ ( numeral_numeral @ code_integer @ M4 ) @ ( numeral_numeral @ code_integer @ N3 ) ) @ ( modulo_modulo @ code_integer @ ( numeral_numeral @ code_integer @ M4 ) @ ( numeral_numeral @ code_integer @ N3 ) ) ) ) ) ).
% divmod_integer'_def
thf(fact_5083_plus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( plus_plus @ code_integer @ K @ ( zero_zero @ code_integer ) )
= K ) ).
% plus_integer_code(1)
thf(fact_5084_plus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( plus_plus @ code_integer @ ( zero_zero @ code_integer ) @ L )
= L ) ).
% plus_integer_code(2)
thf(fact_5085_zero__natural_Orsp,axiom,
( ( zero_zero @ nat )
= ( zero_zero @ nat ) ) ).
% zero_natural.rsp
thf(fact_5086_zero__integer_Orsp,axiom,
( ( zero_zero @ int )
= ( zero_zero @ int ) ) ).
% zero_integer.rsp
thf(fact_5087_Re__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( ( re @ ( divide_divide @ complex @ A2 @ B2 ) )
= ( zero_zero @ real ) )
= ( ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) )
= ( zero_zero @ real ) ) ) ).
% Re_complex_div_eq_0
thf(fact_5088_Im__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( ( im @ ( divide_divide @ complex @ A2 @ B2 ) )
= ( zero_zero @ real ) )
= ( ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) )
= ( zero_zero @ real ) ) ) ).
% Im_complex_div_eq_0
thf(fact_5089_complex__mod__sqrt__Re__mult__cnj,axiom,
( ( real_V7770717601297561774m_norm @ complex )
= ( ^ [Z3: complex] : ( sqrt @ ( re @ ( times_times @ complex @ Z3 @ ( cnj @ Z3 ) ) ) ) ) ) ).
% complex_mod_sqrt_Re_mult_cnj
thf(fact_5090_length__n__lists__elem,axiom,
! [A: $tType,Ys2: list @ A,N: nat,Xs2: list @ A] :
( ( member @ ( list @ A ) @ Ys2 @ ( set2 @ ( list @ A ) @ ( n_lists @ A @ N @ Xs2 ) ) )
=> ( ( size_size @ ( list @ A ) @ Ys2 )
= N ) ) ).
% length_n_lists_elem
thf(fact_5091_Re__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Re_complex_div_gt_0
thf(fact_5092_Re__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Re_complex_div_lt_0
thf(fact_5093_Re__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Re_complex_div_le_0
thf(fact_5094_Re__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Re_complex_div_ge_0
thf(fact_5095_Im__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Im_complex_div_gt_0
thf(fact_5096_Im__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Im_complex_div_lt_0
thf(fact_5097_Im__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Im_complex_div_le_0
thf(fact_5098_Im__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Im_complex_div_ge_0
thf(fact_5099_complex__mod__mult__cnj,axiom,
! [Z2: complex] :
( ( real_V7770717601297561774m_norm @ complex @ ( times_times @ complex @ Z2 @ ( cnj @ Z2 ) ) )
= ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% complex_mod_mult_cnj
thf(fact_5100_complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) )
& ( ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ) ).
% complex_div_gt_0
thf(fact_5101_length__n__lists,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( n_lists @ A @ N @ Xs2 ) )
= ( power_power @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% length_n_lists
thf(fact_5102_complex__norm__square,axiom,
! [Z2: complex] :
( ( real_Vector_of_real @ complex @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( times_times @ complex @ Z2 @ ( cnj @ Z2 ) ) ) ).
% complex_norm_square
thf(fact_5103_complex__add__cnj,axiom,
! [Z2: complex] :
( ( plus_plus @ complex @ Z2 @ ( cnj @ Z2 ) )
= ( real_Vector_of_real @ complex @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( re @ Z2 ) ) ) ) ).
% complex_add_cnj
thf(fact_5104_complex__diff__cnj,axiom,
! [Z2: complex] :
( ( minus_minus @ complex @ Z2 @ ( cnj @ Z2 ) )
= ( times_times @ complex @ ( real_Vector_of_real @ complex @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( im @ Z2 ) ) ) @ imaginary_unit ) ) ).
% complex_diff_cnj
thf(fact_5105_complex__div__cnj,axiom,
( ( divide_divide @ complex )
= ( ^ [A4: complex,B4: complex] : ( divide_divide @ complex @ ( times_times @ complex @ A4 @ ( cnj @ B4 ) ) @ ( real_Vector_of_real @ complex @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ complex @ B4 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% complex_div_cnj
thf(fact_5106_cnj__add__mult__eq__Re,axiom,
! [Z2: complex,W: complex] :
( ( plus_plus @ complex @ ( times_times @ complex @ Z2 @ ( cnj @ W ) ) @ ( times_times @ complex @ ( cnj @ Z2 ) @ W ) )
= ( real_Vector_of_real @ complex @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( re @ ( times_times @ complex @ Z2 @ ( cnj @ W ) ) ) ) ) ) ).
% cnj_add_mult_eq_Re
thf(fact_5107_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K3: int] :
( if @ code_integer @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ code_integer @ ( code_integer_of_int @ ( uminus_uminus @ int @ K3 ) ) )
@ ( if @ code_integer
@ ( K3
= ( zero_zero @ int ) )
@ ( zero_zero @ code_integer )
@ ( if @ code_integer
@ ( ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( zero_zero @ int ) )
@ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ ( code_integer_of_int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ ( code_integer_of_int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( one_one @ code_integer ) ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_5108_even__sum__iff,axiom,
! [A: $tType,B: $tType] :
( ( semiring_parity @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) )
@ ( finite_card @ B
@ ( collect @ B
@ ^ [A4: B] :
( ( member @ B @ A4 @ A3 )
& ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( F2 @ A4 ) ) ) ) ) ) ) ) ) ).
% even_sum_iff
thf(fact_5109_case__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: nat > A,V: num,N: nat] :
( ( case_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V ) @ N ) )
= ( F2 @ ( plus_plus @ nat @ ( pred_numeral @ V ) @ N ) ) ) ).
% case_nat_add_eq_if
thf(fact_5110_card__Collect__less__nat,axiom,
! [N: nat] :
( ( finite_card @ nat
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N ) ) )
= N ) ).
% card_Collect_less_nat
thf(fact_5111_card__atMost,axiom,
! [U: nat] :
( ( finite_card @ nat @ ( set_ord_atMost @ nat @ U ) )
= ( suc @ U ) ) ).
% card_atMost
thf(fact_5112_card__Collect__le__nat,axiom,
! [N: nat] :
( ( finite_card @ nat
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less_eq @ nat @ I @ N ) ) )
= ( suc @ N ) ) ).
% card_Collect_le_nat
thf(fact_5113_card_Oempty,axiom,
! [A: $tType] :
( ( finite_card @ A @ ( bot_bot @ ( set @ A ) ) )
= ( zero_zero @ nat ) ) ).
% card.empty
thf(fact_5114_card_Oinfinite,axiom,
! [A: $tType,A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( finite_card @ A @ A3 )
= ( zero_zero @ nat ) ) ) ).
% card.infinite
thf(fact_5115_card__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or1337092689740270186AtMost @ nat @ L @ U ) )
= ( minus_minus @ nat @ ( suc @ U ) @ L ) ) ).
% card_atLeastAtMost
thf(fact_5116_prod__constant,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [Y: A,A3: set @ B] :
( ( groups7121269368397514597t_prod @ B @ A
@ ^ [X6: B] : Y
@ A3 )
= ( power_power @ A @ Y @ ( finite_card @ B @ A3 ) ) ) ) ).
% prod_constant
thf(fact_5117_case__nat__numeral,axiom,
! [A: $tType,A2: A,F2: nat > A,V: num] :
( ( case_nat @ A @ A2 @ F2 @ ( numeral_numeral @ nat @ V ) )
= ( F2 @ ( pred_numeral @ V ) ) ) ).
% case_nat_numeral
thf(fact_5118_card__0__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( finite_card @ A @ A3 )
= ( zero_zero @ nat ) )
= ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% card_0_eq
thf(fact_5119_card__insert__disjoint,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( insert @ A @ X @ A3 ) )
= ( suc @ ( finite_card @ A @ A3 ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_5120_sum__constant,axiom,
! [B: $tType,A: $tType] :
( ( semiring_1 @ A )
=> ! [Y: A,A3: set @ B] :
( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : Y
@ A3 )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A3 ) ) @ Y ) ) ) ).
% sum_constant
thf(fact_5121_uminus__integer__code_I1_J,axiom,
( ( uminus_uminus @ code_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ code_integer ) ) ).
% uminus_integer_code(1)
thf(fact_5122_abs__integer__code,axiom,
( ( abs_abs @ code_integer )
= ( ^ [K3: code_integer] : ( if @ code_integer @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ code_integer @ K3 ) @ K3 ) ) ) ).
% abs_integer_code
thf(fact_5123_modulo__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( modulo_modulo @ code_integer @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( modulo_modulo @ int @ Xa2 @ X ) ) ) ).
% modulo_integer.abs_eq
thf(fact_5124_zero__integer__def,axiom,
( ( zero_zero @ code_integer )
= ( code_integer_of_int @ ( zero_zero @ int ) ) ) ).
% zero_integer_def
thf(fact_5125_less__integer__code_I1_J,axiom,
~ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ) ).
% less_integer_code(1)
thf(fact_5126_nat_Ocase__distrib,axiom,
! [B: $tType,A: $tType,H2: A > B,F1: A,F22: nat > A,Nat: nat] :
( ( H2 @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( case_nat @ B @ ( H2 @ F1 )
@ ^ [X6: nat] : ( H2 @ ( F22 @ X6 ) )
@ Nat ) ) ).
% nat.case_distrib
thf(fact_5127_old_Onat_Osimps_I5_J,axiom,
! [A: $tType,F1: A,F22: nat > A,X2: nat] :
( ( case_nat @ A @ F1 @ F22 @ ( suc @ X2 ) )
= ( F22 @ X2 ) ) ).
% old.nat.simps(5)
thf(fact_5128_old_Onat_Osimps_I4_J,axiom,
! [A: $tType,F1: A,F22: nat > A] :
( ( case_nat @ A @ F1 @ F22 @ ( zero_zero @ nat ) )
= F1 ) ).
% old.nat.simps(4)
thf(fact_5129_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat
!= ( zero_zero @ nat ) )
= ( case_nat @ $o @ $false
@ ^ [Uu3: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_5130_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat
= ( zero_zero @ nat ) )
= ( case_nat @ $o @ $true
@ ^ [Uu3: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_5131_times__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( times_times @ code_integer @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( times_times @ int @ Xa2 @ X ) ) ) ).
% times_integer.abs_eq
thf(fact_5132_card__lists__length__eq,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N ) ) ) )
= ( power_power @ nat @ ( finite_card @ A @ A3 ) @ N ) ) ) ).
% card_lists_length_eq
thf(fact_5133_card__2__iff_H,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ S3 )
& ? [Y6: A] :
( ( member @ A @ Y6 @ S3 )
& ( X6 != Y6 )
& ! [Z3: A] :
( ( member @ A @ Z3 @ S3 )
=> ( ( Z3 = X6 )
| ( Z3 = Y6 ) ) ) ) ) ) ) ).
% card_2_iff'
thf(fact_5134_card__eq__0__iff,axiom,
! [A: $tType,A3: set @ A] :
( ( ( finite_card @ A @ A3 )
= ( zero_zero @ nat ) )
= ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ~ ( finite_finite @ A @ A3 ) ) ) ).
% card_eq_0_iff
thf(fact_5135_card__ge__0__finite,axiom,
! [A: $tType,A3: set @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ A3 ) )
=> ( finite_finite @ A @ A3 ) ) ).
% card_ge_0_finite
thf(fact_5136_card__Suc__eq__finite,axiom,
! [A: $tType,A3: set @ A,K: nat] :
( ( ( finite_card @ A @ A3 )
= ( suc @ K ) )
= ( ? [B4: A,B8: set @ A] :
( ( A3
= ( insert @ A @ B4 @ B8 ) )
& ~ ( member @ A @ B4 @ B8 )
& ( ( finite_card @ A @ B8 )
= K )
& ( finite_finite @ A @ B8 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_5137_card__insert__if,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( insert @ A @ X @ A3 ) )
= ( finite_card @ A @ A3 ) ) )
& ( ~ ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( insert @ A @ X @ A3 ) )
= ( suc @ ( finite_card @ A @ A3 ) ) ) ) ) ) ).
% card_insert_if
thf(fact_5138_card__less__sym__Diff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( ( ord_less @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_5139_card__length,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( set2 @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% card_length
thf(fact_5140_card__1__singletonE,axiom,
! [A: $tType,A3: set @ A] :
( ( ( finite_card @ A @ A3 )
= ( one_one @ nat ) )
=> ~ ! [X5: A] :
( A3
!= ( insert @ A @ X5 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% card_1_singletonE
thf(fact_5141_ex__bij__betw__finite__nat,axiom,
! [A: $tType,M7: set @ A] :
( ( finite_finite @ A @ M7 )
=> ? [H3: A > nat] : ( bij_betw @ A @ nat @ H3 @ M7 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ M7 ) ) ) ) ).
% ex_bij_betw_finite_nat
thf(fact_5142_card__Un__le,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) @ ( plus_plus @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) ) ) ).
% card_Un_le
thf(fact_5143_psubset__card__mono,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] :
( ( finite_finite @ A @ B3 )
=> ( ( ord_less @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) ) ) ) ).
% psubset_card_mono
thf(fact_5144_card__less__Suc2,axiom,
! [M7: set @ nat,I3: nat] :
( ~ ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ ( suc @ K3 ) @ M7 )
& ( ord_less @ nat @ K3 @ I3 ) ) ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I3 ) ) ) ) ) ) ) ).
% card_less_Suc2
thf(fact_5145_card__less__Suc,axiom,
! [M7: set @ nat,I3: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( suc
@ ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ ( suc @ K3 ) @ M7 )
& ( ord_less @ nat @ K3 @ I3 ) ) ) ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I3 ) ) ) ) ) ) ) ).
% card_less_Suc
thf(fact_5146_card__less,axiom,
! [M7: set @ nat,I3: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I3 ) ) ) ) )
!= ( zero_zero @ nat ) ) ) ).
% card_less
thf(fact_5147_card__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( finite_card @ int @ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U ) )
= ( nat2 @ U ) ) ).
% card_atLeastZeroLessThan_int
thf(fact_5148_sum__Suc,axiom,
! [A: $tType,F2: A > nat,A3: set @ A] :
( ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X6: A] : ( suc @ ( F2 @ X6 ) )
@ A3 )
= ( plus_plus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) @ ( finite_card @ A @ A3 ) ) ) ).
% sum_Suc
thf(fact_5149_sum__multicount,axiom,
! [A: $tType,B: $tType,S3: set @ A,T4: set @ B,R3: A > B > $o,K: nat] :
( ( finite_finite @ A @ S3 )
=> ( ( finite_finite @ B @ T4 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ T4 )
=> ( ( finite_card @ A
@ ( collect @ A
@ ^ [I: A] :
( ( member @ A @ I @ S3 )
& ( R3 @ I @ X5 ) ) ) )
= K ) )
=> ( ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [I: A] :
( finite_card @ B
@ ( collect @ B
@ ^ [J2: B] :
( ( member @ B @ J2 @ T4 )
& ( R3 @ I @ J2 ) ) ) )
@ S3 )
= ( times_times @ nat @ K @ ( finite_card @ B @ T4 ) ) ) ) ) ) ).
% sum_multicount
thf(fact_5150_subset__card__intvl__is__intvl,axiom,
! [A3: set @ nat,K: nat] :
( ( ord_less_eq @ ( set @ nat ) @ A3 @ ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ K @ ( finite_card @ nat @ A3 ) ) ) )
=> ( A3
= ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ K @ ( finite_card @ nat @ A3 ) ) ) ) ) ).
% subset_card_intvl_is_intvl
thf(fact_5151_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
= ( case_nat @ $o @ $false @ ( ord_less_eq @ nat @ M ) @ N ) ) ).
% less_eq_nat.simps(2)
thf(fact_5152_real__of__card,axiom,
! [A: $tType,A3: set @ A] :
( ( semiring_1_of_nat @ real @ ( finite_card @ A @ A3 ) )
= ( groups7311177749621191930dd_sum @ A @ real
@ ^ [X6: A] : ( one_one @ real )
@ A3 ) ) ).
% real_of_card
thf(fact_5153_max__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_max @ nat @ M @ ( suc @ N ) )
= ( case_nat @ nat @ ( suc @ N )
@ ^ [M5: nat] : ( suc @ ( ord_max @ nat @ M5 @ N ) )
@ M ) ) ).
% max_Suc2
thf(fact_5154_max__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_max @ nat @ ( suc @ N ) @ M )
= ( case_nat @ nat @ ( suc @ N )
@ ^ [M5: nat] : ( suc @ ( ord_max @ nat @ N @ M5 ) )
@ M ) ) ).
% max_Suc1
thf(fact_5155_sum__bounded__above,axiom,
! [B: $tType,A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A3: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ K5 ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A3 ) ) @ K5 ) ) ) ) ).
% sum_bounded_above
thf(fact_5156_sum__bounded__below,axiom,
! [A: $tType,B: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A3: set @ B,K5: A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ord_less_eq @ A @ K5 @ ( F2 @ I2 ) ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A3 ) ) @ K5 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) ) ) ) ).
% sum_bounded_below
thf(fact_5157_card__gt__0__iff,axiom,
! [A: $tType,A3: set @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ A3 ) )
= ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
& ( finite_finite @ A @ A3 ) ) ) ).
% card_gt_0_iff
thf(fact_5158_card__Suc__eq,axiom,
! [A: $tType,A3: set @ A,K: nat] :
( ( ( finite_card @ A @ A3 )
= ( suc @ K ) )
= ( ? [B4: A,B8: set @ A] :
( ( A3
= ( insert @ A @ B4 @ B8 ) )
& ~ ( member @ A @ B4 @ B8 )
& ( ( finite_card @ A @ B8 )
= K )
& ( ( K
= ( zero_zero @ nat ) )
=> ( B8
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% card_Suc_eq
thf(fact_5159_card__eq__SucD,axiom,
! [A: $tType,A3: set @ A,K: nat] :
( ( ( finite_card @ A @ A3 )
= ( suc @ K ) )
=> ? [B6: A,B9: set @ A] :
( ( A3
= ( insert @ A @ B6 @ B9 ) )
& ~ ( member @ A @ B6 @ B9 )
& ( ( finite_card @ A @ B9 )
= K )
& ( ( K
= ( zero_zero @ nat ) )
=> ( B9
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% card_eq_SucD
thf(fact_5160_card__1__singleton__iff,axiom,
! [A: $tType,A3: set @ A] :
( ( ( finite_card @ A @ A3 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ? [X6: A] :
( A3
= ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% card_1_singleton_iff
thf(fact_5161_card__le__Suc0__iff__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ A3 ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ! [Y6: A] :
( ( member @ A @ Y6 @ A3 )
=> ( X6 = Y6 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_5162_card__le__Suc__iff,axiom,
! [A: $tType,N: nat,A3: set @ A] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( finite_card @ A @ A3 ) )
= ( ? [A4: A,B8: set @ A] :
( ( A3
= ( insert @ A @ A4 @ B8 ) )
& ~ ( member @ A @ A4 @ B8 )
& ( ord_less_eq @ nat @ N @ ( finite_card @ A @ B8 ) )
& ( finite_finite @ A @ B8 ) ) ) ) ).
% card_le_Suc_iff
thf(fact_5163_card__Diff1__le,axiom,
! [A: $tType,A3: set @ A,X: A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A3 ) ) ).
% card_Diff1_le
thf(fact_5164_card__psubset,axiom,
! [A: $tType,B3: set @ A,A3: set @ A] :
( ( finite_finite @ A @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( ord_less @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) )
=> ( ord_less @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% card_psubset
thf(fact_5165_card__Un__Int,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( ( plus_plus @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) )
= ( plus_plus @ nat @ ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) @ ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ) ).
% card_Un_Int
thf(fact_5166_card__lists__length__le,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ N ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( finite_card @ A @ A3 ) ) @ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% card_lists_length_le
thf(fact_5167_ex__bij__betw__nat__finite,axiom,
! [A: $tType,M7: set @ A] :
( ( finite_finite @ A @ M7 )
=> ? [H3: nat > A] : ( bij_betw @ nat @ A @ H3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ M7 ) ) @ M7 ) ) ).
% ex_bij_betw_nat_finite
thf(fact_5168_card__roots__unity,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [N: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N )
=> ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( power_power @ A @ Z3 @ N )
= ( one_one @ A ) ) ) )
@ N ) ) ) ).
% card_roots_unity
thf(fact_5169_subset__eq__atLeast0__lessThan__card,axiom,
! [N5: set @ nat,N: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N5 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) )
=> ( ord_less_eq @ nat @ ( finite_card @ nat @ N5 ) @ N ) ) ).
% subset_eq_atLeast0_lessThan_card
thf(fact_5170_card__sum__le__nat__sum,axiom,
! [S3: set @ nat] :
( ord_less_eq @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ nat @ S3 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X6: nat] : X6
@ S3 ) ) ).
% card_sum_le_nat_sum
thf(fact_5171_card__nth__roots,axiom,
! [C2: complex,N: nat] :
( ( C2
!= ( zero_zero @ complex ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( finite_card @ complex
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= C2 ) ) )
= N ) ) ) ).
% card_nth_roots
thf(fact_5172_card__roots__unity__eq,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( finite_card @ complex
@ ( collect @ complex
@ ^ [Z3: complex] :
( ( power_power @ complex @ Z3 @ N )
= ( one_one @ complex ) ) ) )
= N ) ) ).
% card_roots_unity_eq
thf(fact_5173_diff__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N ) )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [K3: nat] : K3
@ ( minus_minus @ nat @ M @ N ) ) ) ).
% diff_Suc
thf(fact_5174_card__2__iff,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ? [X6: A,Y6: A] :
( ( S3
= ( insert @ A @ X6 @ ( insert @ A @ Y6 @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( X6 != Y6 ) ) ) ) ).
% card_2_iff
thf(fact_5175_card__3__iff,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
= ( ? [X6: A,Y6: A,Z3: A] :
( ( S3
= ( insert @ A @ X6 @ ( insert @ A @ Y6 @ ( insert @ A @ Z3 @ ( bot_bot @ ( set @ A ) ) ) ) ) )
& ( X6 != Y6 )
& ( Y6 != Z3 )
& ( X6 != Z3 ) ) ) ) ).
% card_3_iff
thf(fact_5176_odd__card__imp__not__empty,axiom,
! [A: $tType,A3: set @ A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( finite_card @ A @ A3 ) )
=> ( A3
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% odd_card_imp_not_empty
thf(fact_5177_card_Oremove,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ A3 )
= ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% card.remove
thf(fact_5178_card_Oinsert__remove,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_card @ A @ ( insert @ A @ X @ A3 ) )
= ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% card.insert_remove
thf(fact_5179_card__Suc__Diff1,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) )
= ( finite_card @ A @ A3 ) ) ) ) ).
% card_Suc_Diff1
thf(fact_5180_card__Diff1__less__iff,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A3 ) )
= ( ( finite_finite @ A @ A3 )
& ( member @ A @ X @ A3 ) ) ) ).
% card_Diff1_less_iff
thf(fact_5181_card__Diff2__less,axiom,
! [A: $tType,A3: set @ A,X: A,Y: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( member @ A @ Y @ A3 )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ ( insert @ A @ Y @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A3 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_5182_card__Diff1__less,axiom,
! [A: $tType,A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A3 ) ) ) ) ).
% card_Diff1_less
thf(fact_5183_bit__numeral__rec_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [W: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit0 @ W ) ) @ N )
= ( case_nat @ $o @ $false @ ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ W ) ) @ N ) ) ) ).
% bit_numeral_rec(1)
thf(fact_5184_card__Un__disjoint,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( plus_plus @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ A @ B3 ) ) ) ) ) ) ).
% card_Un_disjoint
thf(fact_5185_bit__numeral__rec_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [W: num,N: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit1 @ W ) ) @ N )
= ( case_nat @ $o @ $true @ ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ W ) ) @ N ) ) ) ).
% bit_numeral_rec(2)
thf(fact_5186_card__Diff__singleton__if,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ( ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ nat @ ( finite_card @ A @ A3 ) @ ( one_one @ nat ) ) ) )
& ( ~ ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( finite_card @ A @ A3 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_5187_card__Diff__singleton,axiom,
! [A: $tType,X: A,A3: set @ A] :
( ( member @ A @ X @ A3 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ nat @ ( finite_card @ A @ A3 ) @ ( one_one @ nat ) ) ) ) ).
% card_Diff_singleton
thf(fact_5188_sum__norm__bound,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [S3: set @ B,F2: B > A,K5: real] :
( ! [X5: B] :
( ( member @ B @ X5 @ S3 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ X5 ) ) @ K5 ) )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S3 ) ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( finite_card @ B @ S3 ) ) @ K5 ) ) ) ) ).
% sum_norm_bound
thf(fact_5189_Nitpick_Ocase__nat__unfold,axiom,
! [A: $tType] :
( ( case_nat @ A )
= ( ^ [X6: A,F6: nat > A,N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ X6
@ ( F6 @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) ) ).
% Nitpick.case_nat_unfold
thf(fact_5190_prod__le__power,axiom,
! [B: $tType,A: $tType] :
( ( linordered_semidom @ A )
=> ! [A3: set @ B,F2: B > A,N: A,K: nat] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less_eq @ A @ ( F2 @ I2 ) @ N ) ) )
=> ( ( ord_less_eq @ nat @ ( finite_card @ B @ A3 ) @ K )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ N )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A3 ) @ ( power_power @ A @ N @ K ) ) ) ) ) ) ).
% prod_le_power
thf(fact_5191_sum__bounded__above__strict,axiom,
! [B: $tType,A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A3: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ord_less @ A @ ( F2 @ I2 ) @ K5 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ B @ A3 ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A3 ) ) @ K5 ) ) ) ) ) ).
% sum_bounded_above_strict
thf(fact_5192_sum__bounded__above__divide,axiom,
! [B: $tType,A: $tType] :
( ( linordered_field @ A )
=> ! [A3: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( divide_divide @ A @ K5 @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A3 ) ) ) ) )
=> ( ( finite_finite @ B @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A3 ) @ K5 ) ) ) ) ) ).
% sum_bounded_above_divide
thf(fact_5193_card__insert__le__m1,axiom,
! [A: $tType,N: nat,Y: set @ A,X: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ Y ) @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ ( insert @ A @ X @ Y ) ) @ N ) ) ) ).
% card_insert_le_m1
thf(fact_5194_polyfun__roots__card,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) )
@ N ) ) ) ) ).
% polyfun_roots_card
thf(fact_5195_prod__gen__delta,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,A2: B,B2: B > A,C2: A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ C2 )
@ S3 )
= ( times_times @ A @ ( B2 @ A2 ) @ ( power_power @ A @ C2 @ ( minus_minus @ nat @ ( finite_card @ B @ S3 ) @ ( one_one @ nat ) ) ) ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ C2 )
@ S3 )
= ( power_power @ A @ C2 @ ( finite_card @ B @ S3 ) ) ) ) ) ) ) ).
% prod_gen_delta
thf(fact_5196_polyfun__rootbound,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) )
& ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) )
= ( zero_zero @ A ) ) ) )
@ N ) ) ) ) ) ).
% polyfun_rootbound
thf(fact_5197_card__lists__distinct__length__eq,axiom,
! [A: $tType,A3: set @ A,K: nat] :
( ( finite_finite @ A @ A3 )
=> ( ( ord_less_eq @ nat @ K @ ( finite_card @ A @ A3 ) )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ ( minus_minus @ nat @ ( finite_card @ A @ A3 ) @ K ) @ ( one_one @ nat ) ) @ ( finite_card @ A @ A3 ) ) ) ) ) ) ).
% card_lists_distinct_length_eq
thf(fact_5198_card__lists__distinct__length__eq_H,axiom,
! [A: $tType,K: nat,A3: set @ A] :
( ( ord_less @ nat @ K @ ( finite_card @ A @ A3 ) )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X6: nat] : X6
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ ( minus_minus @ nat @ ( finite_card @ A @ A3 ) @ K ) @ ( one_one @ nat ) ) @ ( finite_card @ A @ A3 ) ) ) ) ) ).
% card_lists_distinct_length_eq'
thf(fact_5199_bit__cut__integer__def,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( product_Pair @ code_integer @ $o @ ( divide_divide @ code_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) )
@ ~ ( dvd_dvd @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ K3 ) ) ) ) ).
% bit_cut_integer_def
thf(fact_5200_distinct__union,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( distinct @ A @ ( union @ A @ Xs2 @ Ys2 ) )
= ( distinct @ A @ Ys2 ) ) ).
% distinct_union
thf(fact_5201_distinct__swap,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,J: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( distinct @ A @ ( list_update @ A @ ( list_update @ A @ Xs2 @ I3 @ ( nth @ A @ Xs2 @ J ) ) @ J @ ( nth @ A @ Xs2 @ I3 ) ) )
= ( distinct @ A @ Xs2 ) ) ) ) ).
% distinct_swap
thf(fact_5202_finite__lists__distinct__length__eq,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( finite_finite @ A @ A3 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= N )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 ) ) ) ) ) ).
% finite_lists_distinct_length_eq
thf(fact_5203_distinct__product,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( distinct @ A @ Xs2 )
=> ( ( distinct @ B @ Ys2 )
=> ( distinct @ ( product_prod @ A @ B ) @ ( product @ A @ B @ Xs2 @ Ys2 ) ) ) ) ).
% distinct_product
thf(fact_5204_sorted__list__of__set_Odistinct__if__distinct__map,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ Xs2 ) ) ) ).
% sorted_list_of_set.distinct_if_distinct_map
thf(fact_5205_finite__distinct__list,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ? [Xs3: list @ A] :
( ( ( set2 @ A @ Xs3 )
= A3 )
& ( distinct @ A @ Xs3 ) ) ) ).
% finite_distinct_list
thf(fact_5206_distinct__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( distinct @ ( list @ A ) @ Xs2 )
=> ( ! [Ys4: list @ A] :
( ( member @ ( list @ A ) @ Ys4 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Ys4 ) )
=> ( ! [Ys4: list @ A,Zs: list @ A] :
( ( member @ ( list @ A ) @ Ys4 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( Ys4 != Zs )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Ys4 ) @ ( set2 @ A @ Zs ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( distinct @ A @ ( concat @ A @ Xs2 ) ) ) ) ) ).
% distinct_concat
thf(fact_5207_subseqs__distinctD,axiom,
! [A: $tType,Ys2: list @ A,Xs2: list @ A] :
( ( member @ ( list @ A ) @ Ys2 @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) )
=> ( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ Ys2 ) ) ) ).
% subseqs_distinctD
thf(fact_5208_nth__eq__iff__index__eq,axiom,
! [A: $tType,Xs2: list @ A,I3: nat,J: nat] :
( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ Xs2 @ I3 )
= ( nth @ A @ Xs2 @ J ) )
= ( I3 = J ) ) ) ) ) ).
% nth_eq_iff_index_eq
thf(fact_5209_distinct__conv__nth,axiom,
! [A: $tType] :
( ( distinct @ A )
= ( ^ [Xs: list @ A] :
! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs ) )
=> ! [J2: nat] :
( ( ord_less @ nat @ J2 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( I != J2 )
=> ( ( nth @ A @ Xs @ I )
!= ( nth @ A @ Xs @ J2 ) ) ) ) ) ) ) ).
% distinct_conv_nth
thf(fact_5210_distinct__card,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( finite_card @ A @ ( set2 @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% distinct_card
thf(fact_5211_card__distinct,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( finite_card @ A @ ( set2 @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Xs2 ) ) ).
% card_distinct
thf(fact_5212_distinct__Ex1,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [X5: nat] :
( ( ord_less @ nat @ X5 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ X5 )
= X )
& ! [Y4: nat] :
( ( ( ord_less @ nat @ Y4 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ Y4 )
= X ) )
=> ( Y4 = X5 ) ) ) ) ) ).
% distinct_Ex1
thf(fact_5213_bij__betw__nth,axiom,
! [A: $tType,Xs2: list @ A,A3: set @ nat,B3: set @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( A3
= ( set_ord_lessThan @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
=> ( ( B3
= ( set2 @ A @ Xs2 ) )
=> ( bij_betw @ nat @ A @ ( nth @ A @ Xs2 ) @ A3 @ B3 ) ) ) ) ).
% bij_betw_nth
thf(fact_5214_distinct__list__update,axiom,
! [A: $tType,Xs2: list @ A,A2: A,I3: nat] :
( ( distinct @ A @ Xs2 )
=> ( ~ ( member @ A @ A2 @ ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( distinct @ A @ ( list_update @ A @ Xs2 @ I3 @ A2 ) ) ) ) ).
% distinct_list_update
thf(fact_5215_set__update__distinct,axiom,
! [A: $tType,Xs2: list @ A,N: nat,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( set2 @ A @ ( list_update @ A @ Xs2 @ N @ X ) )
= ( insert @ A @ X @ ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert @ A @ ( nth @ A @ Xs2 @ N ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% set_update_distinct
thf(fact_5216_bit__cut__integer__code,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( if @ ( product_prod @ code_integer @ $o )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ $o @ ( zero_zero @ code_integer ) @ $false )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ $o )
@ ^ [R5: code_integer,S6: code_integer] :
( product_Pair @ code_integer @ $o @ ( if @ code_integer @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ K3 ) @ R5 @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ S6 ) )
@ ( S6
= ( one_one @ code_integer ) ) )
@ ( code_divmod_abs @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% bit_cut_integer_code
thf(fact_5217_divmod__integer__def,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] : ( product_Pair @ code_integer @ code_integer @ ( divide_divide @ code_integer @ K3 @ L2 ) @ ( modulo_modulo @ code_integer @ K3 @ L2 ) ) ) ) ).
% divmod_integer_def
thf(fact_5218_card__disjoint__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_card @ ( list @ A ) @ ( shuffles @ A @ Xs2 @ Ys2 ) )
= ( binomial @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% card_disjoint_shuffles
thf(fact_5219_finite__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] : ( finite_finite @ ( list @ A ) @ ( shuffles @ A @ Xs2 @ Ys2 ) ) ).
% finite_shuffles
thf(fact_5220_shuffles__commutes,axiom,
! [A: $tType] :
( ( shuffles @ A )
= ( ^ [Xs: list @ A,Ys: list @ A] : ( shuffles @ A @ Ys @ Xs ) ) ) ).
% shuffles_commutes
thf(fact_5221_length__shuffles,axiom,
! [A: $tType,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A] :
( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( size_size @ ( list @ A ) @ Zs2 )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys2 ) ) ) ) ).
% length_shuffles
thf(fact_5222_set__shuffles,axiom,
! [A: $tType,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A] :
( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( set2 @ A @ Zs2 )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) ) ) ) ).
% set_shuffles
thf(fact_5223_divmod__abs__code_I6_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ ( zero_zero @ code_integer ) @ J )
= ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ) ) ).
% divmod_abs_code(6)
thf(fact_5224_distinct__disjoint__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( distinct @ A @ Ys2 )
=> ( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( distinct @ A @ Zs2 ) ) ) ) ) ).
% distinct_disjoint_shuffles
thf(fact_5225_divmod__abs__code_I5_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ J @ ( zero_zero @ code_integer ) )
= ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( abs_abs @ code_integer @ J ) ) ) ).
% divmod_abs_code(5)
thf(fact_5226_divmod__abs__def,axiom,
( code_divmod_abs
= ( ^ [K3: code_integer,L2: code_integer] : ( product_Pair @ code_integer @ code_integer @ ( divide_divide @ code_integer @ ( abs_abs @ code_integer @ K3 ) @ ( abs_abs @ code_integer @ L2 ) ) @ ( modulo_modulo @ code_integer @ ( abs_abs @ code_integer @ K3 ) @ ( abs_abs @ code_integer @ L2 ) ) ) ) ) ).
% divmod_abs_def
thf(fact_5227_divmod__integer__code,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ L2 )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ K3 ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ L2 @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) )
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( L2
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ K3 )
@ ( product_apsnd @ code_integer @ code_integer @ code_integer @ ( uminus_uminus @ code_integer )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ) ).
% divmod_integer_code
thf(fact_5228_nat_Osplit__sels_I2_J,axiom,
! [A: $tType,P: A > $o,F1: A,F22: nat > A,Nat: nat] :
( ( P @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( ~ ( ( ( Nat
= ( zero_zero @ nat ) )
& ~ ( P @ F1 ) )
| ( ( Nat
= ( suc @ ( pred @ Nat ) ) )
& ~ ( P @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ) ).
% nat.split_sels(2)
thf(fact_5229_nat_Osplit__sels_I1_J,axiom,
! [A: $tType,P: A > $o,F1: A,F22: nat > A,Nat: nat] :
( ( P @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( ( ( Nat
= ( zero_zero @ nat ) )
=> ( P @ F1 ) )
& ( ( Nat
= ( suc @ ( pred @ Nat ) ) )
=> ( P @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ).
% nat.split_sels(1)
thf(fact_5230_pred__def,axiom,
( pred
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [X24: nat] : X24 ) ) ).
% pred_def
thf(fact_5231_rec__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: nat > A > A,V: num,N: nat] :
( ( rec_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V ) @ N ) )
= ( F2 @ ( plus_plus @ nat @ ( pred_numeral @ V ) @ N ) @ ( rec_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( pred_numeral @ V ) @ N ) ) ) ) ).
% rec_nat_add_eq_if
thf(fact_5232_bezw__0,axiom,
! [X: nat] :
( ( bezw @ X @ ( zero_zero @ nat ) )
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) ).
% bezw_0
thf(fact_5233_distinct__product__lists,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ! [X5: list @ A] :
( ( member @ ( list @ A ) @ X5 @ ( set2 @ ( list @ A ) @ Xss ) )
=> ( distinct @ A @ X5 ) )
=> ( distinct @ ( list @ A ) @ ( product_lists @ A @ Xss ) ) ) ).
% distinct_product_lists
thf(fact_5234_old_Onat_Osimps_I7_J,axiom,
! [T: $tType,F1: T,F22: nat > T > T,Nat: nat] :
( ( rec_nat @ T @ F1 @ F22 @ ( suc @ Nat ) )
= ( F22 @ Nat @ ( rec_nat @ T @ F1 @ F22 @ Nat ) ) ) ).
% old.nat.simps(7)
thf(fact_5235_old_Onat_Osimps_I6_J,axiom,
! [T: $tType,F1: T,F22: nat > T > T] :
( ( rec_nat @ T @ F1 @ F22 @ ( zero_zero @ nat ) )
= F1 ) ).
% old.nat.simps(6)
thf(fact_5236_rec__nat__numeral,axiom,
! [A: $tType,A2: A,F2: nat > A > A,V: num] :
( ( rec_nat @ A @ A2 @ F2 @ ( numeral_numeral @ nat @ V ) )
= ( F2 @ ( pred_numeral @ V ) @ ( rec_nat @ A @ A2 @ F2 @ ( pred_numeral @ V ) ) ) ) ).
% rec_nat_numeral
thf(fact_5237_in__set__product__lists__length,axiom,
! [A: $tType,Xs2: list @ A,Xss: list @ ( list @ A )] :
( ( member @ ( list @ A ) @ Xs2 @ ( set2 @ ( list @ A ) @ ( product_lists @ A @ Xss ) ) )
=> ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ ( list @ A ) ) @ Xss ) ) ) ).
% in_set_product_lists_length
thf(fact_5238_old_Orec__nat__def,axiom,
! [T: $tType] :
( ( rec_nat @ T )
= ( ^ [F12: T,F23: nat > T > T,X6: nat] : ( the @ T @ ( rec_set_nat @ T @ F12 @ F23 @ X6 ) ) ) ) ).
% old.rec_nat_def
thf(fact_5239_rec__nat__0__imp,axiom,
! [A: $tType,F2: nat > A,F1: A,F22: nat > A > A] :
( ( F2
= ( rec_nat @ A @ F1 @ F22 ) )
=> ( ( F2 @ ( zero_zero @ nat ) )
= F1 ) ) ).
% rec_nat_0_imp
thf(fact_5240_rec__nat__Suc__imp,axiom,
! [A: $tType,F2: nat > A,F1: A,F22: nat > A > A,N: nat] :
( ( F2
= ( rec_nat @ A @ F1 @ F22 ) )
=> ( ( F2 @ ( suc @ N ) )
= ( F22 @ N @ ( F2 @ N ) ) ) ) ).
% rec_nat_Suc_imp
thf(fact_5241_drop__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ ( pred_numeral @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_numeral_minus_bit1
thf(fact_5242_Suc__0__mod__numeral,axiom,
! [K: num] :
( ( modulo_modulo @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ K ) )
= ( product_snd @ nat @ nat @ ( unique8689654367752047608divmod @ nat @ one2 @ K ) ) ) ).
% Suc_0_mod_numeral
thf(fact_5243_prod__decode__aux_Oelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ nat @ nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y )
=> ( ( ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( product_Pair @ nat @ nat @ Xa2 @ ( minus_minus @ nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus @ nat @ Xa2 @ ( suc @ X ) ) ) ) ) ) ) ).
% prod_decode_aux.elims
thf(fact_5244_drop__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% drop_bit_of_0
thf(fact_5245_drop__bit__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) )
= ( bit_se4197421643247451524op_bit @ A @ ( plus_plus @ nat @ M @ N ) @ A2 ) ) ) ).
% drop_bit_drop_bit
thf(fact_5246_drop__bit__and,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) @ ( bit_se4197421643247451524op_bit @ A @ N @ B2 ) ) ) ) ).
% drop_bit_and
thf(fact_5247_drop__bit__or,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) @ ( bit_se4197421643247451524op_bit @ A @ N @ B2 ) ) ) ) ).
% drop_bit_or
thf(fact_5248_drop__bit__xor,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( bit_se5824344971392196577ns_xor @ A @ A2 @ B2 ) )
= ( bit_se5824344971392196577ns_xor @ A @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) @ ( bit_se4197421643247451524op_bit @ A @ N @ B2 ) ) ) ) ).
% drop_bit_xor
thf(fact_5249_drop__bit__of__bool,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,B2: $o] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( zero_neq_one_of_bool @ A @ B2 ) )
= ( zero_neq_one_of_bool @ A
@ ( ( N
= ( zero_zero @ nat ) )
& B2 ) ) ) ) ).
% drop_bit_of_bool
thf(fact_5250_drop__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se4197421643247451524op_bit @ int @ N @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% drop_bit_nonnegative_int_iff
thf(fact_5251_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less @ int @ ( bit_se4197421643247451524op_bit @ int @ N @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% drop_bit_negative_int_iff
thf(fact_5252_drop__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se4197421643247451524op_bit @ int @ N @ ( uminus_uminus @ int @ ( one_one @ int ) ) )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ).
% drop_bit_minus_one
thf(fact_5253_drop__bit__Suc__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_Suc_bit0
thf(fact_5254_drop__bit__Suc__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_Suc_bit1
thf(fact_5255_drop__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( one_one @ A ) )
= ( zero_neq_one_of_bool @ A
@ ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% drop_bit_of_1
thf(fact_5256_numeral__mod__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [K: num,L: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ A @ L ) )
= ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ K @ L ) ) ) ) ).
% numeral_mod_numeral
thf(fact_5257_snd__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_snd @ nat @ nat @ ( divmod_nat @ M @ N ) )
= ( modulo_modulo @ nat @ M @ N ) ) ).
% snd_divmod_nat
thf(fact_5258_drop__bit__numeral__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_numeral_bit0
thf(fact_5259_drop__bit__numeral__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_numeral_bit1
thf(fact_5260_drop__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ N @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) ) ).
% drop_bit_Suc_minus_bit0
thf(fact_5261_one__mod__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num] :
( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) )
= ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ one2 @ N ) ) ) ) ).
% one_mod_numeral
thf(fact_5262_drop__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( numeral_numeral @ nat @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ ( pred_numeral @ L ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) ) ).
% drop_bit_numeral_minus_bit0
thf(fact_5263_drop__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( suc @ N ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ N @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_Suc_minus_bit1
thf(fact_5264_drop__bit__of__nat,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,M: nat] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( semiring_1_of_nat @ A @ M ) )
= ( semiring_1_of_nat @ A @ ( bit_se4197421643247451524op_bit @ nat @ N @ M ) ) ) ) ).
% drop_bit_of_nat
thf(fact_5265_of__nat__drop__bit,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( bit_se4197421643247451524op_bit @ nat @ M @ N ) )
= ( bit_se4197421643247451524op_bit @ A @ M @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_drop_bit
thf(fact_5266_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N @ A2 )
= A2 )
= ( ( bit_se4197421643247451524op_bit @ A @ N @ A2 )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_5267_drop__bit__push__bit__int,axiom,
! [M: nat,N: nat,K: int] :
( ( bit_se4197421643247451524op_bit @ int @ M @ ( bit_se4730199178511100633sh_bit @ int @ N @ K ) )
= ( bit_se4197421643247451524op_bit @ int @ ( minus_minus @ nat @ M @ N ) @ ( bit_se4730199178511100633sh_bit @ int @ ( minus_minus @ nat @ N @ M ) @ K ) ) ) ).
% drop_bit_push_bit_int
thf(fact_5268_take__bit__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) )
= ( bit_se4197421643247451524op_bit @ A @ N @ ( bit_se2584673776208193580ke_bit @ A @ ( plus_plus @ nat @ M @ N ) @ A2 ) ) ) ) ).
% take_bit_drop_bit
thf(fact_5269_drop__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ ( minus_minus @ nat @ N @ M ) @ ( bit_se4197421643247451524op_bit @ A @ M @ A2 ) ) ) ) ).
% drop_bit_take_bit
thf(fact_5270_divides__aux__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique5940410009612947441es_aux @ A )
= ( ^ [Qr: product_prod @ A @ A] :
( ( product_snd @ A @ A @ Qr )
= ( zero_zero @ A ) ) ) ) ) ).
% divides_aux_def
thf(fact_5271_snd__divmod,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ M @ N ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) ) ) ) ).
% snd_divmod
thf(fact_5272_div__push__bit__of__1__eq__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N: nat] :
( ( divide_divide @ A @ A2 @ ( bit_se4730199178511100633sh_bit @ A @ N @ ( one_one @ A ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) ) ) ).
% div_push_bit_of_1_eq_drop_bit
thf(fact_5273_bit__iff__and__drop__bit__eq__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A4: A,N3: nat] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se4197421643247451524op_bit @ A @ N3 @ A4 ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ) ) ).
% bit_iff_and_drop_bit_eq_1
thf(fact_5274_bits__ident,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( plus_plus @ A @ ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) ) @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= A2 ) ) ).
% bits_ident
thf(fact_5275_drop__bit__half,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( divide_divide @ A @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% drop_bit_half
thf(fact_5276_stable__imp__drop__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N: nat] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( bit_se4197421643247451524op_bit @ A @ N @ A2 )
= A2 ) ) ) ).
% stable_imp_drop_bit_eq
thf(fact_5277_drop__bit__int__def,axiom,
( ( bit_se4197421643247451524op_bit @ int )
= ( ^ [N3: nat,K3: int] : ( divide_divide @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% drop_bit_int_def
thf(fact_5278_drop__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N ) @ A2 )
= ( bit_se4197421643247451524op_bit @ A @ N @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% drop_bit_Suc
thf(fact_5279_drop__bit__eq__div,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4197421643247451524op_bit @ A )
= ( ^ [N3: nat,A4: A] : ( divide_divide @ A @ A4 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ).
% drop_bit_eq_div
thf(fact_5280_bit__iff__odd__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A4: A,N3: nat] :
~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se4197421643247451524op_bit @ A @ N3 @ A4 ) ) ) ) ) ).
% bit_iff_odd_drop_bit
thf(fact_5281_even__drop__bit__iff__not__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N ) ) ) ) ).
% even_drop_bit_iff_not_bit
thf(fact_5282_slice__eq__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: nat,M: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N @ ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) ) )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_se5824344872417868541ns_and @ A @ ( bit_se2239418461657761734s_mask @ A @ ( plus_plus @ nat @ M @ N ) ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N ) ) ) ) ) ) ).
% slice_eq_mask
thf(fact_5283_drop__bit__rec,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4197421643247451524op_bit @ A )
= ( ^ [N3: nat,A4: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ A4
@ ( bit_se4197421643247451524op_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A4 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_5284_prod__decode__aux_Osimps,axiom,
( nat_prod_decode_aux
= ( ^ [K3: nat,M4: nat] : ( if @ ( product_prod @ nat @ nat ) @ ( ord_less_eq @ nat @ M4 @ K3 ) @ ( product_Pair @ nat @ nat @ M4 @ ( minus_minus @ nat @ K3 @ M4 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus @ nat @ M4 @ ( suc @ K3 ) ) ) ) ) ) ).
% prod_decode_aux.simps
thf(fact_5285_Suc__0__div__numeral,axiom,
! [K: num] :
( ( divide_divide @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ K ) )
= ( product_fst @ nat @ nat @ ( unique8689654367752047608divmod @ nat @ one2 @ K ) ) ) ).
% Suc_0_div_numeral
thf(fact_5286_vebt__maxt_Opelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ X )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A6 @ B6 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( some @ nat @ Ma2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_maxt.pelims
thf(fact_5287_vebt__mint_Opelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_mint @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ X )
=> ( ! [A6: $o,B6: $o] :
( ( X
= ( vEBT_Leaf @ A6 @ B6 ) )
=> ( ( ( A6
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A6
=> ( ( B6
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B6
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A6 @ B6 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( some @ nat @ Mi2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_mint.pelims
thf(fact_5288_snd__divmod__integer,axiom,
! [K: code_integer,L: code_integer] :
( ( product_snd @ code_integer @ code_integer @ ( code_divmod_integer @ K @ L ) )
= ( modulo_modulo @ code_integer @ K @ L ) ) ).
% snd_divmod_integer
thf(fact_5289_snd__divmod__abs,axiom,
! [K: code_integer,L: code_integer] :
( ( product_snd @ code_integer @ code_integer @ ( code_divmod_abs @ K @ L ) )
= ( modulo_modulo @ code_integer @ ( abs_abs @ code_integer @ K ) @ ( abs_abs @ code_integer @ L ) ) ) ).
% snd_divmod_abs
thf(fact_5290_numeral__div__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [K: num,L: num] :
( ( divide_divide @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ A @ L ) )
= ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ K @ L ) ) ) ) ).
% numeral_div_numeral
thf(fact_5291_drop__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se4197421643247451524op_bit @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_neq_one_of_bool @ nat
@ ( N
= ( zero_zero @ nat ) ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_5292_fst__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_fst @ nat @ nat @ ( divmod_nat @ M @ N ) )
= ( divide_divide @ nat @ M @ N ) ) ).
% fst_divmod_nat
thf(fact_5293_one__div__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N: num] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) )
= ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ one2 @ N ) ) ) ) ).
% one_div_numeral
thf(fact_5294_drop__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se4197421643247451524op_bit @ nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se4197421643247451524op_bit @ int @ N @ K ) ) ) ).
% drop_bit_nat_eq
thf(fact_5295_fst__divmod,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N: num] :
( ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ M @ N ) )
= ( divide_divide @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) ) ) ) ).
% fst_divmod
thf(fact_5296_drop__bit__nat__def,axiom,
( ( bit_se4197421643247451524op_bit @ nat )
= ( ^ [N3: nat,M4: nat] : ( divide_divide @ nat @ M4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% drop_bit_nat_def
thf(fact_5297_minus__one__mod__numeral,axiom,
! [N: num] :
( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N ) )
= ( adjust_mod @ ( numeral_numeral @ int @ N ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ one2 @ N ) ) ) ) ).
% minus_one_mod_numeral
thf(fact_5298_one__mod__minus__numeral,axiom,
! [N: num] :
( ( modulo_modulo @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( uminus_uminus @ int @ ( adjust_mod @ ( numeral_numeral @ int @ N ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ one2 @ N ) ) ) ) ) ).
% one_mod_minus_numeral
thf(fact_5299_numeral__mod__minus__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( uminus_uminus @ int @ ( adjust_mod @ ( numeral_numeral @ int @ N ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ M @ N ) ) ) ) ) ).
% numeral_mod_minus_numeral
thf(fact_5300_minus__numeral__mod__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( adjust_mod @ ( numeral_numeral @ int @ N ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ M @ N ) ) ) ) ).
% minus_numeral_mod_numeral
thf(fact_5301_Divides_Oadjust__mod__def,axiom,
( adjust_mod
= ( ^ [L2: int,R5: int] :
( if @ int
@ ( R5
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( minus_minus @ int @ L2 @ R5 ) ) ) ) ).
% Divides.adjust_mod_def
thf(fact_5302_bezw__non__0,axiom,
! [Y: nat,X: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Y )
=> ( ( bezw @ X @ Y )
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Y ) ) ) ) ) ) ) ).
% bezw_non_0
thf(fact_5303_bezw_Osimps,axiom,
( bezw
= ( ^ [X6: nat,Y6: nat] :
( if @ ( product_prod @ int @ int )
@ ( Y6
= ( zero_zero @ nat ) )
@ ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Y6 @ ( modulo_modulo @ nat @ X6 @ Y6 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Y6 @ ( modulo_modulo @ nat @ X6 @ Y6 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Y6 @ ( modulo_modulo @ nat @ X6 @ Y6 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X6 @ Y6 ) ) ) ) ) ) ) ) ).
% bezw.simps
thf(fact_5304_bezw_Oelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ int @ int] :
( ( ( bezw @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Xa2 ) ) ) ) ) ) ) ) ) ).
% bezw.elims
thf(fact_5305_in__set__enumerate__eq,axiom,
! [A: $tType,P2: product_prod @ nat @ A,N: nat,Xs2: list @ A] :
( ( member @ ( product_prod @ nat @ A ) @ P2 @ ( set2 @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) ) )
= ( ( ord_less_eq @ nat @ N @ ( product_fst @ nat @ A @ P2 ) )
& ( ord_less @ nat @ ( product_fst @ nat @ A @ P2 ) @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) )
& ( ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( product_fst @ nat @ A @ P2 ) @ N ) )
= ( product_snd @ nat @ A @ P2 ) ) ) ) ).
% in_set_enumerate_eq
thf(fact_5306_bezw_Opelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ int @ int] :
( ( ( bezw @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ bezw_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Xa2 ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ bezw_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% bezw.pelims
thf(fact_5307_VEBT__internal_OminNull_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Y: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ( Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
=> ( ! [Uu2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
=> ( ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ( Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(1)
thf(fact_5308_length__enumerate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( size_size @ ( list @ ( product_prod @ nat @ A ) ) @ ( enumerate @ A @ N @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_enumerate
thf(fact_5309_distinct__enumerate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] : ( distinct @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) ) ).
% distinct_enumerate
thf(fact_5310_nth__enumerate__eq,axiom,
! [A: $tType,M: nat,Xs2: list @ A,N: nat] :
( ( ord_less @ nat @ M @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) @ M )
= ( product_Pair @ nat @ A @ ( plus_plus @ nat @ N @ M ) @ ( nth @ A @ Xs2 @ M ) ) ) ) ).
% nth_enumerate_eq
thf(fact_5311_VEBT__internal_OminNull_Opelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
=> ( ! [Uu2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(3)
thf(fact_5312_VEBT__internal_OminNull_Opelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(2)
thf(fact_5313_prod__decode__aux_Opelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ nat @ nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ nat_pr5047031295181774490ux_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( product_Pair @ nat @ nat @ Xa2 @ ( minus_minus @ nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus @ nat @ Xa2 @ ( suc @ X ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ nat_pr5047031295181774490ux_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% prod_decode_aux.pelims
thf(fact_5314_size__prod__simp,axiom,
! [B: $tType,A: $tType] :
( ( basic_BNF_size_prod @ A @ B )
= ( ^ [F6: A > nat,G2: B > nat,P5: product_prod @ A @ B] : ( plus_plus @ nat @ ( plus_plus @ nat @ ( F6 @ ( product_fst @ A @ B @ P5 ) ) @ ( G2 @ ( product_snd @ A @ B @ P5 ) ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% size_prod_simp
thf(fact_5315_divmod__integer__eq__cases,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) )
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( L2
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ K3 )
@ ( comp @ code_integer @ ( ( product_prod @ code_integer @ code_integer ) > ( product_prod @ code_integer @ code_integer ) ) @ code_integer @ ( comp @ ( code_integer > code_integer ) @ ( ( product_prod @ code_integer @ code_integer ) > ( product_prod @ code_integer @ code_integer ) ) @ code_integer @ ( product_apsnd @ code_integer @ code_integer @ code_integer ) @ ( times_times @ code_integer ) ) @ ( sgn_sgn @ code_integer ) @ L2
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( ( sgn_sgn @ code_integer @ K3 )
= ( sgn_sgn @ code_integer @ L2 ) )
@ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ ( abs_abs @ code_integer @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ).
% divmod_integer_eq_cases
thf(fact_5316_sum__comp__morphism,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( ( comm_monoid_add @ B )
& ( comm_monoid_add @ A ) )
=> ! [H2: B > A,G: C > B,A3: set @ C] :
( ( ( H2 @ ( zero_zero @ B ) )
= ( zero_zero @ A ) )
=> ( ! [X5: B,Y5: B] :
( ( H2 @ ( plus_plus @ B @ X5 @ Y5 ) )
= ( plus_plus @ A @ ( H2 @ X5 ) @ ( H2 @ Y5 ) ) )
=> ( ( groups7311177749621191930dd_sum @ C @ A @ ( comp @ B @ A @ C @ H2 @ G ) @ A3 )
= ( H2 @ ( groups7311177749621191930dd_sum @ C @ B @ G @ A3 ) ) ) ) ) ) ).
% sum_comp_morphism
thf(fact_5317_less__by__empty,axiom,
! [A: $tType,A3: set @ ( product_prod @ A @ A ),B3: set @ ( product_prod @ A @ A )] :
( ( A3
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ A3 @ B3 ) ) ).
% less_by_empty
thf(fact_5318_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less @ nat @ N @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ K2 @ I4 )
=> ( P @ I4 ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_5319_set__remove1__eq,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( set2 @ A @ ( remove1 @ A @ X @ Xs2 ) )
= ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% set_remove1_eq
thf(fact_5320_nth__rotate1,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rotate1 @ A @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( modulo_modulo @ nat @ ( suc @ N ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% nth_rotate1
thf(fact_5321_xor__minus__numerals_I2_J,axiom,
! [K: int,N: num] :
( ( bit_se5824344971392196577ns_xor @ int @ K @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( bit_se5824344971392196577ns_xor @ int @ K @ ( neg_numeral_sub @ int @ N @ one2 ) ) ) ) ).
% xor_minus_numerals(2)
thf(fact_5322_in__set__remove1,axiom,
! [A: $tType,A2: A,B2: A,Xs2: list @ A] :
( ( A2 != B2 )
=> ( ( member @ A @ A2 @ ( set2 @ A @ ( remove1 @ A @ B2 @ Xs2 ) ) )
= ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) ) ) ) ).
% in_set_remove1
thf(fact_5323_set__rotate1,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( rotate1 @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rotate1
thf(fact_5324_length__rotate1,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( rotate1 @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_rotate1
thf(fact_5325_distinct1__rotate,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ ( rotate1 @ A @ Xs2 ) )
= ( distinct @ A @ Xs2 ) ) ).
% distinct1_rotate
thf(fact_5326_sub__num__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_sub @ A @ one2 @ one2 )
= ( zero_zero @ A ) ) ) ).
% sub_num_simps(1)
thf(fact_5327_diff__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( neg_numeral_sub @ A @ M @ N ) ) ) ).
% diff_numeral_simps(1)
thf(fact_5328_sub__num__simps_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ ( bit0 @ L ) )
= ( neg_numeral_dbl @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(6)
thf(fact_5329_sub__num__simps_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ ( bit1 @ L ) )
= ( neg_numeral_dbl @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(9)
thf(fact_5330_add__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( neg_numeral_sub @ A @ M @ N ) ) ) ).
% add_neg_numeral_simps(1)
thf(fact_5331_add__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N ) )
= ( neg_numeral_sub @ A @ N @ M ) ) ) ).
% add_neg_numeral_simps(2)
thf(fact_5332_semiring__norm_I166_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V: num,W: num,Y: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ V ) @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) @ Y ) )
= ( plus_plus @ A @ ( neg_numeral_sub @ A @ V @ W ) @ Y ) ) ) ).
% semiring_norm(166)
thf(fact_5333_semiring__norm_I167_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V: num,W: num,Y: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ ( plus_plus @ A @ ( numeral_numeral @ A @ W ) @ Y ) )
= ( plus_plus @ A @ ( neg_numeral_sub @ A @ W @ V ) @ Y ) ) ) ).
% semiring_norm(167)
thf(fact_5334_diff__numeral__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( neg_numeral_sub @ A @ N @ M ) ) ) ).
% diff_numeral_simps(4)
thf(fact_5335_rotate1__length01,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( ( rotate1 @ A @ Xs2 )
= Xs2 ) ) ).
% rotate1_length01
thf(fact_5336_sub__num__simps_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ ( bit1 @ L ) )
= ( neg_numeral_dbl_dec @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(7)
thf(fact_5337_sub__num__simps_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ ( bit0 @ L ) )
= ( neg_numeral_dbl_inc @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(8)
thf(fact_5338_diff__numeral__special_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N ) )
= ( neg_numeral_sub @ A @ one2 @ N ) ) ) ).
% diff_numeral_special(1)
thf(fact_5339_diff__numeral__special_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( one_one @ A ) )
= ( neg_numeral_sub @ A @ M @ one2 ) ) ) ).
% diff_numeral_special(2)
thf(fact_5340_sub__num__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ one2 )
= ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ).
% sub_num_simps(5)
thf(fact_5341_not__minus__numeral__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( bit_ri4277139882892585799ns_not @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( neg_numeral_sub @ A @ N @ one2 ) ) ) ).
% not_minus_numeral_eq
thf(fact_5342_sub__num__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ one2 )
= ( numeral_numeral @ A @ ( bitM @ K ) ) ) ) ).
% sub_num_simps(4)
thf(fact_5343_add__neg__numeral__special_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ N ) )
= ( neg_numeral_sub @ A @ N @ one2 ) ) ) ).
% add_neg_numeral_special(4)
thf(fact_5344_add__neg__numeral__special_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( neg_numeral_sub @ A @ M @ one2 ) ) ) ).
% add_neg_numeral_special(3)
thf(fact_5345_add__neg__numeral__special_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% add_neg_numeral_special(2)
thf(fact_5346_add__neg__numeral__special_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% add_neg_numeral_special(1)
thf(fact_5347_diff__numeral__special_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% diff_numeral_special(8)
thf(fact_5348_diff__numeral__special_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( neg_numeral_sub @ A @ N @ one2 ) ) ) ).
% diff_numeral_special(7)
thf(fact_5349_minus__sub__one__diff__one,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( neg_numeral_sub @ A @ M @ one2 ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% minus_sub_one_diff_one
thf(fact_5350_sub__num__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [L: num] :
( ( neg_numeral_sub @ A @ one2 @ ( bit1 @ L ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ L ) ) ) ) ) ).
% sub_num_simps(3)
thf(fact_5351_sub__num__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [L: num] :
( ( neg_numeral_sub @ A @ one2 @ ( bit0 @ L ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bitM @ L ) ) ) ) ) ).
% sub_num_simps(2)
thf(fact_5352_xor__minus__numerals_I1_J,axiom,
! [N: num,K: int] :
( ( bit_se5824344971392196577ns_xor @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) @ K )
= ( bit_ri4277139882892585799ns_not @ int @ ( bit_se5824344971392196577ns_xor @ int @ ( neg_numeral_sub @ int @ N @ one2 ) @ K ) ) ) ).
% xor_minus_numerals(1)
thf(fact_5353_card_Ocomp__fun__commute__on,axiom,
( ( comp @ nat @ nat @ nat @ suc @ suc )
= ( comp @ nat @ nat @ nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_5354_distinct__remove1,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( remove1 @ A @ X @ Xs2 ) ) ) ).
% distinct_remove1
thf(fact_5355_remove1__commute,axiom,
! [A: $tType,X: A,Y: A,Zs2: list @ A] :
( ( remove1 @ A @ X @ ( remove1 @ A @ Y @ Zs2 ) )
= ( remove1 @ A @ Y @ ( remove1 @ A @ X @ Zs2 ) ) ) ).
% remove1_commute
thf(fact_5356_notin__set__remove1,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ A @ X @ ( set2 @ A @ ( remove1 @ A @ Y @ Xs2 ) ) ) ) ).
% notin_set_remove1
thf(fact_5357_remove1__idem,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ Xs2 )
= Xs2 ) ) ).
% remove1_idem
thf(fact_5358_neg__numeral__class_Osub__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_sub @ A )
= ( ^ [K3: num,L2: num] : ( minus_minus @ A @ ( numeral_numeral @ A @ K3 ) @ ( numeral_numeral @ A @ L2 ) ) ) ) ) ).
% neg_numeral_class.sub_def
thf(fact_5359_set__remove1__subset,axiom,
! [A: $tType,X: A,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( remove1 @ A @ X @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_remove1_subset
thf(fact_5360_sum_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.atLeast_Suc_atMost_Suc_shift
thf(fact_5361_sum_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% sum.atLeast_Suc_lessThan_Suc_shift
thf(fact_5362_sum_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.atLeastAtMost_shift_bounds
thf(fact_5363_sum_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% sum.atLeastLessThan_shift_bounds
thf(fact_5364_prod_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.atLeast_Suc_atMost_Suc_shift
thf(fact_5365_prod_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% prod.atLeast_Suc_lessThan_Suc_shift
thf(fact_5366_prod_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.atLeastAtMost_shift_bounds
thf(fact_5367_prod_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% prod.atLeastLessThan_shift_bounds
thf(fact_5368_bit__drop__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N: nat,A2: A] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se4197421643247451524op_bit @ A @ N @ A2 ) )
= ( comp @ nat @ $o @ nat @ ( bit_se5641148757651400278ts_bit @ A @ A2 ) @ ( plus_plus @ nat @ N ) ) ) ) ).
% bit_drop_bit_eq
thf(fact_5369_summable__inverse__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A @ ( comp @ A @ A @ nat @ ( inverse_inverse @ A ) @ F2 ) )
=> ( summable @ A
@ ^ [N3: nat] : ( divide_divide @ A @ C2 @ ( F2 @ N3 ) ) ) ) ) ).
% summable_inverse_divide
thf(fact_5370_sub__non__positive,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,M: num] :
( ( ord_less_eq @ A @ ( neg_numeral_sub @ A @ N @ M ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ num @ N @ M ) ) ) ).
% sub_non_positive
thf(fact_5371_sub__non__negative,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,M: num] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( neg_numeral_sub @ A @ N @ M ) )
= ( ord_less_eq @ num @ M @ N ) ) ) ).
% sub_non_negative
thf(fact_5372_sub__negative,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,M: num] :
( ( ord_less @ A @ ( neg_numeral_sub @ A @ N @ M ) @ ( zero_zero @ A ) )
= ( ord_less @ num @ N @ M ) ) ) ).
% sub_negative
thf(fact_5373_sub__positive,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N: num,M: num] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( neg_numeral_sub @ A @ N @ M ) )
= ( ord_less @ num @ M @ N ) ) ) ).
% sub_positive
thf(fact_5374_sub__inc__One__eq,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N: num] :
( ( neg_numeral_sub @ A @ ( inc @ N ) @ one2 )
= ( numeral_numeral @ A @ N ) ) ) ).
% sub_inc_One_eq
thf(fact_5375_minus__numeral__eq__not__sub__one,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N: num] :
( ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( neg_numeral_sub @ A @ N @ one2 ) ) ) ) ).
% minus_numeral_eq_not_sub_one
thf(fact_5376_sum_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ).
% sum.atLeast0_atMost_Suc_shift
thf(fact_5377_sum_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ).
% sum.atLeast0_lessThan_Suc_shift
thf(fact_5378_prod_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ).
% prod.atLeast0_atMost_Suc_shift
thf(fact_5379_prod_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ) ).
% prod.atLeast0_lessThan_Suc_shift
thf(fact_5380_sum_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ).
% sum.atLeastLessThan_shift_0
thf(fact_5381_prod_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ).
% prod.atLeastLessThan_shift_0
thf(fact_5382_length__remove1,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( remove1 @ A @ X @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( remove1 @ A @ X @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% length_remove1
thf(fact_5383_sum_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% sum.atLeast_atMost_pred_shift
thf(fact_5384_sum_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% sum.atLeast_lessThan_pred_shift
thf(fact_5385_prod_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) ) ) ) ).
% prod.atLeast_atMost_pred_shift
thf(fact_5386_prod_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) ) ) ) ).
% prod.atLeast_lessThan_pred_shift
thf(fact_5387_sum_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ).
% sum.atLeastAtMost_shift_0
thf(fact_5388_sub__BitM__One__eq,axiom,
! [N: num] :
( ( neg_numeral_sub @ int @ ( bitM @ N ) @ one2 )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( neg_numeral_sub @ int @ N @ one2 ) ) ) ).
% sub_BitM_One_eq
thf(fact_5389_prod_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) ) ) ) ) ) ).
% prod.atLeastAtMost_shift_0
thf(fact_5390_infinite__nat__iff__unbounded,axiom,
! [S3: set @ nat] :
( ( ~ ( finite_finite @ nat @ S3 ) )
= ( ! [M4: nat] :
? [N3: nat] :
( ( ord_less @ nat @ M4 @ N3 )
& ( member @ nat @ N3 @ S3 ) ) ) ) ).
% infinite_nat_iff_unbounded
thf(fact_5391_unbounded__k__infinite,axiom,
! [K: nat,S3: set @ nat] :
( ! [M3: nat] :
( ( ord_less @ nat @ K @ M3 )
=> ? [N8: nat] :
( ( ord_less @ nat @ M3 @ N8 )
& ( member @ nat @ N8 @ S3 ) ) )
=> ~ ( finite_finite @ nat @ S3 ) ) ).
% unbounded_k_infinite
thf(fact_5392_bounded__linear__axioms_Ointro,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ? [K8: real] :
! [X5: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X5 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X5 ) @ K8 ) )
=> ( real_V4916620083959148203axioms @ A @ B @ F2 ) ) ) ).
% bounded_linear_axioms.intro
thf(fact_5393_finite__transitivity__chain,axiom,
! [A: $tType,A3: set @ A,R3: A > A > $o] :
( ( finite_finite @ A @ A3 )
=> ( ! [X5: A] :
~ ( R3 @ X5 @ X5 )
=> ( ! [X5: A,Y5: A,Z4: A] :
( ( R3 @ X5 @ Y5 )
=> ( ( R3 @ Y5 @ Z4 )
=> ( R3 @ X5 @ Z4 ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ? [Y4: A] :
( ( member @ A @ Y4 @ A3 )
& ( R3 @ X5 @ Y4 ) ) )
=> ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% finite_transitivity_chain
thf(fact_5394_bounded__linear__axioms__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ( ( real_V4916620083959148203axioms @ A @ B )
= ( ^ [F6: A > B] :
? [K6: real] :
! [X6: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F6 @ X6 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X6 ) @ K6 ) ) ) ) ) ).
% bounded_linear_axioms_def
thf(fact_5395_finite__enumerate,axiom,
! [S3: set @ nat] :
( ( finite_finite @ nat @ S3 )
=> ? [R: nat > nat] :
( ( strict_mono_on @ nat @ nat @ R @ ( set_ord_lessThan @ nat @ ( finite_card @ nat @ S3 ) ) )
& ! [N8: nat] :
( ( ord_less @ nat @ N8 @ ( finite_card @ nat @ S3 ) )
=> ( member @ nat @ ( R @ N8 ) @ S3 ) ) ) ) ).
% finite_enumerate
thf(fact_5396_horner__sum__eq__sum__funpow,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F6: B > A,A4: A,Xs: list @ B] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( compow @ ( A > A ) @ N3 @ ( times_times @ A @ A4 ) @ ( F6 @ ( nth @ B @ Xs @ N3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% horner_sum_eq_sum_funpow
thf(fact_5397_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( ( ord_less_eq @ code_integer @ K @ ( zero_zero @ code_integer ) )
=> ( ( code_nat_of_integer @ K )
= ( zero_zero @ nat ) ) ) ).
% nat_of_integer_non_positive
thf(fact_5398_Suc__funpow,axiom,
! [N: nat] :
( ( compow @ ( nat > nat ) @ N @ suc )
= ( plus_plus @ nat @ N ) ) ).
% Suc_funpow
thf(fact_5399_funpow__0,axiom,
! [A: $tType,F2: A > A,X: A] :
( ( compow @ ( A > A ) @ ( zero_zero @ nat ) @ F2 @ X )
= X ) ).
% funpow_0
thf(fact_5400_of__nat__of__integer,axiom,
! [K: code_integer] :
( ( semiring_1_of_nat @ code_integer @ ( code_nat_of_integer @ K ) )
= ( ord_max @ code_integer @ ( zero_zero @ code_integer ) @ K ) ) ).
% of_nat_of_integer
thf(fact_5401_comp__funpow,axiom,
! [B: $tType,A: $tType,N: nat,F2: A > A] :
( ( compow @ ( ( B > A ) > B > A ) @ N @ ( comp @ A @ A @ B @ F2 ) )
= ( comp @ A @ A @ B @ ( compow @ ( A > A ) @ N @ F2 ) ) ) ).
% comp_funpow
thf(fact_5402_funpow__Suc__right,axiom,
! [A: $tType,N: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( suc @ N ) @ F2 )
= ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) @ F2 ) ) ).
% funpow_Suc_right
thf(fact_5403_funpow_Osimps_I2_J,axiom,
! [A: $tType,N: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( suc @ N ) @ F2 )
= ( comp @ A @ A @ A @ F2 @ ( compow @ ( A > A ) @ N @ F2 ) ) ) ).
% funpow.simps(2)
thf(fact_5404_funpow__add,axiom,
! [A: $tType,M: nat,N: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( plus_plus @ nat @ M @ N ) @ F2 )
= ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ M @ F2 ) @ ( compow @ ( A > A ) @ N @ F2 ) ) ) ).
% funpow_add
thf(fact_5405_funpow__times__power,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [F2: A > nat,X: A] :
( ( compow @ ( A > A ) @ ( F2 @ X ) @ ( times_times @ A @ X ) )
= ( times_times @ A @ ( power_power @ A @ X @ ( F2 @ X ) ) ) ) ) ).
% funpow_times_power
thf(fact_5406_funpow__mod__eq,axiom,
! [A: $tType,N: nat,F2: A > A,X: A,M: nat] :
( ( ( compow @ ( A > A ) @ N @ F2 @ X )
= X )
=> ( ( compow @ ( A > A ) @ ( modulo_modulo @ nat @ M @ N ) @ F2 @ X )
= ( compow @ ( A > A ) @ M @ F2 @ X ) ) ) ).
% funpow_mod_eq
thf(fact_5407_funpow__swap1,axiom,
! [A: $tType,F2: A > A,N: nat,X: A] :
( ( F2 @ ( compow @ ( A > A ) @ N @ F2 @ X ) )
= ( compow @ ( A > A ) @ N @ F2 @ ( F2 @ X ) ) ) ).
% funpow_swap1
thf(fact_5408_funpow__mult,axiom,
! [A: $tType,N: nat,M: nat,F2: A > A] :
( ( compow @ ( A > A ) @ N @ ( compow @ ( A > A ) @ M @ F2 ) )
= ( compow @ ( A > A ) @ ( times_times @ nat @ M @ N ) @ F2 ) ) ).
% funpow_mult
thf(fact_5409_bij__betw__funpow,axiom,
! [A: $tType,F2: A > A,S3: set @ A,N: nat] :
( ( bij_betw @ A @ A @ F2 @ S3 @ S3 )
=> ( bij_betw @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) @ S3 @ S3 ) ) ).
% bij_betw_funpow
thf(fact_5410_strict__mono__onD,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ! [F2: A > B,A3: set @ A,R2: A,S: A] :
( ( strict_mono_on @ A @ B @ F2 @ A3 )
=> ( ( member @ A @ R2 @ A3 )
=> ( ( member @ A @ S @ A3 )
=> ( ( ord_less @ A @ R2 @ S )
=> ( ord_less @ B @ ( F2 @ R2 ) @ ( F2 @ S ) ) ) ) ) ) ) ).
% strict_mono_onD
thf(fact_5411_strict__mono__onI,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ! [A3: set @ A,F2: A > B] :
( ! [R: A,S2: A] :
( ( member @ A @ R @ A3 )
=> ( ( member @ A @ S2 @ A3 )
=> ( ( ord_less @ A @ R @ S2 )
=> ( ord_less @ B @ ( F2 @ R ) @ ( F2 @ S2 ) ) ) ) )
=> ( strict_mono_on @ A @ B @ F2 @ A3 ) ) ) ).
% strict_mono_onI
thf(fact_5412_strict__mono__on__def,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ( ( strict_mono_on @ A @ B )
= ( ^ [F6: A > B,A7: set @ A] :
! [R5: A,S6: A] :
( ( ( member @ A @ R5 @ A7 )
& ( member @ A @ S6 @ A7 )
& ( ord_less @ A @ R5 @ S6 ) )
=> ( ord_less @ B @ ( F6 @ R5 ) @ ( F6 @ S6 ) ) ) ) ) ) ).
% strict_mono_on_def
thf(fact_5413_nat__of__integer__code__post_I1_J,axiom,
( ( code_nat_of_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ nat ) ) ).
% nat_of_integer_code_post(1)
thf(fact_5414_nat__of__integer__code__post_I3_J,axiom,
! [K: num] :
( ( code_nat_of_integer @ ( numeral_numeral @ code_integer @ K ) )
= ( numeral_numeral @ nat @ K ) ) ).
% nat_of_integer_code_post(3)
thf(fact_5415_numeral__add__unfold__funpow,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [K: num,A2: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ K ) @ A2 )
= ( compow @ ( A > A ) @ ( numeral_numeral @ nat @ K ) @ ( plus_plus @ A @ ( one_one @ A ) ) @ A2 ) ) ) ).
% numeral_add_unfold_funpow
thf(fact_5416_of__nat__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] : ( compow @ ( A > A ) @ N3 @ ( plus_plus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ) ) ).
% of_nat_def
thf(fact_5417_numeral__unfold__funpow,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( numeral_numeral @ A )
= ( ^ [K3: num] : ( compow @ ( A > A ) @ ( numeral_numeral @ nat @ K3 ) @ ( plus_plus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ) ) ).
% numeral_unfold_funpow
thf(fact_5418_relpowp__bot,axiom,
! [A: $tType,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( compow @ ( A > A > $o ) @ N @ ( bot_bot @ ( A > A > $o ) ) )
= ( bot_bot @ ( A > A > $o ) ) ) ) ).
% relpowp_bot
thf(fact_5419_nat__of__integer__code,axiom,
( code_nat_of_integer
= ( ^ [K3: code_integer] :
( if @ nat @ ( ord_less_eq @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( zero_zero @ nat )
@ ( product_case_prod @ code_integer @ code_integer @ nat
@ ^ [L2: code_integer,J2: code_integer] :
( if @ nat
@ ( J2
= ( zero_zero @ code_integer ) )
@ ( plus_plus @ nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) )
@ ( plus_plus @ nat @ ( plus_plus @ nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( one_one @ nat ) ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% nat_of_integer_code
thf(fact_5420_relpowp__fun__conv,axiom,
! [A: $tType] :
( ( compow @ ( A > A > $o ) )
= ( ^ [N3: nat,P4: A > A > $o,X6: A,Y6: A] :
? [F6: nat > A] :
( ( ( F6 @ ( zero_zero @ nat ) )
= X6 )
& ( ( F6 @ N3 )
= Y6 )
& ! [I: nat] :
( ( ord_less @ nat @ I @ N3 )
=> ( P4 @ ( F6 @ I ) @ ( F6 @ ( suc @ I ) ) ) ) ) ) ) ).
% relpowp_fun_conv
thf(fact_5421_relpowp__Suc__E,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N ) @ P @ X @ Z2 )
=> ~ ! [Y5: A] :
( ( compow @ ( A > A > $o ) @ N @ P @ X @ Y5 )
=> ~ ( P @ Y5 @ Z2 ) ) ) ).
% relpowp_Suc_E
thf(fact_5422_relpowp__Suc__I,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Y: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N @ P @ X @ Y )
=> ( ( P @ Y @ Z2 )
=> ( compow @ ( A > A > $o ) @ ( suc @ N ) @ P @ X @ Z2 ) ) ) ).
% relpowp_Suc_I
thf(fact_5423_relpowp__Suc__D2,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N ) @ P @ X @ Z2 )
=> ? [Y5: A] :
( ( P @ X @ Y5 )
& ( compow @ ( A > A > $o ) @ N @ P @ Y5 @ Z2 ) ) ) ).
% relpowp_Suc_D2
thf(fact_5424_relpowp__Suc__E2,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N ) @ P @ X @ Z2 )
=> ~ ! [Y5: A] :
( ( P @ X @ Y5 )
=> ~ ( compow @ ( A > A > $o ) @ N @ P @ Y5 @ Z2 ) ) ) ).
% relpowp_Suc_E2
thf(fact_5425_relpowp__Suc__I2,axiom,
! [A: $tType,P: A > A > $o,X: A,Y: A,N: nat,Z2: A] :
( ( P @ X @ Y )
=> ( ( compow @ ( A > A > $o ) @ N @ P @ Y @ Z2 )
=> ( compow @ ( A > A > $o ) @ ( suc @ N ) @ P @ X @ Z2 ) ) ) ).
% relpowp_Suc_I2
thf(fact_5426_relpowp__0__I,axiom,
! [A: $tType,P: A > A > $o,X: A] : ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ P @ X @ X ) ).
% relpowp_0_I
thf(fact_5427_relpowp__0__E,axiom,
! [A: $tType,P: A > A > $o,X: A,Y: A] :
( ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ P @ X @ Y )
=> ( X = Y ) ) ).
% relpowp_0_E
thf(fact_5428_relpowp_Osimps_I1_J,axiom,
! [A: $tType,R3: A > A > $o] :
( ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ R3 )
= ( ^ [Y3: A,Z: A] : ( Y3 = Z ) ) ) ).
% relpowp.simps(1)
thf(fact_5429_relpowp__E2,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N @ P @ X @ Z2 )
=> ( ( ( N
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y5: A,M3: nat] :
( ( N
= ( suc @ M3 ) )
=> ( ( P @ X @ Y5 )
=> ~ ( compow @ ( A > A > $o ) @ M3 @ P @ Y5 @ Z2 ) ) ) ) ) ).
% relpowp_E2
thf(fact_5430_relpowp__E,axiom,
! [A: $tType,N: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N @ P @ X @ Z2 )
=> ( ( ( N
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y5: A,M3: nat] :
( ( N
= ( suc @ M3 ) )
=> ( ( compow @ ( A > A > $o ) @ M3 @ P @ X @ Y5 )
=> ~ ( P @ Y5 @ Z2 ) ) ) ) ) ).
% relpowp_E
thf(fact_5431_Nat_Ofunpow__code__def,axiom,
! [A: $tType] :
( ( funpow @ A )
= ( compow @ ( A > A ) ) ) ).
% Nat.funpow_code_def
thf(fact_5432_sup__bot_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ( semila1105856199041335345_order @ A @ ( sup_sup @ A ) @ ( bot_bot @ A )
@ ^ [X6: A,Y6: A] : ( ord_less_eq @ A @ Y6 @ X6 )
@ ^ [X6: A,Y6: A] : ( ord_less @ A @ Y6 @ X6 ) ) ) ).
% sup_bot.semilattice_neutr_order_axioms
thf(fact_5433_max__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1105856199041335345_order @ nat @ ( ord_max @ nat ) @ ( zero_zero @ nat )
@ ^ [X6: nat,Y6: nat] : ( ord_less_eq @ nat @ Y6 @ X6 )
@ ^ [X6: nat,Y6: nat] : ( ord_less @ nat @ Y6 @ X6 ) ) ).
% max_nat.semilattice_neutr_order_axioms
thf(fact_5434_set__removeAll,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( set2 @ A @ ( removeAll @ A @ X @ Xs2 ) )
= ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_removeAll
thf(fact_5435_bit_Oabstract__boolean__algebra__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( boolea2506097494486148201lgebra @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( bit_se1065995026697491101ons_or @ A ) @ ( bit_ri4277139882892585799ns_not @ A ) @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.abstract_boolean_algebra_axioms
thf(fact_5436_int__of__integer__code,axiom,
( code_int_of_integer
= ( ^ [K3: code_integer] :
( if @ int @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ int @ ( code_int_of_integer @ ( uminus_uminus @ code_integer @ K3 ) ) )
@ ( if @ int
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( zero_zero @ int )
@ ( product_case_prod @ code_integer @ code_integer @ int
@ ^ [L2: code_integer,J2: code_integer] :
( if @ int
@ ( J2
= ( zero_zero @ code_integer ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( code_int_of_integer @ L2 ) )
@ ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( code_int_of_integer @ L2 ) ) @ ( one_one @ int ) ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% int_of_integer_code
thf(fact_5437_removeAll__id,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( removeAll @ A @ X @ Xs2 )
= Xs2 ) ) ).
% removeAll_id
thf(fact_5438_zero__integer_Orep__eq,axiom,
( ( code_int_of_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ int ) ) ).
% zero_integer.rep_eq
thf(fact_5439_times__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( times_times @ code_integer @ X @ Xa2 ) )
= ( times_times @ int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% times_integer.rep_eq
thf(fact_5440_modulo__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( modulo_modulo @ code_integer @ X @ Xa2 ) )
= ( modulo_modulo @ int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% modulo_integer.rep_eq
thf(fact_5441_distinct__removeAll,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( removeAll @ A @ X @ Xs2 ) ) ) ).
% distinct_removeAll
thf(fact_5442_length__removeAll__less__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( removeAll @ A @ X @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_removeAll_less_eq
thf(fact_5443_distinct__remove1__removeAll,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( remove1 @ A @ X @ Xs2 )
= ( removeAll @ A @ X @ Xs2 ) ) ) ).
% distinct_remove1_removeAll
thf(fact_5444_length__removeAll__less,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( removeAll @ A @ X @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_removeAll_less
thf(fact_5445_distinct__concat__iff,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( distinct @ A @ ( concat @ A @ Xs2 ) )
= ( ( distinct @ ( list @ A ) @ ( removeAll @ ( list @ A ) @ ( nil @ A ) @ Xs2 ) )
& ! [Ys: list @ A] :
( ( member @ ( list @ A ) @ Ys @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Ys ) )
& ! [Ys: list @ A,Zs3: list @ A] :
( ( ( member @ ( list @ A ) @ Ys @ ( set2 @ ( list @ A ) @ Xs2 ) )
& ( member @ ( list @ A ) @ Zs3 @ ( set2 @ ( list @ A ) @ Xs2 ) )
& ( Ys != Zs3 ) )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Ys ) @ ( set2 @ A @ Zs3 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% distinct_concat_iff
thf(fact_5446_arg__min__if__finite_I2_J,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ord_less @ B @ ( F2 @ X3 ) @ ( F2 @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_5447_arg__min__least,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [S3: set @ A,Y: A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ A @ Y @ S3 )
=> ( ord_less_eq @ B @ ( F2 @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) ) @ ( F2 @ Y ) ) ) ) ) ) ).
% arg_min_least
thf(fact_5448_list__update__nonempty,axiom,
! [A: $tType,Xs2: list @ A,K: nat,X: A] :
( ( ( list_update @ A @ Xs2 @ K @ X )
= ( nil @ A ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% list_update_nonempty
thf(fact_5449_concat__replicate__trivial,axiom,
! [A: $tType,I3: nat] :
( ( concat @ A @ ( replicate @ ( list @ A ) @ I3 @ ( nil @ A ) ) )
= ( nil @ A ) ) ).
% concat_replicate_trivial
thf(fact_5450_Nil__in__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( member @ ( list @ A ) @ ( nil @ A ) @ ( shuffles @ A @ Xs2 @ Ys2 ) )
= ( ( Xs2
= ( nil @ A ) )
& ( Ys2
= ( nil @ A ) ) ) ) ).
% Nil_in_shuffles
thf(fact_5451_enumerate__simps_I1_J,axiom,
! [A: $tType,N: nat] :
( ( enumerate @ A @ N @ ( nil @ A ) )
= ( nil @ ( product_prod @ nat @ A ) ) ) ).
% enumerate_simps(1)
thf(fact_5452_rotate1__is__Nil__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( rotate1 @ A @ Xs2 )
= ( nil @ A ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% rotate1_is_Nil_conv
thf(fact_5453_set__empty,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( set2 @ A @ Xs2 )
= ( bot_bot @ ( set @ A ) ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% set_empty
thf(fact_5454_set__empty2,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set2 @ A @ Xs2 ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% set_empty2
thf(fact_5455_length__0__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( zero_zero @ nat ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% length_0_conv
thf(fact_5456_empty__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( ( nil @ A )
= ( replicate @ A @ N @ X ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% empty_replicate
thf(fact_5457_replicate__empty,axiom,
! [A: $tType,N: nat,X: A] :
( ( ( replicate @ A @ N @ X )
= ( nil @ A ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% replicate_empty
thf(fact_5458_horner__sum__simps_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( comm_semiring_0 @ A )
=> ! [F2: B > A,A2: A] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( nil @ B ) )
= ( zero_zero @ A ) ) ) ).
% horner_sum_simps(1)
thf(fact_5459_concat__eq__Nil__conv,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( ( concat @ A @ Xss )
= ( nil @ A ) )
= ( ! [X6: list @ A] :
( ( member @ ( list @ A ) @ X6 @ ( set2 @ ( list @ A ) @ Xss ) )
=> ( X6
= ( nil @ A ) ) ) ) ) ).
% concat_eq_Nil_conv
thf(fact_5460_Nil__eq__concat__conv,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( ( nil @ A )
= ( concat @ A @ Xss ) )
= ( ! [X6: list @ A] :
( ( member @ ( list @ A ) @ X6 @ ( set2 @ ( list @ A ) @ Xss ) )
=> ( X6
= ( nil @ A ) ) ) ) ) ).
% Nil_eq_concat_conv
thf(fact_5461_length__greater__0__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( Xs2
!= ( nil @ A ) ) ) ).
% length_greater_0_conv
thf(fact_5462_removeAll_Osimps_I1_J,axiom,
! [A: $tType,X: A] :
( ( removeAll @ A @ X @ ( nil @ A ) )
= ( nil @ A ) ) ).
% removeAll.simps(1)
thf(fact_5463_distinct_Osimps_I1_J,axiom,
! [A: $tType] : ( distinct @ A @ ( nil @ A ) ) ).
% distinct.simps(1)
thf(fact_5464_Nil__in__shufflesI,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2
= ( nil @ A ) )
=> ( ( Ys2
= ( nil @ A ) )
=> ( member @ ( list @ A ) @ ( nil @ A ) @ ( shuffles @ A @ Xs2 @ Ys2 ) ) ) ) ).
% Nil_in_shufflesI
thf(fact_5465_shuffles_Osimps_I1_J,axiom,
! [A: $tType,Ys2: list @ A] :
( ( shuffles @ A @ ( nil @ A ) @ Ys2 )
= ( insert @ ( list @ A ) @ Ys2 @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) ) ).
% shuffles.simps(1)
thf(fact_5466_shuffles_Osimps_I2_J,axiom,
! [A: $tType,Xs2: list @ A] :
( ( shuffles @ A @ Xs2 @ ( nil @ A ) )
= ( insert @ ( list @ A ) @ Xs2 @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) ) ).
% shuffles.simps(2)
thf(fact_5467_concat_Osimps_I1_J,axiom,
! [A: $tType] :
( ( concat @ A @ ( nil @ ( list @ A ) ) )
= ( nil @ A ) ) ).
% concat.simps(1)
thf(fact_5468_product_Osimps_I1_J,axiom,
! [B: $tType,A: $tType,Uu: list @ B] :
( ( product @ A @ B @ ( nil @ A ) @ Uu )
= ( nil @ ( product_prod @ A @ B ) ) ) ).
% product.simps(1)
thf(fact_5469_list__update__code_I1_J,axiom,
! [A: $tType,I3: nat,Y: A] :
( ( list_update @ A @ ( nil @ A ) @ I3 @ Y )
= ( nil @ A ) ) ).
% list_update_code(1)
thf(fact_5470_list__update_Osimps_I1_J,axiom,
! [A: $tType,I3: nat,V: A] :
( ( list_update @ A @ ( nil @ A ) @ I3 @ V )
= ( nil @ A ) ) ).
% list_update.simps(1)
thf(fact_5471_remove1_Osimps_I1_J,axiom,
! [A: $tType,X: A] :
( ( remove1 @ A @ X @ ( nil @ A ) )
= ( nil @ A ) ) ).
% remove1.simps(1)
thf(fact_5472_rotate1_Osimps_I1_J,axiom,
! [A: $tType] :
( ( rotate1 @ A @ ( nil @ A ) )
= ( nil @ A ) ) ).
% rotate1.simps(1)
thf(fact_5473_empty__set,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
= ( set2 @ A @ ( nil @ A ) ) ) ).
% empty_set
thf(fact_5474_list_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size(3)
thf(fact_5475_replicate__0,axiom,
! [A: $tType,X: A] :
( ( replicate @ A @ ( zero_zero @ nat ) @ X )
= ( nil @ A ) ) ).
% replicate_0
thf(fact_5476_list_Osize__gen_I1_J,axiom,
! [A: $tType,X: A > nat] :
( ( size_list @ A @ X @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size_gen(1)
thf(fact_5477_count__list_Osimps_I1_J,axiom,
! [A: $tType,Y: A] :
( ( count_list @ A @ ( nil @ A ) @ Y )
= ( zero_zero @ nat ) ) ).
% count_list.simps(1)
thf(fact_5478_arg__min__if__finite_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) @ S3 ) ) ) ) ).
% arg_min_if_finite(1)
thf(fact_5479_times__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( times_times @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X6: nat,Y6: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X6 @ U2 ) @ ( times_times @ nat @ Y6 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X6 @ V5 ) @ ( times_times @ nat @ Y6 @ U2 ) ) ) )
@ Xa2
@ X ) ) ) ).
% times_int.abs_eq
thf(fact_5480_eq__numeral__iff__iszero_I8_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( one_one @ A )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(8)
thf(fact_5481_eq__numeral__iff__iszero_I7_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( one_one @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ one2 ) ) ) ) ) ).
% eq_numeral_iff_iszero(7)
thf(fact_5482_iszero__neg__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W: num] :
( ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ W ) ) ) ) ).
% iszero_neg_numeral
thf(fact_5483_not__iszero__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( one_one @ A ) ) ) ).
% not_iszero_1
thf(fact_5484_not__iszero__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [W: num] :
~ ( ring_1_iszero @ A @ ( numeral_numeral @ A @ W ) ) ) ).
% not_iszero_numeral
thf(fact_5485_iszero__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ring_1_iszero @ A @ ( zero_zero @ A ) ) ) ).
% iszero_0
thf(fact_5486_iszero__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_iszero @ A )
= ( ^ [Z3: A] :
( Z3
= ( zero_zero @ A ) ) ) ) ) ).
% iszero_def
thf(fact_5487_eq__iff__iszero__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ^ [Y3: A,Z: A] : ( Y3 = Z ) )
= ( ^ [X6: A,Y6: A] : ( ring_1_iszero @ A @ ( minus_minus @ A @ X6 @ Y6 ) ) ) ) ) ).
% eq_iff_iszero_diff
thf(fact_5488_eq__numeral__iff__iszero_I9_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( numeral_numeral @ A @ X )
= ( zero_zero @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ X ) ) ) ) ).
% eq_numeral_iff_iszero(9)
thf(fact_5489_eq__numeral__iff__iszero_I10_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( zero_zero @ A )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(10)
thf(fact_5490_not__iszero__Numeral1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( numeral_numeral @ A @ one2 ) ) ) ).
% not_iszero_Numeral1
thf(fact_5491_not__iszero__neg__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_iszero_neg_1
thf(fact_5492_eq__numeral__iff__iszero_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( numeral_numeral @ A @ X )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ X @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(1)
thf(fact_5493_zero__int__def,axiom,
( ( zero_zero @ int )
= ( abs_Integ @ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ ( zero_zero @ nat ) ) ) ) ).
% zero_int_def
thf(fact_5494_int__def,axiom,
( ( semiring_1_of_nat @ int )
= ( ^ [N3: nat] : ( abs_Integ @ ( product_Pair @ nat @ nat @ N3 @ ( zero_zero @ nat ) ) ) ) ) ).
% int_def
thf(fact_5495_eq__numeral__iff__iszero_I11_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( zero_zero @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ X ) ) ) ) ).
% eq_numeral_iff_iszero(11)
thf(fact_5496_eq__numeral__iff__iszero_I12_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( zero_zero @ A )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(12)
thf(fact_5497_not__iszero__neg__Numeral1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% not_iszero_neg_Numeral1
thf(fact_5498_eq__numeral__iff__iszero_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( numeral_numeral @ A @ X )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(2)
thf(fact_5499_eq__numeral__iff__iszero_I3_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(3)
thf(fact_5500_eq__numeral__iff__iszero_I4_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ Y @ X ) ) ) ) ).
% eq_numeral_iff_iszero(4)
thf(fact_5501_one__int__def,axiom,
( ( one_one @ int )
= ( abs_Integ @ ( product_Pair @ nat @ nat @ ( one_one @ nat ) @ ( zero_zero @ nat ) ) ) ) ).
% one_int_def
thf(fact_5502_less__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( ord_less @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X6: nat,Y6: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X6 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y6 ) ) )
@ Xa2
@ X ) ) ).
% less_int.abs_eq
thf(fact_5503_less__eq__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( ord_less_eq @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X6: nat,Y6: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X6 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y6 ) ) )
@ Xa2
@ X ) ) ).
% less_eq_int.abs_eq
thf(fact_5504_eq__numeral__iff__iszero_I6_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( one_one @ A )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ one2 @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(6)
thf(fact_5505_eq__numeral__iff__iszero_I5_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( numeral_numeral @ A @ X )
= ( one_one @ A ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ X @ one2 ) ) ) ) ).
% eq_numeral_iff_iszero(5)
thf(fact_5506_plus__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( plus_plus @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X6: nat,Y6: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X6 @ U2 ) @ ( plus_plus @ nat @ Y6 @ V5 ) ) )
@ Xa2
@ X ) ) ) ).
% plus_int.abs_eq
thf(fact_5507_minus__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( minus_minus @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X6: nat,Y6: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X6 @ V5 ) @ ( plus_plus @ nat @ Y6 @ U2 ) ) )
@ Xa2
@ X ) ) ) ).
% minus_int.abs_eq
thf(fact_5508_listset_Osimps_I1_J,axiom,
! [A: $tType] :
( ( listset @ A @ ( nil @ ( set @ A ) ) )
= ( insert @ ( list @ A ) @ ( nil @ A ) @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) ) ).
% listset.simps(1)
thf(fact_5509_num__of__nat_Osimps_I2_J,axiom,
! [N: nat] :
( ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= ( inc @ ( num_of_nat @ N ) ) ) )
& ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= one2 ) ) ) ).
% num_of_nat.simps(2)
thf(fact_5510_prod_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I6: set @ B,P2: B > A,I3: B] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( P2 @ X6 )
!= ( one_one @ A ) ) ) ) )
=> ( ( ( member @ B @ I3 @ I6 )
=> ( ( groups1962203154675924110t_prod @ B @ A @ P2 @ ( insert @ B @ I3 @ I6 ) )
= ( groups1962203154675924110t_prod @ B @ A @ P2 @ I6 ) ) )
& ( ~ ( member @ B @ I3 @ I6 )
=> ( ( groups1962203154675924110t_prod @ B @ A @ P2 @ ( insert @ B @ I3 @ I6 ) )
= ( times_times @ A @ ( P2 @ I3 ) @ ( groups1962203154675924110t_prod @ B @ A @ P2 @ I6 ) ) ) ) ) ) ) ).
% prod.insert'
thf(fact_5511_num__of__nat__numeral__eq,axiom,
! [Q2: num] :
( ( num_of_nat @ ( numeral_numeral @ nat @ Q2 ) )
= Q2 ) ).
% num_of_nat_numeral_eq
thf(fact_5512_prod_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [P2: B > A] :
( ( groups1962203154675924110t_prod @ B @ A @ P2 @ ( bot_bot @ ( set @ B ) ) )
= ( one_one @ A ) ) ) ).
% prod.empty'
thf(fact_5513_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ ( zero_zero @ nat ) )
= one2 ) ).
% num_of_nat.simps(1)
thf(fact_5514_prod_Odistrib__triv_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I6: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B @ I6 )
=> ( ( groups1962203154675924110t_prod @ B @ A
@ ^ [I: B] : ( times_times @ A @ ( G @ I ) @ ( H2 @ I ) )
@ I6 )
= ( times_times @ A @ ( groups1962203154675924110t_prod @ B @ A @ G @ I6 ) @ ( groups1962203154675924110t_prod @ B @ A @ H2 @ I6 ) ) ) ) ) ).
% prod.distrib_triv'
thf(fact_5515_numeral__num__of__nat,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( numeral_numeral @ nat @ ( num_of_nat @ N ) )
= N ) ) ).
% numeral_num_of_nat
thf(fact_5516_num__of__nat__One,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( one_one @ nat ) )
=> ( ( num_of_nat @ N )
= one2 ) ) ).
% num_of_nat_One
thf(fact_5517_prod_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I6: set @ B,G: B > A,H2: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( G @ X6 )
!= ( one_one @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ I6 )
& ( ( H2 @ X6 )
!= ( one_one @ A ) ) ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A
@ ^ [I: B] : ( times_times @ A @ ( G @ I ) @ ( H2 @ I ) )
@ I6 )
= ( times_times @ A @ ( groups1962203154675924110t_prod @ B @ A @ G @ I6 ) @ ( groups1962203154675924110t_prod @ B @ A @ H2 @ I6 ) ) ) ) ) ) ).
% prod.distrib'
thf(fact_5518_numeral__num__of__nat__unfold,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( numeral_numeral @ A @ ( num_of_nat @ N ) )
= ( one_one @ A ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( numeral_numeral @ A @ ( num_of_nat @ N ) )
= ( semiring_1_of_nat @ A @ N ) ) ) ) ) ).
% numeral_num_of_nat_unfold
thf(fact_5519_num__of__nat__double,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( num_of_nat @ ( plus_plus @ nat @ N @ N ) )
= ( bit0 @ ( num_of_nat @ N ) ) ) ) ).
% num_of_nat_double
thf(fact_5520_num__of__nat__plus__distrib,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( num_of_nat @ ( plus_plus @ nat @ M @ N ) )
= ( plus_plus @ num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_5521_less__eq__int_Orep__eq,axiom,
( ( ord_less_eq @ int )
= ( ^ [X6: int,Xa4: int] :
( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [Y6: nat,Z3: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ Y6 @ V5 ) @ ( plus_plus @ nat @ U2 @ Z3 ) ) )
@ ( rep_Integ @ X6 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_eq_int.rep_eq
thf(fact_5522_less__int_Orep__eq,axiom,
( ( ord_less @ int )
= ( ^ [X6: int,Xa4: int] :
( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [Y6: nat,Z3: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ Y6 @ V5 ) @ ( plus_plus @ nat @ U2 @ Z3 ) ) )
@ ( rep_Integ @ X6 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_int.rep_eq
thf(fact_5523_subset__emptyI,axiom,
! [A: $tType,A3: set @ A] :
( ! [X5: A] :
~ ( member @ A @ X5 @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_emptyI
thf(fact_5524_sorted__list__of__set_Osorted__key__list__of__set__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( linord4507533701916653071of_set @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( remove1 @ A @ X @ ( linord4507533701916653071of_set @ A @ A3 ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_remove
thf(fact_5525_pow_Osimps_I3_J,axiom,
! [X: num,Y: num] :
( ( pow @ X @ ( bit1 @ Y ) )
= ( times_times @ num @ ( sqr @ ( pow @ X @ Y ) ) @ X ) ) ).
% pow.simps(3)
thf(fact_5526_Gcd__remove0__nat,axiom,
! [M7: set @ nat] :
( ( finite_finite @ nat @ M7 )
=> ( ( gcd_Gcd @ nat @ M7 )
= ( gcd_Gcd @ nat @ ( minus_minus @ ( set @ nat ) @ M7 @ ( insert @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ) ) ).
% Gcd_remove0_nat
thf(fact_5527_Gcd__empty,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Gcd @ A @ ( bot_bot @ ( set @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% Gcd_empty
thf(fact_5528_sorted__list__of__set_Osorted__key__list__of__set__empty,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( linord4507533701916653071of_set @ A @ ( bot_bot @ ( set @ A ) ) )
= ( nil @ A ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_empty
thf(fact_5529_sorted__list__of__set_Ofold__insort__key_Oinfinite,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( linord4507533701916653071of_set @ A @ A3 )
= ( nil @ A ) ) ) ) ).
% sorted_list_of_set.fold_insort_key.infinite
thf(fact_5530_sorted__list__of__set_Oset__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( set2 @ A @ ( linord4507533701916653071of_set @ A @ A3 ) )
= A3 ) ) ) ).
% sorted_list_of_set.set_sorted_key_list_of_set
thf(fact_5531_sorted__list__of__set_Olength__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( size_size @ ( list @ A ) @ ( linord4507533701916653071of_set @ A @ A3 ) )
= ( finite_card @ A @ A3 ) ) ) ).
% sorted_list_of_set.length_sorted_key_list_of_set
thf(fact_5532_sorted__list__of__set_Osorted__key__list__of__set__eq__Nil__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( linord4507533701916653071of_set @ A @ A3 )
= ( nil @ A ) )
= ( A3
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_eq_Nil_iff
thf(fact_5533_Gcd__0__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A3: set @ A] :
( ( ( gcd_Gcd @ A @ A3 )
= ( zero_zero @ A ) )
= ( ord_less_eq @ ( set @ A ) @ A3 @ ( insert @ A @ ( zero_zero @ A ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Gcd_0_iff
thf(fact_5534_sorted__list__of__set_Odistinct__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] : ( distinct @ A @ ( linord4507533701916653071of_set @ A @ A3 ) ) ) ).
% sorted_list_of_set.distinct_sorted_key_list_of_set
thf(fact_5535_sorted__list__of__set_Osorted__key__list__of__set__inject,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( ( linord4507533701916653071of_set @ A @ A3 )
= ( linord4507533701916653071of_set @ A @ B3 ) )
=> ( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( A3 = B3 ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_inject
thf(fact_5536_sqr_Osimps_I2_J,axiom,
! [N: num] :
( ( sqr @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( sqr @ N ) ) ) ) ).
% sqr.simps(2)
thf(fact_5537_sqr_Osimps_I1_J,axiom,
( ( sqr @ one2 )
= one2 ) ).
% sqr.simps(1)
thf(fact_5538_sqr__conv__mult,axiom,
( sqr
= ( ^ [X6: num] : ( times_times @ num @ X6 @ X6 ) ) ) ).
% sqr_conv_mult
thf(fact_5539_numeral__sqr,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [K: num] :
( ( numeral_numeral @ A @ ( sqr @ K ) )
= ( times_times @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ A @ K ) ) ) ) ).
% numeral_sqr
thf(fact_5540_pow_Osimps_I2_J,axiom,
! [X: num,Y: num] :
( ( pow @ X @ ( bit0 @ Y ) )
= ( sqr @ ( pow @ X @ Y ) ) ) ).
% pow.simps(2)
thf(fact_5541_sqr_Osimps_I3_J,axiom,
! [N: num] :
( ( sqr @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ ( plus_plus @ num @ ( sqr @ N ) @ N ) ) ) ) ).
% sqr.simps(3)
thf(fact_5542_semiring__char__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiri4206861660011772517g_char @ A )
= ( ^ [Uu4: itself @ A] :
( gcd_Gcd @ nat
@ ( collect @ nat
@ ^ [N3: nat] :
( ( semiring_1_of_nat @ A @ N3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% semiring_char_def
thf(fact_5543_sorted__list__of__set_Osorted__key__list__of__set__insert__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( linord4507533701916653071of_set @ A @ ( insert @ A @ X @ A3 ) )
= ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ ( linord4507533701916653071of_set @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_insert_remove
thf(fact_5544_sorted__list__of__set__def,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( linord4507533701916653071of_set @ A )
= ( linord144544945434240204of_set @ A @ A
@ ^ [X6: A] : X6 ) ) ) ).
% sorted_list_of_set_def
thf(fact_5545_remove1__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [X: B,F2: B > A,Xs2: list @ B] :
( ( remove1 @ B @ X @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= Xs2 ) ) ).
% remove1_insort_key
thf(fact_5546_length__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( size_size @ ( list @ B ) @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( suc @ ( size_size @ ( list @ B ) @ Xs2 ) ) ) ) ).
% length_insort
thf(fact_5547_sorted__list__of__set_Osorted__key__list__of__set__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( linord4507533701916653071of_set @ A @ ( insert @ A @ X @ A3 ) )
= ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ ( linord4507533701916653071of_set @ A @ A3 ) ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_insert
thf(fact_5548_insort__not__Nil,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,A2: B,Xs2: list @ B] :
( ( linorder_insort_key @ B @ A @ F2 @ A2 @ Xs2 )
!= ( nil @ B ) ) ) ).
% insort_not_Nil
thf(fact_5549_insort__left__comm,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Xs2: list @ A] :
( ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ Y
@ Xs2 ) )
= ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ Y
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ Xs2 ) ) ) ) ).
% insort_left_comm
thf(fact_5550_insort__key__left__comm,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Y: B,Xs2: list @ B] :
( ( ( F2 @ X )
!= ( F2 @ Y ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ Y @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( linorder_insort_key @ B @ A @ F2 @ X @ ( linorder_insort_key @ B @ A @ F2 @ Y @ Xs2 ) ) ) ) ) ).
% insort_key_left_comm
thf(fact_5551_sorted__list__of__set_Ofold__insort__key_Ocomp__fun__commute__on,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ( comp @ ( list @ A ) @ ( list @ A ) @ ( list @ A )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ Y )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X ) )
= ( comp @ ( list @ A ) @ ( list @ A ) @ ( list @ A )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ Y ) ) ) ) ).
% sorted_list_of_set.fold_insort_key.comp_fun_commute_on
thf(fact_5552_set__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( set2 @ B @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( insert @ B @ X @ ( set2 @ B @ Xs2 ) ) ) ) ).
% set_insort_key
thf(fact_5553_distinct__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( distinct @ B @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( ~ ( member @ B @ X @ ( set2 @ B @ Xs2 ) )
& ( distinct @ B @ Xs2 ) ) ) ) ).
% distinct_insort
thf(fact_5554_Gcd__int__greater__eq__0,axiom,
! [K5: set @ int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( gcd_Gcd @ int @ K5 ) ) ).
% Gcd_int_greater_eq_0
thf(fact_5555_sorted__list__of__set_Ofold__insort__key_Oremove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( linord4507533701916653071of_set @ A @ A3 )
= ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ ( linord4507533701916653071of_set @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% sorted_list_of_set.fold_insort_key.remove
thf(fact_5556_integer__of__num__triv_I2_J,axiom,
( ( code_integer_of_num @ ( bit0 @ one2 ) )
= ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ).
% integer_of_num_triv(2)
thf(fact_5557_sorted__key__list__of__set__def,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ( ( linord144544945434240204of_set @ B @ A )
= ( ^ [F6: B > A] : ( finite_folding_F @ B @ ( list @ B ) @ ( linorder_insort_key @ B @ A @ F6 ) @ ( nil @ B ) ) ) ) ) ).
% sorted_key_list_of_set_def
thf(fact_5558_image__minus__const__atLeastLessThan__nat,axiom,
! [C2: nat,Y: nat,X: nat] :
( ( ( ord_less @ nat @ C2 @ Y )
=> ( ( image @ nat @ nat
@ ^ [I: nat] : ( minus_minus @ nat @ I @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( set_or7035219750837199246ssThan @ nat @ ( minus_minus @ nat @ X @ C2 ) @ ( minus_minus @ nat @ Y @ C2 ) ) ) )
& ( ~ ( ord_less @ nat @ C2 @ Y )
=> ( ( ( ord_less @ nat @ X @ Y )
=> ( ( image @ nat @ nat
@ ^ [I: nat] : ( minus_minus @ nat @ I @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) )
& ( ~ ( ord_less @ nat @ X @ Y )
=> ( ( image @ nat @ nat
@ ^ [I: nat] : ( minus_minus @ nat @ I @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_5559_image__eqI,axiom,
! [A: $tType,B: $tType,B2: A,F2: B > A,X: B,A3: set @ B] :
( ( B2
= ( F2 @ X ) )
=> ( ( member @ B @ X @ A3 )
=> ( member @ A @ B2 @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ).
% image_eqI
thf(fact_5560_image__ident,axiom,
! [A: $tType,Y7: set @ A] :
( ( image @ A @ A
@ ^ [X6: A] : X6
@ Y7 )
= Y7 ) ).
% image_ident
thf(fact_5561_image__is__empty,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B] :
( ( ( image @ B @ A @ F2 @ A3 )
= ( bot_bot @ ( set @ A ) ) )
= ( A3
= ( bot_bot @ ( set @ B ) ) ) ) ).
% image_is_empty
thf(fact_5562_empty__is__image,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B] :
( ( ( bot_bot @ ( set @ A ) )
= ( image @ B @ A @ F2 @ A3 ) )
= ( A3
= ( bot_bot @ ( set @ B ) ) ) ) ).
% empty_is_image
thf(fact_5563_image__empty,axiom,
! [B: $tType,A: $tType,F2: B > A] :
( ( image @ B @ A @ F2 @ ( bot_bot @ ( set @ B ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% image_empty
thf(fact_5564_insert__image,axiom,
! [B: $tType,A: $tType,X: A,A3: set @ A,F2: A > B] :
( ( member @ A @ X @ A3 )
=> ( ( insert @ B @ ( F2 @ X ) @ ( image @ A @ B @ F2 @ A3 ) )
= ( image @ A @ B @ F2 @ A3 ) ) ) ).
% insert_image
thf(fact_5565_image__insert,axiom,
! [A: $tType,B: $tType,F2: B > A,A2: B,B3: set @ B] :
( ( image @ B @ A @ F2 @ ( insert @ B @ A2 @ B3 ) )
= ( insert @ A @ ( F2 @ A2 ) @ ( image @ B @ A @ F2 @ B3 ) ) ) ).
% image_insert
thf(fact_5566_bij__betw__Suc,axiom,
! [M7: set @ nat,N5: set @ nat] :
( ( bij_betw @ nat @ nat @ suc @ M7 @ N5 )
= ( ( image @ nat @ nat @ suc @ M7 )
= N5 ) ) ).
% bij_betw_Suc
thf(fact_5567_image__add__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ ( zero_zero @ A ) ) @ S3 )
= S3 ) ) ).
% image_add_0
thf(fact_5568_image__add__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I3: A,J: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_or1337092689740270186AtMost @ A @ I3 @ J ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastAtMost
thf(fact_5569_image__add__atLeastLessThan,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I3: A,J: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_or7035219750837199246ssThan @ A @ I3 @ J ) )
= ( set_or7035219750837199246ssThan @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastLessThan
thf(fact_5570_image__add__atMost,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [C2: A,A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ C2 ) @ ( set_ord_atMost @ A @ A2 ) )
= ( set_ord_atMost @ A @ ( plus_plus @ A @ C2 @ A2 ) ) ) ) ).
% image_add_atMost
thf(fact_5571_bij__betw__add,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A3: set @ A,B3: set @ A] :
( ( bij_betw @ A @ A @ ( plus_plus @ A @ A2 ) @ A3 @ B3 )
= ( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ A3 )
= B3 ) ) ) ).
% bij_betw_add
thf(fact_5572_image__Suc__atLeastAtMost,axiom,
! [I3: nat,J: nat] :
( ( image @ nat @ nat @ suc @ ( set_or1337092689740270186AtMost @ nat @ I3 @ J ) )
= ( set_or1337092689740270186AtMost @ nat @ ( suc @ I3 ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_5573_image__Suc__atLeastLessThan,axiom,
! [I3: nat,J: nat] :
( ( image @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ I3 @ J ) )
= ( set_or7035219750837199246ssThan @ nat @ ( suc @ I3 ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_5574_image__add__atLeastAtMost_H,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I3: A,J: A] :
( ( image @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K )
@ ( set_or1337092689740270186AtMost @ A @ I3 @ J ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastAtMost'
thf(fact_5575_image__add__atLeastLessThan_H,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I3: A,J: A] :
( ( image @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K )
@ ( set_or7035219750837199246ssThan @ A @ I3 @ J ) )
= ( set_or7035219750837199246ssThan @ A @ ( plus_plus @ A @ I3 @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastLessThan'
thf(fact_5576_if__image__distrib,axiom,
! [A: $tType,B: $tType,P: B > $o,F2: B > A,G: B > A,S3: set @ B] :
( ( image @ B @ A
@ ^ [X6: B] : ( if @ A @ ( P @ X6 ) @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ S3 )
= ( sup_sup @ ( set @ A ) @ ( image @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ S3 @ ( collect @ B @ P ) ) )
@ ( image @ B @ A @ G
@ ( inf_inf @ ( set @ B ) @ S3
@ ( collect @ B
@ ^ [X6: B] :
~ ( P @ X6 ) ) ) ) ) ) ).
% if_image_distrib
thf(fact_5577_image__mult__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ( ( image @ A @ A @ ( times_times @ A @ D2 ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ D2 @ A2 ) @ ( times_times @ A @ D2 @ B2 ) ) ) ) ) ).
% image_mult_atLeastAtMost
thf(fact_5578_image__divide__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ( ( image @ A @ A
@ ^ [C6: A] : ( divide_divide @ A @ C6 @ D2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( divide_divide @ A @ A2 @ D2 ) @ ( divide_divide @ A @ B2 @ D2 ) ) ) ) ) ).
% image_divide_atLeastAtMost
thf(fact_5579_translation__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,S: set @ A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( minus_minus @ ( set @ A ) @ S @ T2 ) )
= ( minus_minus @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ S ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_diff
thf(fact_5580_image__Int__subset,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,B3: set @ B] : ( ord_less_eq @ ( set @ A ) @ ( image @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A3 @ B3 ) ) @ ( inf_inf @ ( set @ A ) @ ( image @ B @ A @ F2 @ A3 ) @ ( image @ B @ A @ F2 @ B3 ) ) ) ).
% image_Int_subset
thf(fact_5581_zero__notin__Suc__image,axiom,
! [A3: set @ nat] :
~ ( member @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ A3 ) ) ).
% zero_notin_Suc_image
thf(fact_5582_image__Un,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,B3: set @ B] :
( ( image @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) )
= ( sup_sup @ ( set @ A ) @ ( image @ B @ A @ F2 @ A3 ) @ ( image @ B @ A @ F2 @ B3 ) ) ) ).
% image_Un
thf(fact_5583_rev__image__eqI,axiom,
! [B: $tType,A: $tType,X: A,A3: set @ A,B2: B,F2: A > B] :
( ( member @ A @ X @ A3 )
=> ( ( B2
= ( F2 @ X ) )
=> ( member @ B @ B2 @ ( image @ A @ B @ F2 @ A3 ) ) ) ) ).
% rev_image_eqI
thf(fact_5584_ball__imageD,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,P: A > $o] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( image @ B @ A @ F2 @ A3 ) )
=> ( P @ X5 ) )
=> ! [X3: B] :
( ( member @ B @ X3 @ A3 )
=> ( P @ ( F2 @ X3 ) ) ) ) ).
% ball_imageD
thf(fact_5585_image__cong,axiom,
! [B: $tType,A: $tType,M7: set @ A,N5: set @ A,F2: A > B,G: A > B] :
( ( M7 = N5 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ N5 )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) )
=> ( ( image @ A @ B @ F2 @ M7 )
= ( image @ A @ B @ G @ N5 ) ) ) ) ).
% image_cong
thf(fact_5586_bex__imageD,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( image @ B @ A @ F2 @ A3 ) )
& ( P @ X3 ) )
=> ? [X5: B] :
( ( member @ B @ X5 @ A3 )
& ( P @ ( F2 @ X5 ) ) ) ) ).
% bex_imageD
thf(fact_5587_image__iff,axiom,
! [A: $tType,B: $tType,Z2: A,F2: B > A,A3: set @ B] :
( ( member @ A @ Z2 @ ( image @ B @ A @ F2 @ A3 ) )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( Z2
= ( F2 @ X6 ) ) ) ) ) ).
% image_iff
thf(fact_5588_imageI,axiom,
! [B: $tType,A: $tType,X: A,A3: set @ A,F2: A > B] :
( ( member @ A @ X @ A3 )
=> ( member @ B @ ( F2 @ X ) @ ( image @ A @ B @ F2 @ A3 ) ) ) ).
% imageI
thf(fact_5589_Compr__image__eq,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,P: A > $o] :
( ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ ( image @ B @ A @ F2 @ A3 ) )
& ( P @ X6 ) ) )
= ( image @ B @ A @ F2
@ ( collect @ B
@ ^ [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( P @ ( F2 @ X6 ) ) ) ) ) ) ).
% Compr_image_eq
thf(fact_5590_image__image,axiom,
! [A: $tType,B: $tType,C: $tType,F2: B > A,G: C > B,A3: set @ C] :
( ( image @ B @ A @ F2 @ ( image @ C @ B @ G @ A3 ) )
= ( image @ C @ A
@ ^ [X6: C] : ( F2 @ ( G @ X6 ) )
@ A3 ) ) ).
% image_image
thf(fact_5591_imageE,axiom,
! [A: $tType,B: $tType,B2: A,F2: B > A,A3: set @ B] :
( ( member @ A @ B2 @ ( image @ B @ A @ F2 @ A3 ) )
=> ~ ! [X5: B] :
( ( B2
= ( F2 @ X5 ) )
=> ~ ( member @ B @ X5 @ A3 ) ) ) ).
% imageE
thf(fact_5592_subset__image__iff,axiom,
! [A: $tType,B: $tType,B3: set @ A,F2: B > A,A3: set @ B] :
( ( ord_less_eq @ ( set @ A ) @ B3 @ ( image @ B @ A @ F2 @ A3 ) )
= ( ? [AA: set @ B] :
( ( ord_less_eq @ ( set @ B ) @ AA @ A3 )
& ( B3
= ( image @ B @ A @ F2 @ AA ) ) ) ) ) ).
% subset_image_iff
thf(fact_5593_image__subset__iff,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( image @ B @ A @ F2 @ A3 ) @ B3 )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( member @ A @ ( F2 @ X6 ) @ B3 ) ) ) ) ).
% image_subset_iff
thf(fact_5594_subset__imageE,axiom,
! [A: $tType,B: $tType,B3: set @ A,F2: B > A,A3: set @ B] :
( ( ord_less_eq @ ( set @ A ) @ B3 @ ( image @ B @ A @ F2 @ A3 ) )
=> ~ ! [C8: set @ B] :
( ( ord_less_eq @ ( set @ B ) @ C8 @ A3 )
=> ( B3
!= ( image @ B @ A @ F2 @ C8 ) ) ) ) ).
% subset_imageE
thf(fact_5595_image__subsetI,axiom,
! [A: $tType,B: $tType,A3: set @ A,F2: A > B,B3: set @ B] :
( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ( member @ B @ ( F2 @ X5 ) @ B3 ) )
=> ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F2 @ A3 ) @ B3 ) ) ).
% image_subsetI
thf(fact_5596_image__mono,axiom,
! [B: $tType,A: $tType,A3: set @ A,B3: set @ A,F2: A > B] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F2 @ A3 ) @ ( image @ A @ B @ F2 @ B3 ) ) ) ).
% image_mono
thf(fact_5597_translation__Int,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,S: set @ A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( inf_inf @ ( set @ A ) @ S @ T2 ) )
= ( inf_inf @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ S ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_Int
thf(fact_5598_image__diff__subset,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B,B3: set @ B] : ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ ( image @ B @ A @ F2 @ A3 ) @ ( image @ B @ A @ F2 @ B3 ) ) @ ( image @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ B3 ) ) ) ).
% image_diff_subset
thf(fact_5599_translation__Compl,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( uminus_uminus @ ( set @ A ) @ T2 ) )
= ( uminus_uminus @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_Compl
thf(fact_5600_finite__conv__nat__seg__image,axiom,
! [A: $tType] :
( ( finite_finite @ A )
= ( ^ [A7: set @ A] :
? [N3: nat,F6: nat > A] :
( A7
= ( image @ nat @ A @ F6
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N3 ) ) ) ) ) ) ).
% finite_conv_nat_seg_image
thf(fact_5601_nat__seg__image__imp__finite,axiom,
! [A: $tType,A3: set @ A,F2: nat > A,N: nat] :
( ( A3
= ( image @ nat @ A @ F2
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N ) ) ) )
=> ( finite_finite @ A @ A3 ) ) ).
% nat_seg_image_imp_finite
thf(fact_5602_image__constant,axiom,
! [A: $tType,B: $tType,X: A,A3: set @ A,C2: B] :
( ( member @ A @ X @ A3 )
=> ( ( image @ A @ B
@ ^ [X6: A] : C2
@ A3 )
= ( insert @ B @ C2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ).
% image_constant
thf(fact_5603_image__constant__conv,axiom,
! [B: $tType,A: $tType,A3: set @ B,C2: A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ B @ A
@ ^ [X6: B] : C2
@ A3 )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ B @ A
@ ^ [X6: B] : C2
@ A3 )
= ( insert @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% image_constant_conv
thf(fact_5604_the__elem__image__unique,axiom,
! [B: $tType,A: $tType,A3: set @ A,F2: A > B,X: A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [Y5: A] :
( ( member @ A @ Y5 @ A3 )
=> ( ( F2 @ Y5 )
= ( F2 @ X ) ) )
=> ( ( the_elem @ B @ ( image @ A @ B @ F2 @ A3 ) )
= ( F2 @ X ) ) ) ) ).
% the_elem_image_unique
thf(fact_5605_sum_Oreindex__nontrivial,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,H2: B > C,G: C > A] :
( ( finite_finite @ B @ A3 )
=> ( ! [X5: B,Y5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ( member @ B @ Y5 @ A3 )
=> ( ( X5 != Y5 )
=> ( ( ( H2 @ X5 )
= ( H2 @ Y5 ) )
=> ( ( G @ ( H2 @ X5 ) )
= ( zero_zero @ A ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ C @ A @ G @ ( image @ B @ C @ H2 @ A3 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ ( comp @ C @ A @ B @ G @ H2 ) @ A3 ) ) ) ) ) ).
% sum.reindex_nontrivial
thf(fact_5606_scaleR__image__atLeastAtMost,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,X: A,Y: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( image @ A @ A @ ( real_V8093663219630862766scaleR @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ Y ) ) ) ) ) ).
% scaleR_image_atLeastAtMost
thf(fact_5607_image__Suc__lessThan,axiom,
! [N: nat] :
( ( image @ nat @ nat @ suc @ ( set_ord_lessThan @ nat @ N ) )
= ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N ) ) ).
% image_Suc_lessThan
thf(fact_5608_image__Suc__atMost,axiom,
! [N: nat] :
( ( image @ nat @ nat @ suc @ ( set_ord_atMost @ nat @ N ) )
= ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ ( suc @ N ) ) ) ).
% image_Suc_atMost
thf(fact_5609_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_5610_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_5611_lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ N ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_ord_lessThan @ nat @ N ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_5612_atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_atMost @ nat @ ( suc @ N ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_5613_sum__image__le,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( ordere6911136660526730532id_add @ B )
=> ! [I6: set @ C,G: A > B,F2: C > A] :
( ( finite_finite @ C @ I6 )
=> ( ! [I2: C] :
( ( member @ C @ I2 @ I6 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( G @ ( F2 @ I2 ) ) ) )
=> ( ord_less_eq @ B @ ( groups7311177749621191930dd_sum @ A @ B @ G @ ( image @ C @ A @ F2 @ I6 ) ) @ ( groups7311177749621191930dd_sum @ C @ B @ ( comp @ A @ B @ C @ G @ F2 ) @ I6 ) ) ) ) ) ).
% sum_image_le
thf(fact_5614_integer__of__num__triv_I1_J,axiom,
( ( code_integer_of_num @ one2 )
= ( one_one @ code_integer ) ) ).
% integer_of_num_triv(1)
thf(fact_5615_image__mult__atLeastAtMost__if,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,X: A,Y: A] :
( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ C2 @ X ) @ ( times_times @ A @ C2 @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ C2 @ Y ) @ ( times_times @ A @ C2 @ X ) ) ) )
& ( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% image_mult_atLeastAtMost_if
thf(fact_5616_integer__of__num_I2_J,axiom,
! [N: num] :
( ( code_integer_of_num @ ( bit0 @ N ) )
= ( plus_plus @ code_integer @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).
% integer_of_num(2)
thf(fact_5617_image__mult__atLeastAtMost__if_H,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,C2: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( times_times @ A @ X6 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ X @ C2 ) @ ( times_times @ A @ Y @ C2 ) ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( times_times @ A @ X6 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ Y @ C2 ) @ ( times_times @ A @ X @ C2 ) ) ) ) ) )
& ( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( times_times @ A @ X6 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% image_mult_atLeastAtMost_if'
thf(fact_5618_image__affinity__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost
thf(fact_5619_image__affinity__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) @ ( minus_minus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X6 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) @ ( minus_minus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_diff
thf(fact_5620_image__affinity__atLeastAtMost__div,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) @ ( plus_plus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div
thf(fact_5621_image__affinity__atLeastAtMost__div__diff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) @ ( minus_minus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X6: A] : ( minus_minus @ A @ ( divide_divide @ A @ X6 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div_diff
thf(fact_5622_sum__fun__comp,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( semiring_1 @ C )
=> ! [S3: set @ A,R3: set @ B,G: A > B,F2: B > C] :
( ( finite_finite @ A @ S3 )
=> ( ( finite_finite @ B @ R3 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ G @ S3 ) @ R3 )
=> ( ( groups7311177749621191930dd_sum @ A @ C
@ ^ [X6: A] : ( F2 @ ( G @ X6 ) )
@ S3 )
= ( groups7311177749621191930dd_sum @ B @ C
@ ^ [Y6: B] :
( times_times @ C
@ ( semiring_1_of_nat @ C
@ ( finite_card @ A
@ ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ S3 )
& ( ( G @ X6 )
= Y6 ) ) ) ) )
@ ( F2 @ Y6 ) )
@ R3 ) ) ) ) ) ) ).
% sum_fun_comp
thf(fact_5623_folding__on_Oremove,axiom,
! [B: $tType,A: $tType,S3: set @ A,F2: A > B > B,A3: set @ A,X: A,Z2: B] :
( ( finite_folding_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ S3 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( finite_folding_F @ A @ B @ F2 @ Z2 @ A3 )
= ( F2 @ X @ ( finite_folding_F @ A @ B @ F2 @ Z2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% folding_on.remove
thf(fact_5624_folding__on_Oinsert__remove,axiom,
! [B: $tType,A: $tType,S3: set @ A,F2: A > B > B,X: A,A3: set @ A,Z2: B] :
( ( finite_folding_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ S3 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( finite_folding_F @ A @ B @ F2 @ Z2 @ ( insert @ A @ X @ A3 ) )
= ( F2 @ X @ ( finite_folding_F @ A @ B @ F2 @ Z2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% folding_on.insert_remove
thf(fact_5625_empty__natural,axiom,
! [C: $tType,B: $tType,D: $tType,A: $tType,F2: A > C,G: D > B] :
( ( comp @ C @ ( set @ B ) @ A
@ ^ [Uu3: C] : ( bot_bot @ ( set @ B ) )
@ F2 )
= ( comp @ ( set @ D ) @ ( set @ B ) @ A @ ( image @ D @ B @ G )
@ ^ [Uu3: A] : ( bot_bot @ ( set @ D ) ) ) ) ).
% empty_natural
thf(fact_5626_None__notin__image__Some,axiom,
! [A: $tType,A3: set @ A] :
~ ( member @ ( option @ A ) @ ( none @ A ) @ ( image @ A @ ( option @ A ) @ ( some @ A ) @ A3 ) ) ).
% None_notin_image_Some
thf(fact_5627_in__image__insert__iff,axiom,
! [A: $tType,B3: set @ ( set @ A ),X: A,A3: set @ A] :
( ! [C8: set @ A] :
( ( member @ ( set @ A ) @ C8 @ B3 )
=> ~ ( member @ A @ X @ C8 ) )
=> ( ( member @ ( set @ A ) @ A3 @ ( image @ ( set @ A ) @ ( set @ A ) @ ( insert @ A @ X ) @ B3 ) )
= ( ( member @ A @ X @ A3 )
& ( member @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ B3 ) ) ) ) ).
% in_image_insert_iff
thf(fact_5628_folding__on_Oempty,axiom,
! [A: $tType,B: $tType,S3: set @ A,F2: A > B > B,Z2: B] :
( ( finite_folding_on @ A @ B @ S3 @ F2 )
=> ( ( finite_folding_F @ A @ B @ F2 @ Z2 @ ( bot_bot @ ( set @ A ) ) )
= Z2 ) ) ).
% folding_on.empty
thf(fact_5629_subset__subseqs,axiom,
! [A: $tType,X9: set @ A,Xs2: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ X9 @ ( set2 @ A @ Xs2 ) )
=> ( member @ ( set @ A ) @ X9 @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ) ) ).
% subset_subseqs
thf(fact_5630_image__add__int__atLeastLessThan,axiom,
! [L: int,U: int] :
( ( image @ int @ int
@ ^ [X6: int] : ( plus_plus @ int @ X6 @ L )
@ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ ( minus_minus @ int @ U @ L ) ) )
= ( set_or7035219750837199246ssThan @ int @ L @ U ) ) ).
% image_add_int_atLeastLessThan
thf(fact_5631_card__def,axiom,
! [B: $tType] :
( ( finite_card @ B )
= ( finite_folding_F @ B @ nat
@ ^ [Uu3: B] : suc
@ ( zero_zero @ nat ) ) ) ).
% card_def
thf(fact_5632_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ U )
=> ( ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U )
= ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_ord_lessThan @ nat @ ( nat2 @ U ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_5633_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int )
@ ^ [Q4: num] : ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ M ) @ ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ M ) ) @ ( numeral_numeral @ int @ Q4 ) ) )
@ ( bit_take_bit_num @ ( numeral_numeral @ nat @ M ) @ N ) ) ) ).
% take_bit_numeral_minus_numeral_int
thf(fact_5634_rat__inverse__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( inverse_inverse @ rat @ P2 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A4: int,B4: int] :
( if @ ( product_prod @ int @ int )
@ ( A4
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( times_times @ int @ ( sgn_sgn @ int @ A4 ) @ B4 ) @ ( abs_abs @ int @ A4 ) ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_inverse_code
thf(fact_5635_complete__interval,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( P @ A2 )
=> ( ~ ( P @ B2 )
=> ? [C3: A] :
( ( ord_less_eq @ A @ A2 @ C3 )
& ( ord_less_eq @ A @ C3 @ B2 )
& ! [X3: A] :
( ( ( ord_less_eq @ A @ A2 @ X3 )
& ( ord_less @ A @ X3 @ C3 ) )
=> ( P @ X3 ) )
& ! [D6: A] :
( ! [X5: A] :
( ( ( ord_less_eq @ A @ A2 @ X5 )
& ( ord_less @ A @ X5 @ D6 ) )
=> ( P @ X5 ) )
=> ( ord_less_eq @ A @ D6 @ C3 ) ) ) ) ) ) ) ).
% complete_interval
thf(fact_5636_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ ( zero_zero @ nat ) @ M )
= ( none @ num ) ) ).
% take_bit_num_simps(1)
thf(fact_5637_take__bit__num__simps_I2_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ ( suc @ N ) @ one2 )
= ( some @ num @ one2 ) ) ).
% take_bit_num_simps(2)
thf(fact_5638_take__bit__num__simps_I5_J,axiom,
! [R2: num] :
( ( bit_take_bit_num @ ( numeral_numeral @ nat @ R2 ) @ one2 )
= ( some @ num @ one2 ) ) ).
% take_bit_num_simps(5)
thf(fact_5639_rat__zero__code,axiom,
( ( quotient_of @ ( zero_zero @ rat ) )
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% rat_zero_code
thf(fact_5640_take__bit__numeral__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: num,N: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ A @ N ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_take_bit_num @ ( numeral_numeral @ nat @ M ) @ N ) ) ) ) ).
% take_bit_numeral_numeral
thf(fact_5641_divide__rat__def,axiom,
( ( divide_divide @ rat )
= ( ^ [Q4: rat,R5: rat] : ( times_times @ rat @ Q4 @ ( inverse_inverse @ rat @ R5 ) ) ) ) ).
% divide_rat_def
thf(fact_5642_option_Osimps_I4_J,axiom,
! [A: $tType,B: $tType,F1: B,F22: A > B] :
( ( case_option @ B @ A @ F1 @ F22 @ ( none @ A ) )
= F1 ) ).
% option.simps(4)
thf(fact_5643_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ N @ one2 )
= ( case_nat @ ( option @ num ) @ ( none @ num )
@ ^ [N3: nat] : ( some @ num @ one2 )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_5644_quotient__of__denom__pos,axiom,
! [R2: rat,P2: int,Q2: int] :
( ( ( quotient_of @ R2 )
= ( product_Pair @ int @ int @ P2 @ Q2 ) )
=> ( ord_less @ int @ ( zero_zero @ int ) @ Q2 ) ) ).
% quotient_of_denom_pos
thf(fact_5645_quotient__of__denom__pos_H,axiom,
! [R2: rat] : ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ ( quotient_of @ R2 ) ) ) ).
% quotient_of_denom_pos'
thf(fact_5646_take__bit__num__eq__Some__imp,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: num,Q2: num] :
( ( ( bit_take_bit_num @ M @ N )
= ( some @ num @ Q2 ) )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ Q2 ) ) ) ) ).
% take_bit_num_eq_Some_imp
thf(fact_5647_option_Ocase__eq__if,axiom,
! [A: $tType,B: $tType] :
( ( case_option @ B @ A )
= ( ^ [F12: B,F23: A > B,Option3: option @ A] :
( if @ B
@ ( Option3
= ( none @ A ) )
@ F12
@ ( F23 @ ( the2 @ A @ Option3 ) ) ) ) ) ).
% option.case_eq_if
thf(fact_5648_ex__gt__or__lt,axiom,
! [A: $tType] :
( ( condit5016429287641298734tinuum @ A )
=> ! [A2: A] :
? [B6: A] :
( ( ord_less @ A @ A2 @ B6 )
| ( ord_less @ A @ B6 @ A2 ) ) ) ).
% ex_gt_or_lt
thf(fact_5649_take__bit__num__eq__None__imp,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: num] :
( ( ( bit_take_bit_num @ M @ N )
= ( none @ num ) )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( numeral_numeral @ A @ N ) )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_num_eq_None_imp
thf(fact_5650_option_Osplit__sel__asm,axiom,
! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > B,Option: option @ A] :
( ( P @ ( case_option @ B @ A @ F1 @ F22 @ Option ) )
= ( ~ ( ( ( Option
= ( none @ A ) )
& ~ ( P @ F1 ) )
| ( ( Option
= ( some @ A @ ( the2 @ A @ Option ) ) )
& ~ ( P @ ( F22 @ ( the2 @ A @ Option ) ) ) ) ) ) ) ).
% option.split_sel_asm
thf(fact_5651_option_Osplit__sel,axiom,
! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > B,Option: option @ A] :
( ( P @ ( case_option @ B @ A @ F1 @ F22 @ Option ) )
= ( ( ( Option
= ( none @ A ) )
=> ( P @ F1 ) )
& ( ( Option
= ( some @ A @ ( the2 @ A @ Option ) ) )
=> ( P @ ( F22 @ ( the2 @ A @ Option ) ) ) ) ) ) ).
% option.split_sel
thf(fact_5652_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N3: nat,M4: num] :
( if @ ( option @ num )
@ ( ( bit_se2584673776208193580ke_bit @ nat @ N3 @ ( numeral_numeral @ nat @ M4 ) )
= ( zero_zero @ nat ) )
@ ( none @ num )
@ ( some @ num @ ( num_of_nat @ ( bit_se2584673776208193580ke_bit @ nat @ N3 @ ( numeral_numeral @ nat @ M4 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_5653_and__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(3)
thf(fact_5654_and__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(7)
thf(fact_5655_and__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(4)
thf(fact_5656_take__bit__num__simps_I4_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).
% take_bit_num_simps(4)
thf(fact_5657_take__bit__num__simps_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
= ( case_option @ ( option @ num ) @ num @ ( none @ num )
@ ^ [Q4: num] : ( some @ num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N @ M ) ) ) ).
% take_bit_num_simps(3)
thf(fact_5658_take__bit__num__simps_I7_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral @ nat @ R2 ) @ ( bit1 @ M ) )
= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).
% take_bit_num_simps(7)
thf(fact_5659_take__bit__num__simps_I6_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral @ nat @ R2 ) @ ( bit0 @ M ) )
= ( case_option @ ( option @ num ) @ num @ ( none @ num )
@ ^ [Q4: num] : ( some @ num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).
% take_bit_num_simps(6)
thf(fact_5660_and__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(8)
thf(fact_5661_sgn__rat__def,axiom,
( ( sgn_sgn @ rat )
= ( ^ [A4: rat] :
( if @ rat
@ ( A4
= ( zero_zero @ rat ) )
@ ( zero_zero @ rat )
@ ( if @ rat @ ( ord_less @ rat @ ( zero_zero @ rat ) @ A4 ) @ ( one_one @ rat ) @ ( uminus_uminus @ rat @ ( one_one @ rat ) ) ) ) ) ) ).
% sgn_rat_def
thf(fact_5662_abs__rat__def,axiom,
( ( abs_abs @ rat )
= ( ^ [A4: rat] : ( if @ rat @ ( ord_less @ rat @ A4 @ ( zero_zero @ rat ) ) @ ( uminus_uminus @ rat @ A4 ) @ A4 ) ) ) ).
% abs_rat_def
thf(fact_5663_option_Odisc__eq__case_I2_J,axiom,
! [A: $tType,Option: option @ A] :
( ( Option
!= ( none @ A ) )
= ( case_option @ $o @ A @ $false
@ ^ [Uu3: A] : $true
@ Option ) ) ).
% option.disc_eq_case(2)
thf(fact_5664_option_Odisc__eq__case_I1_J,axiom,
! [A: $tType,Option: option @ A] :
( ( Option
= ( none @ A ) )
= ( case_option @ $o @ A @ $true
@ ^ [Uu3: A] : $false
@ Option ) ) ).
% option.disc_eq_case(1)
thf(fact_5665_and__not__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( case_option @ ( option @ num ) @ num @ ( some @ num @ one2 )
@ ^ [N9: num] : ( some @ num @ ( bit1 @ N9 ) )
@ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(8)
thf(fact_5666_and__not__num_Osimps_I1_J,axiom,
( ( bit_and_not_num @ one2 @ one2 )
= ( none @ num ) ) ).
% and_not_num.simps(1)
thf(fact_5667_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R2 )
=> ~ ! [S2: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ S2 )
=> ! [T7: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ T7 )
=> ( R2
!= ( plus_plus @ rat @ S2 @ T7 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_5668_and__not__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ one2 )
= ( some @ num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(4)
thf(fact_5669_and__not__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one2 @ ( bit0 @ N ) )
= ( some @ num @ one2 ) ) ).
% and_not_num.simps(2)
thf(fact_5670_and__not__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one2 @ ( bit1 @ N ) )
= ( none @ num ) ) ).
% and_not_num.simps(3)
thf(fact_5671_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
= ( case_nat @ ( option @ num ) @ ( none @ num )
@ ^ [N3: nat] :
( case_option @ ( option @ num ) @ num @ ( none @ num )
@ ^ [Q4: num] : ( some @ num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N3 @ M ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_5672_case__optionE,axiom,
! [A: $tType,P: $o,Q: A > $o,X: option @ A] :
( ( case_option @ $o @ A @ P @ Q @ X )
=> ( ( ( X
= ( none @ A ) )
=> ~ P )
=> ~ ! [Y5: A] :
( ( X
= ( some @ A @ Y5 ) )
=> ~ ( Q @ Y5 ) ) ) ) ).
% case_optionE
thf(fact_5673_and__not__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ one2 )
= ( some @ num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(7)
thf(fact_5674_and__not__num__eq__Some__iff,axiom,
! [M: num,N: num,Q2: num] :
( ( ( bit_and_not_num @ M @ N )
= ( some @ num @ Q2 ) )
= ( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) )
= ( numeral_numeral @ int @ Q2 ) ) ) ).
% and_not_num_eq_Some_iff
thf(fact_5675_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
= ( case_nat @ ( option @ num ) @ ( none @ num )
@ ^ [N3: nat] : ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_take_bit_num @ N3 @ M ) ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_5676_and__not__num__eq__None__iff,axiom,
! [M: num,N: num] :
( ( ( bit_and_not_num @ M @ N )
= ( none @ num ) )
= ( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) )
= ( zero_zero @ int ) ) ) ).
% and_not_num_eq_None_iff
thf(fact_5677_int__numeral__not__and__num,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ N @ M ) ) ) ).
% int_numeral_not_and_num
thf(fact_5678_int__numeral__and__not__num,axiom,
! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ N ) ) ) ).
% int_numeral_and_not_num
thf(fact_5679_rat__divide__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( divide_divide @ rat @ P2 @ Q2 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [B4: int,D3: int] : ( normalize @ ( product_Pair @ int @ int @ ( times_times @ int @ A4 @ D3 ) @ ( times_times @ int @ C6 @ B4 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_divide_code
thf(fact_5680_rat__times__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( times_times @ rat @ P2 @ Q2 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [B4: int,D3: int] : ( normalize @ ( product_Pair @ int @ int @ ( times_times @ int @ A4 @ B4 ) @ ( times_times @ int @ C6 @ D3 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_times_code
thf(fact_5681_rat__minus__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( minus_minus @ rat @ P2 @ Q2 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [B4: int,D3: int] : ( normalize @ ( product_Pair @ int @ int @ ( minus_minus @ int @ ( times_times @ int @ A4 @ D3 ) @ ( times_times @ int @ B4 @ C6 ) ) @ ( times_times @ int @ C6 @ D3 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_minus_code
thf(fact_5682_normalize__denom__zero,axiom,
! [P2: int] :
( ( normalize @ ( product_Pair @ int @ int @ P2 @ ( zero_zero @ int ) ) )
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% normalize_denom_zero
thf(fact_5683_normalize__negative,axiom,
! [Q2: int,P2: int] :
( ( ord_less @ int @ Q2 @ ( zero_zero @ int ) )
=> ( ( normalize @ ( product_Pair @ int @ int @ P2 @ Q2 ) )
= ( normalize @ ( product_Pair @ int @ int @ ( uminus_uminus @ int @ P2 ) @ ( uminus_uminus @ int @ Q2 ) ) ) ) ) ).
% normalize_negative
thf(fact_5684_normalize__denom__pos,axiom,
! [R2: product_prod @ int @ int,P2: int,Q2: int] :
( ( ( normalize @ R2 )
= ( product_Pair @ int @ int @ P2 @ Q2 ) )
=> ( ord_less @ int @ ( zero_zero @ int ) @ Q2 ) ) ).
% normalize_denom_pos
thf(fact_5685_normalize__crossproduct,axiom,
! [Q2: int,S: int,P2: int,R2: int] :
( ( Q2
!= ( zero_zero @ int ) )
=> ( ( S
!= ( zero_zero @ int ) )
=> ( ( ( normalize @ ( product_Pair @ int @ int @ P2 @ Q2 ) )
= ( normalize @ ( product_Pair @ int @ int @ R2 @ S ) ) )
=> ( ( times_times @ int @ P2 @ S )
= ( times_times @ int @ R2 @ Q2 ) ) ) ) ) ).
% normalize_crossproduct
thf(fact_5686_rat__plus__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( plus_plus @ rat @ P2 @ Q2 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [B4: int,D3: int] : ( normalize @ ( product_Pair @ int @ int @ ( plus_plus @ int @ ( times_times @ int @ A4 @ D3 ) @ ( times_times @ int @ B4 @ C6 ) ) @ ( times_times @ int @ C6 @ D3 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_plus_code
thf(fact_5687_normalize__def,axiom,
( normalize
= ( ^ [P5: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int ) @ ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ P5 ) ) @ ( product_Pair @ int @ int @ ( divide_divide @ int @ ( product_fst @ int @ int @ P5 ) @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) @ ( divide_divide @ int @ ( product_snd @ int @ int @ P5 ) @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) )
@ ( if @ ( product_prod @ int @ int )
@ ( ( product_snd @ int @ int @ P5 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( divide_divide @ int @ ( product_fst @ int @ int @ P5 ) @ ( uminus_uminus @ int @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) ) @ ( divide_divide @ int @ ( product_snd @ int @ int @ P5 ) @ ( uminus_uminus @ int @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) ) ) ) ) ) ) ).
% normalize_def
thf(fact_5688_and__not__num_Oelims,axiom,
! [X: num,Xa2: num,Y: option @ num] :
( ( ( bit_and_not_num @ X @ Xa2 )
= Y )
=> ( ( ( X = one2 )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( none @ num ) ) ) )
=> ( ( ( X = one2 )
=> ( ? [N2: num] :
( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( some @ num @ one2 ) ) ) )
=> ( ( ( X = one2 )
=> ( ? [N2: num] :
( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( none @ num ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ ( bit0 @ M3 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M3 @ N2 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M3 @ N2 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ ( bit0 @ M3 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( case_option @ ( option @ num ) @ num @ ( some @ num @ one2 )
@ ^ [N9: num] : ( some @ num @ ( bit1 @ N9 ) )
@ ( bit_and_not_num @ M3 @ N2 ) ) ) ) )
=> ~ ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M3 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_not_num.elims
thf(fact_5689_Bit__Operations_Otake__bit__num__code,axiom,
( bit_take_bit_num
= ( ^ [N3: nat,M4: num] :
( product_case_prod @ nat @ num @ ( option @ num )
@ ^ [A4: nat,X6: num] :
( case_nat @ ( option @ num ) @ ( none @ num )
@ ^ [O: nat] :
( case_num @ ( option @ num ) @ ( some @ num @ one2 )
@ ^ [P5: num] :
( case_option @ ( option @ num ) @ num @ ( none @ num )
@ ^ [Q4: num] : ( some @ num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ O @ P5 ) )
@ ^ [P5: num] : ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_take_bit_num @ O @ P5 ) ) )
@ X6 )
@ A4 )
@ ( product_Pair @ nat @ num @ N3 @ M4 ) ) ) ) ).
% Bit_Operations.take_bit_num_code
thf(fact_5690_gcd__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( ( gcd_gcd @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% gcd_eq_0_iff
thf(fact_5691_gcd__add2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N: A] :
( ( gcd_gcd @ A @ M @ ( plus_plus @ A @ M @ N ) )
= ( gcd_gcd @ A @ M @ N ) ) ) ).
% gcd_add2
thf(fact_5692_gcd__add1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N: A] :
( ( gcd_gcd @ A @ ( plus_plus @ A @ M @ N ) @ N )
= ( gcd_gcd @ A @ M @ N ) ) ) ).
% gcd_add1
thf(fact_5693_gcd__exp,axiom,
! [A: $tType] :
( ( semiri6843258321239162965malize @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( gcd_gcd @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
= ( power_power @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ N ) ) ) ).
% gcd_exp
thf(fact_5694_None__eq__map__option__iff,axiom,
! [A: $tType,B: $tType,F2: B > A,X: option @ B] :
( ( ( none @ A )
= ( map_option @ B @ A @ F2 @ X ) )
= ( X
= ( none @ B ) ) ) ).
% None_eq_map_option_iff
thf(fact_5695_map__option__is__None,axiom,
! [A: $tType,B: $tType,F2: B > A,Opt: option @ B] :
( ( ( map_option @ B @ A @ F2 @ Opt )
= ( none @ A ) )
= ( Opt
= ( none @ B ) ) ) ).
% map_option_is_None
thf(fact_5696_option_Omap__disc__iff,axiom,
! [B: $tType,A: $tType,F2: A > B,A2: option @ A] :
( ( ( map_option @ A @ B @ F2 @ A2 )
= ( none @ B ) )
= ( A2
= ( none @ A ) ) ) ).
% option.map_disc_iff
thf(fact_5697_gcd__neg__numeral__1,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [N: num,A2: A] :
( ( gcd_gcd @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) @ A2 )
= ( gcd_gcd @ A @ ( numeral_numeral @ A @ N ) @ A2 ) ) ) ).
% gcd_neg_numeral_1
thf(fact_5698_gcd__neg__numeral__2,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,N: num] :
( ( gcd_gcd @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N ) ) )
= ( gcd_gcd @ A @ A2 @ ( numeral_numeral @ A @ N ) ) ) ) ).
% gcd_neg_numeral_2
thf(fact_5699_gcd__pos__int,axiom,
! [M: int,N: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( gcd_gcd @ int @ M @ N ) )
= ( ( M
!= ( zero_zero @ int ) )
| ( N
!= ( zero_zero @ int ) ) ) ) ).
% gcd_pos_int
thf(fact_5700_gcd__0__left__int,axiom,
! [X: int] :
( ( gcd_gcd @ int @ ( zero_zero @ int ) @ X )
= ( abs_abs @ int @ X ) ) ).
% gcd_0_left_int
thf(fact_5701_gcd__0__int,axiom,
! [X: int] :
( ( gcd_gcd @ int @ X @ ( zero_zero @ int ) )
= ( abs_abs @ int @ X ) ) ).
% gcd_0_int
thf(fact_5702_Gcd__2,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_Gcd @ A @ ( insert @ A @ A2 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% Gcd_2
thf(fact_5703_gcd__mult__distrib__int,axiom,
! [K: int,M: int,N: int] :
( ( times_times @ int @ ( abs_abs @ int @ K ) @ ( gcd_gcd @ int @ M @ N ) )
= ( gcd_gcd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ N ) ) ) ).
% gcd_mult_distrib_int
thf(fact_5704_bezout__int,axiom,
! [X: int,Y: int] :
? [U3: int,V3: int] :
( ( plus_plus @ int @ ( times_times @ int @ U3 @ X ) @ ( times_times @ int @ V3 @ Y ) )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% bezout_int
thf(fact_5705_gcd__add__mult,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,K: A,N: A] :
( ( gcd_gcd @ A @ M @ ( plus_plus @ A @ ( times_times @ A @ K @ M ) @ N ) )
= ( gcd_gcd @ A @ M @ N ) ) ) ).
% gcd_add_mult
thf(fact_5706_num_Ocase__distrib,axiom,
! [B: $tType,A: $tType,H2: A > B,F1: A,F22: num > A,F32: num > A,Num: num] :
( ( H2 @ ( case_num @ A @ F1 @ F22 @ F32 @ Num ) )
= ( case_num @ B @ ( H2 @ F1 )
@ ^ [X6: num] : ( H2 @ ( F22 @ X6 ) )
@ ^ [X6: num] : ( H2 @ ( F32 @ X6 ) )
@ Num ) ) ).
% num.case_distrib
thf(fact_5707_gcd__red__int,axiom,
( ( gcd_gcd @ int )
= ( ^ [X6: int,Y6: int] : ( gcd_gcd @ int @ Y6 @ ( modulo_modulo @ int @ X6 @ Y6 ) ) ) ) ).
% gcd_red_int
thf(fact_5708_gcd__ge__0__int,axiom,
! [X: int,Y: int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_ge_0_int
thf(fact_5709_gcd__dvd__prod,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,K: A] : ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( times_times @ A @ K @ B2 ) ) ) ).
% gcd_dvd_prod
thf(fact_5710_option_Osimps_I8_J,axiom,
! [A: $tType,B: $tType,F2: A > B] :
( ( map_option @ A @ B @ F2 @ ( none @ A ) )
= ( none @ B ) ) ).
% option.simps(8)
thf(fact_5711_and__not__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(5)
thf(fact_5712_option_Omap__sel,axiom,
! [B: $tType,A: $tType,A2: option @ A,F2: A > B] :
( ( A2
!= ( none @ A ) )
=> ( ( the2 @ B @ ( map_option @ A @ B @ F2 @ A2 ) )
= ( F2 @ ( the2 @ A @ A2 ) ) ) ) ).
% option.map_sel
thf(fact_5713_verit__eq__simplify_I17_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A,X2: num] :
( ( case_num @ A @ F1 @ F22 @ F32 @ ( bit0 @ X2 ) )
= ( F22 @ X2 ) ) ).
% verit_eq_simplify(17)
thf(fact_5714_verit__eq__simplify_I16_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A] :
( ( case_num @ A @ F1 @ F22 @ F32 @ one2 )
= F1 ) ).
% verit_eq_simplify(16)
thf(fact_5715_verit__eq__simplify_I18_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A,X32: num] :
( ( case_num @ A @ F1 @ F22 @ F32 @ ( bit1 @ X32 ) )
= ( F32 @ X32 ) ) ).
% verit_eq_simplify(18)
thf(fact_5716_gcd__mult__unit1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_mult_unit1
thf(fact_5717_gcd__mult__unit2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ B2 @ ( times_times @ A @ C2 @ A2 ) )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_mult_unit2
thf(fact_5718_gcd__div__unit1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ ( divide_divide @ A @ B2 @ A2 ) @ C2 )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_div_unit1
thf(fact_5719_gcd__div__unit2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ B2 @ ( divide_divide @ A @ C2 @ A2 ) )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_div_unit2
thf(fact_5720_and__not__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(6)
thf(fact_5721_and__not__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(9)
thf(fact_5722_gcd__le2__int,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( gcd_gcd @ int @ A2 @ B2 ) @ B2 ) ) ).
% gcd_le2_int
thf(fact_5723_gcd__le1__int,axiom,
! [A2: int,B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ A2 )
=> ( ord_less_eq @ int @ ( gcd_gcd @ int @ A2 @ B2 ) @ A2 ) ) ).
% gcd_le1_int
thf(fact_5724_gcd__cases__int,axiom,
! [X: int,Y: int,P: int > $o] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( P @ ( gcd_gcd @ int @ X @ Y ) ) ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ Y @ ( zero_zero @ int ) )
=> ( P @ ( gcd_gcd @ int @ X @ ( uminus_uminus @ int @ Y ) ) ) ) )
=> ( ( ( ord_less_eq @ int @ X @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( P @ ( gcd_gcd @ int @ ( uminus_uminus @ int @ X ) @ Y ) ) ) )
=> ( ( ( ord_less_eq @ int @ X @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ Y @ ( zero_zero @ int ) )
=> ( P @ ( gcd_gcd @ int @ ( uminus_uminus @ int @ X ) @ ( uminus_uminus @ int @ Y ) ) ) ) )
=> ( P @ ( gcd_gcd @ int @ X @ Y ) ) ) ) ) ) ).
% gcd_cases_int
thf(fact_5725_gcd__unique__int,axiom,
! [D2: int,A2: int,B2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ D2 )
& ( dvd_dvd @ int @ D2 @ A2 )
& ( dvd_dvd @ int @ D2 @ B2 )
& ! [E3: int] :
( ( ( dvd_dvd @ int @ E3 @ A2 )
& ( dvd_dvd @ int @ E3 @ B2 ) )
=> ( dvd_dvd @ int @ E3 @ D2 ) ) )
= ( D2
= ( gcd_gcd @ int @ A2 @ B2 ) ) ) ).
% gcd_unique_int
thf(fact_5726_gcd__non__0__int,axiom,
! [Y: int,X: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Y )
=> ( ( gcd_gcd @ int @ X @ Y )
= ( gcd_gcd @ int @ Y @ ( modulo_modulo @ int @ X @ Y ) ) ) ) ).
% gcd_non_0_int
thf(fact_5727_gcd__code__int,axiom,
( ( gcd_gcd @ int )
= ( ^ [K3: int,L2: int] :
( abs_abs @ int
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( gcd_gcd @ int @ L2 @ ( modulo_modulo @ int @ ( abs_abs @ int @ K3 ) @ ( abs_abs @ int @ L2 ) ) ) ) ) ) ) ).
% gcd_code_int
thf(fact_5728_map__option__case,axiom,
! [A: $tType,B: $tType] :
( ( map_option @ B @ A )
= ( ^ [F6: B > A] :
( case_option @ ( option @ A ) @ B @ ( none @ A )
@ ^ [X6: B] : ( some @ A @ ( F6 @ X6 ) ) ) ) ) ).
% map_option_case
thf(fact_5729_map__option__o__empty,axiom,
! [C: $tType,B: $tType,A: $tType,F2: C > B] :
( ( comp @ ( option @ C ) @ ( option @ B ) @ A @ ( map_option @ C @ B @ F2 )
@ ^ [X6: A] : ( none @ C ) )
= ( ^ [X6: A] : ( none @ B ) ) ) ).
% map_option_o_empty
thf(fact_5730_and__num_Oelims,axiom,
! [X: num,Xa2: num,Y: option @ num] :
( ( ( bit_un7362597486090784418nd_num @ X @ Xa2 )
= Y )
=> ( ( ( X = one2 )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ one2 ) ) ) )
=> ( ( ( X = one2 )
=> ( ? [N2: num] :
( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( none @ num ) ) ) )
=> ( ( ( X = one2 )
=> ( ? [N2: num] :
( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( some @ num @ one2 ) ) ) )
=> ( ( ? [M3: num] :
( X
= ( bit0 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( none @ num ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M3 @ N2 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M3 @ N2 ) ) ) ) )
=> ( ( ? [M3: num] :
( X
= ( bit1 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ one2 ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M3 @ N2 ) ) ) ) )
=> ~ ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( case_option @ ( option @ num ) @ num @ ( some @ num @ one2 )
@ ^ [N9: num] : ( some @ num @ ( bit1 @ N9 ) )
@ ( bit_un7362597486090784418nd_num @ M3 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_num.elims
thf(fact_5731_xor__num_Oelims,axiom,
! [X: num,Xa2: num,Y: option @ num] :
( ( ( bit_un2480387367778600638or_num @ X @ Xa2 )
= Y )
=> ( ( ( X = one2 )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( none @ num ) ) ) )
=> ( ( ( X = one2 )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( some @ num @ ( bit1 @ N2 ) ) ) ) )
=> ( ( ( X = one2 )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( some @ num @ ( bit0 @ N2 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ ( bit1 @ M3 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_un2480387367778600638or_num @ M3 @ N2 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit0 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_un2480387367778600638or_num @ M3 @ N2 ) ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ( ( Xa2 = one2 )
=> ( Y
!= ( some @ num @ ( bit0 @ M3 ) ) ) ) )
=> ( ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit0 @ N2 ) )
=> ( Y
!= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_un2480387367778600638or_num @ M3 @ N2 ) ) ) ) ) )
=> ~ ! [M3: num] :
( ( X
= ( bit1 @ M3 ) )
=> ! [N2: num] :
( ( Xa2
= ( bit1 @ N2 ) )
=> ( Y
!= ( map_option @ num @ num @ bit0 @ ( bit_un2480387367778600638or_num @ M3 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.elims
thf(fact_5732_gcd__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( gcd_gcd @ nat @ A2 @ B2 )
= ( zero_zero @ nat ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.eq_neutr_iff
thf(fact_5733_gcd__nat_Oleft__neutral,axiom,
! [A2: nat] :
( ( gcd_gcd @ nat @ ( zero_zero @ nat ) @ A2 )
= A2 ) ).
% gcd_nat.left_neutral
thf(fact_5734_gcd__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( zero_zero @ nat )
= ( gcd_gcd @ nat @ A2 @ B2 ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.neutr_eq_iff
thf(fact_5735_gcd__nat_Oright__neutral,axiom,
! [A2: nat] :
( ( gcd_gcd @ nat @ A2 @ ( zero_zero @ nat ) )
= A2 ) ).
% gcd_nat.right_neutral
thf(fact_5736_gcd__0__nat,axiom,
! [X: nat] :
( ( gcd_gcd @ nat @ X @ ( zero_zero @ nat ) )
= X ) ).
% gcd_0_nat
thf(fact_5737_gcd__0__left__nat,axiom,
! [X: nat] :
( ( gcd_gcd @ nat @ ( zero_zero @ nat ) @ X )
= X ) ).
% gcd_0_left_nat
thf(fact_5738_gcd__Suc__0,axiom,
! [M: nat] :
( ( gcd_gcd @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% gcd_Suc_0
thf(fact_5739_gcd__pos__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( gcd_gcd @ nat @ M @ N ) )
= ( ( M
!= ( zero_zero @ nat ) )
| ( N
!= ( zero_zero @ nat ) ) ) ) ).
% gcd_pos_nat
thf(fact_5740_gcd__red__nat,axiom,
( ( gcd_gcd @ nat )
= ( ^ [X6: nat,Y6: nat] : ( gcd_gcd @ nat @ Y6 @ ( modulo_modulo @ nat @ X6 @ Y6 ) ) ) ) ).
% gcd_red_nat
thf(fact_5741_gcd__non__0__nat,axiom,
! [Y: nat,X: nat] :
( ( Y
!= ( zero_zero @ nat ) )
=> ( ( gcd_gcd @ nat @ X @ Y )
= ( gcd_gcd @ nat @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) ) ).
% gcd_non_0_nat
thf(fact_5742_gcd__nat_Osimps,axiom,
( ( gcd_gcd @ nat )
= ( ^ [X6: nat,Y6: nat] :
( if @ nat
@ ( Y6
= ( zero_zero @ nat ) )
@ X6
@ ( gcd_gcd @ nat @ Y6 @ ( modulo_modulo @ nat @ X6 @ Y6 ) ) ) ) ) ).
% gcd_nat.simps
thf(fact_5743_gcd__nat_Oelims,axiom,
! [X: nat,Xa2: nat,Y: nat] :
( ( ( gcd_gcd @ nat @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y = X ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( gcd_gcd @ nat @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) ) ) ) ).
% gcd_nat.elims
thf(fact_5744_gcd__le2__nat,axiom,
! [B2: nat,A2: nat] :
( ( B2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ B2 ) ) ).
% gcd_le2_nat
thf(fact_5745_gcd__le1__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ A2 ) ) ).
% gcd_le1_nat
thf(fact_5746_gcd__mult__distrib__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times @ nat @ K @ ( gcd_gcd @ nat @ M @ N ) )
= ( gcd_gcd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) ) ) ).
% gcd_mult_distrib_nat
thf(fact_5747_Gcd__in,axiom,
! [A3: set @ nat] :
( ! [A6: nat,B6: nat] :
( ( member @ nat @ A6 @ A3 )
=> ( ( member @ nat @ B6 @ A3 )
=> ( member @ nat @ ( gcd_gcd @ nat @ A6 @ B6 ) @ A3 ) ) )
=> ( ( A3
!= ( bot_bot @ ( set @ nat ) ) )
=> ( member @ nat @ ( gcd_Gcd @ nat @ A3 ) @ A3 ) ) ) ).
% Gcd_in
thf(fact_5748_and__num_Osimps_I1_J,axiom,
( ( bit_un7362597486090784418nd_num @ one2 @ one2 )
= ( some @ num @ one2 ) ) ).
% and_num.simps(1)
thf(fact_5749_bezout__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ? [X5: nat,Y5: nat] :
( ( times_times @ nat @ A2 @ X5 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y5 ) @ ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ) ).
% bezout_nat
thf(fact_5750_xor__num_Osimps_I1_J,axiom,
( ( bit_un2480387367778600638or_num @ one2 @ one2 )
= ( none @ num ) ) ).
% xor_num.simps(1)
thf(fact_5751_bezout__gcd__nat_H,axiom,
! [B2: nat,A2: nat] :
? [X5: nat,Y5: nat] :
( ( ( ord_less_eq @ nat @ ( times_times @ nat @ B2 @ Y5 ) @ ( times_times @ nat @ A2 @ X5 ) )
& ( ( minus_minus @ nat @ ( times_times @ nat @ A2 @ X5 ) @ ( times_times @ nat @ B2 @ Y5 ) )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) )
| ( ( ord_less_eq @ nat @ ( times_times @ nat @ A2 @ Y5 ) @ ( times_times @ nat @ B2 @ X5 ) )
& ( ( minus_minus @ nat @ ( times_times @ nat @ B2 @ X5 ) @ ( times_times @ nat @ A2 @ Y5 ) )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ) ).
% bezout_gcd_nat'
thf(fact_5752_xor__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(5)
thf(fact_5753_and__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(5)
thf(fact_5754_gcd__code__integer,axiom,
( ( gcd_gcd @ code_integer )
= ( ^ [K3: code_integer,L2: code_integer] :
( abs_abs @ code_integer
@ ( if @ code_integer
@ ( L2
= ( zero_zero @ code_integer ) )
@ K3
@ ( gcd_gcd @ code_integer @ L2 @ ( modulo_modulo @ code_integer @ ( abs_abs @ code_integer @ K3 ) @ ( abs_abs @ code_integer @ L2 ) ) ) ) ) ) ) ).
% gcd_code_integer
thf(fact_5755_and__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one2 )
= ( some @ num @ one2 ) ) ).
% and_num.simps(7)
thf(fact_5756_and__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one2 @ ( bit1 @ N ) )
= ( some @ num @ one2 ) ) ).
% and_num.simps(3)
thf(fact_5757_and__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one2 @ ( bit0 @ N ) )
= ( none @ num ) ) ).
% and_num.simps(2)
thf(fact_5758_and__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one2 )
= ( none @ num ) ) ).
% and_num.simps(4)
thf(fact_5759_and__num__eq__Some__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num,Q2: num] :
( ( ( bit_un7362597486090784418nd_num @ M @ N )
= ( some @ num @ Q2 ) )
= ( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ Q2 ) ) ) ) ).
% and_num_eq_Some_iff
thf(fact_5760_xor__num__eq__Some__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num,Q2: num] :
( ( ( bit_un2480387367778600638or_num @ M @ N )
= ( some @ num @ Q2 ) )
= ( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( numeral_numeral @ A @ Q2 ) ) ) ) ).
% xor_num_eq_Some_iff
thf(fact_5761_and__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(8)
thf(fact_5762_and__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(6)
thf(fact_5763_xor__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option @ num @ num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(9)
thf(fact_5764_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1105856199041335345_order @ nat @ ( gcd_gcd @ nat ) @ ( zero_zero @ nat ) @ ( dvd_dvd @ nat )
@ ^ [M4: nat,N3: nat] :
( ( dvd_dvd @ nat @ M4 @ N3 )
& ( M4 != N3 ) ) ) ).
% gcd_nat.semilattice_neutr_order_axioms
thf(fact_5765_xor__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one2 @ ( bit0 @ N ) )
= ( some @ num @ ( bit1 @ N ) ) ) ).
% xor_num.simps(2)
thf(fact_5766_xor__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one2 @ ( bit1 @ N ) )
= ( some @ num @ ( bit0 @ N ) ) ) ).
% xor_num.simps(3)
thf(fact_5767_xor__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one2 )
= ( some @ num @ ( bit1 @ M ) ) ) ).
% xor_num.simps(4)
thf(fact_5768_xor__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one2 )
= ( some @ num @ ( bit0 @ M ) ) ) ).
% xor_num.simps(7)
thf(fact_5769_and__num__eq__None__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num] :
( ( ( bit_un7362597486090784418nd_num @ M @ N )
= ( none @ num ) )
= ( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( zero_zero @ A ) ) ) ) ).
% and_num_eq_None_iff
thf(fact_5770_xor__num__eq__None__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num] :
( ( ( bit_un2480387367778600638or_num @ M @ N )
= ( none @ num ) )
= ( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( zero_zero @ A ) ) ) ) ).
% xor_num_eq_None_iff
thf(fact_5771_numeral__and__num,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ) ).
% numeral_and_num
thf(fact_5772_numeral__xor__num,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% numeral_xor_num
thf(fact_5773_and__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( case_option @ ( option @ num ) @ num @ ( some @ num @ one2 )
@ ^ [N9: num] : ( some @ num @ ( bit1 @ N9 ) )
@ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(9)
thf(fact_5774_bezw__aux,axiom,
! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ int @ ( gcd_gcd @ nat @ X @ Y ) )
= ( plus_plus @ int @ ( times_times @ int @ ( product_fst @ int @ int @ ( bezw @ X @ Y ) ) @ ( semiring_1_of_nat @ int @ X ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ X @ Y ) ) @ ( semiring_1_of_nat @ int @ Y ) ) ) ) ).
% bezw_aux
thf(fact_5775_xor__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(8)
thf(fact_5776_xor__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(6)
thf(fact_5777_gcd__nat_Opelims,axiom,
! [X: nat,Xa2: nat,Y: nat] :
( ( ( gcd_gcd @ nat @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ gcd_nat_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y = X ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( gcd_gcd @ nat @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ gcd_nat_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% gcd_nat.pelims
thf(fact_5778_xor__num__dict,axiom,
bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).
% xor_num_dict
thf(fact_5779_and__num__dict,axiom,
bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).
% and_num_dict
thf(fact_5780_div__add__self1__no__field,axiom,
! [B: $tType,A: $tType] :
( ( ( euclid4440199948858584721cancel @ A )
& ( field @ B ) )
=> ! [X: B,B2: A,A2: A] :
( ( nO_MATCH @ B @ A @ X @ B2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% div_add_self1_no_field
thf(fact_5781_div__add__self2__no__field,axiom,
! [B: $tType,A: $tType] :
( ( ( euclid4440199948858584721cancel @ A )
& ( field @ B ) )
=> ! [X: B,B2: A,A2: A] :
( ( nO_MATCH @ B @ A @ X @ B2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% div_add_self2_no_field
thf(fact_5782_Some__image__these__eq,axiom,
! [A: $tType,A3: set @ ( option @ A )] :
( ( image @ A @ ( option @ A ) @ ( some @ A ) @ ( these @ A @ A3 ) )
= ( collect @ ( option @ A )
@ ^ [X6: option @ A] :
( ( member @ ( option @ A ) @ X6 @ A3 )
& ( X6
!= ( none @ A ) ) ) ) ) ).
% Some_image_these_eq
thf(fact_5783_these__empty,axiom,
! [A: $tType] :
( ( these @ A @ ( bot_bot @ ( set @ ( option @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% these_empty
thf(fact_5784_these__insert__None,axiom,
! [A: $tType,A3: set @ ( option @ A )] :
( ( these @ A @ ( insert @ ( option @ A ) @ ( none @ A ) @ A3 ) )
= ( these @ A @ A3 ) ) ).
% these_insert_None
thf(fact_5785_these__empty__eq,axiom,
! [A: $tType,B3: set @ ( option @ A )] :
( ( ( these @ A @ B3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ( B3
= ( bot_bot @ ( set @ ( option @ A ) ) ) )
| ( B3
= ( insert @ ( option @ A ) @ ( none @ A ) @ ( bot_bot @ ( set @ ( option @ A ) ) ) ) ) ) ) ).
% these_empty_eq
thf(fact_5786_these__not__empty__eq,axiom,
! [A: $tType,B3: set @ ( option @ A )] :
( ( ( these @ A @ B3 )
!= ( bot_bot @ ( set @ A ) ) )
= ( ( B3
!= ( bot_bot @ ( set @ ( option @ A ) ) ) )
& ( B3
!= ( insert @ ( option @ A ) @ ( none @ A ) @ ( bot_bot @ ( set @ ( option @ A ) ) ) ) ) ) ) ).
% these_not_empty_eq
thf(fact_5787_scale__right__distrib__NO__MATCH,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,A2: real] :
( ( nO_MATCH @ A @ real @ ( divide_divide @ A @ X @ Y ) @ A2 )
=> ( ( real_V8093663219630862766scaleR @ A @ A2 @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ) ).
% scale_right_distrib_NO_MATCH
thf(fact_5788_scale__right__diff__distrib__NO__MATCH,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,A2: real] :
( ( nO_MATCH @ A @ real @ ( divide_divide @ A @ X @ Y ) @ A2 )
=> ( ( real_V8093663219630862766scaleR @ A @ A2 @ ( minus_minus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ) ).
% scale_right_diff_distrib_NO_MATCH
thf(fact_5789_distrib__right__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( semiring @ A )
=> ! [X: B,Y: B,C2: A,A2: A,B2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ C2 )
=> ( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% distrib_right_NO_MATCH
thf(fact_5790_distrib__left__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( semiring @ A )
=> ! [X: B,Y: B,A2: A,B2: A,C2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ A2 )
=> ( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% distrib_left_NO_MATCH
thf(fact_5791_right__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( ring @ A )
=> ! [X: B,Y: B,A2: A,B2: A,C2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ A2 )
=> ( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% right_diff_distrib_NO_MATCH
thf(fact_5792_left__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( ring @ A )
=> ! [X: B,Y: B,C2: A,A2: A,B2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ C2 )
=> ( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% left_diff_distrib_NO_MATCH
thf(fact_5793_Option_Othese__def,axiom,
! [A: $tType] :
( ( these @ A )
= ( ^ [A7: set @ ( option @ A )] :
( image @ ( option @ A ) @ A @ ( the2 @ A )
@ ( collect @ ( option @ A )
@ ^ [X6: option @ A] :
( ( member @ ( option @ A ) @ X6 @ A7 )
& ( X6
!= ( none @ A ) ) ) ) ) ) ) ).
% Option.these_def
thf(fact_5794_power__minus_H,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A,N: nat] :
( ( nO_MATCH @ A @ A @ ( one_one @ A ) @ X )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ X ) @ N )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( power_power @ A @ X @ N ) ) ) ) ) ).
% power_minus'
thf(fact_5795_scale__left__distrib__NO__MATCH,axiom,
! [C: $tType,A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,C2: C,A2: real,B2: real] :
( ( nO_MATCH @ A @ C @ ( divide_divide @ A @ X @ Y ) @ C2 )
=> ( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ A2 @ B2 ) @ X )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ) ).
% scale_left_distrib_NO_MATCH
thf(fact_5796_scale__left__diff__distrib__NO__MATCH,axiom,
! [C: $tType,A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,C2: C,A2: real,B2: real] :
( ( nO_MATCH @ A @ C @ ( divide_divide @ A @ X @ Y ) @ C2 )
=> ( ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ A2 @ B2 ) @ X )
= ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ) ).
% scale_left_diff_distrib_NO_MATCH
thf(fact_5797_card__UN__disjoint,axiom,
! [B: $tType,A: $tType,I6: set @ A,A3: A > ( set @ B )] :
( ( finite_finite @ A @ I6 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ I6 )
=> ( finite_finite @ B @ ( A3 @ X5 ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ I6 )
=> ! [Xa3: A] :
( ( member @ A @ Xa3 @ I6 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ B ) @ ( A3 @ X5 ) @ ( A3 @ Xa3 ) )
= ( bot_bot @ ( set @ B ) ) ) ) ) )
=> ( ( finite_card @ B @ ( complete_Sup_Sup @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A3 @ I6 ) ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [I: A] : ( finite_card @ B @ ( A3 @ I ) )
@ I6 ) ) ) ) ) ).
% card_UN_disjoint
thf(fact_5798_nth__image,axiom,
! [A: $tType,L: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ L @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( image @ nat @ A @ ( nth @ A @ Xs2 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ L ) )
= ( set2 @ A @ ( take @ A @ L @ Xs2 ) ) ) ) ).
% nth_image
thf(fact_5799_num__of__integer__code,axiom,
( code_num_of_integer
= ( ^ [K3: code_integer] :
( if @ num @ ( ord_less_eq @ code_integer @ K3 @ ( one_one @ code_integer ) ) @ one2
@ ( product_case_prod @ code_integer @ code_integer @ num
@ ^ [L2: code_integer,J2: code_integer] :
( if @ num
@ ( J2
= ( zero_zero @ code_integer ) )
@ ( plus_plus @ num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) )
@ ( plus_plus @ num @ ( plus_plus @ num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one2 ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% num_of_integer_code
thf(fact_5800_cSup__singleton,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A] :
( ( complete_Sup_Sup @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% cSup_singleton
thf(fact_5801_Sup__atLeastLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or7035219750837199246ssThan @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_atLeastLessThan
thf(fact_5802_cSup__atLeastLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or7035219750837199246ssThan @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_atLeastLessThan
thf(fact_5803_take__eq__Nil2,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( nil @ A )
= ( take @ A @ N @ Xs2 ) )
= ( ( N
= ( zero_zero @ nat ) )
| ( Xs2
= ( nil @ A ) ) ) ) ).
% take_eq_Nil2
thf(fact_5804_take__eq__Nil,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( take @ A @ N @ Xs2 )
= ( nil @ A ) )
= ( ( N
= ( zero_zero @ nat ) )
| ( Xs2
= ( nil @ A ) ) ) ) ).
% take_eq_Nil
thf(fact_5805_take0,axiom,
! [A: $tType] :
( ( take @ A @ ( zero_zero @ nat ) )
= ( ^ [Xs: list @ A] : ( nil @ A ) ) ) ).
% take0
thf(fact_5806_take__all,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N )
=> ( ( take @ A @ N @ Xs2 )
= Xs2 ) ) ).
% take_all
thf(fact_5807_take__all__iff,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( take @ A @ N @ Xs2 )
= Xs2 )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% take_all_iff
thf(fact_5808_nth__take,axiom,
! [A: $tType,I3: nat,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I3 @ N )
=> ( ( nth @ A @ ( take @ A @ N @ Xs2 ) @ I3 )
= ( nth @ A @ Xs2 @ I3 ) ) ) ).
% nth_take
thf(fact_5809_take__update__cancel,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A,Y: A] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( take @ A @ N @ ( list_update @ A @ Xs2 @ M @ Y ) )
= ( take @ A @ N @ Xs2 ) ) ) ).
% take_update_cancel
thf(fact_5810_cSUP__const,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,C2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [X6: B] : C2
@ A3 ) )
= C2 ) ) ) ).
% cSUP_const
thf(fact_5811_set__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( set2 @ A @ ( concat @ A @ Xs2 ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ Xs2 ) ) ) ) ).
% set_concat
thf(fact_5812_finite__imp__Sup__less,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,X: A,A2: A] :
( ( finite_finite @ A @ X9 )
=> ( ( member @ A @ X @ X9 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less @ A @ X5 @ A2 ) )
=> ( ord_less @ A @ ( complete_Sup_Sup @ A @ X9 ) @ A2 ) ) ) ) ) ).
% finite_imp_Sup_less
thf(fact_5813_less__cSupE,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [Y: A,X9: set @ A] :
( ( ord_less @ A @ Y @ ( complete_Sup_Sup @ A @ X9 ) )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ~ ( ord_less @ A @ Y @ X5 ) ) ) ) ) ).
% less_cSupE
thf(fact_5814_less__cSupD,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,Z2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ Z2 @ ( complete_Sup_Sup @ A @ X9 ) )
=> ? [X5: A] :
( ( member @ A @ X5 @ X9 )
& ( ord_less @ A @ Z2 @ X5 ) ) ) ) ) ).
% less_cSupD
thf(fact_5815_cSup__eq__non__empty,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less_eq @ A @ X5 @ A2 ) )
=> ( ! [Y5: A] :
( ! [X3: A] :
( ( member @ A @ X3 @ X9 )
=> ( ord_less_eq @ A @ X3 @ Y5 ) )
=> ( ord_less_eq @ A @ A2 @ Y5 ) )
=> ( ( complete_Sup_Sup @ A @ X9 )
= A2 ) ) ) ) ) ).
% cSup_eq_non_empty
thf(fact_5816_cSup__least,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,Z2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less_eq @ A @ X5 @ Z2 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ X9 ) @ Z2 ) ) ) ) ).
% cSup_least
thf(fact_5817_take__Nil,axiom,
! [A: $tType,N: nat] :
( ( take @ A @ N @ ( nil @ A ) )
= ( nil @ A ) ) ).
% take_Nil
thf(fact_5818_set__take__subset,axiom,
! [A: $tType,N: nat,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ N @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_take_subset
thf(fact_5819_in__set__takeD,axiom,
! [A: $tType,X: A,N: nat,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( take @ A @ N @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_takeD
thf(fact_5820_take__update__swap,axiom,
! [A: $tType,M: nat,Xs2: list @ A,N: nat,X: A] :
( ( take @ A @ M @ ( list_update @ A @ Xs2 @ N @ X ) )
= ( list_update @ A @ ( take @ A @ M @ Xs2 ) @ N @ X ) ) ).
% take_update_swap
thf(fact_5821_take__equalityI,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ! [I2: nat] :
( ( take @ A @ I2 @ Xs2 )
= ( take @ A @ I2 @ Ys2 ) )
=> ( Xs2 = Ys2 ) ) ).
% take_equalityI
thf(fact_5822_distinct__take,axiom,
! [A: $tType,Xs2: list @ A,I3: nat] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( take @ A @ I3 @ Xs2 ) ) ) ).
% distinct_take
thf(fact_5823_Sup__inf__eq__bot__iff,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [B3: set @ A,A2: A] :
( ( ( inf_inf @ A @ ( complete_Sup_Sup @ A @ B3 ) @ A2 )
= ( bot_bot @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ B3 )
=> ( ( inf_inf @ A @ X6 @ A2 )
= ( bot_bot @ A ) ) ) ) ) ) ).
% Sup_inf_eq_bot_iff
thf(fact_5824_insert__partition,axiom,
! [A: $tType,X: set @ A,F3: set @ ( set @ A )] :
( ~ ( member @ ( set @ A ) @ X @ F3 )
=> ( ! [X5: set @ A] :
( ( member @ ( set @ A ) @ X5 @ ( insert @ ( set @ A ) @ X @ F3 ) )
=> ! [Xa3: set @ A] :
( ( member @ ( set @ A ) @ Xa3 @ ( insert @ ( set @ A ) @ X @ F3 ) )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ A ) @ X5 @ Xa3 )
= ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( ( inf_inf @ ( set @ A ) @ X @ ( complete_Sup_Sup @ ( set @ A ) @ F3 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% insert_partition
thf(fact_5825_take__0,axiom,
! [A: $tType,Xs2: list @ A] :
( ( take @ A @ ( zero_zero @ nat ) @ Xs2 )
= ( nil @ A ) ) ).
% take_0
thf(fact_5826_set__take__subset__set__take,axiom,
! [A: $tType,M: nat,N: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ M @ Xs2 ) ) @ ( set2 @ A @ ( take @ A @ N @ Xs2 ) ) ) ) ).
% set_take_subset_set_take
thf(fact_5827_cSUP__least,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,M7: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ X5 ) @ M7 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ M7 ) ) ) ) ).
% cSUP_least
thf(fact_5828_finite__Sup__less__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,A2: A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( complete_Sup_Sup @ A @ X9 ) @ A2 )
= ( ! [X6: A] :
( ( member @ A @ X6 @ X9 )
=> ( ord_less @ A @ X6 @ A2 ) ) ) ) ) ) ) ).
% finite_Sup_less_iff
thf(fact_5829_cSup__abs__le,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X5 ) @ A2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( complete_Sup_Sup @ A @ S3 ) ) @ A2 ) ) ) ) ).
% cSup_abs_le
thf(fact_5830_finite__Sup__in,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ( member @ A @ Y5 @ A3 )
=> ( member @ A @ ( sup_sup @ A @ X5 @ Y5 ) @ A3 ) ) )
=> ( member @ A @ ( complete_Sup_Sup @ A @ A3 ) @ A3 ) ) ) ) ) ).
% finite_Sup_in
thf(fact_5831_sum_OUnion__comp,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B3: set @ ( set @ B ),G: B > A] :
( ! [X5: set @ B] :
( ( member @ ( set @ B ) @ X5 @ B3 )
=> ( finite_finite @ B @ X5 ) )
=> ( ! [A13: set @ B] :
( ( member @ ( set @ B ) @ A13 @ B3 )
=> ! [A24: set @ B] :
( ( member @ ( set @ B ) @ A24 @ B3 )
=> ( ( A13 != A24 )
=> ! [X5: B] :
( ( member @ B @ X5 @ A13 )
=> ( ( member @ B @ X5 @ A24 )
=> ( ( G @ X5 )
= ( zero_zero @ A ) ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( complete_Sup_Sup @ ( set @ B ) @ B3 ) )
= ( comp @ ( ( set @ B ) > A ) @ ( ( set @ ( set @ B ) ) > A ) @ ( B > A ) @ ( groups7311177749621191930dd_sum @ ( set @ B ) @ A ) @ ( groups7311177749621191930dd_sum @ B @ A ) @ G @ B3 ) ) ) ) ) ).
% sum.Union_comp
thf(fact_5832_Union__image__empty,axiom,
! [B: $tType,A: $tType,A3: set @ A,F2: B > ( set @ A )] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ F2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= A3 ) ).
% Union_image_empty
thf(fact_5833_UN__le__add__shift__strict,axiom,
! [A: $tType,M7: nat > ( set @ A ),K: nat,N: nat] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [I: nat] : ( M7 @ ( plus_plus @ nat @ I @ K ) )
@ ( set_ord_lessThan @ nat @ N ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ N @ K ) ) ) ) ) ).
% UN_le_add_shift_strict
thf(fact_5834_UN__le__add__shift,axiom,
! [A: $tType,M7: nat > ( set @ A ),K: nat,N: nat] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [I: nat] : ( M7 @ ( plus_plus @ nat @ I @ K ) )
@ ( set_ord_atMost @ nat @ N ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or1337092689740270186AtMost @ nat @ K @ ( plus_plus @ nat @ N @ K ) ) ) ) ) ).
% UN_le_add_shift
thf(fact_5835_nth__take__lemma,axiom,
! [A: $tType,K: nat,Xs2: list @ A,Ys2: list @ A] :
( ( ord_less_eq @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ K @ ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ K )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( nth @ A @ Ys2 @ I2 ) ) )
=> ( ( take @ A @ K @ Xs2 )
= ( take @ A @ K @ Ys2 ) ) ) ) ) ).
% nth_take_lemma
thf(fact_5836_cSup__asclose,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,L: A,E2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X5 @ L ) ) @ E2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( complete_Sup_Sup @ A @ S3 ) @ L ) ) @ E2 ) ) ) ) ).
% cSup_asclose
thf(fact_5837_Sup__insert__finite,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [S3: set @ A,X: A] :
( ( finite_finite @ A @ S3 )
=> ( ( ( S3
= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ ( insert @ A @ X @ S3 ) )
= X ) )
& ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ ( insert @ A @ X @ S3 ) )
= ( ord_max @ A @ X @ ( complete_Sup_Sup @ A @ S3 ) ) ) ) ) ) ) ).
% Sup_insert_finite
thf(fact_5838_sum_OUnion__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [C4: set @ ( set @ B ),G: B > A] :
( ! [X5: set @ B] :
( ( member @ ( set @ B ) @ X5 @ C4 )
=> ( finite_finite @ B @ X5 ) )
=> ( ! [X5: set @ B] :
( ( member @ ( set @ B ) @ X5 @ C4 )
=> ! [Xa3: set @ B] :
( ( member @ ( set @ B ) @ Xa3 @ C4 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ B ) @ X5 @ Xa3 )
= ( bot_bot @ ( set @ B ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( complete_Sup_Sup @ ( set @ B ) @ C4 ) )
= ( comp @ ( ( set @ B ) > A ) @ ( ( set @ ( set @ B ) ) > A ) @ ( B > A ) @ ( groups7311177749621191930dd_sum @ ( set @ B ) @ A ) @ ( groups7311177749621191930dd_sum @ B @ A ) @ G @ C4 ) ) ) ) ) ).
% sum.Union_disjoint
thf(fact_5839_prod_OUnion__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [C4: set @ ( set @ B ),G: B > A] :
( ! [X5: set @ B] :
( ( member @ ( set @ B ) @ X5 @ C4 )
=> ( finite_finite @ B @ X5 ) )
=> ( ! [X5: set @ B] :
( ( member @ ( set @ B ) @ X5 @ C4 )
=> ! [Xa3: set @ B] :
( ( member @ ( set @ B ) @ Xa3 @ C4 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ B ) @ X5 @ Xa3 )
= ( bot_bot @ ( set @ B ) ) ) ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( complete_Sup_Sup @ ( set @ B ) @ C4 ) )
= ( comp @ ( ( set @ B ) > A ) @ ( ( set @ ( set @ B ) ) > A ) @ ( B > A ) @ ( groups7121269368397514597t_prod @ ( set @ B ) @ A ) @ ( groups7121269368397514597t_prod @ B @ A ) @ G @ C4 ) ) ) ) ) ).
% prod.Union_disjoint
thf(fact_5840_card__partition,axiom,
! [A: $tType,C4: set @ ( set @ A ),K: nat] :
( ( finite_finite @ ( set @ A ) @ C4 )
=> ( ( finite_finite @ A @ ( complete_Sup_Sup @ ( set @ A ) @ C4 ) )
=> ( ! [C3: set @ A] :
( ( member @ ( set @ A ) @ C3 @ C4 )
=> ( ( finite_card @ A @ C3 )
= K ) )
=> ( ! [C1: set @ A,C22: set @ A] :
( ( member @ ( set @ A ) @ C1 @ C4 )
=> ( ( member @ ( set @ A ) @ C22 @ C4 )
=> ( ( C1 != C22 )
=> ( ( inf_inf @ ( set @ A ) @ C1 @ C22 )
= ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( ( times_times @ nat @ K @ ( finite_card @ ( set @ A ) @ C4 ) )
= ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ C4 ) ) ) ) ) ) ) ).
% card_partition
thf(fact_5841_dvd__partition,axiom,
! [A: $tType,C4: set @ ( set @ A ),K: nat] :
( ( finite_finite @ A @ ( complete_Sup_Sup @ ( set @ A ) @ C4 ) )
=> ( ! [X5: set @ A] :
( ( member @ ( set @ A ) @ X5 @ C4 )
=> ( dvd_dvd @ nat @ K @ ( finite_card @ A @ X5 ) ) )
=> ( ! [X5: set @ A] :
( ( member @ ( set @ A ) @ X5 @ C4 )
=> ! [Xa3: set @ A] :
( ( member @ ( set @ A ) @ Xa3 @ C4 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ A ) @ X5 @ Xa3 )
= ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( dvd_dvd @ nat @ K @ ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ C4 ) ) ) ) ) ) ).
% dvd_partition
thf(fact_5842_sum_OUNION__disjoint,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I6: set @ B,A3: B > ( set @ C ),G: C > A] :
( ( finite_finite @ B @ I6 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ I6 )
=> ( finite_finite @ C @ ( A3 @ X5 ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ I6 )
=> ! [Xa3: B] :
( ( member @ B @ Xa3 @ I6 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ C ) @ ( A3 @ X5 ) @ ( A3 @ Xa3 ) )
= ( bot_bot @ ( set @ C ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ C @ A @ G @ ( complete_Sup_Sup @ ( set @ C ) @ ( image @ B @ ( set @ C ) @ A3 @ I6 ) ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X6: B] : ( groups7311177749621191930dd_sum @ C @ A @ G @ ( A3 @ X6 ) )
@ I6 ) ) ) ) ) ) ).
% sum.UNION_disjoint
thf(fact_5843_prod_OUNION__disjoint,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I6: set @ B,A3: B > ( set @ C ),G: C > A] :
( ( finite_finite @ B @ I6 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ I6 )
=> ( finite_finite @ C @ ( A3 @ X5 ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ I6 )
=> ! [Xa3: B] :
( ( member @ B @ Xa3 @ I6 )
=> ( ( X5 != Xa3 )
=> ( ( inf_inf @ ( set @ C ) @ ( A3 @ X5 ) @ ( A3 @ Xa3 ) )
= ( bot_bot @ ( set @ C ) ) ) ) ) )
=> ( ( groups7121269368397514597t_prod @ C @ A @ G @ ( complete_Sup_Sup @ ( set @ C ) @ ( image @ B @ ( set @ C ) @ A3 @ I6 ) ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [X6: B] : ( groups7121269368397514597t_prod @ C @ A @ G @ ( A3 @ X6 ) )
@ I6 ) ) ) ) ) ) ).
% prod.UNION_disjoint
thf(fact_5844_UN__le__eq__Un0,axiom,
! [A: $tType,M7: nat > ( set @ A ),N: nat] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_ord_atMost @ nat @ N ) ) )
= ( sup_sup @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N ) ) ) @ ( M7 @ ( zero_zero @ nat ) ) ) ) ).
% UN_le_eq_Un0
thf(fact_5845_take__bit__horner__sum__bit__eq,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,Bs: list @ $o] :
( ( bit_se2584673776208193580ke_bit @ A @ N @ ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Bs ) )
= ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( take @ $o @ N @ Bs ) ) ) ) ).
% take_bit_horner_sum_bit_eq
thf(fact_5846_UN__simps_I2_J,axiom,
! [C: $tType,D: $tType,C4: set @ C,A3: C > ( set @ D ),B3: set @ D] :
( ( ( C4
= ( bot_bot @ ( set @ C ) ) )
=> ( ( complete_Sup_Sup @ ( set @ D )
@ ( image @ C @ ( set @ D )
@ ^ [X6: C] : ( sup_sup @ ( set @ D ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( bot_bot @ ( set @ D ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ C ) ) )
=> ( ( complete_Sup_Sup @ ( set @ D )
@ ( image @ C @ ( set @ D )
@ ^ [X6: C] : ( sup_sup @ ( set @ D ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( sup_sup @ ( set @ D ) @ ( complete_Sup_Sup @ ( set @ D ) @ ( image @ C @ ( set @ D ) @ A3 @ C4 ) ) @ B3 ) ) ) ) ).
% UN_simps(2)
thf(fact_5847_UN__simps_I3_J,axiom,
! [E4: $tType,F: $tType,C4: set @ F,A3: set @ E4,B3: F > ( set @ E4 )] :
( ( ( C4
= ( bot_bot @ ( set @ F ) ) )
=> ( ( complete_Sup_Sup @ ( set @ E4 )
@ ( image @ F @ ( set @ E4 )
@ ^ [X6: F] : ( sup_sup @ ( set @ E4 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( bot_bot @ ( set @ E4 ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ F ) ) )
=> ( ( complete_Sup_Sup @ ( set @ E4 )
@ ( image @ F @ ( set @ E4 )
@ ^ [X6: F] : ( sup_sup @ ( set @ E4 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( sup_sup @ ( set @ E4 ) @ A3 @ ( complete_Sup_Sup @ ( set @ E4 ) @ ( image @ F @ ( set @ E4 ) @ B3 @ C4 ) ) ) ) ) ) ).
% UN_simps(3)
thf(fact_5848_UN__simps_I1_J,axiom,
! [A: $tType,B: $tType,C4: set @ B,A2: A,B3: B > ( set @ A )] :
( ( ( C4
= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( insert @ A @ A2 @ ( B3 @ X6 ) )
@ C4 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( insert @ A @ A2 @ ( B3 @ X6 ) )
@ C4 ) )
= ( insert @ A @ A2 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ C4 ) ) ) ) ) ) ).
% UN_simps(1)
thf(fact_5849_Sup__bot__conv_I1_J,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( ( complete_Sup_Sup @ A @ A3 )
= ( bot_bot @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( X6
= ( bot_bot @ A ) ) ) ) ) ) ).
% Sup_bot_conv(1)
thf(fact_5850_Sup__bot__conv_I2_J,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( ( bot_bot @ A )
= ( complete_Sup_Sup @ A @ A3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( X6
= ( bot_bot @ A ) ) ) ) ) ) ).
% Sup_bot_conv(2)
thf(fact_5851_Sup__nat__empty,axiom,
( ( complete_Sup_Sup @ nat @ ( bot_bot @ ( set @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% Sup_nat_empty
thf(fact_5852_Sup__empty,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_Sup_Sup @ A @ ( bot_bot @ ( set @ A ) ) )
= ( bot_bot @ A ) ) ) ).
% Sup_empty
thf(fact_5853_SUP__bot,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B] :
( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [X6: B] : ( bot_bot @ A )
@ A3 ) )
= ( bot_bot @ A ) ) ) ).
% SUP_bot
thf(fact_5854_SUP__bot__conv_I1_J,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B3: B > A,A3: set @ B] :
( ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ B3 @ A3 ) )
= ( bot_bot @ A ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ( B3 @ X6 )
= ( bot_bot @ A ) ) ) ) ) ) ).
% SUP_bot_conv(1)
thf(fact_5855_SUP__bot__conv_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B3: B > A,A3: set @ B] :
( ( ( bot_bot @ A )
= ( complete_Sup_Sup @ A @ ( image @ B @ A @ B3 @ A3 ) ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ( B3 @ X6 )
= ( bot_bot @ A ) ) ) ) ) ) ).
% SUP_bot_conv(2)
thf(fact_5856_SUP__const,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,F2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [I: B] : F2
@ A3 ) )
= F2 ) ) ) ).
% SUP_const
thf(fact_5857_UN__constant,axiom,
! [B: $tType,A: $tType,A3: set @ B,C2: set @ A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [Y6: B] : C2
@ A3 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [Y6: B] : C2
@ A3 ) )
= C2 ) ) ) ).
% UN_constant
thf(fact_5858_UN__singleton,axiom,
! [A: $tType,A3: set @ A] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ A @ ( set @ A )
@ ^ [X6: A] : ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) )
@ A3 ) )
= A3 ) ).
% UN_singleton
thf(fact_5859_less__Sup__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A2: A,S3: set @ A] :
( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ S3 ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ S3 )
& ( ord_less @ A @ A2 @ X6 ) ) ) ) ) ).
% less_Sup_iff
thf(fact_5860_empty__Union__conv,axiom,
! [A: $tType,A3: set @ ( set @ A )] :
( ( ( bot_bot @ ( set @ A ) )
= ( complete_Sup_Sup @ ( set @ A ) @ A3 ) )
= ( ! [X6: set @ A] :
( ( member @ ( set @ A ) @ X6 @ A3 )
=> ( X6
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% empty_Union_conv
thf(fact_5861_Union__empty__conv,axiom,
! [A: $tType,A3: set @ ( set @ A )] :
( ( ( complete_Sup_Sup @ ( set @ A ) @ A3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: set @ A] :
( ( member @ ( set @ A ) @ X6 @ A3 )
=> ( X6
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Union_empty_conv
thf(fact_5862_Union__empty,axiom,
! [A: $tType] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Union_empty
thf(fact_5863_le__Sup__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [X: A,A3: set @ A] :
( ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ A3 ) )
= ( ! [Y6: A] :
( ( ord_less @ A @ Y6 @ X )
=> ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less @ A @ Y6 @ X6 ) ) ) ) ) ) ).
% le_Sup_iff
thf(fact_5864_less__eq__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A,U: A] :
( ! [V3: A] :
( ( member @ A @ V3 @ A3 )
=> ( ord_less_eq @ A @ U @ V3 ) )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ U @ ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ).
% less_eq_Sup
thf(fact_5865_SUP__eq__const,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,F2: B > A,X: A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ( F2 @ I2 )
= X ) )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ I6 ) )
= X ) ) ) ) ).
% SUP_eq_const
thf(fact_5866_Union__disjoint,axiom,
! [A: $tType,C4: set @ ( set @ A ),A3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ C4 ) @ A3 )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: set @ A] :
( ( member @ ( set @ A ) @ X6 @ C4 )
=> ( ( inf_inf @ ( set @ A ) @ X6 @ A3 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Union_disjoint
thf(fact_5867_less__SUP__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A2: A,F2: B > A,A3: set @ B] :
( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ A2 @ ( F2 @ X6 ) ) ) ) ) ) ).
% less_SUP_iff
thf(fact_5868_SUP__lessD,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,A3: set @ B,Y: A,I3: B] :
( ( ord_less @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ Y )
=> ( ( member @ B @ I3 @ A3 )
=> ( ord_less @ A @ ( F2 @ I3 ) @ Y ) ) ) ) ).
% SUP_lessD
thf(fact_5869_UN__empty2,axiom,
! [B: $tType,A: $tType,A3: set @ B] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( bot_bot @ ( set @ A ) )
@ A3 ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% UN_empty2
thf(fact_5870_UN__empty,axiom,
! [B: $tType,A: $tType,B3: B > ( set @ A )] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ ( bot_bot @ ( set @ B ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% UN_empty
thf(fact_5871_UNION__empty__conv_I1_J,axiom,
! [A: $tType,B: $tType,B3: B > ( set @ A ),A3: set @ B] :
( ( ( bot_bot @ ( set @ A ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ A3 ) ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ( B3 @ X6 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% UNION_empty_conv(1)
thf(fact_5872_UNION__empty__conv_I2_J,axiom,
! [A: $tType,B: $tType,B3: B > ( set @ A ),A3: set @ B] :
( ( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ A3 ) )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ( B3 @ X6 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% UNION_empty_conv(2)
thf(fact_5873_le__SUP__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [X: A,F2: B > A,A3: set @ B] :
( ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
= ( ! [Y6: A] :
( ( ord_less @ A @ Y6 @ X )
=> ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ Y6 @ ( F2 @ X6 ) ) ) ) ) ) ) ).
% le_SUP_iff
thf(fact_5874_SUP__eq__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,C2: A,F2: B > A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ord_less_eq @ A @ C2 @ ( F2 @ I2 ) ) )
=> ( ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ I6 ) )
= C2 )
= ( ! [X6: B] :
( ( member @ B @ X6 @ I6 )
=> ( ( F2 @ X6 )
= C2 ) ) ) ) ) ) ) ).
% SUP_eq_iff
thf(fact_5875_SUP__constant,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,C2: A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [Y6: B] : C2
@ A3 ) )
= ( bot_bot @ A ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [Y6: B] : C2
@ A3 ) )
= C2 ) ) ) ) ).
% SUP_constant
thf(fact_5876_SUP__empty,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A] :
( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ ( bot_bot @ ( set @ B ) ) ) )
= ( bot_bot @ A ) ) ) ).
% SUP_empty
thf(fact_5877_UN__extend__simps_I1_J,axiom,
! [A: $tType,B: $tType,C4: set @ B,A2: A,B3: B > ( set @ A )] :
( ( ( C4
= ( bot_bot @ ( set @ B ) ) )
=> ( ( insert @ A @ A2 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ C4 ) ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( insert @ A @ A2 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ C4 ) ) )
= ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( insert @ A @ A2 @ ( B3 @ X6 ) )
@ C4 ) ) ) ) ) ).
% UN_extend_simps(1)
thf(fact_5878_UN__extend__simps_I3_J,axiom,
! [E4: $tType,F: $tType,C4: set @ F,A3: set @ E4,B3: F > ( set @ E4 )] :
( ( ( C4
= ( bot_bot @ ( set @ F ) ) )
=> ( ( sup_sup @ ( set @ E4 ) @ A3 @ ( complete_Sup_Sup @ ( set @ E4 ) @ ( image @ F @ ( set @ E4 ) @ B3 @ C4 ) ) )
= A3 ) )
& ( ( C4
!= ( bot_bot @ ( set @ F ) ) )
=> ( ( sup_sup @ ( set @ E4 ) @ A3 @ ( complete_Sup_Sup @ ( set @ E4 ) @ ( image @ F @ ( set @ E4 ) @ B3 @ C4 ) ) )
= ( complete_Sup_Sup @ ( set @ E4 )
@ ( image @ F @ ( set @ E4 )
@ ^ [X6: F] : ( sup_sup @ ( set @ E4 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) ) ) ) ) ).
% UN_extend_simps(3)
thf(fact_5879_UN__extend__simps_I2_J,axiom,
! [D: $tType,C: $tType,C4: set @ C,A3: C > ( set @ D ),B3: set @ D] :
( ( ( C4
= ( bot_bot @ ( set @ C ) ) )
=> ( ( sup_sup @ ( set @ D ) @ ( complete_Sup_Sup @ ( set @ D ) @ ( image @ C @ ( set @ D ) @ A3 @ C4 ) ) @ B3 )
= B3 ) )
& ( ( C4
!= ( bot_bot @ ( set @ C ) ) )
=> ( ( sup_sup @ ( set @ D ) @ ( complete_Sup_Sup @ ( set @ D ) @ ( image @ C @ ( set @ D ) @ A3 @ C4 ) ) @ B3 )
= ( complete_Sup_Sup @ ( set @ D )
@ ( image @ C @ ( set @ D )
@ ^ [X6: C] : ( sup_sup @ ( set @ D ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) ) ) ) ) ).
% UN_extend_simps(2)
thf(fact_5880_UNION__singleton__eq__range,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( insert @ A @ ( F2 @ X6 ) @ ( bot_bot @ ( set @ A ) ) )
@ A3 ) )
= ( image @ B @ A @ F2 @ A3 ) ) ).
% UNION_singleton_eq_range
thf(fact_5881_ccSUP__empty,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [F2: B > A] :
( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ ( bot_bot @ ( set @ B ) ) ) )
= ( bot_bot @ A ) ) ) ).
% ccSUP_empty
thf(fact_5882_ccSUP__const,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A3: set @ B,F2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [I: B] : F2
@ A3 ) )
= F2 ) ) ) ).
% ccSUP_const
thf(fact_5883_ccSUP__bot,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A3: set @ B] :
( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [X6: B] : ( bot_bot @ A )
@ A3 ) )
= ( bot_bot @ A ) ) ) ).
% ccSUP_bot
thf(fact_5884_ccSup__empty,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ( ( complete_Sup_Sup @ A @ ( bot_bot @ ( set @ A ) ) )
= ( bot_bot @ A ) ) ) ).
% ccSup_empty
thf(fact_5885_ccpo__Sup__singleton,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [X: A] :
( ( complete_Sup_Sup @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% ccpo_Sup_singleton
thf(fact_5886_SUP__nat__binary,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A3: A,B3: A] :
( ( sup_sup @ A @ A3
@ ( complete_Sup_Sup @ A
@ ( image @ nat @ A
@ ^ [X6: nat] : B3
@ ( collect @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) ) ) ) ) )
= ( sup_sup @ A @ A3 @ B3 ) ) ) ).
% SUP_nat_binary
thf(fact_5887_card__UNION,axiom,
! [A: $tType,A3: set @ ( set @ A )] :
( ( finite_finite @ ( set @ A ) @ A3 )
=> ( ! [X5: set @ A] :
( ( member @ ( set @ A ) @ X5 @ A3 )
=> ( finite_finite @ A @ X5 ) )
=> ( ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ A3 ) )
= ( nat2
@ ( groups7311177749621191930dd_sum @ ( set @ ( set @ A ) ) @ int
@ ^ [I8: set @ ( set @ A )] : ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( plus_plus @ nat @ ( finite_card @ ( set @ A ) @ I8 ) @ ( one_one @ nat ) ) ) @ ( semiring_1_of_nat @ int @ ( finite_card @ A @ ( complete_Inf_Inf @ ( set @ A ) @ I8 ) ) ) )
@ ( collect @ ( set @ ( set @ A ) )
@ ^ [I8: set @ ( set @ A )] :
( ( ord_less_eq @ ( set @ ( set @ A ) ) @ I8 @ A3 )
& ( I8
!= ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% card_UNION
thf(fact_5888_Inf__eq__bot__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A3: set @ A] :
( ( ( complete_Inf_Inf @ A @ A3 )
= ( bot_bot @ A ) )
= ( ! [X6: A] :
( ( ord_less @ A @ ( bot_bot @ A ) @ X6 )
=> ? [Y6: A] :
( ( member @ A @ Y6 @ A3 )
& ( ord_less @ A @ Y6 @ X6 ) ) ) ) ) ) ).
% Inf_eq_bot_iff
thf(fact_5889_cInf__singleton,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A] :
( ( complete_Inf_Inf @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% cInf_singleton
thf(fact_5890_cInf__atLeastLessThan,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or7035219750837199246ssThan @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_atLeastLessThan
thf(fact_5891_Inf__atLeastLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or7035219750837199246ssThan @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_atLeastLessThan
thf(fact_5892_Inf__atMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( complete_Inf_Inf @ A @ ( set_ord_atMost @ A @ X ) )
= ( bot_bot @ A ) ) ) ).
% Inf_atMost
thf(fact_5893_INF__const,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,F2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [I: B] : F2
@ A3 ) )
= F2 ) ) ) ).
% INF_const
thf(fact_5894_cINF__const,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,C2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [X6: B] : C2
@ A3 ) )
= C2 ) ) ) ).
% cINF_const
thf(fact_5895_ccINF__const,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A3: set @ B,F2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [I: B] : F2
@ A3 ) )
= F2 ) ) ) ).
% ccINF_const
thf(fact_5896_INF__eq__bot__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A3: set @ B] :
( ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) )
= ( bot_bot @ A ) )
= ( ! [X6: A] :
( ( ord_less @ A @ ( bot_bot @ A ) @ X6 )
=> ? [Y6: B] :
( ( member @ B @ Y6 @ A3 )
& ( ord_less @ A @ ( F2 @ Y6 ) @ X6 ) ) ) ) ) ) ).
% INF_eq_bot_iff
thf(fact_5897_INF__eq__const,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,F2: B > A,X: A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ( F2 @ I2 )
= X ) )
=> ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ I6 ) )
= X ) ) ) ) ).
% INF_eq_const
thf(fact_5898_Inf__less__eq,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A,U: A] :
( ! [V3: A] :
( ( member @ A @ V3 @ A3 )
=> ( ord_less_eq @ A @ V3 @ U ) )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A3 ) @ U ) ) ) ) ).
% Inf_less_eq
thf(fact_5899_cInf__greatest,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,Z2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less_eq @ A @ Z2 @ X5 ) )
=> ( ord_less_eq @ A @ Z2 @ ( complete_Inf_Inf @ A @ X9 ) ) ) ) ) ).
% cInf_greatest
thf(fact_5900_cInf__eq__non__empty,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less_eq @ A @ A2 @ X5 ) )
=> ( ! [Y5: A] :
( ! [X3: A] :
( ( member @ A @ X3 @ X9 )
=> ( ord_less_eq @ A @ Y5 @ X3 ) )
=> ( ord_less_eq @ A @ Y5 @ A2 ) )
=> ( ( complete_Inf_Inf @ A @ X9 )
= A2 ) ) ) ) ) ).
% cInf_eq_non_empty
thf(fact_5901_cInf__lessD,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,Z2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ X9 ) @ Z2 )
=> ? [X5: A] :
( ( member @ A @ X5 @ X9 )
& ( ord_less @ A @ X5 @ Z2 ) ) ) ) ) ).
% cInf_lessD
thf(fact_5902_Inf__less__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [S3: set @ A,A2: A] :
( ( ord_less @ A @ ( complete_Inf_Inf @ A @ S3 ) @ A2 )
= ( ? [X6: A] :
( ( member @ A @ X6 @ S3 )
& ( ord_less @ A @ X6 @ A2 ) ) ) ) ) ).
% Inf_less_iff
thf(fact_5903_Inf__le__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A3: set @ A,X: A] :
( ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A3 ) @ X )
= ( ! [Y6: A] :
( ( ord_less @ A @ X @ Y6 )
=> ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less @ A @ X6 @ Y6 ) ) ) ) ) ) ).
% Inf_le_iff
thf(fact_5904_finite__imp__less__Inf,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,X: A,A2: A] :
( ( finite_finite @ A @ X9 )
=> ( ( member @ A @ X @ X9 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ( ord_less @ A @ A2 @ X5 ) )
=> ( ord_less @ A @ A2 @ ( complete_Inf_Inf @ A @ X9 ) ) ) ) ) ) ).
% finite_imp_less_Inf
thf(fact_5905_Inter__subset,axiom,
! [A: $tType,A3: set @ ( set @ A ),B3: set @ A] :
( ! [X10: set @ A] :
( ( member @ ( set @ A ) @ X10 @ A3 )
=> ( ord_less_eq @ ( set @ A ) @ X10 @ B3 ) )
=> ( ( A3
!= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ord_less_eq @ ( set @ A ) @ ( complete_Inf_Inf @ ( set @ A ) @ A3 ) @ B3 ) ) ) ).
% Inter_subset
thf(fact_5906_less__INF__D,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [Y: A,F2: B > A,A3: set @ B,I3: B] :
( ( ord_less @ A @ Y @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
=> ( ( member @ B @ I3 @ A3 )
=> ( ord_less @ A @ Y @ ( F2 @ I3 ) ) ) ) ) ).
% less_INF_D
thf(fact_5907_INF__less__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A3: set @ B,A2: A] :
( ( ord_less @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ A2 )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ ( F2 @ X6 ) @ A2 ) ) ) ) ) ).
% INF_less_iff
thf(fact_5908_INF__le__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A3: set @ B,X: A] :
( ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ X )
= ( ! [Y6: A] :
( ( ord_less @ A @ X @ Y6 )
=> ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ ( F2 @ X6 ) @ Y6 ) ) ) ) ) ) ).
% INF_le_iff
thf(fact_5909_INF__eq__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,F2: B > A,C2: A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ C2 ) )
=> ( ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ I6 ) )
= C2 )
= ( ! [X6: B] :
( ( member @ B @ X6 @ I6 )
=> ( ( F2 @ X6 )
= C2 ) ) ) ) ) ) ) ).
% INF_eq_iff
thf(fact_5910_cINF__greatest,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,M: A,F2: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ M @ ( F2 @ X5 ) ) )
=> ( ord_less_eq @ A @ M @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ) ) ).
% cINF_greatest
thf(fact_5911_finite__less__Inf__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,A2: A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ A2 @ ( complete_Inf_Inf @ A @ X9 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ X9 )
=> ( ord_less @ A @ A2 @ X6 ) ) ) ) ) ) ) ).
% finite_less_Inf_iff
thf(fact_5912_Inf__le__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A3 ) @ ( complete_Sup_Sup @ A @ A3 ) ) ) ) ).
% Inf_le_Sup
thf(fact_5913_cInf__abs__ge,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X5 ) @ A2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( complete_Inf_Inf @ A @ S3 ) ) @ A2 ) ) ) ) ).
% cInf_abs_ge
thf(fact_5914_finite__Inf__in,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ( member @ A @ Y5 @ A3 )
=> ( member @ A @ ( inf_inf @ A @ X5 @ Y5 ) @ A3 ) ) )
=> ( member @ A @ ( complete_Inf_Inf @ A @ A3 ) @ A3 ) ) ) ) ) ).
% finite_Inf_in
thf(fact_5915_INF__nat__binary,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A3: A,B3: A] :
( ( inf_inf @ A @ A3
@ ( complete_Inf_Inf @ A
@ ( image @ nat @ A
@ ^ [X6: nat] : B3
@ ( collect @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) ) ) ) ) )
= ( inf_inf @ A @ A3 @ B3 ) ) ) ).
% INF_nat_binary
thf(fact_5916_INF__inf__const2,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,F2: B > A,X: A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [I: B] : ( inf_inf @ A @ ( F2 @ I ) @ X )
@ I6 ) )
= ( inf_inf @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ I6 ) ) @ X ) ) ) ) ).
% INF_inf_const2
thf(fact_5917_INF__inf__const1,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I6: set @ B,X: A,F2: B > A] :
( ( I6
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [I: B] : ( inf_inf @ A @ X @ ( F2 @ I ) )
@ I6 ) )
= ( inf_inf @ A @ X @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ I6 ) ) ) ) ) ) ).
% INF_inf_const1
thf(fact_5918_INT__extend__simps_I2_J,axiom,
! [C: $tType,D: $tType,C4: set @ D,A3: set @ C,B3: D > ( set @ C )] :
( ( ( C4
= ( bot_bot @ ( set @ D ) ) )
=> ( ( inf_inf @ ( set @ C ) @ A3 @ ( complete_Inf_Inf @ ( set @ C ) @ ( image @ D @ ( set @ C ) @ B3 @ C4 ) ) )
= A3 ) )
& ( ( C4
!= ( bot_bot @ ( set @ D ) ) )
=> ( ( inf_inf @ ( set @ C ) @ A3 @ ( complete_Inf_Inf @ ( set @ C ) @ ( image @ D @ ( set @ C ) @ B3 @ C4 ) ) )
= ( complete_Inf_Inf @ ( set @ C )
@ ( image @ D @ ( set @ C )
@ ^ [X6: D] : ( inf_inf @ ( set @ C ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) ) ) ) ) ).
% INT_extend_simps(2)
thf(fact_5919_INT__extend__simps_I1_J,axiom,
! [B: $tType,A: $tType,C4: set @ A,A3: A > ( set @ B ),B3: set @ B] :
( ( ( C4
= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ ( set @ B ) @ ( complete_Inf_Inf @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A3 @ C4 ) ) @ B3 )
= B3 ) )
& ( ( C4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ ( set @ B ) @ ( complete_Inf_Inf @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A3 @ C4 ) ) @ B3 )
= ( complete_Inf_Inf @ ( set @ B )
@ ( image @ A @ ( set @ B )
@ ^ [X6: A] : ( inf_inf @ ( set @ B ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) ) ) ) ) ).
% INT_extend_simps(1)
thf(fact_5920_Int__Inter__eq_I1_J,axiom,
! [A: $tType,B11: set @ ( set @ A ),A3: set @ A] :
( ( ( B11
= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( complete_Inf_Inf @ ( set @ A ) @ B11 ) )
= A3 ) )
& ( ( B11
!= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ( inf_inf @ ( set @ A ) @ A3 @ ( complete_Inf_Inf @ ( set @ A ) @ B11 ) )
= ( complete_Inf_Inf @ ( set @ A ) @ ( image @ ( set @ A ) @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 ) @ B11 ) ) ) ) ) ).
% Int_Inter_eq(1)
thf(fact_5921_Int__Inter__eq_I2_J,axiom,
! [A: $tType,B11: set @ ( set @ A ),A3: set @ A] :
( ( ( B11
= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ( inf_inf @ ( set @ A ) @ ( complete_Inf_Inf @ ( set @ A ) @ B11 ) @ A3 )
= A3 ) )
& ( ( B11
!= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ( inf_inf @ ( set @ A ) @ ( complete_Inf_Inf @ ( set @ A ) @ B11 ) @ A3 )
= ( complete_Inf_Inf @ ( set @ A )
@ ( image @ ( set @ A ) @ ( set @ A )
@ ^ [B8: set @ A] : ( inf_inf @ ( set @ A ) @ B8 @ A3 )
@ B11 ) ) ) ) ) ).
% Int_Inter_eq(2)
thf(fact_5922_INF__le__SUP,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ) ).
% INF_le_SUP
thf(fact_5923_cInf__asclose,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,L: A,E2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X5 @ L ) ) @ E2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( complete_Inf_Inf @ A @ S3 ) @ L ) ) @ E2 ) ) ) ) ).
% cInf_asclose
thf(fact_5924_INT__extend__simps_I4_J,axiom,
! [G3: $tType,H4: $tType,C4: set @ H4,A3: set @ G3,B3: H4 > ( set @ G3 )] :
( ( ( C4
= ( bot_bot @ ( set @ H4 ) ) )
=> ( ( minus_minus @ ( set @ G3 ) @ A3 @ ( complete_Sup_Sup @ ( set @ G3 ) @ ( image @ H4 @ ( set @ G3 ) @ B3 @ C4 ) ) )
= A3 ) )
& ( ( C4
!= ( bot_bot @ ( set @ H4 ) ) )
=> ( ( minus_minus @ ( set @ G3 ) @ A3 @ ( complete_Sup_Sup @ ( set @ G3 ) @ ( image @ H4 @ ( set @ G3 ) @ B3 @ C4 ) ) )
= ( complete_Inf_Inf @ ( set @ G3 )
@ ( image @ H4 @ ( set @ G3 )
@ ^ [X6: H4] : ( minus_minus @ ( set @ G3 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) ) ) ) ) ).
% INT_extend_simps(4)
thf(fact_5925_length__remdups__concat,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( size_size @ ( list @ A ) @ ( remdups @ A @ ( concat @ A @ Xss ) ) )
= ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ Xss ) ) ) ) ) ).
% length_remdups_concat
thf(fact_5926_finite__mono__strict__prefix__implies__finite__fixpoint,axiom,
! [A: $tType,F2: nat > ( set @ A ),S3: set @ A] :
( ! [I2: nat] : ( ord_less_eq @ ( set @ A ) @ ( F2 @ I2 ) @ S3 )
=> ( ( finite_finite @ A @ S3 )
=> ( ? [N10: nat] :
( ! [N2: nat] :
( ( ord_less_eq @ nat @ N2 @ N10 )
=> ! [M3: nat] :
( ( ord_less_eq @ nat @ M3 @ N10 )
=> ( ( ord_less @ nat @ M3 @ N2 )
=> ( ord_less @ ( set @ A ) @ ( F2 @ M3 ) @ ( F2 @ N2 ) ) ) ) )
& ! [N2: nat] :
( ( ord_less_eq @ nat @ N10 @ N2 )
=> ( ( F2 @ N10 )
= ( F2 @ N2 ) ) ) )
=> ( ( F2 @ ( finite_card @ A @ S3 ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ F2 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ) ).
% finite_mono_strict_prefix_implies_finite_fixpoint
thf(fact_5927_card__Pow,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite_card @ ( set @ A ) @ ( pow2 @ A @ A3 ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( finite_card @ A @ A3 ) ) ) ) ).
% card_Pow
thf(fact_5928_UNIV__I,axiom,
! [A: $tType,X: A] : ( member @ A @ X @ ( top_top @ ( set @ A ) ) ) ).
% UNIV_I
thf(fact_5929_Int__UNIV,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( top_top @ ( set @ A ) ) )
= ( ( A3
= ( top_top @ ( set @ A ) ) )
& ( B3
= ( top_top @ ( set @ A ) ) ) ) ) ).
% Int_UNIV
thf(fact_5930_Pow__UNIV,axiom,
! [A: $tType] :
( ( pow2 @ A @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ ( set @ A ) ) ) ) ).
% Pow_UNIV
thf(fact_5931_Pow__iff,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( member @ ( set @ A ) @ A3 @ ( pow2 @ A @ B3 ) )
= ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% Pow_iff
thf(fact_5932_PowI,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( member @ ( set @ A ) @ A3 @ ( pow2 @ A @ B3 ) ) ) ).
% PowI
thf(fact_5933_Pow__Int__eq,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( pow2 @ A @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ ( set @ ( set @ A ) ) @ ( pow2 @ A @ A3 ) @ ( pow2 @ A @ B3 ) ) ) ).
% Pow_Int_eq
thf(fact_5934_remdups__eq__nil__right__iff,axiom,
! [A: $tType,X: list @ A] :
( ( ( nil @ A )
= ( remdups @ A @ X ) )
= ( X
= ( nil @ A ) ) ) ).
% remdups_eq_nil_right_iff
thf(fact_5935_remdups__eq__nil__iff,axiom,
! [A: $tType,X: list @ A] :
( ( ( remdups @ A @ X )
= ( nil @ A ) )
= ( X
= ( nil @ A ) ) ) ).
% remdups_eq_nil_iff
thf(fact_5936_set__remdups,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( remdups @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_remdups
thf(fact_5937_length__remdups__eq,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ ( remdups @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) )
= ( ( remdups @ A @ Xs2 )
= Xs2 ) ) ).
% length_remdups_eq
thf(fact_5938_remdups__id__iff__distinct,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( remdups @ A @ Xs2 )
= Xs2 )
= ( distinct @ A @ Xs2 ) ) ).
% remdups_id_iff_distinct
thf(fact_5939_distinct__remdups,axiom,
! [A: $tType,Xs2: list @ A] : ( distinct @ A @ ( remdups @ A @ Xs2 ) ) ).
% distinct_remdups
thf(fact_5940_Collect__const,axiom,
! [A: $tType,P: $o] :
( ( P
=> ( ( collect @ A
@ ^ [S6: A] : P )
= ( top_top @ ( set @ A ) ) ) )
& ( ~ P
=> ( ( collect @ A
@ ^ [S6: A] : P )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Collect_const
thf(fact_5941_range__add,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% range_add
thf(fact_5942_surj__plus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% surj_plus
thf(fact_5943_Sup__eq__top__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A3: set @ A] :
( ( ( complete_Sup_Sup @ A @ A3 )
= ( top_top @ A ) )
= ( ! [X6: A] :
( ( ord_less @ A @ X6 @ ( top_top @ A ) )
=> ? [Y6: A] :
( ( member @ A @ Y6 @ A3 )
& ( ord_less @ A @ X6 @ Y6 ) ) ) ) ) ) ).
% Sup_eq_top_iff
thf(fact_5944_boolean__algebra_Ocompl__one,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ( ( uminus_uminus @ A @ ( top_top @ A ) )
= ( bot_bot @ A ) ) ) ).
% boolean_algebra.compl_one
thf(fact_5945_boolean__algebra_Ocompl__zero,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ( ( uminus_uminus @ A @ ( bot_bot @ A ) )
= ( top_top @ A ) ) ) ).
% boolean_algebra.compl_zero
thf(fact_5946_Inf__UNIV,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_Inf_Inf @ A @ ( top_top @ ( set @ A ) ) )
= ( bot_bot @ A ) ) ) ).
% Inf_UNIV
thf(fact_5947_ccInf__empty,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ( ( complete_Inf_Inf @ A @ ( bot_bot @ ( set @ A ) ) )
= ( top_top @ A ) ) ) ).
% ccInf_empty
thf(fact_5948_Inf__empty,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_Inf_Inf @ A @ ( bot_bot @ ( set @ A ) ) )
= ( top_top @ A ) ) ) ).
% Inf_empty
thf(fact_5949_Diff__UNIV,axiom,
! [A: $tType,A3: set @ A] :
( ( minus_minus @ ( set @ A ) @ A3 @ ( top_top @ ( set @ A ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Diff_UNIV
thf(fact_5950_surj__fn,axiom,
! [A: $tType,F2: A > A,N: nat] :
( ( ( image @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ( image @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% surj_fn
thf(fact_5951_length__remdups__leq,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( remdups @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_remdups_leq
thf(fact_5952_SUP__eq__top__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A3: set @ B] :
( ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) )
= ( top_top @ A ) )
= ( ! [X6: A] :
( ( ord_less @ A @ X6 @ ( top_top @ A ) )
=> ? [Y6: B] :
( ( member @ B @ Y6 @ A3 )
& ( ord_less @ A @ X6 @ ( F2 @ Y6 ) ) ) ) ) ) ) ).
% SUP_eq_top_iff
thf(fact_5953_range__constant,axiom,
! [B: $tType,A: $tType,X: A] :
( ( image @ B @ A
@ ^ [Uu3: B] : X
@ ( top_top @ ( set @ B ) ) )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ).
% range_constant
thf(fact_5954_ccINF__empty,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [F2: B > A] :
( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ ( bot_bot @ ( set @ B ) ) ) )
= ( top_top @ A ) ) ) ).
% ccINF_empty
thf(fact_5955_INT__constant,axiom,
! [B: $tType,A: $tType,A3: set @ B,C2: set @ A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [Y6: B] : C2
@ A3 ) )
= ( top_top @ ( set @ A ) ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [Y6: B] : C2
@ A3 ) )
= C2 ) ) ) ).
% INT_constant
thf(fact_5956_Pow__empty,axiom,
! [A: $tType] :
( ( pow2 @ A @ ( bot_bot @ ( set @ A ) ) )
= ( insert @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ).
% Pow_empty
thf(fact_5957_Pow__singleton__iff,axiom,
! [A: $tType,X9: set @ A,Y7: set @ A] :
( ( ( pow2 @ A @ X9 )
= ( insert @ ( set @ A ) @ Y7 @ ( bot_bot @ ( set @ ( set @ A ) ) ) ) )
= ( ( X9
= ( bot_bot @ ( set @ A ) ) )
& ( Y7
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Pow_singleton_iff
thf(fact_5958_Inf__atMostLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( top_top @ A ) @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_ord_lessThan @ A @ X ) )
= ( bot_bot @ A ) ) ) ) ).
% Inf_atMostLessThan
thf(fact_5959_INT__simps_I2_J,axiom,
! [C: $tType,D: $tType,C4: set @ D,A3: set @ C,B3: D > ( set @ C )] :
( ( ( C4
= ( bot_bot @ ( set @ D ) ) )
=> ( ( complete_Inf_Inf @ ( set @ C )
@ ( image @ D @ ( set @ C )
@ ^ [X6: D] : ( inf_inf @ ( set @ C ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( top_top @ ( set @ C ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ D ) ) )
=> ( ( complete_Inf_Inf @ ( set @ C )
@ ( image @ D @ ( set @ C )
@ ^ [X6: D] : ( inf_inf @ ( set @ C ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( inf_inf @ ( set @ C ) @ A3 @ ( complete_Inf_Inf @ ( set @ C ) @ ( image @ D @ ( set @ C ) @ B3 @ C4 ) ) ) ) ) ) ).
% INT_simps(2)
thf(fact_5960_INT__simps_I1_J,axiom,
! [A: $tType,B: $tType,C4: set @ A,A3: A > ( set @ B ),B3: set @ B] :
( ( ( C4
= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ ( set @ B )
@ ( image @ A @ ( set @ B )
@ ^ [X6: A] : ( inf_inf @ ( set @ B ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( top_top @ ( set @ B ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ ( set @ B )
@ ( image @ A @ ( set @ B )
@ ^ [X6: A] : ( inf_inf @ ( set @ B ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( inf_inf @ ( set @ B ) @ ( complete_Inf_Inf @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A3 @ C4 ) ) @ B3 ) ) ) ) ).
% INT_simps(1)
thf(fact_5961_INT__simps_I3_J,axiom,
! [E4: $tType,F: $tType,C4: set @ E4,A3: E4 > ( set @ F ),B3: set @ F] :
( ( ( C4
= ( bot_bot @ ( set @ E4 ) ) )
=> ( ( complete_Inf_Inf @ ( set @ F )
@ ( image @ E4 @ ( set @ F )
@ ^ [X6: E4] : ( minus_minus @ ( set @ F ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( top_top @ ( set @ F ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ E4 ) ) )
=> ( ( complete_Inf_Inf @ ( set @ F )
@ ( image @ E4 @ ( set @ F )
@ ^ [X6: E4] : ( minus_minus @ ( set @ F ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) )
= ( minus_minus @ ( set @ F ) @ ( complete_Inf_Inf @ ( set @ F ) @ ( image @ E4 @ ( set @ F ) @ A3 @ C4 ) ) @ B3 ) ) ) ) ).
% INT_simps(3)
thf(fact_5962_INT__simps_I4_J,axiom,
! [G3: $tType,H4: $tType,C4: set @ H4,A3: set @ G3,B3: H4 > ( set @ G3 )] :
( ( ( C4
= ( bot_bot @ ( set @ H4 ) ) )
=> ( ( complete_Inf_Inf @ ( set @ G3 )
@ ( image @ H4 @ ( set @ G3 )
@ ^ [X6: H4] : ( minus_minus @ ( set @ G3 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( top_top @ ( set @ G3 ) ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ H4 ) ) )
=> ( ( complete_Inf_Inf @ ( set @ G3 )
@ ( image @ H4 @ ( set @ G3 )
@ ^ [X6: H4] : ( minus_minus @ ( set @ G3 ) @ A3 @ ( B3 @ X6 ) )
@ C4 ) )
= ( minus_minus @ ( set @ G3 ) @ A3 @ ( complete_Sup_Sup @ ( set @ G3 ) @ ( image @ H4 @ ( set @ G3 ) @ B3 @ C4 ) ) ) ) ) ) ).
% INT_simps(4)
thf(fact_5963_sums__SUP,axiom,
! [A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( canoni5634975068530333245id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( sums @ A @ F2
@ ( complete_Sup_Sup @ A
@ ( image @ nat @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N3 ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% sums_SUP
thf(fact_5964_Inf__real__def,axiom,
( ( complete_Inf_Inf @ real )
= ( ^ [X4: set @ real] : ( uminus_uminus @ real @ ( complete_Sup_Sup @ real @ ( image @ real @ real @ ( uminus_uminus @ real ) @ X4 ) ) ) ) ) ).
% Inf_real_def
thf(fact_5965_Inf__nat__def1,axiom,
! [K5: set @ nat] :
( ( K5
!= ( bot_bot @ ( set @ nat ) ) )
=> ( member @ nat @ ( complete_Inf_Inf @ nat @ K5 ) @ K5 ) ) ).
% Inf_nat_def1
thf(fact_5966_Pow__def,axiom,
! [A: $tType] :
( ( pow2 @ A )
= ( ^ [A7: set @ A] :
( collect @ ( set @ A )
@ ^ [B8: set @ A] : ( ord_less_eq @ ( set @ A ) @ B8 @ A7 ) ) ) ) ).
% Pow_def
thf(fact_5967_PowD,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( member @ ( set @ A ) @ A3 @ ( pow2 @ A @ B3 ) )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B3 ) ) ).
% PowD
thf(fact_5968_subset__UNIV,axiom,
! [A: $tType,A3: set @ A] : ( ord_less_eq @ ( set @ A ) @ A3 @ ( top_top @ ( set @ A ) ) ) ).
% subset_UNIV
thf(fact_5969_range__eqI,axiom,
! [A: $tType,B: $tType,B2: A,F2: B > A,X: B] :
( ( B2
= ( F2 @ X ) )
=> ( member @ A @ B2 @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) ) ) ).
% range_eqI
thf(fact_5970_rangeI,axiom,
! [A: $tType,B: $tType,F2: B > A,X: B] : ( member @ A @ ( F2 @ X ) @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) ) ).
% rangeI
thf(fact_5971_range__composition,axiom,
! [A: $tType,C: $tType,B: $tType,F2: C > A,G: B > C] :
( ( image @ B @ A
@ ^ [X6: B] : ( F2 @ ( G @ X6 ) )
@ ( top_top @ ( set @ B ) ) )
= ( image @ C @ A @ F2 @ ( image @ B @ C @ G @ ( top_top @ ( set @ B ) ) ) ) ) ).
% range_composition
thf(fact_5972_rangeE,axiom,
! [A: $tType,B: $tType,B2: A,F2: B > A] :
( ( member @ A @ B2 @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) )
=> ~ ! [X5: B] :
( B2
!= ( F2 @ X5 ) ) ) ).
% rangeE
thf(fact_5973_insert__UNIV,axiom,
! [A: $tType,X: A] :
( ( insert @ A @ X @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ).
% insert_UNIV
thf(fact_5974_finite__fun__UNIVD1,axiom,
! [B: $tType,A: $tType] :
( ( finite_finite @ ( A > B ) @ ( top_top @ ( set @ ( A > B ) ) ) )
=> ( ( ( finite_card @ B @ ( top_top @ ( set @ B ) ) )
!= ( suc @ ( zero_zero @ nat ) ) )
=> ( finite_finite @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% finite_fun_UNIVD1
thf(fact_5975_top_Onot__eq__extremum,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
( ( A2
!= ( top_top @ A ) )
= ( ord_less @ A @ A2 @ ( top_top @ A ) ) ) ) ).
% top.not_eq_extremum
thf(fact_5976_top_Oextremum__strict,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( top_top @ A ) @ A2 ) ) ).
% top.extremum_strict
thf(fact_5977_remdups_Osimps_I1_J,axiom,
! [A: $tType] :
( ( remdups @ A @ ( nil @ A ) )
= ( nil @ A ) ) ).
% remdups.simps(1)
thf(fact_5978_UNIV__def,axiom,
! [A: $tType] :
( ( top_top @ ( set @ A ) )
= ( collect @ A
@ ^ [X6: A] : $true ) ) ).
% UNIV_def
thf(fact_5979_Int__UNIV__right,axiom,
! [A: $tType,A3: set @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( top_top @ ( set @ A ) ) )
= A3 ) ).
% Int_UNIV_right
thf(fact_5980_Int__UNIV__left,axiom,
! [A: $tType,B3: set @ A] :
( ( inf_inf @ ( set @ A ) @ ( top_top @ ( set @ A ) ) @ B3 )
= B3 ) ).
% Int_UNIV_left
thf(fact_5981_Pow__top,axiom,
! [A: $tType,A3: set @ A] : ( member @ ( set @ A ) @ A3 @ ( pow2 @ A @ A3 ) ) ).
% Pow_top
thf(fact_5982_UNIV__eq__I,axiom,
! [A: $tType,A3: set @ A] :
( ! [X5: A] : ( member @ A @ X5 @ A3 )
=> ( ( top_top @ ( set @ A ) )
= A3 ) ) ).
% UNIV_eq_I
thf(fact_5983_UNIV__witness,axiom,
! [A: $tType] :
? [X5: A] : ( member @ A @ X5 @ ( top_top @ ( set @ A ) ) ) ).
% UNIV_witness
thf(fact_5984_remdups__remdups,axiom,
! [A: $tType,Xs2: list @ A] :
( ( remdups @ A @ ( remdups @ A @ Xs2 ) )
= ( remdups @ A @ Xs2 ) ) ).
% remdups_remdups
thf(fact_5985_Un__UNIV__right,axiom,
! [A: $tType,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ).
% Un_UNIV_right
thf(fact_5986_Un__UNIV__left,axiom,
! [A: $tType,B3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( top_top @ ( set @ A ) ) @ B3 )
= ( top_top @ ( set @ A ) ) ) ).
% Un_UNIV_left
thf(fact_5987_distinct__remdups__id,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( remdups @ A @ Xs2 )
= Xs2 ) ) ).
% distinct_remdups_id
thf(fact_5988_sorted__list__of__set_Ofold__insort__key_Ofolding__on__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( finite_folding_on @ A @ ( list @ A ) @ ( top_top @ ( set @ A ) )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6 ) ) ) ).
% sorted_list_of_set.fold_insort_key.folding_on_axioms
thf(fact_5989_card_Ofolding__on__axioms,axiom,
! [A: $tType] :
( finite_folding_on @ A @ nat @ ( top_top @ ( set @ A ) )
@ ^ [Uu3: A] : suc ) ).
% card.folding_on_axioms
thf(fact_5990_empty__not__UNIV,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
!= ( top_top @ ( set @ A ) ) ) ).
% empty_not_UNIV
thf(fact_5991_Pow__bottom,axiom,
! [A: $tType,B3: set @ A] : ( member @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( pow2 @ A @ B3 ) ) ).
% Pow_bottom
thf(fact_5992_Pow__not__empty,axiom,
! [A: $tType,A3: set @ A] :
( ( pow2 @ A @ A3 )
!= ( bot_bot @ ( set @ ( set @ A ) ) ) ) ).
% Pow_not_empty
thf(fact_5993_atLeastAtMost__eq__UNIV__iff,axiom,
! [A: $tType] :
( ( bounded_lattice @ A )
=> ! [X: A,Y: A] :
( ( ( set_or1337092689740270186AtMost @ A @ X @ Y )
= ( top_top @ ( set @ A ) ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( top_top @ A ) ) ) ) ) ).
% atLeastAtMost_eq_UNIV_iff
thf(fact_5994_range__subsetD,axiom,
! [B: $tType,A: $tType,F2: B > A,B3: set @ A,I3: B] :
( ( ord_less_eq @ ( set @ A ) @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) @ B3 )
=> ( member @ A @ ( F2 @ I3 ) @ B3 ) ) ).
% range_subsetD
thf(fact_5995_perfect__space__class_OUNIV__not__singleton,axiom,
! [A: $tType] :
( ( topolo8386298272705272623_space @ A )
=> ! [X: A] :
( ( top_top @ ( set @ A ) )
!= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% perfect_space_class.UNIV_not_singleton
thf(fact_5996_Compl__UNIV__eq,axiom,
! [A: $tType] :
( ( uminus_uminus @ ( set @ A ) @ ( top_top @ ( set @ A ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Compl_UNIV_eq
thf(fact_5997_Compl__empty__eq,axiom,
! [A: $tType] :
( ( uminus_uminus @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ).
% Compl_empty_eq
thf(fact_5998_Pow__mono,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ ( set @ ( set @ A ) ) @ ( pow2 @ A @ A3 ) @ ( pow2 @ A @ B3 ) ) ) ).
% Pow_mono
thf(fact_5999_INF__filter__not__bot,axiom,
! [I7: $tType,A: $tType,B3: set @ I7,F3: I7 > ( filter @ A )] :
( ! [X10: set @ I7] :
( ( ord_less_eq @ ( set @ I7 ) @ X10 @ B3 )
=> ( ( finite_finite @ I7 @ X10 )
=> ( ( complete_Inf_Inf @ ( filter @ A ) @ ( image @ I7 @ ( filter @ A ) @ F3 @ X10 ) )
!= ( bot_bot @ ( filter @ A ) ) ) ) )
=> ( ( complete_Inf_Inf @ ( filter @ A ) @ ( image @ I7 @ ( filter @ A ) @ F3 @ B3 ) )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% INF_filter_not_bot
thf(fact_6000_Compl__partition,axiom,
! [A: $tType,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ A3 @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= ( top_top @ ( set @ A ) ) ) ).
% Compl_partition
thf(fact_6001_Compl__partition2,axiom,
! [A: $tType,A3: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A3 ) @ A3 )
= ( top_top @ ( set @ A ) ) ) ).
% Compl_partition2
thf(fact_6002_Compl__eq__Diff__UNIV,axiom,
! [A: $tType] :
( ( uminus_uminus @ ( set @ A ) )
= ( minus_minus @ ( set @ A ) @ ( top_top @ ( set @ A ) ) ) ) ).
% Compl_eq_Diff_UNIV
thf(fact_6003_Un__Pow__subset,axiom,
! [A: $tType,A3: set @ A,B3: set @ A] : ( ord_less_eq @ ( set @ ( set @ A ) ) @ ( sup_sup @ ( set @ ( set @ A ) ) @ ( pow2 @ A @ A3 ) @ ( pow2 @ A @ B3 ) ) @ ( pow2 @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ).
% Un_Pow_subset
thf(fact_6004_bij__fn,axiom,
! [A: $tType,F2: A > A,N: nat] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( bij_betw @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bij_fn
thf(fact_6005_image__Pow__surj,axiom,
! [B: $tType,A: $tType,F2: B > A,A3: set @ B,B3: set @ A] :
( ( ( image @ B @ A @ F2 @ A3 )
= B3 )
=> ( ( image @ ( set @ B ) @ ( set @ A ) @ ( image @ B @ A @ F2 ) @ ( pow2 @ B @ A3 ) )
= ( pow2 @ A @ B3 ) ) ) ).
% image_Pow_surj
thf(fact_6006_Pow__insert,axiom,
! [A: $tType,A2: A,A3: set @ A] :
( ( pow2 @ A @ ( insert @ A @ A2 @ A3 ) )
= ( sup_sup @ ( set @ ( set @ A ) ) @ ( pow2 @ A @ A3 ) @ ( image @ ( set @ A ) @ ( set @ A ) @ ( insert @ A @ A2 ) @ ( pow2 @ A @ A3 ) ) ) ) ).
% Pow_insert
thf(fact_6007_Inter__empty,axiom,
! [A: $tType] :
( ( complete_Inf_Inf @ ( set @ A ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) )
= ( top_top @ ( set @ A ) ) ) ).
% Inter_empty
thf(fact_6008_UNIV__option__conv,axiom,
! [A: $tType] :
( ( top_top @ ( set @ ( option @ A ) ) )
= ( insert @ ( option @ A ) @ ( none @ A ) @ ( image @ A @ ( option @ A ) @ ( some @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% UNIV_option_conv
thf(fact_6009_remove1__remdups,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( remove1 @ A @ X @ ( remdups @ A @ Xs2 ) )
= ( remdups @ A @ ( remove1 @ A @ X @ Xs2 ) ) ) ) ).
% remove1_remdups
thf(fact_6010_boolean__algebra_Ocomplement__unique,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [A2: A,X: A,Y: A] :
( ( ( inf_inf @ A @ A2 @ X )
= ( bot_bot @ A ) )
=> ( ( ( sup_sup @ A @ A2 @ X )
= ( top_top @ A ) )
=> ( ( ( inf_inf @ A @ A2 @ Y )
= ( bot_bot @ A ) )
=> ( ( ( sup_sup @ A @ A2 @ Y )
= ( top_top @ A ) )
=> ( X = Y ) ) ) ) ) ) ).
% boolean_algebra.complement_unique
thf(fact_6011_range__eq__singletonD,axiom,
! [B: $tType,A: $tType,F2: B > A,A2: A,X: B] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ( F2 @ X )
= A2 ) ) ).
% range_eq_singletonD
thf(fact_6012_INF__constant,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,C2: A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [Y6: B] : C2
@ A3 ) )
= ( top_top @ A ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [Y6: B] : C2
@ A3 ) )
= C2 ) ) ) ) ).
% INF_constant
thf(fact_6013_INF__empty,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A] :
( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ ( bot_bot @ ( set @ B ) ) ) )
= ( top_top @ A ) ) ) ).
% INF_empty
thf(fact_6014_length__remdups__card__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( remdups @ A @ Xs2 ) )
= ( finite_card @ A @ ( set2 @ A @ Xs2 ) ) ) ).
% length_remdups_card_conv
thf(fact_6015_notin__range__Some,axiom,
! [A: $tType,X: option @ A] :
( ( ~ ( member @ ( option @ A ) @ X @ ( image @ A @ ( option @ A ) @ ( some @ A ) @ ( top_top @ ( set @ A ) ) ) ) )
= ( X
= ( none @ A ) ) ) ).
% notin_range_Some
thf(fact_6016_INT__empty,axiom,
! [B: $tType,A: $tType,B3: B > ( set @ A )] :
( ( complete_Inf_Inf @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ B3 @ ( bot_bot @ ( set @ B ) ) ) )
= ( top_top @ ( set @ A ) ) ) ).
% INT_empty
thf(fact_6017_boolean__algebra__class_Oboolean__algebra_Ocompl__unique,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( inf_inf @ A @ X @ Y )
= ( bot_bot @ A ) )
=> ( ( ( sup_sup @ A @ X @ Y )
= ( top_top @ A ) )
=> ( ( uminus_uminus @ A @ X )
= Y ) ) ) ) ).
% boolean_algebra_class.boolean_algebra.compl_unique
thf(fact_6018_inf__top_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( ( bounde4346867609351753570nf_top @ A )
=> ( semila1105856199041335345_order @ A @ ( inf_inf @ A ) @ ( top_top @ A ) @ ( ord_less_eq @ A ) @ ( ord_less @ A ) ) ) ).
% inf_top.semilattice_neutr_order_axioms
thf(fact_6019_finite__UNIV__card__ge__0,axiom,
! [A: $tType] :
( ( finite_finite @ A @ ( top_top @ ( set @ A ) ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% finite_UNIV_card_ge_0
thf(fact_6020_image__Pow__mono,axiom,
! [B: $tType,A: $tType,F2: B > A,A3: set @ B,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( image @ B @ A @ F2 @ A3 ) @ B3 )
=> ( ord_less_eq @ ( set @ ( set @ A ) ) @ ( image @ ( set @ B ) @ ( set @ A ) @ ( image @ B @ A @ F2 ) @ ( pow2 @ B @ A3 ) ) @ ( pow2 @ A @ B3 ) ) ) ).
% image_Pow_mono
thf(fact_6021_UNIV__nat__eq,axiom,
( ( top_top @ ( set @ nat ) )
= ( insert @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% UNIV_nat_eq
thf(fact_6022_INT__extend__simps_I3_J,axiom,
! [F: $tType,E4: $tType,C4: set @ E4,A3: E4 > ( set @ F ),B3: set @ F] :
( ( ( C4
= ( bot_bot @ ( set @ E4 ) ) )
=> ( ( minus_minus @ ( set @ F ) @ ( complete_Inf_Inf @ ( set @ F ) @ ( image @ E4 @ ( set @ F ) @ A3 @ C4 ) ) @ B3 )
= ( minus_minus @ ( set @ F ) @ ( top_top @ ( set @ F ) ) @ B3 ) ) )
& ( ( C4
!= ( bot_bot @ ( set @ E4 ) ) )
=> ( ( minus_minus @ ( set @ F ) @ ( complete_Inf_Inf @ ( set @ F ) @ ( image @ E4 @ ( set @ F ) @ A3 @ C4 ) ) @ B3 )
= ( complete_Inf_Inf @ ( set @ F )
@ ( image @ E4 @ ( set @ F )
@ ^ [X6: E4] : ( minus_minus @ ( set @ F ) @ ( A3 @ X6 ) @ B3 )
@ C4 ) ) ) ) ) ).
% INT_extend_simps(3)
thf(fact_6023_boolean__algebra_Oabstract__boolean__algebra__axioms,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ( boolea2506097494486148201lgebra @ A @ ( inf_inf @ A ) @ ( sup_sup @ A ) @ ( uminus_uminus @ A ) @ ( bot_bot @ A ) @ ( top_top @ A ) ) ) ).
% boolean_algebra.abstract_boolean_algebra_axioms
thf(fact_6024_UN__UN__finite__eq,axiom,
! [A: $tType,A3: nat > ( set @ A )] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [N3: nat] : ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) )
@ ( top_top @ ( set @ nat ) ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% UN_UN_finite_eq
thf(fact_6025_binomial__def,axiom,
( binomial
= ( ^ [N3: nat,K3: nat] :
( finite_card @ ( set @ nat )
@ ( collect @ ( set @ nat )
@ ^ [K6: set @ nat] :
( ( member @ ( set @ nat ) @ K6 @ ( pow2 @ nat @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) )
& ( ( finite_card @ nat @ K6 )
= K3 ) ) ) ) ) ) ).
% binomial_def
thf(fact_6026_card__range__greater__zero,axiom,
! [A: $tType,B: $tType,F2: B > A] :
( ( finite_finite @ A @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ).
% card_range_greater_zero
thf(fact_6027_subseqs__powset,axiom,
! [A: $tType,Xs2: list @ A] :
( ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) )
= ( pow2 @ A @ ( set2 @ A @ Xs2 ) ) ) ).
% subseqs_powset
thf(fact_6028_Pow__set_I1_J,axiom,
! [A: $tType] :
( ( pow2 @ A @ ( set2 @ A @ ( nil @ A ) ) )
= ( insert @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ).
% Pow_set(1)
thf(fact_6029_UN__finite__subset,axiom,
! [A: $tType,A3: nat > ( set @ A ),C4: set @ A] :
( ! [N2: nat] : ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) @ C4 )
=> ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( top_top @ ( set @ nat ) ) ) ) @ C4 ) ) ).
% UN_finite_subset
thf(fact_6030_UN__finite2__eq,axiom,
! [A: $tType,A3: nat > ( set @ A ),B3: nat > ( set @ A ),K: nat] :
( ! [N2: nat] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ N2 @ K ) ) ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( top_top @ ( set @ nat ) ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B3 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% UN_finite2_eq
thf(fact_6031_suminf__eq__SUP,axiom,
! [A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( canoni5634975068530333245id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ( ( suminf @ A )
= ( ^ [F6: nat > A] :
( complete_Sup_Sup @ A
@ ( image @ nat @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F6 @ ( set_ord_lessThan @ nat @ N3 ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ).
% suminf_eq_SUP
thf(fact_6032_range__mod,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( image @ nat @ nat
@ ^ [M4: nat] : ( modulo_modulo @ nat @ M4 @ N )
@ ( top_top @ ( set @ nat ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% range_mod
thf(fact_6033_UN__finite2__subset,axiom,
! [A: $tType,A3: nat > ( set @ A ),B3: nat > ( set @ A ),K: nat] :
( ! [N2: nat] : ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ N2 @ K ) ) ) ) )
=> ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A3 @ ( top_top @ ( set @ nat ) ) ) ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B3 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% UN_finite2_subset
thf(fact_6034_suminf__eq__SUP__real,axiom,
! [X9: nat > real] :
( ( summable @ real @ X9 )
=> ( ! [I2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( X9 @ I2 ) )
=> ( ( suminf @ real @ X9 )
= ( complete_Sup_Sup @ real
@ ( image @ nat @ real
@ ^ [I: nat] : ( groups7311177749621191930dd_sum @ nat @ real @ X9 @ ( set_ord_lessThan @ nat @ I ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ).
% suminf_eq_SUP_real
thf(fact_6035_Sup__finite__empty,axiom,
! [A: $tType] :
( ( finite_lattice @ A )
=> ( ( complete_Sup_Sup @ A @ ( bot_bot @ ( set @ A ) ) )
= ( complete_Inf_Inf @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% Sup_finite_empty
thf(fact_6036_Inf__finite__empty,axiom,
! [A: $tType] :
( ( finite_lattice @ A )
=> ( ( complete_Inf_Inf @ A @ ( bot_bot @ ( set @ A ) ) )
= ( complete_Sup_Sup @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% Inf_finite_empty
thf(fact_6037_cclfp__def,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ( ( order_532582986084564980_cclfp @ A )
= ( ^ [F6: A > A] :
( complete_Sup_Sup @ A
@ ( image @ nat @ A
@ ^ [I: nat] : ( compow @ ( A > A ) @ I @ F6 @ ( bot_bot @ A ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ).
% cclfp_def
thf(fact_6038_card__UNIV__bool,axiom,
( ( finite_card @ $o @ ( top_top @ ( set @ $o ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ).
% card_UNIV_bool
thf(fact_6039_range__mult,axiom,
! [A2: real] :
( ( ( A2
= ( zero_zero @ real ) )
=> ( ( image @ real @ real @ ( times_times @ real @ A2 ) @ ( top_top @ ( set @ real ) ) )
= ( insert @ real @ ( zero_zero @ real ) @ ( bot_bot @ ( set @ real ) ) ) ) )
& ( ( A2
!= ( zero_zero @ real ) )
=> ( ( image @ real @ real @ ( times_times @ real @ A2 ) @ ( top_top @ ( set @ real ) ) )
= ( top_top @ ( set @ real ) ) ) ) ) ).
% range_mult
thf(fact_6040_INF__filter__bot__base,axiom,
! [B: $tType,A: $tType,I6: set @ A,F3: A > ( filter @ B )] :
( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ! [J3: A] :
( ( member @ A @ J3 @ I6 )
=> ? [X3: A] :
( ( member @ A @ X3 @ I6 )
& ( ord_less_eq @ ( filter @ B ) @ ( F3 @ X3 ) @ ( inf_inf @ ( filter @ B ) @ ( F3 @ I2 ) @ ( F3 @ J3 ) ) ) ) ) )
=> ( ( ( complete_Inf_Inf @ ( filter @ B ) @ ( image @ A @ ( filter @ B ) @ F3 @ I6 ) )
= ( bot_bot @ ( filter @ B ) ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ I6 )
& ( ( F3 @ X6 )
= ( bot_bot @ ( filter @ B ) ) ) ) ) ) ) ).
% INF_filter_bot_base
thf(fact_6041_Inf__filter__not__bot,axiom,
! [A: $tType,B3: set @ ( filter @ A )] :
( ! [X10: set @ ( filter @ A )] :
( ( ord_less_eq @ ( set @ ( filter @ A ) ) @ X10 @ B3 )
=> ( ( finite_finite @ ( filter @ A ) @ X10 )
=> ( ( complete_Inf_Inf @ ( filter @ A ) @ X10 )
!= ( bot_bot @ ( filter @ A ) ) ) ) )
=> ( ( complete_Inf_Inf @ ( filter @ A ) @ B3 )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% Inf_filter_not_bot
thf(fact_6042_infinite__UNIV__listI,axiom,
! [A: $tType] :
~ ( finite_finite @ ( list @ A ) @ ( top_top @ ( set @ ( list @ A ) ) ) ) ).
% infinite_UNIV_listI
thf(fact_6043_top__set__def,axiom,
! [A: $tType] :
( ( top_top @ ( set @ A ) )
= ( collect @ A @ ( top_top @ ( A > $o ) ) ) ) ).
% top_set_def
thf(fact_6044_Inter__UNIV,axiom,
! [A: $tType] :
( ( complete_Inf_Inf @ ( set @ A ) @ ( top_top @ ( set @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% Inter_UNIV
thf(fact_6045_bot__finite__def,axiom,
! [A: $tType] :
( ( finite_lattice @ A )
=> ( ( bot_bot @ A )
= ( complete_Inf_Inf @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% bot_finite_def
thf(fact_6046_Collect__const__case__prod,axiom,
! [B: $tType,A: $tType,P: $o] :
( ( P
=> ( ( collect @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ B @ $o
@ ^ [A4: A,B4: B] : P ) )
= ( top_top @ ( set @ ( product_prod @ A @ B ) ) ) ) )
& ( ~ P
=> ( ( collect @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ B @ $o
@ ^ [A4: A,B4: B] : P ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ) ) ).
% Collect_const_case_prod
thf(fact_6047_root__def,axiom,
( root
= ( ^ [N3: nat,X6: real] :
( if @ real
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ real )
@ ( the_inv_into @ real @ real @ ( top_top @ ( set @ real ) )
@ ^ [Y6: real] : ( times_times @ real @ ( sgn_sgn @ real @ Y6 ) @ ( power_power @ real @ ( abs_abs @ real @ Y6 ) @ N3 ) )
@ X6 ) ) ) ) ).
% root_def
thf(fact_6048_UNIV__bool,axiom,
( ( top_top @ ( set @ $o ) )
= ( insert @ $o @ $false @ ( insert @ $o @ $true @ ( bot_bot @ ( set @ $o ) ) ) ) ) ).
% UNIV_bool
thf(fact_6049_rat__less__eq__code,axiom,
( ( ord_less_eq @ rat )
= ( ^ [P5: rat,Q4: rat] :
( product_case_prod @ int @ int @ $o
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ $o
@ ^ [B4: int,D3: int] : ( ord_less_eq @ int @ ( times_times @ int @ A4 @ D3 ) @ ( times_times @ int @ C6 @ B4 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P5 ) ) ) ) ).
% rat_less_eq_code
thf(fact_6050_rat__less__code,axiom,
( ( ord_less @ rat )
= ( ^ [P5: rat,Q4: rat] :
( product_case_prod @ int @ int @ $o
@ ^ [A4: int,C6: int] :
( product_case_prod @ int @ int @ $o
@ ^ [B4: int,D3: int] : ( ord_less @ int @ ( times_times @ int @ A4 @ D3 ) @ ( times_times @ int @ C6 @ B4 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P5 ) ) ) ) ).
% rat_less_code
thf(fact_6051_card__UNIV__char,axiom,
( ( finite_card @ char @ ( top_top @ ( set @ char ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% card_UNIV_char
thf(fact_6052_mlex__eq,axiom,
! [A: $tType] :
( ( mlex_prod @ A )
= ( ^ [F6: A > nat,R6: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ A @ A )
@ ( product_case_prod @ A @ A @ $o
@ ^ [X6: A,Y6: A] :
( ( ord_less @ nat @ ( F6 @ X6 ) @ ( F6 @ Y6 ) )
| ( ( ord_less_eq @ nat @ ( F6 @ X6 ) @ ( F6 @ Y6 ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ Y6 ) @ R6 ) ) ) ) ) ) ) ).
% mlex_eq
thf(fact_6053_mlex__iff,axiom,
! [A: $tType,X: A,Y: A,F2: A > nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( mlex_prod @ A @ F2 @ R3 ) )
= ( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
| ( ( ( F2 @ X )
= ( F2 @ Y ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R3 ) ) ) ) ).
% mlex_iff
thf(fact_6054_mlex__less,axiom,
! [A: $tType,F2: A > nat,X: A,Y: A,R3: set @ ( product_prod @ A @ A )] :
( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( mlex_prod @ A @ F2 @ R3 ) ) ) ).
% mlex_less
thf(fact_6055_in__measure,axiom,
! [A: $tType,X: A,Y: A,F2: A > nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measure @ A @ F2 ) )
= ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ).
% in_measure
thf(fact_6056_UNIV__char__of__nat,axiom,
( ( top_top @ ( set @ char ) )
= ( image @ nat @ char @ ( unique5772411509450598832har_of @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% UNIV_char_of_nat
thf(fact_6057_char__of__quasi__inj,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: A,N: A] :
( ( ( unique5772411509450598832har_of @ A @ M )
= ( unique5772411509450598832har_of @ A @ N ) )
= ( ( modulo_modulo @ A @ M @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) )
= ( modulo_modulo @ A @ N @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% char_of_quasi_inj
thf(fact_6058_char__of__mod__256,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: A] :
( ( unique5772411509450598832har_of @ A @ ( modulo_modulo @ A @ N @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
= ( unique5772411509450598832har_of @ A @ N ) ) ) ).
% char_of_mod_256
thf(fact_6059_char__of__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: nat,M: A] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) @ N )
=> ( ( unique5772411509450598832har_of @ A @ ( bit_se2584673776208193580ke_bit @ A @ N @ M ) )
= ( unique5772411509450598832har_of @ A @ M ) ) ) ) ).
% char_of_take_bit_eq
thf(fact_6060_of__char__of,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [A2: A] :
( ( comm_s6883823935334413003f_char @ A @ ( unique5772411509450598832har_of @ A @ A2 ) )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% of_char_of
thf(fact_6061_char__of__def,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ( ( unique5772411509450598832har_of @ A )
= ( ^ [N3: A] :
( char2
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( one_one @ nat ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ ( bit0 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit1 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ ( bit1 @ one2 ) ) ) ) ) ) ) ) ).
% char_of_def
thf(fact_6062_of__char__mod__256,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [C2: char] :
( ( modulo_modulo @ A @ ( comm_s6883823935334413003f_char @ A @ C2 ) @ ( numeral_numeral @ A @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) )
= ( comm_s6883823935334413003f_char @ A @ C2 ) ) ) ).
% of_char_mod_256
thf(fact_6063_char_Osize_I2_J,axiom,
! [X15: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_size @ char @ ( char2 @ X15 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= ( zero_zero @ nat ) ) ).
% char.size(2)
thf(fact_6064_nat__of__char__less__256,axiom,
! [C2: char] : ( ord_less @ nat @ ( comm_s6883823935334413003f_char @ nat @ C2 ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% nat_of_char_less_256
thf(fact_6065_range__nat__of__char,axiom,
( ( image @ char @ nat @ ( comm_s6883823935334413003f_char @ nat ) @ ( top_top @ ( set @ char ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% range_nat_of_char
thf(fact_6066_char__of__eq__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N: A,C2: char] :
( ( ( unique5772411509450598832har_of @ A @ N )
= C2 )
= ( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) @ N )
= ( comm_s6883823935334413003f_char @ A @ C2 ) ) ) ) ).
% char_of_eq_iff
thf(fact_6067_integer__of__char__code,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
= ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( zero_neq_one_of_bool @ code_integer @ B72 ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B62 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B52 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B42 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B32 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B22 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B1 ) ) @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) @ ( zero_neq_one_of_bool @ code_integer @ B0 ) ) ) ).
% integer_of_char_code
thf(fact_6068_char_Osize__gen,axiom,
! [X15: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_char @ ( char2 @ X15 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= ( zero_zero @ nat ) ) ).
% char.size_gen
thf(fact_6069_String_Ochar__of__ascii__of,axiom,
! [C2: char] :
( ( comm_s6883823935334413003f_char @ nat @ ( ascii_of @ C2 ) )
= ( bit_se2584673776208193580ke_bit @ nat @ ( numeral_numeral @ nat @ ( bit1 @ ( bit1 @ one2 ) ) ) @ ( comm_s6883823935334413003f_char @ nat @ C2 ) ) ) ).
% String.char_of_ascii_of
thf(fact_6070_of__char__Char,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
( ( comm_s6883823935334413003f_char @ A @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
= ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( cons @ $o @ B0 @ ( cons @ $o @ B1 @ ( cons @ $o @ B22 @ ( cons @ $o @ B32 @ ( cons @ $o @ B42 @ ( cons @ $o @ B52 @ ( cons @ $o @ B62 @ ( cons @ $o @ B72 @ ( nil @ $o ) ) ) ) ) ) ) ) ) ) ) ) ).
% of_char_Char
thf(fact_6071_list_Oinject,axiom,
! [A: $tType,X21: A,X22: list @ A,Y21: A,Y22: list @ A] :
( ( ( cons @ A @ X21 @ X22 )
= ( cons @ A @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% list.inject
thf(fact_6072_list_Osimps_I15_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( set2 @ A @ ( cons @ A @ X21 @ X22 ) )
= ( insert @ A @ X21 @ ( set2 @ A @ X22 ) ) ) ).
% list.simps(15)
thf(fact_6073_nth__Cons__Suc,axiom,
! [A: $tType,X: A,Xs2: list @ A,N: nat] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( suc @ N ) )
= ( nth @ A @ Xs2 @ N ) ) ).
% nth_Cons_Suc
thf(fact_6074_nth__Cons__0,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( zero_zero @ nat ) )
= X ) ).
% nth_Cons_0
thf(fact_6075_take__Suc__Cons,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( take @ A @ ( suc @ N ) @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ N @ Xs2 ) ) ) ).
% take_Suc_Cons
thf(fact_6076_horner__sum__simps_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ! [F2: B > A,A2: A,X: B,Xs2: list @ B] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( cons @ B @ X @ Xs2 ) )
= ( plus_plus @ A @ ( F2 @ X ) @ ( times_times @ A @ A2 @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Xs2 ) ) ) ) ) ).
% horner_sum_simps(2)
thf(fact_6077_enumerate__simps_I2_J,axiom,
! [B: $tType,N: nat,X: B,Xs2: list @ B] :
( ( enumerate @ B @ N @ ( cons @ B @ X @ Xs2 ) )
= ( cons @ ( product_prod @ nat @ B ) @ ( product_Pair @ nat @ B @ N @ X ) @ ( enumerate @ B @ ( suc @ N ) @ Xs2 ) ) ) ).
% enumerate_simps(2)
thf(fact_6078_nth__Cons__numeral,axiom,
! [A: $tType,X: A,Xs2: list @ A,V: num] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( numeral_numeral @ nat @ V ) )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V ) @ ( one_one @ nat ) ) ) ) ).
% nth_Cons_numeral
thf(fact_6079_take__Cons__numeral,axiom,
! [A: $tType,V: num,X: A,Xs2: list @ A] :
( ( take @ A @ ( numeral_numeral @ nat @ V ) @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V ) @ ( one_one @ nat ) ) @ Xs2 ) ) ) ).
% take_Cons_numeral
thf(fact_6080_nth__Cons__pos,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% nth_Cons_pos
thf(fact_6081_Suc__length__conv,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( suc @ N )
= ( size_size @ ( list @ A ) @ Xs2 ) )
= ( ? [Y6: A,Ys: list @ A] :
( ( Xs2
= ( cons @ A @ Y6 @ Ys ) )
& ( ( size_size @ ( list @ A ) @ Ys )
= N ) ) ) ) ).
% Suc_length_conv
thf(fact_6082_length__Suc__conv,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( suc @ N ) )
= ( ? [Y6: A,Ys: list @ A] :
( ( Xs2
= ( cons @ A @ Y6 @ Ys ) )
& ( ( size_size @ ( list @ A ) @ Ys )
= N ) ) ) ) ).
% length_Suc_conv
thf(fact_6083_length__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) )
= ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_Cons
thf(fact_6084_list__induct4,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ C,Ws: list @ D,P: ( list @ A ) > ( list @ B ) > ( list @ C ) > ( list @ D ) > $o] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( ( size_size @ ( list @ B ) @ Ys2 )
= ( size_size @ ( list @ C ) @ Zs2 ) )
=> ( ( ( size_size @ ( list @ C ) @ Zs2 )
= ( size_size @ ( list @ D ) @ Ws ) )
=> ( ( P @ ( nil @ A ) @ ( nil @ B ) @ ( nil @ C ) @ ( nil @ D ) )
=> ( ! [X5: A,Xs3: list @ A,Y5: B,Ys4: list @ B,Z4: C,Zs: list @ C,W2: D,Ws2: list @ D] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ B ) @ Ys4 ) )
=> ( ( ( size_size @ ( list @ B ) @ Ys4 )
= ( size_size @ ( list @ C ) @ Zs ) )
=> ( ( ( size_size @ ( list @ C ) @ Zs )
= ( size_size @ ( list @ D ) @ Ws2 ) )
=> ( ( P @ Xs3 @ Ys4 @ Zs @ Ws2 )
=> ( P @ ( cons @ A @ X5 @ Xs3 ) @ ( cons @ B @ Y5 @ Ys4 ) @ ( cons @ C @ Z4 @ Zs ) @ ( cons @ D @ W2 @ Ws2 ) ) ) ) ) )
=> ( P @ Xs2 @ Ys2 @ Zs2 @ Ws ) ) ) ) ) ) ).
% list_induct4
thf(fact_6085_list__induct3,axiom,
! [B: $tType,A: $tType,C: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ C,P: ( list @ A ) > ( list @ B ) > ( list @ C ) > $o] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( ( size_size @ ( list @ B ) @ Ys2 )
= ( size_size @ ( list @ C ) @ Zs2 ) )
=> ( ( P @ ( nil @ A ) @ ( nil @ B ) @ ( nil @ C ) )
=> ( ! [X5: A,Xs3: list @ A,Y5: B,Ys4: list @ B,Z4: C,Zs: list @ C] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ B ) @ Ys4 ) )
=> ( ( ( size_size @ ( list @ B ) @ Ys4 )
= ( size_size @ ( list @ C ) @ Zs ) )
=> ( ( P @ Xs3 @ Ys4 @ Zs )
=> ( P @ ( cons @ A @ X5 @ Xs3 ) @ ( cons @ B @ Y5 @ Ys4 ) @ ( cons @ C @ Z4 @ Zs ) ) ) ) )
=> ( P @ Xs2 @ Ys2 @ Zs2 ) ) ) ) ) ).
% list_induct3
thf(fact_6086_list__induct2,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,P: ( list @ A ) > ( list @ B ) > $o] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( P @ ( nil @ A ) @ ( nil @ B ) )
=> ( ! [X5: A,Xs3: list @ A,Y5: B,Ys4: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ B ) @ Ys4 ) )
=> ( ( P @ Xs3 @ Ys4 )
=> ( P @ ( cons @ A @ X5 @ Xs3 ) @ ( cons @ B @ Y5 @ Ys4 ) ) ) )
=> ( P @ Xs2 @ Ys2 ) ) ) ) ).
% list_induct2
thf(fact_6087_impossible__Cons,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,X: A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( Xs2
!= ( cons @ A @ X @ Ys2 ) ) ) ).
% impossible_Cons
thf(fact_6088_Cons__shuffles__subset1,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A] : ( ord_less_eq @ ( set @ ( list @ A ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X ) @ ( shuffles @ A @ Xs2 @ Ys2 ) ) @ ( shuffles @ A @ ( cons @ A @ X @ Xs2 ) @ Ys2 ) ) ).
% Cons_shuffles_subset1
thf(fact_6089_Cons__shuffles__subset2,axiom,
! [A: $tType,Y: A,Xs2: list @ A,Ys2: list @ A] : ( ord_less_eq @ ( set @ ( list @ A ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ Y ) @ ( shuffles @ A @ Xs2 @ Ys2 ) ) @ ( shuffles @ A @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) ) ).
% Cons_shuffles_subset2
thf(fact_6090_shuffles_Osimps_I3_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A,Ys2: list @ A] :
( ( shuffles @ A @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys2 ) )
= ( sup_sup @ ( set @ ( list @ A ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X ) @ ( shuffles @ A @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ Y ) @ ( shuffles @ A @ ( cons @ A @ X @ Xs2 ) @ Ys2 ) ) ) ) ).
% shuffles.simps(3)
thf(fact_6091_remdups_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remdups @ A @ ( cons @ A @ X @ Xs2 ) )
= ( remdups @ A @ Xs2 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remdups @ A @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( remdups @ A @ Xs2 ) ) ) ) ) ).
% remdups.simps(2)
thf(fact_6092_set__subset__Cons,axiom,
! [A: $tType,Xs2: list @ A,X: A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) ) ).
% set_subset_Cons
thf(fact_6093_insort__key_Osimps_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Y: B,Ys2: list @ B] :
( ( ( ord_less_eq @ A @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ X @ ( cons @ B @ Y @ Ys2 ) )
= ( cons @ B @ X @ ( cons @ B @ Y @ Ys2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ X @ ( cons @ B @ Y @ Ys2 ) )
= ( cons @ B @ Y @ ( linorder_insort_key @ B @ A @ F2 @ X @ Ys2 ) ) ) ) ) ) ).
% insort_key.simps(2)
thf(fact_6094_shufflesE,axiom,
! [A: $tType,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A] :
( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( ( Zs2 = Xs2 )
=> ( Ys2
!= ( nil @ A ) ) )
=> ( ( ( Zs2 = Ys2 )
=> ( Xs2
!= ( nil @ A ) ) )
=> ( ! [X5: A,Xs4: list @ A] :
( ( Xs2
= ( cons @ A @ X5 @ Xs4 ) )
=> ! [Z4: A,Zs4: list @ A] :
( ( Zs2
= ( cons @ A @ Z4 @ Zs4 ) )
=> ( ( X5 = Z4 )
=> ~ ( member @ ( list @ A ) @ Zs4 @ ( shuffles @ A @ Xs4 @ Ys2 ) ) ) ) )
=> ~ ! [Y5: A,Ys5: list @ A] :
( ( Ys2
= ( cons @ A @ Y5 @ Ys5 ) )
=> ! [Z4: A,Zs4: list @ A] :
( ( Zs2
= ( cons @ A @ Z4 @ Zs4 ) )
=> ( ( Y5 = Z4 )
=> ~ ( member @ ( list @ A ) @ Zs4 @ ( shuffles @ A @ Xs2 @ Ys5 ) ) ) ) ) ) ) ) ) ).
% shufflesE
thf(fact_6095_insort__key_Osimps_I1_J,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B] :
( ( linorder_insort_key @ B @ A @ F2 @ X @ ( nil @ B ) )
= ( cons @ B @ X @ ( nil @ B ) ) ) ) ).
% insort_key.simps(1)
thf(fact_6096_distinct__singleton,axiom,
! [A: $tType,X: A] : ( distinct @ A @ ( cons @ A @ X @ ( nil @ A ) ) ) ).
% distinct_singleton
thf(fact_6097_distinct_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( distinct @ A @ ( cons @ A @ X @ Xs2 ) )
= ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
& ( distinct @ A @ Xs2 ) ) ) ).
% distinct.simps(2)
thf(fact_6098_list__nonempty__induct,axiom,
! [A: $tType,Xs2: list @ A,P: ( list @ A ) > $o] :
( ( Xs2
!= ( nil @ A ) )
=> ( ! [X5: A] : ( P @ ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ( ! [X5: A,Xs3: list @ A] :
( ( Xs3
!= ( nil @ A ) )
=> ( ( P @ Xs3 )
=> ( P @ ( cons @ A @ X5 @ Xs3 ) ) ) )
=> ( P @ Xs2 ) ) ) ) ).
% list_nonempty_induct
thf(fact_6099_list__induct2_H,axiom,
! [A: $tType,B: $tType,P: ( list @ A ) > ( list @ B ) > $o,Xs2: list @ A,Ys2: list @ B] :
( ( P @ ( nil @ A ) @ ( nil @ B ) )
=> ( ! [X5: A,Xs3: list @ A] : ( P @ ( cons @ A @ X5 @ Xs3 ) @ ( nil @ B ) )
=> ( ! [Y5: B,Ys4: list @ B] : ( P @ ( nil @ A ) @ ( cons @ B @ Y5 @ Ys4 ) )
=> ( ! [X5: A,Xs3: list @ A,Y5: B,Ys4: list @ B] :
( ( P @ Xs3 @ Ys4 )
=> ( P @ ( cons @ A @ X5 @ Xs3 ) @ ( cons @ B @ Y5 @ Ys4 ) ) )
=> ( P @ Xs2 @ Ys2 ) ) ) ) ) ).
% list_induct2'
thf(fact_6100_neq__Nil__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
= ( ? [Y6: A,Ys: list @ A] :
( Xs2
= ( cons @ A @ Y6 @ Ys ) ) ) ) ).
% neq_Nil_conv
thf(fact_6101_remdups__adj_Ocases,axiom,
! [A: $tType,X: list @ A] :
( ( X
!= ( nil @ A ) )
=> ( ! [X5: A] :
( X
!= ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ~ ! [X5: A,Y5: A,Xs3: list @ A] :
( X
!= ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Xs3 ) ) ) ) ) ).
% remdups_adj.cases
thf(fact_6102_transpose_Ocases,axiom,
! [A: $tType,X: list @ ( list @ A )] :
( ( X
!= ( nil @ ( list @ A ) ) )
=> ( ! [Xss2: list @ ( list @ A )] :
( X
!= ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) )
=> ~ ! [X5: A,Xs3: list @ A,Xss2: list @ ( list @ A )] :
( X
!= ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) ) ) ) ).
% transpose.cases
thf(fact_6103_min__list_Ocases,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: list @ A] :
( ! [X5: A,Xs3: list @ A] :
( X
!= ( cons @ A @ X5 @ Xs3 ) )
=> ( X
= ( nil @ A ) ) ) ) ).
% min_list.cases
thf(fact_6104_list_Oexhaust,axiom,
! [A: $tType,Y: list @ A] :
( ( Y
!= ( nil @ A ) )
=> ~ ! [X212: A,X222: list @ A] :
( Y
!= ( cons @ A @ X212 @ X222 ) ) ) ).
% list.exhaust
thf(fact_6105_list_OdiscI,axiom,
! [A: $tType,List: list @ A,X21: A,X22: list @ A] :
( ( List
= ( cons @ A @ X21 @ X22 ) )
=> ( List
!= ( nil @ A ) ) ) ).
% list.discI
thf(fact_6106_list_Odistinct_I1_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( nil @ A )
!= ( cons @ A @ X21 @ X22 ) ) ).
% list.distinct(1)
thf(fact_6107_removeAll_Osimps_I2_J,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A] :
( ( ( X = Y )
=> ( ( removeAll @ A @ X @ ( cons @ A @ Y @ Xs2 ) )
= ( removeAll @ A @ X @ Xs2 ) ) )
& ( ( X != Y )
=> ( ( removeAll @ A @ X @ ( cons @ A @ Y @ Xs2 ) )
= ( cons @ A @ Y @ ( removeAll @ A @ X @ Xs2 ) ) ) ) ) ).
% removeAll.simps(2)
thf(fact_6108_remove1_Osimps_I2_J,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A] :
( ( ( X = Y )
=> ( ( remove1 @ A @ X @ ( cons @ A @ Y @ Xs2 ) )
= Xs2 ) )
& ( ( X != Y )
=> ( ( remove1 @ A @ X @ ( cons @ A @ Y @ Xs2 ) )
= ( cons @ A @ Y @ ( remove1 @ A @ X @ Xs2 ) ) ) ) ) ).
% remove1.simps(2)
thf(fact_6109_list_Oset__intros_I2_J,axiom,
! [A: $tType,Y: A,X22: list @ A,X21: A] :
( ( member @ A @ Y @ ( set2 @ A @ X22 ) )
=> ( member @ A @ Y @ ( set2 @ A @ ( cons @ A @ X21 @ X22 ) ) ) ) ).
% list.set_intros(2)
thf(fact_6110_list_Oset__intros_I1_J,axiom,
! [A: $tType,X21: A,X22: list @ A] : ( member @ A @ X21 @ ( set2 @ A @ ( cons @ A @ X21 @ X22 ) ) ) ).
% list.set_intros(1)
thf(fact_6111_list_Oset__cases,axiom,
! [A: $tType,E2: A,A2: list @ A] :
( ( member @ A @ E2 @ ( set2 @ A @ A2 ) )
=> ( ! [Z23: list @ A] :
( A2
!= ( cons @ A @ E2 @ Z23 ) )
=> ~ ! [Z12: A,Z23: list @ A] :
( ( A2
= ( cons @ A @ Z12 @ Z23 ) )
=> ~ ( member @ A @ E2 @ ( set2 @ A @ Z23 ) ) ) ) ) ).
% list.set_cases
thf(fact_6112_set__ConsD,axiom,
! [A: $tType,Y: A,X: A,Xs2: list @ A] :
( ( member @ A @ Y @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
=> ( ( Y = X )
| ( member @ A @ Y @ ( set2 @ A @ Xs2 ) ) ) ) ).
% set_ConsD
thf(fact_6113_not__Cons__self2,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( cons @ A @ X @ Xs2 )
!= Xs2 ) ).
% not_Cons_self2
thf(fact_6114_Cons__in__shuffles__rightI,axiom,
! [A: $tType,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A,Z2: A] :
( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( member @ ( list @ A ) @ ( cons @ A @ Z2 @ Zs2 ) @ ( shuffles @ A @ Xs2 @ ( cons @ A @ Z2 @ Ys2 ) ) ) ) ).
% Cons_in_shuffles_rightI
thf(fact_6115_Cons__in__shuffles__leftI,axiom,
! [A: $tType,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A,Z2: A] :
( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( member @ ( list @ A ) @ ( cons @ A @ Z2 @ Zs2 ) @ ( shuffles @ A @ ( cons @ A @ Z2 @ Xs2 ) @ Ys2 ) ) ) ).
% Cons_in_shuffles_leftI
thf(fact_6116_distinct__length__2__or__more,axiom,
! [A: $tType,A2: A,B2: A,Xs2: list @ A] :
( ( distinct @ A @ ( cons @ A @ A2 @ ( cons @ A @ B2 @ Xs2 ) ) )
= ( ( A2 != B2 )
& ( distinct @ A @ ( cons @ A @ A2 @ Xs2 ) )
& ( distinct @ A @ ( cons @ A @ B2 @ Xs2 ) ) ) ) ).
% distinct_length_2_or_more
thf(fact_6117_list__update_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,I3: nat,V: A] :
( ( list_update @ A @ ( cons @ A @ X @ Xs2 ) @ I3 @ V )
= ( case_nat @ ( list @ A ) @ ( cons @ A @ V @ Xs2 )
@ ^ [J2: nat] : ( cons @ A @ X @ ( list_update @ A @ Xs2 @ J2 @ V ) )
@ I3 ) ) ).
% list_update.simps(2)
thf(fact_6118_splice_Ocases,axiom,
! [A: $tType,X: product_prod @ ( list @ A ) @ ( list @ A )] :
( ! [Ys4: list @ A] :
( X
!= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Ys4 ) )
=> ~ ! [X5: A,Xs3: list @ A,Ys4: list @ A] :
( X
!= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Ys4 ) ) ) ).
% splice.cases
thf(fact_6119_shuffles_Ocases,axiom,
! [A: $tType,X: product_prod @ ( list @ A ) @ ( list @ A )] :
( ! [Ys4: list @ A] :
( X
!= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Ys4 ) )
=> ( ! [Xs3: list @ A] :
( X
!= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs3 @ ( nil @ A ) ) )
=> ~ ! [X5: A,Xs3: list @ A,Y5: A,Ys4: list @ A] :
( X
!= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ ( cons @ A @ Y5 @ Ys4 ) ) ) ) ) ).
% shuffles.cases
thf(fact_6120_sorted__wrt_Ocases,axiom,
! [A: $tType,X: product_prod @ ( A > A > $o ) @ ( list @ A )] :
( ! [P8: A > A > $o] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ P8 @ ( nil @ A ) ) )
=> ~ ! [P8: A > A > $o,X5: A,Ys4: list @ A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ P8 @ ( cons @ A @ X5 @ Ys4 ) ) ) ) ).
% sorted_wrt.cases
thf(fact_6121_arg__min__list_Ocases,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [X: product_prod @ ( A > B ) @ ( list @ A )] :
( ! [F4: A > B,X5: A] :
( X
!= ( product_Pair @ ( A > B ) @ ( list @ A ) @ F4 @ ( cons @ A @ X5 @ ( nil @ A ) ) ) )
=> ( ! [F4: A > B,X5: A,Y5: A,Zs: list @ A] :
( X
!= ( product_Pair @ ( A > B ) @ ( list @ A ) @ F4 @ ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Zs ) ) ) )
=> ~ ! [A6: A > B] :
( X
!= ( product_Pair @ ( A > B ) @ ( list @ A ) @ A6 @ ( nil @ A ) ) ) ) ) ) ).
% arg_min_list.cases
thf(fact_6122_successively_Ocases,axiom,
! [A: $tType,X: product_prod @ ( A > A > $o ) @ ( list @ A )] :
( ! [P8: A > A > $o] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ P8 @ ( nil @ A ) ) )
=> ( ! [P8: A > A > $o,X5: A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ P8 @ ( cons @ A @ X5 @ ( nil @ A ) ) ) )
=> ~ ! [P8: A > A > $o,X5: A,Y5: A,Xs3: list @ A] :
( X
!= ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ P8 @ ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Xs3 ) ) ) ) ) ) ).
% successively.cases
thf(fact_6123_map__tailrec__rev_Ocases,axiom,
! [A: $tType,B: $tType,X: product_prod @ ( A > B ) @ ( product_prod @ ( list @ A ) @ ( list @ B ) )] :
( ! [F4: A > B,Bs2: list @ B] :
( X
!= ( product_Pair @ ( A > B ) @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ F4 @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( nil @ A ) @ Bs2 ) ) )
=> ~ ! [F4: A > B,A6: A,As: list @ A,Bs2: list @ B] :
( X
!= ( product_Pair @ ( A > B ) @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ F4 @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( cons @ A @ A6 @ As ) @ Bs2 ) ) ) ) ).
% map_tailrec_rev.cases
thf(fact_6124_list__update__code_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A] :
( ( list_update @ A @ ( cons @ A @ X @ Xs2 ) @ ( zero_zero @ nat ) @ Y )
= ( cons @ A @ Y @ Xs2 ) ) ).
% list_update_code(2)
thf(fact_6125_replicate__Suc,axiom,
! [A: $tType,N: nat,X: A] :
( ( replicate @ A @ ( suc @ N ) @ X )
= ( cons @ A @ X @ ( replicate @ A @ N @ X ) ) ) ).
% replicate_Suc
thf(fact_6126_list__update__code_I3_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,I3: nat,Y: A] :
( ( list_update @ A @ ( cons @ A @ X @ Xs2 ) @ ( suc @ I3 ) @ Y )
= ( cons @ A @ X @ ( list_update @ A @ Xs2 @ I3 @ Y ) ) ) ).
% list_update_code(3)
thf(fact_6127_take__Cons,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( take @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( case_nat @ ( list @ A ) @ ( nil @ A )
@ ^ [M4: nat] : ( cons @ A @ X @ ( take @ A @ M4 @ Xs2 ) )
@ N ) ) ).
% take_Cons
thf(fact_6128_Cons__in__subseqsD,axiom,
! [A: $tType,Y: A,Ys2: list @ A,Xs2: list @ A] :
( ( member @ ( list @ A ) @ ( cons @ A @ Y @ Ys2 ) @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) )
=> ( member @ ( list @ A ) @ Ys2 @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ) ).
% Cons_in_subseqsD
thf(fact_6129_nth__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A,N: nat] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= ( case_nat @ A @ X @ ( nth @ A @ Xs2 ) @ N ) ) ).
% nth_Cons
thf(fact_6130_Suc__le__length__iff,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( ? [X6: A,Ys: list @ A] :
( ( Xs2
= ( cons @ A @ X6 @ Ys ) )
& ( ord_less_eq @ nat @ N @ ( size_size @ ( list @ A ) @ Ys ) ) ) ) ) ).
% Suc_le_length_iff
thf(fact_6131_insort__is__Cons,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ B,F2: B > A,A2: B] :
( ! [X5: B] :
( ( member @ B @ X5 @ ( set2 @ B @ Xs2 ) )
=> ( ord_less_eq @ A @ ( F2 @ A2 ) @ ( F2 @ X5 ) ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ A2 @ Xs2 )
= ( cons @ B @ A2 @ Xs2 ) ) ) ) ).
% insort_is_Cons
thf(fact_6132_count__list_Osimps_I2_J,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A] :
( ( ( X = Y )
=> ( ( count_list @ A @ ( cons @ A @ X @ Xs2 ) @ Y )
= ( plus_plus @ nat @ ( count_list @ A @ Xs2 @ Y ) @ ( one_one @ nat ) ) ) )
& ( ( X != Y )
=> ( ( count_list @ A @ ( cons @ A @ X @ Xs2 ) @ Y )
= ( count_list @ A @ Xs2 @ Y ) ) ) ) ).
% count_list.simps(2)
thf(fact_6133_the__elem__set,axiom,
! [A: $tType,X: A] :
( ( the_elem @ A @ ( set2 @ A @ ( cons @ A @ X @ ( nil @ A ) ) ) )
= X ) ).
% the_elem_set
thf(fact_6134_list_Osize_I4_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X21 @ X22 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ X22 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% list.size(4)
thf(fact_6135_nth__Cons_H,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= X ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ).
% nth_Cons'
thf(fact_6136_list_Osize__gen_I2_J,axiom,
! [A: $tType,X: A > nat,X21: A,X22: list @ A] :
( ( size_list @ A @ X @ ( cons @ A @ X21 @ X22 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( X @ X21 ) @ ( size_list @ A @ X @ X22 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% list.size_gen(2)
thf(fact_6137_shuffles_Oelims,axiom,
! [A: $tType,X: list @ A,Xa2: list @ A,Y: set @ ( list @ A )] :
( ( ( shuffles @ A @ X @ Xa2 )
= Y )
=> ( ( ( X
= ( nil @ A ) )
=> ( Y
!= ( insert @ ( list @ A ) @ Xa2 @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) ) )
=> ( ( ( Xa2
= ( nil @ A ) )
=> ( Y
!= ( insert @ ( list @ A ) @ X @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) ) )
=> ~ ! [X5: A,Xs3: list @ A] :
( ( X
= ( cons @ A @ X5 @ Xs3 ) )
=> ! [Y5: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ Y5 @ Ys4 ) )
=> ( Y
!= ( sup_sup @ ( set @ ( list @ A ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X5 ) @ ( shuffles @ A @ Xs3 @ ( cons @ A @ Y5 @ Ys4 ) ) ) @ ( image @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ Y5 ) @ ( shuffles @ A @ ( cons @ A @ X5 @ Xs3 ) @ Ys4 ) ) ) ) ) ) ) ) ) ).
% shuffles.elims
thf(fact_6138_nth__equal__first__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A,N: nat] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= X )
= ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% nth_equal_first_eq
thf(fact_6139_nth__non__equal__first__eq,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A,N: nat] :
( ( X != Y )
=> ( ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N )
= Y )
= ( ( ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) )
= Y )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% nth_non_equal_first_eq
thf(fact_6140_take__Cons_H,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( take @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( nil @ A ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( take @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ Xs2 ) ) ) ) ) ).
% take_Cons'
thf(fact_6141_Cons__replicate__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A,N: nat,Y: A] :
( ( ( cons @ A @ X @ Xs2 )
= ( replicate @ A @ N @ Y ) )
= ( ( X = Y )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
& ( Xs2
= ( replicate @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ X ) ) ) ) ).
% Cons_replicate_eq
thf(fact_6142_Pow__set_I2_J,axiom,
! [B: $tType,X: B,Xs2: list @ B] :
( ( pow2 @ B @ ( set2 @ B @ ( cons @ B @ X @ Xs2 ) ) )
= ( sup_sup @ ( set @ ( set @ B ) ) @ ( pow2 @ B @ ( set2 @ B @ Xs2 ) ) @ ( image @ ( set @ B ) @ ( set @ B ) @ ( insert @ B @ X ) @ ( pow2 @ B @ ( set2 @ B @ Xs2 ) ) ) ) ) ).
% Pow_set(2)
thf(fact_6143_set__Cons__sing__Nil,axiom,
! [A: $tType,A3: set @ A] :
( ( set_Cons @ A @ A3 @ ( insert @ ( list @ A ) @ ( nil @ A ) @ ( bot_bot @ ( set @ ( list @ A ) ) ) ) )
= ( image @ A @ ( list @ A )
@ ^ [X6: A] : ( cons @ A @ X6 @ ( nil @ A ) )
@ A3 ) ) ).
% set_Cons_sing_Nil
thf(fact_6144_concat__inth,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys2: list @ A] :
( ( nth @ A @ ( append @ A @ Xs2 @ ( append @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ Ys2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= X ) ).
% concat_inth
thf(fact_6145_same__append__eq,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= ( append @ A @ Xs2 @ Zs2 ) )
= ( Ys2 = Zs2 ) ) ).
% same_append_eq
thf(fact_6146_append__same__eq,axiom,
! [A: $tType,Ys2: list @ A,Xs2: list @ A,Zs2: list @ A] :
( ( ( append @ A @ Ys2 @ Xs2 )
= ( append @ A @ Zs2 @ Xs2 ) )
= ( Ys2 = Zs2 ) ) ).
% append_same_eq
thf(fact_6147_append__assoc,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( append @ A @ ( append @ A @ Xs2 @ Ys2 ) @ Zs2 )
= ( append @ A @ Xs2 @ ( append @ A @ Ys2 @ Zs2 ) ) ) ).
% append_assoc
thf(fact_6148_append_Oassoc,axiom,
! [A: $tType,A2: list @ A,B2: list @ A,C2: list @ A] :
( ( append @ A @ ( append @ A @ A2 @ B2 ) @ C2 )
= ( append @ A @ A2 @ ( append @ A @ B2 @ C2 ) ) ) ).
% append.assoc
thf(fact_6149_append__is__Nil__conv,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= ( nil @ A ) )
= ( ( Xs2
= ( nil @ A ) )
& ( Ys2
= ( nil @ A ) ) ) ) ).
% append_is_Nil_conv
thf(fact_6150_Nil__is__append__conv,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( nil @ A )
= ( append @ A @ Xs2 @ Ys2 ) )
= ( ( Xs2
= ( nil @ A ) )
& ( Ys2
= ( nil @ A ) ) ) ) ).
% Nil_is_append_conv
thf(fact_6151_self__append__conv2,axiom,
! [A: $tType,Y: list @ A,Xs2: list @ A] :
( ( Y
= ( append @ A @ Xs2 @ Y ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% self_append_conv2
thf(fact_6152_append__self__conv2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= Ys2 )
= ( Xs2
= ( nil @ A ) ) ) ).
% append_self_conv2
thf(fact_6153_self__append__conv,axiom,
! [A: $tType,Y: list @ A,Ys2: list @ A] :
( ( Y
= ( append @ A @ Y @ Ys2 ) )
= ( Ys2
= ( nil @ A ) ) ) ).
% self_append_conv
thf(fact_6154_append__self__conv,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= Xs2 )
= ( Ys2
= ( nil @ A ) ) ) ).
% append_self_conv
thf(fact_6155_append__Nil2,axiom,
! [A: $tType,Xs2: list @ A] :
( ( append @ A @ Xs2 @ ( nil @ A ) )
= Xs2 ) ).
% append_Nil2
thf(fact_6156_append_Oright__neutral,axiom,
! [A: $tType,A2: list @ A] :
( ( append @ A @ A2 @ ( nil @ A ) )
= A2 ) ).
% append.right_neutral
thf(fact_6157_append__eq__append__conv,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Us: list @ A,Vs: list @ A] :
( ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) )
| ( ( size_size @ ( list @ A ) @ Us )
= ( size_size @ ( list @ A ) @ Vs ) ) )
=> ( ( ( append @ A @ Xs2 @ Us )
= ( append @ A @ Ys2 @ Vs ) )
= ( ( Xs2 = Ys2 )
& ( Us = Vs ) ) ) ) ).
% append_eq_append_conv
thf(fact_6158_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord4507533701916653071of_set @ nat @ ( set_ord_lessThan @ nat @ ( suc @ K ) ) )
= ( append @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_ord_lessThan @ nat @ K ) ) @ ( cons @ nat @ K @ ( nil @ nat ) ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_6159_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord4507533701916653071of_set @ nat @ ( set_ord_atMost @ nat @ ( suc @ K ) ) )
= ( append @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_ord_atMost @ nat @ K ) ) @ ( cons @ nat @ ( suc @ K ) @ ( nil @ nat ) ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_6160_concat__append,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),Ys2: list @ ( list @ A )] :
( ( concat @ A @ ( append @ ( list @ A ) @ Xs2 @ Ys2 ) )
= ( append @ A @ ( concat @ A @ Xs2 ) @ ( concat @ A @ Ys2 ) ) ) ).
% concat_append
thf(fact_6161_removeAll__append,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A] :
( ( removeAll @ A @ X @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( removeAll @ A @ X @ Xs2 ) @ ( removeAll @ A @ X @ Ys2 ) ) ) ).
% removeAll_append
thf(fact_6162_append1__eq__conv,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys2: list @ A,Y: A] :
( ( ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) )
= ( append @ A @ Ys2 @ ( cons @ A @ Y @ ( nil @ A ) ) ) )
= ( ( Xs2 = Ys2 )
& ( X = Y ) ) ) ).
% append1_eq_conv
thf(fact_6163_length__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( size_size @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys2 ) ) ) ).
% length_append
thf(fact_6164_set__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( set2 @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) ) ) ).
% set_append
thf(fact_6165_size__list__append,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A,Ys2: list @ A] :
( ( size_list @ A @ F2 @ ( append @ A @ Xs2 @ Ys2 ) )
= ( plus_plus @ nat @ ( size_list @ A @ F2 @ Xs2 ) @ ( size_list @ A @ F2 @ Ys2 ) ) ) ).
% size_list_append
thf(fact_6166_nth__append__length,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys2: list @ A] :
( ( nth @ A @ ( append @ A @ Xs2 @ ( cons @ A @ X @ Ys2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= X ) ).
% nth_append_length
thf(fact_6167_nth__append__length__plus,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,N: nat] :
( ( nth @ A @ ( append @ A @ Xs2 @ Ys2 ) @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) )
= ( nth @ A @ Ys2 @ N ) ) ).
% nth_append_length_plus
thf(fact_6168_list__update__length,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys2: list @ A,Y: A] :
( ( list_update @ A @ ( append @ A @ Xs2 @ ( cons @ A @ X @ Ys2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) @ Y )
= ( append @ A @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) ) ).
% list_update_length
thf(fact_6169_take__append,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Ys2: list @ A] :
( ( take @ A @ N @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( take @ A @ N @ Xs2 ) @ ( take @ A @ ( minus_minus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ Ys2 ) ) ) ).
% take_append
thf(fact_6170_distinct__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( distinct @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( ( distinct @ A @ Xs2 )
& ( distinct @ A @ Ys2 )
& ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% distinct_append
thf(fact_6171_n__lists__Nil,axiom,
! [A: $tType,N: nat] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( n_lists @ A @ N @ ( nil @ A ) )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( n_lists @ A @ N @ ( nil @ A ) )
= ( nil @ ( list @ A ) ) ) ) ) ).
% n_lists_Nil
thf(fact_6172_concat__eq__appendD,axiom,
! [A: $tType,Xss: list @ ( list @ A ),Ys2: list @ A,Zs2: list @ A] :
( ( ( concat @ A @ Xss )
= ( append @ A @ Ys2 @ Zs2 ) )
=> ( ( Xss
!= ( nil @ ( list @ A ) ) )
=> ? [Xss1: list @ ( list @ A ),Xs3: list @ A,Xs4: list @ A,Xss22: list @ ( list @ A )] :
( ( Xss
= ( append @ ( list @ A ) @ Xss1 @ ( cons @ ( list @ A ) @ ( append @ A @ Xs3 @ Xs4 ) @ Xss22 ) ) )
& ( Ys2
= ( append @ A @ ( concat @ A @ Xss1 ) @ Xs3 ) )
& ( Zs2
= ( append @ A @ Xs4 @ ( concat @ A @ Xss22 ) ) ) ) ) ) ).
% concat_eq_appendD
thf(fact_6173_concat__eq__append__conv,axiom,
! [A: $tType,Xss: list @ ( list @ A ),Ys2: list @ A,Zs2: list @ A] :
( ( ( concat @ A @ Xss )
= ( append @ A @ Ys2 @ Zs2 ) )
= ( ( ( Xss
= ( nil @ ( list @ A ) ) )
=> ( ( Ys2
= ( nil @ A ) )
& ( Zs2
= ( nil @ A ) ) ) )
& ( ( Xss
!= ( nil @ ( list @ A ) ) )
=> ? [Xss12: list @ ( list @ A ),Xs: list @ A,Xs5: list @ A,Xss23: list @ ( list @ A )] :
( ( Xss
= ( append @ ( list @ A ) @ Xss12 @ ( cons @ ( list @ A ) @ ( append @ A @ Xs @ Xs5 ) @ Xss23 ) ) )
& ( Ys2
= ( append @ A @ ( concat @ A @ Xss12 ) @ Xs ) )
& ( Zs2
= ( append @ A @ Xs5 @ ( concat @ A @ Xss23 ) ) ) ) ) ) ) ).
% concat_eq_append_conv
thf(fact_6174_rev__nonempty__induct,axiom,
! [A: $tType,Xs2: list @ A,P: ( list @ A ) > $o] :
( ( Xs2
!= ( nil @ A ) )
=> ( ! [X5: A] : ( P @ ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ( ! [X5: A,Xs3: list @ A] :
( ( Xs3
!= ( nil @ A ) )
=> ( ( P @ Xs3 )
=> ( P @ ( append @ A @ Xs3 @ ( cons @ A @ X5 @ ( nil @ A ) ) ) ) ) )
=> ( P @ Xs2 ) ) ) ) ).
% rev_nonempty_induct
thf(fact_6175_append__eq__Cons__conv,axiom,
! [A: $tType,Ys2: list @ A,Zs2: list @ A,X: A,Xs2: list @ A] :
( ( ( append @ A @ Ys2 @ Zs2 )
= ( cons @ A @ X @ Xs2 ) )
= ( ( ( Ys2
= ( nil @ A ) )
& ( Zs2
= ( cons @ A @ X @ Xs2 ) ) )
| ? [Ys6: list @ A] :
( ( Ys2
= ( cons @ A @ X @ Ys6 ) )
& ( ( append @ A @ Ys6 @ Zs2 )
= Xs2 ) ) ) ) ).
% append_eq_Cons_conv
thf(fact_6176_Cons__eq__append__conv,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( cons @ A @ X @ Xs2 )
= ( append @ A @ Ys2 @ Zs2 ) )
= ( ( ( Ys2
= ( nil @ A ) )
& ( ( cons @ A @ X @ Xs2 )
= Zs2 ) )
| ? [Ys6: list @ A] :
( ( ( cons @ A @ X @ Ys6 )
= Ys2 )
& ( Xs2
= ( append @ A @ Ys6 @ Zs2 ) ) ) ) ) ).
% Cons_eq_append_conv
thf(fact_6177_eq__Nil__appendI,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2 = Ys2 )
=> ( Xs2
= ( append @ A @ ( nil @ A ) @ Ys2 ) ) ) ).
% eq_Nil_appendI
thf(fact_6178_rev__exhaust,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ~ ! [Ys4: list @ A,Y5: A] :
( Xs2
!= ( append @ A @ Ys4 @ ( cons @ A @ Y5 @ ( nil @ A ) ) ) ) ) ).
% rev_exhaust
thf(fact_6179_rev__induct,axiom,
! [A: $tType,P: ( list @ A ) > $o,Xs2: list @ A] :
( ( P @ ( nil @ A ) )
=> ( ! [X5: A,Xs3: list @ A] :
( ( P @ Xs3 )
=> ( P @ ( append @ A @ Xs3 @ ( cons @ A @ X5 @ ( nil @ A ) ) ) ) )
=> ( P @ Xs2 ) ) ) ).
% rev_induct
thf(fact_6180_append_Oleft__neutral,axiom,
! [A: $tType,A2: list @ A] :
( ( append @ A @ ( nil @ A ) @ A2 )
= A2 ) ).
% append.left_neutral
thf(fact_6181_append__Nil,axiom,
! [A: $tType,Ys2: list @ A] :
( ( append @ A @ ( nil @ A ) @ Ys2 )
= Ys2 ) ).
% append_Nil
thf(fact_6182_listset_Osimps_I2_J,axiom,
! [A: $tType,A3: set @ A,As2: list @ ( set @ A )] :
( ( listset @ A @ ( cons @ ( set @ A ) @ A3 @ As2 ) )
= ( set_Cons @ A @ A3 @ ( listset @ A @ As2 ) ) ) ).
% listset.simps(2)
thf(fact_6183_split__list,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs ) ) ) ) ).
% split_list
thf(fact_6184_split__list__last,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Zs ) ) ) ) ).
% split_list_last
thf(fact_6185_split__list__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ? [Ys4: list @ A,X5: A] :
( ? [Zs: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
& ( P @ X5 ) ) ) ).
% split_list_prop
thf(fact_6186_split__list__first,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Ys4 ) ) ) ) ).
% split_list_first
thf(fact_6187_split__list__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ~ ! [Ys4: list @ A,X5: A] :
( ? [Zs: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
=> ~ ( P @ X5 ) ) ) ).
% split_list_propE
thf(fact_6188_append__Cons__eq__iff,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A,Xs6: list @ A,Ys7: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( member @ A @ X @ ( set2 @ A @ Ys2 ) )
=> ( ( ( append @ A @ Xs2 @ ( cons @ A @ X @ Ys2 ) )
= ( append @ A @ Xs6 @ ( cons @ A @ X @ Ys7 ) ) )
= ( ( Xs2 = Xs6 )
& ( Ys2 = Ys7 ) ) ) ) ) ).
% append_Cons_eq_iff
thf(fact_6189_in__set__conv__decomp,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys: list @ A,Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys @ ( cons @ A @ X @ Zs3 ) ) ) ) ) ).
% in_set_conv_decomp
thf(fact_6190_split__list__last__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ? [Ys4: list @ A,X5: A,Zs: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
& ( P @ X5 )
& ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Zs ) )
=> ~ ( P @ Xa ) ) ) ) ).
% split_list_last_prop
thf(fact_6191_split__list__first__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ? [Ys4: list @ A,X5: A] :
( ? [Zs: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
& ( P @ X5 )
& ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ~ ( P @ Xa ) ) ) ) ).
% split_list_first_prop
thf(fact_6192_split__list__last__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ~ ! [Ys4: list @ A,X5: A,Zs: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
=> ( ( P @ X5 )
=> ~ ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Zs ) )
=> ~ ( P @ Xa ) ) ) ) ) ).
% split_list_last_propE
thf(fact_6193_split__list__first__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ~ ! [Ys4: list @ A,X5: A] :
( ? [Zs: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X5 @ Zs ) ) )
=> ( ( P @ X5 )
=> ~ ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ~ ( P @ Xa ) ) ) ) ) ).
% split_list_first_propE
thf(fact_6194_in__set__conv__decomp__last,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys: list @ A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys @ ( cons @ A @ X @ Zs3 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Zs3 ) ) ) ) ) ).
% in_set_conv_decomp_last
thf(fact_6195_in__set__conv__decomp__first,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys: list @ A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys @ ( cons @ A @ X @ Zs3 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Ys ) ) ) ) ) ).
% in_set_conv_decomp_first
thf(fact_6196_split__list__last__prop__iff,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) )
= ( ? [Ys: list @ A,X6: A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys @ ( cons @ A @ X6 @ Zs3 ) ) )
& ( P @ X6 )
& ! [Y6: A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Zs3 ) )
=> ~ ( P @ Y6 ) ) ) ) ) ).
% split_list_last_prop_iff
thf(fact_6197_split__list__first__prop__iff,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) )
= ( ? [Ys: list @ A,X6: A] :
( ? [Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys @ ( cons @ A @ X6 @ Zs3 ) ) )
& ( P @ X6 )
& ! [Y6: A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Ys ) )
=> ~ ( P @ Y6 ) ) ) ) ) ).
% split_list_first_prop_iff
thf(fact_6198_append__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A] :
( ( append @ A @ ( cons @ A @ X @ Xs2 ) @ Ys2 )
= ( cons @ A @ X @ ( append @ A @ Xs2 @ Ys2 ) ) ) ).
% append_Cons
thf(fact_6199_Cons__eq__appendI,axiom,
! [A: $tType,X: A,Xs1: list @ A,Ys2: list @ A,Xs2: list @ A,Zs2: list @ A] :
( ( ( cons @ A @ X @ Xs1 )
= Ys2 )
=> ( ( Xs2
= ( append @ A @ Xs1 @ Zs2 ) )
=> ( ( cons @ A @ X @ Xs2 )
= ( append @ A @ Ys2 @ Zs2 ) ) ) ) ).
% Cons_eq_appendI
thf(fact_6200_concat_Osimps_I2_J,axiom,
! [A: $tType,X: list @ A,Xs2: list @ ( list @ A )] :
( ( concat @ A @ ( cons @ ( list @ A ) @ X @ Xs2 ) )
= ( append @ A @ X @ ( concat @ A @ Xs2 ) ) ) ).
% concat.simps(2)
thf(fact_6201_replicate__app__Cons__same,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( append @ A @ ( replicate @ A @ N @ X ) @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( append @ A @ ( replicate @ A @ N @ X ) @ Xs2 ) ) ) ).
% replicate_app_Cons_same
thf(fact_6202_remdups__append2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( remdups @ A @ ( append @ A @ Xs2 @ ( remdups @ A @ Ys2 ) ) )
= ( remdups @ A @ ( append @ A @ Xs2 @ Ys2 ) ) ) ).
% remdups_append2
thf(fact_6203_remove1__append,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( remove1 @ A @ X @ Xs2 ) @ Ys2 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ Xs2 @ ( remove1 @ A @ X @ Ys2 ) ) ) ) ) ).
% remove1_append
thf(fact_6204_replicate__add,axiom,
! [A: $tType,N: nat,M: nat,X: A] :
( ( replicate @ A @ ( plus_plus @ nat @ N @ M ) @ X )
= ( append @ A @ ( replicate @ A @ N @ X ) @ ( replicate @ A @ M @ X ) ) ) ).
% replicate_add
thf(fact_6205_append__replicate__commute,axiom,
! [A: $tType,N: nat,X: A,K: nat] :
( ( append @ A @ ( replicate @ A @ N @ X ) @ ( replicate @ A @ K @ X ) )
= ( append @ A @ ( replicate @ A @ K @ X ) @ ( replicate @ A @ N @ X ) ) ) ).
% append_replicate_commute
thf(fact_6206_append__eq__append__conv2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A,Ts: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= ( append @ A @ Zs2 @ Ts ) )
= ( ? [Us2: list @ A] :
( ( ( Xs2
= ( append @ A @ Zs2 @ Us2 ) )
& ( ( append @ A @ Us2 @ Ys2 )
= Ts ) )
| ( ( ( append @ A @ Xs2 @ Us2 )
= Zs2 )
& ( Ys2
= ( append @ A @ Us2 @ Ts ) ) ) ) ) ) ).
% append_eq_append_conv2
thf(fact_6207_append__eq__appendI,axiom,
! [A: $tType,Xs2: list @ A,Xs1: list @ A,Zs2: list @ A,Ys2: list @ A,Us: list @ A] :
( ( ( append @ A @ Xs2 @ Xs1 )
= Zs2 )
=> ( ( Ys2
= ( append @ A @ Xs1 @ Us ) )
=> ( ( append @ A @ Xs2 @ Ys2 )
= ( append @ A @ Zs2 @ Us ) ) ) ) ).
% append_eq_appendI
thf(fact_6208_enumerate__append__eq,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Ys2: list @ A] :
( ( enumerate @ A @ N @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) @ ( enumerate @ A @ ( plus_plus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ Ys2 ) ) ) ).
% enumerate_append_eq
thf(fact_6209_comm__append__are__replicate,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= ( append @ A @ Ys2 @ Xs2 ) )
=> ? [M3: nat,N2: nat,Zs: list @ A] :
( ( ( concat @ A @ ( replicate @ ( list @ A ) @ M3 @ Zs ) )
= Xs2 )
& ( ( concat @ A @ ( replicate @ ( list @ A ) @ N2 @ Zs ) )
= Ys2 ) ) ) ).
% comm_append_are_replicate
thf(fact_6210_same__length__different,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2 != Ys2 )
=> ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ? [Pre: list @ A,X5: A,Xs4: list @ A,Y5: A,Ys5: list @ A] :
( ( X5 != Y5 )
& ( Xs2
= ( append @ A @ Pre @ ( append @ A @ ( cons @ A @ X5 @ ( nil @ A ) ) @ Xs4 ) ) )
& ( Ys2
= ( append @ A @ Pre @ ( append @ A @ ( cons @ A @ Y5 @ ( nil @ A ) ) @ Ys5 ) ) ) ) ) ) ).
% same_length_different
thf(fact_6211_not__distinct__decomp,axiom,
! [A: $tType,Ws: list @ A] :
( ~ ( distinct @ A @ Ws )
=> ? [Xs3: list @ A,Ys4: list @ A,Zs: list @ A,Y5: A] :
( Ws
= ( append @ A @ Xs3 @ ( append @ A @ ( cons @ A @ Y5 @ ( nil @ A ) ) @ ( append @ A @ Ys4 @ ( append @ A @ ( cons @ A @ Y5 @ ( nil @ A ) ) @ Zs ) ) ) ) ) ) ).
% not_distinct_decomp
thf(fact_6212_not__distinct__conv__prefix,axiom,
! [A: $tType,As3: list @ A] :
( ( ~ ( distinct @ A @ As3 ) )
= ( ? [Xs: list @ A,Y6: A,Ys: list @ A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Xs ) )
& ( distinct @ A @ Xs )
& ( As3
= ( append @ A @ Xs @ ( cons @ A @ Y6 @ Ys ) ) ) ) ) ) ).
% not_distinct_conv_prefix
thf(fact_6213_list__update__append1,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,Ys2: list @ A,X: A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys2 ) @ I3 @ X )
= ( append @ A @ ( list_update @ A @ Xs2 @ I3 @ X ) @ Ys2 ) ) ) ).
% list_update_append1
thf(fact_6214_replicate__append__same,axiom,
! [A: $tType,I3: nat,X: A] :
( ( append @ A @ ( replicate @ A @ I3 @ X ) @ ( cons @ A @ X @ ( nil @ A ) ) )
= ( cons @ A @ X @ ( replicate @ A @ I3 @ X ) ) ) ).
% replicate_append_same
thf(fact_6215_remove1__split,axiom,
! [A: $tType,A2: A,Xs2: list @ A,Ys2: list @ A] :
( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
=> ( ( ( remove1 @ A @ A2 @ Xs2 )
= Ys2 )
= ( ? [Ls: list @ A,Rs: list @ A] :
( ( Xs2
= ( append @ A @ Ls @ ( cons @ A @ A2 @ Rs ) ) )
& ~ ( member @ A @ A2 @ ( set2 @ A @ Ls ) )
& ( Ys2
= ( append @ A @ Ls @ Rs ) ) ) ) ) ) ).
% remove1_split
thf(fact_6216_rotate1_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( rotate1 @ A @ ( cons @ A @ X @ Xs2 ) )
= ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) ) ).
% rotate1.simps(2)
thf(fact_6217_subseqs_Osimps_I1_J,axiom,
! [A: $tType] :
( ( subseqs @ A @ ( nil @ A ) )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) ).
% subseqs.simps(1)
thf(fact_6218_product__lists_Osimps_I1_J,axiom,
! [A: $tType] :
( ( product_lists @ A @ ( nil @ ( list @ A ) ) )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) ).
% product_lists.simps(1)
thf(fact_6219_length__append__singleton,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( size_size @ ( list @ A ) @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) )
= ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_append_singleton
thf(fact_6220_length__Suc__conv__rev,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( suc @ N ) )
= ( ? [Y6: A,Ys: list @ A] :
( ( Xs2
= ( append @ A @ Ys @ ( cons @ A @ Y6 @ ( nil @ A ) ) ) )
& ( ( size_size @ ( list @ A ) @ Ys )
= N ) ) ) ) ).
% length_Suc_conv_rev
thf(fact_6221_nth__append,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Ys2: list @ A] :
( ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( append @ A @ Xs2 @ Ys2 ) @ N )
= ( nth @ A @ Xs2 @ N ) ) )
& ( ~ ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( append @ A @ Xs2 @ Ys2 ) @ N )
= ( nth @ A @ Ys2 @ ( minus_minus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% nth_append
thf(fact_6222_list__update__append,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Ys2: list @ A,X: A] :
( ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys2 ) @ N @ X )
= ( append @ A @ ( list_update @ A @ Xs2 @ N @ X ) @ Ys2 ) ) )
& ( ~ ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys2 ) @ N @ X )
= ( append @ A @ Xs2 @ ( list_update @ A @ Ys2 @ ( minus_minus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ X ) ) ) ) ) ).
% list_update_append
thf(fact_6223_n__lists_Osimps_I1_J,axiom,
! [A: $tType,Xs2: list @ A] :
( ( n_lists @ A @ ( zero_zero @ nat ) @ Xs2 )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) ).
% n_lists.simps(1)
thf(fact_6224_horner__sum__append,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_1 @ A )
=> ! [F2: B > A,A2: A,Xs2: list @ B,Ys2: list @ B] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( append @ B @ Xs2 @ Ys2 ) )
= ( plus_plus @ A @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Xs2 ) @ ( times_times @ A @ ( power_power @ A @ A2 @ ( size_size @ ( list @ B ) @ Xs2 ) ) @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Ys2 ) ) ) ) ) ).
% horner_sum_append
thf(fact_6225_comm__append__is__replicate,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( Ys2
!= ( nil @ A ) )
=> ( ( ( append @ A @ Xs2 @ Ys2 )
= ( append @ A @ Ys2 @ Xs2 ) )
=> ? [N2: nat,Zs: list @ A] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N2 )
& ( ( concat @ A @ ( replicate @ ( list @ A ) @ N2 @ Zs ) )
= ( append @ A @ Xs2 @ Ys2 ) ) ) ) ) ) ).
% comm_append_is_replicate
thf(fact_6226_take__Suc__conv__app__nth,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( take @ A @ ( suc @ I3 ) @ Xs2 )
= ( append @ A @ ( take @ A @ I3 @ Xs2 ) @ ( cons @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( nil @ A ) ) ) ) ) ).
% take_Suc_conv_app_nth
thf(fact_6227_nth__repl,axiom,
! [A: $tType,M: nat,Xs2: list @ A,N: nat,X: A] :
( ( ord_less @ nat @ M @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( M != N )
=> ( ( nth @ A @ ( append @ A @ ( take @ A @ N @ Xs2 ) @ ( append @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ ( drop @ A @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) @ Xs2 ) ) ) @ M )
= ( nth @ A @ Xs2 @ M ) ) ) ) ) ).
% nth_repl
thf(fact_6228_pos__n__replace,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Y: A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ ( append @ A @ ( take @ A @ N @ Xs2 ) @ ( append @ A @ ( cons @ A @ Y @ ( nil @ A ) ) @ ( drop @ A @ ( suc @ N ) @ Xs2 ) ) ) ) ) ) ).
% pos_n_replace
thf(fact_6229_drop0,axiom,
! [A: $tType] :
( ( drop @ A @ ( zero_zero @ nat ) )
= ( ^ [X6: list @ A] : X6 ) ) ).
% drop0
thf(fact_6230_drop__drop,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A] :
( ( drop @ A @ N @ ( drop @ A @ M @ Xs2 ) )
= ( drop @ A @ ( plus_plus @ nat @ N @ M ) @ Xs2 ) ) ).
% drop_drop
thf(fact_6231_drop__Suc__Cons,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( drop @ A @ ( suc @ N ) @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ N @ Xs2 ) ) ).
% drop_Suc_Cons
thf(fact_6232_length__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( drop @ A @ N @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% length_drop
thf(fact_6233_drop__update__cancel,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ N @ M )
=> ( ( drop @ A @ M @ ( list_update @ A @ Xs2 @ N @ X ) )
= ( drop @ A @ M @ Xs2 ) ) ) ).
% drop_update_cancel
thf(fact_6234_append__take__drop__id,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( append @ A @ ( take @ A @ N @ Xs2 ) @ ( drop @ A @ N @ Xs2 ) )
= Xs2 ) ).
% append_take_drop_id
thf(fact_6235_drop__replicate,axiom,
! [A: $tType,I3: nat,K: nat,X: A] :
( ( drop @ A @ I3 @ ( replicate @ A @ K @ X ) )
= ( replicate @ A @ ( minus_minus @ nat @ K @ I3 ) @ X ) ) ).
% drop_replicate
thf(fact_6236_drop__all,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N )
=> ( ( drop @ A @ N @ Xs2 )
= ( nil @ A ) ) ) ).
% drop_all
thf(fact_6237_drop__eq__Nil,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( drop @ A @ N @ Xs2 )
= ( nil @ A ) )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% drop_eq_Nil
thf(fact_6238_drop__eq__Nil2,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( nil @ A )
= ( drop @ A @ N @ Xs2 ) )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% drop_eq_Nil2
thf(fact_6239_drop__append,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Ys2: list @ A] :
( ( drop @ A @ N @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( drop @ A @ N @ Xs2 ) @ ( drop @ A @ ( minus_minus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ Ys2 ) ) ) ).
% drop_append
thf(fact_6240_drop__Cons__numeral,axiom,
! [A: $tType,V: num,X: A,Xs2: list @ A] :
( ( drop @ A @ ( numeral_numeral @ nat @ V ) @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V ) @ ( one_one @ nat ) ) @ Xs2 ) ) ).
% drop_Cons_numeral
thf(fact_6241_nth__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A,I3: nat] :
( ( ord_less_eq @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( drop @ A @ N @ Xs2 ) @ I3 )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ N @ I3 ) ) ) ) ).
% nth_drop
thf(fact_6242_nth__via__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A,Y: A,Ys2: list @ A] :
( ( ( drop @ A @ N @ Xs2 )
= ( cons @ A @ Y @ Ys2 ) )
=> ( ( nth @ A @ Xs2 @ N )
= Y ) ) ).
% nth_via_drop
thf(fact_6243_set__drop__subset,axiom,
! [A: $tType,N: nat,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( drop @ A @ N @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_drop_subset
thf(fact_6244_drop__take,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A] :
( ( drop @ A @ N @ ( take @ A @ M @ Xs2 ) )
= ( take @ A @ ( minus_minus @ nat @ M @ N ) @ ( drop @ A @ N @ Xs2 ) ) ) ).
% drop_take
thf(fact_6245_take__drop,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A] :
( ( take @ A @ N @ ( drop @ A @ M @ Xs2 ) )
= ( drop @ A @ M @ ( take @ A @ ( plus_plus @ nat @ N @ M ) @ Xs2 ) ) ) ).
% take_drop
thf(fact_6246_in__set__dropD,axiom,
! [A: $tType,X: A,N: nat,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( drop @ A @ N @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_dropD
thf(fact_6247_distinct__drop,axiom,
! [A: $tType,Xs2: list @ A,I3: nat] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( drop @ A @ I3 @ Xs2 ) ) ) ).
% distinct_drop
thf(fact_6248_drop__0,axiom,
! [A: $tType,Xs2: list @ A] :
( ( drop @ A @ ( zero_zero @ nat ) @ Xs2 )
= Xs2 ) ).
% drop_0
thf(fact_6249_drop__Nil,axiom,
! [A: $tType,N: nat] :
( ( drop @ A @ N @ ( nil @ A ) )
= ( nil @ A ) ) ).
% drop_Nil
thf(fact_6250_set__drop__subset__set__drop,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( drop @ A @ M @ Xs2 ) ) @ ( set2 @ A @ ( drop @ A @ N @ Xs2 ) ) ) ) ).
% set_drop_subset_set_drop
thf(fact_6251_drop__update__swap,axiom,
! [A: $tType,M: nat,N: nat,Xs2: list @ A,X: A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( drop @ A @ M @ ( list_update @ A @ Xs2 @ N @ X ) )
= ( list_update @ A @ ( drop @ A @ M @ Xs2 ) @ ( minus_minus @ nat @ N @ M ) @ X ) ) ) ).
% drop_update_swap
thf(fact_6252_append__eq__conv__conj,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( append @ A @ Xs2 @ Ys2 )
= Zs2 )
= ( ( Xs2
= ( take @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ Zs2 ) )
& ( Ys2
= ( drop @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ Zs2 ) ) ) ) ).
% append_eq_conv_conj
thf(fact_6253_take__add,axiom,
! [A: $tType,I3: nat,J: nat,Xs2: list @ A] :
( ( take @ A @ ( plus_plus @ nat @ I3 @ J ) @ Xs2 )
= ( append @ A @ ( take @ A @ I3 @ Xs2 ) @ ( take @ A @ J @ ( drop @ A @ I3 @ Xs2 ) ) ) ) ).
% take_add
thf(fact_6254_drop__Cons,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( drop @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( case_nat @ ( list @ A ) @ ( cons @ A @ X @ Xs2 )
@ ^ [M4: nat] : ( drop @ A @ M4 @ Xs2 )
@ N ) ) ).
% drop_Cons
thf(fact_6255_drop__Cons_H,axiom,
! [A: $tType,N: nat,X: A,Xs2: list @ A] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( drop @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ Xs2 ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( drop @ A @ N @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ Xs2 ) ) ) ) ).
% drop_Cons'
thf(fact_6256_append__eq__append__conv__if,axiom,
! [A: $tType,Xs_1: list @ A,Xs_2: list @ A,Ys_1: list @ A,Ys_2: list @ A] :
( ( ( append @ A @ Xs_1 @ Xs_2 )
= ( append @ A @ Ys_1 @ Ys_2 ) )
= ( ( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs_1 ) @ ( size_size @ ( list @ A ) @ Ys_1 ) )
=> ( ( Xs_1
= ( take @ A @ ( size_size @ ( list @ A ) @ Xs_1 ) @ Ys_1 ) )
& ( Xs_2
= ( append @ A @ ( drop @ A @ ( size_size @ ( list @ A ) @ Xs_1 ) @ Ys_1 ) @ Ys_2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs_1 ) @ ( size_size @ ( list @ A ) @ Ys_1 ) )
=> ( ( ( take @ A @ ( size_size @ ( list @ A ) @ Ys_1 ) @ Xs_1 )
= Ys_1 )
& ( ( append @ A @ ( drop @ A @ ( size_size @ ( list @ A ) @ Ys_1 ) @ Xs_1 ) @ Xs_2 )
= Ys_2 ) ) ) ) ) ).
% append_eq_append_conv_if
thf(fact_6257_Cons__nth__drop__Suc,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( cons @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( drop @ A @ ( suc @ I3 ) @ Xs2 ) )
= ( drop @ A @ I3 @ Xs2 ) ) ) ).
% Cons_nth_drop_Suc
thf(fact_6258_set__take__disj__set__drop__if__distinct,axiom,
! [A: $tType,Vs: list @ A,I3: nat,J: nat] :
( ( distinct @ A @ Vs )
=> ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ I3 @ Vs ) ) @ ( set2 @ A @ ( drop @ A @ J @ Vs ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_take_disj_set_drop_if_distinct
thf(fact_6259_id__take__nth__drop,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( Xs2
= ( append @ A @ ( take @ A @ I3 @ Xs2 ) @ ( cons @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( drop @ A @ ( suc @ I3 ) @ Xs2 ) ) ) ) ) ).
% id_take_nth_drop
thf(fact_6260_upd__conv__take__nth__drop,axiom,
! [A: $tType,I3: nat,Xs2: list @ A,A2: A] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ Xs2 @ I3 @ A2 )
= ( append @ A @ ( take @ A @ I3 @ Xs2 ) @ ( cons @ A @ A2 @ ( drop @ A @ ( suc @ I3 ) @ Xs2 ) ) ) ) ) ).
% upd_conv_take_nth_drop
thf(fact_6261_Pow__fold,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( pow2 @ A @ A3 )
= ( finite_fold @ A @ ( set @ ( set @ A ) )
@ ^ [X6: A,A7: set @ ( set @ A )] : ( sup_sup @ ( set @ ( set @ A ) ) @ A7 @ ( image @ ( set @ A ) @ ( set @ A ) @ ( insert @ A @ X6 ) @ A7 ) )
@ ( insert @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) )
@ A3 ) ) ) ).
% Pow_fold
thf(fact_6262_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I: int,J2: int,Js: list @ int] : ( if @ ( list @ int ) @ ( ord_less @ int @ J2 @ I ) @ Js @ ( upto_aux @ I @ ( minus_minus @ int @ J2 @ ( one_one @ int ) ) @ ( cons @ int @ J2 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_6263_fold__empty,axiom,
! [B: $tType,A: $tType,F2: B > A > A,Z2: A] :
( ( finite_fold @ B @ A @ F2 @ Z2 @ ( bot_bot @ ( set @ B ) ) )
= Z2 ) ).
% fold_empty
thf(fact_6264_Sup__fold__sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( complete_Sup_Sup @ A @ A3 )
= ( finite_fold @ A @ A @ ( sup_sup @ A ) @ ( bot_bot @ A ) @ A3 ) ) ) ) ).
% Sup_fold_sup
thf(fact_6265_sum_Oeq__fold,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ( ( groups7311177749621191930dd_sum @ B @ A )
= ( ^ [G2: B > A] : ( finite_fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( plus_plus @ A ) @ G2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% sum.eq_fold
thf(fact_6266_prod_Oeq__fold,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ( ( groups7121269368397514597t_prod @ B @ A )
= ( ^ [G2: B > A] : ( finite_fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( times_times @ A ) @ G2 ) @ ( one_one @ A ) ) ) ) ) ).
% prod.eq_fold
thf(fact_6267_image__fold__insert,axiom,
! [B: $tType,A: $tType,A3: set @ A,F2: A > B] :
( ( finite_finite @ A @ A3 )
=> ( ( image @ A @ B @ F2 @ A3 )
= ( finite_fold @ A @ ( set @ B )
@ ^ [K3: A] : ( insert @ B @ ( F2 @ K3 ) )
@ ( bot_bot @ ( set @ B ) )
@ A3 ) ) ) ).
% image_fold_insert
thf(fact_6268_SUP__fold__sup,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ B,F2: B > A] :
( ( finite_finite @ B @ A3 )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) )
= ( finite_fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( sup_sup @ A ) @ F2 ) @ ( bot_bot @ A ) @ A3 ) ) ) ) ).
% SUP_fold_sup
thf(fact_6269_upto_Opsimps,axiom,
! [I3: int,J: int] :
( ( accp @ ( product_prod @ int @ int ) @ upto_rel @ ( product_Pair @ int @ int @ I3 @ J ) )
=> ( ( ( ord_less_eq @ int @ I3 @ J )
=> ( ( upto @ I3 @ J )
= ( cons @ int @ I3 @ ( upto @ ( plus_plus @ int @ I3 @ ( one_one @ int ) ) @ J ) ) ) )
& ( ~ ( ord_less_eq @ int @ I3 @ J )
=> ( ( upto @ I3 @ J )
= ( nil @ int ) ) ) ) ) ).
% upto.psimps
thf(fact_6270_upto_Opelims,axiom,
! [X: int,Xa2: int,Y: list @ int] :
( ( ( upto @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ int @ int ) @ upto_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq @ int @ X @ Xa2 )
=> ( Y
= ( cons @ int @ X @ ( upto @ ( plus_plus @ int @ X @ ( one_one @ int ) ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ int @ X @ Xa2 )
=> ( Y
= ( nil @ int ) ) ) )
=> ~ ( accp @ ( product_prod @ int @ int ) @ upto_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) ) ) ) ) ).
% upto.pelims
thf(fact_6271_upto__empty,axiom,
! [J: int,I3: int] :
( ( ord_less @ int @ J @ I3 )
=> ( ( upto @ I3 @ J )
= ( nil @ int ) ) ) ).
% upto_empty
thf(fact_6272_upto__Nil2,axiom,
! [I3: int,J: int] :
( ( ( nil @ int )
= ( upto @ I3 @ J ) )
= ( ord_less @ int @ J @ I3 ) ) ).
% upto_Nil2
thf(fact_6273_upto__Nil,axiom,
! [I3: int,J: int] :
( ( ( upto @ I3 @ J )
= ( nil @ int ) )
= ( ord_less @ int @ J @ I3 ) ) ).
% upto_Nil
thf(fact_6274_upto__single,axiom,
! [I3: int] :
( ( upto @ I3 @ I3 )
= ( cons @ int @ I3 @ ( nil @ int ) ) ) ).
% upto_single
thf(fact_6275_nth__upto,axiom,
! [I3: int,K: nat,J: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ I3 @ ( semiring_1_of_nat @ int @ K ) ) @ J )
=> ( ( nth @ int @ ( upto @ I3 @ J ) @ K )
= ( plus_plus @ int @ I3 @ ( semiring_1_of_nat @ int @ K ) ) ) ) ).
% nth_upto
thf(fact_6276_length__upto,axiom,
! [I3: int,J: int] :
( ( size_size @ ( list @ int ) @ ( upto @ I3 @ J ) )
= ( nat2 @ ( plus_plus @ int @ ( minus_minus @ int @ J @ I3 ) @ ( one_one @ int ) ) ) ) ).
% length_upto
thf(fact_6277_upto__rec__numeral_I1_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq @ int @ ( numeral_numeral @ int @ M ) @ ( numeral_numeral @ int @ N ) )
=> ( ( upto @ ( numeral_numeral @ int @ M ) @ ( numeral_numeral @ int @ N ) )
= ( cons @ int @ ( numeral_numeral @ int @ M ) @ ( upto @ ( plus_plus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N ) ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( numeral_numeral @ int @ M ) @ ( numeral_numeral @ int @ N ) )
=> ( ( upto @ ( numeral_numeral @ int @ M ) @ ( numeral_numeral @ int @ N ) )
= ( nil @ int ) ) ) ) ).
% upto_rec_numeral(1)
thf(fact_6278_upto__rec__numeral_I4_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
=> ( ( upto @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( cons @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( upto @ ( plus_plus @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( one_one @ int ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
=> ( ( upto @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( nil @ int ) ) ) ) ).
% upto_rec_numeral(4)
thf(fact_6279_upto__rec__numeral_I3_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
=> ( ( upto @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( cons @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( upto @ ( plus_plus @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N ) ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
=> ( ( upto @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( nil @ int ) ) ) ) ).
% upto_rec_numeral(3)
thf(fact_6280_upto__rec__numeral_I2_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
=> ( ( upto @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( cons @ int @ ( numeral_numeral @ int @ M ) @ ( upto @ ( plus_plus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
=> ( ( upto @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( nil @ int ) ) ) ) ).
% upto_rec_numeral(2)
thf(fact_6281_upto__aux__def,axiom,
( upto_aux
= ( ^ [I: int,J2: int] : ( append @ int @ ( upto @ I @ J2 ) ) ) ) ).
% upto_aux_def
thf(fact_6282_upto__code,axiom,
( upto
= ( ^ [I: int,J2: int] : ( upto_aux @ I @ J2 @ ( nil @ int ) ) ) ) ).
% upto_code
thf(fact_6283_atLeastAtMost__upto,axiom,
( ( set_or1337092689740270186AtMost @ int )
= ( ^ [I: int,J2: int] : ( set2 @ int @ ( upto @ I @ J2 ) ) ) ) ).
% atLeastAtMost_upto
thf(fact_6284_distinct__upto,axiom,
! [I3: int,J: int] : ( distinct @ int @ ( upto @ I3 @ J ) ) ).
% distinct_upto
thf(fact_6285_upto__split2,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less_eq @ int @ I3 @ J )
=> ( ( ord_less_eq @ int @ J @ K )
=> ( ( upto @ I3 @ K )
= ( append @ int @ ( upto @ I3 @ J ) @ ( upto @ ( plus_plus @ int @ J @ ( one_one @ int ) ) @ K ) ) ) ) ) ).
% upto_split2
thf(fact_6286_upto__split1,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less_eq @ int @ I3 @ J )
=> ( ( ord_less_eq @ int @ J @ K )
=> ( ( upto @ I3 @ K )
= ( append @ int @ ( upto @ I3 @ ( minus_minus @ int @ J @ ( one_one @ int ) ) ) @ ( upto @ J @ K ) ) ) ) ) ).
% upto_split1
thf(fact_6287_fold__union__pair,axiom,
! [B: $tType,A: $tType,B3: set @ A,X: B,A3: set @ ( product_prod @ B @ A )] :
( ( finite_finite @ A @ B3 )
=> ( ( sup_sup @ ( set @ ( product_prod @ B @ A ) )
@ ( complete_Sup_Sup @ ( set @ ( product_prod @ B @ A ) )
@ ( image @ A @ ( set @ ( product_prod @ B @ A ) )
@ ^ [Y6: A] : ( insert @ ( product_prod @ B @ A ) @ ( product_Pair @ B @ A @ X @ Y6 ) @ ( bot_bot @ ( set @ ( product_prod @ B @ A ) ) ) )
@ B3 ) )
@ A3 )
= ( finite_fold @ A @ ( set @ ( product_prod @ B @ A ) )
@ ^ [Y6: A] : ( insert @ ( product_prod @ B @ A ) @ ( product_Pair @ B @ A @ X @ Y6 ) )
@ A3
@ B3 ) ) ) ).
% fold_union_pair
thf(fact_6288_card_Oeq__fold,axiom,
! [A: $tType] :
( ( finite_card @ A )
= ( finite_fold @ A @ nat
@ ^ [Uu3: A] : suc
@ ( zero_zero @ nat ) ) ) ).
% card.eq_fold
thf(fact_6289_atLeastLessThan__upto,axiom,
( ( set_or7035219750837199246ssThan @ int )
= ( ^ [I: int,J2: int] : ( set2 @ int @ ( upto @ I @ ( minus_minus @ int @ J2 @ ( one_one @ int ) ) ) ) ) ) ).
% atLeastLessThan_upto
thf(fact_6290_sorted__list__of__set_Ofold__insort__key_Oeq__fold,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( linord4507533701916653071of_set @ A )
= ( finite_fold @ A @ ( list @ A )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6 )
@ ( nil @ A ) ) ) ) ).
% sorted_list_of_set.fold_insort_key.eq_fold
thf(fact_6291_upto__rec1,axiom,
! [I3: int,J: int] :
( ( ord_less_eq @ int @ I3 @ J )
=> ( ( upto @ I3 @ J )
= ( cons @ int @ I3 @ ( upto @ ( plus_plus @ int @ I3 @ ( one_one @ int ) ) @ J ) ) ) ) ).
% upto_rec1
thf(fact_6292_upto_Osimps,axiom,
( upto
= ( ^ [I: int,J2: int] : ( if @ ( list @ int ) @ ( ord_less_eq @ int @ I @ J2 ) @ ( cons @ int @ I @ ( upto @ ( plus_plus @ int @ I @ ( one_one @ int ) ) @ J2 ) ) @ ( nil @ int ) ) ) ) ).
% upto.simps
thf(fact_6293_upto_Oelims,axiom,
! [X: int,Xa2: int,Y: list @ int] :
( ( ( upto @ X @ Xa2 )
= Y )
=> ( ( ( ord_less_eq @ int @ X @ Xa2 )
=> ( Y
= ( cons @ int @ X @ ( upto @ ( plus_plus @ int @ X @ ( one_one @ int ) ) @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ int @ X @ Xa2 )
=> ( Y
= ( nil @ int ) ) ) ) ) ).
% upto.elims
thf(fact_6294_upto__rec2,axiom,
! [I3: int,J: int] :
( ( ord_less_eq @ int @ I3 @ J )
=> ( ( upto @ I3 @ J )
= ( append @ int @ ( upto @ I3 @ ( minus_minus @ int @ J @ ( one_one @ int ) ) ) @ ( cons @ int @ J @ ( nil @ int ) ) ) ) ) ).
% upto_rec2
thf(fact_6295_upto__split3,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less_eq @ int @ I3 @ J )
=> ( ( ord_less_eq @ int @ J @ K )
=> ( ( upto @ I3 @ K )
= ( append @ int @ ( upto @ I3 @ ( minus_minus @ int @ J @ ( one_one @ int ) ) ) @ ( cons @ int @ J @ ( upto @ ( plus_plus @ int @ J @ ( one_one @ int ) ) @ K ) ) ) ) ) ) ).
% upto_split3
thf(fact_6296_Set__filter__fold,axiom,
! [A: $tType,A3: set @ A,P: A > $o] :
( ( finite_finite @ A @ A3 )
=> ( ( filter3 @ A @ P @ A3 )
= ( finite_fold @ A @ ( set @ A )
@ ^ [X6: A,A11: set @ A] : ( if @ ( set @ A ) @ ( P @ X6 ) @ ( insert @ A @ X6 @ A11 ) @ A11 )
@ ( bot_bot @ ( set @ A ) )
@ A3 ) ) ) ).
% Set_filter_fold
thf(fact_6297_take__hd__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( append @ A @ ( take @ A @ N @ Xs2 ) @ ( cons @ A @ ( hd @ A @ ( drop @ A @ N @ Xs2 ) ) @ ( nil @ A ) ) )
= ( take @ A @ ( suc @ N ) @ Xs2 ) ) ) ).
% take_hd_drop
thf(fact_6298_member__filter,axiom,
! [A: $tType,X: A,P: A > $o,A3: set @ A] :
( ( member @ A @ X @ ( filter3 @ A @ P @ A3 ) )
= ( ( member @ A @ X @ A3 )
& ( P @ X ) ) ) ).
% member_filter
thf(fact_6299_hd__append2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( hd @ A @ Xs2 ) ) ) ).
% hd_append2
thf(fact_6300_hd__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ( hd @ A @ ( replicate @ A @ N @ X ) )
= X ) ) ).
% hd_replicate
thf(fact_6301_hd__take,axiom,
! [A: $tType,J: nat,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ J )
=> ( ( hd @ A @ ( take @ A @ J @ Xs2 ) )
= ( hd @ A @ Xs2 ) ) ) ).
% hd_take
thf(fact_6302_hd__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( Xs2
!= ( nil @ ( list @ A ) ) )
=> ( ( ( hd @ ( list @ A ) @ Xs2 )
!= ( nil @ A ) )
=> ( ( hd @ A @ ( concat @ A @ Xs2 ) )
= ( hd @ A @ ( hd @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% hd_concat
thf(fact_6303_hd__in__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( member @ A @ ( hd @ A @ Xs2 ) @ ( set2 @ A @ Xs2 ) ) ) ).
% hd_in_set
thf(fact_6304_list_Oset__sel_I1_J,axiom,
! [A: $tType,A2: list @ A] :
( ( A2
!= ( nil @ A ) )
=> ( member @ A @ ( hd @ A @ A2 ) @ ( set2 @ A @ A2 ) ) ) ).
% list.set_sel(1)
thf(fact_6305_hd__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( Xs2
= ( nil @ A ) )
=> ( ( hd @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( hd @ A @ Ys2 ) ) )
& ( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( hd @ A @ Xs2 ) ) ) ) ).
% hd_append
thf(fact_6306_longest__common__prefix,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
? [Ps: list @ A,Xs4: list @ A,Ys5: list @ A] :
( ( Xs2
= ( append @ A @ Ps @ Xs4 ) )
& ( Ys2
= ( append @ A @ Ps @ Ys5 ) )
& ( ( Xs4
= ( nil @ A ) )
| ( Ys5
= ( nil @ A ) )
| ( ( hd @ A @ Xs4 )
!= ( hd @ A @ Ys5 ) ) ) ) ).
% longest_common_prefix
thf(fact_6307_Set_Ofilter__def,axiom,
! [A: $tType] :
( ( filter3 @ A )
= ( ^ [P4: A > $o,A7: set @ A] :
( collect @ A
@ ^ [A4: A] :
( ( member @ A @ A4 @ A7 )
& ( P4 @ A4 ) ) ) ) ) ).
% Set.filter_def
thf(fact_6308_list_Osel_I1_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( hd @ A @ ( cons @ A @ X21 @ X22 ) )
= X21 ) ).
% list.sel(1)
thf(fact_6309_hd__conv__nth,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ A @ Xs2 )
= ( nth @ A @ Xs2 @ ( zero_zero @ nat ) ) ) ) ).
% hd_conv_nth
thf(fact_6310_hd__drop__conv__nth,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( hd @ A @ ( drop @ A @ N @ Xs2 ) )
= ( nth @ A @ Xs2 @ N ) ) ) ).
% hd_drop_conv_nth
thf(fact_6311_lex__take__index,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lex @ A @ R2 ) )
=> ~ ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( ( ( take @ A @ I2 @ Xs2 )
= ( take @ A @ I2 @ Ys2 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ Xs2 @ I2 ) @ ( nth @ A @ Ys2 @ I2 ) ) @ R2 ) ) ) ) ) ).
% lex_take_index
thf(fact_6312_Id__on__fold,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( id_on @ A @ A3 )
= ( finite_fold @ A @ ( set @ ( product_prod @ A @ A ) )
@ ^ [X6: A] : ( insert @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ X6 ) )
@ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) )
@ A3 ) ) ) ).
% Id_on_fold
thf(fact_6313_Id__on__empty,axiom,
! [A: $tType] :
( ( id_on @ A @ ( bot_bot @ ( set @ A ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ).
% Id_on_empty
thf(fact_6314_Cons__in__lex,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys2 ) ) @ ( lex @ A @ R2 ) )
= ( ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R2 )
& ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) ) )
| ( ( X = Y )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lex @ A @ R2 ) ) ) ) ) ).
% Cons_in_lex
thf(fact_6315_Nil2__notin__lex,axiom,
! [A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ ( nil @ A ) ) @ ( lex @ A @ R2 ) ) ).
% Nil2_notin_lex
thf(fact_6316_Nil__notin__lex,axiom,
! [A: $tType,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Ys2 ) @ ( lex @ A @ R2 ) ) ).
% Nil_notin_lex
thf(fact_6317_lex__append__leftI,axiom,
! [A: $tType,Ys2: list @ A,Zs2: list @ A,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lex @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ A @ Xs2 @ Zs2 ) ) @ ( lex @ A @ R2 ) ) ) ).
% lex_append_leftI
thf(fact_6318_lex__append__left__iff,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ! [X5: A] :
~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ X5 ) @ R2 )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ A @ Xs2 @ Zs2 ) ) @ ( lex @ A @ R2 ) )
= ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lex @ A @ R2 ) ) ) ) ).
% lex_append_left_iff
thf(fact_6319_lex__append__leftD,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ! [X5: A] :
~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ X5 ) @ R2 )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ A @ Xs2 @ Zs2 ) ) @ ( lex @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lex @ A @ R2 ) ) ) ) ).
% lex_append_leftD
thf(fact_6320_lex__append__rightI,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A ),Vs: list @ A,Us: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lex @ A @ R2 ) )
=> ( ( ( size_size @ ( list @ A ) @ Vs )
= ( size_size @ ( list @ A ) @ Us ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Us ) @ ( append @ A @ Ys2 @ Vs ) ) @ ( lex @ A @ R2 ) ) ) ) ).
% lex_append_rightI
thf(fact_6321_Id__on__def,axiom,
! [A: $tType] :
( ( id_on @ A )
= ( ^ [A7: set @ A] :
( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ A @ ( set @ ( product_prod @ A @ A ) )
@ ^ [X6: A] : ( insert @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ X6 ) @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
@ A7 ) ) ) ) ).
% Id_on_def
thf(fact_6322_extract__SomeE,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys2: list @ A,Y: A,Zs2: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ Ys2 @ ( product_Pair @ A @ ( list @ A ) @ Y @ Zs2 ) ) ) )
=> ( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ Y @ Zs2 ) ) )
& ( P @ Y )
& ~ ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ys2 ) )
& ( P @ X3 ) ) ) ) ).
% extract_SomeE
thf(fact_6323_extract__Some__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys2: list @ A,Y: A,Zs2: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ Ys2 @ ( product_Pair @ A @ ( list @ A ) @ Y @ Zs2 ) ) ) )
= ( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ Y @ Zs2 ) ) )
& ( P @ Y )
& ~ ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
& ( P @ X6 ) ) ) ) ).
% extract_Some_iff
thf(fact_6324_extract__Nil__code,axiom,
! [A: $tType,P: A > $o] :
( ( extract @ A @ P @ ( nil @ A ) )
= ( none @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) ) ).
% extract_Nil_code
thf(fact_6325_extract__None__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( none @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) )
= ( ~ ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) ) ) ).
% extract_None_iff
thf(fact_6326_DERIV__even__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( has_field_derivative @ real @ ( root @ N ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( uminus_uminus @ real @ ( semiring_1_of_nat @ real @ N ) ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_6327_DERIV__real__root__generic,axiom,
! [N: nat,X: real,D5: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( D5
= ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( D5
= ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( D5
= ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) )
=> ( has_field_derivative @ real @ ( root @ N ) @ D5 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_6328_at__within__empty,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [A2: A] :
( ( topolo174197925503356063within @ A @ A2 @ ( bot_bot @ ( set @ A ) ) )
= ( bot_bot @ ( filter @ A ) ) ) ) ).
% at_within_empty
thf(fact_6329_DERIV__image__chain,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Da: A,G: A > A,X: A,S: set @ A,Db: A] :
( ( has_field_derivative @ A @ F2 @ Da @ ( topolo174197925503356063within @ A @ ( G @ X ) @ ( image @ A @ A @ G @ S ) ) )
=> ( ( has_field_derivative @ A @ G @ Db @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A @ ( comp @ A @ A @ A @ F2 @ G ) @ ( times_times @ A @ Da @ Db ) @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_image_chain
thf(fact_6330_DERIV__at__within__shift__lemma,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,Z2: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ Z2 @ X ) @ ( image @ A @ A @ ( plus_plus @ A @ Z2 ) @ S3 ) ) )
=> ( has_field_derivative @ A @ ( comp @ A @ A @ A @ F2 @ ( plus_plus @ A @ Z2 ) ) @ Y @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% DERIV_at_within_shift_lemma
thf(fact_6331_DERIV__at__within__shift,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,Z2: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ Z2 @ X ) @ ( image @ A @ A @ ( plus_plus @ A @ Z2 ) @ S3 ) ) )
= ( has_field_derivative @ A
@ ^ [X6: A] : ( F2 @ ( plus_plus @ A @ Z2 @ X6 ) )
@ Y
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% DERIV_at_within_shift
thf(fact_6332_DERIV__neg__imp__decreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y4 @ ( zero_zero @ real ) ) ) ) )
=> ( ord_less @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_6333_DERIV__pos__imp__increasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y4 ) ) ) )
=> ( ord_less @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_6334_deriv__nonneg__imp__mono,axiom,
! [A2: real,B2: real,G: real > real,G4: real > real] :
( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) )
=> ( has_field_derivative @ real @ G @ ( G4 @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( G4 @ X5 ) ) )
=> ( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ord_less_eq @ real @ ( G @ A2 ) @ ( G @ B2 ) ) ) ) ) ).
% deriv_nonneg_imp_mono
thf(fact_6335_DERIV__nonneg__imp__nondecreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y4 ) ) ) )
=> ( ord_less_eq @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ).
% DERIV_nonneg_imp_nondecreasing
thf(fact_6336_DERIV__nonpos__imp__nonincreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less_eq @ real @ Y4 @ ( zero_zero @ real ) ) ) ) )
=> ( ord_less_eq @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ).
% DERIV_nonpos_imp_nonincreasing
thf(fact_6337_DERIV__neg__dec__right,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ ( plus_plus @ real @ X @ H5 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_6338_DERIV__pos__inc__right,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( plus_plus @ real @ X @ H5 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_6339_DERIV__pos__inc__left,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ ( minus_minus @ real @ X @ H5 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_6340_DERIV__neg__dec__left,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( minus_minus @ real @ X @ H5 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_6341_DERIV__const__ratio__const,axiom,
! [A2: real,B2: real,F2: real > real,K: real] :
( ( A2 != B2 )
=> ( ! [X5: real] : ( has_field_derivative @ real @ F2 @ K @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
= ( times_times @ real @ ( minus_minus @ real @ B2 @ A2 ) @ K ) ) ) ) ).
% DERIV_const_ratio_const
thf(fact_6342_DERIV__shift,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,X: A,Z2: A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( top_top @ ( set @ A ) ) ) )
= ( has_field_derivative @ A
@ ^ [X6: A] : ( F2 @ ( plus_plus @ A @ X6 @ Z2 ) )
@ Y
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_shift
thf(fact_6343_DERIV__isconst__all,axiom,
! [F2: real > real,X: real,Y: real] :
( ! [X5: real] : ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( F2 @ X )
= ( F2 @ Y ) ) ) ).
% DERIV_isconst_all
thf(fact_6344_DERIV__fun__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [G: A > A,M: A,X: A] :
( ( has_field_derivative @ A @ G @ M @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( sin @ A @ ( G @ X6 ) )
@ ( times_times @ A @ ( cos @ A @ ( G @ X ) ) @ M )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_fun_sin
thf(fact_6345_DERIV__chain__s,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [S: set @ A,G: A > A,G4: A > A,F2: A > A,F7: A,X: A] :
( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( has_field_derivative @ A @ G @ ( G4 @ X5 ) @ ( topolo174197925503356063within @ A @ X5 @ ( top_top @ ( set @ A ) ) ) ) )
=> ( ( has_field_derivative @ A @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( ( member @ A @ ( F2 @ X ) @ S )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( times_times @ A @ F7 @ ( G4 @ ( F2 @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% DERIV_chain_s
thf(fact_6346_DERIV__chain3,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [G: A > A,G4: A > A,F2: A > A,F7: A,X: A] :
( ! [X5: A] : ( has_field_derivative @ A @ G @ ( G4 @ X5 ) @ ( topolo174197925503356063within @ A @ X5 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( has_field_derivative @ A @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( times_times @ A @ F7 @ ( G4 @ ( F2 @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% DERIV_chain3
thf(fact_6347_DERIV__chain2,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Da: A,G: A > A,X: A,Db: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ Da @ ( topolo174197925503356063within @ A @ ( G @ X ) @ ( top_top @ ( set @ A ) ) ) )
=> ( ( has_field_derivative @ A @ G @ Db @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( F2 @ ( G @ X6 ) )
@ ( times_times @ A @ Da @ Db )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_chain2
thf(fact_6348_DERIV__chain_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ ( F2 @ X ) @ ( top_top @ ( set @ A ) ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( times_times @ A @ E5 @ D5 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_chain'
thf(fact_6349_DERIV__fun__exp,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [G: A > A,M: A,X: A] :
( ( has_field_derivative @ A @ G @ M @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( exp @ A @ ( G @ X6 ) )
@ ( times_times @ A @ ( exp @ A @ ( G @ X ) ) @ M )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_fun_exp
thf(fact_6350_at__neq__bot,axiom,
! [A: $tType] :
( ( topolo8386298272705272623_space @ A )
=> ! [A2: A] :
( ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% at_neq_bot
thf(fact_6351_trivial__limit__at__left__real,axiom,
! [A: $tType] :
( ( ( dense_order @ A )
& ( no_bot @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A] :
( ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_left_real
thf(fact_6352_at__discrete,axiom,
! [A: $tType] :
( ( topolo8865339358273720382pology @ A )
=> ( ( topolo174197925503356063within @ A )
= ( ^ [X6: A,S7: set @ A] : ( bot_bot @ ( filter @ A ) ) ) ) ) ).
% at_discrete
thf(fact_6353_DERIV__inverse_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( inverse_inverse @ A @ ( F2 @ X6 ) )
@ ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( F2 @ X ) ) @ D5 ) @ ( inverse_inverse @ A @ ( F2 @ X ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_inverse'
thf(fact_6354_DERIV__mult,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Da: A,X: A,S: set @ A,G: A > A,Db: A] :
( ( has_field_derivative @ A @ F2 @ Da @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ Db @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( plus_plus @ A @ ( times_times @ A @ Da @ ( G @ X ) ) @ ( times_times @ A @ Db @ ( F2 @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_mult
thf(fact_6355_DERIV__mult_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( F2 @ X ) @ E5 ) @ ( times_times @ A @ D5 @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_mult'
thf(fact_6356_DERIV__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ D5 @ ( G @ X ) ) @ ( times_times @ A @ ( F2 @ X ) @ E5 ) ) @ ( times_times @ A @ ( G @ X ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% DERIV_divide
thf(fact_6357_has__real__derivative__pos__inc__right,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( member @ real @ ( plus_plus @ real @ X @ H5 ) @ S3 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( plus_plus @ real @ X @ H5 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_6358_has__real__derivative__neg__dec__right,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( member @ real @ ( plus_plus @ real @ X @ H5 ) @ S3 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ ( plus_plus @ real @ X @ H5 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_6359_has__real__derivative__neg__dec__left,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( member @ real @ ( minus_minus @ real @ X @ H5 ) @ S3 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( minus_minus @ real @ X @ H5 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_6360_has__real__derivative__pos__inc__left,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D4 )
& ! [H5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H5 )
=> ( ( member @ real @ ( minus_minus @ real @ X @ H5 ) @ S3 )
=> ( ( ord_less @ real @ H5 @ D4 )
=> ( ord_less @ real @ ( F2 @ ( minus_minus @ real @ X @ H5 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_6361_DERIV__add,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( plus_plus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( plus_plus @ A @ D5 @ E5 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_add
thf(fact_6362_field__differentiable__add,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,F7: A,F3: filter @ A,G: A > A,G4: A] :
( ( has_field_derivative @ A @ F2 @ F7 @ F3 )
=> ( ( has_field_derivative @ A @ G @ G4 @ F3 )
=> ( has_field_derivative @ A
@ ^ [Z3: A] : ( plus_plus @ A @ ( F2 @ Z3 ) @ ( G @ Z3 ) )
@ ( plus_plus @ A @ F7 @ G4 )
@ F3 ) ) ) ) ).
% field_differentiable_add
thf(fact_6363_DERIV__cmult__Id,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,X: A,S: set @ A] : ( has_field_derivative @ A @ ( times_times @ A @ C2 ) @ C2 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ).
% DERIV_cmult_Id
thf(fact_6364_DERIV__cmult__right,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,C2: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( times_times @ A @ ( F2 @ X6 ) @ C2 )
@ ( times_times @ A @ D5 @ C2 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_cmult_right
thf(fact_6365_DERIV__cmult,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,C2: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( times_times @ A @ C2 @ D5 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_cmult
thf(fact_6366_has__field__derivative__cosh,axiom,
! [A14: $tType] :
( ( ( real_Vector_banach @ A14 )
& ( real_V3459762299906320749_field @ A14 ) )
=> ! [G: A14 > A14,Db: A14,X: A14,S: set @ A14] :
( ( has_field_derivative @ A14 @ G @ Db @ ( topolo174197925503356063within @ A14 @ X @ S ) )
=> ( has_field_derivative @ A14
@ ^ [X6: A14] : ( cosh @ A14 @ ( G @ X6 ) )
@ ( times_times @ A14 @ ( sinh @ A14 @ ( G @ X ) ) @ Db )
@ ( topolo174197925503356063within @ A14 @ X @ S ) ) ) ) ).
% has_field_derivative_cosh
thf(fact_6367_has__field__derivative__sinh,axiom,
! [A14: $tType] :
( ( ( real_Vector_banach @ A14 )
& ( real_V3459762299906320749_field @ A14 ) )
=> ! [G: A14 > A14,Db: A14,X: A14,S: set @ A14] :
( ( has_field_derivative @ A14 @ G @ Db @ ( topolo174197925503356063within @ A14 @ X @ S ) )
=> ( has_field_derivative @ A14
@ ^ [X6: A14] : ( sinh @ A14 @ ( G @ X6 ) )
@ ( times_times @ A14 @ ( cosh @ A14 @ ( G @ X ) ) @ Db )
@ ( topolo174197925503356063within @ A14 @ X @ S ) ) ) ) ).
% has_field_derivative_sinh
thf(fact_6368_DERIV__const,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [K: A,F3: filter @ A] :
( has_field_derivative @ A
@ ^ [X6: A] : K
@ ( zero_zero @ A )
@ F3 ) ) ).
% DERIV_const
thf(fact_6369_DERIV__cdivide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,C2: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( divide_divide @ A @ ( F2 @ X6 ) @ C2 )
@ ( divide_divide @ A @ D5 @ C2 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_cdivide
thf(fact_6370_DERIV__local__const,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y5: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y5 ) ) @ D2 )
=> ( ( F2 @ X )
= ( F2 @ Y5 ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_const
thf(fact_6371_MVT2,axiom,
! [A2: real,B2: real,F2: real > real,F7: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
=> ( ( ord_less_eq @ real @ X5 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( F7 @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
& ( ord_less @ real @ Z4 @ B2 )
& ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
= ( times_times @ real @ ( minus_minus @ real @ B2 @ A2 ) @ ( F7 @ Z4 ) ) ) ) ) ) ).
% MVT2
thf(fact_6372_DERIV__ln,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( ln_ln @ real ) @ ( inverse_inverse @ real @ X ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_ln
thf(fact_6373_DERIV__chain,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Da: A,G: A > A,X: A,Db: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ Da @ ( topolo174197925503356063within @ A @ ( G @ X ) @ ( top_top @ ( set @ A ) ) ) )
=> ( ( has_field_derivative @ A @ G @ Db @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A @ ( comp @ A @ A @ A @ F2 @ G ) @ ( times_times @ A @ Da @ Db ) @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_chain
thf(fact_6374_DERIV__cos__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K: A,Xa2: A] :
( has_field_derivative @ A
@ ^ [X6: A] : ( cos @ A @ ( plus_plus @ A @ X6 @ K ) )
@ ( uminus_uminus @ A @ ( sin @ A @ ( plus_plus @ A @ Xa2 @ K ) ) )
@ ( topolo174197925503356063within @ A @ Xa2 @ ( top_top @ ( set @ A ) ) ) ) ) ).
% DERIV_cos_add
thf(fact_6375_DERIV__fun__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [G: A > A,M: A,X: A] :
( ( has_field_derivative @ A @ G @ M @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( cos @ A @ ( G @ X6 ) )
@ ( times_times @ A @ ( uminus_uminus @ A @ ( sin @ A @ ( G @ X ) ) ) @ M )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_fun_cos
thf(fact_6376_DERIV__power__Suc,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,N: nat] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( power_power @ A @ ( F2 @ X6 ) @ ( suc @ N ) )
@ ( times_times @ A @ ( plus_plus @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N ) ) @ ( times_times @ A @ D5 @ ( power_power @ A @ ( F2 @ X ) @ N ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_power_Suc
thf(fact_6377_DERIV__const__average,axiom,
! [A2: real,B2: real,V: real > real,K: real] :
( ( A2 != B2 )
=> ( ! [X5: real] : ( has_field_derivative @ real @ V @ K @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( V @ ( divide_divide @ real @ ( plus_plus @ real @ A2 @ B2 ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( divide_divide @ real @ ( plus_plus @ real @ ( V @ A2 ) @ ( V @ B2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% DERIV_const_average
thf(fact_6378_DERIV__inverse,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [X: A,S: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( inverse_inverse @ A ) @ ( uminus_uminus @ A @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_inverse
thf(fact_6379_DERIV__power,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S: set @ A,N: nat] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( power_power @ A @ ( F2 @ X6 ) @ N )
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ ( times_times @ A @ D5 @ ( power_power @ A @ ( F2 @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_power
thf(fact_6380_DERIV__local__max,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y5: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y5 ) ) @ D2 )
=> ( ord_less_eq @ real @ ( F2 @ Y5 ) @ ( F2 @ X ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_max
thf(fact_6381_DERIV__local__min,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y5: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y5 ) ) @ D2 )
=> ( ord_less_eq @ real @ ( F2 @ X ) @ ( F2 @ Y5 ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_min
thf(fact_6382_DERIV__ln__divide,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( ln_ln @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ X ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_ln_divide
thf(fact_6383_DERIV__pow,axiom,
! [N: nat,X: real,S: set @ real] :
( has_field_derivative @ real
@ ^ [X6: real] : ( power_power @ real @ X6 @ N )
@ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ X @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ S ) ) ).
% DERIV_pow
thf(fact_6384_termdiffs__strong__converges__everywhere,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,X: A] :
( ! [Y5: A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Y5 @ N3 ) ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% termdiffs_strong_converges_everywhere
thf(fact_6385_at__within__Icc__at,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less @ A @ A2 @ X )
=> ( ( ord_less @ A @ X @ B2 )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% at_within_Icc_at
thf(fact_6386_DERIV__fun__pow,axiom,
! [G: real > real,M: real,X: real,N: nat] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( has_field_derivative @ real
@ ^ [X6: real] : ( power_power @ real @ ( G @ X6 ) @ N )
@ ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( G @ X ) @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) @ M )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_fun_pow
thf(fact_6387_at__within__Icc__at__left,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( topolo174197925503356063within @ A @ B2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ).
% at_within_Icc_at_left
thf(fact_6388_trivial__limit__at__left__bot,axiom,
! [A: $tType] :
( ( ( order_bot @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ( ( topolo174197925503356063within @ A @ ( bot_bot @ A ) @ ( set_ord_lessThan @ A @ ( bot_bot @ A ) ) )
= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_left_bot
thf(fact_6389_DERIV__quotient,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A,G: A > A,E2: A] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [Y6: A] : ( divide_divide @ A @ ( F2 @ Y6 ) @ ( G @ Y6 ) )
@ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ D2 @ ( G @ X ) ) @ ( times_times @ A @ E2 @ ( F2 @ X ) ) ) @ ( power_power @ A @ ( G @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% DERIV_quotient
thf(fact_6390_DERIV__inverse__fun,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( inverse_inverse @ A @ ( F2 @ X6 ) )
@ ( uminus_uminus @ A @ ( times_times @ A @ D2 @ ( inverse_inverse @ A @ ( power_power @ A @ ( F2 @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_inverse_fun
thf(fact_6391_termdiffs__sums__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K5: real,C2: nat > A,F2: A > A,F7: A,Z2: A] :
( ! [Z4: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z4 ) @ K5 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z4 @ N3 ) )
@ ( F2 @ Z4 ) ) )
=> ( ( has_field_derivative @ A @ F2 @ F7 @ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) )
@ F7 ) ) ) ) ) ).
% termdiffs_sums_strong
thf(fact_6392_has__real__derivative__powr,axiom,
! [Z2: real,R2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Z2 )
=> ( has_field_derivative @ real
@ ^ [Z3: real] : ( powr @ real @ Z3 @ R2 )
@ ( times_times @ real @ R2 @ ( powr @ real @ Z2 @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ Z2 @ ( top_top @ ( set @ real ) ) ) ) ) ).
% has_real_derivative_powr
thf(fact_6393_termdiffs__strong_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K5: real,C2: nat > A,Z2: A] :
( ! [Z4: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z4 ) @ K5 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z4 @ N3 ) ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( has_field_derivative @ A
@ ^ [Z3: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z3 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_strong'
thf(fact_6394_termdiffs__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_strong
thf(fact_6395_termdiffs,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ ( diffs @ A @ C2 ) @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% termdiffs
thf(fact_6396_DERIV__log,axiom,
! [X: real,B2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( log @ B2 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( times_times @ real @ ( ln_ln @ real @ B2 ) @ X ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_log
thf(fact_6397_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X: real,R2: real] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( has_field_derivative @ real
@ ^ [X6: real] : ( powr @ real @ ( G @ X6 ) @ R2 )
@ ( times_times @ real @ ( times_times @ real @ R2 @ ( powr @ real @ ( G @ X ) @ ( minus_minus @ real @ R2 @ ( semiring_1_of_nat @ real @ ( one_one @ nat ) ) ) ) ) @ M )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_fun_powr
thf(fact_6398_DERIV__powr,axiom,
! [G: real > real,M: real,X: real,F2: real > real,R2: real] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_field_derivative @ real @ F2 @ R2 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( has_field_derivative @ real
@ ^ [X6: real] : ( powr @ real @ ( G @ X6 ) @ ( F2 @ X6 ) )
@ ( times_times @ real @ ( powr @ real @ ( G @ X ) @ ( F2 @ X ) ) @ ( plus_plus @ real @ ( times_times @ real @ R2 @ ( ln_ln @ real @ ( G @ X ) ) ) @ ( divide_divide @ real @ ( times_times @ real @ M @ ( F2 @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_powr
thf(fact_6399_DERIV__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( tan @ A ) @ ( inverse_inverse @ A @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_tan
thf(fact_6400_artanh__real__has__field__derivative,axiom,
! [X: real,A3: set @ real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ ( artanh @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ A3 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_6401_DERIV__real__sqrt,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ sqrt @ ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_real_sqrt
thf(fact_6402_DERIV__arctan,axiom,
! [X: real] : ( has_field_derivative @ real @ arctan @ ( inverse_inverse @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ).
% DERIV_arctan
thf(fact_6403_arsinh__real__has__field__derivative,axiom,
! [X: real,A3: set @ real] : ( has_field_derivative @ real @ ( arsinh @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ A3 ) ) ).
% arsinh_real_has_field_derivative
thf(fact_6404_DERIV__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( cot @ A ) @ ( uminus_uminus @ A @ ( inverse_inverse @ A @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_cot
thf(fact_6405_has__field__derivative__tanh,axiom,
! [A14: $tType] :
( ( ( real_Vector_banach @ A14 )
& ( real_V3459762299906320749_field @ A14 ) )
=> ! [G: A14 > A14,X: A14,Db: A14,S: set @ A14] :
( ( ( cosh @ A14 @ ( G @ X ) )
!= ( zero_zero @ A14 ) )
=> ( ( has_field_derivative @ A14 @ G @ Db @ ( topolo174197925503356063within @ A14 @ X @ S ) )
=> ( has_field_derivative @ A14
@ ^ [X6: A14] : ( tanh @ A14 @ ( G @ X6 ) )
@ ( times_times @ A14 @ ( minus_minus @ A14 @ ( one_one @ A14 ) @ ( power_power @ A14 @ ( tanh @ A14 @ ( G @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ Db )
@ ( topolo174197925503356063within @ A14 @ X @ S ) ) ) ) ) ).
% has_field_derivative_tanh
thf(fact_6406_DERIV__real__sqrt__generic,axiom,
! [X: real,D5: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( D5
= ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( D5
= ( divide_divide @ real @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( has_field_derivative @ real @ sqrt @ D5 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_6407_arcosh__real__has__field__derivative,axiom,
! [X: real,A3: set @ real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( has_field_derivative @ real @ ( arcosh @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( minus_minus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ A3 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_6408_DERIV__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( root @ N ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_real_root
thf(fact_6409_DERIV__arccos,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ arccos @ ( inverse_inverse @ real @ ( uminus_uminus @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_arccos
thf(fact_6410_DERIV__arcsin,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ arcsin @ ( inverse_inverse @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_arcsin
thf(fact_6411_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F2: real > real,X: real,N: nat] :
( ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
& ! [M3: nat,X5: real] : ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_6412_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F2: real > real,X: real,N: nat] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,X5: real] : ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_6413_DERIV__odd__real__root,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( has_field_derivative @ real @ ( root @ N ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( power_power @ real @ ( root @ N @ X ) @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_6414_Maclaurin,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F2: real > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ H2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less @ real @ T7 @ H2 )
& ( ( F2 @ H2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ H2 @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_6415_Maclaurin2,axiom,
! [H2: real,Diff: nat > real > real,F2: real > real,N: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ H2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ H2 )
& ( ( F2 @ H2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ H2 @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ H2 @ N ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_6416_Maclaurin__minus,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F2: real > real] :
( ( ord_less @ real @ H2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ H2 @ T7 )
& ( ord_less_eq @ real @ T7 @ ( zero_zero @ real ) ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T7: real] :
( ( ord_less @ real @ H2 @ T7 )
& ( ord_less @ real @ T7 @ ( zero_zero @ real ) )
& ( ( F2 @ H2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ H2 @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_6417_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F2: real > real,N: nat,X: real] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( ! [M3: nat,X5: real] : ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ? [T7: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( abs_abs @ real @ T7 ) )
& ( ord_less @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_6418_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F2: real > real,N: nat,X: real] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T7: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T7 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ X @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_6419_Taylor,axiom,
! [N: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ A2 @ T7 )
& ( ord_less_eq @ real @ T7 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ C2 )
=> ( ( ord_less_eq @ real @ C2 @ B2 )
=> ( ( ord_less_eq @ real @ A2 @ X )
=> ( ( ord_less_eq @ real @ X @ B2 )
=> ( ( X != C2 )
=> ? [T7: real] :
( ( ( ord_less @ real @ X @ C2 )
=> ( ( ord_less @ real @ X @ T7 )
& ( ord_less @ real @ T7 @ C2 ) ) )
& ( ~ ( ord_less @ real @ X @ C2 )
=> ( ( ord_less @ real @ C2 @ T7 )
& ( ord_less @ real @ T7 @ X ) ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ C2 ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ C2 ) @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ C2 ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_6420_Taylor__up,axiom,
! [N: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ A2 @ T7 )
& ( ord_less_eq @ real @ T7 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ C2 )
=> ( ( ord_less @ real @ C2 @ B2 )
=> ? [T7: real] :
( ( ord_less @ real @ C2 @ T7 )
& ( ord_less @ real @ T7 @ B2 )
& ( ( F2 @ B2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ C2 ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ ( minus_minus @ real @ B2 @ C2 ) @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ ( minus_minus @ real @ B2 @ C2 ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_6421_Taylor__down,axiom,
! [N: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ A2 @ T7 )
& ( ord_less_eq @ real @ T7 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less @ real @ A2 @ C2 )
=> ( ( ord_less_eq @ real @ C2 @ B2 )
=> ? [T7: real] :
( ( ord_less @ real @ A2 @ T7 )
& ( ord_less @ real @ T7 @ C2 )
& ( ( F2 @ A2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M4: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M4 @ C2 ) @ ( semiring_char_0_fact @ real @ M4 ) ) @ ( power_power @ real @ ( minus_minus @ real @ A2 @ C2 ) @ M4 ) )
@ ( set_ord_lessThan @ nat @ N ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N @ T7 ) @ ( semiring_char_0_fact @ real @ N ) ) @ ( power_power @ real @ ( minus_minus @ real @ A2 @ C2 ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_6422_Maclaurin__lemma2,axiom,
! [N: nat,H2: real,Diff: nat > real > real,K: nat,B3: real] :
( ! [M3: nat,T7: real] :
( ( ( ord_less @ nat @ M3 @ N )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T7 )
& ( ord_less_eq @ real @ T7 @ H2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T7 ) @ ( topolo174197925503356063within @ real @ T7 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( N
= ( suc @ K ) )
=> ! [M2: nat,T8: real] :
( ( ( ord_less @ nat @ M2 @ N )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T8 )
& ( ord_less_eq @ real @ T8 @ H2 ) )
=> ( has_field_derivative @ real
@ ^ [U2: real] :
( minus_minus @ real @ ( Diff @ M2 @ U2 )
@ ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [P5: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ ( plus_plus @ nat @ M2 @ P5 ) @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ real @ U2 @ P5 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N @ M2 ) ) )
@ ( times_times @ real @ B3 @ ( divide_divide @ real @ ( power_power @ real @ U2 @ ( minus_minus @ nat @ N @ M2 ) ) @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N @ M2 ) ) ) ) ) )
@ ( minus_minus @ real @ ( Diff @ ( suc @ M2 ) @ T8 )
@ ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [P5: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ ( plus_plus @ nat @ ( suc @ M2 ) @ P5 ) @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ real @ T8 @ P5 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N @ ( suc @ M2 ) ) ) )
@ ( times_times @ real @ B3 @ ( divide_divide @ real @ ( power_power @ real @ T8 @ ( minus_minus @ nat @ N @ ( suc @ M2 ) ) ) @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N @ ( suc @ M2 ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ real @ T8 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_6423_DERIV__arctan__series,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( has_field_derivative @ real
@ ^ [X16: real] :
( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X16 @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) )
@ ( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( power_power @ real @ X @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_arctan_series
thf(fact_6424_DERIV__power__series_H,axiom,
! [R3: real,F2: nat > real,X0: real] :
( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or5935395276787703475ssThan @ real @ ( uminus_uminus @ real @ R3 ) @ R3 ) )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( F2 @ N3 ) @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) @ ( power_power @ real @ X5 @ N3 ) ) ) )
=> ( ( member @ real @ X0 @ ( set_or5935395276787703475ssThan @ real @ ( uminus_uminus @ real @ R3 ) @ R3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ( has_field_derivative @ real
@ ^ [X6: real] :
( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( F2 @ N3 ) @ ( power_power @ real @ X6 @ ( suc @ N3 ) ) ) )
@ ( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( F2 @ N3 ) @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) @ ( power_power @ real @ X0 @ N3 ) ) )
@ ( topolo174197925503356063within @ real @ X0 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_6425_has__derivative__arcsin,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( G @ X ) )
=> ( ( ord_less @ real @ ( G @ X ) @ ( one_one @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( arcsin @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( inverse_inverse @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( G @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_arcsin
thf(fact_6426_greaterThanLessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I3: A,L: A,U: A] :
( ( member @ A @ I3 @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( ( ord_less @ A @ L @ I3 )
& ( ord_less @ A @ I3 @ U ) ) ) ) ).
% greaterThanLessThan_iff
thf(fact_6427_greaterThanLessThan__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,K: A] :
( ( ord_less_eq @ A @ L @ K )
=> ( ( set_or5935395276787703475ssThan @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% greaterThanLessThan_empty
thf(fact_6428_greaterThanLessThan__empty__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or5935395276787703475ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% greaterThanLessThan_empty_iff
thf(fact_6429_greaterThanLessThan__empty__iff2,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% greaterThanLessThan_empty_iff2
thf(fact_6430_infinite__Ioo__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ioo_iff
thf(fact_6431_cSup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or5935395276787703475ssThan @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_greaterThanLessThan
thf(fact_6432_Sup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or5935395276787703475ssThan @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_greaterThanLessThan
thf(fact_6433_cInf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or5935395276787703475ssThan @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_greaterThanLessThan
thf(fact_6434_Inf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or5935395276787703475ssThan @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_greaterThanLessThan
thf(fact_6435_has__derivative__scaleR,axiom,
! [C: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ D )
& ( real_V822414075346904944vector @ C ) )
=> ! [F2: D > real,F7: D > real,X: D,S: set @ D,G: D > C,G4: D > C] :
( ( has_derivative @ D @ real @ F2 @ F7 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( ( has_derivative @ D @ C @ G @ G4 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( has_derivative @ D @ C
@ ^ [X6: D] : ( real_V8093663219630862766scaleR @ C @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ^ [H: D] : ( plus_plus @ C @ ( real_V8093663219630862766scaleR @ C @ ( F2 @ X ) @ ( G4 @ H ) ) @ ( real_V8093663219630862766scaleR @ C @ ( F7 @ H ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ D @ X @ S ) ) ) ) ) ).
% has_derivative_scaleR
thf(fact_6436_has__field__derivative__imp__has__derivative,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,F3: filter @ A] :
( ( has_field_derivative @ A @ F2 @ D5 @ F3 )
=> ( has_derivative @ A @ A @ F2 @ ( times_times @ A @ D5 ) @ F3 ) ) ) ).
% has_field_derivative_imp_has_derivative
thf(fact_6437_has__derivative__imp__has__field__derivative,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A > A,F3: filter @ A,D7: A] :
( ( has_derivative @ A @ A @ F2 @ D5 @ F3 )
=> ( ! [X5: A] :
( ( times_times @ A @ X5 @ D7 )
= ( D5 @ X5 ) )
=> ( has_field_derivative @ A @ F2 @ D7 @ F3 ) ) ) ) ).
% has_derivative_imp_has_field_derivative
thf(fact_6438_has__field__derivative__def,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( ( has_field_derivative @ A )
= ( ^ [F6: A > A,D8: A] : ( has_derivative @ A @ A @ F6 @ ( times_times @ A @ D8 ) ) ) ) ) ).
% has_field_derivative_def
thf(fact_6439_infinite__Ioo,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ioo
thf(fact_6440_has__derivative__const,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [C2: B,F3: filter @ A] :
( has_derivative @ A @ B
@ ^ [X6: A] : C2
@ ^ [X6: A] : ( zero_zero @ B )
@ F3 ) ) ).
% has_derivative_const
thf(fact_6441_has__derivative__mult__left,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [G: C > A,G4: C > A,F3: filter @ C,Y: A] :
( ( has_derivative @ C @ A @ G @ G4 @ F3 )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( times_times @ A @ ( G @ X6 ) @ Y )
@ ^ [X6: C] : ( times_times @ A @ ( G4 @ X6 ) @ Y )
@ F3 ) ) ) ).
% has_derivative_mult_left
thf(fact_6442_has__derivative__mult__right,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [G: C > A,G4: C > A,F3: filter @ C,X: A] :
( ( has_derivative @ C @ A @ G @ G4 @ F3 )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( times_times @ A @ X @ ( G @ X6 ) )
@ ^ [X6: C] : ( times_times @ A @ X @ ( G4 @ X6 ) )
@ F3 ) ) ) ).
% has_derivative_mult_right
thf(fact_6443_has__derivative__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,F3: filter @ A,G: A > B,G4: A > B] :
( ( has_derivative @ A @ B @ F2 @ F7 @ F3 )
=> ( ( has_derivative @ A @ B @ G @ G4 @ F3 )
=> ( has_derivative @ A @ B
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ^ [X6: A] : ( plus_plus @ B @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ F3 ) ) ) ) ).
% has_derivative_add
thf(fact_6444_has__derivative__mult,axiom,
! [A: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ D )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [F2: D > A,F7: D > A,X: D,S: set @ D,G: D > A,G4: D > A] :
( ( has_derivative @ D @ A @ F2 @ F7 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( ( has_derivative @ D @ A @ G @ G4 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( has_derivative @ D @ A
@ ^ [X6: D] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ^ [H: D] : ( plus_plus @ A @ ( times_times @ A @ ( F2 @ X ) @ ( G4 @ H ) ) @ ( times_times @ A @ ( F7 @ H ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ D @ X @ S ) ) ) ) ) ).
% has_derivative_mult
thf(fact_6445_has__derivative__zero__unique,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F3: A > B,X: A] :
( ( has_derivative @ A @ B
@ ^ [X6: A] : ( zero_zero @ B )
@ F3
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( F3
= ( ^ [H: A] : ( zero_zero @ B ) ) ) ) ) ).
% has_derivative_zero_unique
thf(fact_6446_has__derivative__exp,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,S: set @ A] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( exp @ real @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( exp @ real @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_exp
thf(fact_6447_greaterThanLessThan__subseteq__greaterThanLessThan,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or5935395276787703475ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanLessThan
thf(fact_6448_ivl__disj__int__two_I4_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(4)
thf(fact_6449_ivl__disj__int__two_I5_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(5)
thf(fact_6450_ivl__disj__int__two_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(1)
thf(fact_6451_ivl__disj__int__one_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(1)
thf(fact_6452_has__derivative__sin,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,S: set @ A] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( sin @ real @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( cos @ real @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_sin
thf(fact_6453_has__derivative__sinh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [G: A > A,Db: A,X: A,S: set @ A] :
( ( has_derivative @ A @ A @ G @ ( times_times @ A @ Db ) @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ A
@ ^ [X6: A] : ( sinh @ A @ ( G @ X6 ) )
@ ( times_times @ A @ ( times_times @ A @ ( cosh @ A @ ( G @ X ) ) @ Db ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_sinh
thf(fact_6454_has__derivative__cosh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [G: A > A,Db: A,X: A,S: set @ A] :
( ( has_derivative @ A @ A @ G @ ( times_times @ A @ Db ) @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ A
@ ^ [X6: A] : ( cosh @ A @ ( G @ X6 ) )
@ ( times_times @ A @ ( times_times @ A @ ( sinh @ A @ ( G @ X ) ) @ Db ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_cosh
thf(fact_6455_greaterThanLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastAtMost_iff
thf(fact_6456_greaterThanLessThan__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastLessThan_iff
thf(fact_6457_ivl__disj__un__two_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(1)
thf(fact_6458_atLeastAtMost__diff__ends,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( insert @ A @ A2 @ ( insert @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) ) ).
% atLeastAtMost_diff_ends
thf(fact_6459_ivl__disj__un__one_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( set_ord_lessThan @ A @ U ) ) ) ) ).
% ivl_disj_un_one(1)
thf(fact_6460_has__derivative__divide_H,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,F7: C > A,X: C,S3: set @ C,G: C > A,G4: C > A] :
( ( has_derivative @ C @ A @ F2 @ F7 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( has_derivative @ C @ A @ G @ G4 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ^ [H: C] : ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ ( F7 @ H ) @ ( G @ X ) ) @ ( times_times @ A @ ( F2 @ X ) @ ( G4 @ H ) ) ) @ ( times_times @ A @ ( G @ X ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ) ).
% has_derivative_divide'
thf(fact_6461_has__derivative__inverse,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: C > A,X: C,F7: C > A,S3: set @ C] :
( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( ( has_derivative @ C @ A @ F2 @ F7 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( inverse_inverse @ A @ ( F2 @ X6 ) )
@ ^ [H: C] : ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( F2 @ X ) ) @ ( F7 @ H ) ) @ ( inverse_inverse @ A @ ( F2 @ X ) ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ).
% has_derivative_inverse
thf(fact_6462_has__derivative__inverse_H,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A,S3: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_derivative @ A @ A @ ( inverse_inverse @ A )
@ ^ [H: A] : ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ X ) @ H ) @ ( inverse_inverse @ A @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_inverse'
thf(fact_6463_DERIV__compose__FDERIV,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: real > real,F7: real,G: A > real,X: A,G4: A > real,S: set @ A] :
( ( has_field_derivative @ real @ F2 @ F7 @ ( topolo174197925503356063within @ real @ ( G @ X ) @ ( top_top @ ( set @ real ) ) ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( F2 @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ F7 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_compose_FDERIV
thf(fact_6464_has__derivative__cos,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,S: set @ A] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( cos @ real @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( uminus_uminus @ real @ ( sin @ real @ ( G @ X ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_cos
thf(fact_6465_DERIV__isconst3,axiom,
! [A2: real,B2: real,X: real,Y: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( member @ real @ X @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ( member @ real @ Y @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( F2 @ X )
= ( F2 @ Y ) ) ) ) ) ) ).
% DERIV_isconst3
thf(fact_6466_ivl__disj__un__two_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(4)
thf(fact_6467_ivl__disj__un__singleton_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( insert @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(3)
thf(fact_6468_has__derivative__power,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,F7: A > B,X: A,S3: set @ A,N: nat] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( has_derivative @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ ^ [Y6: A] : ( times_times @ B @ ( times_times @ B @ ( semiring_1_of_nat @ B @ N ) @ ( F7 @ Y6 ) ) @ ( power_power @ B @ ( F2 @ X ) @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_power
thf(fact_6469_has__derivative__ln,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( ln_ln @ real @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( inverse_inverse @ real @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_ln
thf(fact_6470_has__derivative__divide,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: C > A,F7: C > A,X: C,S3: set @ C,G: C > A,G4: C > A] :
( ( has_derivative @ C @ A @ F2 @ F7 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( has_derivative @ C @ A @ G @ G4 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ^ [H: C] : ( plus_plus @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( F2 @ X ) ) @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( G @ X ) ) @ ( G4 @ H ) ) @ ( inverse_inverse @ A @ ( G @ X ) ) ) ) @ ( divide_divide @ A @ ( F7 @ H ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ) ).
% has_derivative_divide
thf(fact_6471_has__derivative__prod,axiom,
! [B: $tType,I7: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [I6: set @ I7,F2: I7 > A > B,F7: I7 > A > B,X: A,S3: set @ A] :
( ! [I2: I7] :
( ( member @ I7 @ I2 @ I6 )
=> ( has_derivative @ A @ B @ ( F2 @ I2 ) @ ( F7 @ I2 ) @ ( topolo174197925503356063within @ A @ X @ S3 ) ) )
=> ( has_derivative @ A @ B
@ ^ [X6: A] :
( groups7121269368397514597t_prod @ I7 @ B
@ ^ [I: I7] : ( F2 @ I @ X6 )
@ I6 )
@ ^ [Y6: A] :
( groups7311177749621191930dd_sum @ I7 @ B
@ ^ [I: I7] :
( times_times @ B @ ( F7 @ I @ Y6 )
@ ( groups7121269368397514597t_prod @ I7 @ B
@ ^ [J2: I7] : ( F2 @ J2 @ X )
@ ( minus_minus @ ( set @ I7 ) @ I6 @ ( insert @ I7 @ I @ ( bot_bot @ ( set @ I7 ) ) ) ) ) )
@ I6 )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_prod
thf(fact_6472_has__derivative__powr,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,X9: set @ A,F2: A > real,F7: A > real] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ X9 ) )
=> ( ( has_derivative @ A @ real @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ X9 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( member @ A @ X @ X9 )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( G @ X6 ) @ ( F2 @ X6 ) )
@ ^ [H: A] : ( times_times @ real @ ( powr @ real @ ( G @ X ) @ ( F2 @ X ) ) @ ( plus_plus @ real @ ( times_times @ real @ ( F7 @ H ) @ ( ln_ln @ real @ ( G @ X ) ) ) @ ( divide_divide @ real @ ( times_times @ real @ ( G4 @ H ) @ ( F2 @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ X9 ) ) ) ) ) ) ) ).
% has_derivative_powr
thf(fact_6473_has__derivative__real__sqrt,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( sqrt @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ ( G @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_real_sqrt
thf(fact_6474_has__derivative__arctan,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,S: set @ A] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( arctan @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( inverse_inverse @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( G @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% has_derivative_arctan
thf(fact_6475_has__derivative__tan,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ( cos @ real @ ( G @ X ) )
!= ( zero_zero @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( tan @ real @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( inverse_inverse @ real @ ( power_power @ real @ ( cos @ real @ ( G @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_tan
thf(fact_6476_DERIV__series_H,axiom,
! [F2: real > nat > real,F7: real > nat > real,X0: real,A2: real,B2: real,L4: nat > real] :
( ! [N2: nat] :
( has_field_derivative @ real
@ ^ [X6: real] : ( F2 @ X6 @ N2 )
@ ( F7 @ X0 @ N2 )
@ ( topolo174197925503356063within @ real @ X0 @ ( top_top @ ( set @ real ) ) ) )
=> ( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( summable @ real @ ( F2 @ X5 ) ) )
=> ( ( member @ real @ X0 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ( summable @ real @ ( F7 @ X0 ) )
=> ( ( summable @ real @ L4 )
=> ( ! [N2: nat,X5: real,Y5: real] :
( ( member @ real @ X5 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ( member @ real @ Y5 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( F2 @ X5 @ N2 ) @ ( F2 @ Y5 @ N2 ) ) ) @ ( times_times @ real @ ( L4 @ N2 ) @ ( abs_abs @ real @ ( minus_minus @ real @ X5 @ Y5 ) ) ) ) ) )
=> ( has_field_derivative @ real
@ ^ [X6: real] : ( suminf @ real @ ( F2 @ X6 ) )
@ ( suminf @ real @ ( F7 @ X0 ) )
@ ( topolo174197925503356063within @ real @ X0 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ) ).
% DERIV_series'
thf(fact_6477_has__derivative__arccos,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( G @ X ) )
=> ( ( ord_less @ real @ ( G @ X ) @ ( one_one @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( arccos @ ( G @ X6 ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( inverse_inverse @ real @ ( uminus_uminus @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( G @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_arccos
thf(fact_6478_has__derivative__floor,axiom,
! [Aa: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( archim2362893244070406136eiling @ Aa )
& ( topolo2564578578187576103pology @ Aa ) )
=> ! [G: A > real,X: A,F2: real > Aa,G4: A > real,S: set @ A] :
( ( topolo3448309680560233919inuous @ real @ Aa @ ( topolo174197925503356063within @ real @ ( G @ X ) @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ~ ( member @ Aa @ ( F2 @ ( G @ X ) ) @ ( ring_1_Ints @ Aa ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X6: A] : ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ Aa @ ( F2 @ ( G @ X6 ) ) ) )
@ ^ [X6: A] : ( times_times @ real @ ( G4 @ X6 ) @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_floor
thf(fact_6479_termdiffs__aux,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ ( diffs @ A @ C2 ) @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( filterlim @ A @ A
@ ^ [H: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ X @ H ) @ N3 ) @ ( power_power @ A @ X @ N3 ) ) @ H ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_aux
thf(fact_6480_card__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or5935395276787703475ssThan @ nat @ L @ U ) )
= ( minus_minus @ nat @ U @ ( suc @ L ) ) ) ).
% card_greaterThanLessThan
thf(fact_6481_tendsto__mult__left__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: B > A,L: A,F3: filter @ B] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ C2 @ L ) )
@ F3 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 ) ) ) ) ).
% tendsto_mult_left_iff
thf(fact_6482_tendsto__mult__right__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: B > A,L: A,F3: filter @ B] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ L @ C2 ) )
@ F3 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 ) ) ) ) ).
% tendsto_mult_right_iff
thf(fact_6483_power__tendsto__0__iff,axiom,
! [A: $tType,N: nat,F2: A > real,F3: filter @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( filterlim @ A @ real
@ ^ [X6: A] : ( power_power @ real @ ( F2 @ X6 ) @ N )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 ) ) ) ).
% power_tendsto_0_iff
thf(fact_6484_real__LIM__sandwich__zero,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: A > real,A2: A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ! [X5: A] :
( ( X5 != A2 )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( G @ X5 ) ) )
=> ( ! [X5: A] :
( ( X5 != A2 )
=> ( ord_less_eq @ real @ ( G @ X5 ) @ ( F2 @ X5 ) ) )
=> ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% real_LIM_sandwich_zero
thf(fact_6485_isCont__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [A2: A,F2: A > B,G: B > C,L: C] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ L ) @ ( topolo174197925503356063within @ B @ ( F2 @ A2 ) @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X5 @ A2 ) ) @ D6 ) )
=> ( ( F2 @ X5 )
!= ( F2 @ A2 ) ) ) )
=> ( filterlim @ A @ C
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ C @ L )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% isCont_LIM_compose2
thf(fact_6486_LIM__offset__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A,L4: B] :
( ( filterlim @ A @ B
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ A2 @ H ) )
@ ( topolo7230453075368039082e_nhds @ B @ L4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset_zero_cancel
thf(fact_6487_LIM__offset__zero,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L4: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ A2 @ H ) )
@ ( topolo7230453075368039082e_nhds @ B @ L4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset_zero
thf(fact_6488_LIM__isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ A2 @ H ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_isCont_iff
thf(fact_6489_isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [X: A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ F2 )
= ( filterlim @ A @ B
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ X @ H ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ X ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% isCont_iff
thf(fact_6490_LIM__offset,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L4: B,A2: A,K: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( F2 @ ( plus_plus @ A @ X6 @ K ) )
@ ( topolo7230453075368039082e_nhds @ B @ L4 )
@ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ K ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset
thf(fact_6491_LIM__not__zero,axiom,
! [Aa: $tType,A: $tType] :
( ( ( topolo8386298272705272623_space @ A )
& ( zero @ Aa )
& ( topological_t2_space @ Aa ) )
=> ! [K: Aa,A2: A] :
( ( K
!= ( zero_zero @ Aa ) )
=> ~ ( filterlim @ A @ Aa
@ ^ [X6: A] : K
@ ( topolo7230453075368039082e_nhds @ Aa @ ( zero_zero @ Aa ) )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_not_zero
thf(fact_6492_has__field__derivativeD,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( filterlim @ A @ A
@ ^ [Y6: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ Y6 ) @ ( F2 @ X ) ) @ ( minus_minus @ A @ Y6 @ X ) )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_field_derivativeD
thf(fact_6493_has__field__derivative__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
= ( filterlim @ A @ A
@ ^ [Y6: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ Y6 ) @ ( F2 @ X ) ) @ ( minus_minus @ A @ Y6 @ X ) )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_field_derivative_iff
thf(fact_6494_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( suc @ L ) @ U )
= ( set_or5935395276787703475ssThan @ nat @ L @ U ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_6495_tendsto__const__iff,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space @ A )
=> ! [F3: filter @ B,A2: A,B2: A] :
( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( filterlim @ B @ A
@ ^ [X6: B] : A2
@ ( topolo7230453075368039082e_nhds @ A @ B2 )
@ F3 )
= ( A2 = B2 ) ) ) ) ).
% tendsto_const_iff
thf(fact_6496_continuous__trivial__limit,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [Net: filter @ A,F2: A > B] :
( ( Net
= ( bot_bot @ ( filter @ A ) ) )
=> ( topolo3448309680560233919inuous @ A @ B @ Net @ F2 ) ) ) ).
% continuous_trivial_limit
thf(fact_6497_continuous__bot,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B] : ( topolo3448309680560233919inuous @ A @ B @ ( bot_bot @ ( filter @ A ) ) @ F2 ) ) ).
% continuous_bot
thf(fact_6498_nhds__neq__bot,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [A2: A] :
( ( topolo7230453075368039082e_nhds @ A @ A2 )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% nhds_neq_bot
thf(fact_6499_tendsto__bot,axiom,
! [A: $tType,B: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: B > A,A2: A] : ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( bot_bot @ ( filter @ B ) ) ) ) ).
% tendsto_bot
thf(fact_6500_tendsto__unique,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space @ A )
=> ! [F3: filter @ B,F2: B > A,A2: A,B2: A] :
( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F3 )
=> ( A2 = B2 ) ) ) ) ) ).
% tendsto_unique
thf(fact_6501_tendsto__null__sum,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( topolo5987344860129210374id_add @ C )
=> ! [I6: set @ B,F2: A > B > C,F3: filter @ A] :
( ! [I2: B] :
( ( member @ B @ I2 @ I6 )
=> ( filterlim @ A @ C
@ ^ [X6: A] : ( F2 @ X6 @ I2 )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F3 ) )
=> ( filterlim @ A @ C
@ ^ [I: A] : ( groups7311177749621191930dd_sum @ B @ C @ ( F2 @ I ) @ I6 )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F3 ) ) ) ).
% tendsto_null_sum
thf(fact_6502_LIM__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( minus_minus @ B @ ( F2 @ X6 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 ) ) ) ).
% LIM_zero
thf(fact_6503_LIM__zero__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X6: A] : ( minus_minus @ B @ ( F2 @ X6 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 )
= ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 ) ) ) ).
% LIM_zero_iff
thf(fact_6504_Lim__transform,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: B > A,A2: A,F3: filter @ B,F2: B > A] :
( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A
@ ^ [X6: B] : ( minus_minus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 ) ) ) ) ).
% Lim_transform
thf(fact_6505_Lim__transform2,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B,G: B > A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A
@ ^ [X6: B] : ( minus_minus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 )
=> ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 ) ) ) ) ).
% Lim_transform2
thf(fact_6506_LIM__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X6: A] : ( minus_minus @ B @ ( F2 @ X6 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 ) ) ) ).
% LIM_zero_cancel
thf(fact_6507_Lim__transform__eq,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,G: B > A,F3: filter @ B,A2: A] :
( ( filterlim @ B @ A
@ ^ [X6: B] : ( minus_minus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
= ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 ) ) ) ) ).
% Lim_transform_eq
thf(fact_6508_tendsto__add__zero,axiom,
! [B: $tType,D: $tType] :
( ( topolo6943815403480290642id_add @ B )
=> ! [F2: D > B,F3: filter @ D,G: D > B] :
( ( filterlim @ D @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 )
=> ( ( filterlim @ D @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 )
=> ( filterlim @ D @ B
@ ^ [X6: D] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 ) ) ) ) ).
% tendsto_add_zero
thf(fact_6509_tendsto__sgn,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,L: A,F3: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 )
=> ( ( L
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( sgn_sgn @ A @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( sgn_sgn @ A @ L ) )
@ F3 ) ) ) ) ).
% tendsto_sgn
thf(fact_6510_tendsto__mult__one,axiom,
! [B: $tType,D: $tType] :
( ( topolo1898628316856586783d_mult @ B )
=> ! [F2: D > B,F3: filter @ D,G: D > B] :
( ( filterlim @ D @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) ) @ F3 )
=> ( ( filterlim @ D @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) ) @ F3 )
=> ( filterlim @ D @ B
@ ^ [X6: D] : ( times_times @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) )
@ F3 ) ) ) ) ).
% tendsto_mult_one
thf(fact_6511_tendsto__rabs__zero__cancel,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X6: A] : ( abs_abs @ real @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 )
=> ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 ) ) ).
% tendsto_rabs_zero_cancel
thf(fact_6512_tendsto__rabs__zero__iff,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X6: A] : ( abs_abs @ real @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 ) ) ).
% tendsto_rabs_zero_iff
thf(fact_6513_tendsto__rabs__zero,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( abs_abs @ real @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ).
% tendsto_rabs_zero
thf(fact_6514_tendsto__null__power,axiom,
! [B: $tType,A: $tType] :
( ( real_V2822296259951069270ebra_1 @ B )
=> ! [F2: A > B,F3: filter @ A,N: nat] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 ) ) ) ) ).
% tendsto_null_power
thf(fact_6515_tendsto__log,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( log @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( log @ A2 @ B2 ) )
@ F3 ) ) ) ) ) ) ).
% tendsto_log
thf(fact_6516_continuous__add,axiom,
! [B: $tType,D: $tType] :
( ( ( topological_t2_space @ D )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [F3: filter @ D,F2: D > B,G: D > B] :
( ( topolo3448309680560233919inuous @ D @ B @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ D @ B @ F3 @ G )
=> ( topolo3448309680560233919inuous @ D @ B @ F3
@ ^ [X6: D] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_add
thf(fact_6517_tendsto__add__const__iff,axiom,
! [A: $tType,B: $tType] :
( ( topolo1633459387980952147up_add @ A )
=> ! [C2: A,F2: B > A,D2: A,F3: filter @ B] :
( ( filterlim @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ C2 @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ C2 @ D2 ) )
@ F3 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ D2 ) @ F3 ) ) ) ).
% tendsto_add_const_iff
thf(fact_6518_tendsto__add,axiom,
! [A: $tType,B: $tType] :
( ( topolo6943815403480290642id_add @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B,G: B > A,B2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ A2 @ B2 ) )
@ F3 ) ) ) ) ).
% tendsto_add
thf(fact_6519_tendsto__power,axiom,
! [B: $tType,A: $tType] :
( ( ( power @ B )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [F2: A > B,A2: B,F3: filter @ A,N: nat] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ F3 )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ ( topolo7230453075368039082e_nhds @ B @ ( power_power @ B @ A2 @ N ) )
@ F3 ) ) ) ).
% tendsto_power
thf(fact_6520_continuous__power_H,axiom,
! [B: $tType,C: $tType] :
( ( ( topological_t2_space @ C )
& ( topolo1898628316856586783d_mult @ B ) )
=> ! [F3: filter @ C,F2: C > B,G: C > nat] :
( ( topolo3448309680560233919inuous @ C @ B @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ C @ nat @ F3 @ G )
=> ( topolo3448309680560233919inuous @ C @ B @ F3
@ ^ [X6: C] : ( power_power @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_power'
thf(fact_6521_tendsto__power__strong,axiom,
! [B: $tType,C: $tType] :
( ( topolo1898628316856586783d_mult @ B )
=> ! [F2: C > B,A2: B,F3: filter @ C,G: C > nat,B2: nat] :
( ( filterlim @ C @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ F3 )
=> ( ( filterlim @ C @ nat @ G @ ( topolo7230453075368039082e_nhds @ nat @ B2 ) @ F3 )
=> ( filterlim @ C @ B
@ ^ [X6: C] : ( power_power @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( power_power @ B @ A2 @ B2 ) )
@ F3 ) ) ) ) ).
% tendsto_power_strong
thf(fact_6522_continuous__power,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( power @ B )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [F3: filter @ A,F2: A > B,N: nat] :
( ( topolo3448309680560233919inuous @ A @ B @ F3 @ F2 )
=> ( topolo3448309680560233919inuous @ A @ B @ F3
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N ) ) ) ) ).
% continuous_power
thf(fact_6523_continuous__mult__right,axiom,
! [A: $tType,B: $tType] :
( ( ( topological_t2_space @ B )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [F3: filter @ B,F2: B > A,C2: A] :
( ( topolo3448309680560233919inuous @ B @ A @ F3 @ F2 )
=> ( topolo3448309680560233919inuous @ B @ A @ F3
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ C2 ) ) ) ) ).
% continuous_mult_right
thf(fact_6524_continuous__mult__left,axiom,
! [A: $tType,B: $tType] :
( ( ( topological_t2_space @ B )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [F3: filter @ B,F2: B > A,C2: A] :
( ( topolo3448309680560233919inuous @ B @ A @ F3 @ F2 )
=> ( topolo3448309680560233919inuous @ B @ A @ F3
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) ) ) ) ) ).
% continuous_mult_left
thf(fact_6525_continuous__mult_H,axiom,
! [B: $tType,D: $tType] :
( ( ( topological_t2_space @ D )
& ( topolo4211221413907600880p_mult @ B ) )
=> ! [F3: filter @ D,F2: D > B,G: D > B] :
( ( topolo3448309680560233919inuous @ D @ B @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ D @ B @ F3 @ G )
=> ( topolo3448309680560233919inuous @ D @ B @ F3
@ ^ [X6: D] : ( times_times @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_mult'
thf(fact_6526_continuous__mult,axiom,
! [A: $tType,D: $tType] :
( ( ( topological_t2_space @ D )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [F3: filter @ D,F2: D > A,G: D > A] :
( ( topolo3448309680560233919inuous @ D @ A @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ D @ A @ F3 @ G )
=> ( topolo3448309680560233919inuous @ D @ A @ F3
@ ^ [X6: D] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_mult
thf(fact_6527_tendsto__mult__right,axiom,
! [A: $tType,B: $tType] :
( ( topolo4211221413907600880p_mult @ A )
=> ! [F2: B > A,L: A,F3: filter @ B,C2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ L @ C2 ) )
@ F3 ) ) ) ).
% tendsto_mult_right
thf(fact_6528_tendsto__mult__left,axiom,
! [A: $tType,B: $tType] :
( ( topolo4211221413907600880p_mult @ A )
=> ! [F2: B > A,L: A,F3: filter @ B,C2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ C2 @ L ) )
@ F3 ) ) ) ).
% tendsto_mult_left
thf(fact_6529_tendsto__mult,axiom,
! [A: $tType,B: $tType] :
( ( topolo4211221413907600880p_mult @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B,G: B > A,B2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ A2 @ B2 ) )
@ F3 ) ) ) ) ).
% tendsto_mult
thf(fact_6530_tendsto__ln,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( A2
!= ( zero_zero @ real ) )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( ln_ln @ real @ A2 ) )
@ F3 ) ) ) ).
% tendsto_ln
thf(fact_6531_tendsto__powr,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F3 )
=> ( ( A2
!= ( zero_zero @ real ) )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F3 ) ) ) ) ).
% tendsto_powr
thf(fact_6532_tendsto__norm__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F3: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X6: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 ) ) ) ).
% tendsto_norm_zero_cancel
thf(fact_6533_tendsto__norm__zero__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F3: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X6: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 )
= ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 ) ) ) ).
% tendsto_norm_zero_iff
thf(fact_6534_tendsto__norm__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ) ).
% tendsto_norm_zero
thf(fact_6535_tendsto__divide__zero,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,F3: filter @ B,C2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( divide_divide @ A @ ( F2 @ X6 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ).
% tendsto_divide_zero
thf(fact_6536_tendsto__divide,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B,G: B > A,B2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F3 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( divide_divide @ A @ A2 @ B2 ) )
@ F3 ) ) ) ) ) ).
% tendsto_divide
thf(fact_6537_tendsto__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: A > A,A2: A,F3: filter @ A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( ( cos @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X6: A] : ( tan @ A @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( tan @ A @ A2 ) )
@ F3 ) ) ) ) ).
% tendsto_tan
thf(fact_6538_tendsto__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,A2: A,F3: filter @ C] :
( ( filterlim @ C @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( ( cosh @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ C @ A
@ ^ [X6: C] : ( tanh @ A @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( tanh @ A @ A2 ) )
@ F3 ) ) ) ) ).
% tendsto_tanh
thf(fact_6539_tendsto__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: A > A,A2: A,F3: filter @ A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( ( sin @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X6: A] : ( cot @ A @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( cot @ A @ A2 ) )
@ F3 ) ) ) ) ).
% tendsto_cot
thf(fact_6540_tendsto__mult__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F3: filter @ D,G: D > A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( ( filterlim @ D @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( filterlim @ D @ A
@ ^ [X6: D] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ) ).
% tendsto_mult_zero
thf(fact_6541_tendsto__mult__left__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F3: filter @ D,C2: A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( filterlim @ D @ A
@ ^ [X6: D] : ( times_times @ A @ ( F2 @ X6 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ).
% tendsto_mult_left_zero
thf(fact_6542_tendsto__mult__right__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F3: filter @ D,C2: A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( filterlim @ D @ A
@ ^ [X6: D] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ).
% tendsto_mult_right_zero
thf(fact_6543_tendsto__inverse,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( inverse_inverse @ A @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( inverse_inverse @ A @ A2 ) )
@ F3 ) ) ) ) ).
% tendsto_inverse
thf(fact_6544_LIM__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ D )
& ( zero @ C ) )
=> ! [A2: A,F2: A > D,L4: D] :
( ( nO_MATCH @ C @ A @ ( zero_zero @ C ) @ A2 )
=> ( ( filterlim @ A @ D @ F2 @ ( topolo7230453075368039082e_nhds @ D @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ D
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ A2 @ H ) )
@ ( topolo7230453075368039082e_nhds @ D @ L4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% LIM_offset_zero_iff
thf(fact_6545_LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,L4: B,A2: A,R2: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [S2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S2 )
& ! [X3: A] :
( ( ( X3 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X3 @ A2 ) ) @ S2 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X3 ) @ L4 ) ) @ R2 ) ) ) ) ) ) ).
% LIM_D
thf(fact_6546_LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,F2: A > B,L4: B] :
( ! [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ? [S8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S8 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X5 @ A2 ) ) @ S8 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X5 ) @ L4 ) ) @ R ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_I
thf(fact_6547_LIM__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,L4: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [S6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S6 )
& ! [X6: A] :
( ( ( X6 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X6 @ A2 ) ) @ S6 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X6 ) @ L4 ) ) @ R5 ) ) ) ) ) ) ) ).
% LIM_eq
thf(fact_6548_LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [R3: real,A2: A,F2: A > B,G: A > B,L: B] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ( ! [X5: A] :
( ( X5 != A2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X5 @ A2 ) ) @ R3 )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) ) )
=> ( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% LIM_equal2
thf(fact_6549_DERIV__LIM__iff,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( real_V822414075346904944vector @ A ) )
=> ! [F2: A > A,A2: A,D5: A] :
( ( filterlim @ A @ A
@ ^ [H: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ A2 @ H ) ) @ ( F2 @ A2 ) ) @ H )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [X6: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ X6 ) @ ( F2 @ A2 ) ) @ ( minus_minus @ A @ X6 @ A2 ) )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_LIM_iff
thf(fact_6550_LIM__fun__gt__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ! [X3: real] :
( ( ( X3 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X3 ) ) @ R ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_6551_LIM__fun__not__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( L
!= ( zero_zero @ real ) )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ! [X3: real] :
( ( ( X3 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X3 ) ) @ R ) )
=> ( ( F2 @ X3 )
!= ( zero_zero @ real ) ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_6552_LIM__fun__less__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ! [X3: real] :
( ( ( X3 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X3 ) ) @ R ) )
=> ( ord_less @ real @ ( F2 @ X3 ) @ ( zero_zero @ real ) ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_6553_LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [F2: A > B,B2: B,A2: A,G: B > C,C2: C] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ B2 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ C2 ) @ ( topolo174197925503356063within @ B @ B2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X5 @ A2 ) ) @ D6 ) )
=> ( ( F2 @ X5 )
!= B2 ) ) )
=> ( filterlim @ A @ C
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ C @ C2 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% LIM_compose2
thf(fact_6554_continuous__at__within__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ G )
=> ( ( ( G @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X6: A] : ( divide_divide @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_at_within_divide
thf(fact_6555_isCont__mult,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [A2: A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( times_times @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% isCont_mult
thf(fact_6556_isCont__add,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [A2: A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% isCont_add
thf(fact_6557_isCont__power,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( power @ B )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [A2: A,F2: A > B,N: nat] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N ) ) ) ) ).
% isCont_power
thf(fact_6558_continuous__at__within__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X6: A] : ( inverse_inverse @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_at_within_inverse
thf(fact_6559_continuous__at__within__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X6: A] : ( sgn_sgn @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_at_within_sgn
thf(fact_6560_DERIV__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ A
@ ^ [H: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H ) ) @ ( F2 @ X ) ) @ H )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_D
thf(fact_6561_DERIV__def,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A] :
( ( has_field_derivative @ A @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [H: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H ) ) @ ( F2 @ X ) ) @ H )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_def
thf(fact_6562_lim__exp__minus__1,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( filterlim @ A @ A
@ ^ [Z3: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( exp @ A @ Z3 ) @ ( one_one @ A ) ) @ Z3 )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% lim_exp_minus_1
thf(fact_6563_lemma__termdiff4,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [K: real,F2: A > B,K5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K )
=> ( ! [H3: A] :
( ( H3
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ H3 ) @ K )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ H3 ) ) @ ( times_times @ real @ K5 @ ( real_V7770717601297561774m_norm @ A @ H3 ) ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% lemma_termdiff4
thf(fact_6564_field__has__derivative__at,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D5: A,X: A] :
( ( has_derivative @ A @ A @ F2 @ ( times_times @ A @ D5 ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [H: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H ) ) @ ( F2 @ X ) ) @ H )
@ ( topolo7230453075368039082e_nhds @ A @ D5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% field_has_derivative_at
thf(fact_6565_isCont__ln,axiom,
! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ ( ln_ln @ real ) ) ) ).
% isCont_ln
thf(fact_6566_isCont__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [A2: A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( ( ( G @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( divide_divide @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% isCont_divide
thf(fact_6567_isCont__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( sgn_sgn @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% isCont_sgn
thf(fact_6568_filterlim__at__to__0,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,F3: filter @ B,A2: A] :
( ( filterlim @ A @ B @ F2 @ F3 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B
@ ^ [X6: A] : ( F2 @ ( plus_plus @ A @ X6 @ A2 ) )
@ F3
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_at_to_0
thf(fact_6569_continuous__within__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,S: set @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( cos @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X6: A] : ( tan @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_within_tan
thf(fact_6570_continuous__within__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,S: set @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( sin @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X6: A] : ( cot @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_within_cot
thf(fact_6571_continuous__at__within__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topological_t2_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: C,A3: set @ C,F2: C > A] :
( ( topolo3448309680560233919inuous @ C @ A @ ( topolo174197925503356063within @ C @ X @ A3 ) @ F2 )
=> ( ( ( cosh @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ C @ A @ ( topolo174197925503356063within @ C @ X @ A3 )
@ ^ [X6: C] : ( tanh @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_at_within_tanh
thf(fact_6572_CARAT__DERIV,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,L: A,X: A] :
( ( has_field_derivative @ A @ F2 @ L @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ? [G2: A > A] :
( ! [Z3: A] :
( ( minus_minus @ A @ ( F2 @ Z3 ) @ ( F2 @ X ) )
= ( times_times @ A @ ( G2 @ Z3 ) @ ( minus_minus @ A @ Z3 @ X ) ) )
& ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ G2 )
& ( ( G2 @ X )
= L ) ) ) ) ) ).
% CARAT_DERIV
thf(fact_6573_isCont__has__Ub,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: real,B2: real,F2: real > A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ( ord_less_eq @ real @ A2 @ X5 )
& ( ord_less_eq @ real @ X5 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ? [M8: A] :
( ! [X3: real] :
( ( ( ord_less_eq @ real @ A2 @ X3 )
& ( ord_less_eq @ real @ X3 @ B2 ) )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ M8 ) )
& ! [N10: A] :
( ( ord_less @ A @ N10 @ M8 )
=> ? [X5: real] :
( ( ord_less_eq @ real @ A2 @ X5 )
& ( ord_less_eq @ real @ X5 @ B2 )
& ( ord_less @ A @ N10 @ ( F2 @ X5 ) ) ) ) ) ) ) ) ).
% isCont_has_Ub
thf(fact_6574_isCont__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( tan @ A ) ) ) ) ).
% isCont_tan
thf(fact_6575_filterlim__shift,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,F3: filter @ B,A2: A,D2: A] :
( ( filterlim @ A @ B @ F2 @ F3 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ ( comp @ A @ B @ A @ F2 @ ( plus_plus @ A @ D2 ) ) @ F3 @ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ D2 ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_shift
thf(fact_6576_filterlim__shift__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,D2: A,F3: filter @ B,A2: A] :
( ( filterlim @ A @ B @ ( comp @ A @ B @ A @ F2 @ ( plus_plus @ A @ D2 ) ) @ F3 @ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ D2 ) @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B @ F2 @ F3 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_shift_iff
thf(fact_6577_isCont__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( cot @ A ) ) ) ) ).
% isCont_cot
thf(fact_6578_isCont__tanh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cosh @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( tanh @ A ) ) ) ) ).
% isCont_tanh
thf(fact_6579_powser__limit__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: real,A2: nat > A,F2: A > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S )
=> ( ! [X5: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X5 ) @ S )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ X5 @ N3 ) )
@ ( F2 @ X5 ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( A2 @ ( zero_zero @ nat ) ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% powser_limit_0
thf(fact_6580_powser__limit__0__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: real,A2: nat > A,F2: A > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S )
=> ( ! [X5: A] :
( ( X5
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X5 ) @ S )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ X5 @ N3 ) )
@ ( F2 @ X5 ) ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( A2 @ ( zero_zero @ nat ) ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% powser_limit_0_strong
thf(fact_6581_sorted__list__of__set__greaterThanLessThan,axiom,
! [I3: nat,J: nat] :
( ( ord_less @ nat @ ( suc @ I3 ) @ J )
=> ( ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ I3 @ J ) )
= ( cons @ nat @ ( suc @ I3 ) @ ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ ( suc @ I3 ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_6582_lemma__termdiff5,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_Vector_banach @ B ) )
=> ! [K: real,F2: nat > real,G: A > nat > B] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K )
=> ( ( summable @ real @ F2 )
=> ( ! [H3: A,N2: nat] :
( ( H3
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ H3 ) @ K )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( G @ H3 @ N2 ) ) @ ( times_times @ real @ ( F2 @ N2 ) @ ( real_V7770717601297561774m_norm @ A @ H3 ) ) ) ) )
=> ( filterlim @ A @ B
@ ^ [H: A] : ( suminf @ B @ ( G @ H ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% lemma_termdiff5
thf(fact_6583_isCont__tan_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A2: A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( cos @ A @ ( F2 @ A2 ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( tan @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% isCont_tan'
thf(fact_6584_LIM__cos__div__sin,axiom,
( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( cos @ real @ X6 ) @ ( sin @ real @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( top_top @ ( set @ real ) ) ) ) ).
% LIM_cos_div_sin
thf(fact_6585_isCont__cot_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A2: A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( sin @ A @ ( F2 @ A2 ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( cot @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% isCont_cot'
thf(fact_6586_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N: nat,J: nat,I3: nat] :
( ( ord_less @ nat @ N @ ( minus_minus @ nat @ J @ ( suc @ I3 ) ) )
=> ( ( nth @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ I3 @ J ) ) @ N )
= ( suc @ ( plus_plus @ nat @ I3 @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_6587_DERIV__inverse__function,axiom,
! [F2: real > real,D5: real,G: real > real,X: real,A2: real,B2: real] :
( ( has_field_derivative @ real @ F2 @ D5 @ ( topolo174197925503356063within @ real @ ( G @ X ) @ ( top_top @ ( set @ real ) ) ) )
=> ( ( D5
!= ( zero_zero @ real ) )
=> ( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ( ! [Y5: real] :
( ( ord_less @ real @ A2 @ Y5 )
=> ( ( ord_less @ real @ Y5 @ B2 )
=> ( ( F2 @ ( G @ Y5 ) )
= Y5 ) ) )
=> ( ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ G )
=> ( has_field_derivative @ real @ G @ ( inverse_inverse @ real @ D5 ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ) ).
% DERIV_inverse_function
thf(fact_6588_isCont__polynom,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: A,C2: nat > A,N: nat] :
( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [W3: A] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ W3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) ) ).
% isCont_polynom
thf(fact_6589_isCont__powser__converges__everywhere,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,X: A] :
( ! [Y5: A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Y5 @ N3 ) ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) ) ) ) ) ).
% isCont_powser_converges_everywhere
thf(fact_6590_LIM__less__bound,axiom,
! [B2: real,X: real,F2: real > real] :
( ( ord_less @ real @ B2 @ X )
=> ( ! [X5: real] :
( ( member @ real @ X5 @ ( set_or5935395276787703475ssThan @ real @ B2 @ X ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) ) )
=> ( ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X ) ) ) ) ) ).
% LIM_less_bound
thf(fact_6591_greaterThanLessThan__upto,axiom,
( ( set_or5935395276787703475ssThan @ int )
= ( ^ [I: int,J2: int] : ( set2 @ int @ ( upto @ ( plus_plus @ int @ I @ ( one_one @ int ) ) @ ( minus_minus @ int @ J2 @ ( one_one @ int ) ) ) ) ) ) ).
% greaterThanLessThan_upto
thf(fact_6592_isCont__inverse__function,axiom,
! [D2: real,X: real,G: real > real,F2: real > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Z4: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ Z4 @ X ) ) @ D2 )
=> ( ( G @ ( F2 @ Z4 ) )
= Z4 ) )
=> ( ! [Z4: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ Z4 @ X ) ) @ D2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ ( F2 @ X ) @ ( top_top @ ( set @ real ) ) ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_6593_GMVT_H,axiom,
! [A2: real,B2: real,F2: real > real,G: real > real,G4: real > real,F7: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [Z4: real] :
( ( ord_less_eq @ real @ A2 @ Z4 )
=> ( ( ord_less_eq @ real @ Z4 @ B2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) ) )
=> ( ! [Z4: real] :
( ( ord_less_eq @ real @ A2 @ Z4 )
=> ( ( ord_less_eq @ real @ Z4 @ B2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) @ G ) ) )
=> ( ! [Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
=> ( ( ord_less @ real @ Z4 @ B2 )
=> ( has_field_derivative @ real @ G @ ( G4 @ Z4 ) @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ! [Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
=> ( ( ord_less @ real @ Z4 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( F7 @ Z4 ) @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [C3: real] :
( ( ord_less @ real @ A2 @ C3 )
& ( ord_less @ real @ C3 @ B2 )
& ( ( times_times @ real @ ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) @ ( G4 @ C3 ) )
= ( times_times @ real @ ( minus_minus @ real @ ( G @ B2 ) @ ( G @ A2 ) ) @ ( F7 @ C3 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_6594_floor__has__real__derivative,axiom,
! [A: $tType] :
( ( ( archim2362893244070406136eiling @ A )
& ( topolo2564578578187576103pology @ A ) )
=> ! [X: real,F2: real > A] :
( ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ~ ( member @ A @ ( F2 @ X ) @ ( ring_1_Ints @ A ) )
=> ( has_field_derivative @ real
@ ^ [X6: real] : ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ A @ ( F2 @ X6 ) ) )
@ ( zero_zero @ real )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% floor_has_real_derivative
thf(fact_6595_isCont__powser,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X6 @ N3 ) ) ) ) ) ) ) ).
% isCont_powser
thf(fact_6596_isCont__powser_H,axiom,
! [Aa: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_Vector_banach @ Aa )
& ( real_V3459762299906320749_field @ Aa ) )
=> ! [A2: A,F2: A > Aa,C2: nat > Aa,K5: Aa] :
( ( topolo3448309680560233919inuous @ A @ Aa @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( summable @ Aa
@ ^ [N3: nat] : ( times_times @ Aa @ ( C2 @ N3 ) @ ( power_power @ Aa @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ Aa @ ( F2 @ A2 ) ) @ ( real_V7770717601297561774m_norm @ Aa @ K5 ) )
=> ( topolo3448309680560233919inuous @ A @ Aa @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] :
( suminf @ Aa
@ ^ [N3: nat] : ( times_times @ Aa @ ( C2 @ N3 ) @ ( power_power @ Aa @ ( F2 @ X6 ) @ N3 ) ) ) ) ) ) ) ) ).
% isCont_powser'
thf(fact_6597_summable__Leibniz_I3_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( ( ord_less @ real @ ( A2 @ ( zero_zero @ nat ) ) @ ( zero_zero @ real ) )
=> ! [N8: nat] :
( member @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) )
@ ( set_or1337092689740270186AtMost @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) @ ( one_one @ nat ) ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_6598_summable__Leibniz_I2_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( A2 @ ( zero_zero @ nat ) ) )
=> ! [N8: nat] :
( member @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) )
@ ( set_or1337092689740270186AtMost @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_6599_trivial__limit__sequentially,axiom,
( ( at_top @ nat )
!= ( bot_bot @ ( filter @ nat ) ) ) ).
% trivial_limit_sequentially
thf(fact_6600_tendsto__zero__mult__right__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_mult_right_iff
thf(fact_6601_tendsto__zero__mult__left__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( A2 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_mult_left_iff
thf(fact_6602_tendsto__zero__divide__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( A2 @ N3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_divide_iff
thf(fact_6603_approx__from__above__dense__linorder,axiom,
! [A: $tType] :
( ( ( dense_linorder @ A )
& ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [U3: nat > A] :
( ! [N8: nat] : ( ord_less @ A @ X @ ( U3 @ N8 ) )
& ( filterlim @ nat @ A @ U3 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) ) ) ) ) ).
% approx_from_above_dense_linorder
thf(fact_6604_approx__from__below__dense__linorder,axiom,
! [A: $tType] :
( ( ( dense_linorder @ A )
& ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ? [U3: nat > A] :
( ! [N8: nat] : ( ord_less @ A @ ( U3 @ N8 ) @ X )
& ( filterlim @ nat @ A @ U3 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) ) ) ) ) ).
% approx_from_below_dense_linorder
thf(fact_6605_LIMSEQ__imp__Suc,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,L: A] :
( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( at_top @ nat ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_imp_Suc
thf(fact_6606_LIMSEQ__Suc,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,L: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_Suc
thf(fact_6607_filterlim__sequentially__Suc,axiom,
! [A: $tType,F2: nat > A,F3: filter @ A] :
( ( filterlim @ nat @ A
@ ^ [X6: nat] : ( F2 @ ( suc @ X6 ) )
@ F3
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ F2 @ F3 @ ( at_top @ nat ) ) ) ).
% filterlim_sequentially_Suc
thf(fact_6608_filterlim__Suc,axiom,
filterlim @ nat @ nat @ suc @ ( at_top @ nat ) @ ( at_top @ nat ) ).
% filterlim_Suc
thf(fact_6609_trivial__limit__at__top__linorder,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( at_top @ A )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_top_linorder
thf(fact_6610_LIMSEQ__offset,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,K: nat,A2: A] :
( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_offset
thf(fact_6611_LIMSEQ__ignore__initial__segment,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,A2: A,K: nat] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_ignore_initial_segment
thf(fact_6612_Inf__as__limit,axiom,
! [A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [A3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [U3: nat > A] :
( ! [N8: nat] : ( member @ A @ ( U3 @ N8 ) @ A3 )
& ( filterlim @ nat @ A @ U3 @ ( topolo7230453075368039082e_nhds @ A @ ( complete_Inf_Inf @ A @ A3 ) ) @ ( at_top @ nat ) ) ) ) ) ).
% Inf_as_limit
thf(fact_6613_summable__LIMSEQ__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% summable_LIMSEQ_zero
thf(fact_6614_continuous__at__within__powr,axiom,
! [C: $tType] :
( ( topological_t2_space @ C )
=> ! [A2: C,S: set @ C,F2: C > real,G: C > real] :
( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S ) @ G )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S )
@ ^ [X6: C] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_at_within_powr
thf(fact_6615_continuous__within__ln,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,S: set @ A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( F2 @ X )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_within_ln
thf(fact_6616_mult__nat__left__at__top,axiom,
! [C2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ C2 )
=> ( filterlim @ nat @ nat @ ( times_times @ nat @ C2 ) @ ( at_top @ nat ) @ ( at_top @ nat ) ) ) ).
% mult_nat_left_at_top
thf(fact_6617_mult__nat__right__at__top,axiom,
! [C2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ C2 )
=> ( filterlim @ nat @ nat
@ ^ [X6: nat] : ( times_times @ nat @ X6 @ C2 )
@ ( at_top @ nat )
@ ( at_top @ nat ) ) ) ).
% mult_nat_right_at_top
thf(fact_6618_isCont__powr,axiom,
! [C: $tType] :
( ( topological_t2_space @ C )
=> ! [A2: C,F2: C > real,G: C > real] :
( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) ) @ G )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) )
@ ^ [X6: C] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% isCont_powr
thf(fact_6619_isCont__ln_H,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( F2 @ X )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) ) ) ) ) ) ).
% isCont_ln'
thf(fact_6620_lim__const__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [A2: A] :
( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_const_over_n
thf(fact_6621_lim__inverse__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_inverse_n
thf(fact_6622_LIMSEQ__linear,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [X9: nat > A,X: A,L: nat] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ L )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( X9 @ ( times_times @ nat @ N3 @ L ) )
@ ( topolo7230453075368039082e_nhds @ A @ X )
@ ( at_top @ nat ) ) ) ) ) ).
% LIMSEQ_linear
thf(fact_6623_telescope__summable_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( summable @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) ) ) ) ) ).
% telescope_summable'
thf(fact_6624_telescope__summable,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( summable @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) ) ) ) ) ).
% telescope_summable
thf(fact_6625_nested__sequence__unique,axiom,
! [F2: nat > real,G: nat > real] :
( ! [N2: nat] : ( ord_less_eq @ real @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( G @ ( suc @ N2 ) ) @ ( G @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( F2 @ N2 ) @ ( G @ N2 ) )
=> ( ( filterlim @ nat @ real
@ ^ [N3: nat] : ( minus_minus @ real @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) )
=> ? [L3: real] :
( ! [N8: nat] : ( ord_less_eq @ real @ ( F2 @ N8 ) @ L3 )
& ( filterlim @ nat @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L3 ) @ ( at_top @ nat ) )
& ! [N8: nat] : ( ord_less_eq @ real @ L3 @ ( G @ N8 ) )
& ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ L3 ) @ ( at_top @ nat ) ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_6626_LIMSEQ__inverse__zero,axiom,
! [X9: nat > real] :
( ! [R: real] :
? [N10: nat] :
! [N2: nat] :
( ( ord_less_eq @ nat @ N10 @ N2 )
=> ( ord_less @ real @ R @ ( X9 @ N2 ) ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( X9 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_inverse_zero
thf(fact_6627_lim__inverse__n_H,axiom,
( filterlim @ nat @ real
@ ^ [N3: nat] : ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ).
% lim_inverse_n'
thf(fact_6628_LIMSEQ__root__const,axiom,
! [C2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( root @ N3 @ C2 )
@ ( topolo7230453075368039082e_nhds @ real @ ( one_one @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_root_const
thf(fact_6629_LIMSEQ__inverse__real__of__nat,axiom,
( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat
thf(fact_6630_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( plus_plus @ real @ R2 @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add
thf(fact_6631_continuous__at__within__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [A2: A,S: set @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S ) @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ A2 ) )
=> ( ( ( F2 @ A2 )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ A2 ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X6: A] : ( log @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ) ) ).
% continuous_at_within_log
thf(fact_6632_increasing__LIMSEQ,axiom,
! [F2: nat > real,L: real] :
( ! [N2: nat] : ( ord_less_eq @ real @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( F2 @ N2 ) @ L )
=> ( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [N8: nat] : ( ord_less_eq @ real @ L @ ( plus_plus @ real @ ( F2 @ N8 ) @ E ) ) )
=> ( filterlim @ nat @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( at_top @ nat ) ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_6633_lim__1__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_1_over_n
thf(fact_6634_LIMSEQ__n__over__Suc__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_n_over_Suc_n
thf(fact_6635_LIMSEQ__Suc__n__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_Suc_n_over_n
thf(fact_6636_LIMSEQ__realpow__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ X ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_6637_telescope__sums,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( sums @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
@ ( minus_minus @ A @ C2 @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% telescope_sums
thf(fact_6638_telescope__sums_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( sums @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
@ ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ C2 ) ) ) ) ).
% telescope_sums'
thf(fact_6639_LIMSEQ__divide__realpow__zero,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( divide_divide @ real @ A2 @ ( power_power @ real @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_6640_LIMSEQ__abs__realpow__zero2,axiom,
! [C2: real] :
( ( ord_less @ real @ ( abs_abs @ real @ C2 ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ C2 ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_6641_LIMSEQ__abs__realpow__zero,axiom,
! [C2: real] :
( ( ord_less @ real @ ( abs_abs @ real @ C2 ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ ( abs_abs @ real @ C2 ) ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_6642_LIMSEQ__inverse__realpow__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( power_power @ real @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_6643_sums__def_H,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( ( sums @ A )
= ( ^ [F6: nat > A,S6: A] :
( filterlim @ nat @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F6 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ S6 )
@ ( at_top @ nat ) ) ) ) ) ).
% sums_def'
thf(fact_6644_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( plus_plus @ real @ R2 @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_6645_isCont__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [A2: A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ A2 ) )
=> ( ( ( F2 @ A2 )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ A2 ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X6: A] : ( log @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ) ) ).
% isCont_log
thf(fact_6646_LIMSEQ__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A,L4: A] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ No @ N3 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X9 @ N3 ) @ L4 ) ) @ R5 ) ) ) ) ) ) ).
% LIMSEQ_iff
thf(fact_6647_LIMSEQ__I,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A,L4: A] :
( ! [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ? [No2: nat] :
! [N2: nat] :
( ( ord_less_eq @ nat @ No2 @ N2 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X9 @ N2 ) @ L4 ) ) @ R ) ) )
=> ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_I
thf(fact_6648_LIMSEQ__D,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A,L4: A,R2: real] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [No3: nat] :
! [N8: nat] :
( ( ord_less_eq @ nat @ No3 @ N8 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X9 @ N8 ) @ L4 ) ) @ R2 ) ) ) ) ) ).
% LIMSEQ_D
thf(fact_6649_LIMSEQ__power__zero,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ A @ ( power_power @ A @ X ) @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_power_zero
thf(fact_6650_tendsto__at__iff__sequentially,axiom,
! [C: $tType,A: $tType] :
( ( ( topolo3112930676232923870pology @ A )
& ( topolo4958980785337419405_space @ C ) )
=> ! [F2: A > C,A2: C,X: A,S: set @ A] :
( ( filterlim @ A @ C @ F2 @ ( topolo7230453075368039082e_nhds @ C @ A2 ) @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ! [X4: nat > A] :
( ! [I: nat] : ( member @ A @ ( X4 @ I ) @ ( minus_minus @ ( set @ A ) @ S @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( ( filterlim @ nat @ A @ X4 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ C @ ( comp @ A @ C @ nat @ F2 @ X4 ) @ ( topolo7230453075368039082e_nhds @ C @ A2 ) @ ( at_top @ nat ) ) ) ) ) ) ) ).
% tendsto_at_iff_sequentially
thf(fact_6651_tendsto__power__zero,axiom,
! [A: $tType,B: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [F2: B > nat,F3: filter @ B,X: A] :
( ( filterlim @ B @ nat @ F2 @ ( at_top @ nat ) @ F3 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ B @ A
@ ^ [Y6: B] : ( power_power @ A @ X @ ( F2 @ Y6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ) ).
% tendsto_power_zero
thf(fact_6652_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( times_times @ real @ R2 @ ( plus_plus @ real @ ( one_one @ real ) @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_6653_LIMSEQ__norm__0,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ! [N2: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N2 ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_norm_0
thf(fact_6654_summable__Leibniz_I1_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( A2 @ N3 ) ) ) ) ) ).
% summable_Leibniz(1)
thf(fact_6655_field__derivative__lim__unique,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Df: A,Z2: A,S: nat > A,A2: A] :
( ( has_field_derivative @ A @ F2 @ Df @ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ nat @ A @ S @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] :
( ( S @ N2 )
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ Z2 @ ( S @ N3 ) ) ) @ ( F2 @ Z2 ) ) @ ( S @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) )
=> ( Df = A2 ) ) ) ) ) ) ).
% field_derivative_lim_unique
thf(fact_6656_powser__times__n__limit__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ) ).
% powser_times_n_limit_0
thf(fact_6657_lim__n__over__pown,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ) ).
% lim_n_over_pown
thf(fact_6658_summable,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( A2 @ N3 ) ) ) ) ) ) ).
% summable
thf(fact_6659_cos__diff__limit__1,axiom,
! [Theta: nat > real,Theta2: real] :
( ( filterlim @ nat @ real
@ ^ [J2: nat] : ( cos @ real @ ( minus_minus @ real @ ( Theta @ J2 ) @ Theta2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( one_one @ real ) )
@ ( at_top @ nat ) )
=> ~ ! [K2: nat > int] :
~ ( filterlim @ nat @ real
@ ^ [J2: nat] : ( minus_minus @ real @ ( Theta @ J2 ) @ ( times_times @ real @ ( ring_1_of_int @ real @ ( K2 @ J2 ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ Theta2 )
@ ( at_top @ nat ) ) ) ).
% cos_diff_limit_1
thf(fact_6660_cos__limit__1,axiom,
! [Theta: nat > real] :
( ( filterlim @ nat @ real
@ ^ [J2: nat] : ( cos @ real @ ( Theta @ J2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( one_one @ real ) )
@ ( at_top @ nat ) )
=> ? [K2: nat > int] :
( filterlim @ nat @ real
@ ^ [J2: nat] : ( minus_minus @ real @ ( Theta @ J2 ) @ ( times_times @ real @ ( ring_1_of_int @ real @ ( K2 @ J2 ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% cos_limit_1
thf(fact_6661_summable__Leibniz_I4_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) ) )
@ ( at_top @ nat ) ) ) ) ).
% summable_Leibniz(4)
thf(fact_6662_zeroseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% zeroseq_arctan_series
thf(fact_6663_summable__Leibniz_H_I3_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) ) )
@ ( at_top @ nat ) ) ) ) ) ).
% summable_Leibniz'(3)
thf(fact_6664_summable__Leibniz_H_I2_J,axiom,
! [A2: nat > real,N: nat] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( ord_less_eq @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) )
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) ) ) ) ) ) ).
% summable_Leibniz'(2)
thf(fact_6665_sums__alternating__upper__lower,axiom,
! [A2: nat > real] :
( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ? [L3: real] :
( ! [N8: nat] :
( ord_less_eq @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) ) )
@ L3 )
& ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ L3 )
@ ( at_top @ nat ) )
& ! [N8: nat] :
( ord_less_eq @ real @ L3
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N8 ) @ ( one_one @ nat ) ) ) ) )
& ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ L3 )
@ ( at_top @ nat ) ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_6666_summable__Leibniz_I5_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) ) )
@ ( at_top @ nat ) ) ) ) ).
% summable_Leibniz(5)
thf(fact_6667_summable__Leibniz_H_I4_J,axiom,
! [A2: nat > real,N: nat] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( ord_less_eq @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_6668_summable__Leibniz_H_I5_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N2 ) ) @ ( A2 @ N2 ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I ) @ ( A2 @ I ) ) ) )
@ ( at_top @ nat ) ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_6669_has__derivative__at2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ( filterlim @ A @ B
@ ^ [Y6: A] : ( real_V8093663219630862766scaleR @ B @ ( divide_divide @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y6 @ X ) ) ) @ ( minus_minus @ B @ ( F2 @ Y6 ) @ ( plus_plus @ B @ ( F2 @ X ) @ ( F7 @ ( minus_minus @ A @ Y6 @ X ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% has_derivative_at2
thf(fact_6670_has__derivative__at,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,D5: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ D5 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ D5 )
& ( filterlim @ A @ real
@ ^ [H: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ ( plus_plus @ A @ X @ H ) ) @ ( F2 @ X ) ) @ ( D5 @ H ) ) ) @ ( real_V7770717601297561774m_norm @ A @ H ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% has_derivative_at
thf(fact_6671_filterlim__at__top__mult__at__top,axiom,
! [A: $tType,F2: A > real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( times_times @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_top @ real )
@ F3 ) ) ) ).
% filterlim_at_top_mult_at_top
thf(fact_6672_bounded__linear__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,G: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ( ( real_V3181309239436604168linear @ A @ B @ G )
=> ( real_V3181309239436604168linear @ A @ B
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% bounded_linear_add
thf(fact_6673_real__bounded__linear,axiom,
( ( real_V3181309239436604168linear @ real @ real )
= ( ^ [F6: real > real] :
? [C6: real] :
( F6
= ( ^ [X6: real] : ( times_times @ real @ X6 @ C6 ) ) ) ) ) ).
% real_bounded_linear
thf(fact_6674_bounded__linear__mult__right,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [X: A] : ( real_V3181309239436604168linear @ A @ A @ ( times_times @ A @ X ) ) ) ).
% bounded_linear_mult_right
thf(fact_6675_bounded__linear__mult__const,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [G: C > A,Y: A] :
( ( real_V3181309239436604168linear @ C @ A @ G )
=> ( real_V3181309239436604168linear @ C @ A
@ ^ [X6: C] : ( times_times @ A @ ( G @ X6 ) @ Y ) ) ) ) ).
% bounded_linear_mult_const
thf(fact_6676_bounded__linear__const__mult,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [G: C > A,X: A] :
( ( real_V3181309239436604168linear @ C @ A @ G )
=> ( real_V3181309239436604168linear @ C @ A
@ ^ [X6: C] : ( times_times @ A @ X @ ( G @ X6 ) ) ) ) ) ).
% bounded_linear_const_mult
thf(fact_6677_bounded__linear__mult__left,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [Y: A] :
( real_V3181309239436604168linear @ A @ A
@ ^ [X6: A] : ( times_times @ A @ X6 @ Y ) ) ) ).
% bounded_linear_mult_left
thf(fact_6678_bounded__linear__zero,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ( real_V3181309239436604168linear @ A @ B
@ ^ [X6: A] : ( zero_zero @ B ) ) ) ).
% bounded_linear_zero
thf(fact_6679_bounded__linear__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [Y: A] :
( real_V3181309239436604168linear @ A @ A
@ ^ [X6: A] : ( divide_divide @ A @ X6 @ Y ) ) ) ).
% bounded_linear_divide
thf(fact_6680_bounded__linear_Obounded,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ? [K9: real] :
! [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X3 ) @ K9 ) ) ) ) ).
% bounded_linear.bounded
thf(fact_6681_bounded__linear_Otendsto__zero,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,G: C > A,F3: filter @ C] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ( ( filterlim @ C @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F3 )
=> ( filterlim @ C @ B
@ ^ [X6: C] : ( F2 @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F3 ) ) ) ) ).
% bounded_linear.tendsto_zero
thf(fact_6682_bounded__linear_Ononneg__bounded,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ? [K9: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ K9 )
& ! [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X3 ) @ K9 ) ) ) ) ) ).
% bounded_linear.nonneg_bounded
thf(fact_6683_has__derivative__within__singleton__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,G: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ G @ ( topolo174197925503356063within @ A @ X @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( real_V3181309239436604168linear @ A @ B @ G ) ) ) ).
% has_derivative_within_singleton_iff
thf(fact_6684_filterlim__pow__at__top,axiom,
! [A: $tType,N: nat,F2: A > real,F3: filter @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( power_power @ real @ ( F2 @ X6 ) @ N )
@ ( at_top @ real )
@ F3 ) ) ) ).
% filterlim_pow_at_top
thf(fact_6685_real__tendsto__divide__at__top,axiom,
! [A: $tType,F2: A > real,C2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ) ).
% real_tendsto_divide_at_top
thf(fact_6686_tendsto__inverse__0__at__top,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( inverse_inverse @ real @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ).
% tendsto_inverse_0_at_top
thf(fact_6687_bounded__linear_Opos__bounded,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ? [K9: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K9 )
& ! [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X3 ) @ K9 ) ) ) ) ) ).
% bounded_linear.pos_bounded
thf(fact_6688_bounded__linear__intro,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,K5: real] :
( ! [X5: A,Y5: A] :
( ( F2 @ ( plus_plus @ A @ X5 @ Y5 ) )
= ( plus_plus @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ! [R: real,X5: A] :
( ( F2 @ ( real_V8093663219630862766scaleR @ A @ R @ X5 ) )
= ( real_V8093663219630862766scaleR @ B @ R @ ( F2 @ X5 ) ) )
=> ( ! [X5: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X5 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X5 ) @ K5 ) )
=> ( real_V3181309239436604168linear @ A @ B @ F2 ) ) ) ) ) ).
% bounded_linear_intro
thf(fact_6689_filterlim__tendsto__pos__mult__at__top,axiom,
! [A: $tType,F2: A > real,C2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( times_times @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_top @ real )
@ F3 ) ) ) ) ).
% filterlim_tendsto_pos_mult_at_top
thf(fact_6690_filterlim__at__top__mult__tendsto__pos,axiom,
! [A: $tType,F2: A > real,C2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( times_times @ real @ ( G @ X6 ) @ ( F2 @ X6 ) )
@ ( at_top @ real )
@ F3 ) ) ) ) ).
% filterlim_at_top_mult_tendsto_pos
thf(fact_6691_tendsto__neg__powr,axiom,
! [A: $tType,S: real,F2: A > real,F3: filter @ A] :
( ( ord_less @ real @ S @ ( zero_zero @ real ) )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ S )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ) ).
% tendsto_neg_powr
thf(fact_6692_ln__x__over__x__tendsto__0,axiom,
( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( ln_ln @ real @ X6 ) @ X6 )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ real ) ) ).
% ln_x_over_x_tendsto_0
thf(fact_6693_tendsto__power__div__exp__0,axiom,
! [K: nat] :
( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( power_power @ real @ X6 @ K ) @ ( exp @ real @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ real ) ) ).
% tendsto_power_div_exp_0
thf(fact_6694_filterlim__tan__at__left,axiom,
filterlim @ real @ real @ ( tan @ real ) @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( set_ord_lessThan @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% filterlim_tan_at_left
thf(fact_6695_has__derivative__iff__norm,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ( filterlim @ A @ real
@ ^ [Y6: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y6 ) @ ( F2 @ X ) ) @ ( F7 @ ( minus_minus @ A @ Y6 @ X ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y6 @ X ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_iff_norm
thf(fact_6696_DERIV__neg__imp__decreasing__at__top,axiom,
! [B2: real,F2: real > real,Flim: real] :
( ! [X5: real] :
( ( ord_less_eq @ real @ B2 @ X5 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y4 @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ Flim ) @ ( at_top @ real ) )
=> ( ord_less @ real @ Flim @ ( F2 @ B2 ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_6697_tendsto__arctan__at__top,axiom,
filterlim @ real @ real @ arctan @ ( topolo7230453075368039082e_nhds @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( at_top @ real ) ).
% tendsto_arctan_at_top
thf(fact_6698_has__derivativeI,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F7: A > B,X: A,F2: A > B,S: set @ A] :
( ( real_V3181309239436604168linear @ A @ B @ F7 )
=> ( ( filterlim @ A @ B
@ ^ [Y6: A] : ( real_V8093663219630862766scaleR @ B @ ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y6 @ X ) ) ) @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y6 ) @ ( F2 @ X ) ) @ ( F7 @ ( minus_minus @ A @ Y6 @ X ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivativeI
thf(fact_6699_has__derivative__at__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ( filterlim @ A @ B
@ ^ [Y6: A] : ( real_V8093663219630862766scaleR @ B @ ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y6 @ X ) ) ) @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y6 ) @ ( F2 @ X ) ) @ ( F7 @ ( minus_minus @ A @ Y6 @ X ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_at_within
thf(fact_6700_has__derivative__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ? [E3: A > B] :
( ! [H: A] :
( ( F2 @ ( plus_plus @ A @ X @ H ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( F2 @ X ) @ ( F7 @ H ) ) @ ( E3 @ H ) ) )
& ( filterlim @ A @ real
@ ^ [H: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( E3 @ H ) ) @ ( real_V7770717601297561774m_norm @ A @ H ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% has_derivative_iff_Ex
thf(fact_6701_has__derivative__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ( filterlim @ A @ B
@ ^ [Y6: A] : ( real_V8093663219630862766scaleR @ B @ ( divide_divide @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y6 @ X ) ) ) @ ( minus_minus @ B @ ( F2 @ Y6 ) @ ( plus_plus @ B @ ( F2 @ X ) @ ( F7 @ ( minus_minus @ A @ Y6 @ X ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_within
thf(fact_6702_has__derivative__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ( ( has_derivative @ A @ B )
= ( ^ [F6: A > B,F8: A > B,F9: filter @ A] :
( ( real_V3181309239436604168linear @ A @ B @ F8 )
& ( filterlim @ A @ B
@ ^ [Y6: A] :
( real_V8093663219630862766scaleR @ B
@ ( inverse_inverse @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( minus_minus @ A @ Y6
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X6: A] : X6 ) ) ) )
@ ( minus_minus @ B
@ ( minus_minus @ B @ ( F6 @ Y6 )
@ ( F6
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X6: A] : X6 ) ) )
@ ( F8
@ ( minus_minus @ A @ Y6
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X6: A] : X6 ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F9 ) ) ) ) ) ).
% has_derivative_def
thf(fact_6703_has__derivative__at__within__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [X: A,S3: set @ A,F2: A > B,F7: A > B] :
( ( member @ A @ X @ S3 )
=> ( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F7 )
& ? [E3: A > B] :
( ! [H: A] :
( ( member @ A @ ( plus_plus @ A @ X @ H ) @ S3 )
=> ( ( F2 @ ( plus_plus @ A @ X @ H ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( F2 @ X ) @ ( F7 @ H ) ) @ ( E3 @ H ) ) ) )
& ( filterlim @ A @ real
@ ^ [H: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( E3 @ H ) ) @ ( real_V7770717601297561774m_norm @ A @ H ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% has_derivative_at_within_iff_Ex
thf(fact_6704_open__empty,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ( topolo1002775350975398744n_open @ A @ ( bot_bot @ ( set @ A ) ) ) ) ).
% open_empty
thf(fact_6705_not__open__singleton,axiom,
! [A: $tType] :
( ( topolo8386298272705272623_space @ A )
=> ! [X: A] :
~ ( topolo1002775350975398744n_open @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% not_open_singleton
thf(fact_6706_separation__t2,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
= ( ? [U4: set @ A,V6: set @ A] :
( ( topolo1002775350975398744n_open @ A @ U4 )
& ( topolo1002775350975398744n_open @ A @ V6 )
& ( member @ A @ X @ U4 )
& ( member @ A @ Y @ V6 )
& ( ( inf_inf @ ( set @ A ) @ U4 @ V6 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% separation_t2
thf(fact_6707_hausdorff,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ? [U5: set @ A,V7: set @ A] :
( ( topolo1002775350975398744n_open @ A @ U5 )
& ( topolo1002775350975398744n_open @ A @ V7 )
& ( member @ A @ X @ U5 )
& ( member @ A @ Y @ V7 )
& ( ( inf_inf @ ( set @ A ) @ U5 @ V7 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% hausdorff
thf(fact_6708_Inf__notin__open,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ! [A3: set @ A,X: A] :
( ( topolo1002775350975398744n_open @ A @ A3 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ord_less @ A @ X @ X5 ) )
=> ~ ( member @ A @ ( complete_Inf_Inf @ A @ A3 ) @ A3 ) ) ) ) ).
% Inf_notin_open
thf(fact_6709_Sup__notin__open,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ! [A3: set @ A,X: A] :
( ( topolo1002775350975398744n_open @ A @ A3 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ord_less @ A @ X5 @ X ) )
=> ~ ( member @ A @ ( complete_Sup_Sup @ A @ A3 ) @ A3 ) ) ) ) ).
% Sup_notin_open
thf(fact_6710_open__right,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A,X: A,Y: A] :
( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( member @ A @ X @ S3 )
=> ( ( ord_less @ A @ X @ Y )
=> ? [B6: A] :
( ( ord_less @ A @ X @ B6 )
& ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ X @ B6 ) @ S3 ) ) ) ) ) ) ).
% open_right
thf(fact_6711_Lim__ident__at,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,S: set @ A] :
( ( ( topolo174197925503356063within @ A @ X @ S )
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( topolo3827282254853284352ce_Lim @ A @ A @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X6: A] : X6 )
= X ) ) ) ).
% Lim_ident_at
thf(fact_6712_tendsto__Lim,axiom,
! [A: $tType,B: $tType] :
( ( topological_t2_space @ B )
=> ! [Net: filter @ A,F2: A > B,L: B] :
( ( Net
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ Net )
=> ( ( topolo3827282254853284352ce_Lim @ A @ B @ Net @ F2 )
= L ) ) ) ) ).
% tendsto_Lim
thf(fact_6713_continuous__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F3: filter @ A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ F3 @ G )
=> ( ( ( G
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F3
@ ^ [X6: A] : ( divide_divide @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_divide
thf(fact_6714_continuous__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [F3: filter @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F3 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F3
@ ^ [X6: A] : ( inverse_inverse @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_inverse
thf(fact_6715_continuous__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F3: filter @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F3 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F3
@ ^ [X6: A] : ( sgn_sgn @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_sgn
thf(fact_6716_at__within__nhd,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [X: A,S3: set @ A,T4: set @ A,U6: set @ A] :
( ( member @ A @ X @ S3 )
=> ( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ T4 @ S3 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ U6 @ S3 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( ( topolo174197925503356063within @ A @ X @ T4 )
= ( topolo174197925503356063within @ A @ X @ U6 ) ) ) ) ) ) ).
% at_within_nhd
thf(fact_6717_continuous__powr,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F3: filter @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ F3 @ G )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F3
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_powr
thf(fact_6718_continuous__ln,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F3: filter @ A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F3 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F3
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_ln
thf(fact_6719_at__eq__bot__iff,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [A2: A] :
( ( ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
= ( bot_bot @ ( filter @ A ) ) )
= ( topolo1002775350975398744n_open @ A @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% at_eq_bot_iff
thf(fact_6720_continuous__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F3: filter @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ F3 @ F2 )
=> ( ( ( cos @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ F3
@ ^ [X6: A] : ( tan @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_tan
thf(fact_6721_continuous__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F3: filter @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ F3 @ F2 )
=> ( ( ( sin @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ F3
@ ^ [X6: A] : ( cot @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_cot
thf(fact_6722_continuous__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topological_t2_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F3: filter @ C,F2: C > A] :
( ( topolo3448309680560233919inuous @ C @ A @ F3 @ F2 )
=> ( ( ( cosh @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ C @ C @ F3
@ ^ [X6: C] : X6 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ C @ A @ F3
@ ^ [X6: C] : ( tanh @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_tanh
thf(fact_6723_tendsto__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ D )
& ( zero @ C ) )
=> ! [A2: A,S3: set @ A,F2: A > D,L4: D] :
( ( nO_MATCH @ C @ A @ ( zero_zero @ C ) @ A2 )
=> ( ( member @ A @ A2 @ S3 )
=> ( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( filterlim @ A @ D @ F2 @ ( topolo7230453075368039082e_nhds @ D @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( filterlim @ A @ D
@ ^ [H: A] : ( F2 @ ( plus_plus @ A @ A2 @ H ) )
@ ( topolo7230453075368039082e_nhds @ D @ L4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% tendsto_offset_zero_iff
thf(fact_6724_continuous__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F3: filter @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F3 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ F3 @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real )
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) ) )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real )
@ ( G
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F3
@ ^ [X6: A] : ( log @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ) ) ).
% continuous_log
thf(fact_6725_has__derivativeI__sandwich,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [E2: real,F7: A > B,S: set @ A,X: A,F2: A > B,H6: A > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( ( real_V3181309239436604168linear @ A @ B @ F7 )
=> ( ! [Y5: A] :
( ( member @ A @ Y5 @ S )
=> ( ( Y5 != X )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y5 @ X ) @ E2 )
=> ( ord_less_eq @ real @ ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y5 ) @ ( F2 @ X ) ) @ ( F7 @ ( minus_minus @ A @ Y5 @ X ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y5 @ X ) ) ) @ ( H6 @ Y5 ) ) ) ) )
=> ( ( filterlim @ A @ real @ H6 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ) ).
% has_derivativeI_sandwich
thf(fact_6726_filterlim__pow__at__bot__even,axiom,
! [N: nat,F2: real > real,F3: filter @ real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( filterlim @ real @ real @ F2 @ ( at_bot @ real ) @ F3 )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( power_power @ real @ ( F2 @ X6 ) @ N )
@ ( at_top @ real )
@ F3 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_6727_dist__add__cancel,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( real_V557655796197034286t_dist @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ A2 @ C2 ) )
= ( real_V557655796197034286t_dist @ A @ B2 @ C2 ) ) ) ).
% dist_add_cancel
thf(fact_6728_dist__add__cancel2,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( real_V557655796197034286t_dist @ A @ ( plus_plus @ A @ B2 @ A2 ) @ ( plus_plus @ A @ C2 @ A2 ) )
= ( real_V557655796197034286t_dist @ A @ B2 @ C2 ) ) ) ).
% dist_add_cancel2
thf(fact_6729_dist__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ( real_V557655796197034286t_dist @ A @ X @ Y )
= ( zero_zero @ real ) )
= ( X = Y ) ) ) ).
% dist_eq_0_iff
thf(fact_6730_dist__self,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A] :
( ( real_V557655796197034286t_dist @ A @ X @ X )
= ( zero_zero @ real ) ) ) ).
% dist_self
thf(fact_6731_dist__0__norm,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( real_V557655796197034286t_dist @ A @ ( zero_zero @ A ) @ X )
= ( real_V7770717601297561774m_norm @ A @ X ) ) ) ).
% dist_0_norm
thf(fact_6732_zero__less__dist__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) )
= ( X != Y ) ) ) ).
% zero_less_dist_iff
thf(fact_6733_dist__le__zero__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ ( zero_zero @ real ) )
= ( X = Y ) ) ) ).
% dist_le_zero_iff
thf(fact_6734_dist__scaleR,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: real,A2: A,Y: real] :
( ( real_V557655796197034286t_dist @ A @ ( real_V8093663219630862766scaleR @ A @ X @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ Y @ A2 ) )
= ( times_times @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y ) ) @ ( real_V7770717601297561774m_norm @ A @ A2 ) ) ) ) ).
% dist_scaleR
thf(fact_6735_zero__le__dist,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) ) ) ).
% zero_le_dist
thf(fact_6736_dist__pos__lt,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) ) ) ) ).
% dist_pos_lt
thf(fact_6737_dist__not__less__zero,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ ( zero_zero @ real ) ) ) ).
% dist_not_less_zero
thf(fact_6738_norm__conv__dist,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( real_V7770717601297561774m_norm @ A )
= ( ^ [X6: A] : ( real_V557655796197034286t_dist @ A @ X6 @ ( zero_zero @ A ) ) ) ) ) ).
% norm_conv_dist
thf(fact_6739_trivial__limit__at__bot__linorder,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( at_bot @ A )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_bot_linorder
thf(fact_6740_open__dist,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo1002775350975398744n_open @ A )
= ( ^ [S7: set @ A] :
! [X6: A] :
( ( member @ A @ X6 @ S7 )
=> ? [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
& ! [Y6: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y6 @ X6 ) @ E3 )
=> ( member @ A @ Y6 @ S7 ) ) ) ) ) ) ) ).
% open_dist
thf(fact_6741_has__field__derivative__transform__within,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,F7: A,A2: A,S3: set @ A,D2: real,G: A > A] :
( ( has_field_derivative @ A @ F2 @ F7 @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ( member @ A @ A2 @ S3 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S3 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X5 @ A2 ) @ D2 )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) ) )
=> ( has_field_derivative @ A @ G @ F7 @ ( topolo174197925503356063within @ A @ A2 @ S3 ) ) ) ) ) ) ) ).
% has_field_derivative_transform_within
thf(fact_6742_has__derivative__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F7: A > B,X: A,S: set @ A,D2: real,G: A > B] :
( ( has_derivative @ A @ B @ F2 @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ( member @ A @ X @ S )
=> ( ! [X17: A] :
( ( member @ A @ X17 @ S )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X17 @ X ) @ D2 )
=> ( ( F2 @ X17 )
= ( G @ X17 ) ) ) )
=> ( has_derivative @ A @ B @ G @ F7 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ) ).
% has_derivative_transform_within
thf(fact_6743_Cauchy__def,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X4: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ M9 @ M4 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X4 @ M4 ) @ ( X4 @ N3 ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_def
thf(fact_6744_Cauchy__altdef2,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [S6: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( S6 @ N3 ) @ ( S6 @ N6 ) ) @ E3 ) ) ) ) ) ) ).
% Cauchy_altdef2
thf(fact_6745_metric__CauchyD,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,E2: real] :
( ( topolo3814608138187158403Cauchy @ A @ X9 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq @ nat @ M8 @ M2 )
=> ! [N8: nat] :
( ( ord_less_eq @ nat @ M8 @ N8 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ M2 ) @ ( X9 @ N8 ) ) @ E2 ) ) ) ) ) ) ).
% metric_CauchyD
thf(fact_6746_metric__CauchyI,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M3: nat] :
( ( ord_less_eq @ nat @ M10 @ M3 )
=> ! [N2: nat] :
( ( ord_less_eq @ nat @ M10 @ N2 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ M3 ) @ ( X9 @ N2 ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X9 ) ) ) ).
% metric_CauchyI
thf(fact_6747_dist__triangle__half__r,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [Y: A,X15: A,E2: real,X2: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y @ X15 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y @ X2 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X2 ) @ E2 ) ) ) ) ).
% dist_triangle_half_r
thf(fact_6748_dist__triangle__half__l,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X15: A,Y: A,E2: real,X2: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ Y ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X2 @ Y ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X2 ) @ E2 ) ) ) ) ).
% dist_triangle_half_l
thf(fact_6749_Lim__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L: B,X: A,S3: set @ A,D2: real,G: A > B] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [X17: A] :
( ( member @ A @ X17 @ S3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X17 @ X ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X17 @ X ) @ D2 )
=> ( ( F2 @ X17 )
= ( G @ X17 ) ) ) ) )
=> ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ) ) ).
% Lim_transform_within
thf(fact_6750_dist__triangle__third,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X15: A,X2: A,E2: real,X32: A,X42: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X2 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X2 @ X32 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X32 @ X42 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X42 ) @ E2 ) ) ) ) ) ).
% dist_triangle_third
thf(fact_6751_exp__at__bot,axiom,
filterlim @ real @ real @ ( exp @ real ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_bot @ real ) ).
% exp_at_bot
thf(fact_6752_filterlim__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [G: A > B,G5: filter @ B,X: A,S3: set @ A,F3: filter @ B,D2: real,F2: A > B] :
( ( filterlim @ A @ B @ G @ G5 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( ( ord_less_eq @ ( filter @ B ) @ G5 @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [X17: A] :
( ( member @ A @ X17 @ S3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X17 @ X ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X17 @ X ) @ D2 )
=> ( ( F2 @ X17 )
= ( G @ X17 ) ) ) ) )
=> ( filterlim @ A @ B @ F2 @ F3 @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ) ) ) ).
% filterlim_transform_within
thf(fact_6753_CauchyI_H,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M3: nat] :
( ( ord_less_eq @ nat @ M10 @ M3 )
=> ! [N2: nat] :
( ( ord_less @ nat @ M3 @ N2 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ M3 ) @ ( X9 @ N2 ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X9 ) ) ) ).
% CauchyI'
thf(fact_6754_Cauchy__altdef,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [F6: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ M9 @ M4 )
=> ! [N3: nat] :
( ( ord_less @ nat @ M4 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F6 @ M4 ) @ ( F6 @ N3 ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_altdef
thf(fact_6755_tendsto__dist__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ B )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 )
= ( filterlim @ A @ real
@ ^ [X6: A] : ( real_V557655796197034286t_dist @ B @ ( F2 @ X6 ) @ L )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ) ).
% tendsto_dist_iff
thf(fact_6756_metric__LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [G: A > B,L: B,A2: A,R3: real,F2: A > B] :
( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ( ! [X5: A] :
( ( X5 != A2 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X5 @ A2 ) @ R3 )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_LIM_equal2
thf(fact_6757_metric__LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [A2: A,F2: A > B,L4: B] :
( ! [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ? [S8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S8 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X5 @ A2 ) @ S8 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X5 ) @ L4 ) @ R ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% metric_LIM_I
thf(fact_6758_metric__LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [F2: A > B,L4: B,A2: A,R2: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [S2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S2 )
& ! [X3: A] :
( ( ( X3 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ A2 ) @ S2 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X3 ) @ L4 ) @ R2 ) ) ) ) ) ) ).
% metric_LIM_D
thf(fact_6759_LIM__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [F2: A > B,L4: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [S6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S6 )
& ! [X6: A] :
( ( ( X6 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ A2 ) @ S6 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X6 ) @ L4 ) @ R5 ) ) ) ) ) ) ) ).
% LIM_def
thf(fact_6760_lim__sequentially,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,L4: A] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ No @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ N3 ) @ L4 ) @ R5 ) ) ) ) ) ) ).
% lim_sequentially
thf(fact_6761_metric__LIMSEQ__I,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,L4: A] :
( ! [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ? [No2: nat] :
! [N2: nat] :
( ( ord_less_eq @ nat @ No2 @ N2 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ N2 ) @ L4 ) @ R ) ) )
=> ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) ) ) ) ).
% metric_LIMSEQ_I
thf(fact_6762_metric__LIMSEQ__D,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,L4: A,R2: real] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [No3: nat] :
! [N8: nat] :
( ( ord_less_eq @ nat @ No3 @ N8 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ N8 ) @ L4 ) @ R2 ) ) ) ) ) ).
% metric_LIMSEQ_D
thf(fact_6763_metric__Cauchy__iff2,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X4: nat > A] :
! [J2: nat] :
? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq @ nat @ M9 @ M4 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X4 @ M4 ) @ ( X4 @ N3 ) ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ J2 ) ) ) ) ) ) ) ) ) ).
% metric_Cauchy_iff2
thf(fact_6764_metric__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [F2: A > B,B2: B,A2: A,G: B > C,C2: C] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ B2 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ C2 ) @ ( topolo174197925503356063within @ B @ B2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X5 @ A2 ) @ D6 ) )
=> ( ( F2 @ X5 )
!= B2 ) ) )
=> ( filterlim @ A @ C
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ C @ C2 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_LIM_compose2
thf(fact_6765_filterlim__tendsto__pos__mult__at__bot,axiom,
! [A: $tType,F2: A > real,C2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_bot @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( times_times @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_bot @ real )
@ F3 ) ) ) ) ).
% filterlim_tendsto_pos_mult_at_bot
thf(fact_6766_filterlim__inverse__at__bot__neg,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( at_bot @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_lessThan @ real @ ( zero_zero @ real ) ) ) ).
% filterlim_inverse_at_bot_neg
thf(fact_6767_metric__isCont__LIM__compose2,axiom,
! [D: $tType,C: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ C )
& ( topolo4958980785337419405_space @ D ) )
=> ! [A2: A,F2: A > C,G: C > D,L: D] :
( ( topolo3448309680560233919inuous @ A @ C @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( filterlim @ C @ D @ G @ ( topolo7230453075368039082e_nhds @ D @ L ) @ ( topolo174197925503356063within @ C @ ( F2 @ A2 ) @ ( top_top @ ( set @ C ) ) ) )
=> ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X5: A] :
( ( ( X5 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X5 @ A2 ) @ D6 ) )
=> ( ( F2 @ X5 )
!= ( F2 @ A2 ) ) ) )
=> ( filterlim @ A @ D
@ ^ [X6: A] : ( G @ ( F2 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ D @ L )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_isCont_LIM_compose2
thf(fact_6768_filterlim__tendsto__neg__mult__at__bot,axiom,
! [A: $tType,F2: A > real,C2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F3 )
=> ( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( times_times @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_bot @ real )
@ F3 ) ) ) ) ).
% filterlim_tendsto_neg_mult_at_bot
thf(fact_6769_LIMSEQ__iff__nz,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,L4: A] :
( ( filterlim @ nat @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ No )
& ! [N3: nat] :
( ( ord_less_eq @ nat @ No @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X9 @ N3 ) @ L4 ) @ R5 ) ) ) ) ) ) ) ).
% LIMSEQ_iff_nz
thf(fact_6770_DERIV__pos__imp__increasing__at__bot,axiom,
! [B2: real,F2: real > real,Flim: real] :
( ! [X5: real] :
( ( ord_less_eq @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y4 ) ) )
=> ( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ Flim ) @ ( at_bot @ real ) )
=> ( ord_less @ real @ Flim @ ( F2 @ B2 ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_6771_filterlim__pow__at__bot__odd,axiom,
! [N: nat,F2: real > real,F3: filter @ real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( filterlim @ real @ real @ F2 @ ( at_bot @ real ) @ F3 )
=> ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( power_power @ real @ ( F2 @ X6 ) @ N )
@ ( at_bot @ real )
@ F3 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_6772_tendsto__arctan__at__bot,axiom,
filterlim @ real @ real @ arctan @ ( topolo7230453075368039082e_nhds @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) @ ( at_bot @ real ) ).
% tendsto_arctan_at_bot
thf(fact_6773_totally__bounded__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo6688025880775521714ounded @ A )
= ( ^ [S7: set @ A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [K3: set @ A] :
( ( finite_finite @ A @ K3 )
& ( ord_less_eq @ ( set @ A ) @ S7
@ ( complete_Sup_Sup @ ( set @ A )
@ ( image @ A @ ( set @ A )
@ ^ [X6: A] :
( collect @ A
@ ^ [Y6: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ Y6 ) @ E3 ) )
@ K3 ) ) ) ) ) ) ) ) ).
% totally_bounded_metric
thf(fact_6774_tendsto__exp__limit__at__right,axiom,
! [X: real] :
( filterlim @ real @ real
@ ^ [Y6: real] : ( powr @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ X @ Y6 ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ Y6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( exp @ real @ X ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ).
% tendsto_exp_limit_at_right
thf(fact_6775_greaterThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I3: A,K: A] :
( ( member @ A @ I3 @ ( set_ord_greaterThan @ A @ K ) )
= ( ord_less @ A @ K @ I3 ) ) ) ).
% greaterThan_iff
thf(fact_6776_totally__bounded__empty,axiom,
! [A: $tType] :
( ( topolo7287701948861334536_space @ A )
=> ( topolo6688025880775521714ounded @ A @ ( bot_bot @ ( set @ A ) ) ) ) ).
% totally_bounded_empty
thf(fact_6777_Sup__greaterThanAtLeast,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( ord_less @ A @ X @ ( top_top @ A ) )
=> ( ( complete_Sup_Sup @ A @ ( set_ord_greaterThan @ A @ X ) )
= ( top_top @ A ) ) ) ) ).
% Sup_greaterThanAtLeast
thf(fact_6778_trivial__limit__at__right__real,axiom,
! [A: $tType] :
( ( ( dense_order @ A )
& ( no_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A] :
( ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) )
!= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_right_real
thf(fact_6779_greaterThan__non__empty,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
( ( set_ord_greaterThan @ A @ X )
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% greaterThan_non_empty
thf(fact_6780_greaterThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_greaterThan @ A )
= ( ^ [L2: A] : ( collect @ A @ ( ord_less @ A @ L2 ) ) ) ) ) ).
% greaterThan_def
thf(fact_6781_at__within__Icc__at__right,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( topolo174197925503356063within @ A @ A2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ).
% at_within_Icc_at_right
thf(fact_6782_ivl__disj__int__one_I7_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(7)
thf(fact_6783_trivial__limit__at__right__top,axiom,
! [A: $tType] :
( ( ( order_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ( ( topolo174197925503356063within @ A @ ( top_top @ A ) @ ( set_ord_greaterThan @ A @ ( top_top @ A ) ) )
= ( bot_bot @ ( filter @ A ) ) ) ) ).
% trivial_limit_at_right_top
thf(fact_6784_less__separate,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [A6: A,B6: A] :
( ( member @ A @ X @ ( set_ord_lessThan @ A @ A6 ) )
& ( member @ A @ Y @ ( set_ord_greaterThan @ A @ B6 ) )
& ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ A6 ) @ ( set_ord_greaterThan @ A @ B6 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% less_separate
thf(fact_6785_filterlim__at__right__to__0,axiom,
! [A: $tType,F2: real > A,F3: filter @ A,A2: real] :
( ( filterlim @ real @ A @ F2 @ F3 @ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) ) )
= ( filterlim @ real @ A
@ ^ [X6: real] : ( F2 @ ( plus_plus @ real @ X6 @ A2 ) )
@ F3
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% filterlim_at_right_to_0
thf(fact_6786_filterlim__times__pos,axiom,
! [A: $tType,B: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: B > A,P2: A,F13: filter @ B,C2: A,L: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo174197925503356063within @ A @ P2 @ ( set_ord_greaterThan @ A @ P2 ) ) @ F13 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( L
= ( times_times @ A @ C2 @ P2 ) )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( topolo174197925503356063within @ A @ L @ ( set_ord_greaterThan @ A @ L ) )
@ F13 ) ) ) ) ) ).
% filterlim_times_pos
thf(fact_6787_filterlim__at__right__to__top,axiom,
! [A: $tType,F2: real > A,F3: filter @ A] :
( ( filterlim @ real @ A @ F2 @ F3 @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
= ( filterlim @ real @ A
@ ^ [X6: real] : ( F2 @ ( inverse_inverse @ real @ X6 ) )
@ F3
@ ( at_top @ real ) ) ) ).
% filterlim_at_right_to_top
thf(fact_6788_filterlim__at__top__to__right,axiom,
! [A: $tType,F2: real > A,F3: filter @ A] :
( ( filterlim @ real @ A @ F2 @ F3 @ ( at_top @ real ) )
= ( filterlim @ real @ A
@ ^ [X6: real] : ( F2 @ ( inverse_inverse @ real @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% filterlim_at_top_to_right
thf(fact_6789_filterlim__inverse__at__right__top,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) @ ( at_top @ real ) ).
% filterlim_inverse_at_right_top
thf(fact_6790_filterlim__inverse__at__top__right,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ).
% filterlim_inverse_at_top_right
thf(fact_6791_ln__at__0,axiom,
filterlim @ real @ real @ ( ln_ln @ real ) @ ( at_bot @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ).
% ln_at_0
thf(fact_6792_tendsto__arcosh__at__left__1,axiom,
filterlim @ real @ real @ ( arcosh @ real ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( one_one @ real ) @ ( set_ord_greaterThan @ real @ ( one_one @ real ) ) ) ).
% tendsto_arcosh_at_left_1
thf(fact_6793_filterlim__tan__at__right,axiom,
filterlim @ real @ real @ ( tan @ real ) @ ( at_bot @ real ) @ ( topolo174197925503356063within @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( set_ord_greaterThan @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% filterlim_tan_at_right
thf(fact_6794_at__within__order,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X: A,S: set @ A] :
( ( ( top_top @ ( set @ A ) )
!= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ( topolo174197925503356063within @ A @ X @ S )
= ( inf_inf @ ( filter @ A )
@ ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A4: A] : ( principal @ A @ ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ A4 ) @ S ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
@ ( set_ord_greaterThan @ A @ X ) ) )
@ ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A4: A] : ( principal @ A @ ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ ( set_ord_greaterThan @ A @ A4 ) @ S ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
@ ( set_ord_lessThan @ A @ X ) ) ) ) ) ) ) ).
% at_within_order
thf(fact_6795_lhopital__left__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F7: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top
thf(fact_6796_eventually__const,axiom,
! [A: $tType,F3: filter @ A,P: $o] :
( ( F3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( eventually @ A
@ ^ [X6: A] : P
@ F3 )
= P ) ) ).
% eventually_const
thf(fact_6797_eventually__at__bot__dense,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_bot @ A ) )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_bot @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less @ A @ N3 @ N6 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_bot_dense
thf(fact_6798_eventually__gt__at__bot,axiom,
! [A: $tType] :
( ( unboun7993243217541854897norder @ A )
=> ! [C2: A] :
( eventually @ A
@ ^ [X6: A] : ( ord_less @ A @ X6 @ C2 )
@ ( at_bot @ A ) ) ) ).
% eventually_gt_at_bot
thf(fact_6799_INT__greaterThan__UNIV,axiom,
( ( complete_Inf_Inf @ ( set @ nat ) @ ( image @ nat @ ( set @ nat ) @ ( set_ord_greaterThan @ nat ) @ ( top_top @ ( set @ nat ) ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% INT_greaterThan_UNIV
thf(fact_6800_eventually__gt__at__top,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [C2: A] : ( eventually @ A @ ( ord_less @ A @ C2 ) @ ( at_top @ A ) ) ) ).
% eventually_gt_at_top
thf(fact_6801_eventually__at__top__dense,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_top @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less @ A @ N6 @ N3 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_top_dense
thf(fact_6802_eventually__bot,axiom,
! [A: $tType,P: A > $o] : ( eventually @ A @ P @ ( bot_bot @ ( filter @ A ) ) ) ).
% eventually_bot
thf(fact_6803_eventually__happens,axiom,
! [A: $tType,P: A > $o,Net: filter @ A] :
( ( eventually @ A @ P @ Net )
=> ( ( Net
= ( bot_bot @ ( filter @ A ) ) )
| ? [X_12: A] : ( P @ X_12 ) ) ) ).
% eventually_happens
thf(fact_6804_eventually__happens_H,axiom,
! [A: $tType,F3: filter @ A,P: A > $o] :
( ( F3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( eventually @ A @ P @ F3 )
=> ? [X_12: A] : ( P @ X_12 ) ) ) ).
% eventually_happens'
thf(fact_6805_principal__eq__bot__iff,axiom,
! [A: $tType,X9: set @ A] :
( ( ( principal @ A @ X9 )
= ( bot_bot @ ( filter @ A ) ) )
= ( X9
= ( bot_bot @ ( set @ A ) ) ) ) ).
% principal_eq_bot_iff
thf(fact_6806_bot__eq__principal__empty,axiom,
! [A: $tType] :
( ( bot_bot @ ( filter @ A ) )
= ( principal @ A @ ( bot_bot @ ( set @ A ) ) ) ) ).
% bot_eq_principal_empty
thf(fact_6807_trivial__limit__def,axiom,
! [A: $tType,F3: filter @ A] :
( ( F3
= ( bot_bot @ ( filter @ A ) ) )
= ( eventually @ A
@ ^ [X6: A] : $false
@ F3 ) ) ).
% trivial_limit_def
thf(fact_6808_eventually__const__iff,axiom,
! [A: $tType,P: $o,F3: filter @ A] :
( ( eventually @ A
@ ^ [X6: A] : P
@ F3 )
= ( P
| ( F3
= ( bot_bot @ ( filter @ A ) ) ) ) ) ).
% eventually_const_iff
thf(fact_6809_False__imp__not__eventually,axiom,
! [A: $tType,P: A > $o,Net: filter @ A] :
( ! [X5: A] :
~ ( P @ X5 )
=> ( ( Net
!= ( bot_bot @ ( filter @ A ) ) )
=> ~ ( eventually @ A @ P @ Net ) ) ) ).
% False_imp_not_eventually
thf(fact_6810_eventually__nhds__top,axiom,
! [A: $tType] :
( ( ( order_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: A,P: A > $o] :
( ( ord_less @ A @ B2 @ ( top_top @ A ) )
=> ( ( eventually @ A @ P @ ( topolo7230453075368039082e_nhds @ A @ ( top_top @ A ) ) )
= ( ? [B4: A] :
( ( ord_less @ A @ B4 @ ( top_top @ A ) )
& ! [Z3: A] :
( ( ord_less @ A @ B4 @ Z3 )
=> ( P @ Z3 ) ) ) ) ) ) ) ).
% eventually_nhds_top
thf(fact_6811_eventually__at__left,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [Y: A,X: A,P: A > $o] :
( ( ord_less @ A @ Y @ X )
=> ( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) ) )
= ( ? [B4: A] :
( ( ord_less @ A @ B4 @ X )
& ! [Y6: A] :
( ( ord_less @ A @ B4 @ Y6 )
=> ( ( ord_less @ A @ Y6 @ X )
=> ( P @ Y6 ) ) ) ) ) ) ) ) ).
% eventually_at_left
thf(fact_6812_eventually__at__left__field,axiom,
! [A: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [P: A > $o,X: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) ) )
= ( ? [B4: A] :
( ( ord_less @ A @ B4 @ X )
& ! [Y6: A] :
( ( ord_less @ A @ B4 @ Y6 )
=> ( ( ord_less @ A @ Y6 @ X )
=> ( P @ Y6 ) ) ) ) ) ) ) ).
% eventually_at_left_field
thf(fact_6813_eventually__at__right,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X: A,Y: A,P: A > $o] :
( ( ord_less @ A @ X @ Y )
=> ( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) )
= ( ? [B4: A] :
( ( ord_less @ A @ X @ B4 )
& ! [Y6: A] :
( ( ord_less @ A @ X @ Y6 )
=> ( ( ord_less @ A @ Y6 @ B4 )
=> ( P @ Y6 ) ) ) ) ) ) ) ) ).
% eventually_at_right
thf(fact_6814_eventually__at__right__field,axiom,
! [A: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [P: A > $o,X: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) )
= ( ? [B4: A] :
( ( ord_less @ A @ X @ B4 )
& ! [Y6: A] :
( ( ord_less @ A @ X @ Y6 )
=> ( ( ord_less @ A @ Y6 @ B4 )
=> ( P @ Y6 ) ) ) ) ) ) ) ).
% eventually_at_right_field
thf(fact_6815_nhds__discrete,axiom,
! [A: $tType] :
( ( topolo8865339358273720382pology @ A )
=> ( ( topolo7230453075368039082e_nhds @ A )
= ( ^ [X6: A] : ( principal @ A @ ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% nhds_discrete
thf(fact_6816_order__tendstoD_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,Y: A,F3: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F3 )
=> ( ( ord_less @ A @ Y @ A2 )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ ( F2 @ X6 ) @ A2 )
@ F3 ) ) ) ) ).
% order_tendstoD(2)
thf(fact_6817_order__tendstoD_I1_J,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,Y: A,F3: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F3 )
=> ( ( ord_less @ A @ A2 @ Y )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ A2 @ ( F2 @ X6 ) )
@ F3 ) ) ) ) ).
% order_tendstoD(1)
thf(fact_6818_order__tendstoI,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [Y: A,F2: B > A,F3: filter @ B] :
( ! [A6: A] :
( ( ord_less @ A @ A6 @ Y )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ A6 @ ( F2 @ X6 ) )
@ F3 ) )
=> ( ! [A6: A] :
( ( ord_less @ A @ Y @ A6 )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ ( F2 @ X6 ) @ A6 )
@ F3 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F3 ) ) ) ) ).
% order_tendstoI
thf(fact_6819_order__tendsto__iff,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,X: A,F3: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F3 )
= ( ! [L2: A] :
( ( ord_less @ A @ L2 @ X )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ L2 @ ( F2 @ X6 ) )
@ F3 ) )
& ! [U2: A] :
( ( ord_less @ A @ X @ U2 )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ A @ ( F2 @ X6 ) @ U2 )
@ F3 ) ) ) ) ) ).
% order_tendsto_iff
thf(fact_6820_filterlim__at__top__dense,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F3 )
= ( ! [Z7: B] :
( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ Z7 @ ( F2 @ X6 ) )
@ F3 ) ) ) ) ).
% filterlim_at_top_dense
thf(fact_6821_eventually__at__right__less,axiom,
! [A: $tType] :
( ( ( no_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A] : ( eventually @ A @ ( ord_less @ A @ X ) @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) ) ) ).
% eventually_at_right_less
thf(fact_6822_filterlim__at__bot__dense,axiom,
! [A: $tType,B: $tType] :
( ( ( dense_linorder @ B )
& ( no_bot @ B ) )
=> ! [F2: A > B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F3 )
= ( ! [Z7: B] :
( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ ( F2 @ X6 ) @ Z7 )
@ F3 ) ) ) ) ).
% filterlim_at_bot_dense
thf(fact_6823_eventually__Inf__base,axiom,
! [A: $tType,B3: set @ ( filter @ A ),P: A > $o] :
( ( B3
!= ( bot_bot @ ( set @ ( filter @ A ) ) ) )
=> ( ! [F5: filter @ A] :
( ( member @ ( filter @ A ) @ F5 @ B3 )
=> ! [G6: filter @ A] :
( ( member @ ( filter @ A ) @ G6 @ B3 )
=> ? [X3: filter @ A] :
( ( member @ ( filter @ A ) @ X3 @ B3 )
& ( ord_less_eq @ ( filter @ A ) @ X3 @ ( inf_inf @ ( filter @ A ) @ F5 @ G6 ) ) ) ) )
=> ( ( eventually @ A @ P @ ( complete_Inf_Inf @ ( filter @ A ) @ B3 ) )
= ( ? [X6: filter @ A] :
( ( member @ ( filter @ A ) @ X6 @ B3 )
& ( eventually @ A @ P @ X6 ) ) ) ) ) ) ).
% eventually_Inf_base
thf(fact_6824_eventually__at,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A,S3: set @ A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X6: A] :
( ( member @ A @ X6 @ S3 )
=> ( ( ( X6 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ A2 ) @ D3 ) )
=> ( P @ X6 ) ) ) ) ) ) ) ).
% eventually_at
thf(fact_6825_eventually__nhds__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A] :
( ( eventually @ A @ P @ ( topolo7230453075368039082e_nhds @ A @ A2 ) )
= ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X6: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ A2 ) @ D3 )
=> ( P @ X6 ) ) ) ) ) ) ).
% eventually_nhds_metric
thf(fact_6826_eventually__at__leftI,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
=> ( P @ X5 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ) ).
% eventually_at_leftI
thf(fact_6827_eventually__at__rightI,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
=> ( P @ X5 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% eventually_at_rightI
thf(fact_6828_eventually__at__to__0,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [P: A > $o,A2: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( eventually @ A
@ ^ [X6: A] : ( P @ ( plus_plus @ A @ X6 @ A2 ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% eventually_at_to_0
thf(fact_6829_increasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,L: A,F3: filter @ B] :
( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ ( F2 @ N3 ) @ L )
@ F3 )
=> ( ! [X5: A] :
( ( ord_less @ A @ X5 @ L )
=> ( eventually @ B
@ ^ [N3: B] : ( ord_less @ A @ X5 @ ( F2 @ N3 ) )
@ F3 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 ) ) ) ) ).
% increasing_tendsto
thf(fact_6830_decreasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [L: A,F2: B > A,F3: filter @ B] :
( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ L @ ( F2 @ N3 ) )
@ F3 )
=> ( ! [X5: A] :
( ( ord_less @ A @ L @ X5 )
=> ( eventually @ B
@ ^ [N3: B] : ( ord_less @ A @ ( F2 @ N3 ) @ X5 )
@ F3 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 ) ) ) ) ).
% decreasing_tendsto
thf(fact_6831_filterlim__at__top__gt,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F3: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F3 )
= ( ! [Z7: B] :
( ( ord_less @ B @ C2 @ Z7 )
=> ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ B @ Z7 @ ( F2 @ X6 ) )
@ F3 ) ) ) ) ) ).
% filterlim_at_top_gt
thf(fact_6832_tendsto__principal__singleton,axiom,
! [A: $tType,B: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: B > A,X: B] : ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( F2 @ X ) ) @ ( principal @ B @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ).
% tendsto_principal_singleton
thf(fact_6833_filterlim__at__bot__lt,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F3: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F3 )
= ( ! [Z7: B] :
( ( ord_less @ B @ Z7 @ C2 )
=> ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ B @ ( F2 @ X6 ) @ Z7 )
@ F3 ) ) ) ) ) ).
% filterlim_at_bot_lt
thf(fact_6834_nhds__discrete__open,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [X: A] :
( ( topolo1002775350975398744n_open @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ( topolo7230453075368039082e_nhds @ A @ X )
= ( principal @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% nhds_discrete_open
thf(fact_6835_tendsto__upperbound,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: B > A,X: A,F3: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F3 )
=> ( ( eventually @ B
@ ^ [I: B] : ( ord_less_eq @ A @ ( F2 @ I ) @ A2 )
@ F3 )
=> ( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ord_less_eq @ A @ X @ A2 ) ) ) ) ) ).
% tendsto_upperbound
thf(fact_6836_tendsto__lowerbound,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: B > A,X: A,F3: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F3 )
=> ( ( eventually @ B
@ ^ [I: B] : ( ord_less_eq @ A @ A2 @ ( F2 @ I ) )
@ F3 )
=> ( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ord_less_eq @ A @ A2 @ X ) ) ) ) ) ).
% tendsto_lowerbound
thf(fact_6837_tendsto__le,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F3: filter @ B,F2: B > A,X: A,G: B > A,Y: A] :
( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F3 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F3 )
=> ( ( eventually @ B
@ ^ [X6: B] : ( ord_less_eq @ A @ ( G @ X6 ) @ ( F2 @ X6 ) )
@ F3 )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ) ) ) ).
% tendsto_le
thf(fact_6838_greaterThan__0,axiom,
( ( set_ord_greaterThan @ nat @ ( zero_zero @ nat ) )
= ( image @ nat @ nat @ suc @ ( top_top @ ( set @ nat ) ) ) ) ).
% greaterThan_0
thf(fact_6839_eventually__at__right__to__0,axiom,
! [P: real > $o,A2: real] :
( ( eventually @ real @ P @ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) ) )
= ( eventually @ real
@ ^ [X6: real] : ( P @ ( plus_plus @ real @ X6 @ A2 ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% eventually_at_right_to_0
thf(fact_6840_eventually__at__le,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A,S3: set @ A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X6: A] :
( ( member @ A @ X6 @ S3 )
=> ( ( ( X6 != A2 )
& ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ A2 ) @ D3 ) )
=> ( P @ X6 ) ) ) ) ) ) ) ).
% eventually_at_le
thf(fact_6841_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_ord_greaterThan @ nat @ ( suc @ K ) )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_greaterThan @ nat @ K ) @ ( insert @ nat @ ( suc @ K ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% greaterThan_Suc
thf(fact_6842_tendsto__imp__filterlim__at__left,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ B )
=> ! [F2: A > B,L4: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ ( F2 @ X6 ) @ L4 )
@ F3 )
=> ( filterlim @ A @ B @ F2 @ ( topolo174197925503356063within @ B @ L4 @ ( set_ord_lessThan @ B @ L4 ) ) @ F3 ) ) ) ) ).
% tendsto_imp_filterlim_at_left
thf(fact_6843_tendsto__imp__filterlim__at__right,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ B )
=> ! [F2: A > B,L4: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L4 ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ L4 @ ( F2 @ X6 ) )
@ F3 )
=> ( filterlim @ A @ B @ F2 @ ( topolo174197925503356063within @ B @ L4 @ ( set_ord_greaterThan @ B @ L4 ) ) @ F3 ) ) ) ) ).
% tendsto_imp_filterlim_at_right
thf(fact_6844_tendstoD,axiom,
! [A: $tType,B: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F3: filter @ B,E2: real] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X6 ) @ L ) @ E2 )
@ F3 ) ) ) ) ).
% tendstoD
thf(fact_6845_tendstoI,axiom,
! [A: $tType,B: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F3: filter @ B] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X6 ) @ L ) @ E )
@ F3 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 ) ) ) ).
% tendstoI
thf(fact_6846_tendsto__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F3: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F3 )
= ( ! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ( eventually @ B
@ ^ [X6: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X6 ) @ L ) @ E3 )
@ F3 ) ) ) ) ) ).
% tendsto_iff
thf(fact_6847_eventually__at__right__to__top,axiom,
! [P: real > $o] :
( ( eventually @ real @ P @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
= ( eventually @ real
@ ^ [X6: real] : ( P @ ( inverse_inverse @ real @ X6 ) )
@ ( at_top @ real ) ) ) ).
% eventually_at_right_to_top
thf(fact_6848_eventually__at__top__to__right,axiom,
! [P: real > $o] :
( ( eventually @ real @ P @ ( at_top @ real ) )
= ( eventually @ real
@ ^ [X6: real] : ( P @ ( inverse_inverse @ real @ X6 ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% eventually_at_top_to_right
thf(fact_6849_filterlim__at__top__at__left,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( linorder @ B ) )
=> ! [Q: A > $o,F2: A > B,P: B > $o,G: B > A,A2: A] :
( ! [X5: A,Y5: A] :
( ( Q @ X5 )
=> ( ( Q @ Y5 )
=> ( ( ord_less_eq @ A @ X5 @ Y5 )
=> ( ord_less_eq @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) ) ) )
=> ( ! [X5: B] :
( ( P @ X5 )
=> ( ( F2 @ ( G @ X5 ) )
= X5 ) )
=> ( ! [X5: B] :
( ( P @ X5 )
=> ( Q @ ( G @ X5 ) ) )
=> ( ( eventually @ A @ Q @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) )
=> ( ! [B6: A] :
( ( Q @ B6 )
=> ( ord_less @ A @ B6 @ A2 ) )
=> ( ( eventually @ B @ P @ ( at_top @ B ) )
=> ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) ) ) ) ) ) ) ) ) ).
% filterlim_at_top_at_left
thf(fact_6850_eventually__INF__base,axiom,
! [B: $tType,A: $tType,B3: set @ A,F3: A > ( filter @ B ),P: B > $o] :
( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ B3 )
=> ! [B6: A] :
( ( member @ A @ B6 @ B3 )
=> ? [X3: A] :
( ( member @ A @ X3 @ B3 )
& ( ord_less_eq @ ( filter @ B ) @ ( F3 @ X3 ) @ ( inf_inf @ ( filter @ B ) @ ( F3 @ A6 ) @ ( F3 @ B6 ) ) ) ) ) )
=> ( ( eventually @ B @ P @ ( complete_Inf_Inf @ ( filter @ B ) @ ( image @ A @ ( filter @ B ) @ F3 @ B3 ) ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ B3 )
& ( eventually @ B @ P @ ( F3 @ X6 ) ) ) ) ) ) ) ).
% eventually_INF_base
thf(fact_6851_filterlim__at__bot__at__right,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( linorder @ B ) )
=> ! [Q: A > $o,F2: A > B,P: B > $o,G: B > A,A2: A] :
( ! [X5: A,Y5: A] :
( ( Q @ X5 )
=> ( ( Q @ Y5 )
=> ( ( ord_less_eq @ A @ X5 @ Y5 )
=> ( ord_less_eq @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) ) ) )
=> ( ! [X5: B] :
( ( P @ X5 )
=> ( ( F2 @ ( G @ X5 ) )
= X5 ) )
=> ( ! [X5: B] :
( ( P @ X5 )
=> ( Q @ ( G @ X5 ) ) )
=> ( ( eventually @ A @ Q @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) )
=> ( ! [B6: A] :
( ( Q @ B6 )
=> ( ord_less @ A @ A2 @ B6 ) )
=> ( ( eventually @ B @ P @ ( at_bot @ B ) )
=> ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ) ) ) ) ).
% filterlim_at_bot_at_right
thf(fact_6852_filterlim__base__iff,axiom,
! [A: $tType,C: $tType,B: $tType,D: $tType,I6: set @ A,F3: A > ( set @ B ),F2: B > C,G5: D > ( set @ C ),J4: set @ D] :
( ( I6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ! [J3: A] :
( ( member @ A @ J3 @ I6 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( F3 @ I2 ) @ ( F3 @ J3 ) )
| ( ord_less_eq @ ( set @ B ) @ ( F3 @ J3 ) @ ( F3 @ I2 ) ) ) ) )
=> ( ( filterlim @ B @ C @ F2
@ ( complete_Inf_Inf @ ( filter @ C )
@ ( image @ D @ ( filter @ C )
@ ^ [J2: D] : ( principal @ C @ ( G5 @ J2 ) )
@ J4 ) )
@ ( complete_Inf_Inf @ ( filter @ B )
@ ( image @ A @ ( filter @ B )
@ ^ [I: A] : ( principal @ B @ ( F3 @ I ) )
@ I6 ) ) )
= ( ! [X6: D] :
( ( member @ D @ X6 @ J4 )
=> ? [Y6: A] :
( ( member @ A @ Y6 @ I6 )
& ! [Z3: B] :
( ( member @ B @ Z3 @ ( F3 @ Y6 ) )
=> ( member @ C @ ( F2 @ Z3 ) @ ( G5 @ X6 ) ) ) ) ) ) ) ) ) ).
% filterlim_base_iff
thf(fact_6853_tendsto__0__le,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F3: filter @ A,G: A > C,K5: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( G @ X6 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X6 ) ) @ K5 ) )
@ F3 )
=> ( filterlim @ A @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) ) @ F3 ) ) ) ) ).
% tendsto_0_le
thf(fact_6854_filterlim__at__withinI,axiom,
! [A: $tType,B: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: B > A,C2: A,F3: filter @ B,A3: set @ A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F3 )
=> ( ( eventually @ B
@ ^ [X6: B] : ( member @ A @ ( F2 @ X6 ) @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) ) )
@ F3 )
=> ( filterlim @ B @ A @ F2 @ ( topolo174197925503356063within @ A @ C2 @ A3 ) @ F3 ) ) ) ) ).
% filterlim_at_withinI
thf(fact_6855_tendsto__powr_H,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F3 )
=> ( ( ( A2
!= ( zero_zero @ real ) )
| ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
& ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 ) ) )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F3 ) ) ) ) ).
% tendsto_powr'
thf(fact_6856_tendsto__powr2,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F3 ) ) ) ) ) ).
% tendsto_powr2
thf(fact_6857_tendsto__zero__powrI,axiom,
! [A: $tType,F2: A > real,F3: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F3 ) ) ) ) ) ).
% tendsto_zero_powrI
thf(fact_6858_eventually__floor__less,axiom,
! [B: $tType,A: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( topolo2564578578187576103pology @ B ) )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 )
=> ( ~ ( member @ B @ L @ ( ring_1_Ints @ B ) )
=> ( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ ( ring_1_of_int @ B @ ( archim6421214686448440834_floor @ B @ L ) ) @ ( F2 @ X6 ) )
@ F3 ) ) ) ) ).
% eventually_floor_less
thf(fact_6859_LIM__at__top__divide,axiom,
! [A: $tType,F2: A > real,A2: real,F3: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X6 ) )
@ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_top @ real )
@ F3 ) ) ) ) ) ).
% LIM_at_top_divide
thf(fact_6860_eventually__less__ceiling,axiom,
! [B: $tType,A: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( topolo2564578578187576103pology @ B ) )
=> ! [F2: A > B,L: B,F3: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F3 )
=> ( ~ ( member @ B @ L @ ( ring_1_Ints @ B ) )
=> ( eventually @ A
@ ^ [X6: A] : ( ord_less @ B @ ( F2 @ X6 ) @ ( ring_1_of_int @ B @ ( archimedean_ceiling @ B @ L ) ) )
@ F3 ) ) ) ) ).
% eventually_less_ceiling
thf(fact_6861_filterlim__inverse__at__top__iff,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( ( filterlim @ A @ real
@ ^ [X6: A] : ( inverse_inverse @ real @ ( F2 @ X6 ) )
@ ( at_top @ real )
@ F3 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 ) ) ) ).
% filterlim_inverse_at_top_iff
thf(fact_6862_filterlim__inverse__at__top,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( inverse_inverse @ real @ ( F2 @ X6 ) )
@ ( at_top @ real )
@ F3 ) ) ) ).
% filterlim_inverse_at_top
thf(fact_6863_filterlim__at__top__iff__inverse__0,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 )
= ( filterlim @ A @ real @ ( comp @ real @ real @ A @ ( inverse_inverse @ real ) @ F2 ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 ) ) ) ).
% filterlim_at_top_iff_inverse_0
thf(fact_6864_filterlim__inverse__at__bot,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( F2 @ X6 ) @ ( zero_zero @ real ) )
@ F3 )
=> ( filterlim @ A @ real
@ ^ [X6: A] : ( inverse_inverse @ real @ ( F2 @ X6 ) )
@ ( at_bot @ real )
@ F3 ) ) ) ).
% filterlim_inverse_at_bot
thf(fact_6865_at__within__def,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ( ( topolo174197925503356063within @ A )
= ( ^ [A4: A,S6: set @ A] : ( inf_inf @ ( filter @ A ) @ ( topolo7230453075368039082e_nhds @ A @ A4 ) @ ( principal @ A @ ( minus_minus @ ( set @ A ) @ S6 @ ( insert @ A @ A4 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% at_within_def
thf(fact_6866_nhds__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo7230453075368039082e_nhds @ A )
= ( ^ [X6: A] :
( complete_Inf_Inf @ ( filter @ A )
@ ( image @ real @ ( filter @ A )
@ ^ [E3: real] :
( principal @ A
@ ( collect @ A
@ ^ [Y6: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y6 @ X6 ) @ E3 ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ).
% nhds_metric
thf(fact_6867_at__left__eq,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) )
= ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A4: A] : ( principal @ A @ ( set_or5935395276787703475ssThan @ A @ A4 @ X ) )
@ ( set_ord_lessThan @ A @ X ) ) ) ) ) ) ).
% at_left_eq
thf(fact_6868_at__right__eq,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) )
= ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A4: A] : ( principal @ A @ ( set_or5935395276787703475ssThan @ A @ X @ A4 ) )
@ ( set_ord_greaterThan @ A @ X ) ) ) ) ) ) ).
% at_right_eq
thf(fact_6869_lhopital,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F7: real > real,F3: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ) ) ).
% lhopital
thf(fact_6870_at__within__eq,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ( ( topolo174197925503356063within @ A )
= ( ^ [X6: A,S6: set @ A] :
( complete_Inf_Inf @ ( filter @ A )
@ ( image @ ( set @ A ) @ ( filter @ A )
@ ^ [S7: set @ A] : ( principal @ A @ ( minus_minus @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ S7 @ S6 ) @ ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) ) ) )
@ ( collect @ ( set @ A )
@ ^ [S7: set @ A] :
( ( topolo1002775350975398744n_open @ A @ S7 )
& ( member @ A @ X6 @ S7 ) ) ) ) ) ) ) ) ).
% at_within_eq
thf(fact_6871_lhospital__at__top__at__top,axiom,
! [G: real > real,G4: real > real,F2: real > real,F7: real > real,X: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( at_top @ real ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( at_top @ real ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( at_top @ real ) ) ) ) ) ) ) ).
% lhospital_at_top_at_top
thf(fact_6872_lhopital__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F7: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% lhopital_at_top
thf(fact_6873_lhopital__right,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F7: real > real,F3: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right
thf(fact_6874_lhopital__right__0,axiom,
! [F0: real > real,G0: real > real,G4: real > real,F7: real > real,F3: filter @ real] :
( ( filterlim @ real @ real @ F0 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real @ G0 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G0 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F0 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G0 @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F0 @ X6 ) @ ( G0 @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0
thf(fact_6875_lhopital__left,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F7: real > real,F3: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ F3
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_left
thf(fact_6876_lhopital__right__0__at__top,axiom,
! [G: real > real,G4: real > real,F2: real > real,F7: real > real,X: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0_at_top
thf(fact_6877_lhopital__right__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F7: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] :
( ( G4 @ X6 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X6: real] : ( has_field_derivative @ real @ G @ ( G4 @ X6 ) @ ( topolo174197925503356063within @ real @ X6 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F7 @ X6 ) @ ( G4 @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X6: real] : ( divide_divide @ real @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top
thf(fact_6878_polyfun__extremal,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [C2: nat > A,K: nat,N: nat,B3: real] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ K )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( eventually @ A
@ ^ [Z3: A] :
( ord_less_eq @ real @ B3
@ ( real_V7770717601297561774m_norm @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I: nat] : ( times_times @ A @ ( C2 @ I ) @ ( power_power @ A @ Z3 @ I ) )
@ ( set_ord_atMost @ nat @ N ) ) ) )
@ ( at_infinity @ A ) ) ) ) ) ) ).
% polyfun_extremal
thf(fact_6879_Bfun__metric__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ B )
=> ( ( bfun @ A @ B )
= ( ^ [F6: A > B,F9: filter @ A] :
? [Y6: B,K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ B @ ( F6 @ X6 ) @ Y6 ) @ K6 )
@ F9 ) ) ) ) ) ).
% Bfun_metric_def
thf(fact_6880_eventually__sequentially__Suc,axiom,
! [P: nat > $o] :
( ( eventually @ nat
@ ^ [I: nat] : ( P @ ( suc @ I ) )
@ ( at_top @ nat ) )
= ( eventually @ nat @ P @ ( at_top @ nat ) ) ) ).
% eventually_sequentially_Suc
thf(fact_6881_eventually__sequentially__seg,axiom,
! [P: nat > $o,K: nat] :
( ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) )
= ( eventually @ nat @ P @ ( at_top @ nat ) ) ) ).
% eventually_sequentially_seg
thf(fact_6882_sequentially__offset,axiom,
! [P: nat > $o,K: nat] :
( ( eventually @ nat @ P @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [I: nat] : ( P @ ( plus_plus @ nat @ I @ K ) )
@ ( at_top @ nat ) ) ) ).
% sequentially_offset
thf(fact_6883_Bseq__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,K: nat] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
=> ( bfun @ nat @ A
@ ^ [N3: nat] : ( X9 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) ) ) ) ).
% Bseq_ignore_initial_segment
thf(fact_6884_Bseq__offset,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X9: nat > A,K: nat] :
( ( bfun @ nat @ A
@ ^ [N3: nat] : ( X9 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) )
=> ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) ) ) ) ).
% Bseq_offset
thf(fact_6885_Bseq__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( bfun @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ).
% Bseq_Suc_iff
thf(fact_6886_Bseq__add,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) )
=> ( bfun @ nat @ A
@ ^ [X6: nat] : ( plus_plus @ A @ ( F2 @ X6 ) @ C2 )
@ ( at_top @ nat ) ) ) ) ).
% Bseq_add
thf(fact_6887_Bseq__add__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( bfun @ nat @ A
@ ^ [X6: nat] : ( plus_plus @ A @ ( F2 @ X6 ) @ C2 )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ).
% Bseq_add_iff
thf(fact_6888_Bseq__mult,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,G: nat > A] :
( ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) )
=> ( ( bfun @ nat @ A @ G @ ( at_top @ nat ) )
=> ( bfun @ nat @ A
@ ^ [X6: nat] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_top @ nat ) ) ) ) ) ).
% Bseq_mult
thf(fact_6889_Bseq__cmult__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( bfun @ nat @ A
@ ^ [X6: nat] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ) ).
% Bseq_cmult_iff
thf(fact_6890_not__tendsto__and__filterlim__at__infinity,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F3: filter @ B,F2: B > A,C2: A] :
( ( F3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F3 )
=> ~ ( filterlim @ B @ A @ F2 @ ( at_infinity @ A ) @ F3 ) ) ) ) ).
% not_tendsto_and_filterlim_at_infinity
thf(fact_6891_tendsto__add__filterlim__at__infinity,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,C2: B,F3: filter @ A,G: A > B] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ C2 ) @ F3 )
=> ( ( filterlim @ A @ B @ G @ ( at_infinity @ B ) @ F3 )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_infinity @ B )
@ F3 ) ) ) ) ).
% tendsto_add_filterlim_at_infinity
thf(fact_6892_tendsto__add__filterlim__at__infinity_H,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F3: filter @ A,G: A > B,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_infinity @ B ) @ F3 )
=> ( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ C2 ) @ F3 )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_infinity @ B )
@ F3 ) ) ) ) ).
% tendsto_add_filterlim_at_infinity'
thf(fact_6893_tendsto__inverse__0,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ( filterlim @ A @ A @ ( inverse_inverse @ A ) @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_infinity @ A ) ) ) ).
% tendsto_inverse_0
thf(fact_6894_Bseq__def,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
= ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N3 ) ) @ K6 ) ) ) ) ) ).
% Bseq_def
thf(fact_6895_BseqI,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [K5: real,X9: nat > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K5 )
=> ( ! [N2: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N2 ) ) @ K5 )
=> ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) ) ) ) ) ).
% BseqI
thf(fact_6896_BseqE,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
=> ~ ! [K9: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K9 )
=> ~ ! [N8: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N8 ) ) @ K9 ) ) ) ) ).
% BseqE
thf(fact_6897_BseqD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
=> ? [K9: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K9 )
& ! [N8: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N8 ) ) @ K9 ) ) ) ) ).
% BseqD
thf(fact_6898_Bseq__iff1a,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
= ( ? [N6: nat] :
! [N3: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% Bseq_iff1a
thf(fact_6899_Bseq__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
= ( ? [N6: nat] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X9 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% Bseq_iff
thf(fact_6900_Bseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( bfun @ nat @ real @ ( power_power @ real @ X ) @ ( at_top @ nat ) ) ) ) ).
% Bseq_realpow
thf(fact_6901_tendsto__mult__filterlim__at__infinity,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,C2: A,F3: filter @ B,G: B > A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F3 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A @ G @ ( at_infinity @ A ) @ F3 )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_infinity @ A )
@ F3 ) ) ) ) ) ).
% tendsto_mult_filterlim_at_infinity
thf(fact_6902_tendsto__divide__0,axiom,
! [A: $tType,C: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: C > A,C2: A,F3: filter @ C,G: C > A] :
( ( filterlim @ C @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F3 )
=> ( ( filterlim @ C @ A @ G @ ( at_infinity @ A ) @ F3 )
=> ( filterlim @ C @ A
@ ^ [X6: C] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F3 ) ) ) ) ).
% tendsto_divide_0
thf(fact_6903_filterlim__power__at__infinity,axiom,
! [B: $tType,A: $tType] :
( ( real_V8999393235501362500lgebra @ B )
=> ! [F2: A > B,F3: filter @ A,N: nat] :
( ( filterlim @ A @ B @ F2 @ ( at_infinity @ B ) @ F3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( filterlim @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ ( at_infinity @ B )
@ F3 ) ) ) ) ).
% filterlim_power_at_infinity
thf(fact_6904_filterlim__inverse__at__infinity,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ( filterlim @ A @ A @ ( inverse_inverse @ A ) @ ( at_infinity @ A ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% filterlim_inverse_at_infinity
thf(fact_6905_eventually__at__infinity__pos,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [P2: A > $o] :
( ( eventually @ A @ P2 @ ( at_infinity @ A ) )
= ( ? [B4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B4 )
& ! [X6: A] :
( ( ord_less_eq @ real @ B4 @ ( real_V7770717601297561774m_norm @ A @ X6 ) )
=> ( P2 @ X6 ) ) ) ) ) ) ).
% eventually_at_infinity_pos
thf(fact_6906_filterlim__at__infinity__imp__filterlim__at__top,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_infinity @ real ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) )
@ F3 )
=> ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F3 ) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_top
thf(fact_6907_filterlim__at__infinity__imp__filterlim__at__bot,axiom,
! [A: $tType,F2: A > real,F3: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_infinity @ real ) @ F3 )
=> ( ( eventually @ A
@ ^ [X6: A] : ( ord_less @ real @ ( F2 @ X6 ) @ ( zero_zero @ real ) )
@ F3 )
=> ( filterlim @ A @ real @ F2 @ ( at_bot @ real ) @ F3 ) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_bot
thf(fact_6908_filterlim__inverse__at__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V8999393235501362500lgebra @ B )
=> ! [G: A > B,F3: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X6: A] : ( inverse_inverse @ B @ ( G @ X6 ) )
@ ( topolo174197925503356063within @ B @ ( zero_zero @ B ) @ ( top_top @ ( set @ B ) ) )
@ F3 )
= ( filterlim @ A @ B @ G @ ( at_infinity @ B ) @ F3 ) ) ) ).
% filterlim_inverse_at_iff
thf(fact_6909_Bseq__iff2,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
= ( ? [K3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K3 )
& ? [X6: A] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( X9 @ N3 ) @ ( uminus_uminus @ A @ X6 ) ) ) @ K3 ) ) ) ) ) ).
% Bseq_iff2
thf(fact_6910_Bseq__iff3,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X9: nat > A] :
( ( bfun @ nat @ A @ X9 @ ( at_top @ nat ) )
= ( ? [K3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K3 )
& ? [N6: nat] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( X9 @ N3 ) @ ( uminus_uminus @ A @ ( X9 @ N6 ) ) ) ) @ K3 ) ) ) ) ) ).
% Bseq_iff3
thf(fact_6911_filterlim__divide__at__infinity,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,C2: A,F3: filter @ A,G: A > A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F3 )
=> ( ( filterlim @ A @ A @ G @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) @ F3 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X6: A] : ( divide_divide @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( at_infinity @ A )
@ F3 ) ) ) ) ) ).
% filterlim_divide_at_infinity
thf(fact_6912_filterlim__at__infinity,axiom,
! [C: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [C2: real,F2: C > A,F3: filter @ C] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ C @ A @ F2 @ ( at_infinity @ A ) @ F3 )
= ( ! [R5: real] :
( ( ord_less @ real @ C2 @ R5 )
=> ( eventually @ C
@ ^ [X6: C] : ( ord_less_eq @ real @ R5 @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ X6 ) ) )
@ F3 ) ) ) ) ) ) ).
% filterlim_at_infinity
thf(fact_6913_Bfun__inverse,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( bfun @ B @ A
@ ^ [X6: B] : ( inverse_inverse @ A @ ( F2 @ X6 ) )
@ F3 ) ) ) ) ).
% Bfun_inverse
thf(fact_6914_filterlim__realpow__sequentially__gt1,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( filterlim @ nat @ A @ ( power_power @ A @ X ) @ ( at_infinity @ A ) @ ( at_top @ nat ) ) ) ) ).
% filterlim_realpow_sequentially_gt1
thf(fact_6915_lim__at__infinity__0,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,L: A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_infinity @ A ) )
= ( filterlim @ A @ A @ ( comp @ A @ A @ A @ F2 @ ( inverse_inverse @ A ) ) @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% lim_at_infinity_0
thf(fact_6916_lim__zero__infinity,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,L: A] :
( ( filterlim @ A @ A
@ ^ [X6: A] : ( F2 @ ( divide_divide @ A @ ( one_one @ A ) @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_infinity @ A ) ) ) ) ).
% lim_zero_infinity
thf(fact_6917_BfunE,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F3: filter @ A] :
( ( bfun @ A @ B @ F2 @ F3 )
=> ~ ! [B9: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B9 )
=> ~ ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X6 ) ) @ B9 )
@ F3 ) ) ) ) ).
% BfunE
thf(fact_6918_Bfun__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ( ( bfun @ A @ B )
= ( ^ [F6: A > B,F9: filter @ A] :
? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ( eventually @ A
@ ^ [X6: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F6 @ X6 ) ) @ K6 )
@ F9 ) ) ) ) ) ).
% Bfun_def
thf(fact_6919_summable__Cauchy_H,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,G: nat > real] :
( ( eventually @ nat
@ ^ [M4: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ M4 @ N3 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ M4 @ N3 ) ) ) @ ( G @ M4 ) ) )
@ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_Cauchy'
thf(fact_6920_Gcd__eq__Max,axiom,
! [M7: set @ nat] :
( ( finite_finite @ nat @ M7 )
=> ( ( M7
!= ( bot_bot @ ( set @ nat ) ) )
=> ( ~ ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( gcd_Gcd @ nat @ M7 )
= ( lattic643756798349783984er_Max @ nat
@ ( complete_Inf_Inf @ ( set @ nat )
@ ( image @ nat @ ( set @ nat )
@ ^ [M4: nat] :
( collect @ nat
@ ^ [D3: nat] : ( dvd_dvd @ nat @ D3 @ M4 ) )
@ M7 ) ) ) ) ) ) ) ).
% Gcd_eq_Max
thf(fact_6921_Max__singleton,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] :
( ( lattic643756798349783984er_Max @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Max_singleton
thf(fact_6922_Max__divisors__self__nat,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [D3: nat] : ( dvd_dvd @ nat @ D3 @ N ) ) )
= N ) ) ).
% Max_divisors_self_nat
thf(fact_6923_Max_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ X )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X6 @ X ) ) ) ) ) ) ) ).
% Max.bounded_iff
thf(fact_6924_Max__less__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ X )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less @ A @ X6 @ X ) ) ) ) ) ) ) ).
% Max_less_iff
thf(fact_6925_Max__const,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ B,C2: A] :
( ( finite_finite @ B @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798349783984er_Max @ A
@ ( image @ B @ A
@ ^ [Uu3: B] : C2
@ A3 ) )
= C2 ) ) ) ) ).
% Max_const
thf(fact_6926_Max__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ A3 ) ) ) ) ) ) ).
% Max_insert
thf(fact_6927_Max__in,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ A3 ) ) ) ) ).
% Max_in
thf(fact_6928_Max_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( ord_less_eq @ A @ A6 @ X ) )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ X ) ) ) ) ) ).
% Max.boundedI
thf(fact_6929_Max_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ X )
=> ! [A15: A] :
( ( member @ A @ A15 @ A3 )
=> ( ord_less_eq @ A @ A15 @ X ) ) ) ) ) ) ).
% Max.boundedE
thf(fact_6930_eq__Max__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,M: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( M
= ( lattic643756798349783984er_Max @ A @ A3 ) )
= ( ( member @ A @ M @ A3 )
& ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X6 @ M ) ) ) ) ) ) ) ).
% eq_Max_iff
thf(fact_6931_Max__ge__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798349783984er_Max @ A @ A3 ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less_eq @ A @ X @ X6 ) ) ) ) ) ) ) ).
% Max_ge_iff
thf(fact_6932_Max__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,M: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( lattic643756798349783984er_Max @ A @ A3 )
= M )
= ( ( member @ A @ M @ A3 )
& ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X6 @ M ) ) ) ) ) ) ) ).
% Max_eq_iff
thf(fact_6933_Max__gr__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ X @ ( lattic643756798349783984er_Max @ A @ A3 ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less @ A @ X @ X6 ) ) ) ) ) ) ) ).
% Max_gr_iff
thf(fact_6934_cSup__eq__Max,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ X9 )
= ( lattic643756798349783984er_Max @ A @ X9 ) ) ) ) ) ).
% cSup_eq_Max
thf(fact_6935_Max__Sup,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A3 )
= ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ).
% Max_Sup
thf(fact_6936_Max_Oinfinite,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( lattic643756798349783984er_Max @ A @ A3 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Max.infinite
thf(fact_6937_Max_Osubset__imp,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ ( lattic643756798349783984er_Max @ A @ B3 ) ) ) ) ) ) ).
% Max.subset_imp
thf(fact_6938_Max__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M7: set @ A,N5: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ M7 @ N5 )
=> ( ( M7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ M7 ) @ ( lattic643756798349783984er_Max @ A @ N5 ) ) ) ) ) ) ).
% Max_mono
thf(fact_6939_hom__Max__commute,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [H2: A > A,N5: set @ A] :
( ! [X5: A,Y5: A] :
( ( H2 @ ( ord_max @ A @ X5 @ Y5 ) )
= ( ord_max @ A @ ( H2 @ X5 ) @ ( H2 @ Y5 ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ( N5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H2 @ ( lattic643756798349783984er_Max @ A @ N5 ) )
= ( lattic643756798349783984er_Max @ A @ ( image @ A @ A @ H2 @ N5 ) ) ) ) ) ) ) ).
% hom_Max_commute
thf(fact_6940_Max_Osubset,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( ord_max @ A @ ( lattic643756798349783984er_Max @ A @ B3 ) @ ( lattic643756798349783984er_Max @ A @ A3 ) )
= ( lattic643756798349783984er_Max @ A @ A3 ) ) ) ) ) ) ).
% Max.subset
thf(fact_6941_Max_Oclosed,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] : ( member @ A @ ( ord_max @ A @ X5 @ Y5 ) @ ( insert @ A @ X5 @ ( insert @ A @ Y5 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ A3 ) ) ) ) ) ).
% Max.closed
thf(fact_6942_Max_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ A3 ) ) ) ) ) ) ) ).
% Max.insert_not_elem
thf(fact_6943_Max_Ounion,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( ord_max @ A @ ( lattic643756798349783984er_Max @ A @ A3 ) @ ( lattic643756798349783984er_Max @ A @ B3 ) ) ) ) ) ) ) ) ).
% Max.union
thf(fact_6944_Sup__nat__def,axiom,
( ( complete_Sup_Sup @ nat )
= ( ^ [X4: set @ nat] :
( if @ nat
@ ( X4
= ( bot_bot @ ( set @ nat ) ) )
@ ( zero_zero @ nat )
@ ( lattic643756798349783984er_Max @ nat @ X4 ) ) ) ) ).
% Sup_nat_def
thf(fact_6945_card__le__Suc__Max,axiom,
! [S3: set @ nat] :
( ( finite_finite @ nat @ S3 )
=> ( ord_less_eq @ nat @ ( finite_card @ nat @ S3 ) @ ( suc @ ( lattic643756798349783984er_Max @ nat @ S3 ) ) ) ) ).
% card_le_Suc_Max
thf(fact_6946_divide__nat__def,axiom,
( ( divide_divide @ nat )
= ( ^ [M4: nat,N3: nat] :
( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ nat )
@ ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [K3: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ K3 @ N3 ) @ M4 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_6947_Max__add__commute,axiom,
! [B: $tType,A: $tType] :
( ( linord4140545234300271783up_add @ A )
=> ! [S3: set @ B,F2: B > A,K: A] :
( ( finite_finite @ B @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798349783984er_Max @ A
@ ( image @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ ( F2 @ X6 ) @ K )
@ S3 ) )
= ( plus_plus @ A @ ( lattic643756798349783984er_Max @ A @ ( image @ B @ A @ F2 @ S3 ) ) @ K ) ) ) ) ) ).
% Max_add_commute
thf(fact_6948_gcd__is__Max__divisors__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( gcd_gcd @ nat @ M @ N )
= ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [D3: nat] :
( ( dvd_dvd @ nat @ D3 @ M )
& ( dvd_dvd @ nat @ D3 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_nat
thf(fact_6949_Max_Oinsert__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert @ A @ X @ A3 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Max.insert_remove
thf(fact_6950_Max_Oremove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A3 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A3 )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Max.remove
thf(fact_6951_Max_Oeq__fold_H,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798349783984er_Max @ A )
= ( ^ [A7: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X6: A,Y6: option @ A] : ( some @ A @ ( case_option @ A @ A @ X6 @ ( ord_max @ A @ X6 ) @ Y6 ) )
@ ( none @ A )
@ A7 ) ) ) ) ) ).
% Max.eq_fold'
thf(fact_6952_sum__le__card__Max,axiom,
! [A: $tType,A3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ord_less_eq @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) @ ( times_times @ nat @ ( finite_card @ A @ A3 ) @ ( lattic643756798349783984er_Max @ nat @ ( image @ A @ nat @ F2 @ A3 ) ) ) ) ) ).
% sum_le_card_Max
thf(fact_6953_summable__bounded__partials,axiom,
! [A: $tType] :
( ( ( real_V8037385150606011577_space @ A )
& ( real_V822414075346904944vector @ A ) )
=> ! [F2: nat > A,G: nat > real] :
( ( eventually @ nat
@ ^ [X02: nat] :
! [A4: nat] :
( ( ord_less_eq @ nat @ X02 @ A4 )
=> ! [B4: nat] :
( ( ord_less @ nat @ A4 @ B4 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or3652927894154168847AtMost @ nat @ A4 @ B4 ) ) ) @ ( G @ A4 ) ) ) )
@ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_bounded_partials
thf(fact_6954_sequentially__imp__eventually__at__right,axiom,
! [A: $tType] :
( ( ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [A2: A,B2: A,P: A > $o] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ! [F4: nat > A] :
( ! [N8: nat] : ( ord_less @ A @ A2 @ ( F4 @ N8 ) )
=> ( ! [N8: nat] : ( ord_less @ A @ ( F4 @ N8 ) @ B2 )
=> ( ( order_antimono @ nat @ A @ F4 )
=> ( ( filterlim @ nat @ A @ F4 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( F4 @ N3 ) )
@ ( at_top @ nat ) ) ) ) ) )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% sequentially_imp_eventually_at_right
thf(fact_6955_greaterThanAtMost__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I3: A,L: A,U: A] :
( ( member @ A @ I3 @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( ( ord_less @ A @ L @ I3 )
& ( ord_less_eq @ A @ I3 @ U ) ) ) ) ).
% greaterThanAtMost_iff
thf(fact_6956_greaterThanAtMost__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,K: A] :
( ( ord_less_eq @ A @ L @ K )
=> ( ( set_or3652927894154168847AtMost @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% greaterThanAtMost_empty
thf(fact_6957_greaterThanAtMost__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A,L: A] :
( ( ( set_or3652927894154168847AtMost @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less @ A @ K @ L ) ) ) ) ).
% greaterThanAtMost_empty_iff
thf(fact_6958_greaterThanAtMost__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A,L: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or3652927894154168847AtMost @ A @ K @ L ) )
= ( ~ ( ord_less @ A @ K @ L ) ) ) ) ).
% greaterThanAtMost_empty_iff2
thf(fact_6959_infinite__Ioc__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ioc_iff
thf(fact_6960_image__add__greaterThanAtMost,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ C2 ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) )
= ( set_or3652927894154168847AtMost @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% image_add_greaterThanAtMost
thf(fact_6961_Sup__greaterThanAtMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or3652927894154168847AtMost @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_greaterThanAtMost
thf(fact_6962_cSup__greaterThanAtMost,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or3652927894154168847AtMost @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_greaterThanAtMost
thf(fact_6963_cInf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or3652927894154168847AtMost @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_greaterThanAtMost
thf(fact_6964_Inf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or3652927894154168847AtMost @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_greaterThanAtMost
thf(fact_6965_Max__divisors__self__int,axiom,
! [N: int] :
( ( N
!= ( zero_zero @ int ) )
=> ( ( lattic643756798349783984er_Max @ int
@ ( collect @ int
@ ^ [D3: int] : ( dvd_dvd @ int @ D3 @ N ) ) )
= ( abs_abs @ int @ N ) ) ) ).
% Max_divisors_self_int
thf(fact_6966_infinite__Ioc,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ioc
thf(fact_6967_decseq__SucD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: nat > A,I3: nat] :
( ( order_antimono @ nat @ A @ A3 )
=> ( ord_less_eq @ A @ ( A3 @ ( suc @ I3 ) ) @ ( A3 @ I3 ) ) ) ) ).
% decseq_SucD
thf(fact_6968_decseq__SucI,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X9: nat > A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( X9 @ ( suc @ N2 ) ) @ ( X9 @ N2 ) )
=> ( order_antimono @ nat @ A @ X9 ) ) ) ).
% decseq_SucI
thf(fact_6969_decseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_antimono @ nat @ A )
= ( ^ [F6: nat > A] :
! [N3: nat] : ( ord_less_eq @ A @ ( F6 @ ( suc @ N3 ) ) @ ( F6 @ N3 ) ) ) ) ) ).
% decseq_Suc_iff
thf(fact_6970_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( suc @ L ) @ U )
= ( set_or3652927894154168847AtMost @ nat @ L @ U ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_6971_ivl__disj__int__two_I6_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(6)
thf(fact_6972_Ioc__disjoint,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( bot_bot @ ( set @ A ) ) )
= ( ( ord_less_eq @ A @ B2 @ A2 )
| ( ord_less_eq @ A @ D2 @ C2 )
| ( ord_less_eq @ A @ B2 @ C2 )
| ( ord_less_eq @ A @ D2 @ A2 ) ) ) ) ).
% Ioc_disjoint
thf(fact_6973_open__left,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A,X: A,Y: A] :
( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( member @ A @ X @ S3 )
=> ( ( ord_less @ A @ Y @ X )
=> ? [B6: A] :
( ( ord_less @ A @ B6 @ X )
& ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ B6 @ X ) @ S3 ) ) ) ) ) ) ).
% open_left
thf(fact_6974_ivl__disj__int__two_I8_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(8)
thf(fact_6975_ivl__disj__int__one_I3_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(3)
thf(fact_6976_ivl__disj__int__one_I5_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(5)
thf(fact_6977_ivl__disj__int__two_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(2)
thf(fact_6978_gcd__is__Max__divisors__int,axiom,
! [N: int,M: int] :
( ( N
!= ( zero_zero @ int ) )
=> ( ( gcd_gcd @ int @ M @ N )
= ( lattic643756798349783984er_Max @ int
@ ( collect @ int
@ ^ [D3: int] :
( ( dvd_dvd @ int @ D3 @ M )
& ( dvd_dvd @ int @ D3 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_int
thf(fact_6979_sum_Ohead,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or3652927894154168847AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% sum.head
thf(fact_6980_prod_Ohead,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or3652927894154168847AtMost @ nat @ M @ N ) ) ) ) ) ) ).
% prod.head
thf(fact_6981_greaterThanAtMost__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastAtMost_iff
thf(fact_6982_greaterThanAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastLessThan_iff
thf(fact_6983_ivl__disj__un__two__touch_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(3)
thf(fact_6984_greaterThanLessThan__subseteq__greaterThanAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanAtMost_iff
thf(fact_6985_greaterThanAtMost__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( set_or3652927894154168847AtMost @ A )
= ( ^ [A4: A,B4: A] : ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A4 @ B4 ) @ ( insert @ A @ A4 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% greaterThanAtMost_eq_atLeastAtMost_diff
thf(fact_6986_ivl__disj__un__two_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(2)
thf(fact_6987_ivl__disj__un__two__touch_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(1)
thf(fact_6988_sorted__list__of__set__greaterThanAtMost,axiom,
! [I3: nat,J: nat] :
( ( ord_less_eq @ nat @ ( suc @ I3 ) @ J )
=> ( ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ I3 @ J ) )
= ( cons @ nat @ ( suc @ I3 ) @ ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ ( suc @ I3 ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_6989_ivl__disj__un__singleton_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( insert @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(5)
thf(fact_6990_ivl__disj__un__two_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(5)
thf(fact_6991_ivl__disj__un__singleton_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( insert @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(4)
thf(fact_6992_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N: nat,J: nat,I3: nat] :
( ( ord_less @ nat @ N @ ( minus_minus @ nat @ J @ I3 ) )
=> ( ( nth @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ I3 @ J ) ) @ N )
= ( suc @ ( plus_plus @ nat @ I3 @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_6993_tendsto__at__right__sequentially,axiom,
! [C: $tType,B: $tType] :
( ( ( topolo3112930676232923870pology @ B )
& ( topolo1944317154257567458pology @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [A2: B,B2: B,X9: B > C,L4: C] :
( ( ord_less @ B @ A2 @ B2 )
=> ( ! [S4: nat > B] :
( ! [N8: nat] : ( ord_less @ B @ A2 @ ( S4 @ N8 ) )
=> ( ! [N8: nat] : ( ord_less @ B @ ( S4 @ N8 ) @ B2 )
=> ( ( order_antimono @ nat @ B @ S4 )
=> ( ( filterlim @ nat @ B @ S4 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ C
@ ^ [N3: nat] : ( X9 @ ( S4 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ L4 )
@ ( at_top @ nat ) ) ) ) ) )
=> ( filterlim @ B @ C @ X9 @ ( topolo7230453075368039082e_nhds @ C @ L4 ) @ ( topolo174197925503356063within @ B @ A2 @ ( set_ord_greaterThan @ B @ A2 ) ) ) ) ) ) ).
% tendsto_at_right_sequentially
thf(fact_6994_interval__cases,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [S3: set @ A] :
( ! [A6: A,B6: A,X5: A] :
( ( member @ A @ A6 @ S3 )
=> ( ( member @ A @ B6 @ S3 )
=> ( ( ord_less_eq @ A @ A6 @ X5 )
=> ( ( ord_less_eq @ A @ X5 @ B6 )
=> ( member @ A @ X5 @ S3 ) ) ) ) )
=> ? [A6: A,B6: A] :
( ( S3
= ( bot_bot @ ( set @ A ) ) )
| ( S3
= ( top_top @ ( set @ A ) ) )
| ( S3
= ( set_ord_lessThan @ A @ B6 ) )
| ( S3
= ( set_ord_atMost @ A @ B6 ) )
| ( S3
= ( set_ord_greaterThan @ A @ A6 ) )
| ( S3
= ( set_ord_atLeast @ A @ A6 ) )
| ( S3
= ( set_or5935395276787703475ssThan @ A @ A6 @ B6 ) )
| ( S3
= ( set_or3652927894154168847AtMost @ A @ A6 @ B6 ) )
| ( S3
= ( set_or7035219750837199246ssThan @ A @ A6 @ B6 ) )
| ( S3
= ( set_or1337092689740270186AtMost @ A @ A6 @ B6 ) ) ) ) ) ).
% interval_cases
thf(fact_6995_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Y
= ( Xa2
!= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( Y
= ( ~ ( ( Deg2 = Xa2 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X6 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_6996_ball__empty,axiom,
! [A: $tType,P: A > $o,X3: A] :
( ( member @ A @ X3 @ ( bot_bot @ ( set @ A ) ) )
=> ( P @ X3 ) ) ).
% ball_empty
thf(fact_6997_atLeast__0,axiom,
( ( set_ord_atLeast @ nat @ ( zero_zero @ nat ) )
= ( top_top @ ( set @ nat ) ) ) ).
% atLeast_0
thf(fact_6998_atLeast__empty__triv,axiom,
! [A: $tType] :
( ( set_ord_atLeast @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) )
= ( top_top @ ( set @ ( set @ A ) ) ) ) ).
% atLeast_empty_triv
thf(fact_6999_ball__UNIV,axiom,
! [A: $tType,P: A > $o] :
( ( ! [X6: A] :
( ( member @ A @ X6 @ ( top_top @ ( set @ A ) ) )
=> ( P @ X6 ) ) )
= ( ! [X4: A] : ( P @ X4 ) ) ) ).
% ball_UNIV
thf(fact_7000_image__add__atLeast,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I3: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_ord_atLeast @ A @ I3 ) )
= ( set_ord_atLeast @ A @ ( plus_plus @ A @ K @ I3 ) ) ) ) ).
% image_add_atLeast
thf(fact_7001_full__SetCompr__eq,axiom,
! [A: $tType,B: $tType,F2: B > A] :
( ( collect @ A
@ ^ [U2: A] :
? [X6: B] :
( U2
= ( F2 @ X6 ) ) )
= ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) ) ).
% full_SetCompr_eq
thf(fact_7002_Setcompr__eq__image,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B] :
( ( collect @ A
@ ^ [Uu3: A] :
? [X6: B] :
( ( Uu3
= ( F2 @ X6 ) )
& ( member @ B @ X6 @ A3 ) ) )
= ( image @ B @ A @ F2 @ A3 ) ) ).
% Setcompr_eq_image
thf(fact_7003_setcompr__eq__image,axiom,
! [A: $tType,B: $tType,F2: B > A,P: B > $o] :
( ( collect @ A
@ ^ [Uu3: A] :
? [X6: B] :
( ( Uu3
= ( F2 @ X6 ) )
& ( P @ X6 ) ) )
= ( image @ B @ A @ F2 @ ( collect @ B @ P ) ) ) ).
% setcompr_eq_image
thf(fact_7004_atLeast__eq__UNIV__iff,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ( set_ord_atLeast @ A @ X )
= ( top_top @ ( set @ A ) ) )
= ( X
= ( bot_bot @ A ) ) ) ) ).
% atLeast_eq_UNIV_iff
thf(fact_7005_not__empty__eq__Ici__eq__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [L: A] :
( ( bot_bot @ ( set @ A ) )
!= ( set_ord_atLeast @ A @ L ) ) ) ).
% not_empty_eq_Ici_eq_empty
thf(fact_7006_open__superdiagonal,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ( topolo1002775350975398744n_open @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ^ [Uu3: product_prod @ A @ A] :
? [X6: A,Y6: A] :
( ( Uu3
= ( product_Pair @ A @ A @ X6 @ Y6 ) )
& ( ord_less @ A @ Y6 @ X6 ) ) ) ) ) ).
% open_superdiagonal
thf(fact_7007_open__subdiagonal,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ( topolo1002775350975398744n_open @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ^ [Uu3: product_prod @ A @ A] :
? [X6: A,Y6: A] :
( ( Uu3
= ( product_Pair @ A @ A @ X6 @ Y6 ) )
& ( ord_less @ A @ X6 @ Y6 ) ) ) ) ) ).
% open_subdiagonal
thf(fact_7008_lex__conv,axiom,
! [A: $tType] :
( ( lex @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
& ? [Xys: list @ A,X6: A,Y6: A,Xs5: list @ A,Ys6: list @ A] :
( ( Xs
= ( append @ A @ Xys @ ( cons @ A @ X6 @ Xs5 ) ) )
& ( Ys
= ( append @ A @ Xys @ ( cons @ A @ Y6 @ Ys6 ) ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ Y6 ) @ R5 ) ) ) ) ) ) ) ).
% lex_conv
thf(fact_7009_set__Cons__def,axiom,
! [A: $tType] :
( ( set_Cons @ A )
= ( ^ [A7: set @ A,XS: set @ ( list @ A )] :
( collect @ ( list @ A )
@ ^ [Z3: list @ A] :
? [X6: A,Xs: list @ A] :
( ( Z3
= ( cons @ A @ X6 @ Xs ) )
& ( member @ A @ X6 @ A7 )
& ( member @ ( list @ A ) @ Xs @ XS ) ) ) ) ) ).
% set_Cons_def
thf(fact_7010_Ball__def,axiom,
! [A: $tType] :
( ( ball @ A )
= ( ^ [A7: set @ A,P4: A > $o] :
! [X6: A] :
( ( member @ A @ X6 @ A7 )
=> ( P4 @ X6 ) ) ) ) ).
% Ball_def
thf(fact_7011_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast @ nat @ ( suc @ K ) )
= ( set_ord_greaterThan @ nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_7012_Ball__def__raw,axiom,
! [A: $tType] :
( ( ball @ A )
= ( ^ [A7: set @ A,P4: A > $o] :
! [X6: A] :
( ( member @ A @ X6 @ A7 )
=> ( P4 @ X6 ) ) ) ) ).
% Ball_def_raw
thf(fact_7013_Ici__subset__Ioi__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atLeast @ A @ A2 ) @ ( set_ord_greaterThan @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ).
% Ici_subset_Ioi_iff
thf(fact_7014_ivl__disj__int__one_I8_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(8)
thf(fact_7015_ivl__disj__int__one_I6_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(6)
thf(fact_7016_set__conv__nth,axiom,
! [A: $tType] :
( ( set2 @ A )
= ( ^ [Xs: list @ A] :
( collect @ A
@ ^ [Uu3: A] :
? [I: nat] :
( ( Uu3
= ( nth @ A @ Xs @ I ) )
& ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_7017_atMost__Int__atLeast,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [N: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ N ) @ ( set_ord_atLeast @ A @ N ) )
= ( insert @ A @ N @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atMost_Int_atLeast
thf(fact_7018_ivl__disj__un__singleton_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A] :
( ( sup_sup @ ( set @ A ) @ ( insert @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_ord_greaterThan @ A @ L ) )
= ( set_ord_atLeast @ A @ L ) ) ) ).
% ivl_disj_un_singleton(1)
thf(fact_7019_ivl__disj__un__one_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( set_ord_greaterThan @ A @ L ) ) ) ) ).
% ivl_disj_un_one(6)
thf(fact_7020_greaterThanAtMost__upto,axiom,
( ( set_or3652927894154168847AtMost @ int )
= ( ^ [I: int,J2: int] : ( set2 @ int @ ( upto @ ( plus_plus @ int @ I @ ( one_one @ int ) ) @ J2 ) ) ) ) ).
% greaterThanAtMost_upto
thf(fact_7021_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast @ nat @ ( suc @ K ) )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_atLeast @ nat @ K ) @ ( insert @ nat @ K @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast_Suc
thf(fact_7022_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList: list @ vEBT_VEBT,Summary: vEBT_VEBT,Deg3: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg3 )
= ( ( Deg = Deg3 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X6 @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_7023_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2
= ( one_one @ nat ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( Deg2 = Xa2 )
& ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_7024_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2
!= ( one_one @ nat ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_7025_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Y
= ( Xa2
= ( one_one @ nat ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( Y
= ( ( Deg2 = Xa2 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X6 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_7026_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2
!= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_7027_Pow__Compl,axiom,
! [A: $tType,A3: set @ A] :
( ( pow2 @ A @ ( uminus_uminus @ ( set @ A ) @ A3 ) )
= ( collect @ ( set @ A )
@ ^ [Uu3: set @ A] :
? [B8: set @ A] :
( ( Uu3
= ( uminus_uminus @ ( set @ A ) @ B8 ) )
& ( member @ ( set @ A ) @ A3 @ ( pow2 @ A @ B8 ) ) ) ) ) ).
% Pow_Compl
thf(fact_7028_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2
= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList4: list @ vEBT_VEBT,Summary3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList4 @ Summary3 ) @ Xa2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X5: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X5 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList4 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
& ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList4 @ I ) @ X4 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X6: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X6 @ ( set2 @ vEBT_VEBT @ TreeList4 ) )
=> ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X4 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ Ma3 )
& ! [X6: nat] :
( ( ord_less @ nat @ X6 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList4 @ X6 )
=> ( ( ord_less @ nat @ Mi3 @ X6 )
& ( ord_less_eq @ nat @ X6 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_7029_lexn__conv,axiom,
! [A: $tType] :
( ( lexn @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A ),N3: nat] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= N3 )
& ( ( size_size @ ( list @ A ) @ Ys )
= N3 )
& ? [Xys: list @ A,X6: A,Y6: A,Xs5: list @ A,Ys6: list @ A] :
( ( Xs
= ( append @ A @ Xys @ ( cons @ A @ X6 @ Xs5 ) ) )
& ( Ys
= ( append @ A @ Xys @ ( cons @ A @ Y6 @ Ys6 ) ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ Y6 ) @ R5 ) ) ) ) ) ) ) ).
% lexn_conv
thf(fact_7030_cauchy__filter__metric,axiom,
! [A: $tType] :
( ( ( real_V768167426530841204y_dist @ A )
& ( topolo7287701948861334536_space @ A ) )
=> ( ( topolo6773858410816713723filter @ A )
= ( ^ [F9: filter @ A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [P4: A > $o] :
( ( eventually @ A @ P4 @ F9 )
& ! [X6: A,Y6: A] :
( ( ( P4 @ X6 )
& ( P4 @ Y6 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ Y6 ) @ E3 ) ) ) ) ) ) ) ).
% cauchy_filter_metric
thf(fact_7031_lexn_Osimps_I1_J,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] :
( ( lexn @ A @ R2 @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ) ).
% lexn.simps(1)
thf(fact_7032_lexn__length,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A ),N: nat] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lexn @ A @ R2 @ N ) )
=> ( ( ( size_size @ ( list @ A ) @ Xs2 )
= N )
& ( ( size_size @ ( list @ A ) @ Ys2 )
= N ) ) ) ).
% lexn_length
thf(fact_7033_lex__def,axiom,
! [A: $tType] :
( ( lex @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] : ( complete_Sup_Sup @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) @ ( image @ nat @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) @ ( lexn @ A @ R5 ) @ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% lex_def
thf(fact_7034_complete__uniform,axiom,
! [A: $tType] :
( ( topolo7287701948861334536_space @ A )
=> ( ( topolo2479028161051973599mplete @ A )
= ( ^ [S7: set @ A] :
! [F9: filter @ A] :
( ( ord_less_eq @ ( filter @ A ) @ F9 @ ( principal @ A @ S7 ) )
=> ( ( F9
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( topolo6773858410816713723filter @ A @ F9 )
=> ? [X6: A] :
( ( member @ A @ X6 @ S7 )
& ( ord_less_eq @ ( filter @ A ) @ F9 @ ( topolo7230453075368039082e_nhds @ A @ X6 ) ) ) ) ) ) ) ) ) ).
% complete_uniform
thf(fact_7035_GMVT,axiom,
! [A2: real,B2: real,F2: real > real,G: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ( ord_less_eq @ real @ A2 @ X5 )
& ( ord_less_eq @ real @ X5 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ( ! [X5: real] :
( ( ( ord_less @ real @ A2 @ X5 )
& ( ord_less @ real @ X5 @ B2 ) )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ! [X5: real] :
( ( ( ord_less_eq @ real @ A2 @ X5 )
& ( ord_less_eq @ real @ X5 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) @ G ) )
=> ( ! [X5: real] :
( ( ( ord_less @ real @ A2 @ X5 )
& ( ord_less @ real @ X5 @ B2 ) )
=> ( differentiable @ real @ real @ G @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [G_c: real,F_c: real,C3: real] :
( ( has_field_derivative @ real @ G @ G_c @ ( topolo174197925503356063within @ real @ C3 @ ( top_top @ ( set @ real ) ) ) )
& ( has_field_derivative @ real @ F2 @ F_c @ ( topolo174197925503356063within @ real @ C3 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ A2 @ C3 )
& ( ord_less @ real @ C3 @ B2 )
& ( ( times_times @ real @ ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) @ G_c )
= ( times_times @ real @ ( minus_minus @ real @ ( G @ B2 ) @ ( G @ A2 ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_7036_differentiable__cmult__right__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V3459762299906320749_field @ A ) )
=> ! [Q2: B > A,C2: A,T2: B] :
( ( differentiable @ B @ A
@ ^ [T3: B] : ( times_times @ A @ ( Q2 @ T3 ) @ C2 )
@ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( differentiable @ B @ A @ Q2 @ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ) ).
% differentiable_cmult_right_iff
thf(fact_7037_differentiable__cmult__left__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: A,Q2: B > A,T2: B] :
( ( differentiable @ B @ A
@ ^ [T3: B] : ( times_times @ A @ C2 @ ( Q2 @ T3 ) )
@ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( differentiable @ B @ A @ Q2 @ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ) ).
% differentiable_cmult_left_iff
thf(fact_7038_differentiable__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F3: filter @ A,G: A > B] :
( ( differentiable @ A @ B @ F2 @ F3 )
=> ( ( differentiable @ A @ B @ G @ F3 )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ F3 ) ) ) ) ).
% differentiable_add
thf(fact_7039_differentiable__power,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,N: nat] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( power_power @ B @ ( F2 @ X6 ) @ N )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% differentiable_power
thf(fact_7040_differentiable__mult,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,G: A > B] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( differentiable @ A @ B @ G @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( times_times @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% differentiable_mult
thf(fact_7041_differentiable__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,G: A > B] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( differentiable @ A @ B @ G @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( divide_divide @ B @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% differentiable_divide
thf(fact_7042_differentiable__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( inverse_inverse @ B @ ( F2 @ X6 ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% differentiable_inverse
thf(fact_7043_lenlex__conv,axiom,
! [A: $tType] :
( ( lenlex @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Xs: list @ A,Ys: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ ( size_size @ ( list @ A ) @ Ys ) )
| ( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs @ Ys ) @ ( lex @ A @ R5 ) ) ) ) ) ) ) ) ).
% lenlex_conv
thf(fact_7044_continuous__at__Sup__antimono,axiom,
! [B: $tType,A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( topolo1944317154257567458pology @ A )
& ( condit6923001295902523014norder @ B )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,S3: set @ A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ ( complete_Sup_Sup @ A @ S3 ) @ ( set_ord_lessThan @ A @ ( complete_Sup_Sup @ A @ S3 ) ) ) @ F2 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( F2 @ ( complete_Sup_Sup @ A @ S3 ) )
= ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ) ).
% continuous_at_Sup_antimono
thf(fact_7045_bdd__above__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( condit941137186595557371_above @ A @ ( bot_bot @ ( set @ A ) ) ) ) ).
% bdd_above_empty
thf(fact_7046_Nil__lenlex__iff1,axiom,
! [A: $tType,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Ns ) @ ( lenlex @ A @ R2 ) )
= ( Ns
!= ( nil @ A ) ) ) ).
% Nil_lenlex_iff1
thf(fact_7047_cSup__le__iff,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ S3 ) @ A2 )
= ( ! [X6: A] :
( ( member @ A @ X6 @ S3 )
=> ( ord_less_eq @ A @ X6 @ A2 ) ) ) ) ) ) ) ).
% cSup_le_iff
thf(fact_7048_cSup__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B3: set @ A,A3: set @ A] :
( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ A3 )
=> ( ! [B6: A] :
( ( member @ A @ B6 @ B3 )
=> ? [X3: A] :
( ( member @ A @ X3 @ A3 )
& ( ord_less_eq @ A @ B6 @ X3 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ B3 ) @ ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ) ).
% cSup_mono
thf(fact_7049_less__cSup__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,Y: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ X9 )
=> ( ( ord_less @ A @ Y @ ( complete_Sup_Sup @ A @ X9 ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ X9 )
& ( ord_less @ A @ Y @ X6 ) ) ) ) ) ) ) ).
% less_cSup_iff
thf(fact_7050_lenlex__irreflexive,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A] :
( ! [X5: A] :
~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ X5 ) @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Xs2 ) @ ( lenlex @ A @ R2 ) ) ) ).
% lenlex_irreflexive
thf(fact_7051_Nil__lenlex__iff2,axiom,
! [A: $tType,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ns @ ( nil @ A ) ) @ ( lenlex @ A @ R2 ) ) ).
% Nil_lenlex_iff2
thf(fact_7052_cSUP__lessD,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A3: set @ B,Y: A,I3: B] :
( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ Y )
=> ( ( member @ B @ I3 @ A3 )
=> ( ord_less @ A @ ( F2 @ I3 ) @ Y ) ) ) ) ) ).
% cSUP_lessD
thf(fact_7053_cSUP__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,G: C > A,B3: set @ C,F2: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ C @ A @ G @ B3 ) )
=> ( ! [N2: B] :
( ( member @ B @ N2 @ A3 )
=> ? [X3: C] :
( ( member @ C @ X3 @ B3 )
& ( ord_less_eq @ A @ ( F2 @ N2 ) @ ( G @ X3 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B3 ) ) ) ) ) ) ) ).
% cSUP_mono
thf(fact_7054_cSUP__le__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,U: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ U )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ X6 ) @ U ) ) ) ) ) ) ) ).
% cSUP_le_iff
thf(fact_7055_cSup__subset__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A3 ) @ ( complete_Sup_Sup @ A @ B3 ) ) ) ) ) ) ).
% cSup_subset_mono
thf(fact_7056_cSup__insert__If,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( condit941137186595557371_above @ A @ X9 )
=> ( ( ( X9
= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ ( insert @ A @ A2 @ X9 ) )
= A2 ) )
& ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ ( insert @ A @ A2 @ X9 ) )
= ( sup_sup @ A @ A2 @ ( complete_Sup_Sup @ A @ X9 ) ) ) ) ) ) ) ).
% cSup_insert_If
thf(fact_7057_cSup__insert,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ X9 )
=> ( ( complete_Sup_Sup @ A @ ( insert @ A @ A2 @ X9 ) )
= ( sup_sup @ A @ A2 @ ( complete_Sup_Sup @ A @ X9 ) ) ) ) ) ) ).
% cSup_insert
thf(fact_7058_cSup__union__distrib,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ B3 )
=> ( ( complete_Sup_Sup @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( sup_sup @ A @ ( complete_Sup_Sup @ A @ A3 ) @ ( complete_Sup_Sup @ A @ B3 ) ) ) ) ) ) ) ) ).
% cSup_union_distrib
thf(fact_7059_less__cSUP__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A3: set @ B,F2: B > A,A2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ A2 @ ( F2 @ X6 ) ) ) ) ) ) ) ) ).
% less_cSUP_iff
thf(fact_7060_conditionally__complete__lattice__class_OSUP__sup__distrib,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,G: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ G @ A3 ) )
=> ( ( sup_sup @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ A3 ) ) )
= ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [A4: B] : ( sup_sup @ A @ ( F2 @ A4 ) @ ( G @ A4 ) )
@ A3 ) ) ) ) ) ) ) ).
% conditionally_complete_lattice_class.SUP_sup_distrib
thf(fact_7061_lenlex__length,axiom,
! [A: $tType,Ms: list @ A,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ms @ Ns ) @ ( lenlex @ A @ R2 ) )
=> ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Ms ) @ ( size_size @ ( list @ A ) @ Ns ) ) ) ).
% lenlex_length
thf(fact_7062_lenlex__append1,axiom,
! [A: $tType,Us: list @ A,Xs2: list @ A,R3: set @ ( product_prod @ A @ A ),Vs: list @ A,Ys2: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Us @ Xs2 ) @ ( lenlex @ A @ R3 ) )
=> ( ( ( size_size @ ( list @ A ) @ Vs )
= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Us @ Vs ) @ ( append @ A @ Xs2 @ Ys2 ) ) @ ( lenlex @ A @ R3 ) ) ) ) ).
% lenlex_append1
thf(fact_7063_cSUP__subset__mono,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,G: B > A,B3: set @ B,F2: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ G @ B3 ) )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ B3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ A3 )
=> ( ord_less_eq @ A @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ B3 ) ) ) ) ) ) ) ) ).
% cSUP_subset_mono
thf(fact_7064_cSup__inter__less__eq,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( condit941137186595557371_above @ A @ A3 )
=> ( ( condit941137186595557371_above @ A @ B3 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) @ ( sup_sup @ A @ ( complete_Sup_Sup @ A @ A3 ) @ ( complete_Sup_Sup @ A @ B3 ) ) ) ) ) ) ) ).
% cSup_inter_less_eq
thf(fact_7065_cSUP__insert,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,A2: B] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ ( insert @ B @ A2 @ A3 ) ) )
= ( sup_sup @ A @ ( F2 @ A2 ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ) ) ) ).
% cSUP_insert
thf(fact_7066_cSUP__union,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,B3: set @ B] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( B3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ B3 ) )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) ) )
= ( sup_sup @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ B3 ) ) ) ) ) ) ) ) ) ).
% cSUP_union
thf(fact_7067_cSup__cInf,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( complete_Sup_Sup @ A @ S3 )
= ( complete_Inf_Inf @ A
@ ( collect @ A
@ ^ [X6: A] :
! [Y6: A] :
( ( member @ A @ Y6 @ S3 )
=> ( ord_less_eq @ A @ Y6 @ X6 ) ) ) ) ) ) ) ) ).
% cSup_cInf
thf(fact_7068_cSUP__UNION,axiom,
! [B: $tType,D: $tType,C: $tType] :
( ( condit1219197933456340205attice @ B )
=> ! [A3: set @ C,B3: C > ( set @ D ),F2: D > B] :
( ( A3
!= ( bot_bot @ ( set @ C ) ) )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ A3 )
=> ( ( B3 @ X5 )
!= ( bot_bot @ ( set @ D ) ) ) )
=> ( ( condit941137186595557371_above @ B
@ ( complete_Sup_Sup @ ( set @ B )
@ ( image @ C @ ( set @ B )
@ ^ [X6: C] : ( image @ D @ B @ F2 @ ( B3 @ X6 ) )
@ A3 ) ) )
=> ( ( complete_Sup_Sup @ B @ ( image @ D @ B @ F2 @ ( complete_Sup_Sup @ ( set @ D ) @ ( image @ C @ ( set @ D ) @ B3 @ A3 ) ) ) )
= ( complete_Sup_Sup @ B
@ ( image @ C @ B
@ ^ [X6: C] : ( complete_Sup_Sup @ B @ ( image @ D @ B @ F2 @ ( B3 @ X6 ) ) )
@ A3 ) ) ) ) ) ) ) ).
% cSUP_UNION
thf(fact_7069_Cons__lenlex__iff,axiom,
! [A: $tType,M: A,Ms: list @ A,N: A,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ M @ Ms ) @ ( cons @ A @ N @ Ns ) ) @ ( lenlex @ A @ R2 ) )
= ( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ms ) @ ( size_size @ ( list @ A ) @ Ns ) )
| ( ( ( size_size @ ( list @ A ) @ Ms )
= ( size_size @ ( list @ A ) @ Ns ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ M @ N ) @ R2 ) )
| ( ( M = N )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ms @ Ns ) @ ( lenlex @ A @ R2 ) ) ) ) ) ).
% Cons_lenlex_iff
thf(fact_7070_continuous__at__Inf__antimono,axiom,
! [B: $tType,A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( topolo1944317154257567458pology @ A )
& ( condit6923001295902523014norder @ B )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,S3: set @ A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ ( complete_Inf_Inf @ A @ S3 ) @ ( set_ord_greaterThan @ A @ ( complete_Inf_Inf @ A @ S3 ) ) ) @ F2 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( F2 @ ( complete_Inf_Inf @ A @ S3 ) )
= ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ) ).
% continuous_at_Inf_antimono
thf(fact_7071_MVT,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [L3: real,Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
& ( ord_less @ real @ Z4 @ B2 )
& ( has_field_derivative @ real @ F2 @ L3 @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) )
& ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
= ( times_times @ real @ ( minus_minus @ real @ B2 @ A2 ) @ L3 ) ) ) ) ) ) ).
% MVT
thf(fact_7072_bdd__below__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( condit1013018076250108175_below @ A @ ( bot_bot @ ( set @ A ) ) ) ) ).
% bdd_below_empty
thf(fact_7073_continuous__on__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X6: A] : ( sgn_sgn @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_sgn
thf(fact_7074_continuous__on__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X6: A] : ( inverse_inverse @ B @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_inverse
thf(fact_7075_continuous__on__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [S: set @ A,F2: A > B,G: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ S @ G )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( G @ X5 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X6: A] : ( divide_divide @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_on_divide
thf(fact_7076_continuous__on__mult,axiom,
! [A: $tType,D: $tType] :
( ( ( topolo4958980785337419405_space @ D )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [S: set @ D,F2: D > A,G: D > A] :
( ( topolo81223032696312382ous_on @ D @ A @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ D @ A @ S @ G )
=> ( topolo81223032696312382ous_on @ D @ A @ S
@ ^ [X6: D] : ( times_times @ A @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_on_mult
thf(fact_7077_continuous__on__mult_H,axiom,
! [B: $tType,D: $tType] :
( ( ( topolo4958980785337419405_space @ D )
& ( topolo4211221413907600880p_mult @ B ) )
=> ! [A3: set @ D,F2: D > B,G: D > B] :
( ( topolo81223032696312382ous_on @ D @ B @ A3 @ F2 )
=> ( ( topolo81223032696312382ous_on @ D @ B @ A3 @ G )
=> ( topolo81223032696312382ous_on @ D @ B @ A3
@ ^ [X6: D] : ( times_times @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_on_mult'
thf(fact_7078_continuous__on__mult__left,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo4958980785337419405_space @ B )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [S: set @ B,F2: B > A,C2: A] :
( ( topolo81223032696312382ous_on @ B @ A @ S @ F2 )
=> ( topolo81223032696312382ous_on @ B @ A @ S
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) ) ) ) ) ).
% continuous_on_mult_left
thf(fact_7079_continuous__on__mult__right,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo4958980785337419405_space @ B )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [S: set @ B,F2: B > A,C2: A] :
( ( topolo81223032696312382ous_on @ B @ A @ S @ F2 )
=> ( topolo81223032696312382ous_on @ B @ A @ S
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ C2 ) ) ) ) ).
% continuous_on_mult_right
thf(fact_7080_continuous__on__mult__const,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [S: set @ A,C2: A] : ( topolo81223032696312382ous_on @ A @ A @ S @ ( times_times @ A @ C2 ) ) ) ).
% continuous_on_mult_const
thf(fact_7081_continuous__on__power,axiom,
! [B: $tType,C: $tType] :
( ( ( topolo4958980785337419405_space @ C )
& ( power @ B )
& ( real_V4412858255891104859lgebra @ B ) )
=> ! [S: set @ C,F2: C > B,N: nat] :
( ( topolo81223032696312382ous_on @ C @ B @ S @ F2 )
=> ( topolo81223032696312382ous_on @ C @ B @ S
@ ^ [X6: C] : ( power_power @ B @ ( F2 @ X6 ) @ N ) ) ) ) ).
% continuous_on_power
thf(fact_7082_continuous__on__power_H,axiom,
! [B: $tType,C: $tType] :
( ( ( topolo4958980785337419405_space @ C )
& ( topolo1898628316856586783d_mult @ B ) )
=> ! [A3: set @ C,F2: C > B,G: C > nat] :
( ( topolo81223032696312382ous_on @ C @ B @ A3 @ F2 )
=> ( ( topolo81223032696312382ous_on @ C @ nat @ A3 @ G )
=> ( topolo81223032696312382ous_on @ C @ B @ A3
@ ^ [X6: C] : ( power_power @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_on_power'
thf(fact_7083_continuous__on__add,axiom,
! [B: $tType,D: $tType] :
( ( ( topolo4958980785337419405_space @ D )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [S: set @ D,F2: D > B,G: D > B] :
( ( topolo81223032696312382ous_on @ D @ B @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ D @ B @ S @ G )
=> ( topolo81223032696312382ous_on @ D @ B @ S
@ ^ [X6: D] : ( plus_plus @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ).
% continuous_on_add
thf(fact_7084_continuous__on__powr,axiom,
! [C: $tType] :
( ( topolo4958980785337419405_space @ C )
=> ! [S: set @ C,F2: C > real,G: C > real] :
( ( topolo81223032696312382ous_on @ C @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ C @ real @ S @ G )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( zero_zero @ real ) ) )
=> ( topolo81223032696312382ous_on @ C @ real @ S
@ ^ [X6: C] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_on_powr
thf(fact_7085_continuous__on__ln,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( zero_zero @ real ) ) )
=> ( topolo81223032696312382ous_on @ A @ real @ S
@ ^ [X6: A] : ( ln_ln @ real @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_ln
thf(fact_7086_continuous__on__sing,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [X: A,F2: A > B] : ( topolo81223032696312382ous_on @ A @ B @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) @ F2 ) ) ).
% continuous_on_sing
thf(fact_7087_continuous__on__empty,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B] : ( topolo81223032696312382ous_on @ A @ B @ ( bot_bot @ ( set @ A ) ) @ F2 ) ) ).
% continuous_on_empty
thf(fact_7088_cInf__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B3: set @ A,A3: set @ A] :
( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ A3 )
=> ( ! [B6: A] :
( ( member @ A @ B6 @ B3 )
=> ? [X3: A] :
( ( member @ A @ X3 @ A3 )
& ( ord_less_eq @ A @ X3 @ B6 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A3 ) @ ( complete_Inf_Inf @ A @ B3 ) ) ) ) ) ) ).
% cInf_mono
thf(fact_7089_le__cInf__iff,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( ord_less_eq @ A @ A2 @ ( complete_Inf_Inf @ A @ S3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ S3 )
=> ( ord_less_eq @ A @ A2 @ X6 ) ) ) ) ) ) ) ).
% le_cInf_iff
thf(fact_7090_cInf__less__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A,Y: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ X9 )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ X9 ) @ Y )
= ( ? [X6: A] :
( ( member @ A @ X6 @ X9 )
& ( ord_less @ A @ X6 @ Y ) ) ) ) ) ) ) ).
% cInf_less_iff
thf(fact_7091_open__Collect__less,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,G: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( top_top @ ( set @ A ) ) @ G )
=> ( topolo1002775350975398744n_open @ A
@ ( collect @ A
@ ^ [X6: A] : ( ord_less @ B @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% open_Collect_less
thf(fact_7092_continuous__on__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: set @ A,F2: A > A] :
( ( topolo81223032696312382ous_on @ A @ A @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( cos @ A @ ( F2 @ X5 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ A @ A @ S
@ ^ [X6: A] : ( tan @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_tan
thf(fact_7093_continuous__on__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: set @ A,F2: A > A] :
( ( topolo81223032696312382ous_on @ A @ A @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( sin @ A @ ( F2 @ X5 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ A @ A @ S
@ ^ [X6: A] : ( cot @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_cot
thf(fact_7094_continuous__on__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topolo4958980785337419405_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A3: set @ C,F2: C > A] :
( ( topolo81223032696312382ous_on @ C @ A @ A3 @ F2 )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ A3 )
=> ( ( cosh @ A @ ( F2 @ X5 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ C @ A @ A3
@ ^ [X6: C] : ( tanh @ A @ ( F2 @ X6 ) ) ) ) ) ) ).
% continuous_on_tanh
thf(fact_7095_less__cINF__D,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A3: set @ B,Y: A,I3: B] :
( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less @ A @ Y @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
=> ( ( member @ B @ I3 @ A3 )
=> ( ord_less @ A @ Y @ ( F2 @ I3 ) ) ) ) ) ) ).
% less_cINF_D
thf(fact_7096_cINF__mono,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B3: set @ B,F2: C > A,A3: set @ C,G: B > A] :
( ( B3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ C @ A @ F2 @ A3 ) )
=> ( ! [M3: B] :
( ( member @ B @ M3 @ B3 )
=> ? [X3: C] :
( ( member @ C @ X3 @ A3 )
& ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( G @ M3 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ F2 @ A3 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B3 ) ) ) ) ) ) ) ).
% cINF_mono
thf(fact_7097_le__cINF__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,U: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ A3 )
=> ( ord_less_eq @ A @ U @ ( F2 @ X6 ) ) ) ) ) ) ) ) ).
% le_cINF_iff
thf(fact_7098_cInf__superset__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ B3 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ B3 ) @ ( complete_Inf_Inf @ A @ A3 ) ) ) ) ) ) ).
% cInf_superset_mono
thf(fact_7099_cInf__insert,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ X9 )
=> ( ( complete_Inf_Inf @ A @ ( insert @ A @ A2 @ X9 ) )
= ( inf_inf @ A @ A2 @ ( complete_Inf_Inf @ A @ X9 ) ) ) ) ) ) ).
% cInf_insert
thf(fact_7100_cInf__insert__If,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A,A2: A] :
( ( condit1013018076250108175_below @ A @ X9 )
=> ( ( ( X9
= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ ( insert @ A @ A2 @ X9 ) )
= A2 ) )
& ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ ( insert @ A @ A2 @ X9 ) )
= ( inf_inf @ A @ A2 @ ( complete_Inf_Inf @ A @ X9 ) ) ) ) ) ) ) ).
% cInf_insert_If
thf(fact_7101_cInf__union__distrib,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ B3 )
=> ( ( complete_Inf_Inf @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ A @ ( complete_Inf_Inf @ A @ A3 ) @ ( complete_Inf_Inf @ A @ B3 ) ) ) ) ) ) ) ) ).
% cInf_union_distrib
thf(fact_7102_open__Collect__positive,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ? [A9: set @ A] :
( ( topolo1002775350975398744n_open @ A @ A9 )
& ( ( inf_inf @ ( set @ A ) @ A9 @ S )
= ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ S )
& ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X6 ) ) ) ) ) ) ) ) ).
% open_Collect_positive
thf(fact_7103_continuous__on__powr_H,axiom,
! [C: $tType] :
( ( topolo4958980785337419405_space @ C )
=> ! [S: set @ C,F2: C > real,G: C > real] :
( ( topolo81223032696312382ous_on @ C @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ C @ real @ S @ G )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ S )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) )
& ( ( ( F2 @ X5 )
= ( zero_zero @ real ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X5 ) ) ) ) )
=> ( topolo81223032696312382ous_on @ C @ real @ S
@ ^ [X6: C] : ( powr @ real @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ).
% continuous_on_powr'
thf(fact_7104_continuous__on__log,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real,G: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ real @ S @ G )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( one_one @ real ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X5 ) ) )
=> ( topolo81223032696312382ous_on @ A @ real @ S
@ ^ [X6: A] : ( log @ ( F2 @ X6 ) @ ( G @ X6 ) ) ) ) ) ) ) ) ) ).
% continuous_on_log
thf(fact_7105_cINF__less__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A3: set @ B,F2: B > A,A2: A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ A2 )
= ( ? [X6: B] :
( ( member @ B @ X6 @ A3 )
& ( ord_less @ A @ ( F2 @ X6 ) @ A2 ) ) ) ) ) ) ) ).
% cINF_less_iff
thf(fact_7106_cINF__inf__distrib,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,G: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ G @ A3 ) )
=> ( ( inf_inf @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ A3 ) ) )
= ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [A4: B] : ( inf_inf @ A @ ( F2 @ A4 ) @ ( G @ A4 ) )
@ A3 ) ) ) ) ) ) ) ).
% cINF_inf_distrib
thf(fact_7107_cINF__superset__mono,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,G: B > A,B3: set @ B,F2: B > A] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ G @ B3 ) )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ B3 )
=> ( ! [X5: B] :
( ( member @ B @ X5 @ B3 )
=> ( ord_less_eq @ A @ ( G @ X5 ) @ ( F2 @ X5 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B3 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ) ) ) ) ).
% cINF_superset_mono
thf(fact_7108_Rolle__deriv,axiom,
! [A2: real,B2: real,F2: real > real,F7: real > real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ( has_derivative @ real @ real @ F2 @ ( F7 @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
& ( ord_less @ real @ Z4 @ B2 )
& ( ( F7 @ Z4 )
= ( ^ [V5: real] : ( zero_zero @ real ) ) ) ) ) ) ) ) ).
% Rolle_deriv
thf(fact_7109_less__eq__cInf__inter,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( condit1013018076250108175_below @ A @ A3 )
=> ( ( condit1013018076250108175_below @ A @ B3 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ ( complete_Inf_Inf @ A @ A3 ) @ ( complete_Inf_Inf @ A @ B3 ) ) @ ( complete_Inf_Inf @ A @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ) ) ).
% less_eq_cInf_inter
thf(fact_7110_cINF__insert,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,A2: B] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ ( insert @ B @ A2 @ A3 ) ) )
= ( inf_inf @ A @ ( F2 @ A2 ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) ) ) ) ) ) ).
% cINF_insert
thf(fact_7111_cINF__union,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ B,F2: B > A,B3: set @ B] :
( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A3 ) )
=> ( ( B3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ B3 ) )
=> ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A3 @ B3 ) ) )
= ( inf_inf @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ B3 ) ) ) ) ) ) ) ) ) ).
% cINF_union
thf(fact_7112_cInf__le__cSup,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A3: set @ A] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ A3 )
=> ( ( condit1013018076250108175_below @ A @ A3 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A3 ) @ ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ) ).
% cInf_le_cSup
thf(fact_7113_cInf__cSup,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( complete_Inf_Inf @ A @ S3 )
= ( complete_Sup_Sup @ A
@ ( collect @ A
@ ^ [X6: A] :
! [Y6: A] :
( ( member @ A @ Y6 @ S3 )
=> ( ord_less_eq @ A @ X6 @ Y6 ) ) ) ) ) ) ) ) ).
% cInf_cSup
thf(fact_7114_cINF__UNION,axiom,
! [B: $tType,D: $tType,C: $tType] :
( ( condit1219197933456340205attice @ B )
=> ! [A3: set @ C,B3: C > ( set @ D ),F2: D > B] :
( ( A3
!= ( bot_bot @ ( set @ C ) ) )
=> ( ! [X5: C] :
( ( member @ C @ X5 @ A3 )
=> ( ( B3 @ X5 )
!= ( bot_bot @ ( set @ D ) ) ) )
=> ( ( condit1013018076250108175_below @ B
@ ( complete_Sup_Sup @ ( set @ B )
@ ( image @ C @ ( set @ B )
@ ^ [X6: C] : ( image @ D @ B @ F2 @ ( B3 @ X6 ) )
@ A3 ) ) )
=> ( ( complete_Inf_Inf @ B @ ( image @ D @ B @ F2 @ ( complete_Sup_Sup @ ( set @ D ) @ ( image @ C @ ( set @ D ) @ B3 @ A3 ) ) ) )
= ( complete_Inf_Inf @ B
@ ( image @ C @ B
@ ^ [X6: C] : ( complete_Inf_Inf @ B @ ( image @ D @ B @ F2 @ ( B3 @ X6 ) ) )
@ A3 ) ) ) ) ) ) ) ).
% cINF_UNION
thf(fact_7115_continuous__on__Icc__at__leftD,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [A2: A,B2: A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ B2 ) ) @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ) ).
% continuous_on_Icc_at_leftD
thf(fact_7116_continuous__on__Icc__at__rightD,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [A2: A,B2: A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% continuous_on_Icc_at_rightD
thf(fact_7117_DERIV__pos__imp__increasing__open,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y4 ) ) ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ord_less @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ) ).
% DERIV_pos_imp_increasing_open
thf(fact_7118_DERIV__neg__imp__decreasing__open,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ? [Y4: real] :
( ( has_field_derivative @ real @ F2 @ Y4 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y4 @ ( zero_zero @ real ) ) ) ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ord_less @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ) ).
% DERIV_neg_imp_decreasing_open
thf(fact_7119_DERIV__isconst__end,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ( F2 @ B2 )
= ( F2 @ A2 ) ) ) ) ) ).
% DERIV_isconst_end
thf(fact_7120_DERIV__isconst2,axiom,
! [A2: real,B2: real,F2: real > real,X: real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ X )
=> ( ( ord_less_eq @ real @ X @ B2 )
=> ( ( F2 @ X )
= ( F2 @ A2 ) ) ) ) ) ) ) ).
% DERIV_isconst2
thf(fact_7121_continuous__on__IccI,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A,B2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) )
=> ( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ B2 ) ) @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) )
=> ( ! [X5: A] :
( ( ord_less @ A @ A2 @ X5 )
=> ( ( ord_less @ A @ X5 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ X5 ) ) @ ( topolo174197925503356063within @ A @ X5 @ ( top_top @ ( set @ A ) ) ) ) ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 ) ) ) ) ) ) ).
% continuous_on_IccI
thf(fact_7122_Rolle,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X5: real] :
( ( ord_less @ real @ A2 @ X5 )
=> ( ( ord_less @ real @ X5 @ B2 )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z4: real] :
( ( ord_less @ real @ A2 @ Z4 )
& ( ord_less @ real @ Z4 @ B2 )
& ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ Z4 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% Rolle
thf(fact_7123_Sup__fin_Oeq__fold_H,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( lattic5882676163264333800up_fin @ A )
= ( ^ [A7: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X6: A,Y6: option @ A] : ( some @ A @ ( case_option @ A @ A @ X6 @ ( sup_sup @ A @ X6 ) @ Y6 ) )
@ ( none @ A )
@ A7 ) ) ) ) ) ).
% Sup_fin.eq_fold'
thf(fact_7124_Inf__fin_Oeq__fold_H,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( lattic7752659483105999362nf_fin @ A )
= ( ^ [A7: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X6: A,Y6: option @ A] : ( some @ A @ ( case_option @ A @ A @ X6 @ ( inf_inf @ A @ X6 ) @ Y6 ) )
@ ( none @ A )
@ A7 ) ) ) ) ) ).
% Inf_fin.eq_fold'
thf(fact_7125_Sup__fin_Osingleton,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A] :
( ( lattic5882676163264333800up_fin @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Sup_fin.singleton
thf(fact_7126_Inf__fin_Osingleton,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A] :
( ( lattic7752659483105999362nf_fin @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Inf_fin.singleton
thf(fact_7127_Inf__fin_Oinsert,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) ) ) ) ) ) ).
% Inf_fin.insert
thf(fact_7128_Sup__fin_Oinsert,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A3 ) ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_7129_Inf__fin__le__Sup__fin,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( lattic7752659483105999362nf_fin @ A @ A3 ) @ ( lattic5882676163264333800up_fin @ A @ A3 ) ) ) ) ) ).
% Inf_fin_le_Sup_fin
thf(fact_7130_Sup__fin_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ X )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X6 @ X ) ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_7131_Inf__fin_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X @ X6 ) ) ) ) ) ) ) ).
% Inf_fin.bounded_iff
thf(fact_7132_Sup__fin_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( ord_less_eq @ A @ A6 @ X ) )
=> ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ X ) ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_7133_Sup__fin_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ X )
=> ! [A15: A] :
( ( member @ A @ A15 @ A3 )
=> ( ord_less_eq @ A @ A15 @ X ) ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_7134_Inf__fin_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( ord_less_eq @ A @ X @ A6 ) )
=> ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) ) ) ) ) ) ).
% Inf_fin.boundedI
thf(fact_7135_Inf__fin_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) )
=> ! [A15: A] :
( ( member @ A @ A15 @ A3 )
=> ( ord_less_eq @ A @ X @ A15 ) ) ) ) ) ) ).
% Inf_fin.boundedE
thf(fact_7136_cSup__eq__Sup__fin,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Sup_Sup @ A @ X9 )
= ( lattic5882676163264333800up_fin @ A @ X9 ) ) ) ) ) ).
% cSup_eq_Sup_fin
thf(fact_7137_Sup__fin__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A3 )
= ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ).
% Sup_fin_Sup
thf(fact_7138_Inf__fin__Inf,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A3 )
= ( complete_Inf_Inf @ A @ A3 ) ) ) ) ) ).
% Inf_fin_Inf
thf(fact_7139_cInf__eq__Inf__fin,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X9: set @ A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ X9 )
= ( lattic7752659483105999362nf_fin @ A @ X9 ) ) ) ) ) ).
% cInf_eq_Inf_fin
thf(fact_7140_Sup__fin_Oinfinite,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( lattic5882676163264333800up_fin @ A @ A3 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Sup_fin.infinite
thf(fact_7141_Inf__fin_Oinfinite,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( lattic7752659483105999362nf_fin @ A @ A3 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Inf_fin.infinite
thf(fact_7142_Sup__fin_Osubset__imp,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ ( lattic5882676163264333800up_fin @ A @ B3 ) ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_7143_Inf__fin_Osubset__imp,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ord_less_eq @ A @ ( lattic7752659483105999362nf_fin @ A @ B3 ) @ ( lattic7752659483105999362nf_fin @ A @ A3 ) ) ) ) ) ) ).
% Inf_fin.subset_imp
thf(fact_7144_Inf__fin_Ohom__commute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [H2: A > A,N5: set @ A] :
( ! [X5: A,Y5: A] :
( ( H2 @ ( inf_inf @ A @ X5 @ Y5 ) )
= ( inf_inf @ A @ ( H2 @ X5 ) @ ( H2 @ Y5 ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ( N5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H2 @ ( lattic7752659483105999362nf_fin @ A @ N5 ) )
= ( lattic7752659483105999362nf_fin @ A @ ( image @ A @ A @ H2 @ N5 ) ) ) ) ) ) ) ).
% Inf_fin.hom_commute
thf(fact_7145_Sup__fin_Ohom__commute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [H2: A > A,N5: set @ A] :
( ! [X5: A,Y5: A] :
( ( H2 @ ( sup_sup @ A @ X5 @ Y5 ) )
= ( sup_sup @ A @ ( H2 @ X5 ) @ ( H2 @ Y5 ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ( N5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H2 @ ( lattic5882676163264333800up_fin @ A @ N5 ) )
= ( lattic5882676163264333800up_fin @ A @ ( image @ A @ A @ H2 @ N5 ) ) ) ) ) ) ) ).
% Sup_fin.hom_commute
thf(fact_7146_Inf__fin_Osubset,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( inf_inf @ A @ ( lattic7752659483105999362nf_fin @ A @ B3 ) @ ( lattic7752659483105999362nf_fin @ A @ A3 ) )
= ( lattic7752659483105999362nf_fin @ A @ A3 ) ) ) ) ) ) ).
% Inf_fin.subset
thf(fact_7147_Sup__fin_Osubset,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( sup_sup @ A @ ( lattic5882676163264333800up_fin @ A @ B3 ) @ ( lattic5882676163264333800up_fin @ A @ A3 ) )
= ( lattic5882676163264333800up_fin @ A @ A3 ) ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_7148_Inf__fin_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) ) ) ) ) ) ) ).
% Inf_fin.insert_not_elem
thf(fact_7149_Inf__fin_Oclosed,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] : ( member @ A @ ( inf_inf @ A @ X5 @ Y5 ) @ ( insert @ A @ X5 @ ( insert @ A @ Y5 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic7752659483105999362nf_fin @ A @ A3 ) @ A3 ) ) ) ) ) ).
% Inf_fin.closed
thf(fact_7150_Sup__fin_Oclosed,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] : ( member @ A @ ( sup_sup @ A @ X5 @ Y5 ) @ ( insert @ A @ X5 @ ( insert @ A @ Y5 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ A3 ) ) ) ) ) ).
% Sup_fin.closed
thf(fact_7151_Sup__fin_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A3 ) ) ) ) ) ) ) ).
% Sup_fin.insert_not_elem
thf(fact_7152_Inf__fin_Ounion,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( inf_inf @ A @ ( lattic7752659483105999362nf_fin @ A @ A3 ) @ ( lattic7752659483105999362nf_fin @ A @ B3 ) ) ) ) ) ) ) ) ).
% Inf_fin.union
thf(fact_7153_Sup__fin_Ounion,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( sup_sup @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ ( lattic5882676163264333800up_fin @ A @ B3 ) ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_7154_inf__Sup2__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ A @ ( lattic5882676163264333800up_fin @ A @ A3 ) @ ( lattic5882676163264333800up_fin @ A @ B3 ) )
= ( lattic5882676163264333800up_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A4: A,B4: A] :
( ( Uu3
= ( inf_inf @ A @ A4 @ B4 ) )
& ( member @ A @ A4 @ A3 )
& ( member @ A @ B4 @ B3 ) ) ) ) ) ) ) ) ) ) ).
% inf_Sup2_distrib
thf(fact_7155_inf__Sup1__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A3 ) )
= ( lattic5882676163264333800up_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A4: A] :
( ( Uu3
= ( inf_inf @ A @ X @ A4 ) )
& ( member @ A @ A4 @ A3 ) ) ) ) ) ) ) ) ).
% inf_Sup1_distrib
thf(fact_7156_sup__Inf1__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( sup_sup @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A3 ) )
= ( lattic7752659483105999362nf_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A4: A] :
( ( Uu3
= ( sup_sup @ A @ X @ A4 ) )
& ( member @ A @ A4 @ A3 ) ) ) ) ) ) ) ) ).
% sup_Inf1_distrib
thf(fact_7157_sup__Inf2__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( sup_sup @ A @ ( lattic7752659483105999362nf_fin @ A @ A3 ) @ ( lattic7752659483105999362nf_fin @ A @ B3 ) )
= ( lattic7752659483105999362nf_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A4: A,B4: A] :
( ( Uu3
= ( sup_sup @ A @ A4 @ B4 ) )
& ( member @ A @ A4 @ A3 )
& ( member @ A @ B4 @ B3 ) ) ) ) ) ) ) ) ) ) ).
% sup_Inf2_distrib
thf(fact_7158_Inf__fin_Oremove,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A3 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A3 )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Inf_fin.remove
thf(fact_7159_Inf__fin_Oinsert__remove,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert @ A @ X @ A3 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Inf_fin.insert_remove
thf(fact_7160_Sup__fin_Oinsert__remove,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert @ A @ X @ A3 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert @ A @ X @ A3 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Sup_fin.insert_remove
thf(fact_7161_Sup__fin_Oremove,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A3 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A3 )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Sup_fin.remove
thf(fact_7162_lexord__def,axiom,
! [A: $tType] :
( ( lexord @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [X6: list @ A,Y6: list @ A] :
? [A4: A,V5: list @ A] :
( ( Y6
= ( append @ A @ X6 @ ( cons @ A @ A4 @ V5 ) ) )
| ? [U2: list @ A,B4: A,C6: A,W3: list @ A,Z3: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ B4 @ C6 ) @ R5 )
& ( X6
= ( append @ A @ U2 @ ( cons @ A @ B4 @ W3 ) ) )
& ( Y6
= ( append @ A @ U2 @ ( cons @ A @ C6 @ Z3 ) ) ) ) ) ) ) ) ) ).
% lexord_def
thf(fact_7163_eventually__filtercomap__at__topological,axiom,
! [A: $tType,B: $tType] :
( ( topolo4958980785337419405_space @ B )
=> ! [P: A > $o,F2: A > B,A3: B,B3: set @ B] :
( ( eventually @ A @ P @ ( filtercomap @ A @ B @ F2 @ ( topolo174197925503356063within @ B @ A3 @ B3 ) ) )
= ( ? [S7: set @ B] :
( ( topolo1002775350975398744n_open @ B @ S7 )
& ( member @ B @ A3 @ S7 )
& ! [X6: A] :
( ( member @ B @ ( F2 @ X6 ) @ ( minus_minus @ ( set @ B ) @ ( inf_inf @ ( set @ B ) @ S7 @ B3 ) @ ( insert @ B @ A3 @ ( bot_bot @ ( set @ B ) ) ) ) )
=> ( P @ X6 ) ) ) ) ) ) ).
% eventually_filtercomap_at_topological
thf(fact_7164_filtercomap__bot,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( filtercomap @ A @ B @ F2 @ ( bot_bot @ ( filter @ B ) ) )
= ( bot_bot @ ( filter @ A ) ) ) ).
% filtercomap_bot
thf(fact_7165_lexord__cons__cons,axiom,
! [A: $tType,A2: A,X: list @ A,B2: A,Y: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ A2 @ X ) @ ( cons @ A @ B2 @ Y ) ) @ ( lexord @ A @ R2 ) )
= ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ R2 )
| ( ( A2 = B2 )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lexord @ A @ R2 ) ) ) ) ) ).
% lexord_cons_cons
thf(fact_7166_lexord__Nil__left,axiom,
! [A: $tType,Y: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Y ) @ ( lexord @ A @ R2 ) )
= ( ? [A4: A,X6: list @ A] :
( Y
= ( cons @ A @ A4 @ X6 ) ) ) ) ).
% lexord_Nil_left
thf(fact_7167_lexord__irreflexive,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A] :
( ! [X5: A] :
~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ X5 ) @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Xs2 ) @ ( lexord @ A @ R2 ) ) ) ).
% lexord_irreflexive
thf(fact_7168_lexord__linear,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),X: list @ A,Y: list @ A] :
( ! [A6: A,B6: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A6 @ B6 ) @ R2 )
| ( A6 = B6 )
| ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ B6 @ A6 ) @ R2 ) )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lexord @ A @ R2 ) )
| ( X = Y )
| ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Y @ X ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_linear
thf(fact_7169_lexord__append__leftI,axiom,
! [A: $tType,U: list @ A,V: list @ A,R2: set @ ( product_prod @ A @ A ),X: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ U @ V ) @ ( lexord @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ X @ U ) @ ( append @ A @ X @ V ) ) @ ( lexord @ A @ R2 ) ) ) ).
% lexord_append_leftI
thf(fact_7170_lexord__Nil__right,axiom,
! [A: $tType,X: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ ( nil @ A ) ) @ ( lexord @ A @ R2 ) ) ).
% lexord_Nil_right
thf(fact_7171_filtercomap__neq__bot,axiom,
! [A: $tType,B: $tType,F3: filter @ A,F2: B > A] :
( ! [P8: A > $o] :
( ( eventually @ A @ P8 @ F3 )
=> ? [X3: B] : ( P8 @ ( F2 @ X3 ) ) )
=> ( ( filtercomap @ B @ A @ F2 @ F3 )
!= ( bot_bot @ ( filter @ B ) ) ) ) ).
% filtercomap_neq_bot
thf(fact_7172_eventually__filtercomap__at__top__dense,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [P: B > $o,F2: B > A] :
( ( eventually @ B @ P @ ( filtercomap @ B @ A @ F2 @ ( at_top @ A ) ) )
= ( ? [N6: A] :
! [X6: B] :
( ( ord_less @ A @ N6 @ ( F2 @ X6 ) )
=> ( P @ X6 ) ) ) ) ) ).
% eventually_filtercomap_at_top_dense
thf(fact_7173_filtercomap__neq__bot__surj,axiom,
! [A: $tType,B: $tType,F3: filter @ A,F2: B > A] :
( ( F3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ( filtercomap @ B @ A @ F2 @ F3 )
!= ( bot_bot @ ( filter @ B ) ) ) ) ) ).
% filtercomap_neq_bot_surj
thf(fact_7174_eventually__filtercomap__at__bot__dense,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( no_bot @ A ) )
=> ! [P: B > $o,F2: B > A] :
( ( eventually @ B @ P @ ( filtercomap @ B @ A @ F2 @ ( at_bot @ A ) ) )
= ( ? [N6: A] :
! [X6: B] :
( ( ord_less @ A @ ( F2 @ X6 ) @ N6 )
=> ( P @ X6 ) ) ) ) ) ).
% eventually_filtercomap_at_bot_dense
thf(fact_7175_lexord__partial__trans,axiom,
! [A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ A ),Ys2: list @ A,Zs2: list @ A] :
( ! [X5: A,Y5: A,Z4: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ Y5 ) @ R2 )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z4 ) @ R2 )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ Z4 ) @ R2 ) ) ) )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lexord @ A @ R2 ) )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lexord @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Zs2 ) @ ( lexord @ A @ R2 ) ) ) ) ) ).
% lexord_partial_trans
thf(fact_7176_lexord__append__leftD,axiom,
! [A: $tType,X: list @ A,U: list @ A,V: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ X @ U ) @ ( append @ A @ X @ V ) ) @ ( lexord @ A @ R2 ) )
=> ( ! [A6: A] :
~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A6 @ A6 ) @ R2 )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ U @ V ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_append_leftD
thf(fact_7177_lexord__append__rightI,axiom,
! [A: $tType,Y: list @ A,X: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ? [B12: A,Z5: list @ A] :
( Y
= ( cons @ A @ B12 @ Z5 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ ( append @ A @ X @ Y ) ) @ ( lexord @ A @ R2 ) ) ) ).
% lexord_append_rightI
thf(fact_7178_lexord__sufE,axiom,
! [A: $tType,Xs2: list @ A,Zs2: list @ A,Ys2: list @ A,Qs: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Zs2 ) @ ( append @ A @ Ys2 @ Qs ) ) @ ( lexord @ A @ R2 ) )
=> ( ( Xs2 != Ys2 )
=> ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( ( ( size_size @ ( list @ A ) @ Zs2 )
= ( size_size @ ( list @ A ) @ Qs ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lexord @ A @ R2 ) ) ) ) ) ) ).
% lexord_sufE
thf(fact_7179_lexord__lex,axiom,
! [A: $tType,X: list @ A,Y: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lex @ A @ R2 ) )
= ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lexord @ A @ R2 ) )
& ( ( size_size @ ( list @ A ) @ X )
= ( size_size @ ( list @ A ) @ Y ) ) ) ) ).
% lexord_lex
thf(fact_7180_lexord__append__left__rightI,axiom,
! [A: $tType,A2: A,B2: A,R2: set @ ( product_prod @ A @ A ),U: list @ A,X: list @ A,Y: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ R2 )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ U @ ( cons @ A @ A2 @ X ) ) @ ( append @ A @ U @ ( cons @ A @ B2 @ Y ) ) ) @ ( lexord @ A @ R2 ) ) ) ).
% lexord_append_left_rightI
thf(fact_7181_lexord__same__pref__iff,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ A @ Xs2 @ Zs2 ) ) @ ( lexord @ A @ R2 ) )
= ( ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ X6 ) @ R2 ) )
| ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_same_pref_iff
thf(fact_7182_lexord__sufI,axiom,
! [A: $tType,U: list @ A,W: list @ A,R2: set @ ( product_prod @ A @ A ),V: list @ A,Z2: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ U @ W ) @ ( lexord @ A @ R2 ) )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ W ) @ ( size_size @ ( list @ A ) @ U ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ U @ V ) @ ( append @ A @ W @ Z2 ) ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_sufI
thf(fact_7183_List_Olexordp__def,axiom,
! [A: $tType] :
( ( lexordp @ A )
= ( ^ [R5: A > A > $o,Xs: list @ A,Ys: list @ A] : ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs @ Ys ) @ ( lexord @ A @ ( collect @ ( product_prod @ A @ A ) @ ( product_case_prod @ A @ A @ $o @ R5 ) ) ) ) ) ) ).
% List.lexordp_def
thf(fact_7184_uniformity__dist,axiom,
! [A: $tType] :
( ( real_V768167426530841204y_dist @ A )
=> ( ( topolo7806501430040627800ormity @ A )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ A @ A ) )
@ ( image @ real @ ( filter @ ( product_prod @ A @ A ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ( product_case_prod @ A @ A @ $o
@ ^ [X6: A,Y6: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ Y6 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ).
% uniformity_dist
thf(fact_7185_uniformity__bot,axiom,
! [A: $tType] :
( ( topolo7287701948861334536_space @ A )
=> ( ( topolo7806501430040627800ormity @ A )
!= ( bot_bot @ ( filter @ ( product_prod @ A @ A ) ) ) ) ) ).
% uniformity_bot
thf(fact_7186_uniformity__real__def,axiom,
( ( topolo7806501430040627800ormity @ real )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ real @ real ) )
@ ( image @ real @ ( filter @ ( product_prod @ real @ real ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ real @ real )
@ ( collect @ ( product_prod @ real @ real )
@ ( product_case_prod @ real @ real @ $o
@ ^ [X6: real,Y6: real] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ real @ X6 @ Y6 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% uniformity_real_def
thf(fact_7187_uniformity__complex__def,axiom,
( ( topolo7806501430040627800ormity @ complex )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ complex @ complex ) )
@ ( image @ real @ ( filter @ ( product_prod @ complex @ complex ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ complex @ complex )
@ ( collect @ ( product_prod @ complex @ complex )
@ ( product_case_prod @ complex @ complex @ $o
@ ^ [X6: complex,Y6: complex] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ complex @ X6 @ Y6 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% uniformity_complex_def
thf(fact_7188_eventually__uniformity__metric,axiom,
! [A: $tType] :
( ( real_V768167426530841204y_dist @ A )
=> ! [P: ( product_prod @ A @ A ) > $o] :
( ( eventually @ ( product_prod @ A @ A ) @ P @ ( topolo7806501430040627800ormity @ A ) )
= ( ? [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
& ! [X6: A,Y6: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X6 @ Y6 ) @ E3 )
=> ( P @ ( product_Pair @ A @ A @ X6 @ Y6 ) ) ) ) ) ) ) ).
% eventually_uniformity_metric
thf(fact_7189_relpow__finite__bounded1,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A ),K: nat] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ K @ R3 )
@ ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R3 )
@ ( collect @ nat
@ ^ [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R3 ) ) ) ) ) ) ) ) ) ).
% relpow_finite_bounded1
thf(fact_7190_prod__filter__INF,axiom,
! [C: $tType,D: $tType,B: $tType,A: $tType,I6: set @ A,J4: set @ B,A3: A > ( filter @ C ),B3: B > ( filter @ D )] :
( ( I6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( J4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( prod_filter @ C @ D @ ( complete_Inf_Inf @ ( filter @ C ) @ ( image @ A @ ( filter @ C ) @ A3 @ I6 ) ) @ ( complete_Inf_Inf @ ( filter @ D ) @ ( image @ B @ ( filter @ D ) @ B3 @ J4 ) ) )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ C @ D ) )
@ ( image @ A @ ( filter @ ( product_prod @ C @ D ) )
@ ^ [I: A] :
( complete_Inf_Inf @ ( filter @ ( product_prod @ C @ D ) )
@ ( image @ B @ ( filter @ ( product_prod @ C @ D ) )
@ ^ [J2: B] : ( prod_filter @ C @ D @ ( A3 @ I ) @ ( B3 @ J2 ) )
@ J4 ) )
@ I6 ) ) ) ) ) ).
% prod_filter_INF
thf(fact_7191_finite__relpow,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A ),N: nat] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R3 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( finite_finite @ ( product_prod @ A @ A ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) ) ) ) ).
% finite_relpow
thf(fact_7192_relpow__Suc__I2,axiom,
! [A: $tType,X: A,Y: A,R3: set @ ( product_prod @ A @ A ),Z2: A,N: nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R3 )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 ) ) ) ) ).
% relpow_Suc_I2
thf(fact_7193_relpow__Suc__E2,axiom,
! [A: $tType,X: A,Z2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 ) )
=> ~ ! [Y5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ R3 )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) ) ) ) ).
% relpow_Suc_E2
thf(fact_7194_relpow__Suc__D2,axiom,
! [A: $tType,X: A,Z2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 ) )
=> ? [Y5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ R3 )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) ) ) ) ).
% relpow_Suc_D2
thf(fact_7195_relpow__Suc__I,axiom,
! [A: $tType,X: A,Y: A,N: nat,R3: set @ ( product_prod @ A @ A ),Z2: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y @ Z2 ) @ R3 )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 ) ) ) ) ).
% relpow_Suc_I
thf(fact_7196_relpow__Suc__E,axiom,
! [A: $tType,X: A,Z2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 ) )
=> ~ ! [Y5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z2 ) @ R3 ) ) ) ).
% relpow_Suc_E
thf(fact_7197_relpow__0__I,axiom,
! [A: $tType,X: A,R3: set @ ( product_prod @ A @ A )] : ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ X ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( zero_zero @ nat ) @ R3 ) ) ).
% relpow_0_I
thf(fact_7198_relpow__0__E,axiom,
! [A: $tType,X: A,Y: A,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( zero_zero @ nat ) @ R3 ) )
=> ( X = Y ) ) ).
% relpow_0_E
thf(fact_7199_prod__filter__eq__bot,axiom,
! [A: $tType,B: $tType,A3: filter @ A,B3: filter @ B] :
( ( ( prod_filter @ A @ B @ A3 @ B3 )
= ( bot_bot @ ( filter @ ( product_prod @ A @ B ) ) ) )
= ( ( A3
= ( bot_bot @ ( filter @ A ) ) )
| ( B3
= ( bot_bot @ ( filter @ B ) ) ) ) ) ).
% prod_filter_eq_bot
thf(fact_7200_prod__filter__mono__iff,axiom,
! [A: $tType,B: $tType,A3: filter @ A,B3: filter @ B,C4: filter @ A,D5: filter @ B] :
( ( A3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( B3
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( ord_less_eq @ ( filter @ ( product_prod @ A @ B ) ) @ ( prod_filter @ A @ B @ A3 @ B3 ) @ ( prod_filter @ A @ B @ C4 @ D5 ) )
= ( ( ord_less_eq @ ( filter @ A ) @ A3 @ C4 )
& ( ord_less_eq @ ( filter @ B ) @ B3 @ D5 ) ) ) ) ) ).
% prod_filter_mono_iff
thf(fact_7201_relpow__E,axiom,
! [A: $tType,X: A,Z2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
=> ( ( ( N
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y5: A,M3: nat] :
( ( N
= ( suc @ M3 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M3 @ R3 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z2 ) @ R3 ) ) ) ) ) ).
% relpow_E
thf(fact_7202_relpow__E2,axiom,
! [A: $tType,X: A,Z2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
=> ( ( ( N
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y5: A,M3: nat] :
( ( N
= ( suc @ M3 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ R3 )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y5 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M3 @ R3 ) ) ) ) ) ) ).
% relpow_E2
thf(fact_7203_relpow__empty,axiom,
! [A: $tType,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ).
% relpow_empty
thf(fact_7204_eventually__prod1,axiom,
! [A: $tType,B: $tType,B3: filter @ A,P: B > $o,A3: filter @ B] :
( ( B3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( eventually @ ( product_prod @ B @ A )
@ ( product_case_prod @ B @ A @ $o
@ ^ [X6: B,Y6: A] : ( P @ X6 ) )
@ ( prod_filter @ B @ A @ A3 @ B3 ) )
= ( eventually @ B @ P @ A3 ) ) ) ).
% eventually_prod1
thf(fact_7205_eventually__prod2,axiom,
! [A: $tType,B: $tType,A3: filter @ A,P: B > $o,B3: filter @ B] :
( ( A3
!= ( bot_bot @ ( filter @ A ) ) )
=> ( ( eventually @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ B @ $o
@ ^ [X6: A] : P )
@ ( prod_filter @ A @ B @ A3 @ B3 ) )
= ( eventually @ B @ P @ B3 ) ) ) ).
% eventually_prod2
thf(fact_7206_relpow__fun__conv,axiom,
! [A: $tType,A2: A,B2: A,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) )
= ( ? [F6: nat > A] :
( ( ( F6 @ ( zero_zero @ nat ) )
= A2 )
& ( ( F6 @ N )
= B2 )
& ! [I: nat] :
( ( ord_less @ nat @ I @ N )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( F6 @ I ) @ ( F6 @ ( suc @ I ) ) ) @ R3 ) ) ) ) ) ).
% relpow_fun_conv
thf(fact_7207_tendsto__mult__Pair,axiom,
! [A: $tType] :
( ( topolo4211221413907600880p_mult @ A )
=> ! [A2: A,B2: A] :
( filterlim @ ( product_prod @ A @ A ) @ A
@ ^ [X6: product_prod @ A @ A] : ( times_times @ A @ ( product_fst @ A @ A @ X6 ) @ ( product_snd @ A @ A @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ A2 @ B2 ) )
@ ( prod_filter @ A @ A @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( topolo7230453075368039082e_nhds @ A @ B2 ) ) ) ) ).
% tendsto_mult_Pair
thf(fact_7208_tendsto__add__Pair,axiom,
! [A: $tType] :
( ( topolo6943815403480290642id_add @ A )
=> ! [A2: A,B2: A] :
( filterlim @ ( product_prod @ A @ A ) @ A
@ ^ [X6: product_prod @ A @ A] : ( plus_plus @ A @ ( product_fst @ A @ A @ X6 ) @ ( product_snd @ A @ A @ X6 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ A2 @ B2 ) )
@ ( prod_filter @ A @ A @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( topolo7230453075368039082e_nhds @ A @ B2 ) ) ) ) ).
% tendsto_add_Pair
thf(fact_7209_prod__filter__INF2,axiom,
! [B: $tType,C: $tType,A: $tType,J4: set @ A,A3: filter @ B,B3: A > ( filter @ C )] :
( ( J4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( prod_filter @ B @ C @ A3 @ ( complete_Inf_Inf @ ( filter @ C ) @ ( image @ A @ ( filter @ C ) @ B3 @ J4 ) ) )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ B @ C ) )
@ ( image @ A @ ( filter @ ( product_prod @ B @ C ) )
@ ^ [I: A] : ( prod_filter @ B @ C @ A3 @ ( B3 @ I ) )
@ J4 ) ) ) ) ).
% prod_filter_INF2
thf(fact_7210_prod__filter__INF1,axiom,
! [B: $tType,C: $tType,A: $tType,I6: set @ A,A3: A > ( filter @ B ),B3: filter @ C] :
( ( I6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( prod_filter @ B @ C @ ( complete_Inf_Inf @ ( filter @ B ) @ ( image @ A @ ( filter @ B ) @ A3 @ I6 ) ) @ B3 )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ B @ C ) )
@ ( image @ A @ ( filter @ ( product_prod @ B @ C ) )
@ ^ [I: A] : ( prod_filter @ B @ C @ ( A3 @ I ) @ B3 )
@ I6 ) ) ) ) ).
% prod_filter_INF1
thf(fact_7211_ntrancl__def,axiom,
! [A: $tType] :
( ( transitive_ntrancl @ A )
= ( ^ [N3: nat,R6: set @ ( product_prod @ A @ A )] :
( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [I: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ I @ R6 )
@ ( collect @ nat
@ ^ [I: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ I )
& ( ord_less_eq @ nat @ I @ ( suc @ N3 ) ) ) ) ) ) ) ) ).
% ntrancl_def
thf(fact_7212_trancl__finite__eq__relpow,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A )] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R3 )
=> ( ( transitive_trancl @ A @ R3 )
= ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R3 )
@ ( collect @ nat
@ ^ [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R3 ) ) ) ) ) ) ) ) ).
% trancl_finite_eq_relpow
thf(fact_7213_trancl__empty,axiom,
! [A: $tType] :
( ( transitive_trancl @ A @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ).
% trancl_empty
thf(fact_7214_ntrancl__Zero,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A )] :
( ( transitive_ntrancl @ A @ ( zero_zero @ nat ) @ R3 )
= R3 ) ).
% ntrancl_Zero
thf(fact_7215_trancl__set__ntrancl,axiom,
! [A: $tType,Xs2: list @ ( product_prod @ A @ A )] :
( ( transitive_trancl @ A @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) )
= ( transitive_ntrancl @ A @ ( minus_minus @ nat @ ( finite_card @ ( product_prod @ A @ A ) @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) ) @ ( one_one @ nat ) ) @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) ) ) ).
% trancl_set_ntrancl
thf(fact_7216_trancl__power,axiom,
! [A: $tType,P2: product_prod @ A @ A,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ P2 @ ( transitive_trancl @ A @ R3 ) )
= ( ? [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( member @ ( product_prod @ A @ A ) @ P2 @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R3 ) ) ) ) ) ).
% trancl_power
thf(fact_7217_listrel1__def,axiom,
! [A: $tType] :
( ( listrel1 @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Xs: list @ A,Ys: list @ A] :
? [Us2: list @ A,Z3: A,Z8: A,Vs2: list @ A] :
( ( Xs
= ( append @ A @ Us2 @ ( cons @ A @ Z3 @ Vs2 ) ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Z3 @ Z8 ) @ R5 )
& ( Ys
= ( append @ A @ Us2 @ ( cons @ A @ Z8 @ Vs2 ) ) ) ) ) ) ) ) ).
% listrel1_def
thf(fact_7218_sequentially__imp__eventually__at__left,axiom,
! [A: $tType] :
( ( ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: A,A2: A,P: A > $o] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ! [F4: nat > A] :
( ! [N8: nat] : ( ord_less @ A @ B2 @ ( F4 @ N8 ) )
=> ( ! [N8: nat] : ( ord_less @ A @ ( F4 @ N8 ) @ A2 )
=> ( ( order_mono @ nat @ A @ F4 )
=> ( ( filterlim @ nat @ A @ F4 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( F4 @ N3 ) )
@ ( at_top @ nat ) ) ) ) ) )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) ) ) ) ) ).
% sequentially_imp_eventually_at_left
thf(fact_7219_Cons__listrel1__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys2 ) ) @ ( listrel1 @ A @ R2 ) )
= ( ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R2 )
& ( Xs2 = Ys2 ) )
| ( ( X = Y )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) ) ) ) ) ).
% Cons_listrel1_Cons
thf(fact_7220_funpow__mono2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: A > A,I3: nat,J: nat,X: A,Y: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ ( F2 @ X ) )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ I3 @ F2 @ X ) @ ( compow @ ( A > A ) @ J @ F2 @ Y ) ) ) ) ) ) ) ).
% funpow_mono2
thf(fact_7221_funpow__mono,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: A > A,A3: A,B3: A,N: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ N @ F2 @ A3 ) @ ( compow @ ( A > A ) @ N @ F2 @ B3 ) ) ) ) ) ).
% funpow_mono
thf(fact_7222_Kleene__iter__gpfp,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [F2: A > A,P2: A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ P2 @ ( F2 @ P2 ) )
=> ( ord_less_eq @ A @ P2 @ ( compow @ ( A > A ) @ K @ F2 @ ( top_top @ A ) ) ) ) ) ) ).
% Kleene_iter_gpfp
thf(fact_7223_Kleene__iter__lpfp,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [F2: A > A,P2: A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ P2 ) @ P2 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ K @ F2 @ ( bot_bot @ A ) ) @ P2 ) ) ) ) ).
% Kleene_iter_lpfp
thf(fact_7224_mono__mult,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( order_mono @ A @ A @ ( times_times @ A @ A2 ) ) ) ) ).
% mono_mult
thf(fact_7225_mono__invE,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mono_invE
thf(fact_7226_incseq__SucD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: nat > A,I3: nat] :
( ( order_mono @ nat @ A @ A3 )
=> ( ord_less_eq @ A @ ( A3 @ I3 ) @ ( A3 @ ( suc @ I3 ) ) ) ) ) ).
% incseq_SucD
thf(fact_7227_incseq__SucI,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X9: nat > A] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( X9 @ N2 ) @ ( X9 @ ( suc @ N2 ) ) )
=> ( order_mono @ nat @ A @ X9 ) ) ) ).
% incseq_SucI
thf(fact_7228_incseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_mono @ nat @ A )
= ( ^ [F6: nat > A] :
! [N3: nat] : ( ord_less_eq @ A @ ( F6 @ N3 ) @ ( F6 @ ( suc @ N3 ) ) ) ) ) ) ).
% incseq_Suc_iff
thf(fact_7229_listrel1__mono,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),S: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ R2 @ S )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) @ ( listrel1 @ A @ R2 ) @ ( listrel1 @ A @ S ) ) ) ).
% listrel1_mono
thf(fact_7230_mono__Suc,axiom,
order_mono @ nat @ nat @ suc ).
% mono_Suc
thf(fact_7231_mono__add,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A] : ( order_mono @ A @ A @ ( plus_plus @ A @ A2 ) ) ) ).
% mono_add
thf(fact_7232_mono__strict__invE,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ) ).
% mono_strict_invE
thf(fact_7233_append__listrel1I,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A ),Us: list @ A,Vs: list @ A] :
( ( ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
& ( Us = Vs ) )
| ( ( Xs2 = Ys2 )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Us @ Vs ) @ ( listrel1 @ A @ R2 ) ) ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Us ) @ ( append @ A @ Ys2 @ Vs ) ) @ ( listrel1 @ A @ R2 ) ) ) ).
% append_listrel1I
thf(fact_7234_listrel1__eq__len,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
=> ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys2 ) ) ) ).
% listrel1_eq_len
thf(fact_7235_listrel1I2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A ),X: A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ X @ Ys2 ) ) @ ( listrel1 @ A @ R2 ) ) ) ).
% listrel1I2
thf(fact_7236_not__listrel1__Nil,axiom,
! [A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ ( nil @ A ) ) @ ( listrel1 @ A @ R2 ) ) ).
% not_listrel1_Nil
thf(fact_7237_not__Nil__listrel1,axiom,
! [A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ A )] :
~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ Xs2 ) @ ( listrel1 @ A @ R2 ) ) ).
% not_Nil_listrel1
thf(fact_7238_mono__times__nat,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( order_mono @ nat @ nat @ ( times_times @ nat @ N ) ) ) ).
% mono_times_nat
thf(fact_7239_mono__funpow,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_bot @ A ) )
=> ! [Q: A > A] :
( ( order_mono @ A @ A @ Q )
=> ( order_mono @ nat @ A
@ ^ [I: nat] : ( compow @ ( A > A ) @ I @ Q @ ( bot_bot @ A ) ) ) ) ) ).
% mono_funpow
thf(fact_7240_mono__pow,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,N: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( order_mono @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) ) ) ) ).
% mono_pow
thf(fact_7241_mono__image__least,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [F2: A > B,M: A,N: A,M6: B,N4: B] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ( image @ A @ B @ F2 @ ( set_or7035219750837199246ssThan @ A @ M @ N ) )
= ( set_or7035219750837199246ssThan @ B @ M6 @ N4 ) )
=> ( ( ord_less @ A @ M @ N )
=> ( ( F2 @ M )
= M6 ) ) ) ) ) ).
% mono_image_least
thf(fact_7242_antimono__funpow,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_top @ A ) )
=> ! [Q: A > A] :
( ( order_mono @ A @ A @ Q )
=> ( order_antimono @ nat @ A
@ ^ [I: nat] : ( compow @ ( A > A ) @ I @ Q @ ( top_top @ A ) ) ) ) ) ).
% antimono_funpow
thf(fact_7243_Cons__listrel1E2,axiom,
! [A: $tType,Xs2: list @ A,Y: A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) @ ( listrel1 @ A @ R2 ) )
=> ( ! [X5: A] :
( ( Xs2
= ( cons @ A @ X5 @ Ys2 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ Y ) @ R2 ) )
=> ~ ! [Zs: list @ A] :
( ( Xs2
= ( cons @ A @ Y @ Zs ) )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Zs @ Ys2 ) @ ( listrel1 @ A @ R2 ) ) ) ) ) ).
% Cons_listrel1E2
thf(fact_7244_Cons__listrel1E1,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
=> ( ! [Y5: A] :
( ( Ys2
= ( cons @ A @ Y5 @ Xs2 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y5 ) @ R2 ) )
=> ~ ! [Zs: list @ A] :
( ( Ys2
= ( cons @ A @ X @ Zs ) )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Zs ) @ ( listrel1 @ A @ R2 ) ) ) ) ) ).
% Cons_listrel1E1
thf(fact_7245_listrel1I1,axiom,
! [A: $tType,X: A,Y: A,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R2 )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Xs2 ) ) @ ( listrel1 @ A @ R2 ) ) ) ).
% listrel1I1
thf(fact_7246_funpow__increasing,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_top @ A ) )
=> ! [M: nat,N: nat,F2: A > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ N @ F2 @ ( top_top @ A ) ) @ ( compow @ ( A > A ) @ M @ F2 @ ( top_top @ A ) ) ) ) ) ) ).
% funpow_increasing
thf(fact_7247_funpow__decreasing,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_bot @ A ) )
=> ! [M: nat,N: nat,F2: A > A] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ M @ F2 @ ( bot_bot @ A ) ) @ ( compow @ ( A > A ) @ N @ F2 @ ( bot_bot @ A ) ) ) ) ) ) ).
% funpow_decreasing
thf(fact_7248_mono__Max__commute,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [F2: A > B,A3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( F2 @ ( lattic643756798349783984er_Max @ A @ A3 ) )
= ( lattic643756798349783984er_Max @ B @ ( image @ A @ B @ F2 @ A3 ) ) ) ) ) ) ) ).
% mono_Max_commute
thf(fact_7249_listrel1I,axiom,
! [A: $tType,X: A,Y: A,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A,Us: list @ A,Vs: list @ A,Ys2: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R2 )
=> ( ( Xs2
= ( append @ A @ Us @ ( cons @ A @ X @ Vs ) ) )
=> ( ( Ys2
= ( append @ A @ Us @ ( cons @ A @ Y @ Vs ) ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) ) ) ) ) ).
% listrel1I
thf(fact_7250_listrel1E,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
=> ~ ! [X5: A,Y5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ Y5 ) @ R2 )
=> ! [Us3: list @ A,Vs3: list @ A] :
( ( Xs2
= ( append @ A @ Us3 @ ( cons @ A @ X5 @ Vs3 ) ) )
=> ( Ys2
!= ( append @ A @ Us3 @ ( cons @ A @ Y5 @ Vs3 ) ) ) ) ) ) ).
% listrel1E
thf(fact_7251_mono__cSUP,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A3: C > A,I6: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit941137186595557371_above @ A @ ( image @ C @ A @ A3 @ I6 ) )
=> ( ( I6
!= ( bot_bot @ ( set @ C ) ) )
=> ( ord_less_eq @ B
@ ( complete_Sup_Sup @ B
@ ( image @ C @ B
@ ^ [X6: C] : ( F2 @ ( A3 @ X6 ) )
@ I6 ) )
@ ( F2 @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ A3 @ I6 ) ) ) ) ) ) ) ) ).
% mono_cSUP
thf(fact_7252_mono__cSup,axiom,
! [B: $tType,A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit941137186595557371_above @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ B @ ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ A3 ) ) @ ( F2 @ ( complete_Sup_Sup @ A @ A3 ) ) ) ) ) ) ) ).
% mono_cSup
thf(fact_7253_mono__cInf,axiom,
! [B: $tType,A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit1013018076250108175_below @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ A3 ) ) @ ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ A3 ) ) ) ) ) ) ) ).
% mono_cInf
thf(fact_7254_mono__cINF,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A3: C > A,I6: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit1013018076250108175_below @ A @ ( image @ C @ A @ A3 @ I6 ) )
=> ( ( I6
!= ( bot_bot @ ( set @ C ) ) )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ A3 @ I6 ) ) )
@ ( complete_Inf_Inf @ B
@ ( image @ C @ B
@ ^ [X6: C] : ( F2 @ ( A3 @ X6 ) )
@ I6 ) ) ) ) ) ) ) ).
% mono_cINF
thf(fact_7255_mono__ge2__power__minus__self,axiom,
! [K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( order_mono @ nat @ nat
@ ^ [M4: nat] : ( minus_minus @ nat @ ( power_power @ nat @ K @ M4 ) @ M4 ) ) ) ).
% mono_ge2_power_minus_self
thf(fact_7256_snoc__listrel1__snoc__iff,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys2: list @ A,Y: A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) @ ( append @ A @ Ys2 @ ( cons @ A @ Y @ ( nil @ A ) ) ) ) @ ( listrel1 @ A @ R2 ) )
= ( ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
& ( X = Y ) )
| ( ( Xs2 = Ys2 )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R2 ) ) ) ) ).
% snoc_listrel1_snoc_iff
thf(fact_7257_finite__mono__remains__stable__implies__strict__prefix,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A] :
( ( finite_finite @ A @ ( image @ nat @ A @ F2 @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( order_mono @ nat @ A @ F2 )
=> ( ! [N2: nat] :
( ( ( F2 @ N2 )
= ( F2 @ ( suc @ N2 ) ) )
=> ( ( F2 @ ( suc @ N2 ) )
= ( F2 @ ( suc @ ( suc @ N2 ) ) ) ) )
=> ? [N7: nat] :
( ! [N8: nat] :
( ( ord_less_eq @ nat @ N8 @ N7 )
=> ! [M2: nat] :
( ( ord_less_eq @ nat @ M2 @ N7 )
=> ( ( ord_less @ nat @ M2 @ N8 )
=> ( ord_less @ A @ ( F2 @ M2 ) @ ( F2 @ N8 ) ) ) ) )
& ! [N8: nat] :
( ( ord_less_eq @ nat @ N7 @ N8 )
=> ( ( F2 @ N7 )
= ( F2 @ N8 ) ) ) ) ) ) ) ) ).
% finite_mono_remains_stable_implies_strict_prefix
thf(fact_7258_tendsto__at__left__sequentially,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo3112930676232923870pology @ B )
& ( topolo1944317154257567458pology @ B )
& ( topolo4958980785337419405_space @ A ) )
=> ! [B2: B,A2: B,X9: B > A,L4: A] :
( ( ord_less @ B @ B2 @ A2 )
=> ( ! [S4: nat > B] :
( ! [N8: nat] : ( ord_less @ B @ ( S4 @ N8 ) @ A2 )
=> ( ! [N8: nat] : ( ord_less @ B @ B2 @ ( S4 @ N8 ) )
=> ( ( order_mono @ nat @ B @ S4 )
=> ( ( filterlim @ nat @ B @ S4 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( X9 @ ( S4 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L4 )
@ ( at_top @ nat ) ) ) ) ) )
=> ( filterlim @ B @ A @ X9 @ ( topolo7230453075368039082e_nhds @ A @ L4 ) @ ( topolo174197925503356063within @ B @ A2 @ ( set_ord_lessThan @ B @ A2 ) ) ) ) ) ) ).
% tendsto_at_left_sequentially
thf(fact_7259_listrel1__iff__update,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( listrel1 @ A @ R2 ) )
= ( ? [Y6: A,N3: nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ Xs2 @ N3 ) @ Y6 ) @ R2 )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( Ys2
= ( list_update @ A @ Xs2 @ N3 @ Y6 ) ) ) ) ) ).
% listrel1_iff_update
thf(fact_7260_continuous__at__Sup__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( topolo1944317154257567458pology @ A )
& ( condit6923001295902523014norder @ B )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,S3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ ( complete_Sup_Sup @ A @ S3 ) @ ( set_ord_lessThan @ A @ ( complete_Sup_Sup @ A @ S3 ) ) ) @ F2 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( F2 @ ( complete_Sup_Sup @ A @ S3 ) )
= ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ) ).
% continuous_at_Sup_mono
thf(fact_7261_continuous__at__Inf__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( topolo1944317154257567458pology @ A )
& ( condit6923001295902523014norder @ B )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,S3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ ( complete_Inf_Inf @ A @ S3 ) @ ( set_ord_greaterThan @ A @ ( complete_Inf_Inf @ A @ S3 ) ) ) @ F2 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( F2 @ ( complete_Inf_Inf @ A @ S3 ) )
= ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ) ).
% continuous_at_Inf_mono
thf(fact_7262_listrel1p__def,axiom,
! [A: $tType] :
( ( listrel1p @ A )
= ( ^ [R5: A > A > $o,Xs: list @ A,Ys: list @ A] : ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs @ Ys ) @ ( listrel1 @ A @ ( collect @ ( product_prod @ A @ A ) @ ( product_case_prod @ A @ A @ $o @ R5 ) ) ) ) ) ) ).
% listrel1p_def
thf(fact_7263_remdups__adj__altdef,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( remdups_adj @ A @ Xs2 )
= Ys2 )
= ( ? [F6: nat > nat] :
( ( order_mono @ nat @ nat @ F6 )
& ( ( image @ nat @ nat @ F6 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Ys2 ) ) )
& ! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I )
= ( nth @ A @ Ys2 @ ( F6 @ I ) ) ) )
& ! [I: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I @ ( one_one @ nat ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ Xs2 @ I )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ I @ ( one_one @ nat ) ) ) )
= ( ( F6 @ I )
= ( F6 @ ( plus_plus @ nat @ I @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% remdups_adj_altdef
thf(fact_7264_remdups__adj__Nil__iff,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( remdups_adj @ A @ Xs2 )
= ( nil @ A ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% remdups_adj_Nil_iff
thf(fact_7265_remdups__adj__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( remdups_adj @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% remdups_adj_set
thf(fact_7266_hd__remdups__adj,axiom,
! [A: $tType,Xs2: list @ A] :
( ( hd @ A @ ( remdups_adj @ A @ Xs2 ) )
= ( hd @ A @ Xs2 ) ) ).
% hd_remdups_adj
thf(fact_7267_mono__Un,axiom,
! [B: $tType,A: $tType,F2: ( set @ A ) > ( set @ B ),A3: set @ A,B3: set @ A] :
( ( order_mono @ ( set @ A ) @ ( set @ B ) @ F2 )
=> ( ord_less_eq @ ( set @ B ) @ ( sup_sup @ ( set @ B ) @ ( F2 @ A3 ) @ ( F2 @ B3 ) ) @ ( F2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ) ).
% mono_Un
thf(fact_7268_mono__Int,axiom,
! [B: $tType,A: $tType,F2: ( set @ A ) > ( set @ B ),A3: set @ A,B3: set @ A] :
( ( order_mono @ ( set @ A ) @ ( set @ B ) @ F2 )
=> ( ord_less_eq @ ( set @ B ) @ ( F2 @ ( inf_inf @ ( set @ A ) @ A3 @ B3 ) ) @ ( inf_inf @ ( set @ B ) @ ( F2 @ A3 ) @ ( F2 @ B3 ) ) ) ) ).
% mono_Int
thf(fact_7269_remdups__adj__distinct,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( remdups_adj @ A @ Xs2 )
= Xs2 ) ) ).
% remdups_adj_distinct
thf(fact_7270_remdups__adj_Osimps_I3_J,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A] :
( ( ( X = Y )
=> ( ( remdups_adj @ A @ ( cons @ A @ X @ ( cons @ A @ Y @ Xs2 ) ) )
= ( remdups_adj @ A @ ( cons @ A @ X @ Xs2 ) ) ) )
& ( ( X != Y )
=> ( ( remdups_adj @ A @ ( cons @ A @ X @ ( cons @ A @ Y @ Xs2 ) ) )
= ( cons @ A @ X @ ( remdups_adj @ A @ ( cons @ A @ Y @ Xs2 ) ) ) ) ) ) ).
% remdups_adj.simps(3)
thf(fact_7271_remdups__adj_Osimps_I1_J,axiom,
! [A: $tType] :
( ( remdups_adj @ A @ ( nil @ A ) )
= ( nil @ A ) ) ).
% remdups_adj.simps(1)
thf(fact_7272_remdups__adj_Osimps_I2_J,axiom,
! [A: $tType,X: A] :
( ( remdups_adj @ A @ ( cons @ A @ X @ ( nil @ A ) ) )
= ( cons @ A @ X @ ( nil @ A ) ) ) ).
% remdups_adj.simps(2)
thf(fact_7273_remdups__adj_Oelims,axiom,
! [A: $tType,X: list @ A,Y: list @ A] :
( ( ( remdups_adj @ A @ X )
= Y )
=> ( ( ( X
= ( nil @ A ) )
=> ( Y
!= ( nil @ A ) ) )
=> ( ! [X5: A] :
( ( X
= ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ( Y
!= ( cons @ A @ X5 @ ( nil @ A ) ) ) )
=> ~ ! [X5: A,Y5: A,Xs3: list @ A] :
( ( X
= ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Xs3 ) ) )
=> ~ ( ( ( X5 = Y5 )
=> ( Y
= ( remdups_adj @ A @ ( cons @ A @ X5 @ Xs3 ) ) ) )
& ( ( X5 != Y5 )
=> ( Y
= ( cons @ A @ X5 @ ( remdups_adj @ A @ ( cons @ A @ Y5 @ Xs3 ) ) ) ) ) ) ) ) ) ) ).
% remdups_adj.elims
thf(fact_7274_remdups__adj__length,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% remdups_adj_length
thf(fact_7275_remdups__adj__append__two,axiom,
! [A: $tType,Xs2: list @ A,X: A,Y: A] :
( ( remdups_adj @ A @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( cons @ A @ Y @ ( nil @ A ) ) ) ) )
= ( append @ A @ ( remdups_adj @ A @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) ) @ ( if @ ( list @ A ) @ ( X = Y ) @ ( nil @ A ) @ ( cons @ A @ Y @ ( nil @ A ) ) ) ) ) ).
% remdups_adj_append_two
thf(fact_7276_ord_Olexordp_Omono,axiom,
! [A: $tType,Less: A > A > $o] :
( order_mono @ ( ( list @ A ) > ( list @ A ) > $o ) @ ( ( list @ A ) > ( list @ A ) > $o )
@ ^ [P5: ( list @ A ) > ( list @ A ) > $o,X18: list @ A,X24: list @ A] :
( ? [Y6: A,Ys: list @ A] :
( ( X18
= ( nil @ A ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) ) )
| ? [X6: A,Y6: A,Xs: list @ A,Ys: list @ A] :
( ( X18
= ( cons @ A @ X6 @ Xs ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) )
& ( Less @ X6 @ Y6 ) )
| ? [X6: A,Y6: A,Xs: list @ A,Ys: list @ A] :
( ( X18
= ( cons @ A @ X6 @ Xs ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) )
& ~ ( Less @ X6 @ Y6 )
& ~ ( Less @ Y6 @ X6 )
& ( P5 @ Xs @ Ys ) ) ) ) ).
% ord.lexordp.mono
thf(fact_7277_finite_Omono,axiom,
! [A: $tType] :
( order_mono @ ( ( set @ A ) > $o ) @ ( ( set @ A ) > $o )
@ ^ [P5: ( set @ A ) > $o,X6: set @ A] :
( ( X6
= ( bot_bot @ ( set @ A ) ) )
| ? [A7: set @ A,A4: A] :
( ( X6
= ( insert @ A @ A4 @ A7 ) )
& ( P5 @ A7 ) ) ) ) ).
% finite.mono
thf(fact_7278_remdups__adj__adjacent,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( ord_less @ nat @ ( suc @ I3 ) @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) )
=> ( ( nth @ A @ ( remdups_adj @ A @ Xs2 ) @ I3 )
!= ( nth @ A @ ( remdups_adj @ A @ Xs2 ) @ ( suc @ I3 ) ) ) ) ).
% remdups_adj_adjacent
thf(fact_7279_remdups__adj__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( remdups_adj @ A @ ( replicate @ A @ N @ X ) )
= ( nil @ A ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( remdups_adj @ A @ ( replicate @ A @ N @ X ) )
= ( cons @ A @ X @ ( nil @ A ) ) ) ) ) ).
% remdups_adj_replicate
thf(fact_7280_remdups__adj__singleton,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( ( remdups_adj @ A @ Xs2 )
= ( cons @ A @ X @ ( nil @ A ) ) )
=> ( Xs2
= ( replicate @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ X ) ) ) ).
% remdups_adj_singleton
thf(fact_7281_lexordp_Omono,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( order_mono @ ( ( list @ A ) > ( list @ A ) > $o ) @ ( ( list @ A ) > ( list @ A ) > $o )
@ ^ [P5: ( list @ A ) > ( list @ A ) > $o,X18: list @ A,X24: list @ A] :
( ? [Y6: A,Ys: list @ A] :
( ( X18
= ( nil @ A ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) ) )
| ? [X6: A,Y6: A,Xs: list @ A,Ys: list @ A] :
( ( X18
= ( cons @ A @ X6 @ Xs ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) )
& ( ord_less @ A @ X6 @ Y6 ) )
| ? [X6: A,Y6: A,Xs: list @ A,Ys: list @ A] :
( ( X18
= ( cons @ A @ X6 @ Xs ) )
& ( X24
= ( cons @ A @ Y6 @ Ys ) )
& ~ ( ord_less @ A @ X6 @ Y6 )
& ~ ( ord_less @ A @ Y6 @ X6 )
& ( P5 @ Xs @ Ys ) ) ) ) ) ).
% lexordp.mono
thf(fact_7282_remdups__adj__length__ge1,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) ) ) ).
% remdups_adj_length_ge1
thf(fact_7283_remdups__adj__singleton__iff,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( Xs2
!= ( nil @ A ) )
& ( Xs2
= ( replicate @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( hd @ A @ Xs2 ) ) ) ) ) ).
% remdups_adj_singleton_iff
thf(fact_7284_UNION__fun__upd,axiom,
! [B: $tType,A: $tType,A3: B > ( set @ A ),I3: B,B3: set @ A,J4: set @ B] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ ( fun_upd @ B @ ( set @ A ) @ A3 @ I3 @ B3 ) @ J4 ) )
= ( sup_sup @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ A3 @ ( minus_minus @ ( set @ B ) @ J4 @ ( insert @ B @ I3 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) @ ( if @ ( set @ A ) @ ( member @ B @ I3 @ J4 ) @ B3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% UNION_fun_upd
thf(fact_7285_comp__fun__commute__on_Ofold__set__union__disj,axiom,
! [B: $tType,A: $tType,S3: set @ A,F2: A > B > B,A3: set @ A,B3: set @ A,Z2: B] :
( ( finite4664212375090638736ute_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ S3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ S3 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( finite_finite @ A @ B3 )
=> ( ( ( inf_inf @ ( set @ A ) @ A3 @ B3 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_fold @ A @ B @ F2 @ Z2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( finite_fold @ A @ B @ F2 @ ( finite_fold @ A @ B @ F2 @ Z2 @ A3 ) @ B3 ) ) ) ) ) ) ) ) ).
% comp_fun_commute_on.fold_set_union_disj
thf(fact_7286_fun__upd__image,axiom,
! [A: $tType,B: $tType,X: B,A3: set @ B,F2: B > A,Y: A] :
( ( ( member @ B @ X @ A3 )
=> ( ( image @ B @ A @ ( fun_upd @ B @ A @ F2 @ X @ Y ) @ A3 )
= ( insert @ A @ Y @ ( image @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) )
& ( ~ ( member @ B @ X @ A3 )
=> ( ( image @ B @ A @ ( fun_upd @ B @ A @ F2 @ X @ Y ) @ A3 )
= ( image @ B @ A @ F2 @ A3 ) ) ) ) ).
% fun_upd_image
thf(fact_7287_comp__fun__commute__on_Ofold__rec,axiom,
! [B: $tType,A: $tType,S3: set @ A,F2: A > B > B,A3: set @ A,X: A,Z2: B] :
( ( finite4664212375090638736ute_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ A3 @ S3 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( finite_fold @ A @ B @ F2 @ Z2 @ A3 )
= ( F2 @ X @ ( finite_fold @ A @ B @ F2 @ Z2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% comp_fun_commute_on.fold_rec
thf(fact_7288_comp__fun__commute__on_Ofold__insert__remove,axiom,
! [B: $tType,A: $tType,S3: set @ A,F2: A > B > B,X: A,A3: set @ A,Z2: B] :
( ( finite4664212375090638736ute_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ ( insert @ A @ X @ A3 ) @ S3 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( finite_fold @ A @ B @ F2 @ Z2 @ ( insert @ A @ X @ A3 ) )
= ( F2 @ X @ ( finite_fold @ A @ B @ F2 @ Z2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% comp_fun_commute_on.fold_insert_remove
thf(fact_7289_lenlex__append2,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A ),Us: list @ A,Xs2: list @ A,Ys2: list @ A] :
( ( irrefl @ A @ R3 )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Us @ Xs2 ) @ ( append @ A @ Us @ Ys2 ) ) @ ( lenlex @ A @ R3 ) )
= ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) @ ( lenlex @ A @ R3 ) ) ) ) ).
% lenlex_append2
thf(fact_7290_inj__sgn__power,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( inj_on @ real @ real
@ ^ [Y6: real] : ( times_times @ real @ ( sgn_sgn @ real @ Y6 ) @ ( power_power @ real @ ( abs_abs @ real @ Y6 ) @ N ) )
@ ( top_top @ ( set @ real ) ) ) ) ).
% inj_sgn_power
thf(fact_7291_empty__upd__none,axiom,
! [B: $tType,A: $tType,X: A] :
( ( fun_upd @ A @ ( option @ B )
@ ^ [X6: A] : ( none @ B )
@ X
@ ( none @ B ) )
= ( ^ [X6: A] : ( none @ B ) ) ) ).
% empty_upd_none
thf(fact_7292_inj__on__empty,axiom,
! [B: $tType,A: $tType,F2: A > B] : ( inj_on @ A @ B @ F2 @ ( bot_bot @ ( set @ A ) ) ) ).
% inj_on_empty
thf(fact_7293_inj__mult__left,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A] :
( ( inj_on @ A @ A @ ( times_times @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% inj_mult_left
thf(fact_7294_inj__divide__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( inj_on @ A @ A
@ ^ [B4: A] : ( divide_divide @ A @ B4 @ A2 )
@ ( top_top @ ( set @ A ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% inj_divide_right
thf(fact_7295_lexord__same__pref__if__irrefl,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( irrefl @ A @ R2 )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ A @ Xs2 @ Zs2 ) ) @ ( lexord @ A @ R2 ) )
= ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys2 @ Zs2 ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_same_pref_if_irrefl
thf(fact_7296_inj__on__insert,axiom,
! [B: $tType,A: $tType,F2: A > B,A2: A,A3: set @ A] :
( ( inj_on @ A @ B @ F2 @ ( insert @ A @ A2 @ A3 ) )
= ( ( inj_on @ A @ B @ F2 @ A3 )
& ~ ( member @ B @ ( F2 @ A2 ) @ ( image @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% inj_on_insert
thf(fact_7297_map__upd__nonempty,axiom,
! [B: $tType,A: $tType,T2: A > ( option @ B ),K: A,X: B] :
( ( fun_upd @ A @ ( option @ B ) @ T2 @ K @ ( some @ B @ X ) )
!= ( ^ [X6: A] : ( none @ B ) ) ) ).
% map_upd_nonempty
thf(fact_7298_inj__on__Inter,axiom,
! [B: $tType,A: $tType,S3: set @ ( set @ A ),F2: A > B] :
( ( S3
!= ( bot_bot @ ( set @ ( set @ A ) ) ) )
=> ( ! [A9: set @ A] :
( ( member @ ( set @ A ) @ A9 @ S3 )
=> ( inj_on @ A @ B @ F2 @ A9 ) )
=> ( inj_on @ A @ B @ F2 @ ( complete_Inf_Inf @ ( set @ A ) @ S3 ) ) ) ) ).
% inj_on_Inter
thf(fact_7299_pigeonhole,axiom,
! [A: $tType,B: $tType,F2: B > A,A3: set @ B] :
( ( ord_less @ nat @ ( finite_card @ A @ ( image @ B @ A @ F2 @ A3 ) ) @ ( finite_card @ B @ A3 ) )
=> ~ ( inj_on @ B @ A @ F2 @ A3 ) ) ).
% pigeonhole
thf(fact_7300_inj__fn,axiom,
! [A: $tType,F2: A > A,N: nat] :
( ( inj_on @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( inj_on @ A @ A @ ( compow @ ( A > A ) @ N @ F2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_fn
thf(fact_7301_lexord__irrefl,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A )] :
( ( irrefl @ A @ R3 )
=> ( irrefl @ ( list @ A ) @ ( lexord @ A @ R3 ) ) ) ).
% lexord_irrefl
thf(fact_7302_linorder__injI,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [F2: A > B] :
( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ( F2 @ X5 )
!= ( F2 @ Y5 ) ) )
=> ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) ) ) ).
% linorder_injI
thf(fact_7303_inj__add__left,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A] : ( inj_on @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_add_left
thf(fact_7304_sorted__list__of__set_Oinj__on,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( inj_on @ A @ A
@ ^ [X6: A] : X6
@ ( top_top @ ( set @ A ) ) ) ) ).
% sorted_list_of_set.inj_on
thf(fact_7305_inj__on__add,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A3: set @ A] : ( inj_on @ A @ A @ ( plus_plus @ A @ A2 ) @ A3 ) ) ).
% inj_on_add
thf(fact_7306_inj__on__add_H,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A3: set @ A] :
( inj_on @ A @ A
@ ^ [B4: A] : ( plus_plus @ A @ B4 @ A2 )
@ A3 ) ) ).
% inj_on_add'
thf(fact_7307_inj__on__mult,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,A3: set @ A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( inj_on @ A @ A @ ( times_times @ A @ A2 ) @ A3 ) ) ) ).
% inj_on_mult
thf(fact_7308_irrefl__lex,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] :
( ( irrefl @ A @ R2 )
=> ( irrefl @ ( list @ A ) @ ( lex @ A @ R2 ) ) ) ).
% irrefl_lex
thf(fact_7309_continuous__inj__imp__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo8458572112393995274pology @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [A2: A,X: A,B2: A,F2: A > B] :
( ( ord_less @ A @ A2 @ X )
=> ( ( ord_less @ A @ X @ B2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( inj_on @ A @ B @ F2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
=> ( ( ( ord_less @ B @ ( F2 @ A2 ) @ ( F2 @ X ) )
& ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ B2 ) ) )
| ( ( ord_less @ B @ ( F2 @ B2 ) @ ( F2 @ X ) )
& ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ A2 ) ) ) ) ) ) ) ) ) ).
% continuous_inj_imp_mono
thf(fact_7310_inj__on__iff__surj,axiom,
! [A: $tType,B: $tType,A3: set @ A,A10: set @ B] :
( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ? [F6: A > B] :
( ( inj_on @ A @ B @ F6 @ A3 )
& ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F6 @ A3 ) @ A10 ) ) )
= ( ? [G2: B > A] :
( ( image @ B @ A @ G2 @ A10 )
= A3 ) ) ) ) ).
% inj_on_iff_surj
thf(fact_7311_linorder__inj__onI,axiom,
! [B: $tType,A: $tType] :
( ( order @ A )
=> ! [A3: set @ A,F2: A > B] :
( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ( member @ A @ X5 @ A3 )
=> ( ( member @ A @ Y5 @ A3 )
=> ( ( F2 @ X5 )
!= ( F2 @ Y5 ) ) ) ) )
=> ( ! [X5: A,Y5: A] :
( ( member @ A @ X5 @ A3 )
=> ( ( member @ A @ Y5 @ A3 )
=> ( ( ord_less_eq @ A @ X5 @ Y5 )
| ( ord_less_eq @ A @ Y5 @ X5 ) ) ) )
=> ( inj_on @ A @ B @ F2 @ A3 ) ) ) ) ).
% linorder_inj_onI
thf(fact_7312_injective__scaleR,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [C2: real] :
( ( C2
!= ( zero_zero @ real ) )
=> ( inj_on @ A @ A @ ( real_V8093663219630862766scaleR @ A @ C2 ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% injective_scaleR
thf(fact_7313_inj__on__INTER,axiom,
! [C: $tType,B: $tType,A: $tType,I6: set @ A,F2: B > C,A3: A > ( set @ B )] :
( ( I6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I6 )
=> ( inj_on @ B @ C @ F2 @ ( A3 @ I2 ) ) )
=> ( inj_on @ B @ C @ F2 @ ( complete_Inf_Inf @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A3 @ I6 ) ) ) ) ) ).
% inj_on_INTER
thf(fact_7314_lexl__not__refl,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),X: list @ A] :
( ( irrefl @ A @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ X ) @ ( lex @ A @ R2 ) ) ) ).
% lexl_not_refl
thf(fact_7315_inj__on__disjoint__Un,axiom,
! [B: $tType,A: $tType,F2: A > B,A3: set @ A,G: A > B,B3: set @ A] :
( ( inj_on @ A @ B @ F2 @ A3 )
=> ( ( inj_on @ A @ B @ G @ B3 )
=> ( ( ( inf_inf @ ( set @ B ) @ ( image @ A @ B @ F2 @ A3 ) @ ( image @ A @ B @ G @ B3 ) )
= ( bot_bot @ ( set @ B ) ) )
=> ( inj_on @ A @ B
@ ^ [X6: A] : ( if @ B @ ( member @ A @ X6 @ A3 ) @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) ) ) ) ) ).
% inj_on_disjoint_Un
thf(fact_7316_inj__on__Un,axiom,
! [A: $tType,B: $tType,F2: A > B,A3: set @ A,B3: set @ A] :
( ( inj_on @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( ( inj_on @ A @ B @ F2 @ A3 )
& ( inj_on @ A @ B @ F2 @ B3 )
& ( ( inf_inf @ ( set @ B ) @ ( image @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ A3 @ B3 ) ) @ ( image @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ B3 @ A3 ) ) )
= ( bot_bot @ ( set @ B ) ) ) ) ) ).
% inj_on_Un
thf(fact_7317_log__inj,axiom,
! [B2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( inj_on @ real @ real @ ( log @ B2 ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ).
% log_inj
thf(fact_7318_funpow__inj__finite,axiom,
! [A: $tType,P2: A > A,X: A] :
( ( inj_on @ A @ A @ P2 @ ( top_top @ ( set @ A ) ) )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [Y6: A] :
? [N3: nat] :
( Y6
= ( compow @ ( A > A ) @ N3 @ P2 @ X ) ) ) )
=> ~ ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( compow @ ( A > A ) @ N2 @ P2 @ X )
!= X ) ) ) ) ).
% funpow_inj_finite
thf(fact_7319_map__upds__append1,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B,M: A > ( option @ B ),X: A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map_upds @ A @ B @ M @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) @ Ys2 )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) @ X @ ( some @ B @ ( nth @ B @ Ys2 @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% map_upds_append1
thf(fact_7320_If__the__inv__into__in__Func,axiom,
! [B: $tType,A: $tType,G: A > B,C4: set @ A,B3: set @ A,X: A] :
( ( inj_on @ A @ B @ G @ C4 )
=> ( ( ord_less_eq @ ( set @ A ) @ C4 @ ( sup_sup @ ( set @ A ) @ B3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ ( B > A )
@ ^ [I: B] : ( if @ A @ ( member @ B @ I @ ( image @ A @ B @ G @ C4 ) ) @ ( the_inv_into @ A @ B @ C4 @ G @ I ) @ X )
@ ( bNF_Wellorder_Func @ B @ A @ ( top_top @ ( set @ B ) ) @ ( sup_sup @ ( set @ A ) @ B3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% If_the_inv_into_in_Func
thf(fact_7321_map__upds__apply__nontin,axiom,
! [B: $tType,A: $tType,X: A,Xs2: list @ A,F2: A > ( option @ B ),Ys2: list @ B] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( map_upds @ A @ B @ F2 @ Xs2 @ Ys2 @ X )
= ( F2 @ X ) ) ) ).
% map_upds_apply_nontin
thf(fact_7322_fun__upds__append2__drop,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,M: A > ( option @ B ),Zs2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map_upds @ A @ B @ M @ Xs2 @ ( append @ B @ Ys2 @ Zs2 ) )
= ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) ) ) ).
% fun_upds_append2_drop
thf(fact_7323_fun__upds__append__drop,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,M: A > ( option @ B ),Zs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map_upds @ A @ B @ M @ ( append @ A @ Xs2 @ Zs2 ) @ Ys2 )
= ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) ) ) ).
% fun_upds_append_drop
thf(fact_7324_map__upds__list__update2__drop,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,I3: nat,M: A > ( option @ B ),Ys2: list @ B,Y: B] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I3 )
=> ( ( map_upds @ A @ B @ M @ Xs2 @ ( list_update @ B @ Ys2 @ I3 @ Y ) )
= ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) ) ) ).
% map_upds_list_update2_drop
thf(fact_7325_map__upds__twist,axiom,
! [A: $tType,B: $tType,A2: A,As3: list @ A,M: A > ( option @ B ),B2: B,Bs: list @ B] :
( ~ ( member @ A @ A2 @ ( set2 @ A @ As3 ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ A2 @ ( some @ B @ B2 ) ) @ As3 @ Bs )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ M @ As3 @ Bs ) @ A2 @ ( some @ B @ B2 ) ) ) ) ).
% map_upds_twist
thf(fact_7326_inj__singleton,axiom,
! [A: $tType,A3: set @ A] :
( inj_on @ A @ ( set @ A )
@ ^ [X6: A] : ( insert @ A @ X6 @ ( bot_bot @ ( set @ A ) ) )
@ A3 ) ).
% inj_singleton
thf(fact_7327_inj__on__Cons1,axiom,
! [A: $tType,X: A,A3: set @ ( list @ A )] : ( inj_on @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X ) @ A3 ) ).
% inj_on_Cons1
thf(fact_7328_inj__of__nat,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( inj_on @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( top_top @ ( set @ nat ) ) ) ) ).
% inj_of_nat
thf(fact_7329_inj__Suc,axiom,
! [N5: set @ nat] : ( inj_on @ nat @ nat @ suc @ N5 ) ).
% inj_Suc
thf(fact_7330_inj__on__diff__nat,axiom,
! [N5: set @ nat,K: nat] :
( ! [N2: nat] :
( ( member @ nat @ N2 @ N5 )
=> ( ord_less_eq @ nat @ K @ N2 ) )
=> ( inj_on @ nat @ nat
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ K )
@ N5 ) ) ).
% inj_on_diff_nat
thf(fact_7331_finite__imp__nat__seg__image__inj__on,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ? [N2: nat,F4: nat > A] :
( ( A3
= ( image @ nat @ A @ F4
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N2 ) ) ) )
& ( inj_on @ nat @ A @ F4
@ ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N2 ) ) ) ) ) ).
% finite_imp_nat_seg_image_inj_on
thf(fact_7332_finite__imp__inj__to__nat__seg,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ? [F4: A > nat,N2: nat] :
( ( ( image @ A @ nat @ F4 @ A3 )
= ( collect @ nat
@ ^ [I: nat] : ( ord_less @ nat @ I @ N2 ) ) )
& ( inj_on @ A @ nat @ F4 @ A3 ) ) ) ).
% finite_imp_inj_to_nat_seg
thf(fact_7333_inj__on__nth,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] :
( ( distinct @ A @ Xs2 )
=> ( ! [X5: nat] :
( ( member @ nat @ X5 @ I6 )
=> ( ord_less @ nat @ X5 @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
=> ( inj_on @ nat @ A @ ( nth @ A @ Xs2 ) @ I6 ) ) ) ).
% inj_on_nth
thf(fact_7334_summable__reindex,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X5: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) )
=> ( summable @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) ) ) ) ) ).
% summable_reindex
thf(fact_7335_inj__on__funpow__least,axiom,
! [A: $tType,N: nat,F2: A > A,S: A] :
( ( ( compow @ ( A > A ) @ N @ F2 @ S )
= S )
=> ( ! [M3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M3 )
=> ( ( ord_less @ nat @ M3 @ N )
=> ( ( compow @ ( A > A ) @ M3 @ F2 @ S )
!= S ) ) )
=> ( inj_on @ nat @ A
@ ^ [K3: nat] : ( compow @ ( A > A ) @ K3 @ F2 @ S )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% inj_on_funpow_least
thf(fact_7336_map__upd__upds__conv__if,axiom,
! [A: $tType,B: $tType,X: A,Ys2: list @ B,Xs2: list @ A,F2: A > ( option @ B ),Y: B] :
( ( ( member @ A @ X @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys2 ) @ Xs2 ) ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ ( some @ B @ Y ) ) @ Xs2 @ Ys2 )
= ( map_upds @ A @ B @ F2 @ Xs2 @ Ys2 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys2 ) @ Xs2 ) ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ ( some @ B @ Y ) ) @ Xs2 @ Ys2 )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ F2 @ Xs2 @ Ys2 ) @ X @ ( some @ B @ Y ) ) ) ) ) ).
% map_upd_upds_conv_if
thf(fact_7337_suminf__reindex__mono,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X5: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) )
=> ( ord_less_eq @ real @ ( suminf @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) ) @ ( suminf @ real @ F2 ) ) ) ) ) ).
% suminf_reindex_mono
thf(fact_7338_inj__on__char__of__nat,axiom,
inj_on @ nat @ char @ ( unique5772411509450598832har_of @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% inj_on_char_of_nat
thf(fact_7339_suminf__reindex,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X5: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) )
=> ( ! [X5: nat] :
( ~ ( member @ nat @ X5 @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ X5 )
= ( zero_zero @ real ) ) )
=> ( ( suminf @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) )
= ( suminf @ real @ F2 ) ) ) ) ) ) ).
% suminf_reindex
thf(fact_7340_graph__map__upd,axiom,
! [A: $tType,B: $tType,M: A > ( option @ B ),K: A,V: B] :
( ( graph @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ K @ ( some @ B @ V ) ) )
= ( insert @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ K @ V ) @ ( graph @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ K @ ( none @ B ) ) ) ) ) ).
% graph_map_upd
thf(fact_7341_Func__map__surj,axiom,
! [C: $tType,A: $tType,D: $tType,B: $tType,F1: B > A,A16: set @ B,B13: set @ A,F22: C > D,B23: set @ C,A25: set @ D] :
( ( ( image @ B @ A @ F1 @ A16 )
= B13 )
=> ( ( inj_on @ C @ D @ F22 @ B23 )
=> ( ( ord_less_eq @ ( set @ D ) @ ( image @ C @ D @ F22 @ B23 ) @ A25 )
=> ( ( ( B23
= ( bot_bot @ ( set @ C ) ) )
=> ( A25
= ( bot_bot @ ( set @ D ) ) ) )
=> ( ( bNF_Wellorder_Func @ C @ A @ B23 @ B13 )
= ( image @ ( D > B ) @ ( C > A ) @ ( bNF_We4925052301507509544nc_map @ C @ B @ A @ D @ B23 @ F1 @ F22 ) @ ( bNF_Wellorder_Func @ D @ B @ A25 @ A16 ) ) ) ) ) ) ) ).
% Func_map_surj
thf(fact_7342_graph__empty,axiom,
! [B: $tType,A: $tType] :
( ( graph @ A @ B
@ ^ [X6: A] : ( none @ B ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ).
% graph_empty
thf(fact_7343_graph__fun__upd__None,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B ),K: A] :
( ( graph @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ K @ ( none @ B ) ) )
= ( collect @ ( product_prod @ A @ B )
@ ^ [E3: product_prod @ A @ B] :
( ( member @ ( product_prod @ A @ B ) @ E3 @ ( graph @ A @ B @ M ) )
& ( ( product_fst @ A @ B @ E3 )
!= K ) ) ) ) ).
% graph_fun_upd_None
thf(fact_7344_Func__is__emp,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B] :
( ( ( bNF_Wellorder_Func @ A @ B @ A3 @ B3 )
= ( bot_bot @ ( set @ ( A > B ) ) ) )
= ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
& ( B3
= ( bot_bot @ ( set @ B ) ) ) ) ) ).
% Func_is_emp
thf(fact_7345_Func__non__emp,axiom,
! [A: $tType,B: $tType,B3: set @ A,A3: set @ B] :
( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( bNF_Wellorder_Func @ B @ A @ A3 @ B3 )
!= ( bot_bot @ ( set @ ( B > A ) ) ) ) ) ).
% Func_non_emp
thf(fact_7346_restrict__upd__same,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B ),X: A,Y: B] :
( ( restrict_map @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ X @ ( some @ B @ Y ) ) @ ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( restrict_map @ A @ B @ M @ ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% restrict_upd_same
thf(fact_7347_restrict__map__upds,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,D5: set @ A,M: A > ( option @ B )] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ D5 )
=> ( ( restrict_map @ A @ B @ ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) @ D5 )
= ( map_upds @ A @ B @ ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D5 @ ( set2 @ A @ Xs2 ) ) ) @ Xs2 @ Ys2 ) ) ) ) ).
% restrict_map_upds
thf(fact_7348_restrict__out,axiom,
! [A: $tType,B: $tType,X: A,A3: set @ A,M: A > ( option @ B )] :
( ~ ( member @ A @ X @ A3 )
=> ( ( restrict_map @ A @ B @ M @ A3 @ X )
= ( none @ B ) ) ) ).
% restrict_out
thf(fact_7349_restrict__map__empty,axiom,
! [B: $tType,A: $tType,D5: set @ A] :
( ( restrict_map @ A @ B
@ ^ [X6: A] : ( none @ B )
@ D5 )
= ( ^ [X6: A] : ( none @ B ) ) ) ).
% restrict_map_empty
thf(fact_7350_restrict__map__to__empty,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B )] :
( ( restrict_map @ A @ B @ M @ ( bot_bot @ ( set @ A ) ) )
= ( ^ [X6: A] : ( none @ B ) ) ) ).
% restrict_map_to_empty
thf(fact_7351_restrict__fun__upd,axiom,
! [B: $tType,A: $tType,X: A,D5: set @ A,M: A > ( option @ B ),Y: option @ B] :
( ( ( member @ A @ X @ D5 )
=> ( ( restrict_map @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ X @ Y ) @ D5 )
= ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D5 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ X @ Y ) ) )
& ( ~ ( member @ A @ X @ D5 )
=> ( ( restrict_map @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ X @ Y ) @ D5 )
= ( restrict_map @ A @ B @ M @ D5 ) ) ) ) ).
% restrict_fun_upd
thf(fact_7352_fun__upd__restrict__conv,axiom,
! [A: $tType,B: $tType,X: A,D5: set @ A,M: A > ( option @ B ),Y: option @ B] :
( ( member @ A @ X @ D5 )
=> ( ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ D5 ) @ X @ Y )
= ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D5 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ X @ Y ) ) ) ).
% fun_upd_restrict_conv
thf(fact_7353_fun__upd__None__restrict,axiom,
! [B: $tType,A: $tType,X: A,D5: set @ A,M: A > ( option @ B )] :
( ( ( member @ A @ X @ D5 )
=> ( ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ D5 ) @ X @ ( none @ B ) )
= ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D5 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) )
& ( ~ ( member @ A @ X @ D5 )
=> ( ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ D5 ) @ X @ ( none @ B ) )
= ( restrict_map @ A @ B @ M @ D5 ) ) ) ) ).
% fun_upd_None_restrict
thf(fact_7354_restrict__map__def,axiom,
! [B: $tType,A: $tType] :
( ( restrict_map @ A @ B )
= ( ^ [M4: A > ( option @ B ),A7: set @ A,X6: A] : ( if @ ( option @ B ) @ ( member @ A @ X6 @ A7 ) @ ( M4 @ X6 ) @ ( none @ B ) ) ) ) ).
% restrict_map_def
thf(fact_7355_fun__upd__restrict,axiom,
! [A: $tType,B: $tType,M: A > ( option @ B ),D5: set @ A,X: A,Y: option @ B] :
( ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ D5 ) @ X @ Y )
= ( fun_upd @ A @ ( option @ B ) @ ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D5 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ X @ Y ) ) ).
% fun_upd_restrict
thf(fact_7356_restrict__complement__singleton__eq,axiom,
! [A: $tType,B: $tType,F2: A > ( option @ B ),X: A] :
( ( restrict_map @ A @ B @ F2 @ ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ ( none @ B ) ) ) ).
% restrict_complement_singleton_eq
thf(fact_7357_ran__map__upd,axiom,
! [A: $tType,B: $tType,M: B > ( option @ A ),A2: B,B2: A] :
( ( ( M @ A2 )
= ( none @ A ) )
=> ( ( ran @ B @ A @ ( fun_upd @ B @ ( option @ A ) @ M @ A2 @ ( some @ A @ B2 ) ) )
= ( insert @ A @ B2 @ ( ran @ B @ A @ M ) ) ) ) ).
% ran_map_upd
thf(fact_7358_set__list__bind,axiom,
! [A: $tType,B: $tType,Xs2: list @ B,F2: B > ( list @ A )] :
( ( set2 @ A @ ( bind @ B @ A @ Xs2 @ F2 ) )
= ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X6: B] : ( set2 @ A @ ( F2 @ X6 ) )
@ ( set2 @ B @ Xs2 ) ) ) ) ).
% set_list_bind
thf(fact_7359_bind__simps_I1_J,axiom,
! [B: $tType,A: $tType,F2: B > ( list @ A )] :
( ( bind @ B @ A @ ( nil @ B ) @ F2 )
= ( nil @ A ) ) ).
% bind_simps(1)
thf(fact_7360_bind__simps_I2_J,axiom,
! [A: $tType,B: $tType,X: B,Xs2: list @ B,F2: B > ( list @ A )] :
( ( bind @ B @ A @ ( cons @ B @ X @ Xs2 ) @ F2 )
= ( append @ A @ ( F2 @ X ) @ ( bind @ B @ A @ Xs2 @ F2 ) ) ) ).
% bind_simps(2)
thf(fact_7361_ran__empty,axiom,
! [B: $tType,A: $tType] :
( ( ran @ B @ A
@ ^ [X6: B] : ( none @ A ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% ran_empty
thf(fact_7362_list__bind__cong,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ A,F2: A > ( list @ B ),G: A > ( list @ B )] :
( ( Xs2 = Ys2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) )
=> ( ( bind @ A @ B @ Xs2 @ F2 )
= ( bind @ A @ B @ Ys2 @ G ) ) ) ) ).
% list_bind_cong
thf(fact_7363_ran__map__upd__Some,axiom,
! [B: $tType,A: $tType,M: B > ( option @ A ),X: B,Y: A,Z2: A] :
( ( ( M @ X )
= ( some @ A @ Y ) )
=> ( ( inj_on @ B @ ( option @ A ) @ M @ ( dom @ B @ A @ M ) )
=> ( ~ ( member @ A @ Z2 @ ( ran @ B @ A @ M ) )
=> ( ( ran @ B @ A @ ( fun_upd @ B @ ( option @ A ) @ M @ X @ ( some @ A @ Z2 ) ) )
= ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ ( ran @ B @ A @ M ) @ ( insert @ A @ Y @ ( bot_bot @ ( set @ A ) ) ) ) @ ( insert @ A @ Z2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% ran_map_upd_Some
thf(fact_7364_lexord__take__index__conv,axiom,
! [A: $tType,X: list @ A,Y: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lexord @ A @ R2 ) )
= ( ( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ X ) @ ( size_size @ ( list @ A ) @ Y ) )
& ( ( take @ A @ ( size_size @ ( list @ A ) @ X ) @ Y )
= X ) )
| ? [I: nat] :
( ( ord_less @ nat @ I @ ( ord_min @ nat @ ( size_size @ ( list @ A ) @ X ) @ ( size_size @ ( list @ A ) @ Y ) ) )
& ( ( take @ A @ I @ X )
= ( take @ A @ I @ Y ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ X @ I ) @ ( nth @ A @ Y @ I ) ) @ R2 ) ) ) ) ).
% lexord_take_index_conv
thf(fact_7365_min_Oabsorb3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= A2 ) ) ) ).
% min.absorb3
thf(fact_7366_min_Oabsorb4,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= B2 ) ) ) ).
% min.absorb4
thf(fact_7367_min__less__iff__conj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ ( ord_min @ A @ X @ Y ) )
= ( ( ord_less @ A @ Z2 @ X )
& ( ord_less @ A @ Z2 @ Y ) ) ) ) ).
% min_less_iff_conj
thf(fact_7368_min__bot2,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_min @ A @ X @ ( bot_bot @ A ) )
= ( bot_bot @ A ) ) ) ).
% min_bot2
thf(fact_7369_min__bot,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_min @ A @ ( bot_bot @ A ) @ X )
= ( bot_bot @ A ) ) ) ).
% min_bot
thf(fact_7370_min__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_min @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_min @ nat @ M @ N ) ) ) ).
% min_Suc_Suc
thf(fact_7371_min__0L,axiom,
! [N: nat] :
( ( ord_min @ nat @ ( zero_zero @ nat ) @ N )
= ( zero_zero @ nat ) ) ).
% min_0L
thf(fact_7372_min__0R,axiom,
! [N: nat] :
( ( ord_min @ nat @ N @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% min_0R
thf(fact_7373_take__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ ( ord_min @ nat @ M @ N ) @ A2 ) ) ) ).
% take_bit_take_bit
thf(fact_7374_take__take,axiom,
! [A: $tType,N: nat,M: nat,Xs2: list @ A] :
( ( take @ A @ N @ ( take @ A @ M @ Xs2 ) )
= ( take @ A @ ( ord_min @ nat @ N @ M ) @ Xs2 ) ) ).
% take_take
thf(fact_7375_signed__take__bit__signed__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N: nat,A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ M @ ( bit_ri4674362597316999326ke_bit @ A @ N @ A2 ) )
= ( bit_ri4674362597316999326ke_bit @ A @ ( ord_min @ nat @ M @ N ) @ A2 ) ) ) ).
% signed_take_bit_signed_take_bit
thf(fact_7376_min__number__of_I1_J,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ U ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ V ) ) ) ) ) ).
% min_number_of(1)
thf(fact_7377_min__0__1_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ X ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(3)
thf(fact_7378_min__0__1_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( numeral_numeral @ A @ X ) @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(4)
thf(fact_7379_min__0__1_I2_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_min @ A @ ( one_one @ A ) @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(2)
thf(fact_7380_min__0__1_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_min @ A @ ( zero_zero @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(1)
thf(fact_7381_min__0__1_I5_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( one_one @ A ) ) ) ).
% min_0_1(5)
thf(fact_7382_min__0__1_I6_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% min_0_1(6)
thf(fact_7383_dom__eq__empty__conv,axiom,
! [B: $tType,A: $tType,F2: A > ( option @ B )] :
( ( ( dom @ A @ B @ F2 )
= ( bot_bot @ ( set @ A ) ) )
= ( F2
= ( ^ [X6: A] : ( none @ B ) ) ) ) ).
% dom_eq_empty_conv
thf(fact_7384_length__take,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( take @ A @ N @ Xs2 ) )
= ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) ) ).
% length_take
thf(fact_7385_fun__upd__None__if__notin__dom,axiom,
! [B: $tType,A: $tType,K: A,M: A > ( option @ B )] :
( ~ ( member @ A @ K @ ( dom @ A @ B @ M ) )
=> ( ( fun_upd @ A @ ( option @ B ) @ M @ K @ ( none @ B ) )
= M ) ) ).
% fun_upd_None_if_notin_dom
thf(fact_7386_take__bit__of__mask,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se2239418461657761734s_mask @ A @ N ) )
= ( bit_se2239418461657761734s_mask @ A @ ( ord_min @ nat @ M @ N ) ) ) ) ).
% take_bit_of_mask
thf(fact_7387_take__replicate,axiom,
! [A: $tType,I3: nat,K: nat,X: A] :
( ( take @ A @ I3 @ ( replicate @ A @ K @ X ) )
= ( replicate @ A @ ( ord_min @ nat @ I3 @ K ) @ X ) ) ).
% take_replicate
thf(fact_7388_dom__empty,axiom,
! [B: $tType,A: $tType] :
( ( dom @ A @ B
@ ^ [X6: A] : ( none @ B ) )
= ( bot_bot @ ( set @ A ) ) ) ).
% dom_empty
thf(fact_7389_min__number__of_I4_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) ) ) ) ).
% min_number_of(4)
thf(fact_7390_min__number__of_I3_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V ) )
= ( numeral_numeral @ A @ V ) ) ) ) ) ).
% min_number_of(3)
thf(fact_7391_min__number__of_I2_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( numeral_numeral @ A @ U ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) ) ) ) ).
% min_number_of(2)
thf(fact_7392_min__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_min @ nat @ ( suc @ N ) @ ( numeral_numeral @ nat @ K ) )
= ( suc @ ( ord_min @ nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% min_Suc_numeral
thf(fact_7393_min__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_min @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_min @ nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% min_numeral_Suc
thf(fact_7394_dom__fun__upd,axiom,
! [B: $tType,A: $tType,Y: option @ B,F2: A > ( option @ B ),X: A] :
( ( ( Y
= ( none @ B ) )
=> ( ( dom @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ Y ) )
= ( minus_minus @ ( set @ A ) @ ( dom @ A @ B @ F2 ) @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) )
& ( ( Y
!= ( none @ B ) )
=> ( ( dom @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ Y ) )
= ( insert @ A @ X @ ( dom @ A @ B @ F2 ) ) ) ) ) ).
% dom_fun_upd
thf(fact_7395_dom__map__upds,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B ),Xs2: list @ A,Ys2: list @ B] :
( ( dom @ A @ B @ ( map_upds @ A @ B @ M @ Xs2 @ Ys2 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys2 ) @ Xs2 ) ) @ ( dom @ A @ B @ M ) ) ) ).
% dom_map_upds
thf(fact_7396_min__def__raw,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_min @ A )
= ( ^ [A4: A,B4: A] : ( if @ A @ ( ord_less_eq @ A @ A4 @ B4 ) @ A4 @ B4 ) ) ) ) ).
% min_def_raw
thf(fact_7397_dom__def,axiom,
! [B: $tType,A: $tType] :
( ( dom @ A @ B )
= ( ^ [M4: A > ( option @ B )] :
( collect @ A
@ ^ [A4: A] :
( ( M4 @ A4 )
!= ( none @ B ) ) ) ) ) ).
% dom_def
thf(fact_7398_domIff,axiom,
! [A: $tType,B: $tType,A2: A,M: A > ( option @ B )] :
( ( member @ A @ A2 @ ( dom @ A @ B @ M ) )
= ( ( M @ A2 )
!= ( none @ B ) ) ) ).
% domIff
thf(fact_7399_inf__nat__def,axiom,
( ( inf_inf @ nat )
= ( ord_min @ nat ) ) ).
% inf_nat_def
thf(fact_7400_concat__bit__assoc__sym,axiom,
! [M: nat,N: nat,K: int,L: int,R2: int] :
( ( bit_concat_bit @ M @ ( bit_concat_bit @ N @ K @ L ) @ R2 )
= ( bit_concat_bit @ ( ord_min @ nat @ M @ N ) @ K @ ( bit_concat_bit @ ( minus_minus @ nat @ M @ N ) @ L @ R2 ) ) ) ).
% concat_bit_assoc_sym
thf(fact_7401_nat__mult__min__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times @ nat @ M @ ( ord_min @ nat @ N @ Q2 ) )
= ( ord_min @ nat @ ( times_times @ nat @ M @ N ) @ ( times_times @ nat @ M @ Q2 ) ) ) ).
% nat_mult_min_right
thf(fact_7402_nat__mult__min__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times @ nat @ ( ord_min @ nat @ M @ N ) @ Q2 )
= ( ord_min @ nat @ ( times_times @ nat @ M @ Q2 ) @ ( times_times @ nat @ N @ Q2 ) ) ) ).
% nat_mult_min_left
thf(fact_7403_of__nat__min,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ A @ ( ord_min @ nat @ X @ Y ) )
= ( ord_min @ A @ ( semiring_1_of_nat @ A @ X ) @ ( semiring_1_of_nat @ A @ Y ) ) ) ) ).
% of_nat_min
thf(fact_7404_min__add__distrib__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ord_min @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( plus_plus @ A @ Y @ Z2 ) ) ) ) ).
% min_add_distrib_left
thf(fact_7405_min__add__distrib__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ X @ ( ord_min @ A @ Y @ Z2 ) )
= ( ord_min @ A @ ( plus_plus @ A @ X @ Y ) @ ( plus_plus @ A @ X @ Z2 ) ) ) ) ).
% min_add_distrib_right
thf(fact_7406_min__less__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ( ord_less @ A @ X @ Z2 )
| ( ord_less @ A @ Y @ Z2 ) ) ) ) ).
% min_less_iff_disj
thf(fact_7407_min_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( ord_min @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% min.strict_boundedE
thf(fact_7408_min_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,B4: A] :
( ( A4
= ( ord_min @ A @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ) ).
% min.strict_order_iff
thf(fact_7409_min_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ C2 )
=> ( ord_less @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.strict_coboundedI1
thf(fact_7410_min_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.strict_coboundedI2
thf(fact_7411_min__diff__distrib__left,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( minus_minus @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ord_min @ A @ ( minus_minus @ A @ X @ Z2 ) @ ( minus_minus @ A @ Y @ Z2 ) ) ) ) ).
% min_diff_distrib_left
thf(fact_7412_min__diff,axiom,
! [M: nat,I3: nat,N: nat] :
( ( ord_min @ nat @ ( minus_minus @ nat @ M @ I3 ) @ ( minus_minus @ nat @ N @ I3 ) )
= ( minus_minus @ nat @ ( ord_min @ nat @ M @ N ) @ I3 ) ) ).
% min_diff
thf(fact_7413_minus__min__eq__max,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [X: A,Y: A] :
( ( uminus_uminus @ A @ ( ord_min @ A @ X @ Y ) )
= ( ord_max @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% minus_min_eq_max
thf(fact_7414_minus__max__eq__min,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [X: A,Y: A] :
( ( uminus_uminus @ A @ ( ord_max @ A @ X @ Y ) )
= ( ord_min @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% minus_max_eq_min
thf(fact_7415_finite__map__freshness,axiom,
! [A: $tType,B: $tType,F2: A > ( option @ B )] :
( ( finite_finite @ A @ ( dom @ A @ B @ F2 ) )
=> ( ~ ( finite_finite @ A @ ( top_top @ ( set @ A ) ) )
=> ? [X5: A] :
( ( F2 @ X5 )
= ( none @ B ) ) ) ) ).
% finite_map_freshness
thf(fact_7416_dom__minus,axiom,
! [A: $tType,B: $tType,F2: B > ( option @ A ),X: B,A3: set @ B] :
( ( ( F2 @ X )
= ( none @ A ) )
=> ( ( minus_minus @ ( set @ B ) @ ( dom @ B @ A @ F2 ) @ ( insert @ B @ X @ A3 ) )
= ( minus_minus @ ( set @ B ) @ ( dom @ B @ A @ F2 ) @ A3 ) ) ) ).
% dom_minus
thf(fact_7417_take__bit__concat__bit__eq,axiom,
! [M: nat,N: nat,K: int,L: int] :
( ( bit_se2584673776208193580ke_bit @ int @ M @ ( bit_concat_bit @ N @ K @ L ) )
= ( bit_concat_bit @ ( ord_min @ nat @ M @ N ) @ K @ ( bit_se2584673776208193580ke_bit @ int @ ( minus_minus @ nat @ M @ N ) @ L ) ) ) ).
% take_bit_concat_bit_eq
thf(fact_7418_min__mult__distrib__right,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ ( ord_min @ A @ X @ Y ) @ P2 )
= ( ord_min @ A @ ( times_times @ A @ X @ P2 ) @ ( times_times @ A @ Y @ P2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ ( ord_min @ A @ X @ Y ) @ P2 )
= ( ord_max @ A @ ( times_times @ A @ X @ P2 ) @ ( times_times @ A @ Y @ P2 ) ) ) ) ) ) ).
% min_mult_distrib_right
thf(fact_7419_max__mult__distrib__right,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ ( ord_max @ A @ X @ Y ) @ P2 )
= ( ord_max @ A @ ( times_times @ A @ X @ P2 ) @ ( times_times @ A @ Y @ P2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ ( ord_max @ A @ X @ Y ) @ P2 )
= ( ord_min @ A @ ( times_times @ A @ X @ P2 ) @ ( times_times @ A @ Y @ P2 ) ) ) ) ) ) ).
% max_mult_distrib_right
thf(fact_7420_min__mult__distrib__left,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ P2 @ ( ord_min @ A @ X @ Y ) )
= ( ord_min @ A @ ( times_times @ A @ P2 @ X ) @ ( times_times @ A @ P2 @ Y ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ P2 @ ( ord_min @ A @ X @ Y ) )
= ( ord_max @ A @ ( times_times @ A @ P2 @ X ) @ ( times_times @ A @ P2 @ Y ) ) ) ) ) ) ).
% min_mult_distrib_left
thf(fact_7421_max__mult__distrib__left,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ P2 @ ( ord_max @ A @ X @ Y ) )
= ( ord_max @ A @ ( times_times @ A @ P2 @ X ) @ ( times_times @ A @ P2 @ Y ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( times_times @ A @ P2 @ ( ord_max @ A @ X @ Y ) )
= ( ord_min @ A @ ( times_times @ A @ P2 @ X ) @ ( times_times @ A @ P2 @ Y ) ) ) ) ) ) ).
% max_mult_distrib_left
thf(fact_7422_max__divide__distrib__right,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( divide_divide @ A @ ( ord_max @ A @ X @ Y ) @ P2 )
= ( ord_max @ A @ ( divide_divide @ A @ X @ P2 ) @ ( divide_divide @ A @ Y @ P2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( divide_divide @ A @ ( ord_max @ A @ X @ Y ) @ P2 )
= ( ord_min @ A @ ( divide_divide @ A @ X @ P2 ) @ ( divide_divide @ A @ Y @ P2 ) ) ) ) ) ) ).
% max_divide_distrib_right
thf(fact_7423_min__divide__distrib__right,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [P2: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( divide_divide @ A @ ( ord_min @ A @ X @ Y ) @ P2 )
= ( ord_min @ A @ ( divide_divide @ A @ X @ P2 ) @ ( divide_divide @ A @ Y @ P2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P2 )
=> ( ( divide_divide @ A @ ( ord_min @ A @ X @ Y ) @ P2 )
= ( ord_max @ A @ ( divide_divide @ A @ X @ P2 ) @ ( divide_divide @ A @ Y @ P2 ) ) ) ) ) ) ).
% min_divide_distrib_right
thf(fact_7424_min__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_min @ nat @ ( suc @ N ) @ M )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [M5: nat] : ( suc @ ( ord_min @ nat @ N @ M5 ) )
@ M ) ) ).
% min_Suc1
thf(fact_7425_min__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_min @ nat @ M @ ( suc @ N ) )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [M5: nat] : ( suc @ ( ord_min @ nat @ M5 @ N ) )
@ M ) ) ).
% min_Suc2
thf(fact_7426_Inf__insert__finite,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [S3: set @ A,X: A] :
( ( finite_finite @ A @ S3 )
=> ( ( ( S3
= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ ( insert @ A @ X @ S3 ) )
= X ) )
& ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ ( insert @ A @ X @ S3 ) )
= ( ord_min @ A @ X @ ( complete_Inf_Inf @ A @ S3 ) ) ) ) ) ) ) ).
% Inf_insert_finite
thf(fact_7427_finite__Map__induct,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B ),P: ( A > ( option @ B ) ) > $o] :
( ( finite_finite @ A @ ( dom @ A @ B @ M ) )
=> ( ( P
@ ^ [X6: A] : ( none @ B ) )
=> ( ! [K2: A,V3: B,M3: A > ( option @ B )] :
( ( finite_finite @ A @ ( dom @ A @ B @ M3 ) )
=> ( ~ ( member @ A @ K2 @ ( dom @ A @ B @ M3 ) )
=> ( ( P @ M3 )
=> ( P @ ( fun_upd @ A @ ( option @ B ) @ M3 @ K2 @ ( some @ B @ V3 ) ) ) ) ) )
=> ( P @ M ) ) ) ) ).
% finite_Map_induct
thf(fact_7428_mod__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,M: nat,N: nat] :
( ( modulo_modulo @ A @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) )
= ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ord_min @ nat @ M @ N ) ) ) ) ) ).
% mod_exp_eq
thf(fact_7429_dom__eq__singleton__conv,axiom,
! [A: $tType,B: $tType,F2: A > ( option @ B ),X: A] :
( ( ( dom @ A @ B @ F2 )
= ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( ? [V5: B] :
( F2
= ( fun_upd @ A @ ( option @ B )
@ ^ [X6: A] : ( none @ B )
@ X
@ ( some @ B @ V5 ) ) ) ) ) ).
% dom_eq_singleton_conv
thf(fact_7430_mask__mod__exp,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N: nat,M: nat] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ord_min @ nat @ M @ N ) ) @ ( one_one @ A ) ) ) ) ).
% mask_mod_exp
thf(fact_7431_Min_Oeq__fold_H,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798350308766er_Min @ A )
= ( ^ [A7: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X6: A,Y6: option @ A] : ( some @ A @ ( case_option @ A @ A @ X6 @ ( ord_min @ A @ X6 ) @ Y6 ) )
@ ( none @ A )
@ A7 ) ) ) ) ) ).
% Min.eq_fold'
thf(fact_7432_set__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( collect @ ( product_prod @ A @ B )
@ ^ [Uu3: product_prod @ A @ B] :
? [I: nat] :
( ( Uu3
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ I ) @ ( nth @ B @ Ys2 @ I ) ) )
& ( ord_less @ nat @ I @ ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) ) ) ) ).
% set_zip
thf(fact_7433_min__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_min @ extended_enat @ ( zero_zero @ extended_enat ) @ Q2 )
= ( zero_zero @ extended_enat ) ) ).
% min_enat_simps(3)
thf(fact_7434_min__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_min @ extended_enat @ Q2 @ ( zero_zero @ extended_enat ) )
= ( zero_zero @ extended_enat ) ) ).
% min_enat_simps(2)
thf(fact_7435_Min__singleton,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] :
( ( lattic643756798350308766er_Min @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Min_singleton
thf(fact_7436_zip__Nil,axiom,
! [B: $tType,A: $tType,Ys2: list @ B] :
( ( zip @ A @ B @ ( nil @ A ) @ Ys2 )
= ( nil @ ( product_prod @ A @ B ) ) ) ).
% zip_Nil
thf(fact_7437_Nil__eq__zip__iff,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( nil @ ( product_prod @ A @ B ) )
= ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( ( Xs2
= ( nil @ A ) )
| ( Ys2
= ( nil @ B ) ) ) ) ).
% Nil_eq_zip_iff
thf(fact_7438_zip__eq__Nil__iff,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( zip @ A @ B @ Xs2 @ Ys2 )
= ( nil @ ( product_prod @ A @ B ) ) )
= ( ( Xs2
= ( nil @ A ) )
| ( Ys2
= ( nil @ B ) ) ) ) ).
% zip_eq_Nil_iff
thf(fact_7439_Min_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ X @ X6 ) ) ) ) ) ) ) ).
% Min.bounded_iff
thf(fact_7440_Min__gr__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less @ A @ X @ X6 ) ) ) ) ) ) ) ).
% Min_gr_iff
thf(fact_7441_zip__replicate,axiom,
! [A: $tType,B: $tType,I3: nat,X: A,J: nat,Y: B] :
( ( zip @ A @ B @ ( replicate @ A @ I3 @ X ) @ ( replicate @ B @ J @ Y ) )
= ( replicate @ ( product_prod @ A @ B ) @ ( ord_min @ nat @ I3 @ J ) @ ( product_Pair @ A @ B @ X @ Y ) ) ) ).
% zip_replicate
thf(fact_7442_zip__Cons__Cons,axiom,
! [A: $tType,B: $tType,X: A,Xs2: list @ A,Y: B,Ys2: list @ B] :
( ( zip @ A @ B @ ( cons @ A @ X @ Xs2 ) @ ( cons @ B @ Y @ Ys2 ) )
= ( cons @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% zip_Cons_Cons
thf(fact_7443_Min__const,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ B,C2: A] :
( ( finite_finite @ B @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798350308766er_Min @ A
@ ( image @ B @ A
@ ^ [Uu3: B] : C2
@ A3 ) )
= C2 ) ) ) ) ).
% Min_const
thf(fact_7444_zip__append,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Us: list @ B,Ys2: list @ A,Vs: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Us ) )
=> ( ( zip @ A @ B @ ( append @ A @ Xs2 @ Ys2 ) @ ( append @ B @ Us @ Vs ) )
= ( append @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Us ) @ ( zip @ A @ B @ Ys2 @ Vs ) ) ) ) ).
% zip_append
thf(fact_7445_length__zip,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( size_size @ ( list @ ( product_prod @ A @ B ) ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) ).
% length_zip
thf(fact_7446_Min__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) ) ) ) ) ) ).
% Min_insert
thf(fact_7447_minus__Max__eq__Min,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( uminus_uminus @ A @ ( lattic643756798349783984er_Max @ A @ S3 ) )
= ( lattic643756798350308766er_Min @ A @ ( image @ A @ A @ ( uminus_uminus @ A ) @ S3 ) ) ) ) ) ) ).
% minus_Max_eq_Min
thf(fact_7448_minus__Min__eq__Max,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( uminus_uminus @ A @ ( lattic643756798350308766er_Min @ A @ S3 ) )
= ( lattic643756798349783984er_Max @ A @ ( image @ A @ A @ ( uminus_uminus @ A ) @ S3 ) ) ) ) ) ) ).
% minus_Min_eq_Max
thf(fact_7449_nth__zip,axiom,
! [A: $tType,B: $tType,I3: nat,Xs2: list @ A,Ys2: list @ B] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( nth @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ I3 )
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ B @ Ys2 @ I3 ) ) ) ) ) ).
% nth_zip
thf(fact_7450_Min__in,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ A3 ) ) ) ) ).
% Min_in
thf(fact_7451_set__zip__rightD,axiom,
! [A: $tType,B: $tType,X: A,Y: B,Xs2: list @ A,Ys2: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
=> ( member @ B @ Y @ ( set2 @ B @ Ys2 ) ) ) ).
% set_zip_rightD
thf(fact_7452_set__zip__leftD,axiom,
! [B: $tType,A: $tType,X: A,Y: B,Xs2: list @ A,Ys2: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_zip_leftD
thf(fact_7453_in__set__zipE,axiom,
! [A: $tType,B: $tType,X: A,Y: B,Xs2: list @ A,Ys2: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
=> ~ ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ B @ Y @ ( set2 @ B @ Ys2 ) ) ) ) ).
% in_set_zipE
thf(fact_7454_zip__same,axiom,
! [A: $tType,A2: A,B2: A,Xs2: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ ( set2 @ ( product_prod @ A @ A ) @ ( zip @ A @ A @ Xs2 @ Xs2 ) ) )
= ( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
& ( A2 = B2 ) ) ) ).
% zip_same
thf(fact_7455_zip__update,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,I3: nat,X: A,Ys2: list @ B,Y: B] :
( ( zip @ A @ B @ ( list_update @ A @ Xs2 @ I3 @ X ) @ ( list_update @ B @ Ys2 @ I3 @ Y ) )
= ( list_update @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ I3 @ ( product_Pair @ A @ B @ X @ Y ) ) ) ).
% zip_update
thf(fact_7456_take__zip,axiom,
! [A: $tType,B: $tType,N: nat,Xs2: list @ A,Ys2: list @ B] :
( ( take @ ( product_prod @ A @ B ) @ N @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( zip @ A @ B @ ( take @ A @ N @ Xs2 ) @ ( take @ B @ N @ Ys2 ) ) ) ).
% take_zip
thf(fact_7457_drop__zip,axiom,
! [A: $tType,B: $tType,N: nat,Xs2: list @ A,Ys2: list @ B] :
( ( drop @ ( product_prod @ A @ B ) @ N @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( zip @ A @ B @ ( drop @ A @ N @ Xs2 ) @ ( drop @ B @ N @ Ys2 ) ) ) ).
% drop_zip
thf(fact_7458_zip_Osimps_I1_J,axiom,
! [B: $tType,A: $tType,Xs2: list @ A] :
( ( zip @ A @ B @ Xs2 @ ( nil @ B ) )
= ( nil @ ( product_prod @ A @ B ) ) ) ).
% zip.simps(1)
thf(fact_7459_distinct__zipI1,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% distinct_zipI1
thf(fact_7460_distinct__zipI2,axiom,
! [B: $tType,A: $tType,Ys2: list @ A,Xs2: list @ B] :
( ( distinct @ A @ Ys2 )
=> ( distinct @ ( product_prod @ B @ A ) @ ( zip @ B @ A @ Xs2 @ Ys2 ) ) ) ).
% distinct_zipI2
thf(fact_7461_hd__zip,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( Ys2
!= ( nil @ B ) )
=> ( ( hd @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( product_Pair @ A @ B @ ( hd @ A @ Xs2 ) @ ( hd @ B @ Ys2 ) ) ) ) ) ).
% hd_zip
thf(fact_7462_update__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B,I3: nat,Xy: product_prod @ A @ B] :
( ( list_update @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ I3 @ Xy )
= ( zip @ A @ B @ ( list_update @ A @ Xs2 @ I3 @ ( product_fst @ A @ B @ Xy ) ) @ ( list_update @ B @ Ys2 @ I3 @ ( product_snd @ A @ B @ Xy ) ) ) ) ).
% update_zip
thf(fact_7463_zip__obtain__same__length,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,P: ( list @ ( product_prod @ A @ B ) ) > $o] :
( ! [Zs: list @ A,Ws2: list @ B,N2: nat] :
( ( ( size_size @ ( list @ A ) @ Zs )
= ( size_size @ ( list @ B ) @ Ws2 ) )
=> ( ( N2
= ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) )
=> ( ( Zs
= ( take @ A @ N2 @ Xs2 ) )
=> ( ( Ws2
= ( take @ B @ N2 @ Ys2 ) )
=> ( P @ ( zip @ A @ B @ Zs @ Ws2 ) ) ) ) ) )
=> ( P @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% zip_obtain_same_length
thf(fact_7464_Min_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( ord_less_eq @ A @ X @ A6 ) )
=> ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) ) ) ) ) ) ).
% Min.boundedI
thf(fact_7465_Min_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) )
=> ! [A15: A] :
( ( member @ A @ A15 @ A3 )
=> ( ord_less_eq @ A @ X @ A15 ) ) ) ) ) ) ).
% Min.boundedE
thf(fact_7466_eq__Min__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,M: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( M
= ( lattic643756798350308766er_Min @ A @ A3 ) )
= ( ( member @ A @ M @ A3 )
& ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ M @ X6 ) ) ) ) ) ) ) ).
% eq_Min_iff
thf(fact_7467_Min__le__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ X )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less_eq @ A @ X6 @ X ) ) ) ) ) ) ) ).
% Min_le_iff
thf(fact_7468_Min__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,M: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( lattic643756798350308766er_Min @ A @ A3 )
= M )
= ( ( member @ A @ M @ A3 )
& ! [X6: A] :
( ( member @ A @ X6 @ A3 )
=> ( ord_less_eq @ A @ M @ X6 ) ) ) ) ) ) ) ).
% Min_eq_iff
thf(fact_7469_Min__less__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ X )
= ( ? [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ord_less @ A @ X6 @ X ) ) ) ) ) ) ) ).
% Min_less_iff
thf(fact_7470_zip__eq__ConsE,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,Xy: product_prod @ A @ B,Xys2: list @ ( product_prod @ A @ B )] :
( ( ( zip @ A @ B @ Xs2 @ Ys2 )
= ( cons @ ( product_prod @ A @ B ) @ Xy @ Xys2 ) )
=> ~ ! [X5: A,Xs4: list @ A] :
( ( Xs2
= ( cons @ A @ X5 @ Xs4 ) )
=> ! [Y5: B,Ys5: list @ B] :
( ( Ys2
= ( cons @ B @ Y5 @ Ys5 ) )
=> ( ( Xy
= ( product_Pair @ A @ B @ X5 @ Y5 ) )
=> ( Xys2
!= ( zip @ A @ B @ Xs4 @ Ys5 ) ) ) ) ) ) ).
% zip_eq_ConsE
thf(fact_7471_Min__Inf,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A3 )
= ( complete_Inf_Inf @ A @ A3 ) ) ) ) ) ).
% Min_Inf
thf(fact_7472_cInf__eq__Min,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X9: set @ A] :
( ( finite_finite @ A @ X9 )
=> ( ( X9
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( complete_Inf_Inf @ A @ X9 )
= ( lattic643756798350308766er_Min @ A @ X9 ) ) ) ) ) ).
% cInf_eq_Min
thf(fact_7473_Min_Oinfinite,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ~ ( finite_finite @ A @ A3 )
=> ( ( lattic643756798350308766er_Min @ A @ A3 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Min.infinite
thf(fact_7474_list__eq__iff__zip__eq,axiom,
! [A: $tType] :
( ( ^ [Y3: list @ A,Z: list @ A] : ( Y3 = Z ) )
= ( ^ [Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
& ! [X6: product_prod @ A @ A] :
( ( member @ ( product_prod @ A @ A ) @ X6 @ ( set2 @ ( product_prod @ A @ A ) @ ( zip @ A @ A @ Xs @ Ys ) ) )
=> ( product_case_prod @ A @ A @ $o
@ ^ [Y3: A,Z: A] : ( Y3 = Z )
@ X6 ) ) ) ) ) ).
% list_eq_iff_zip_eq
thf(fact_7475_in__set__impl__in__set__zip1,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ! [Y5: B] :
~ ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y5 ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ) ) ).
% in_set_impl_in_set_zip1
thf(fact_7476_in__set__impl__in__set__zip2,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,Y: B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( member @ B @ Y @ ( set2 @ B @ Ys2 ) )
=> ~ ! [X5: A] :
~ ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X5 @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ) ) ).
% in_set_impl_in_set_zip2
thf(fact_7477_Min_Osubset__imp,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ B3 ) @ ( lattic643756798350308766er_Min @ A @ A3 ) ) ) ) ) ) ).
% Min.subset_imp
thf(fact_7478_Min__antimono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M7: set @ A,N5: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ M7 @ N5 )
=> ( ( M7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ N5 ) @ ( lattic643756798350308766er_Min @ A @ M7 ) ) ) ) ) ) ).
% Min_antimono
thf(fact_7479_hom__Min__commute,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [H2: A > A,N5: set @ A] :
( ! [X5: A,Y5: A] :
( ( H2 @ ( ord_min @ A @ X5 @ Y5 ) )
= ( ord_min @ A @ ( H2 @ X5 ) @ ( H2 @ Y5 ) ) )
=> ( ( finite_finite @ A @ N5 )
=> ( ( N5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H2 @ ( lattic643756798350308766er_Min @ A @ N5 ) )
= ( lattic643756798350308766er_Min @ A @ ( image @ A @ A @ H2 @ N5 ) ) ) ) ) ) ) ).
% hom_Min_commute
thf(fact_7480_Min_Osubset,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B3 @ A3 )
=> ( ( ord_min @ A @ ( lattic643756798350308766er_Min @ A @ B3 ) @ ( lattic643756798350308766er_Min @ A @ A3 ) )
= ( lattic643756798350308766er_Min @ A @ A3 ) ) ) ) ) ) ).
% Min.subset
thf(fact_7481_Min_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ~ ( member @ A @ X @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ A3 ) ) ) ) ) ) ) ).
% Min.insert_not_elem
thf(fact_7482_Min_Oclosed,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A,Y5: A] : ( member @ A @ ( ord_min @ A @ X5 @ Y5 ) @ ( insert @ A @ X5 @ ( insert @ A @ Y5 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ A3 ) ) ) ) ) ).
% Min.closed
thf(fact_7483_mono__Min__commute,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [F2: A > B,A3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( F2 @ ( lattic643756798350308766er_Min @ A @ A3 ) )
= ( lattic643756798350308766er_Min @ B @ ( image @ A @ B @ F2 @ A3 ) ) ) ) ) ) ) ).
% mono_Min_commute
thf(fact_7484_Min_Ounion,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,B3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B3 )
=> ( ( B3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( sup_sup @ ( set @ A ) @ A3 @ B3 ) )
= ( ord_min @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ ( lattic643756798350308766er_Min @ A @ B3 ) ) ) ) ) ) ) ) ).
% Min.union
thf(fact_7485_Min__add__commute,axiom,
! [B: $tType,A: $tType] :
( ( linord4140545234300271783up_add @ A )
=> ! [S3: set @ B,F2: B > A,K: A] :
( ( finite_finite @ B @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798350308766er_Min @ A
@ ( image @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ ( F2 @ X6 ) @ K )
@ S3 ) )
= ( plus_plus @ A @ ( lattic643756798350308766er_Min @ A @ ( image @ B @ A @ F2 @ S3 ) ) @ K ) ) ) ) ) ).
% Min_add_commute
thf(fact_7486_concat__eq__concat__iff,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),Ys2: list @ ( list @ A )] :
( ! [X5: product_prod @ ( list @ A ) @ ( list @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ X5 @ ( set2 @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( zip @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) ) )
=> ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Y6: list @ A,Z3: list @ A] :
( ( size_size @ ( list @ A ) @ Y6 )
= ( size_size @ ( list @ A ) @ Z3 ) )
@ X5 ) )
=> ( ( ( size_size @ ( list @ ( list @ A ) ) @ Xs2 )
= ( size_size @ ( list @ ( list @ A ) ) @ Ys2 ) )
=> ( ( ( concat @ A @ Xs2 )
= ( concat @ A @ Ys2 ) )
= ( Xs2 = Ys2 ) ) ) ) ).
% concat_eq_concat_iff
thf(fact_7487_concat__injective,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),Ys2: list @ ( list @ A )] :
( ( ( concat @ A @ Xs2 )
= ( concat @ A @ Ys2 ) )
=> ( ( ( size_size @ ( list @ ( list @ A ) ) @ Xs2 )
= ( size_size @ ( list @ ( list @ A ) ) @ Ys2 ) )
=> ( ! [X5: product_prod @ ( list @ A ) @ ( list @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ X5 @ ( set2 @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( zip @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys2 ) ) )
=> ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Y6: list @ A,Z3: list @ A] :
( ( size_size @ ( list @ A ) @ Y6 )
= ( size_size @ ( list @ A ) @ Z3 ) )
@ X5 ) )
=> ( Xs2 = Ys2 ) ) ) ) ).
% concat_injective
thf(fact_7488_Min_Oremove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( member @ A @ X @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A3 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A3 )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Min.remove
thf(fact_7489_Min_Oinsert__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,X: A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert @ A @ X @ A3 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert @ A @ X @ A3 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Min.insert_remove
thf(fact_7490_zip__append1,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ B] :
( ( zip @ A @ B @ ( append @ A @ Xs2 @ Ys2 ) @ Zs2 )
= ( append @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ ( take @ B @ ( size_size @ ( list @ A ) @ Xs2 ) @ Zs2 ) ) @ ( zip @ A @ B @ Ys2 @ ( drop @ B @ ( size_size @ ( list @ A ) @ Xs2 ) @ Zs2 ) ) ) ) ).
% zip_append1
thf(fact_7491_zip__append2,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ B] :
( ( zip @ A @ B @ Xs2 @ ( append @ B @ Ys2 @ Zs2 ) )
= ( append @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys2 ) @ Xs2 ) @ Ys2 ) @ ( zip @ A @ B @ ( drop @ A @ ( size_size @ ( list @ B ) @ Ys2 ) @ Xs2 ) @ Zs2 ) ) ) ).
% zip_append2
thf(fact_7492_in__set__zip,axiom,
! [B: $tType,A: $tType,P2: product_prod @ A @ B,Xs2: list @ A,Ys2: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ P2 @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
= ( ? [N3: nat] :
( ( ( nth @ A @ Xs2 @ N3 )
= ( product_fst @ A @ B @ P2 ) )
& ( ( nth @ B @ Ys2 @ N3 )
= ( product_snd @ A @ B @ P2 ) )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ B ) @ Ys2 ) ) ) ) ) ).
% in_set_zip
thf(fact_7493_sorted__list__of__set__nonempty,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( linord4507533701916653071of_set @ A @ A3 )
= ( cons @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ ( linord4507533701916653071of_set @ A @ ( minus_minus @ ( set @ A ) @ A3 @ ( insert @ A @ ( lattic643756798350308766er_Min @ A @ A3 ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% sorted_list_of_set_nonempty
thf(fact_7494_card__Min__le__sum,axiom,
! [A: $tType,A3: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A3 )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ ( finite_card @ A @ A3 ) @ ( lattic643756798350308766er_Min @ nat @ ( image @ A @ nat @ F2 @ A3 ) ) ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A3 ) ) ) ).
% card_Min_le_sum
thf(fact_7495_listrel__iff__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ Ys2 ) @ ( listrel @ A @ B @ R2 ) )
= ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
& ! [X6: product_prod @ A @ B] :
( ( member @ ( product_prod @ A @ B ) @ X6 @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
=> ( product_case_prod @ A @ B @ $o
@ ^ [Y6: A,Z3: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ Y6 @ Z3 ) @ R2 )
@ X6 ) ) ) ) ).
% listrel_iff_zip
thf(fact_7496_zip__Cons1,axiom,
! [A: $tType,B: $tType,X: A,Xs2: list @ A,Ys2: list @ B] :
( ( zip @ A @ B @ ( cons @ A @ X @ Xs2 ) @ Ys2 )
= ( case_list @ ( list @ ( product_prod @ A @ B ) ) @ B @ ( nil @ ( product_prod @ A @ B ) )
@ ^ [Y6: B,Ys: list @ B] : ( cons @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y6 ) @ ( zip @ A @ B @ Xs2 @ Ys ) )
@ Ys2 ) ) ).
% zip_Cons1
thf(fact_7497_inf__enat__def,axiom,
( ( inf_inf @ extended_enat )
= ( ord_min @ extended_enat ) ) ).
% inf_enat_def
thf(fact_7498_listrel__Nil2,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ ( nil @ B ) ) @ ( listrel @ A @ B @ R2 ) )
=> ( Xs2
= ( nil @ A ) ) ) ).
% listrel_Nil2
thf(fact_7499_listrel__Nil1,axiom,
! [A: $tType,B: $tType,Xs2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( nil @ A ) @ Xs2 ) @ ( listrel @ A @ B @ R2 ) )
=> ( Xs2
= ( nil @ B ) ) ) ).
% listrel_Nil1
thf(fact_7500_listrel_ONil,axiom,
! [B: $tType,A: $tType,R2: set @ ( product_prod @ A @ B )] : ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( nil @ A ) @ ( nil @ B ) ) @ ( listrel @ A @ B @ R2 ) ) ).
% listrel.Nil
thf(fact_7501_listrel__eq__len,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ Ys2 ) @ ( listrel @ A @ B @ R2 ) )
=> ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) ) ) ).
% listrel_eq_len
thf(fact_7502_list_Osimps_I4_J,axiom,
! [A: $tType,B: $tType,F1: B,F22: A > ( list @ A ) > B] :
( ( case_list @ B @ A @ F1 @ F22 @ ( nil @ A ) )
= F1 ) ).
% list.simps(4)
thf(fact_7503_list_Ocase__distrib,axiom,
! [B: $tType,C: $tType,A: $tType,H2: B > C,F1: B,F22: A > ( list @ A ) > B,List: list @ A] :
( ( H2 @ ( case_list @ B @ A @ F1 @ F22 @ List ) )
= ( case_list @ C @ A @ ( H2 @ F1 )
@ ^ [X18: A,X24: list @ A] : ( H2 @ ( F22 @ X18 @ X24 ) )
@ List ) ) ).
% list.case_distrib
thf(fact_7504_list_Osimps_I5_J,axiom,
! [B: $tType,A: $tType,F1: B,F22: A > ( list @ A ) > B,X21: A,X22: list @ A] :
( ( case_list @ B @ A @ F1 @ F22 @ ( cons @ A @ X21 @ X22 ) )
= ( F22 @ X21 @ X22 ) ) ).
% list.simps(5)
thf(fact_7505_listrel__mono,axiom,
! [B: $tType,A: $tType,R2: set @ ( product_prod @ A @ B ),S: set @ ( product_prod @ A @ B )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ B ) ) @ R2 @ S )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) ) @ ( listrel @ A @ B @ R2 ) @ ( listrel @ A @ B @ S ) ) ) ).
% listrel_mono
thf(fact_7506_listrel_OCons,axiom,
! [B: $tType,A: $tType,X: A,Y: B,R2: set @ ( product_prod @ A @ B ),Xs2: list @ A,Ys2: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ R2 )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ Ys2 ) @ ( listrel @ A @ B @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( cons @ A @ X @ Xs2 ) @ ( cons @ B @ Y @ Ys2 ) ) @ ( listrel @ A @ B @ R2 ) ) ) ) ).
% listrel.Cons
thf(fact_7507_listrel__Cons1,axiom,
! [B: $tType,A: $tType,Y: A,Ys2: list @ A,Xs2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ ( cons @ A @ Y @ Ys2 ) @ Xs2 ) @ ( listrel @ A @ B @ R2 ) )
=> ~ ! [Y5: B,Ys4: list @ B] :
( ( Xs2
= ( cons @ B @ Y5 @ Ys4 ) )
=> ( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ Y @ Y5 ) @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Ys2 @ Ys4 ) @ ( listrel @ A @ B @ R2 ) ) ) ) ) ).
% listrel_Cons1
thf(fact_7508_listrel__Cons2,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Y: B,Ys2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ ( cons @ B @ Y @ Ys2 ) ) @ ( listrel @ A @ B @ R2 ) )
=> ~ ! [X5: A,Xs3: list @ A] :
( ( Xs2
= ( cons @ A @ X5 @ Xs3 ) )
=> ( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X5 @ Y ) @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs3 @ Ys2 ) @ ( listrel @ A @ B @ R2 ) ) ) ) ) ).
% listrel_Cons2
thf(fact_7509_remdups__adj__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( remdups_adj @ A @ ( cons @ A @ X @ Xs2 ) )
= ( case_list @ ( list @ A ) @ A @ ( cons @ A @ X @ ( nil @ A ) )
@ ^ [Y6: A,Xs: list @ A] : ( if @ ( list @ A ) @ ( X = Y6 ) @ ( cons @ A @ Y6 @ Xs ) @ ( cons @ A @ X @ ( cons @ A @ Y6 @ Xs ) ) )
@ ( remdups_adj @ A @ Xs2 ) ) ) ).
% remdups_adj_Cons
thf(fact_7510_listrel_Osimps,axiom,
! [B: $tType,A: $tType,A1: list @ A,A22: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ A1 @ A22 ) @ ( listrel @ A @ B @ R2 ) )
= ( ( ( A1
= ( nil @ A ) )
& ( A22
= ( nil @ B ) ) )
| ? [X6: A,Y6: B,Xs: list @ A,Ys: list @ B] :
( ( A1
= ( cons @ A @ X6 @ Xs ) )
& ( A22
= ( cons @ B @ Y6 @ Ys ) )
& ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 @ Y6 ) @ R2 )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs @ Ys ) @ ( listrel @ A @ B @ R2 ) ) ) ) ) ).
% listrel.simps
thf(fact_7511_listrel_Ocases,axiom,
! [B: $tType,A: $tType,A1: list @ A,A22: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ A1 @ A22 ) @ ( listrel @ A @ B @ R2 ) )
=> ( ( ( A1
= ( nil @ A ) )
=> ( A22
!= ( nil @ B ) ) )
=> ~ ! [X5: A,Y5: B,Xs3: list @ A] :
( ( A1
= ( cons @ A @ X5 @ Xs3 ) )
=> ! [Ys4: list @ B] :
( ( A22
= ( cons @ B @ Y5 @ Ys4 ) )
=> ( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X5 @ Y5 ) @ R2 )
=> ~ ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs3 @ Ys4 ) @ ( listrel @ A @ B @ R2 ) ) ) ) ) ) ) ).
% listrel.cases
thf(fact_7512_listrel__iff__nth,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ Ys2 ) @ ( listrel @ A @ B @ R2 ) )
= ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
& ! [N3: nat] :
( ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ N3 ) @ ( nth @ B @ Ys2 @ N3 ) ) @ R2 ) ) ) ) ).
% listrel_iff_nth
thf(fact_7513_zip__Cons,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Y: B,Ys2: list @ B] :
( ( zip @ A @ B @ Xs2 @ ( cons @ B @ Y @ Ys2 ) )
= ( case_list @ ( list @ ( product_prod @ A @ B ) ) @ A @ ( nil @ ( product_prod @ A @ B ) )
@ ^ [Z3: A,Zs3: list @ A] : ( cons @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ Z3 @ Y ) @ ( zip @ A @ B @ Zs3 @ Ys2 ) )
@ Xs2 ) ) ).
% zip_Cons
thf(fact_7514_min__list_Osimps,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Xs2: list @ A] :
( ( min_list @ A @ ( cons @ A @ X @ Xs2 ) )
= ( case_list @ A @ A @ X
@ ^ [A4: A,List2: list @ A] : ( ord_min @ A @ X @ ( min_list @ A @ Xs2 ) )
@ Xs2 ) ) ) ).
% min_list.simps
thf(fact_7515_f__arg__min__list__f,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [Xs2: list @ A,F2: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( F2 @ ( arg_min_list @ A @ B @ F2 @ Xs2 ) )
= ( lattic643756798350308766er_Min @ B @ ( image @ A @ B @ F2 @ ( set2 @ A @ Xs2 ) ) ) ) ) ) ).
% f_arg_min_list_f
thf(fact_7516_list_Odisc__eq__case_I1_J,axiom,
! [A: $tType,List: list @ A] :
( ( List
= ( nil @ A ) )
= ( case_list @ $o @ A @ $true
@ ^ [Uu3: A,Uv3: list @ A] : $false
@ List ) ) ).
% list.disc_eq_case(1)
thf(fact_7517_list_Odisc__eq__case_I2_J,axiom,
! [A: $tType,List: list @ A] :
( ( List
!= ( nil @ A ) )
= ( case_list @ $o @ A @ $false
@ ^ [Uu3: A,Uv3: list @ A] : $true
@ List ) ) ).
% list.disc_eq_case(2)
thf(fact_7518_arg__min__list_Osimps_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,X: A] :
( ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ X @ ( nil @ A ) ) )
= X ) ) ).
% arg_min_list.simps(1)
thf(fact_7519_arg__min__list__in,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [Xs2: list @ A,F2: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( member @ A @ ( arg_min_list @ A @ B @ F2 @ Xs2 ) @ ( set2 @ A @ Xs2 ) ) ) ) ).
% arg_min_list_in
thf(fact_7520_arg__min__list_Osimps_I2_J,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,X: A,Y: A,Zs2: list @ A] :
( ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ X @ ( cons @ A @ Y @ Zs2 ) ) )
= ( if @ A @ ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ Y @ Zs2 ) ) ) ) @ X @ ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ Y @ Zs2 ) ) ) ) ) ).
% arg_min_list.simps(2)
thf(fact_7521_min__list__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( min_list @ A @ Xs2 )
= ( lattic643756798350308766er_Min @ A @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% min_list_Min
thf(fact_7522_min__list_Oelims,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: list @ A,Y: A] :
( ( ( min_list @ A @ X )
= Y )
=> ( ! [X5: A,Xs3: list @ A] :
( ( X
= ( cons @ A @ X5 @ Xs3 ) )
=> ( Y
!= ( case_list @ A @ A @ X5
@ ^ [A4: A,List2: list @ A] : ( ord_min @ A @ X5 @ ( min_list @ A @ Xs3 ) )
@ Xs3 ) ) )
=> ~ ( ( X
= ( nil @ A ) )
=> ( Y
!= ( undefined @ A ) ) ) ) ) ) ).
% min_list.elims
thf(fact_7523_has__derivative__power__int,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,X: C,F7: C > A,S3: set @ C,N: int] :
( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( ( has_derivative @ C @ A @ F2 @ F7 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( has_derivative @ C @ A
@ ^ [X6: C] : ( power_int @ A @ ( F2 @ X6 ) @ N )
@ ^ [H: C] : ( times_times @ A @ ( F7 @ H ) @ ( times_times @ A @ ( ring_1_of_int @ A @ N ) @ ( power_int @ A @ ( F2 @ X ) @ ( minus_minus @ int @ N @ ( one_one @ int ) ) ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ).
% has_derivative_power_int
thf(fact_7524_power__int__mult__distrib__numeral2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,W: num,M: int] :
( ( power_int @ A @ ( times_times @ A @ X @ ( numeral_numeral @ A @ W ) ) @ M )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ ( numeral_numeral @ A @ W ) @ M ) ) ) ) ).
% power_int_mult_distrib_numeral2
thf(fact_7525_power__int__mult__distrib__numeral1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [W: num,Y: A,M: int] :
( ( power_int @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W ) @ Y ) @ M )
= ( times_times @ A @ ( power_int @ A @ ( numeral_numeral @ A @ W ) @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_mult_distrib_numeral1
thf(fact_7526_power__int__eq__0__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N: int] :
( ( ( power_int @ A @ X @ N )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( N
!= ( zero_zero @ int ) ) ) ) ) ).
% power_int_eq_0_iff
thf(fact_7527_power__int__0__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( M
!= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( zero_zero @ A ) ) ) ) ).
% power_int_0_left
thf(fact_7528_power__int__0__right,axiom,
! [B: $tType] :
( ( ( inverse @ B )
& ( power @ B ) )
=> ! [X: B] :
( ( power_int @ B @ X @ ( zero_zero @ int ) )
= ( one_one @ B ) ) ) ).
% power_int_0_right
thf(fact_7529_power__int__of__nat,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ! [X: A,N: nat] :
( ( power_int @ A @ X @ ( semiring_1_of_nat @ int @ N ) )
= ( power_power @ A @ X @ N ) ) ) ).
% power_int_of_nat
thf(fact_7530_power__int__mult__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N: num] :
( ( power_int @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N ) )
= ( power_int @ A @ X @ ( numeral_numeral @ int @ ( times_times @ num @ M @ N ) ) ) ) ) ).
% power_int_mult_numeral
thf(fact_7531_power__int__minus__one__mult__self,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) )
= ( one_one @ A ) ) ) ).
% power_int_minus_one_mult_self
thf(fact_7532_power__int__minus__one__mult__self_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int,B2: A] :
( ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ B2 ) )
= B2 ) ) ).
% power_int_minus_one_mult_self'
thf(fact_7533_power__int__numeral,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ! [X: A,N: num] :
( ( power_int @ A @ X @ ( numeral_numeral @ int @ N ) )
= ( power_power @ A @ X @ ( numeral_numeral @ nat @ N ) ) ) ) ).
% power_int_numeral
thf(fact_7534_of__real__eq__numeral__power__int__cancel__iff,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [Y: real,X: num,N: int] :
( ( ( real_Vector_of_real @ A @ Y )
= ( power_int @ A @ ( numeral_numeral @ A @ X ) @ N ) )
= ( Y
= ( power_int @ real @ ( numeral_numeral @ real @ X ) @ N ) ) ) ) ).
% of_real_eq_numeral_power_int_cancel_iff
thf(fact_7535_numeral__power__int__eq__of__real__cancel__iff,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [X: num,N: int,Y: real] :
( ( ( power_int @ A @ ( numeral_numeral @ A @ X ) @ N )
= ( real_Vector_of_real @ A @ Y ) )
= ( ( power_int @ real @ ( numeral_numeral @ real @ X ) @ N )
= Y ) ) ) ).
% numeral_power_int_eq_of_real_cancel_iff
thf(fact_7536_power__int__add__numeral2,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N: num,B2: A] :
( ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ N ) ) @ B2 ) )
= ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ ( plus_plus @ num @ M @ N ) ) ) @ B2 ) ) ) ).
% power_int_add_numeral2
thf(fact_7537_power__int__add__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N: num] :
( ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( power_int @ A @ X @ ( numeral_numeral @ int @ N ) ) )
= ( power_int @ A @ X @ ( numeral_numeral @ int @ ( plus_plus @ num @ M @ N ) ) ) ) ) ).
% power_int_add_numeral
thf(fact_7538_power__int__mono__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ( ord_less_eq @ A @ ( power_int @ A @ A2 @ N ) @ ( power_int @ A @ B2 @ N ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ) ).
% power_int_mono_iff
thf(fact_7539_power__int__minus__left__even,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [N: int,A2: A] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( power_int @ A @ A2 @ N ) ) ) ) ).
% power_int_minus_left_even
thf(fact_7540_power__int__minus__left__odd,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [N: int,A2: A] :
( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( uminus_uminus @ A @ ( power_int @ A @ A2 @ N ) ) ) ) ) ).
% power_int_minus_left_odd
thf(fact_7541_power__int__numeral__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [M: num,N: num] :
( ( power_int @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N ) ) )
= ( inverse_inverse @ A @ ( numeral_numeral @ A @ ( pow @ M @ N ) ) ) ) ) ).
% power_int_numeral_neg_numeral
thf(fact_7542_zero__le__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_int @ A @ X @ N ) ) ) ) ).
% zero_le_power_int
thf(fact_7543_continuous__on__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [S: set @ A,F2: A > B,N: int] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ S )
=> ( ( F2 @ X5 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X6: A] : ( power_int @ B @ ( F2 @ X6 ) @ N ) ) ) ) ) ).
% continuous_on_power_int
thf(fact_7544_power__int__0__left__If,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( ( M
= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( one_one @ A ) ) )
& ( ( M
!= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( zero_zero @ A ) ) ) ) ) ).
% power_int_0_left_If
thf(fact_7545_power__int__not__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( N
= ( zero_zero @ int ) ) )
=> ( ( power_int @ A @ X @ N )
!= ( zero_zero @ A ) ) ) ) ).
% power_int_not_zero
thf(fact_7546_power__int__commutes,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N: int] :
( ( times_times @ A @ ( power_int @ A @ X @ N ) @ X )
= ( times_times @ A @ X @ ( power_int @ A @ X @ N ) ) ) ) ).
% power_int_commutes
thf(fact_7547_power__int__mult__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,M: int] :
( ( power_int @ A @ ( times_times @ A @ X @ Y ) @ M )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_mult_distrib
thf(fact_7548_power__int__mult,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int,N: int] :
( ( power_int @ A @ X @ ( times_times @ int @ M @ N ) )
= ( power_int @ A @ ( power_int @ A @ X @ M ) @ N ) ) ) ).
% power_int_mult
thf(fact_7549_power__int__divide__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,M: int] :
( ( power_int @ A @ ( divide_divide @ A @ X @ Y ) @ M )
= ( divide_divide @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_divide_distrib
thf(fact_7550_zero__less__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N: int] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( power_int @ A @ X @ N ) ) ) ) ).
% zero_less_power_int
thf(fact_7551_power__int__one__over,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N: int] :
( ( power_int @ A @ ( divide_divide @ A @ ( one_one @ A ) @ X ) @ N )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_int @ A @ X @ N ) ) ) ) ).
% power_int_one_over
thf(fact_7552_power__int__strict__increasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N: int,N5: int,A2: A] :
( ( ord_less @ int @ N @ N5 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N ) @ ( power_int @ A @ A2 @ N5 ) ) ) ) ) ).
% power_int_strict_increasing
thf(fact_7553_power__int__diff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,M: int,N: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M != N ) )
=> ( ( power_int @ A @ X @ ( minus_minus @ int @ M @ N ) )
= ( divide_divide @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N ) ) ) ) ) ).
% power_int_diff
thf(fact_7554_tendsto__power__int,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F3: filter @ B,N: int] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F3 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X6: B] : ( power_int @ A @ ( F2 @ X6 ) @ N )
@ ( topolo7230453075368039082e_nhds @ A @ ( power_int @ A @ A2 @ N ) )
@ F3 ) ) ) ) ).
% tendsto_power_int
thf(fact_7555_continuous__at__within__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B,N: int] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X6: A] : ( power_int @ B @ ( F2 @ X6 ) @ N ) ) ) ) ) ).
% continuous_at_within_power_int
thf(fact_7556_hd__def,axiom,
! [A: $tType] :
( ( hd @ A )
= ( case_list @ A @ A @ ( undefined @ A )
@ ^ [X213: A,X223: list @ A] : X213 ) ) ).
% hd_def
thf(fact_7557_differentiable__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,N: int] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X6: A] : ( power_int @ B @ ( F2 @ X6 ) @ N )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% differentiable_power_int
thf(fact_7558_continuous__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [F3: filter @ A,F2: A > B,N: int] :
( ( topolo3448309680560233919inuous @ A @ B @ F3 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F3
@ ^ [X6: A] : X6 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F3
@ ^ [X6: A] : ( power_int @ B @ ( F2 @ X6 ) @ N ) ) ) ) ) ).
% continuous_power_int
thf(fact_7559_power__int__strict__decreasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N: int,N5: int,A2: A] :
( ( ord_less @ int @ N @ N5 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N5 ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ) ).
% power_int_strict_decreasing
thf(fact_7560_power__int__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,N: int] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( power_int @ A @ X @ N ) @ ( power_int @ A @ Y @ N ) ) ) ) ) ) ).
% power_int_mono
thf(fact_7561_power__int__strict__antimono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N: int] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ N @ ( zero_zero @ int ) )
=> ( ord_less @ A @ ( power_int @ A @ B2 @ N ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ) ).
% power_int_strict_antimono
thf(fact_7562_one__le__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N: int] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( power_int @ A @ X @ N ) ) ) ) ) ).
% one_le_power_int
thf(fact_7563_one__less__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,N: int] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ).
% one_less_power_int
thf(fact_7564_power__int__add,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int,N: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( ( plus_plus @ int @ M @ N )
!= ( zero_zero @ int ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ N ) )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N ) ) ) ) ) ).
% power_int_add
thf(fact_7565_power__int__minus__left__distrib,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( division_ring @ A )
& ( one @ B )
& ( uminus @ B ) )
=> ! [X: C,A2: A,N: int] :
( ( nO_MATCH @ B @ C @ ( uminus_uminus @ B @ ( one_one @ B ) ) @ X )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ).
% power_int_minus_left_distrib
thf(fact_7566_power__int__antimono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N: int] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ N @ ( zero_zero @ int ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ B2 @ N ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ) ).
% power_int_antimono
thf(fact_7567_power__int__strict__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N: int] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N ) @ ( power_int @ A @ B2 @ N ) ) ) ) ) ) ).
% power_int_strict_mono
thf(fact_7568_power__int__decreasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N: int,N5: int,A2: A] :
( ( ord_less_eq @ int @ N @ N5 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( A2
!= ( zero_zero @ A ) )
| ( N5
!= ( zero_zero @ int ) )
| ( N
= ( zero_zero @ int ) ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ A2 @ N5 ) @ ( power_int @ A @ A2 @ N ) ) ) ) ) ) ) ).
% power_int_decreasing
thf(fact_7569_power__int__le__one,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ( ord_less_eq @ A @ X @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ X @ N ) @ ( one_one @ A ) ) ) ) ) ) ).
% power_int_le_one
thf(fact_7570_power__int__le__imp__le__exp,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,M: int,N: int] :
( ( ord_less @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less_eq @ int @ M @ N ) ) ) ) ) ).
% power_int_le_imp_le_exp
thf(fact_7571_power__int__le__imp__less__exp,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,M: int,N: int] :
( ( ord_less @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N )
=> ( ord_less @ int @ M @ N ) ) ) ) ) ).
% power_int_le_imp_less_exp
thf(fact_7572_power__int__minus__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [N: int,A2: A] :
( ( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( power_int @ A @ A2 @ N ) ) )
& ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N )
= ( uminus_uminus @ A @ ( power_int @ A @ A2 @ N ) ) ) ) ) ) ).
% power_int_minus_left
thf(fact_7573_power__int__minus__mult,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,N: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( N
!= ( zero_zero @ int ) ) )
=> ( ( times_times @ A @ ( power_int @ A @ X @ ( minus_minus @ int @ N @ ( one_one @ int ) ) ) @ X )
= ( power_int @ A @ X @ N ) ) ) ) ).
% power_int_minus_mult
thf(fact_7574_power__int__add__1_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M
!= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ ( one_one @ int ) ) )
= ( times_times @ A @ X @ ( power_int @ A @ X @ M ) ) ) ) ) ).
% power_int_add_1'
thf(fact_7575_power__int__add__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M
!= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ ( one_one @ int ) ) )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ X ) ) ) ) ).
% power_int_add_1
thf(fact_7576_Func__empty,axiom,
! [B: $tType,A: $tType,B3: set @ B] :
( ( bNF_Wellorder_Func @ A @ B @ ( bot_bot @ ( set @ A ) ) @ B3 )
= ( insert @ ( A > B )
@ ^ [X6: A] : ( undefined @ B )
@ ( bot_bot @ ( set @ ( A > B ) ) ) ) ) ).
% Func_empty
thf(fact_7577_arg__min__list_Oelims,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [X: A > B,Xa2: list @ A,Y: A] :
( ( ( arg_min_list @ A @ B @ X @ Xa2 )
= Y )
=> ( ! [X5: A] :
( ( Xa2
= ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ( Y != X5 ) )
=> ( ! [X5: A,Y5: A,Zs: list @ A] :
( ( Xa2
= ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Zs ) ) )
=> ( Y
!= ( if @ A @ ( ord_less_eq @ B @ ( X @ X5 ) @ ( X @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y5 @ Zs ) ) ) ) @ X5 @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y5 @ Zs ) ) ) ) )
=> ~ ( ( Xa2
= ( nil @ A ) )
=> ( Y
!= ( undefined @ A ) ) ) ) ) ) ) ).
% arg_min_list.elims
thf(fact_7578_power__int__def,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ( ( power_int @ A )
= ( ^ [X6: A,N3: int] : ( if @ A @ ( ord_less_eq @ int @ ( zero_zero @ int ) @ N3 ) @ ( power_power @ A @ X6 @ ( nat2 @ N3 ) ) @ ( power_power @ A @ ( inverse_inverse @ A @ X6 ) @ ( nat2 @ ( uminus_uminus @ int @ N3 ) ) ) ) ) ) ) ).
% power_int_def
thf(fact_7579_powr__real__of__int_H,axiom,
! [X: real,N: int] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( X
!= ( zero_zero @ real ) )
| ( ord_less @ int @ ( zero_zero @ int ) @ N ) )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N ) )
= ( power_int @ real @ X @ N ) ) ) ) ).
% powr_real_of_int'
thf(fact_7580_DERIV__power__int,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A,N: int] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X6: A] : ( power_int @ A @ ( F2 @ X6 ) @ N )
@ ( times_times @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ N ) @ ( power_int @ A @ ( F2 @ X ) @ ( minus_minus @ int @ N @ ( one_one @ int ) ) ) ) @ D2 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_power_int
thf(fact_7581_has__derivative__power__int_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [X: A,N: int,S3: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_derivative @ A @ A
@ ^ [X6: A] : ( power_int @ A @ X6 @ N )
@ ^ [Y6: A] : ( times_times @ A @ Y6 @ ( times_times @ A @ ( ring_1_of_int @ A @ N ) @ ( power_int @ A @ X @ ( minus_minus @ int @ N @ ( one_one @ int ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_power_int'
thf(fact_7582_pred__nat__def,axiom,
( pred_nat
= ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [M4: nat,N3: nat] :
( N3
= ( suc @ M4 ) ) ) ) ) ).
% pred_nat_def
thf(fact_7583_set__nths,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] :
( ( set2 @ A @ ( nths @ A @ Xs2 @ I6 ) )
= ( collect @ A
@ ^ [Uu3: A] :
? [I: nat] :
( ( Uu3
= ( nth @ A @ Xs2 @ I ) )
& ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( member @ nat @ I @ I6 ) ) ) ) ).
% set_nths
thf(fact_7584_nths__nil,axiom,
! [A: $tType,A3: set @ nat] :
( ( nths @ A @ ( nil @ A ) @ A3 )
= ( nil @ A ) ) ).
% nths_nil
thf(fact_7585_nths__upt__eq__take,axiom,
! [A: $tType,L: list @ A,N: nat] :
( ( nths @ A @ L @ ( set_ord_lessThan @ nat @ N ) )
= ( take @ A @ N @ L ) ) ).
% nths_upt_eq_take
thf(fact_7586_nths__empty,axiom,
! [A: $tType,Xs2: list @ A] :
( ( nths @ A @ Xs2 @ ( bot_bot @ ( set @ nat ) ) )
= ( nil @ A ) ) ).
% nths_empty
thf(fact_7587_nths__singleton,axiom,
! [A: $tType,A3: set @ nat,X: A] :
( ( ( member @ nat @ ( zero_zero @ nat ) @ A3 )
=> ( ( nths @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ A3 )
= ( cons @ A @ X @ ( nil @ A ) ) ) )
& ( ~ ( member @ nat @ ( zero_zero @ nat ) @ A3 )
=> ( ( nths @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ A3 )
= ( nil @ A ) ) ) ) ).
% nths_singleton
thf(fact_7588_set__nths__subset,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( nths @ A @ Xs2 @ I6 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_nths_subset
thf(fact_7589_notin__set__nthsI,axiom,
! [A: $tType,X: A,Xs2: list @ A,I6: set @ nat] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ A @ X @ ( set2 @ A @ ( nths @ A @ Xs2 @ I6 ) ) ) ) ).
% notin_set_nthsI
thf(fact_7590_in__set__nthsD,axiom,
! [A: $tType,X: A,Xs2: list @ A,I6: set @ nat] :
( ( member @ A @ X @ ( set2 @ A @ ( nths @ A @ Xs2 @ I6 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_nthsD
thf(fact_7591_distinct__nthsI,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( nths @ A @ Xs2 @ I6 ) ) ) ).
% distinct_nthsI
thf(fact_7592_nths__all,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ nat @ I2 @ I6 ) )
=> ( ( nths @ A @ Xs2 @ I6 )
= Xs2 ) ) ).
% nths_all
thf(fact_7593_drop__eq__nths,axiom,
! [A: $tType] :
( ( drop @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( nths @ A @ Xs @ ( collect @ nat @ ( ord_less_eq @ nat @ N3 ) ) ) ) ) ).
% drop_eq_nths
thf(fact_7594_nths__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A,I6: set @ nat] :
( ( nths @ A @ ( drop @ A @ N @ Xs2 ) @ I6 )
= ( nths @ A @ Xs2 @ ( image @ nat @ nat @ ( plus_plus @ nat @ N ) @ I6 ) ) ) ).
% nths_drop
thf(fact_7595_nths__append,axiom,
! [A: $tType,L: list @ A,L5: list @ A,A3: set @ nat] :
( ( nths @ A @ ( append @ A @ L @ L5 ) @ A3 )
= ( append @ A @ ( nths @ A @ L @ A3 )
@ ( nths @ A @ L5
@ ( collect @ nat
@ ^ [J2: nat] : ( member @ nat @ ( plus_plus @ nat @ J2 @ ( size_size @ ( list @ A ) @ L ) ) @ A3 ) ) ) ) ) ).
% nths_append
thf(fact_7596_length__nths,axiom,
! [A: $tType,Xs2: list @ A,I6: set @ nat] :
( ( size_size @ ( list @ A ) @ ( nths @ A @ Xs2 @ I6 ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( member @ nat @ I @ I6 ) ) ) ) ) ).
% length_nths
thf(fact_7597_less__eq,axiom,
! [M: nat,N: nat] :
( ( member @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ M @ N ) @ ( transitive_trancl @ nat @ pred_nat ) )
= ( ord_less @ nat @ M @ N ) ) ).
% less_eq
thf(fact_7598_nths__Cons,axiom,
! [A: $tType,X: A,L: list @ A,A3: set @ nat] :
( ( nths @ A @ ( cons @ A @ X @ L ) @ A3 )
= ( append @ A @ ( if @ ( list @ A ) @ ( member @ nat @ ( zero_zero @ nat ) @ A3 ) @ ( cons @ A @ X @ ( nil @ A ) ) @ ( nil @ A ) )
@ ( nths @ A @ L
@ ( collect @ nat
@ ^ [J2: nat] : ( member @ nat @ ( suc @ J2 ) @ A3 ) ) ) ) ) ).
% nths_Cons
thf(fact_7599_finite__subsets__at__top__finite,axiom,
! [A: $tType,A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( finite5375528669736107172at_top @ A @ A3 )
= ( principal @ ( set @ A ) @ ( insert @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ) ) ).
% finite_subsets_at_top_finite
thf(fact_7600_Rats__eq__int__div__nat,axiom,
( ( field_char_0_Rats @ real )
= ( collect @ real
@ ^ [Uu3: real] :
? [I: int,N3: nat] :
( ( Uu3
= ( divide_divide @ real @ ( ring_1_of_int @ real @ I ) @ ( semiring_1_of_nat @ real @ N3 ) ) )
& ( N3
!= ( zero_zero @ nat ) ) ) ) ) ).
% Rats_eq_int_div_nat
thf(fact_7601_Rats__abs__iff,axiom,
! [X: real] :
( ( member @ real @ ( abs_abs @ real @ X ) @ ( field_char_0_Rats @ real ) )
= ( member @ real @ X @ ( field_char_0_Rats @ real ) ) ) ).
% Rats_abs_iff
thf(fact_7602_Rats__no__top__le,axiom,
! [X: real] :
? [X5: real] :
( ( member @ real @ X5 @ ( field_char_0_Rats @ real ) )
& ( ord_less_eq @ real @ X @ X5 ) ) ).
% Rats_no_top_le
thf(fact_7603_Rats__divide,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( field_char_0_Rats @ A ) )
=> ( ( member @ A @ B2 @ ( field_char_0_Rats @ A ) )
=> ( member @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( field_char_0_Rats @ A ) ) ) ) ) ).
% Rats_divide
thf(fact_7604_Rats__0,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( field_char_0_Rats @ A ) ) ) ).
% Rats_0
thf(fact_7605_Rats__mult,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( field_char_0_Rats @ A ) )
=> ( ( member @ A @ B2 @ ( field_char_0_Rats @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( field_char_0_Rats @ A ) ) ) ) ) ).
% Rats_mult
thf(fact_7606_Rats__number__of,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [W: num] : ( member @ A @ ( numeral_numeral @ A @ W ) @ ( field_char_0_Rats @ A ) ) ) ).
% Rats_number_of
thf(fact_7607_Rats__power,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N: nat] :
( ( member @ A @ A2 @ ( field_char_0_Rats @ A ) )
=> ( member @ A @ ( power_power @ A @ A2 @ N ) @ ( field_char_0_Rats @ A ) ) ) ) ).
% Rats_power
thf(fact_7608_Rats__add,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( field_char_0_Rats @ A ) )
=> ( ( member @ A @ B2 @ ( field_char_0_Rats @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( field_char_0_Rats @ A ) ) ) ) ) ).
% Rats_add
thf(fact_7609_Rats__no__bot__less,axiom,
! [X: real] :
? [X5: real] :
( ( member @ real @ X5 @ ( field_char_0_Rats @ real ) )
& ( ord_less @ real @ X5 @ X ) ) ).
% Rats_no_bot_less
thf(fact_7610_Rats__dense__in__real,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ? [X5: real] :
( ( member @ real @ X5 @ ( field_char_0_Rats @ real ) )
& ( ord_less @ real @ X @ X5 )
& ( ord_less @ real @ X5 @ Y ) ) ) ).
% Rats_dense_in_real
thf(fact_7611_finite__subsets__at__top__neq__bot,axiom,
! [A: $tType,A3: set @ A] :
( ( finite5375528669736107172at_top @ A @ A3 )
!= ( bot_bot @ ( filter @ ( set @ A ) ) ) ) ).
% finite_subsets_at_top_neq_bot
thf(fact_7612_Rats__eq__int__div__int,axiom,
( ( field_char_0_Rats @ real )
= ( collect @ real
@ ^ [Uu3: real] :
? [I: int,J2: int] :
( ( Uu3
= ( divide_divide @ real @ ( ring_1_of_int @ real @ I ) @ ( ring_1_of_int @ real @ J2 ) ) )
& ( J2
!= ( zero_zero @ int ) ) ) ) ) ).
% Rats_eq_int_div_int
thf(fact_7613_Nats__altdef1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( semiring_1_Nats @ A )
= ( collect @ A
@ ^ [Uu3: A] :
? [N3: int] :
( ( Uu3
= ( ring_1_of_int @ A @ N3 ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ N3 ) ) ) ) ) ).
% Nats_altdef1
thf(fact_7614_listrel__def,axiom,
! [B: $tType,A: $tType] :
( ( listrel @ A @ B )
= ( ^ [R5: set @ ( product_prod @ A @ B )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ B ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ B ) @ $o
@ ( listrelp @ A @ B
@ ^ [X6: A,Y6: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 @ Y6 ) @ R5 ) ) ) ) ) ) ).
% listrel_def
thf(fact_7615_listrelp_OCons,axiom,
! [A: $tType,B: $tType,R2: A > B > $o,X: A,Y: B,Xs2: list @ A,Ys2: list @ B] :
( ( R2 @ X @ Y )
=> ( ( listrelp @ A @ B @ R2 @ Xs2 @ Ys2 )
=> ( listrelp @ A @ B @ R2 @ ( cons @ A @ X @ Xs2 ) @ ( cons @ B @ Y @ Ys2 ) ) ) ) ).
% listrelp.Cons
thf(fact_7616_Nats__add,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ).
% Nats_add
thf(fact_7617_Nats__1,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( member @ A @ ( one_one @ A ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_1
thf(fact_7618_Nats__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [W: num] : ( member @ A @ ( numeral_numeral @ A @ W ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_numeral
thf(fact_7619_of__nat__in__Nats,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] : ( member @ A @ ( semiring_1_of_nat @ A @ N ) @ ( semiring_1_Nats @ A ) ) ) ).
% of_nat_in_Nats
thf(fact_7620_Nats__induct,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: A,P: A > $o] :
( ( member @ A @ X @ ( semiring_1_Nats @ A ) )
=> ( ! [N2: nat] : ( P @ ( semiring_1_of_nat @ A @ N2 ) )
=> ( P @ X ) ) ) ) ).
% Nats_induct
thf(fact_7621_Nats__cases,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( semiring_1_Nats @ A ) )
=> ~ ! [N2: nat] :
( X
!= ( semiring_1_of_nat @ A @ N2 ) ) ) ) ).
% Nats_cases
thf(fact_7622_Nats__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_0
thf(fact_7623_Nats__mult,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ).
% Nats_mult
thf(fact_7624_listrelp_ONil,axiom,
! [A: $tType,B: $tType,R2: A > B > $o] : ( listrelp @ A @ B @ R2 @ ( nil @ A ) @ ( nil @ B ) ) ).
% listrelp.Nil
thf(fact_7625_Nats__diff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( member @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ) ).
% Nats_diff
thf(fact_7626_listrelp_Osimps,axiom,
! [B: $tType,A: $tType] :
( ( listrelp @ A @ B )
= ( ^ [R5: A > B > $o,A12: list @ A,A23: list @ B] :
( ( ( A12
= ( nil @ A ) )
& ( A23
= ( nil @ B ) ) )
| ? [X6: A,Y6: B,Xs: list @ A,Ys: list @ B] :
( ( A12
= ( cons @ A @ X6 @ Xs ) )
& ( A23
= ( cons @ B @ Y6 @ Ys ) )
& ( R5 @ X6 @ Y6 )
& ( listrelp @ A @ B @ R5 @ Xs @ Ys ) ) ) ) ) ).
% listrelp.simps
thf(fact_7627_listrelp_Ocases,axiom,
! [A: $tType,B: $tType,R2: A > B > $o,A1: list @ A,A22: list @ B] :
( ( listrelp @ A @ B @ R2 @ A1 @ A22 )
=> ( ( ( A1
= ( nil @ A ) )
=> ( A22
!= ( nil @ B ) ) )
=> ~ ! [X5: A,Y5: B,Xs3: list @ A] :
( ( A1
= ( cons @ A @ X5 @ Xs3 ) )
=> ! [Ys4: list @ B] :
( ( A22
= ( cons @ B @ Y5 @ Ys4 ) )
=> ( ( R2 @ X5 @ Y5 )
=> ~ ( listrelp @ A @ B @ R2 @ Xs3 @ Ys4 ) ) ) ) ) ) ).
% listrelp.cases
thf(fact_7628_Nats__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_Nats @ A )
= ( image @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% Nats_def
thf(fact_7629_Nats__altdef2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( semiring_1_Nats @ A )
= ( collect @ A
@ ^ [N3: A] :
( ( member @ A @ N3 @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ) ).
% Nats_altdef2
thf(fact_7630_complex__is__Nat__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( semiring_1_Nats @ complex ) )
= ( ( ( im @ Z2 )
= ( zero_zero @ real ) )
& ? [I: nat] :
( ( re @ Z2 )
= ( semiring_1_of_nat @ real @ I ) ) ) ) ).
% complex_is_Nat_iff
thf(fact_7631_listrelp__listrel__eq,axiom,
! [B: $tType,A: $tType,R2: set @ ( product_prod @ A @ B )] :
( ( listrelp @ A @ B
@ ^ [X6: A,Y6: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 @ Y6 ) @ R2 ) )
= ( ^ [X6: list @ A,Y6: list @ B] : ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ X6 @ Y6 ) @ ( listrel @ A @ B @ R2 ) ) ) ) ).
% listrelp_listrel_eq
thf(fact_7632_pos__deriv__imp__strict__mono,axiom,
! [F2: real > real,F7: real > real] :
( ! [X5: real] : ( has_field_derivative @ real @ F2 @ ( F7 @ X5 ) @ ( topolo174197925503356063within @ real @ X5 @ ( top_top @ ( set @ real ) ) ) )
=> ( ! [X5: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F7 @ X5 ) )
=> ( order_strict_mono @ real @ real @ F2 ) ) ) ).
% pos_deriv_imp_strict_mono
thf(fact_7633_rotate__drop__take,axiom,
! [A: $tType] :
( ( rotate @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( append @ A @ ( drop @ A @ ( modulo_modulo @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) @ Xs ) @ ( take @ A @ ( modulo_modulo @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) @ Xs ) ) ) ) ).
% rotate_drop_take
thf(fact_7634_rotate__is__Nil__conv,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( rotate @ A @ N @ Xs2 )
= ( nil @ A ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% rotate_is_Nil_conv
thf(fact_7635_set__rotate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( set2 @ A @ ( rotate @ A @ N @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rotate
thf(fact_7636_length__rotate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( rotate @ A @ N @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_rotate
thf(fact_7637_distinct__rotate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( distinct @ A @ ( rotate @ A @ N @ Xs2 ) )
= ( distinct @ A @ Xs2 ) ) ).
% distinct_rotate
thf(fact_7638_rotate__Suc,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( rotate @ A @ ( suc @ N ) @ Xs2 )
= ( rotate1 @ A @ ( rotate @ A @ N @ Xs2 ) ) ) ).
% rotate_Suc
thf(fact_7639_rotate__length01,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( ( rotate @ A @ N @ Xs2 )
= Xs2 ) ) ).
% rotate_length01
thf(fact_7640_rotate__id,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ( modulo_modulo @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( zero_zero @ nat ) )
=> ( ( rotate @ A @ N @ Xs2 )
= Xs2 ) ) ).
% rotate_id
thf(fact_7641_rotate1__rotate__swap,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( rotate1 @ A @ ( rotate @ A @ N @ Xs2 ) )
= ( rotate @ A @ N @ ( rotate1 @ A @ Xs2 ) ) ) ).
% rotate1_rotate_swap
thf(fact_7642_strict__mono__add,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A] :
( order_strict_mono @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K ) ) ) ).
% strict_mono_add
thf(fact_7643_rotate__rotate,axiom,
! [A: $tType,M: nat,N: nat,Xs2: list @ A] :
( ( rotate @ A @ M @ ( rotate @ A @ N @ Xs2 ) )
= ( rotate @ A @ ( plus_plus @ nat @ M @ N ) @ Xs2 ) ) ).
% rotate_rotate
thf(fact_7644_strict__monoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less @ A @ X @ Y )
=> ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% strict_monoD
thf(fact_7645_strict__monoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ! [X5: A,Y5: A] :
( ( ord_less @ A @ X5 @ Y5 )
=> ( ord_less @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( order_strict_mono @ A @ B @ F2 ) ) ) ).
% strict_monoI
thf(fact_7646_strict__mono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ( ( order_strict_mono @ A @ B )
= ( ^ [F6: A > B] :
! [X6: A,Y6: A] :
( ( ord_less @ A @ X6 @ Y6 )
=> ( ord_less @ B @ ( F6 @ X6 ) @ ( F6 @ Y6 ) ) ) ) ) ) ).
% strict_mono_def
thf(fact_7647_strict__mono__less,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
= ( ord_less @ A @ X @ Y ) ) ) ) ).
% strict_mono_less
thf(fact_7648_rotate__conv__mod,axiom,
! [A: $tType] :
( ( rotate @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( rotate @ A @ ( modulo_modulo @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) @ Xs ) ) ) ).
% rotate_conv_mod
thf(fact_7649_rotate__def,axiom,
! [A: $tType] :
( ( rotate @ A )
= ( ^ [N3: nat] : ( compow @ ( ( list @ A ) > ( list @ A ) ) @ N3 @ ( rotate1 @ A ) ) ) ) ).
% rotate_def
thf(fact_7650_rotate__append,axiom,
! [A: $tType,L: list @ A,Q2: list @ A] :
( ( rotate @ A @ ( size_size @ ( list @ A ) @ L ) @ ( append @ A @ L @ Q2 ) )
= ( append @ A @ Q2 @ L ) ) ).
% rotate_append
thf(fact_7651_rotate__add,axiom,
! [A: $tType,M: nat,N: nat] :
( ( rotate @ A @ ( plus_plus @ nat @ M @ N ) )
= ( comp @ ( list @ A ) @ ( list @ A ) @ ( list @ A ) @ ( rotate @ A @ M ) @ ( rotate @ A @ N ) ) ) ).
% rotate_add
thf(fact_7652_nth__rotate,axiom,
! [A: $tType,N: nat,Xs2: list @ A,M: nat] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rotate @ A @ M @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( modulo_modulo @ nat @ ( plus_plus @ nat @ M @ N ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% nth_rotate
thf(fact_7653_hd__rotate__conv__nth,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ A @ ( rotate @ A @ N @ Xs2 ) )
= ( nth @ A @ Xs2 @ ( modulo_modulo @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% hd_rotate_conv_nth
thf(fact_7654_Nitpick_Osize__list__simp_I1_J,axiom,
! [A: $tType] :
( ( size_list @ A )
= ( ^ [F6: A > nat,Xs: list @ A] :
( if @ nat
@ ( Xs
= ( nil @ A ) )
@ ( zero_zero @ nat )
@ ( suc @ ( plus_plus @ nat @ ( F6 @ ( hd @ A @ Xs ) ) @ ( size_list @ A @ F6 @ ( tl @ A @ Xs ) ) ) ) ) ) ) ).
% Nitpick.size_list_simp(1)
thf(fact_7655_listrel1__subset__listrel,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),R4: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ R2 @ R4 )
=> ( ( refl_on @ A @ ( top_top @ ( set @ A ) ) @ R4 )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) @ ( listrel1 @ A @ R2 ) @ ( listrel @ A @ A @ R4 ) ) ) ) ).
% listrel1_subset_listrel
thf(fact_7656_tl__append2,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( tl @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( tl @ A @ Xs2 ) @ Ys2 ) ) ) ).
% tl_append2
thf(fact_7657_remdups__adj__Cons__alt,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( cons @ A @ X @ ( tl @ A @ ( remdups_adj @ A @ ( cons @ A @ X @ Xs2 ) ) ) )
= ( remdups_adj @ A @ ( cons @ A @ X @ Xs2 ) ) ) ).
% remdups_adj_Cons_alt
thf(fact_7658_length__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( tl @ A @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) ).
% length_tl
thf(fact_7659_list_Ocollapse,axiom,
! [A: $tType,List: list @ A] :
( ( List
!= ( nil @ A ) )
=> ( ( cons @ A @ ( hd @ A @ List ) @ ( tl @ A @ List ) )
= List ) ) ).
% list.collapse
thf(fact_7660_hd__Cons__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( cons @ A @ ( hd @ A @ Xs2 ) @ ( tl @ A @ Xs2 ) )
= Xs2 ) ) ).
% hd_Cons_tl
thf(fact_7661_tl__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( tl @ A @ ( replicate @ A @ N @ X ) )
= ( replicate @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ X ) ) ).
% tl_replicate
thf(fact_7662_strict__mono__imp__increasing,axiom,
! [F2: nat > nat,N: nat] :
( ( order_strict_mono @ nat @ nat @ F2 )
=> ( ord_less_eq @ nat @ N @ ( F2 @ N ) ) ) ).
% strict_mono_imp_increasing
thf(fact_7663_strict__mono__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_strict_mono @ nat @ A )
= ( ^ [F6: nat > A] :
! [N3: nat] : ( ord_less @ A @ ( F6 @ N3 ) @ ( F6 @ ( suc @ N3 ) ) ) ) ) ) ).
% strict_mono_Suc_iff
thf(fact_7664_tl__def,axiom,
! [A: $tType] :
( ( tl @ A )
= ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [X213: A,X223: list @ A] : X223 ) ) ).
% tl_def
thf(fact_7665_tl__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( tl @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( case_list @ ( list @ A ) @ A @ ( tl @ A @ Ys2 )
@ ^ [Z3: A,Zs3: list @ A] : ( append @ A @ Zs3 @ Ys2 )
@ Xs2 ) ) ).
% tl_append
thf(fact_7666_list_Oexpand,axiom,
! [A: $tType,List: list @ A,List3: list @ A] :
( ( ( List
= ( nil @ A ) )
= ( List3
= ( nil @ A ) ) )
=> ( ( ( List
!= ( nil @ A ) )
=> ( ( List3
!= ( nil @ A ) )
=> ( ( ( hd @ A @ List )
= ( hd @ A @ List3 ) )
& ( ( tl @ A @ List )
= ( tl @ A @ List3 ) ) ) ) )
=> ( List = List3 ) ) ) ).
% list.expand
thf(fact_7667_tl__Nil,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( tl @ A @ Xs2 )
= ( nil @ A ) )
= ( ( Xs2
= ( nil @ A ) )
| ? [X6: A] :
( Xs2
= ( cons @ A @ X6 @ ( nil @ A ) ) ) ) ) ).
% tl_Nil
thf(fact_7668_Nil__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( nil @ A )
= ( tl @ A @ Xs2 ) )
= ( ( Xs2
= ( nil @ A ) )
| ? [X6: A] :
( Xs2
= ( cons @ A @ X6 @ ( nil @ A ) ) ) ) ) ).
% Nil_tl
thf(fact_7669_tl__drop,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( tl @ A @ ( drop @ A @ N @ Xs2 ) )
= ( drop @ A @ N @ ( tl @ A @ Xs2 ) ) ) ).
% tl_drop
thf(fact_7670_drop__Suc,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( drop @ A @ ( suc @ N ) @ Xs2 )
= ( drop @ A @ N @ ( tl @ A @ Xs2 ) ) ) ).
% drop_Suc
thf(fact_7671_take__tl,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( take @ A @ N @ ( tl @ A @ Xs2 ) )
= ( tl @ A @ ( take @ A @ ( suc @ N ) @ Xs2 ) ) ) ).
% take_tl
thf(fact_7672_list_Osel_I3_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( tl @ A @ ( cons @ A @ X21 @ X22 ) )
= X22 ) ).
% list.sel(3)
thf(fact_7673_list_Oset__sel_I2_J,axiom,
! [A: $tType,A2: list @ A,X: A] :
( ( A2
!= ( nil @ A ) )
=> ( ( member @ A @ X @ ( set2 @ A @ ( tl @ A @ A2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ A2 ) ) ) ) ).
% list.set_sel(2)
thf(fact_7674_distinct__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( tl @ A @ Xs2 ) ) ) ).
% distinct_tl
thf(fact_7675_list_Osel_I2_J,axiom,
! [A: $tType] :
( ( tl @ A @ ( nil @ A ) )
= ( nil @ A ) ) ).
% list.sel(2)
thf(fact_7676_refl__on__empty,axiom,
! [A: $tType] : ( refl_on @ A @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ).
% refl_on_empty
thf(fact_7677_list_Oexhaust__sel,axiom,
! [A: $tType,List: list @ A] :
( ( List
!= ( nil @ A ) )
=> ( List
= ( cons @ A @ ( hd @ A @ List ) @ ( tl @ A @ List ) ) ) ) ).
% list.exhaust_sel
thf(fact_7678_tl__take,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( tl @ A @ ( take @ A @ N @ Xs2 ) )
= ( take @ A @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) @ ( tl @ A @ Xs2 ) ) ) ).
% tl_take
thf(fact_7679_list_Ocase__eq__if,axiom,
! [A: $tType,B: $tType] :
( ( case_list @ B @ A )
= ( ^ [F12: B,F23: A > ( list @ A ) > B,List2: list @ A] :
( if @ B
@ ( List2
= ( nil @ A ) )
@ F12
@ ( F23 @ ( hd @ A @ List2 ) @ ( tl @ A @ List2 ) ) ) ) ) ).
% list.case_eq_if
thf(fact_7680_Nitpick_Osize__list__simp_I2_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) )
= ( ^ [Xs: list @ A] :
( if @ nat
@ ( Xs
= ( nil @ A ) )
@ ( zero_zero @ nat )
@ ( suc @ ( size_size @ ( list @ A ) @ ( tl @ A @ Xs ) ) ) ) ) ) ).
% Nitpick.size_list_simp(2)
thf(fact_7681_nth__tl,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ ( tl @ A @ Xs2 ) ) )
=> ( ( nth @ A @ ( tl @ A @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( suc @ N ) ) ) ) ).
% nth_tl
thf(fact_7682_remdups__adj__append,axiom,
! [A: $tType,Xs_1: list @ A,X: A,Xs_2: list @ A] :
( ( remdups_adj @ A @ ( append @ A @ Xs_1 @ ( cons @ A @ X @ Xs_2 ) ) )
= ( append @ A @ ( remdups_adj @ A @ ( append @ A @ Xs_1 @ ( cons @ A @ X @ ( nil @ A ) ) ) ) @ ( tl @ A @ ( remdups_adj @ A @ ( cons @ A @ X @ Xs_2 ) ) ) ) ) ).
% remdups_adj_append
thf(fact_7683_Cons__in__shuffles__iff,axiom,
! [A: $tType,Z2: A,Zs2: list @ A,Xs2: list @ A,Ys2: list @ A] :
( ( member @ ( list @ A ) @ ( cons @ A @ Z2 @ Zs2 ) @ ( shuffles @ A @ Xs2 @ Ys2 ) )
= ( ( ( Xs2
!= ( nil @ A ) )
& ( ( hd @ A @ Xs2 )
= Z2 )
& ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ ( tl @ A @ Xs2 ) @ Ys2 ) ) )
| ( ( Ys2
!= ( nil @ A ) )
& ( ( hd @ A @ Ys2 )
= Z2 )
& ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ ( tl @ A @ Ys2 ) ) ) ) ) ) ).
% Cons_in_shuffles_iff
thf(fact_7684_list_Osplit__sel,axiom,
! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > ( list @ A ) > B,List: list @ A] :
( ( P @ ( case_list @ B @ A @ F1 @ F22 @ List ) )
= ( ( ( List
= ( nil @ A ) )
=> ( P @ F1 ) )
& ( ( List
= ( cons @ A @ ( hd @ A @ List ) @ ( tl @ A @ List ) ) )
=> ( P @ ( F22 @ ( hd @ A @ List ) @ ( tl @ A @ List ) ) ) ) ) ) ).
% list.split_sel
thf(fact_7685_list_Osplit__sel__asm,axiom,
! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > ( list @ A ) > B,List: list @ A] :
( ( P @ ( case_list @ B @ A @ F1 @ F22 @ List ) )
= ( ~ ( ( ( List
= ( nil @ A ) )
& ~ ( P @ F1 ) )
| ( ( List
= ( cons @ A @ ( hd @ A @ List ) @ ( tl @ A @ List ) ) )
& ~ ( P @ ( F22 @ ( hd @ A @ List ) @ ( tl @ A @ List ) ) ) ) ) ) ) ).
% list.split_sel_asm
thf(fact_7686_summable__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [G: nat > nat,F2: nat > A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) ) )
= ( summable @ A @ F2 ) ) ) ) ) ).
% summable_mono_reindex
thf(fact_7687_nonneg__incseq__Bseq__subseq__iff,axiom,
! [F2: nat > real,G: nat > nat] :
( ! [X5: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X5 ) )
=> ( ( order_mono @ nat @ real @ F2 )
=> ( ( order_strict_mono @ nat @ nat @ G )
=> ( ( bfun @ nat @ real
@ ^ [X6: nat] : ( F2 @ ( G @ X6 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ real @ F2 @ ( at_top @ nat ) ) ) ) ) ) ).
% nonneg_incseq_Bseq_subseq_iff
thf(fact_7688_sums__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [G: nat > nat,F2: nat > A,C2: A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) )
@ C2 )
= ( sums @ A @ F2 @ C2 ) ) ) ) ) ).
% sums_mono_reindex
thf(fact_7689_suminf__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ! [G: nat > nat,F2: nat > A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N2: nat] :
( ~ ( member @ nat @ N2 @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N2 )
= ( zero_zero @ A ) ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) ) )
= ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_mono_reindex
thf(fact_7690_take__Suc,axiom,
! [A: $tType,Xs2: list @ A,N: nat] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( take @ A @ ( suc @ N ) @ Xs2 )
= ( cons @ A @ ( hd @ A @ Xs2 ) @ ( take @ A @ N @ ( tl @ A @ Xs2 ) ) ) ) ) ).
% take_Suc
thf(fact_7691_rotate1__hd__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( rotate1 @ A @ Xs2 )
= ( append @ A @ ( tl @ A @ Xs2 ) @ ( cons @ A @ ( hd @ A @ Xs2 ) @ ( nil @ A ) ) ) ) ) ).
% rotate1_hd_tl
thf(fact_7692_refl__on__singleton,axiom,
! [A: $tType,X: A] : ( refl_on @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) @ ( insert @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ X ) @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ).
% refl_on_singleton
thf(fact_7693_map__of__zip__nth,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,I3: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ ( nth @ A @ Xs2 @ I3 ) )
= ( some @ B @ ( nth @ B @ Ys2 @ I3 ) ) ) ) ) ) ).
% map_of_zip_nth
thf(fact_7694_total__on__singleton,axiom,
! [A: $tType,X: A] : ( total_on @ A @ ( insert @ A @ X @ ( bot_bot @ ( set @ A ) ) ) @ ( insert @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ X ) @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ).
% total_on_singleton
thf(fact_7695_map__of__eq__empty__iff,axiom,
! [B: $tType,A: $tType,Xys2: list @ ( product_prod @ A @ B )] :
( ( ( map_of @ A @ B @ Xys2 )
= ( ^ [X6: A] : ( none @ B ) ) )
= ( Xys2
= ( nil @ ( product_prod @ A @ B ) ) ) ) ).
% map_of_eq_empty_iff
thf(fact_7696_empty__eq__map__of__iff,axiom,
! [B: $tType,A: $tType,Xys2: list @ ( product_prod @ A @ B )] :
( ( ( ^ [X6: A] : ( none @ B ) )
= ( map_of @ A @ B @ Xys2 ) )
= ( Xys2
= ( nil @ ( product_prod @ A @ B ) ) ) ) ).
% empty_eq_map_of_iff
thf(fact_7697_map__of__zip__is__None,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ X )
= ( none @ B ) )
= ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% map_of_zip_is_None
thf(fact_7698_dom__map__of__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( dom @ A @ B @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
= ( set2 @ A @ Xs2 ) ) ) ).
% dom_map_of_zip
thf(fact_7699_total__on__empty,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] : ( total_on @ A @ ( bot_bot @ ( set @ A ) ) @ R2 ) ).
% total_on_empty
thf(fact_7700_total__lenlex,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] :
( ( total_on @ A @ ( top_top @ ( set @ A ) ) @ R2 )
=> ( total_on @ ( list @ A ) @ ( top_top @ ( set @ ( list @ A ) ) ) @ ( lenlex @ A @ R2 ) ) ) ).
% total_lenlex
thf(fact_7701_map__of_Osimps_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( map_of @ A @ B @ ( nil @ ( product_prod @ A @ B ) ) )
= ( ^ [X6: A] : ( none @ B ) ) ) ).
% map_of.simps(1)
thf(fact_7702_map__of__Cons__code_I1_J,axiom,
! [B: $tType,A: $tType,K: B] :
( ( map_of @ B @ A @ ( nil @ ( product_prod @ B @ A ) ) @ K )
= ( none @ A ) ) ).
% map_of_Cons_code(1)
thf(fact_7703_total__lexord,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] :
( ( total_on @ A @ ( top_top @ ( set @ A ) ) @ R2 )
=> ( total_on @ ( list @ A ) @ ( top_top @ ( set @ ( list @ A ) ) ) @ ( lexord @ A @ R2 ) ) ) ).
% total_lexord
thf(fact_7704_map__of__zip__inject,axiom,
! [B: $tType,A: $tType,Ys2: list @ A,Xs2: list @ B,Zs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Ys2 )
= ( size_size @ ( list @ B ) @ Xs2 ) )
=> ( ( ( size_size @ ( list @ A ) @ Zs2 )
= ( size_size @ ( list @ B ) @ Xs2 ) )
=> ( ( distinct @ B @ Xs2 )
=> ( ( ( map_of @ B @ A @ ( zip @ B @ A @ Xs2 @ Ys2 ) )
= ( map_of @ B @ A @ ( zip @ B @ A @ Xs2 @ Zs2 ) ) )
=> ( Ys2 = Zs2 ) ) ) ) ) ).
% map_of_zip_inject
thf(fact_7705_map__of__eq__None__iff,axiom,
! [A: $tType,B: $tType,Xys2: list @ ( product_prod @ B @ A ),X: B] :
( ( ( map_of @ B @ A @ Xys2 @ X )
= ( none @ A ) )
= ( ~ ( member @ B @ X @ ( image @ ( product_prod @ B @ A ) @ B @ ( product_fst @ B @ A ) @ ( set2 @ ( product_prod @ B @ A ) @ Xys2 ) ) ) ) ) ).
% map_of_eq_None_iff
thf(fact_7706_map__of__zip__is__Some,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Y6: B] :
( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ X )
= ( some @ B @ Y6 ) ) ) ) ) ).
% map_of_zip_is_Some
thf(fact_7707_map__of__zip__upd,axiom,
! [A: $tType,B: $tType,Ys2: list @ B,Xs2: list @ A,Zs2: list @ B,X: A,Y: B,Z2: B] :
( ( ( size_size @ ( list @ B ) @ Ys2 )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( size_size @ ( list @ B ) @ Zs2 )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ( fun_upd @ A @ ( option @ B ) @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) @ X @ ( some @ B @ Y ) )
= ( fun_upd @ A @ ( option @ B ) @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Zs2 ) ) @ X @ ( some @ B @ Z2 ) ) )
=> ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Zs2 ) ) ) ) ) ) ) ).
% map_of_zip_upd
thf(fact_7708_ran__map__of__zip,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( distinct @ A @ Xs2 )
=> ( ( ran @ A @ B @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) )
= ( set2 @ B @ Ys2 ) ) ) ) ).
% ran_map_of_zip
thf(fact_7709_map__of__map__restrict,axiom,
! [B: $tType,A: $tType,F2: A > B,Ks: list @ A] :
( ( map_of @ A @ B
@ ( map @ A @ ( product_prod @ A @ B )
@ ^ [K3: A] : ( product_Pair @ A @ B @ K3 @ ( F2 @ K3 ) )
@ Ks ) )
= ( restrict_map @ A @ B @ ( comp @ B @ ( option @ B ) @ A @ ( some @ B ) @ F2 ) @ ( set2 @ A @ Ks ) ) ) ).
% map_of_map_restrict
thf(fact_7710_upt__rec__numeral,axiom,
! [M: num,N: num] :
( ( ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) )
=> ( ( upt @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) )
= ( cons @ nat @ ( numeral_numeral @ nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral @ nat @ M ) ) @ ( numeral_numeral @ nat @ N ) ) ) ) )
& ( ~ ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) )
=> ( ( upt @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N ) )
= ( nil @ nat ) ) ) ) ).
% upt_rec_numeral
thf(fact_7711_remdups__upt,axiom,
! [M: nat,N: nat] :
( ( remdups @ nat @ ( upt @ M @ N ) )
= ( upt @ M @ N ) ) ).
% remdups_upt
thf(fact_7712_map__ident,axiom,
! [A: $tType] :
( ( map @ A @ A
@ ^ [X6: A] : X6 )
= ( ^ [Xs: list @ A] : Xs ) ) ).
% map_ident
thf(fact_7713_list_Omap__disc__iff,axiom,
! [B: $tType,A: $tType,F2: A > B,A2: list @ A] :
( ( ( map @ A @ B @ F2 @ A2 )
= ( nil @ B ) )
= ( A2
= ( nil @ A ) ) ) ).
% list.map_disc_iff
thf(fact_7714_Nil__is__map__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( ( nil @ A )
= ( map @ B @ A @ F2 @ Xs2 ) )
= ( Xs2
= ( nil @ B ) ) ) ).
% Nil_is_map_conv
thf(fact_7715_map__is__Nil__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( nil @ A ) )
= ( Xs2
= ( nil @ B ) ) ) ).
% map_is_Nil_conv
thf(fact_7716_list_Omap__comp,axiom,
! [B: $tType,C: $tType,A: $tType,G: B > C,F2: A > B,V: list @ A] :
( ( map @ B @ C @ G @ ( map @ A @ B @ F2 @ V ) )
= ( map @ A @ C @ ( comp @ B @ C @ A @ G @ F2 ) @ V ) ) ).
% list.map_comp
thf(fact_7717_List_Omap_Ocompositionality,axiom,
! [B: $tType,C: $tType,A: $tType,F2: B > C,G: A > B,List: list @ A] :
( ( map @ B @ C @ F2 @ ( map @ A @ B @ G @ List ) )
= ( map @ A @ C @ ( comp @ B @ C @ A @ F2 @ G ) @ List ) ) ).
% List.map.compositionality
thf(fact_7718_map__map,axiom,
! [B: $tType,A: $tType,C: $tType,F2: B > A,G: C > B,Xs2: list @ C] :
( ( map @ B @ A @ F2 @ ( map @ C @ B @ G @ Xs2 ) )
= ( map @ C @ A @ ( comp @ B @ A @ C @ F2 @ G ) @ Xs2 ) ) ).
% map_map
thf(fact_7719_map__eq__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,G: B > A] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ B @ A @ G @ Xs2 ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ ( set2 @ B @ Xs2 ) )
=> ( ( F2 @ X6 )
= ( G @ X6 ) ) ) ) ) ).
% map_eq_conv
thf(fact_7720_length__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( size_size @ ( list @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( size_size @ ( list @ B ) @ Xs2 ) ) ).
% length_map
thf(fact_7721_map__append,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Ys2: list @ B] :
( ( map @ B @ A @ F2 @ ( append @ B @ Xs2 @ Ys2 ) )
= ( append @ A @ ( map @ B @ A @ F2 @ Xs2 ) @ ( map @ B @ A @ F2 @ Ys2 ) ) ) ).
% map_append
thf(fact_7722_tl__upt,axiom,
! [M: nat,N: nat] :
( ( tl @ nat @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ N ) ) ).
% tl_upt
thf(fact_7723_hd__upt,axiom,
! [I3: nat,J: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( hd @ nat @ ( upt @ I3 @ J ) )
= I3 ) ) ).
% hd_upt
thf(fact_7724_drop__upt,axiom,
! [M: nat,I3: nat,J: nat] :
( ( drop @ nat @ M @ ( upt @ I3 @ J ) )
= ( upt @ ( plus_plus @ nat @ I3 @ M ) @ J ) ) ).
% drop_upt
thf(fact_7725_length__upt,axiom,
! [I3: nat,J: nat] :
( ( size_size @ ( list @ nat ) @ ( upt @ I3 @ J ) )
= ( minus_minus @ nat @ J @ I3 ) ) ).
% length_upt
thf(fact_7726_map__replicate,axiom,
! [A: $tType,B: $tType,F2: B > A,N: nat,X: B] :
( ( map @ B @ A @ F2 @ ( replicate @ B @ N @ X ) )
= ( replicate @ A @ N @ ( F2 @ X ) ) ) ).
% map_replicate
thf(fact_7727_list_Oset__map,axiom,
! [B: $tType,A: $tType,F2: A > B,V: list @ A] :
( ( set2 @ B @ ( map @ A @ B @ F2 @ V ) )
= ( image @ A @ B @ F2 @ ( set2 @ A @ V ) ) ) ).
% list.set_map
thf(fact_7728_inj__map__eq__map,axiom,
! [B: $tType,A: $tType,F2: A > B,Xs2: list @ A,Ys2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ F2 @ Ys2 ) )
= ( Xs2 = Ys2 ) ) ) ).
% inj_map_eq_map
thf(fact_7729_take__upt,axiom,
! [I3: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ M ) @ N )
=> ( ( take @ nat @ M @ ( upt @ I3 @ N ) )
= ( upt @ I3 @ ( plus_plus @ nat @ I3 @ M ) ) ) ) ).
% take_upt
thf(fact_7730_map__fun__upd,axiom,
! [B: $tType,A: $tType,Y: A,Xs2: list @ A,F2: A > B,V: B] :
( ~ ( member @ A @ Y @ ( set2 @ A @ Xs2 ) )
=> ( ( map @ A @ B @ ( fun_upd @ A @ B @ F2 @ Y @ V ) @ Xs2 )
= ( map @ A @ B @ F2 @ Xs2 ) ) ) ).
% map_fun_upd
thf(fact_7731_upt__conv__Nil,axiom,
! [J: nat,I3: nat] :
( ( ord_less_eq @ nat @ J @ I3 )
=> ( ( upt @ I3 @ J )
= ( nil @ nat ) ) ) ).
% upt_conv_Nil
thf(fact_7732_map__comp__map,axiom,
! [B: $tType,C: $tType,A: $tType,F2: C > B,G: A > C] :
( ( comp @ ( list @ C ) @ ( list @ B ) @ ( list @ A ) @ ( map @ C @ B @ F2 ) @ ( map @ A @ C @ G ) )
= ( map @ A @ B @ ( comp @ C @ B @ A @ F2 @ G ) ) ) ).
% map_comp_map
thf(fact_7733_List_Omap_Ocomp,axiom,
! [C: $tType,B: $tType,A: $tType,F2: B > C,G: A > B] :
( ( comp @ ( list @ B ) @ ( list @ C ) @ ( list @ A ) @ ( map @ B @ C @ F2 ) @ ( map @ A @ B @ G ) )
= ( map @ A @ C @ ( comp @ B @ C @ A @ F2 @ G ) ) ) ).
% List.map.comp
thf(fact_7734_sorted__list__of__set__range,axiom,
! [M: nat,N: nat] :
( ( linord4507533701916653071of_set @ nat @ ( set_or7035219750837199246ssThan @ nat @ M @ N ) )
= ( upt @ M @ N ) ) ).
% sorted_list_of_set_range
thf(fact_7735_size__list__map,axiom,
! [A: $tType,B: $tType,F2: A > nat,G: B > A,Xs2: list @ B] :
( ( size_list @ A @ F2 @ ( map @ B @ A @ G @ Xs2 ) )
= ( size_list @ B @ ( comp @ A @ nat @ B @ F2 @ G ) @ Xs2 ) ) ).
% size_list_map
thf(fact_7736_nth__map,axiom,
! [B: $tType,A: $tType,N: nat,Xs2: list @ A,F2: A > B] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ B @ ( map @ A @ B @ F2 @ Xs2 ) @ N )
= ( F2 @ ( nth @ A @ Xs2 @ N ) ) ) ) ).
% nth_map
thf(fact_7737_upt__eq__Nil__conv,axiom,
! [I3: nat,J: nat] :
( ( ( upt @ I3 @ J )
= ( nil @ nat ) )
= ( ( J
= ( zero_zero @ nat ) )
| ( ord_less_eq @ nat @ J @ I3 ) ) ) ).
% upt_eq_Nil_conv
thf(fact_7738_concat__map__singleton,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( concat @ A
@ ( map @ B @ ( list @ A )
@ ^ [X6: B] : ( cons @ A @ ( F2 @ X6 ) @ ( nil @ A ) )
@ Xs2 ) )
= ( map @ B @ A @ F2 @ Xs2 ) ) ).
% concat_map_singleton
thf(fact_7739_nth__upt,axiom,
! [I3: nat,K: nat,J: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ K ) @ J )
=> ( ( nth @ nat @ ( upt @ I3 @ J ) @ K )
= ( plus_plus @ nat @ I3 @ K ) ) ) ).
% nth_upt
thf(fact_7740_inj__map,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ ( list @ A ) @ ( list @ B ) @ ( map @ A @ B @ F2 ) @ ( top_top @ ( set @ ( list @ A ) ) ) )
= ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_map
thf(fact_7741_inj__mapI,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( inj_on @ ( list @ A ) @ ( list @ B ) @ ( map @ A @ B @ F2 ) @ ( top_top @ ( set @ ( list @ A ) ) ) ) ) ).
% inj_mapI
thf(fact_7742_rotate__map,axiom,
! [A: $tType,B: $tType,N: nat,F2: B > A,Xs2: list @ B] :
( ( rotate @ A @ N @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( rotate @ B @ N @ Xs2 ) ) ) ).
% rotate_map
thf(fact_7743_upt__conv__Cons,axiom,
! [I3: nat,J: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( upt @ I3 @ J )
= ( cons @ nat @ I3 @ ( upt @ ( suc @ I3 ) @ J ) ) ) ) ).
% upt_conv_Cons
thf(fact_7744_zip__map1,axiom,
! [A: $tType,C: $tType,B: $tType,F2: C > A,Xs2: list @ C,Ys2: list @ B] :
( ( zip @ A @ B @ ( map @ C @ A @ F2 @ Xs2 ) @ Ys2 )
= ( map @ ( product_prod @ C @ B ) @ ( product_prod @ A @ B )
@ ( product_case_prod @ C @ B @ ( product_prod @ A @ B )
@ ^ [X6: C] : ( product_Pair @ A @ B @ ( F2 @ X6 ) ) )
@ ( zip @ C @ B @ Xs2 @ Ys2 ) ) ) ).
% zip_map1
thf(fact_7745_zip__map2,axiom,
! [B: $tType,A: $tType,C: $tType,Xs2: list @ A,F2: C > B,Ys2: list @ C] :
( ( zip @ A @ B @ Xs2 @ ( map @ C @ B @ F2 @ Ys2 ) )
= ( map @ ( product_prod @ A @ C ) @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ C @ ( product_prod @ A @ B )
@ ^ [X6: A,Y6: C] : ( product_Pair @ A @ B @ X6 @ ( F2 @ Y6 ) ) )
@ ( zip @ A @ C @ Xs2 @ Ys2 ) ) ) ).
% zip_map2
thf(fact_7746_map__zip__map,axiom,
! [B: $tType,A: $tType,D: $tType,C: $tType,F2: ( product_prod @ B @ C ) > A,G: D > B,Xs2: list @ D,Ys2: list @ C] :
( ( map @ ( product_prod @ B @ C ) @ A @ F2 @ ( zip @ B @ C @ ( map @ D @ B @ G @ Xs2 ) @ Ys2 ) )
= ( map @ ( product_prod @ D @ C ) @ A
@ ( product_case_prod @ D @ C @ A
@ ^ [X6: D,Y6: C] : ( F2 @ ( product_Pair @ B @ C @ ( G @ X6 ) @ Y6 ) ) )
@ ( zip @ D @ C @ Xs2 @ Ys2 ) ) ) ).
% map_zip_map
thf(fact_7747_zip__map__map,axiom,
! [B: $tType,A: $tType,C: $tType,D: $tType,F2: C > A,Xs2: list @ C,G: D > B,Ys2: list @ D] :
( ( zip @ A @ B @ ( map @ C @ A @ F2 @ Xs2 ) @ ( map @ D @ B @ G @ Ys2 ) )
= ( map @ ( product_prod @ C @ D ) @ ( product_prod @ A @ B )
@ ( product_case_prod @ C @ D @ ( product_prod @ A @ B )
@ ^ [X6: C,Y6: D] : ( product_Pair @ A @ B @ ( F2 @ X6 ) @ ( G @ Y6 ) ) )
@ ( zip @ C @ D @ Xs2 @ Ys2 ) ) ) ).
% zip_map_map
thf(fact_7748_map__zip__map2,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,F2: ( product_prod @ B @ C ) > A,Xs2: list @ B,G: D > C,Ys2: list @ D] :
( ( map @ ( product_prod @ B @ C ) @ A @ F2 @ ( zip @ B @ C @ Xs2 @ ( map @ D @ C @ G @ Ys2 ) ) )
= ( map @ ( product_prod @ B @ D ) @ A
@ ( product_case_prod @ B @ D @ A
@ ^ [X6: B,Y6: D] : ( F2 @ ( product_Pair @ B @ C @ X6 @ ( G @ Y6 ) ) ) )
@ ( zip @ B @ D @ Xs2 @ Ys2 ) ) ) ).
% map_zip_map2
thf(fact_7749_map2__map__map,axiom,
! [B: $tType,A: $tType,C: $tType,D: $tType,H2: B > C > A,F2: D > B,Xs2: list @ D,G: D > C] :
( ( map @ ( product_prod @ B @ C ) @ A @ ( product_case_prod @ B @ C @ A @ H2 ) @ ( zip @ B @ C @ ( map @ D @ B @ F2 @ Xs2 ) @ ( map @ D @ C @ G @ Xs2 ) ) )
= ( map @ D @ A
@ ^ [X6: D] : ( H2 @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ Xs2 ) ) ).
% map2_map_map
thf(fact_7750_zip__same__conv__map,axiom,
! [A: $tType,Xs2: list @ A] :
( ( zip @ A @ A @ Xs2 @ Xs2 )
= ( map @ A @ ( product_prod @ A @ A )
@ ^ [X6: A] : ( product_Pair @ A @ A @ X6 @ X6 )
@ Xs2 ) ) ).
% zip_same_conv_map
thf(fact_7751_atMost__upto,axiom,
( ( set_ord_atMost @ nat )
= ( ^ [N3: nat] : ( set2 @ nat @ ( upt @ ( zero_zero @ nat ) @ ( suc @ N3 ) ) ) ) ) ).
% atMost_upto
thf(fact_7752_image__set,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) )
= ( set2 @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ).
% image_set
thf(fact_7753_hd__map,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ B @ ( map @ A @ B @ F2 @ Xs2 ) )
= ( F2 @ ( hd @ A @ Xs2 ) ) ) ) ).
% hd_map
thf(fact_7754_list_Omap__sel_I1_J,axiom,
! [B: $tType,A: $tType,A2: list @ A,F2: A > B] :
( ( A2
!= ( nil @ A ) )
=> ( ( hd @ B @ ( map @ A @ B @ F2 @ A2 ) )
= ( F2 @ ( hd @ A @ A2 ) ) ) ) ).
% list.map_sel(1)
thf(fact_7755_drop__map,axiom,
! [A: $tType,B: $tType,N: nat,F2: B > A,Xs2: list @ B] :
( ( drop @ A @ N @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( drop @ B @ N @ Xs2 ) ) ) ).
% drop_map
thf(fact_7756_map__update,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,K: nat,Y: B] :
( ( map @ B @ A @ F2 @ ( list_update @ B @ Xs2 @ K @ Y ) )
= ( list_update @ A @ ( map @ B @ A @ F2 @ Xs2 ) @ K @ ( F2 @ Y ) ) ) ).
% map_update
thf(fact_7757_take__map,axiom,
! [A: $tType,B: $tType,N: nat,F2: B > A,Xs2: list @ B] :
( ( take @ A @ N @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( take @ B @ N @ Xs2 ) ) ) ).
% take_map
thf(fact_7758_upt__conv__Cons__Cons,axiom,
! [M: nat,N: nat,Ns: list @ nat,Q2: nat] :
( ( ( cons @ nat @ M @ ( cons @ nat @ N @ Ns ) )
= ( upt @ M @ Q2 ) )
= ( ( cons @ nat @ N @ Ns )
= ( upt @ ( suc @ M ) @ Q2 ) ) ) ).
% upt_conv_Cons_Cons
thf(fact_7759_map__eq__Cons__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Y: A,Ys2: list @ A] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( cons @ A @ Y @ Ys2 ) )
= ( ? [Z3: B,Zs3: list @ B] :
( ( Xs2
= ( cons @ B @ Z3 @ Zs3 ) )
& ( ( F2 @ Z3 )
= Y )
& ( ( map @ B @ A @ F2 @ Zs3 )
= Ys2 ) ) ) ) ).
% map_eq_Cons_conv
thf(fact_7760_Cons__eq__map__conv,axiom,
! [A: $tType,B: $tType,X: A,Xs2: list @ A,F2: B > A,Ys2: list @ B] :
( ( ( cons @ A @ X @ Xs2 )
= ( map @ B @ A @ F2 @ Ys2 ) )
= ( ? [Z3: B,Zs3: list @ B] :
( ( Ys2
= ( cons @ B @ Z3 @ Zs3 ) )
& ( X
= ( F2 @ Z3 ) )
& ( Xs2
= ( map @ B @ A @ F2 @ Zs3 ) ) ) ) ) ).
% Cons_eq_map_conv
thf(fact_7761_map__eq__Cons__D,axiom,
! [B: $tType,A: $tType,F2: B > A,Xs2: list @ B,Y: A,Ys2: list @ A] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( cons @ A @ Y @ Ys2 ) )
=> ? [Z4: B,Zs: list @ B] :
( ( Xs2
= ( cons @ B @ Z4 @ Zs ) )
& ( ( F2 @ Z4 )
= Y )
& ( ( map @ B @ A @ F2 @ Zs )
= Ys2 ) ) ) ).
% map_eq_Cons_D
thf(fact_7762_Cons__eq__map__D,axiom,
! [A: $tType,B: $tType,X: A,Xs2: list @ A,F2: B > A,Ys2: list @ B] :
( ( ( cons @ A @ X @ Xs2 )
= ( map @ B @ A @ F2 @ Ys2 ) )
=> ? [Z4: B,Zs: list @ B] :
( ( Ys2
= ( cons @ B @ Z4 @ Zs ) )
& ( X
= ( F2 @ Z4 ) )
& ( Xs2
= ( map @ B @ A @ F2 @ Zs ) ) ) ) ).
% Cons_eq_map_D
thf(fact_7763_list_Osimps_I9_J,axiom,
! [B: $tType,A: $tType,F2: A > B,X21: A,X22: list @ A] :
( ( map @ A @ B @ F2 @ ( cons @ A @ X21 @ X22 ) )
= ( cons @ B @ ( F2 @ X21 ) @ ( map @ A @ B @ F2 @ X22 ) ) ) ).
% list.simps(9)
thf(fact_7764_map__replicate__const,axiom,
! [B: $tType,A: $tType,K: A,Lst: list @ B] :
( ( map @ B @ A
@ ^ [X6: B] : K
@ Lst )
= ( replicate @ A @ ( size_size @ ( list @ B ) @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_7765_append__eq__map__conv,axiom,
! [A: $tType,B: $tType,Ys2: list @ A,Zs2: list @ A,F2: B > A,Xs2: list @ B] :
( ( ( append @ A @ Ys2 @ Zs2 )
= ( map @ B @ A @ F2 @ Xs2 ) )
= ( ? [Us2: list @ B,Vs2: list @ B] :
( ( Xs2
= ( append @ B @ Us2 @ Vs2 ) )
& ( Ys2
= ( map @ B @ A @ F2 @ Us2 ) )
& ( Zs2
= ( map @ B @ A @ F2 @ Vs2 ) ) ) ) ) ).
% append_eq_map_conv
thf(fact_7766_map__eq__append__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Ys2: list @ A,Zs2: list @ A] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( append @ A @ Ys2 @ Zs2 ) )
= ( ? [Us2: list @ B,Vs2: list @ B] :
( ( Xs2
= ( append @ B @ Us2 @ Vs2 ) )
& ( Ys2
= ( map @ B @ A @ F2 @ Us2 ) )
& ( Zs2
= ( map @ B @ A @ F2 @ Vs2 ) ) ) ) ) ).
% map_eq_append_conv
thf(fact_7767_enumerate__replicate__eq,axiom,
! [A: $tType,N: nat,M: nat,A2: A] :
( ( enumerate @ A @ N @ ( replicate @ A @ M @ A2 ) )
= ( map @ nat @ ( product_prod @ nat @ A )
@ ^ [Q4: nat] : ( product_Pair @ nat @ A @ Q4 @ A2 )
@ ( upt @ N @ ( plus_plus @ nat @ N @ M ) ) ) ) ).
% enumerate_replicate_eq
thf(fact_7768_greaterThanAtMost__upt,axiom,
( ( set_or3652927894154168847AtMost @ nat )
= ( ^ [N3: nat,M4: nat] : ( set2 @ nat @ ( upt @ ( suc @ N3 ) @ ( suc @ M4 ) ) ) ) ) ).
% greaterThanAtMost_upt
thf(fact_7769_atLeast__upt,axiom,
( ( set_ord_lessThan @ nat )
= ( ^ [N3: nat] : ( set2 @ nat @ ( upt @ ( zero_zero @ nat ) @ N3 ) ) ) ) ).
% atLeast_upt
thf(fact_7770_greaterThanLessThan__upt,axiom,
( ( set_or5935395276787703475ssThan @ nat )
= ( ^ [N3: nat,M4: nat] : ( set2 @ nat @ ( upt @ ( suc @ N3 ) @ M4 ) ) ) ) ).
% greaterThanLessThan_upt
thf(fact_7771_atLeastAtMost__upt,axiom,
( ( set_or1337092689740270186AtMost @ nat )
= ( ^ [N3: nat,M4: nat] : ( set2 @ nat @ ( upt @ N3 @ ( suc @ M4 ) ) ) ) ) ).
% atLeastAtMost_upt
thf(fact_7772_atLeastLessThan__upt,axiom,
( ( set_or7035219750837199246ssThan @ nat )
= ( ^ [I: nat,J2: nat] : ( set2 @ nat @ ( upt @ I @ J2 ) ) ) ) ).
% atLeastLessThan_upt
thf(fact_7773_ex__map__conv,axiom,
! [A: $tType,B: $tType,Ys2: list @ B,F2: A > B] :
( ( ? [Xs: list @ A] :
( Ys2
= ( map @ A @ B @ F2 @ Xs ) ) )
= ( ! [X6: B] :
( ( member @ B @ X6 @ ( set2 @ B @ Ys2 ) )
=> ? [Y6: A] :
( X6
= ( F2 @ Y6 ) ) ) ) ) ).
% ex_map_conv
thf(fact_7774_map__cong,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ A,F2: A > B,G: A > B] :
( ( Xs2 = Ys2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Ys2 ) )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) )
=> ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ G @ Ys2 ) ) ) ) ).
% map_cong
thf(fact_7775_map__idI,axiom,
! [A: $tType,Xs2: list @ A,F2: A > A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X5 )
= X5 ) )
=> ( ( map @ A @ A @ F2 @ Xs2 )
= Xs2 ) ) ).
% map_idI
thf(fact_7776_map__ext,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B,G: A > B] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X5 )
= ( G @ X5 ) ) )
=> ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ G @ Xs2 ) ) ) ).
% map_ext
thf(fact_7777_list_Oinj__map__strong,axiom,
! [B: $tType,A: $tType,X: list @ A,Xa2: list @ A,F2: A > B,Fa: A > B] :
( ! [Z4: A,Za: A] :
( ( member @ A @ Z4 @ ( set2 @ A @ X ) )
=> ( ( member @ A @ Za @ ( set2 @ A @ Xa2 ) )
=> ( ( ( F2 @ Z4 )
= ( Fa @ Za ) )
=> ( Z4 = Za ) ) ) )
=> ( ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ Fa @ Xa2 ) )
=> ( X = Xa2 ) ) ) ).
% list.inj_map_strong
thf(fact_7778_list_Omap__cong0,axiom,
! [B: $tType,A: $tType,X: list @ A,F2: A > B,G: A > B] :
( ! [Z4: A] :
( ( member @ A @ Z4 @ ( set2 @ A @ X ) )
=> ( ( F2 @ Z4 )
= ( G @ Z4 ) ) )
=> ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ G @ X ) ) ) ).
% list.map_cong0
thf(fact_7779_list_Omap__cong,axiom,
! [B: $tType,A: $tType,X: list @ A,Ya: list @ A,F2: A > B,G: A > B] :
( ( X = Ya )
=> ( ! [Z4: A] :
( ( member @ A @ Z4 @ ( set2 @ A @ Ya ) )
=> ( ( F2 @ Z4 )
= ( G @ Z4 ) ) )
=> ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ G @ Ya ) ) ) ) ).
% list.map_cong
thf(fact_7780_distinct__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( ( distinct @ B @ Xs2 )
& ( inj_on @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) ) ) ).
% distinct_map
thf(fact_7781_inj__on__map__eq__map,axiom,
! [B: $tType,A: $tType,F2: A > B,Xs2: list @ A,Ys2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) ) )
=> ( ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ F2 @ Ys2 ) )
= ( Xs2 = Ys2 ) ) ) ).
% inj_on_map_eq_map
thf(fact_7782_map__inj__on,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Ys2: list @ B] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ B @ A @ F2 @ Ys2 ) )
=> ( ( inj_on @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ ( set2 @ B @ Ys2 ) ) )
=> ( Xs2 = Ys2 ) ) ) ).
% map_inj_on
thf(fact_7783_map__injective,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Ys2: list @ B] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ B @ A @ F2 @ Ys2 ) )
=> ( ( inj_on @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
=> ( Xs2 = Ys2 ) ) ) ).
% map_injective
thf(fact_7784_remdups__adj__map__injective,axiom,
! [B: $tType,A: $tType,F2: A > B,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( remdups_adj @ B @ ( map @ A @ B @ F2 @ Xs2 ) )
= ( map @ A @ B @ F2 @ ( remdups_adj @ A @ Xs2 ) ) ) ) ).
% remdups_adj_map_injective
thf(fact_7785_map__removeAll__inj,axiom,
! [B: $tType,A: $tType,F2: A > B,X: A,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( map @ A @ B @ F2 @ ( removeAll @ A @ X @ Xs2 ) )
= ( removeAll @ B @ ( F2 @ X ) @ ( map @ A @ B @ F2 @ Xs2 ) ) ) ) ).
% map_removeAll_inj
thf(fact_7786_distinct__upt,axiom,
! [I3: nat,J: nat] : ( distinct @ nat @ ( upt @ I3 @ J ) ) ).
% distinct_upt
thf(fact_7787_map__eq__imp__length__eq,axiom,
! [A: $tType,B: $tType,C: $tType,F2: B > A,Xs2: list @ B,G: C > A,Ys2: list @ C] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ C @ A @ G @ Ys2 ) )
=> ( ( size_size @ ( list @ B ) @ Xs2 )
= ( size_size @ ( list @ C ) @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_7788_rotate1__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( rotate1 @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( rotate1 @ B @ Xs2 ) ) ) ).
% rotate1_map
thf(fact_7789_list_Omap__ident,axiom,
! [A: $tType,T2: list @ A] :
( ( map @ A @ A
@ ^ [X6: A] : X6
@ T2 )
= T2 ) ).
% list.map_ident
thf(fact_7790_map__concat,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ ( list @ B )] :
( ( map @ B @ A @ F2 @ ( concat @ B @ Xs2 ) )
= ( concat @ A @ ( map @ ( list @ B ) @ ( list @ A ) @ ( map @ B @ A @ F2 ) @ Xs2 ) ) ) ).
% map_concat
thf(fact_7791_remdups__map__remdups,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( remdups @ A @ ( map @ B @ A @ F2 @ ( remdups @ B @ Xs2 ) ) )
= ( remdups @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ).
% remdups_map_remdups
thf(fact_7792_upt__0,axiom,
! [I3: nat] :
( ( upt @ I3 @ ( zero_zero @ nat ) )
= ( nil @ nat ) ) ).
% upt_0
thf(fact_7793_list_Osimps_I8_J,axiom,
! [A: $tType,B: $tType,F2: A > B] :
( ( map @ A @ B @ F2 @ ( nil @ A ) )
= ( nil @ B ) ) ).
% list.simps(8)
thf(fact_7794_list_Osize__gen__o__map,axiom,
! [B: $tType,A: $tType,F2: B > nat,G: A > B] :
( ( comp @ ( list @ B ) @ nat @ ( list @ A ) @ ( size_list @ B @ F2 ) @ ( map @ A @ B @ G ) )
= ( size_list @ A @ ( comp @ B @ nat @ A @ F2 @ G ) ) ) ).
% list.size_gen_o_map
thf(fact_7795_nths__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,I6: set @ nat] :
( ( nths @ A @ ( map @ B @ A @ F2 @ Xs2 ) @ I6 )
= ( map @ B @ A @ F2 @ ( nths @ B @ Xs2 @ I6 ) ) ) ).
% nths_map
thf(fact_7796_list_Omap__sel_I2_J,axiom,
! [B: $tType,A: $tType,A2: list @ A,F2: A > B] :
( ( A2
!= ( nil @ A ) )
=> ( ( tl @ B @ ( map @ A @ B @ F2 @ A2 ) )
= ( map @ A @ B @ F2 @ ( tl @ A @ A2 ) ) ) ) ).
% list.map_sel(2)
thf(fact_7797_map__tl,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( map @ B @ A @ F2 @ ( tl @ B @ Xs2 ) )
= ( tl @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ).
% map_tl
thf(fact_7798_enumerate__eq__zip,axiom,
! [A: $tType] :
( ( enumerate @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( zip @ nat @ A @ ( upt @ N3 @ ( plus_plus @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) ) @ Xs ) ) ) ).
% enumerate_eq_zip
thf(fact_7799_zip__left__commute,axiom,
! [B: $tType,A: $tType,C: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ C] :
( ( zip @ A @ ( product_prod @ B @ C ) @ Xs2 @ ( zip @ B @ C @ Ys2 @ Zs2 ) )
= ( map @ ( product_prod @ B @ ( product_prod @ A @ C ) ) @ ( product_prod @ A @ ( product_prod @ B @ C ) )
@ ( product_case_prod @ B @ ( product_prod @ A @ C ) @ ( product_prod @ A @ ( product_prod @ B @ C ) )
@ ^ [Y6: B] :
( product_case_prod @ A @ C @ ( product_prod @ A @ ( product_prod @ B @ C ) )
@ ^ [X6: A,Z3: C] : ( product_Pair @ A @ ( product_prod @ B @ C ) @ X6 @ ( product_Pair @ B @ C @ Y6 @ Z3 ) ) ) )
@ ( zip @ B @ ( product_prod @ A @ C ) @ Ys2 @ ( zip @ A @ C @ Xs2 @ Zs2 ) ) ) ) ).
% zip_left_commute
thf(fact_7800_zip__commute,axiom,
! [B: $tType,A: $tType] :
( ( zip @ A @ B )
= ( ^ [Xs: list @ A,Ys: list @ B] :
( map @ ( product_prod @ B @ A ) @ ( product_prod @ A @ B )
@ ( product_case_prod @ B @ A @ ( product_prod @ A @ B )
@ ^ [X6: B,Y6: A] : ( product_Pair @ A @ B @ Y6 @ X6 ) )
@ ( zip @ B @ A @ Ys @ Xs ) ) ) ) ).
% zip_commute
thf(fact_7801_upt__add__eq__append,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( upt @ I3 @ ( plus_plus @ nat @ J @ K ) )
= ( append @ nat @ ( upt @ I3 @ J ) @ ( upt @ J @ ( plus_plus @ nat @ J @ K ) ) ) ) ) ).
% upt_add_eq_append
thf(fact_7802_distinct__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( distinct @ A @ ( map @ B @ A @ F2 @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) ) )
= ( ~ ( member @ A @ ( F2 @ X ) @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
& ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ) ).
% distinct_insort_key
thf(fact_7803_map__removeAll__inj__on,axiom,
! [B: $tType,A: $tType,F2: A > B,X: A,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( insert @ A @ X @ ( set2 @ A @ Xs2 ) ) )
=> ( ( map @ A @ B @ F2 @ ( removeAll @ A @ X @ Xs2 ) )
= ( removeAll @ B @ ( F2 @ X ) @ ( map @ A @ B @ F2 @ Xs2 ) ) ) ) ).
% map_removeAll_inj_on
thf(fact_7804_zip__replicate1,axiom,
! [A: $tType,B: $tType,N: nat,X: A,Ys2: list @ B] :
( ( zip @ A @ B @ ( replicate @ A @ N @ X ) @ Ys2 )
= ( map @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X ) @ ( take @ B @ N @ Ys2 ) ) ) ).
% zip_replicate1
thf(fact_7805_upt__eq__Cons__conv,axiom,
! [I3: nat,J: nat,X: nat,Xs2: list @ nat] :
( ( ( upt @ I3 @ J )
= ( cons @ nat @ X @ Xs2 ) )
= ( ( ord_less @ nat @ I3 @ J )
& ( I3 = X )
& ( ( upt @ ( plus_plus @ nat @ I3 @ ( one_one @ nat ) ) @ J )
= Xs2 ) ) ) ).
% upt_eq_Cons_conv
thf(fact_7806_zip__replicate2,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,N: nat,Y: B] :
( ( zip @ A @ B @ Xs2 @ ( replicate @ B @ N @ Y ) )
= ( map @ A @ ( product_prod @ A @ B )
@ ^ [X6: A] : ( product_Pair @ A @ B @ X6 @ Y )
@ ( take @ A @ N @ Xs2 ) ) ) ).
% zip_replicate2
thf(fact_7807_Id__on__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( id_on @ A @ ( set2 @ A @ Xs2 ) )
= ( set2 @ ( product_prod @ A @ A )
@ ( map @ A @ ( product_prod @ A @ A )
@ ^ [X6: A] : ( product_Pair @ A @ A @ X6 @ X6 )
@ Xs2 ) ) ) ).
% Id_on_set
thf(fact_7808_upt__rec,axiom,
( upt
= ( ^ [I: nat,J2: nat] : ( if @ ( list @ nat ) @ ( ord_less @ nat @ I @ J2 ) @ ( cons @ nat @ I @ ( upt @ ( suc @ I ) @ J2 ) ) @ ( nil @ nat ) ) ) ) ).
% upt_rec
thf(fact_7809_product_Osimps_I2_J,axiom,
! [A: $tType,B: $tType,X: A,Xs2: list @ A,Ys2: list @ B] :
( ( product @ A @ B @ ( cons @ A @ X @ Xs2 ) @ Ys2 )
= ( append @ ( product_prod @ A @ B ) @ ( map @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X ) @ Ys2 ) @ ( product @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% product.simps(2)
thf(fact_7810_inj__mapD,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ ( list @ A ) @ ( list @ B ) @ ( map @ A @ B @ F2 ) @ ( top_top @ ( set @ ( list @ A ) ) ) )
=> ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_mapD
thf(fact_7811_map__of__zip__map,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B] :
( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ ( map @ A @ B @ F2 @ Xs2 ) ) )
= ( ^ [X6: A] : ( if @ ( option @ B ) @ ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) ) @ ( some @ B @ ( F2 @ X6 ) ) @ ( none @ B ) ) ) ) ).
% map_of_zip_map
thf(fact_7812_map__of__map__keys,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,M: A > ( option @ B )] :
( ( ( set2 @ A @ Xs2 )
= ( dom @ A @ B @ M ) )
=> ( ( map_of @ A @ B
@ ( map @ A @ ( product_prod @ A @ B )
@ ^ [K3: A] : ( product_Pair @ A @ B @ K3 @ ( the2 @ B @ ( M @ K3 ) ) )
@ Xs2 ) )
= M ) ) ).
% map_of_map_keys
thf(fact_7813_inj__on__mapI,axiom,
! [B: $tType,A: $tType,F2: A > B,A3: set @ ( list @ A )] :
( ( inj_on @ A @ B @ F2 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ A3 ) ) )
=> ( inj_on @ ( list @ A ) @ ( list @ B ) @ ( map @ A @ B @ F2 ) @ A3 ) ) ).
% inj_on_mapI
thf(fact_7814_upt__Suc__append,axiom,
! [I3: nat,J: nat] :
( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( upt @ I3 @ ( suc @ J ) )
= ( append @ nat @ ( upt @ I3 @ J ) @ ( cons @ nat @ J @ ( nil @ nat ) ) ) ) ) ).
% upt_Suc_append
thf(fact_7815_upt__Suc,axiom,
! [I3: nat,J: nat] :
( ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( upt @ I3 @ ( suc @ J ) )
= ( append @ nat @ ( upt @ I3 @ J ) @ ( cons @ nat @ J @ ( nil @ nat ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ I3 @ J )
=> ( ( upt @ I3 @ ( suc @ J ) )
= ( nil @ nat ) ) ) ) ).
% upt_Suc
thf(fact_7816_horner__sum__bit__eq__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N: nat] :
( ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( map @ nat @ $o @ ( bit_se5641148757651400278ts_bit @ A @ A2 ) @ ( upt @ ( zero_zero @ nat ) @ N ) ) )
= ( bit_se2584673776208193580ke_bit @ A @ N @ A2 ) ) ) ).
% horner_sum_bit_eq_take_bit
thf(fact_7817_map__fst__enumerate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( map @ ( product_prod @ nat @ A ) @ nat @ ( product_fst @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) )
= ( upt @ N @ ( plus_plus @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% map_fst_enumerate
thf(fact_7818_map__fst__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= Xs2 ) ) ).
% map_fst_zip
thf(fact_7819_map__snd__zip,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( map @ ( product_prod @ A @ B ) @ B @ ( product_snd @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= Ys2 ) ) ).
% map_snd_zip
thf(fact_7820_map__snd__enumerate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( map @ ( product_prod @ nat @ A ) @ A @ ( product_snd @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) )
= Xs2 ) ).
% map_snd_enumerate
thf(fact_7821_map__of__eqI,axiom,
! [B: $tType,A: $tType,Xs2: list @ ( product_prod @ A @ B ),Ys2: list @ ( product_prod @ A @ B )] :
( ( ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Xs2 ) )
= ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Ys2 ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Xs2 ) ) )
=> ( ( map_of @ A @ B @ Xs2 @ X5 )
= ( map_of @ A @ B @ Ys2 @ X5 ) ) )
=> ( ( map_of @ A @ B @ Xs2 )
= ( map_of @ A @ B @ Ys2 ) ) ) ) ).
% map_of_eqI
thf(fact_7822_zip__map__fst__snd,axiom,
! [B: $tType,A: $tType,Zs2: list @ ( product_prod @ A @ B )] :
( ( zip @ A @ B @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Zs2 ) @ ( map @ ( product_prod @ A @ B ) @ B @ ( product_snd @ A @ B ) @ Zs2 ) )
= Zs2 ) ).
% zip_map_fst_snd
thf(fact_7823_n__lists_Osimps_I2_J,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( n_lists @ A @ ( suc @ N ) @ Xs2 )
= ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ^ [Ys: list @ A] :
( map @ A @ ( list @ A )
@ ^ [Y6: A] : ( cons @ A @ Y6 @ Ys )
@ Xs2 )
@ ( n_lists @ A @ N @ Xs2 ) ) ) ) ).
% n_lists.simps(2)
thf(fact_7824_product__lists_Osimps_I2_J,axiom,
! [A: $tType,Xs2: list @ A,Xss: list @ ( list @ A )] :
( ( product_lists @ A @ ( cons @ ( list @ A ) @ Xs2 @ Xss ) )
= ( concat @ ( list @ A )
@ ( map @ A @ ( list @ ( list @ A ) )
@ ^ [X6: A] : ( map @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X6 ) @ ( product_lists @ A @ Xss ) )
@ Xs2 ) ) ) ).
% product_lists.simps(2)
thf(fact_7825_map__add__upt,axiom,
! [N: nat,M: nat] :
( ( map @ nat @ nat
@ ^ [I: nat] : ( plus_plus @ nat @ I @ N )
@ ( upt @ ( zero_zero @ nat ) @ M ) )
= ( upt @ N @ ( plus_plus @ nat @ M @ N ) ) ) ).
% map_add_upt
thf(fact_7826_map__Suc__upt,axiom,
! [M: nat,N: nat] :
( ( map @ nat @ nat @ suc @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% map_Suc_upt
thf(fact_7827_pair__list__eqI,axiom,
! [B: $tType,A: $tType,Xs2: list @ ( product_prod @ A @ B ),Ys2: list @ ( product_prod @ A @ B )] :
( ( ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Xs2 )
= ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Ys2 ) )
=> ( ( ( map @ ( product_prod @ A @ B ) @ B @ ( product_snd @ A @ B ) @ Xs2 )
= ( map @ ( product_prod @ A @ B ) @ B @ ( product_snd @ A @ B ) @ Ys2 ) )
=> ( Xs2 = Ys2 ) ) ) ).
% pair_list_eqI
thf(fact_7828_List_Obind__def,axiom,
! [B: $tType,A: $tType] :
( ( bind @ A @ B )
= ( ^ [Xs: list @ A,F6: A > ( list @ B )] : ( concat @ B @ ( map @ A @ ( list @ B ) @ F6 @ Xs ) ) ) ) ).
% List.bind_def
thf(fact_7829_distinct__set__subseqs,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ ( set @ A ) @ ( map @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ) ).
% distinct_set_subseqs
thf(fact_7830_inj__split__Cons,axiom,
! [A: $tType,X9: set @ ( product_prod @ ( list @ A ) @ A )] :
( inj_on @ ( product_prod @ ( list @ A ) @ A ) @ ( list @ A )
@ ( product_case_prod @ ( list @ A ) @ A @ ( list @ A )
@ ^ [Xs: list @ A,N3: A] : ( cons @ A @ N3 @ Xs ) )
@ X9 ) ).
% inj_split_Cons
thf(fact_7831_map__replicate__trivial,axiom,
! [A: $tType,X: A,I3: nat] :
( ( map @ nat @ A
@ ^ [I: nat] : X
@ ( upt @ ( zero_zero @ nat ) @ I3 ) )
= ( replicate @ A @ I3 @ X ) ) ).
% map_replicate_trivial
thf(fact_7832_enumerate__map__upt,axiom,
! [A: $tType,N: nat,F2: nat > A,M: nat] :
( ( enumerate @ A @ N @ ( map @ nat @ A @ F2 @ ( upt @ N @ M ) ) )
= ( map @ nat @ ( product_prod @ nat @ A )
@ ^ [K3: nat] : ( product_Pair @ nat @ A @ K3 @ ( F2 @ K3 ) )
@ ( upt @ N @ M ) ) ) ).
% enumerate_map_upt
thf(fact_7833_zip__assoc,axiom,
! [B: $tType,A: $tType,C: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ C] :
( ( zip @ A @ ( product_prod @ B @ C ) @ Xs2 @ ( zip @ B @ C @ Ys2 @ Zs2 ) )
= ( map @ ( product_prod @ ( product_prod @ A @ B ) @ C ) @ ( product_prod @ A @ ( product_prod @ B @ C ) )
@ ( product_case_prod @ ( product_prod @ A @ B ) @ C @ ( product_prod @ A @ ( product_prod @ B @ C ) )
@ ( product_case_prod @ A @ B @ ( C > ( product_prod @ A @ ( product_prod @ B @ C ) ) )
@ ^ [X6: A,Y6: B,Z3: C] : ( product_Pair @ A @ ( product_prod @ B @ C ) @ X6 @ ( product_Pair @ B @ C @ Y6 @ Z3 ) ) ) )
@ ( zip @ ( product_prod @ A @ B ) @ C @ ( zip @ A @ B @ Xs2 @ Ys2 ) @ Zs2 ) ) ) ).
% zip_assoc
thf(fact_7834_product__concat__map,axiom,
! [B: $tType,A: $tType] :
( ( product @ A @ B )
= ( ^ [Xs: list @ A,Ys: list @ B] :
( concat @ ( product_prod @ A @ B )
@ ( map @ A @ ( list @ ( product_prod @ A @ B ) )
@ ^ [X6: A] : ( map @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 ) @ Ys )
@ Xs ) ) ) ) ).
% product_concat_map
thf(fact_7835_zip__eq__conv,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B,Zs2: list @ ( product_prod @ A @ B )] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( ( zip @ A @ B @ Xs2 @ Ys2 )
= Zs2 )
= ( ( ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Zs2 )
= Xs2 )
& ( ( map @ ( product_prod @ A @ B ) @ B @ ( product_snd @ A @ B ) @ Zs2 )
= Ys2 ) ) ) ) ).
% zip_eq_conv
thf(fact_7836_map__upt__Suc,axiom,
! [A: $tType,F2: nat > A,N: nat] :
( ( map @ nat @ A @ F2 @ ( upt @ ( zero_zero @ nat ) @ ( suc @ N ) ) )
= ( cons @ A @ ( F2 @ ( zero_zero @ nat ) )
@ ( map @ nat @ A
@ ^ [I: nat] : ( F2 @ ( suc @ I ) )
@ ( upt @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% map_upt_Suc
thf(fact_7837_subseqs_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( subseqs @ A @ ( cons @ A @ X @ Xs2 ) )
= ( append @ ( list @ A ) @ ( map @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ X ) @ ( subseqs @ A @ Xs2 ) ) @ ( subseqs @ A @ Xs2 ) ) ) ).
% subseqs.simps(2)
thf(fact_7838_map__decr__upt,axiom,
! [M: nat,N: nat] :
( ( map @ nat @ nat
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
= ( upt @ M @ N ) ) ).
% map_decr_upt
thf(fact_7839_map__nth,axiom,
! [A: $tType,Xs2: list @ A] :
( ( map @ nat @ A @ ( nth @ A @ Xs2 ) @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
= Xs2 ) ).
% map_nth
thf(fact_7840_nth__map__upt,axiom,
! [A: $tType,I3: nat,N: nat,M: nat,F2: nat > A] :
( ( ord_less @ nat @ I3 @ ( minus_minus @ nat @ N @ M ) )
=> ( ( nth @ A @ ( map @ nat @ A @ F2 @ ( upt @ M @ N ) ) @ I3 )
= ( F2 @ ( plus_plus @ nat @ M @ I3 ) ) ) ) ).
% nth_map_upt
thf(fact_7841_extract__Cons__code,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ( ( P @ X )
=> ( ( extract @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ ( nil @ A ) @ ( product_Pair @ A @ ( list @ A ) @ X @ Xs2 ) ) ) ) )
& ( ~ ( P @ X )
=> ( ( extract @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( case_option @ ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( none @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) )
@ ( product_case_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) )
@ ^ [Ys: list @ A] :
( product_case_prod @ A @ ( list @ A ) @ ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) )
@ ^ [Y6: A,Zs3: list @ A] : ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ ( cons @ A @ X @ Ys ) @ ( product_Pair @ A @ ( list @ A ) @ Y6 @ Zs3 ) ) ) ) )
@ ( extract @ A @ P @ Xs2 ) ) ) ) ) ).
% extract_Cons_code
thf(fact_7842_map__fst__zip__take,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) )
= ( take @ A @ ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys2 ) ) @ Xs2 ) ) ).
% map_fst_zip_take
thf(fact_7843_map__snd__zip__take,axiom,
! [B: $tType,A: $tType,Xs2: list @ B,Ys2: list @ A] :
( ( map @ ( product_prod @ B @ A ) @ A @ ( product_snd @ B @ A ) @ ( zip @ B @ A @ Xs2 @ Ys2 ) )
= ( take @ A @ ( ord_min @ nat @ ( size_size @ ( list @ B ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys2 ) ) @ Ys2 ) ) ).
% map_snd_zip_take
thf(fact_7844_Divides_Oadjust__div__def,axiom,
( adjust_div
= ( product_case_prod @ int @ int @ int
@ ^ [Q4: int,R5: int] :
( plus_plus @ int @ Q4
@ ( zero_neq_one_of_bool @ int
@ ( R5
!= ( zero_zero @ int ) ) ) ) ) ) ).
% Divides.adjust_div_def
thf(fact_7845_map__upt__eqI,axiom,
! [A: $tType,Xs2: list @ A,N: nat,M: nat,F2: nat > A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( minus_minus @ nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( F2 @ ( plus_plus @ nat @ M @ I2 ) ) ) )
=> ( ( map @ nat @ A @ F2 @ ( upt @ M @ N ) )
= Xs2 ) ) ) ).
% map_upt_eqI
thf(fact_7846_product__code,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( product_product @ A @ B @ ( set2 @ A @ Xs2 ) @ ( set2 @ B @ Ys2 ) )
= ( set2 @ ( product_prod @ A @ B )
@ ( concat @ ( product_prod @ A @ B )
@ ( map @ A @ ( list @ ( product_prod @ A @ B ) )
@ ^ [X6: A] : ( map @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X6 ) @ Ys2 )
@ Xs2 ) ) ) ) ).
% product_code
thf(fact_7847_transpose__rectangle,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),N: nat] :
( ( ( Xs2
= ( nil @ ( list @ A ) ) )
=> ( N
= ( zero_zero @ nat ) ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ I2 ) )
= N ) )
=> ( ( transpose @ A @ Xs2 )
= ( map @ nat @ ( list @ A )
@ ^ [I: nat] :
( map @ nat @ A
@ ^ [J2: nat] : ( nth @ A @ ( nth @ ( list @ A ) @ Xs2 @ J2 ) @ I )
@ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) ) )
@ ( upt @ ( zero_zero @ nat ) @ N ) ) ) ) ) ).
% transpose_rectangle
thf(fact_7848_transpose__map__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ ( list @ B )] :
( ( transpose @ A @ ( map @ ( list @ B ) @ ( list @ A ) @ ( map @ B @ A @ F2 ) @ Xs2 ) )
= ( map @ ( list @ B ) @ ( list @ A ) @ ( map @ B @ A @ F2 ) @ ( transpose @ B @ Xs2 ) ) ) ).
% transpose_map_map
thf(fact_7849_transpose_Osimps_I2_J,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( transpose @ A @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss ) )
= ( transpose @ A @ Xss ) ) ).
% transpose.simps(2)
thf(fact_7850_transpose_Osimps_I1_J,axiom,
! [A: $tType] :
( ( transpose @ A @ ( nil @ ( list @ A ) ) )
= ( nil @ ( list @ A ) ) ) ).
% transpose.simps(1)
thf(fact_7851_transpose__empty,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( ( transpose @ A @ Xs2 )
= ( nil @ ( list @ A ) ) )
= ( ! [X6: list @ A] :
( ( member @ ( list @ A ) @ X6 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( X6
= ( nil @ A ) ) ) ) ) ).
% transpose_empty
thf(fact_7852_transpose_Oelims,axiom,
! [A: $tType,X: list @ ( list @ A ),Y: list @ ( list @ A )] :
( ( ( transpose @ A @ X )
= Y )
=> ( ( ( X
= ( nil @ ( list @ A ) ) )
=> ( Y
!= ( nil @ ( list @ A ) ) ) )
=> ( ! [Xss2: list @ ( list @ A )] :
( ( X
= ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) )
=> ( Y
!= ( transpose @ A @ Xss2 ) ) )
=> ~ ! [X5: A,Xs3: list @ A,Xss2: list @ ( list @ A )] :
( ( X
= ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) )
=> ( Y
!= ( cons @ ( list @ A )
@ ( cons @ A @ X5
@ ( concat @ A
@ ( map @ ( list @ A ) @ ( list @ A )
@ ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [H: A,T3: list @ A] : ( cons @ A @ H @ ( nil @ A ) ) )
@ Xss2 ) ) )
@ ( transpose @ A
@ ( cons @ ( list @ A ) @ Xs3
@ ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss2 ) ) ) ) ) ) ) ) ) ) ).
% transpose.elims
thf(fact_7853_transpose_Osimps_I3_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,Xss: list @ ( list @ A )] :
( ( transpose @ A @ ( cons @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ Xss ) )
= ( cons @ ( list @ A )
@ ( cons @ A @ X
@ ( concat @ A
@ ( map @ ( list @ A ) @ ( list @ A )
@ ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [H: A,T3: list @ A] : ( cons @ A @ H @ ( nil @ A ) ) )
@ Xss ) ) )
@ ( transpose @ A
@ ( cons @ ( list @ A ) @ Xs2
@ ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss ) ) ) ) ) ) ).
% transpose.simps(3)
thf(fact_7854_transpose__aux__filter__tail,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss ) )
= ( map @ ( list @ A ) @ ( list @ A ) @ ( tl @ A )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] :
( Ys
!= ( nil @ A ) )
@ Xss ) ) ) ).
% transpose_aux_filter_tail
thf(fact_7855_transpose_Opsimps_I3_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,Xss: list @ ( list @ A )] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ Xss ) )
=> ( ( transpose @ A @ ( cons @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) @ Xss ) )
= ( cons @ ( list @ A )
@ ( cons @ A @ X
@ ( concat @ A
@ ( map @ ( list @ A ) @ ( list @ A )
@ ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [H: A,T3: list @ A] : ( cons @ A @ H @ ( nil @ A ) ) )
@ Xss ) ) )
@ ( transpose @ A
@ ( cons @ ( list @ A ) @ Xs2
@ ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss ) ) ) ) ) ) ) ).
% transpose.psimps(3)
thf(fact_7856_filter__filter,axiom,
! [A: $tType,P: A > $o,Q: A > $o,Xs2: list @ A] :
( ( filter2 @ A @ P @ ( filter2 @ A @ Q @ Xs2 ) )
= ( filter2 @ A
@ ^ [X6: A] :
( ( Q @ X6 )
& ( P @ X6 ) )
@ Xs2 ) ) ).
% filter_filter
thf(fact_7857_filter__True,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= Xs2 ) ) ).
% filter_True
thf(fact_7858_filter__append,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys2: list @ A] :
( ( filter2 @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( filter2 @ A @ P @ Xs2 ) @ ( filter2 @ A @ P @ Ys2 ) ) ) ).
% filter_append
thf(fact_7859_remove1__filter__not,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ~ ( P @ X )
=> ( ( remove1 @ A @ X @ ( filter2 @ A @ P @ Xs2 ) )
= ( filter2 @ A @ P @ Xs2 ) ) ) ).
% remove1_filter_not
thf(fact_7860_removeAll__filter__not,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ~ ( P @ X )
=> ( ( removeAll @ A @ X @ ( filter2 @ A @ P @ Xs2 ) )
= ( filter2 @ A @ P @ Xs2 ) ) ) ).
% removeAll_filter_not
thf(fact_7861_set__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) )
= ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) ) ) ).
% set_filter
thf(fact_7862_filter__False,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X5 ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= ( nil @ A ) ) ) ).
% filter_False
thf(fact_7863_length__filter__map,axiom,
! [A: $tType,B: $tType,P: A > $o,F2: B > A,Xs2: list @ B] :
( ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ ( map @ B @ A @ F2 @ Xs2 ) ) )
= ( size_size @ ( list @ B ) @ ( filter2 @ B @ ( comp @ A @ $o @ B @ P @ F2 ) @ Xs2 ) ) ) ).
% length_filter_map
thf(fact_7864_distinct__map__filter,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,P: B > $o] :
( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( distinct @ A @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) ) ) ).
% distinct_map_filter
thf(fact_7865_filter__concat,axiom,
! [A: $tType,P2: A > $o,Xs2: list @ ( list @ A )] :
( ( filter2 @ A @ P2 @ ( concat @ A @ Xs2 ) )
= ( concat @ A @ ( map @ ( list @ A ) @ ( list @ A ) @ ( filter2 @ A @ P2 ) @ Xs2 ) ) ) ).
% filter_concat
thf(fact_7866_filter__map,axiom,
! [A: $tType,B: $tType,P: A > $o,F2: B > A,Xs2: list @ B] :
( ( filter2 @ A @ P @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( filter2 @ B @ ( comp @ A @ $o @ B @ P @ F2 ) @ Xs2 ) ) ) ).
% filter_map
thf(fact_7867_inj__on__filter__key__eq,axiom,
! [B: $tType,A: $tType,F2: A > B,Y: A,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( insert @ A @ Y @ ( set2 @ A @ Xs2 ) ) )
=> ( ( filter2 @ A
@ ^ [X6: A] :
( ( F2 @ Y )
= ( F2 @ X6 ) )
@ Xs2 )
= ( filter2 @ A
@ ( ^ [Y3: A,Z: A] : ( Y3 = Z )
@ Y )
@ Xs2 ) ) ) ).
% inj_on_filter_key_eq
thf(fact_7868_distinct__filter,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( filter2 @ A @ P @ Xs2 ) ) ) ).
% distinct_filter
thf(fact_7869_filter__in__nths,axiom,
! [A: $tType,Xs2: list @ A,S: set @ nat] :
( ( distinct @ A @ Xs2 )
=> ( ( filter2 @ A
@ ^ [X6: A] : ( member @ A @ X6 @ ( set2 @ A @ ( nths @ A @ Xs2 @ S ) ) )
@ Xs2 )
= ( nths @ A @ Xs2 @ S ) ) ) ).
% filter_in_nths
thf(fact_7870_transpose_Opsimps_I2_J,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss ) )
=> ( ( transpose @ A @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss ) )
= ( transpose @ A @ Xss ) ) ) ).
% transpose.psimps(2)
thf(fact_7871_transpose_Opsimps_I1_J,axiom,
! [A: $tType] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( nil @ ( list @ A ) ) )
=> ( ( transpose @ A @ ( nil @ ( list @ A ) ) )
= ( nil @ ( list @ A ) ) ) ) ).
% transpose.psimps(1)
thf(fact_7872_filter__shuffles,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys2: list @ A] :
( ( image @ ( list @ A ) @ ( list @ A ) @ ( filter2 @ A @ P ) @ ( shuffles @ A @ Xs2 @ Ys2 ) )
= ( shuffles @ A @ ( filter2 @ A @ P @ Xs2 ) @ ( filter2 @ A @ P @ Ys2 ) ) ) ).
% filter_shuffles
thf(fact_7873_filter_Osimps_I1_J,axiom,
! [A: $tType,P: A > $o] :
( ( filter2 @ A @ P @ ( nil @ A ) )
= ( nil @ A ) ) ).
% filter.simps(1)
thf(fact_7874_filter__insort__triv,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [P: B > $o,X: B,F2: B > A,Xs2: list @ B] :
( ~ ( P @ X )
=> ( ( filter2 @ B @ P @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( filter2 @ B @ P @ Xs2 ) ) ) ) ).
% filter_insort_triv
thf(fact_7875_partition__in__shuffles,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( member @ ( list @ A ) @ Xs2
@ ( shuffles @ A @ ( filter2 @ A @ P @ Xs2 )
@ ( filter2 @ A
@ ^ [X6: A] :
~ ( P @ X6 )
@ Xs2 ) ) ) ).
% partition_in_shuffles
thf(fact_7876_filter__remove1,axiom,
! [A: $tType,Q: A > $o,X: A,Xs2: list @ A] :
( ( filter2 @ A @ Q @ ( remove1 @ A @ X @ Xs2 ) )
= ( remove1 @ A @ X @ ( filter2 @ A @ Q @ Xs2 ) ) ) ).
% filter_remove1
thf(fact_7877_removeAll__filter__not__eq,axiom,
! [A: $tType] :
( ( removeAll @ A )
= ( ^ [X6: A] :
( filter2 @ A
@ ^ [Y6: A] : ( X6 != Y6 ) ) ) ) ).
% removeAll_filter_not_eq
thf(fact_7878_filter_Osimps_I2_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ( ( P @ X )
=> ( ( filter2 @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( filter2 @ A @ P @ Xs2 ) ) ) )
& ( ~ ( P @ X )
=> ( ( filter2 @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( filter2 @ A @ P @ Xs2 ) ) ) ) ).
% filter.simps(2)
thf(fact_7879_filter__replicate,axiom,
! [A: $tType,P: A > $o,X: A,N: nat] :
( ( ( P @ X )
=> ( ( filter2 @ A @ P @ ( replicate @ A @ N @ X ) )
= ( replicate @ A @ N @ X ) ) )
& ( ~ ( P @ X )
=> ( ( filter2 @ A @ P @ ( replicate @ A @ N @ X ) )
= ( nil @ A ) ) ) ) ).
% filter_replicate
thf(fact_7880_filter__is__subset,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% filter_is_subset
thf(fact_7881_replicate__length__filter,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( replicate @ A
@ ( size_size @ ( list @ A )
@ ( filter2 @ A
@ ( ^ [Y3: A,Z: A] : ( Y3 = Z )
@ X )
@ Xs2 ) )
@ X )
= ( filter2 @ A
@ ( ^ [Y3: A,Z: A] : ( Y3 = Z )
@ X )
@ Xs2 ) ) ).
% replicate_length_filter
thf(fact_7882_filter__eq__Cons__iff,axiom,
! [A: $tType,P: A > $o,Ys2: list @ A,X: A,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Ys2 )
= ( cons @ A @ X @ Xs2 ) )
= ( ? [Us2: list @ A,Vs2: list @ A] :
( ( Ys2
= ( append @ A @ Us2 @ ( cons @ A @ X @ Vs2 ) ) )
& ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Us2 ) )
=> ~ ( P @ X6 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs2 ) ) ) ) ) ).
% filter_eq_Cons_iff
thf(fact_7883_Cons__eq__filter__iff,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( ( cons @ A @ X @ Xs2 )
= ( filter2 @ A @ P @ Ys2 ) )
= ( ? [Us2: list @ A,Vs2: list @ A] :
( ( Ys2
= ( append @ A @ Us2 @ ( cons @ A @ X @ Vs2 ) ) )
& ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Us2 ) )
=> ~ ( P @ X6 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs2 ) ) ) ) ) ).
% Cons_eq_filter_iff
thf(fact_7884_filter__eq__ConsD,axiom,
! [A: $tType,P: A > $o,Ys2: list @ A,X: A,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Ys2 )
= ( cons @ A @ X @ Xs2 ) )
=> ? [Us3: list @ A,Vs3: list @ A] :
( ( Ys2
= ( append @ A @ Us3 @ ( cons @ A @ X @ Vs3 ) ) )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Us3 ) )
=> ~ ( P @ X3 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs3 ) ) ) ) ).
% filter_eq_ConsD
thf(fact_7885_Cons__eq__filterD,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( ( cons @ A @ X @ Xs2 )
= ( filter2 @ A @ P @ Ys2 ) )
=> ? [Us3: list @ A,Vs3: list @ A] :
( ( Ys2
= ( append @ A @ Us3 @ ( cons @ A @ X @ Vs3 ) ) )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Us3 ) )
=> ~ ( P @ X3 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs3 ) ) ) ) ).
% Cons_eq_filterD
thf(fact_7886_filter__empty__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Xs2 )
= ( nil @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X6 ) ) ) ) ).
% filter_empty_conv
thf(fact_7887_empty__filter__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( nil @ A )
= ( filter2 @ A @ P @ Xs2 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X6 ) ) ) ) ).
% empty_filter_conv
thf(fact_7888_filter__set,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( filter3 @ A @ P @ ( set2 @ A @ Xs2 ) )
= ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) ) ) ).
% filter_set
thf(fact_7889_filter__id__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Xs2 )
= Xs2 )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X6 ) ) ) ) ).
% filter_id_conv
thf(fact_7890_filter__cong,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,P: A > $o,Q: A > $o] :
( ( Xs2 = Ys2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Ys2 ) )
=> ( ( P @ X5 )
= ( Q @ X5 ) ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= ( filter2 @ A @ Q @ Ys2 ) ) ) ) ).
% filter_cong
thf(fact_7891_length__filter__less,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% length_filter_less
thf(fact_7892_sum__length__filter__compl,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) )
@ ( size_size @ ( list @ A )
@ ( filter2 @ A
@ ^ [X6: A] :
~ ( P @ X6 )
@ Xs2 ) ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% sum_length_filter_compl
thf(fact_7893_remdups__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( remdups @ A @ ( filter2 @ A @ P @ Xs2 ) )
= ( filter2 @ A @ P @ ( remdups @ A @ Xs2 ) ) ) ).
% remdups_filter
thf(fact_7894_length__filter__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_filter_le
thf(fact_7895_inter__set__filter,axiom,
! [A: $tType,A3: set @ A,Xs2: list @ A] :
( ( inf_inf @ ( set @ A ) @ A3 @ ( set2 @ A @ Xs2 ) )
= ( set2 @ A
@ ( filter2 @ A
@ ^ [X6: A] : ( member @ A @ X6 @ A3 )
@ Xs2 ) ) ) ).
% inter_set_filter
thf(fact_7896_set__minus__filter__out,axiom,
! [A: $tType,Xs2: list @ A,Y: A] :
( ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert @ A @ Y @ ( bot_bot @ ( set @ A ) ) ) )
= ( set2 @ A
@ ( filter2 @ A
@ ^ [X6: A] : ( X6 != Y )
@ Xs2 ) ) ) ).
% set_minus_filter_out
thf(fact_7897_filter__shuffles__disjoint2_I1_J,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( filter2 @ A
@ ^ [X6: A] : ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
@ Zs2 )
= Ys2 ) ) ) ).
% filter_shuffles_disjoint2(1)
thf(fact_7898_filter__shuffles__disjoint2_I2_J,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( filter2 @ A
@ ^ [X6: A] :
~ ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
@ Zs2 )
= Xs2 ) ) ) ).
% filter_shuffles_disjoint2(2)
thf(fact_7899_filter__shuffles__disjoint1_I1_J,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( filter2 @ A
@ ^ [X6: A] : ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
@ Zs2 )
= Xs2 ) ) ) ).
% filter_shuffles_disjoint1(1)
thf(fact_7900_filter__shuffles__disjoint1_I2_J,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,Zs2: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys2 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs2 @ ( shuffles @ A @ Xs2 @ Ys2 ) )
=> ( ( filter2 @ A
@ ^ [X6: A] :
~ ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
@ Zs2 )
= Ys2 ) ) ) ).
% filter_shuffles_disjoint1(2)
thf(fact_7901_filter__eq__nths,axiom,
! [A: $tType] :
( ( filter2 @ A )
= ( ^ [P4: A > $o,Xs: list @ A] :
( nths @ A @ Xs
@ ( collect @ nat
@ ^ [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs ) )
& ( P4 @ ( nth @ A @ Xs @ I ) ) ) ) ) ) ) ).
% filter_eq_nths
thf(fact_7902_length__filter__conv__card,axiom,
! [A: $tType,P2: A > $o,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( filter2 @ A @ P2 @ Xs2 ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P2 @ ( nth @ A @ Xs2 @ I ) ) ) ) ) ) ).
% length_filter_conv_card
thf(fact_7903_distinct__length__filter,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( distinct @ A @ Xs2 )
=> ( ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) )
= ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ ( collect @ A @ P ) @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% distinct_length_filter
thf(fact_7904_transpose_Opinduct,axiom,
! [A: $tType,A0: list @ ( list @ A ),P: ( list @ ( list @ A ) ) > $o] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ A0 )
=> ( ( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( nil @ ( list @ A ) ) )
=> ( P @ ( nil @ ( list @ A ) ) ) )
=> ( ! [Xss2: list @ ( list @ A )] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) )
=> ( ( P @ Xss2 )
=> ( P @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) ) ) )
=> ( ! [X5: A,Xs3: list @ A,Xss2: list @ ( list @ A )] :
( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) )
=> ( ( P
@ ( cons @ ( list @ A ) @ Xs3
@ ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss2 ) ) ) )
=> ( P @ ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) ) ) )
=> ( P @ A0 ) ) ) ) ) ).
% transpose.pinduct
thf(fact_7905_transpose__aux__filter__head,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( concat @ A
@ ( map @ ( list @ A ) @ ( list @ A )
@ ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [H: A,T3: list @ A] : ( cons @ A @ H @ ( nil @ A ) ) )
@ Xss ) )
= ( map @ ( list @ A ) @ A @ ( hd @ A )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] :
( Ys
!= ( nil @ A ) )
@ Xss ) ) ) ).
% transpose_aux_filter_head
thf(fact_7906_nth__transpose,axiom,
! [A: $tType,I3: nat,Xs2: list @ ( list @ A )] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) )
=> ( ( nth @ ( list @ A ) @ ( transpose @ A @ Xs2 ) @ I3 )
= ( map @ ( list @ A ) @ A
@ ^ [Xs: list @ A] : ( nth @ A @ Xs @ I3 )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] : ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Ys ) )
@ Xs2 ) ) ) ) ).
% nth_transpose
thf(fact_7907_transpose_Opelims,axiom,
! [A: $tType,X: list @ ( list @ A ),Y: list @ ( list @ A )] :
( ( ( transpose @ A @ X )
= Y )
=> ( ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ X )
=> ( ( ( X
= ( nil @ ( list @ A ) ) )
=> ( ( Y
= ( nil @ ( list @ A ) ) )
=> ~ ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( nil @ ( list @ A ) ) ) ) )
=> ( ! [Xss2: list @ ( list @ A )] :
( ( X
= ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) )
=> ( ( Y
= ( transpose @ A @ Xss2 ) )
=> ~ ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( nil @ A ) @ Xss2 ) ) ) )
=> ~ ! [X5: A,Xs3: list @ A,Xss2: list @ ( list @ A )] :
( ( X
= ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) )
=> ( ( Y
= ( cons @ ( list @ A )
@ ( cons @ A @ X5
@ ( concat @ A
@ ( map @ ( list @ A ) @ ( list @ A )
@ ( case_list @ ( list @ A ) @ A @ ( nil @ A )
@ ^ [H: A,T3: list @ A] : ( cons @ A @ H @ ( nil @ A ) ) )
@ Xss2 ) ) )
@ ( transpose @ A
@ ( cons @ ( list @ A ) @ Xs3
@ ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ( case_list @ ( list @ ( list @ A ) ) @ A @ ( nil @ ( list @ A ) )
@ ^ [H: A,T3: list @ A] : ( cons @ ( list @ A ) @ T3 @ ( nil @ ( list @ A ) ) ) )
@ Xss2 ) ) ) ) ) )
=> ~ ( accp @ ( list @ ( list @ A ) ) @ ( transpose_rel @ A ) @ ( cons @ ( list @ A ) @ ( cons @ A @ X5 @ Xs3 ) @ Xss2 ) ) ) ) ) ) ) ) ).
% transpose.pelims
thf(fact_7908_min__list_Opelims,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: list @ A,Y: A] :
( ( ( min_list @ A @ X )
= Y )
=> ( ( accp @ ( list @ A ) @ ( min_list_rel @ A ) @ X )
=> ( ! [X5: A,Xs3: list @ A] :
( ( X
= ( cons @ A @ X5 @ Xs3 ) )
=> ( ( Y
= ( case_list @ A @ A @ X5
@ ^ [A4: A,List2: list @ A] : ( ord_min @ A @ X5 @ ( min_list @ A @ Xs3 ) )
@ Xs3 ) )
=> ~ ( accp @ ( list @ A ) @ ( min_list_rel @ A ) @ ( cons @ A @ X5 @ Xs3 ) ) ) )
=> ~ ( ( X
= ( nil @ A ) )
=> ( ( Y
= ( undefined @ A ) )
=> ~ ( accp @ ( list @ A ) @ ( min_list_rel @ A ) @ ( nil @ A ) ) ) ) ) ) ) ) ).
% min_list.pelims
thf(fact_7909_map__filter__def,axiom,
! [B: $tType,A: $tType] :
( ( map_filter @ A @ B )
= ( ^ [F6: A > ( option @ B ),Xs: list @ A] :
( map @ A @ B @ ( comp @ ( option @ B ) @ B @ A @ ( the2 @ B ) @ F6 )
@ ( filter2 @ A
@ ^ [X6: A] :
( ( F6 @ X6 )
!= ( none @ B ) )
@ Xs ) ) ) ) ).
% map_filter_def
thf(fact_7910_map__filter__simps_I2_J,axiom,
! [B: $tType,A: $tType,F2: B > ( option @ A )] :
( ( map_filter @ B @ A @ F2 @ ( nil @ B ) )
= ( nil @ A ) ) ).
% map_filter_simps(2)
thf(fact_7911_map__filter__simps_I1_J,axiom,
! [A: $tType,B: $tType,F2: B > ( option @ A ),X: B,Xs2: list @ B] :
( ( map_filter @ B @ A @ F2 @ ( cons @ B @ X @ Xs2 ) )
= ( case_option @ ( list @ A ) @ A @ ( map_filter @ B @ A @ F2 @ Xs2 )
@ ^ [Y6: A] : ( cons @ A @ Y6 @ ( map_filter @ B @ A @ F2 @ Xs2 ) )
@ ( F2 @ X ) ) ) ).
% map_filter_simps(1)
thf(fact_7912_nths__shift__lemma__Suc,axiom,
! [A: $tType,P: nat > $o,Xs2: list @ A,Is: list @ nat] :
( ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( P @ ( suc @ ( product_snd @ A @ nat @ P5 ) ) )
@ ( zip @ A @ nat @ Xs2 @ Is ) ) )
= ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( P @ ( product_snd @ A @ nat @ P5 ) )
@ ( zip @ A @ nat @ Xs2 @ ( map @ nat @ nat @ suc @ Is ) ) ) ) ) ).
% nths_shift_lemma_Suc
thf(fact_7913_nths__shift__lemma,axiom,
! [A: $tType,A3: set @ nat,Xs2: list @ A,I3: nat] :
( ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( product_snd @ A @ nat @ P5 ) @ A3 )
@ ( zip @ A @ nat @ Xs2 @ ( upt @ I3 @ ( plus_plus @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) )
= ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( plus_plus @ nat @ ( product_snd @ A @ nat @ P5 ) @ I3 ) @ A3 )
@ ( zip @ A @ nat @ Xs2 @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% nths_shift_lemma
thf(fact_7914_nths__def,axiom,
! [A: $tType] :
( ( nths @ A )
= ( ^ [Xs: list @ A,A7: set @ nat] :
( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( product_snd @ A @ nat @ P5 ) @ A7 )
@ ( zip @ A @ nat @ Xs @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs ) ) ) ) ) ) ) ).
% nths_def
thf(fact_7915_map__filter__map__filter,axiom,
! [A: $tType,B: $tType,F2: B > A,P: B > $o,Xs2: list @ B] :
( ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) )
= ( map_filter @ B @ A
@ ^ [X6: B] : ( if @ ( option @ A ) @ ( P @ X6 ) @ ( some @ A @ ( F2 @ X6 ) ) @ ( none @ A ) )
@ Xs2 ) ) ).
% map_filter_map_filter
thf(fact_7916_remdups__adj_Opelims,axiom,
! [A: $tType,X: list @ A,Y: list @ A] :
( ( ( remdups_adj @ A @ X )
= Y )
=> ( ( accp @ ( list @ A ) @ ( remdups_adj_rel @ A ) @ X )
=> ( ( ( X
= ( nil @ A ) )
=> ( ( Y
= ( nil @ A ) )
=> ~ ( accp @ ( list @ A ) @ ( remdups_adj_rel @ A ) @ ( nil @ A ) ) ) )
=> ( ! [X5: A] :
( ( X
= ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ( ( Y
= ( cons @ A @ X5 @ ( nil @ A ) ) )
=> ~ ( accp @ ( list @ A ) @ ( remdups_adj_rel @ A ) @ ( cons @ A @ X5 @ ( nil @ A ) ) ) ) )
=> ~ ! [X5: A,Y5: A,Xs3: list @ A] :
( ( X
= ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Xs3 ) ) )
=> ( ( ( ( X5 = Y5 )
=> ( Y
= ( remdups_adj @ A @ ( cons @ A @ X5 @ Xs3 ) ) ) )
& ( ( X5 != Y5 )
=> ( Y
= ( cons @ A @ X5 @ ( remdups_adj @ A @ ( cons @ A @ Y5 @ Xs3 ) ) ) ) ) )
=> ~ ( accp @ ( list @ A ) @ ( remdups_adj_rel @ A ) @ ( cons @ A @ X5 @ ( cons @ A @ Y5 @ Xs3 ) ) ) ) ) ) ) ) ) ).
% remdups_adj.pelims
thf(fact_7917_transpose__max__length,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( foldr @ ( list @ A ) @ nat
@ ^ [Xs: list @ A] : ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs ) )
@ ( transpose @ A @ Xs2 )
@ ( zero_zero @ nat ) )
= ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [X6: list @ A] :
( X6
!= ( nil @ A ) )
@ Xs2 ) ) ) ).
% transpose_max_length
thf(fact_7918_foldr__append,axiom,
! [B: $tType,A: $tType,F2: B > A > A,Xs2: list @ B,Ys2: list @ B,A2: A] :
( ( foldr @ B @ A @ F2 @ ( append @ B @ Xs2 @ Ys2 ) @ A2 )
= ( foldr @ B @ A @ F2 @ Xs2 @ ( foldr @ B @ A @ F2 @ Ys2 @ A2 ) ) ) ).
% foldr_append
thf(fact_7919_foldr__replicate,axiom,
! [A: $tType,B: $tType,F2: B > A > A,N: nat,X: B] :
( ( foldr @ B @ A @ F2 @ ( replicate @ B @ N @ X ) )
= ( compow @ ( A > A ) @ N @ ( F2 @ X ) ) ) ).
% foldr_replicate
thf(fact_7920_foldr__Cons,axiom,
! [B: $tType,A: $tType,F2: A > B > B,X: A,Xs2: list @ A] :
( ( foldr @ A @ B @ F2 @ ( cons @ A @ X @ Xs2 ) )
= ( comp @ B @ B @ B @ ( F2 @ X ) @ ( foldr @ A @ B @ F2 @ Xs2 ) ) ) ).
% foldr_Cons
thf(fact_7921_foldr__map,axiom,
! [C: $tType,B: $tType,A: $tType,G: B > A > A,F2: C > B,Xs2: list @ C,A2: A] :
( ( foldr @ B @ A @ G @ ( map @ C @ B @ F2 @ Xs2 ) @ A2 )
= ( foldr @ C @ A @ ( comp @ B @ ( A > A ) @ C @ G @ F2 ) @ Xs2 @ A2 ) ) ).
% foldr_map
thf(fact_7922_foldr__cong,axiom,
! [B: $tType,A: $tType,A2: A,B2: A,L: list @ B,K: list @ B,F2: B > A > A,G: B > A > A] :
( ( A2 = B2 )
=> ( ( L = K )
=> ( ! [A6: A,X5: B] :
( ( member @ B @ X5 @ ( set2 @ B @ L ) )
=> ( ( F2 @ X5 @ A6 )
= ( G @ X5 @ A6 ) ) )
=> ( ( foldr @ B @ A @ F2 @ L @ A2 )
= ( foldr @ B @ A @ G @ K @ B2 ) ) ) ) ) ).
% foldr_cong
thf(fact_7923_horner__sum__foldr,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F6: B > A,A4: A,Xs: list @ B] :
( foldr @ B @ A
@ ^ [X6: B,B4: A] : ( plus_plus @ A @ ( F6 @ X6 ) @ ( times_times @ A @ A4 @ B4 ) )
@ Xs
@ ( zero_zero @ A ) ) ) ) ) ).
% horner_sum_foldr
thf(fact_7924_length__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( foldr @ ( list @ A ) @ nat
@ ^ [Xs: list @ A] : ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs ) )
@ Xs2
@ ( zero_zero @ nat ) ) ) ).
% length_transpose
thf(fact_7925_transpose__aux__max,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Xss: list @ ( list @ B )] :
( ( ord_max @ nat @ ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) )
@ ( foldr @ ( list @ B ) @ nat
@ ^ [Xs: list @ B] : ( ord_max @ nat @ ( size_size @ ( list @ B ) @ Xs ) )
@ Xss
@ ( zero_zero @ nat ) ) )
= ( suc
@ ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs2 )
@ ( foldr @ ( list @ B ) @ nat
@ ^ [X6: list @ B] : ( ord_max @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ B ) @ X6 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( filter2 @ ( list @ B )
@ ^ [Ys: list @ B] :
( Ys
!= ( nil @ B ) )
@ Xss )
@ ( zero_zero @ nat ) ) ) ) ) ).
% transpose_aux_max
thf(fact_7926_set__relcomp,axiom,
! [B: $tType,C: $tType,A: $tType,Xys2: list @ ( product_prod @ A @ C ),Yzs: list @ ( product_prod @ C @ B )] :
( ( relcomp @ A @ C @ B @ ( set2 @ ( product_prod @ A @ C ) @ Xys2 ) @ ( set2 @ ( product_prod @ C @ B ) @ Yzs ) )
= ( set2 @ ( product_prod @ A @ B )
@ ( concat @ ( product_prod @ A @ B )
@ ( map @ ( product_prod @ A @ C ) @ ( list @ ( product_prod @ A @ B ) )
@ ^ [Xy2: product_prod @ A @ C] :
( concat @ ( product_prod @ A @ B )
@ ( map @ ( product_prod @ C @ B ) @ ( list @ ( product_prod @ A @ B ) )
@ ^ [Yz: product_prod @ C @ B] :
( if @ ( list @ ( product_prod @ A @ B ) )
@ ( ( product_snd @ A @ C @ Xy2 )
= ( product_fst @ C @ B @ Yz ) )
@ ( cons @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ ( product_fst @ A @ C @ Xy2 ) @ ( product_snd @ C @ B @ Yz ) ) @ ( nil @ ( product_prod @ A @ B ) ) )
@ ( nil @ ( product_prod @ A @ B ) ) )
@ Yzs ) )
@ Xys2 ) ) ) ) ).
% set_relcomp
thf(fact_7927_sum__list__map__eq__sum__count2,axiom,
! [A: $tType,Xs2: list @ A,X9: set @ A,F2: A > nat] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ X9 )
=> ( ( finite_finite @ A @ X9 )
=> ( ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X6: A] : ( times_times @ nat @ ( count_list @ A @ Xs2 @ X6 ) @ ( F2 @ X6 ) )
@ X9 ) ) ) ) ).
% sum_list_map_eq_sum_count2
thf(fact_7928_relcomp__empty2,axiom,
! [C: $tType,B: $tType,A: $tType,R3: set @ ( product_prod @ A @ C )] :
( ( relcomp @ A @ C @ B @ R3 @ ( bot_bot @ ( set @ ( product_prod @ C @ B ) ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ).
% relcomp_empty2
thf(fact_7929_relcomp__empty1,axiom,
! [C: $tType,B: $tType,A: $tType,R3: set @ ( product_prod @ C @ B )] :
( ( relcomp @ A @ C @ B @ ( bot_bot @ ( set @ ( product_prod @ A @ C ) ) ) @ R3 )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ).
% relcomp_empty1
thf(fact_7930_sum__list_ONil,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( ( groups8242544230860333062m_list @ A @ ( nil @ A ) )
= ( zero_zero @ A ) ) ) ).
% sum_list.Nil
thf(fact_7931_sum__list__eq__0__iff,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [Ns: list @ A] :
( ( ( groups8242544230860333062m_list @ A @ Ns )
= ( zero_zero @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Ns ) )
=> ( X6
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum_list_eq_0_iff
thf(fact_7932_sum__list_OCons,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [X: A,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ A @ ( cons @ A @ X @ Xs2 ) )
= ( plus_plus @ A @ X @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% sum_list.Cons
thf(fact_7933_sum__list__append,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ A,Ys2: list @ A] :
( ( groups8242544230860333062m_list @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ ( groups8242544230860333062m_list @ A @ Ys2 ) ) ) ) ).
% sum_list_append
thf(fact_7934_sum__list__0,axiom,
! [B: $tType,A: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X6: B] : ( zero_zero @ A )
@ Xs2 ) )
= ( zero_zero @ A ) ) ) ).
% sum_list_0
thf(fact_7935_sum__list__const__mult,axiom,
! [A: $tType,B: $tType] :
( ( semiring_0 @ A )
=> ! [C2: A,F2: B > A,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X6: B] : ( times_times @ A @ C2 @ ( F2 @ X6 ) )
@ Xs2 ) )
= ( times_times @ A @ C2 @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ) ).
% sum_list_const_mult
thf(fact_7936_sum__list__mult__const,axiom,
! [B: $tType,A: $tType] :
( ( semiring_0 @ A )
=> ! [F2: B > A,C2: A,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X6: B] : ( times_times @ A @ ( F2 @ X6 ) @ C2 )
@ Xs2 ) )
= ( times_times @ A @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) @ C2 ) ) ) ).
% sum_list_mult_const
thf(fact_7937_sum__list__addf,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: B > A,G: B > A,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X6: B] : ( plus_plus @ A @ ( F2 @ X6 ) @ ( G @ X6 ) )
@ Xs2 ) )
= ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ Xs2 ) ) ) ) ) ).
% sum_list_addf
thf(fact_7938_length__concat,axiom,
! [B: $tType,Xss: list @ ( list @ B )] :
( ( size_size @ ( list @ B ) @ ( concat @ B @ Xss ) )
= ( groups8242544230860333062m_list @ nat @ ( map @ ( list @ B ) @ nat @ ( size_size @ ( list @ B ) ) @ Xss ) ) ) ).
% length_concat
thf(fact_7939_sum__list_Oeq__foldr,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( ( groups8242544230860333062m_list @ A )
= ( ^ [Xs: list @ A] : ( foldr @ A @ A @ ( plus_plus @ A ) @ Xs @ ( zero_zero @ A ) ) ) ) ) ).
% sum_list.eq_foldr
thf(fact_7940_Groups__List_Osum__list__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ X5 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% Groups_List.sum_list_nonneg
thf(fact_7941_sum__list__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ X5 ) )
=> ( ( ( groups8242544230860333062m_list @ A @ Xs2 )
= ( zero_zero @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( X6
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_list_nonneg_eq_0_iff
thf(fact_7942_sum__list__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X5 @ ( zero_zero @ A ) ) )
=> ( ord_less_eq @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ ( zero_zero @ A ) ) ) ) ).
% sum_list_nonpos
thf(fact_7943_member__le__sum__list,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% member_le_sum_list
thf(fact_7944_sum__list__replicate,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat,C2: A] :
( ( groups8242544230860333062m_list @ A @ ( replicate @ A @ N @ C2 ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ C2 ) ) ) ).
% sum_list_replicate
thf(fact_7945_union__comp__emptyR,axiom,
! [A: $tType,A3: set @ ( product_prod @ A @ A ),B3: set @ ( product_prod @ A @ A ),C4: set @ ( product_prod @ A @ A )] :
( ( ( relcomp @ A @ A @ A @ A3 @ B3 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( ( relcomp @ A @ A @ A @ A3 @ C4 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( relcomp @ A @ A @ A @ A3 @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ B3 @ C4 ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ) ).
% union_comp_emptyR
thf(fact_7946_union__comp__emptyL,axiom,
! [A: $tType,A3: set @ ( product_prod @ A @ A ),C4: set @ ( product_prod @ A @ A ),B3: set @ ( product_prod @ A @ A )] :
( ( ( relcomp @ A @ A @ A @ A3 @ C4 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( ( relcomp @ A @ A @ A @ B3 @ C4 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( relcomp @ A @ A @ A @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ A3 @ B3 ) @ C4 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ) ).
% union_comp_emptyL
thf(fact_7947_relpow__add,axiom,
! [A: $tType,M: nat,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( plus_plus @ nat @ M @ N ) @ R3 )
= ( relcomp @ A @ A @ A @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M @ R3 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) ) ) ).
% relpow_add
thf(fact_7948_relpow_Osimps_I2_J,axiom,
! [A: $tType,N: nat,R3: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N ) @ R3 )
= ( relcomp @ A @ A @ A @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N @ R3 ) @ R3 ) ) ).
% relpow.simps(2)
thf(fact_7949_sum__list__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( monoid_add @ B )
& ( ordere6658533253407199908up_add @ B ) )
=> ! [Xs2: list @ A,F2: A > B,G: A > B] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ B @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less_eq @ B @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ G @ Xs2 ) ) ) ) ) ).
% sum_list_mono
thf(fact_7950_sum__list__map__filter_H,axiom,
! [A: $tType,B: $tType] :
( ( monoid_add @ A )
=> ! [F2: B > A,P: B > $o,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) )
= ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X6: B] : ( if @ A @ ( P @ X6 ) @ ( F2 @ X6 ) @ ( zero_zero @ A ) )
@ Xs2 ) ) ) ) ).
% sum_list_map_filter'
thf(fact_7951_distinct__sum__list__conv__Sum,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( groups8242544230860333062m_list @ A @ Xs2 )
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X6: A] : X6
@ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% distinct_sum_list_conv_Sum
thf(fact_7952_concat__conv__foldr,axiom,
! [A: $tType] :
( ( concat @ A )
= ( ^ [Xss3: list @ ( list @ A )] : ( foldr @ ( list @ A ) @ ( list @ A ) @ ( append @ A ) @ Xss3 @ ( nil @ A ) ) ) ) ).
% concat_conv_foldr
thf(fact_7953_elem__le__sum__list,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [K: nat,Ns: list @ A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Ns ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Ns @ K ) @ ( groups8242544230860333062m_list @ A @ Ns ) ) ) ) ).
% elem_le_sum_list
thf(fact_7954_sum__list__strict__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( monoid_add @ B )
& ( strict9044650504122735259up_add @ B ) )
=> ! [Xs2: list @ A,F2: A > B,G: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ B @ ( F2 @ X5 ) @ ( G @ X5 ) ) )
=> ( ord_less @ B @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ G @ Xs2 ) ) ) ) ) ) ).
% sum_list_strict_mono
thf(fact_7955_sum__list__map__filter,axiom,
! [A: $tType,B: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ B,P: B > $o,F2: B > A] :
( ! [X5: B] :
( ( member @ B @ X5 @ ( set2 @ B @ Xs2 ) )
=> ( ~ ( P @ X5 )
=> ( ( F2 @ X5 )
= ( zero_zero @ A ) ) ) )
=> ( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ) ).
% sum_list_map_filter
thf(fact_7956_sum__list__distinct__conv__sum__set,axiom,
! [C: $tType,B: $tType] :
( ( comm_monoid_add @ C )
=> ! [Xs2: list @ B,F2: B > C] :
( ( distinct @ B @ Xs2 )
=> ( ( groups8242544230860333062m_list @ C @ ( map @ B @ C @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ B @ C @ F2 @ ( set2 @ B @ Xs2 ) ) ) ) ) ).
% sum_list_distinct_conv_sum_set
thf(fact_7957_sum_Odistinct__set__conv__list,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [Xs2: list @ B,G: B > A] :
( ( distinct @ B @ Xs2 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ Xs2 ) ) ) ) ) ).
% sum.distinct_set_conv_list
thf(fact_7958_sum__list__map__remove1,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [X: B,Xs2: list @ B,F2: B > A] :
( ( member @ B @ X @ ( set2 @ B @ Xs2 ) )
=> ( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( plus_plus @ A @ ( F2 @ X ) @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( remove1 @ B @ X @ Xs2 ) ) ) ) ) ) ) ).
% sum_list_map_remove1
thf(fact_7959_sum__code,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,Xs2: list @ B] :
( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ ( remdups @ B @ Xs2 ) ) ) ) ) ).
% sum_code
thf(fact_7960_size__list__conv__sum__list,axiom,
! [B: $tType] :
( ( size_list @ B )
= ( ^ [F6: B > nat,Xs: list @ B] : ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ ( map @ B @ nat @ F6 @ Xs ) ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ).
% size_list_conv_sum_list
thf(fact_7961_relcomp__fold,axiom,
! [C: $tType,B: $tType,A: $tType,R3: set @ ( product_prod @ A @ B ),S3: set @ ( product_prod @ B @ C )] :
( ( finite_finite @ ( product_prod @ A @ B ) @ R3 )
=> ( ( finite_finite @ ( product_prod @ B @ C ) @ S3 )
=> ( ( relcomp @ A @ B @ C @ R3 @ S3 )
= ( finite_fold @ ( product_prod @ A @ B ) @ ( set @ ( product_prod @ A @ C ) )
@ ( product_case_prod @ A @ B @ ( ( set @ ( product_prod @ A @ C ) ) > ( set @ ( product_prod @ A @ C ) ) )
@ ^ [X6: A,Y6: B,A7: set @ ( product_prod @ A @ C )] :
( finite_fold @ ( product_prod @ B @ C ) @ ( set @ ( product_prod @ A @ C ) )
@ ( product_case_prod @ B @ C @ ( ( set @ ( product_prod @ A @ C ) ) > ( set @ ( product_prod @ A @ C ) ) )
@ ^ [W3: B,Z3: C,A11: set @ ( product_prod @ A @ C )] : ( if @ ( set @ ( product_prod @ A @ C ) ) @ ( Y6 = W3 ) @ ( insert @ ( product_prod @ A @ C ) @ ( product_Pair @ A @ C @ X6 @ Z3 ) @ A11 ) @ A11 ) )
@ A7
@ S3 ) )
@ ( bot_bot @ ( set @ ( product_prod @ A @ C ) ) )
@ R3 ) ) ) ) ).
% relcomp_fold
thf(fact_7962_sum__list__triv,axiom,
! [C: $tType,B: $tType] :
( ( semiring_1 @ B )
=> ! [R2: B,Xs2: list @ C] :
( ( groups8242544230860333062m_list @ B
@ ( map @ C @ B
@ ^ [X6: C] : R2
@ Xs2 ) )
= ( times_times @ B @ ( semiring_1_of_nat @ B @ ( size_size @ ( list @ C ) @ Xs2 ) ) @ R2 ) ) ) ).
% sum_list_triv
thf(fact_7963_sum__list__Suc,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ nat
@ ( map @ A @ nat
@ ^ [X6: A] : ( suc @ ( F2 @ X6 ) )
@ Xs2 ) )
= ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% sum_list_Suc
thf(fact_7964_sum__list__sum__nth,axiom,
! [B: $tType] :
( ( comm_monoid_add @ B )
=> ( ( groups8242544230860333062m_list @ B )
= ( ^ [Xs: list @ B] : ( groups7311177749621191930dd_sum @ nat @ B @ ( nth @ B @ Xs ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% sum_list_sum_nth
thf(fact_7965_card__length__sum__list__rec,axiom,
! [M: nat,N5: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ M )
=> ( ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N5 ) ) ) )
= ( plus_plus @ nat
@ ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= ( minus_minus @ nat @ M @ ( one_one @ nat ) ) )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N5 ) ) ) )
@ ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ L2 ) @ ( one_one @ nat ) )
= N5 ) ) ) ) ) ) ) ).
% card_length_sum_list_rec
thf(fact_7966_card__length__sum__list,axiom,
! [M: nat,N5: nat] :
( ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N5 ) ) ) )
= ( binomial @ ( minus_minus @ nat @ ( plus_plus @ nat @ N5 @ M ) @ ( one_one @ nat ) ) @ N5 ) ) ).
% card_length_sum_list
thf(fact_7967_sum__list__map__eq__sum__count,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X6: A] : ( times_times @ nat @ ( count_list @ A @ Xs2 @ X6 ) @ ( F2 @ X6 ) )
@ ( set2 @ A @ Xs2 ) ) ) ).
% sum_list_map_eq_sum_count
thf(fact_7968_sum__list__update,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [K: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( groups8242544230860333062m_list @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ X ) @ ( nth @ A @ Xs2 @ K ) ) ) ) ) ).
% sum_list_update
thf(fact_7969_length__product__lists,axiom,
! [B: $tType,Xss: list @ ( list @ B )] :
( ( size_size @ ( list @ ( list @ B ) ) @ ( product_lists @ B @ Xss ) )
= ( foldr @ nat @ nat @ ( times_times @ nat ) @ ( map @ ( list @ B ) @ nat @ ( size_size @ ( list @ B ) ) @ Xss ) @ ( one_one @ nat ) ) ) ).
% length_product_lists
thf(fact_7970_insert__relcomp__union__fold,axiom,
! [C: $tType,B: $tType,A: $tType,S3: set @ ( product_prod @ A @ B ),X: product_prod @ C @ A,X9: set @ ( product_prod @ C @ B )] :
( ( finite_finite @ ( product_prod @ A @ B ) @ S3 )
=> ( ( sup_sup @ ( set @ ( product_prod @ C @ B ) ) @ ( relcomp @ C @ A @ B @ ( insert @ ( product_prod @ C @ A ) @ X @ ( bot_bot @ ( set @ ( product_prod @ C @ A ) ) ) ) @ S3 ) @ X9 )
= ( finite_fold @ ( product_prod @ A @ B ) @ ( set @ ( product_prod @ C @ B ) )
@ ( product_case_prod @ A @ B @ ( ( set @ ( product_prod @ C @ B ) ) > ( set @ ( product_prod @ C @ B ) ) )
@ ^ [W3: A,Z3: B,A11: set @ ( product_prod @ C @ B )] :
( if @ ( set @ ( product_prod @ C @ B ) )
@ ( ( product_snd @ C @ A @ X )
= W3 )
@ ( insert @ ( product_prod @ C @ B ) @ ( product_Pair @ C @ B @ ( product_fst @ C @ A @ X ) @ Z3 ) @ A11 )
@ A11 ) )
@ X9
@ S3 ) ) ) ).
% insert_relcomp_union_fold
thf(fact_7971_sorted__wrt__less__sum__mono__lowerbound,axiom,
! [B: $tType] :
( ( ordere6911136660526730532id_add @ B )
=> ! [F2: nat > B,Ns: list @ nat] :
( ! [X5: nat,Y5: nat] :
( ( ord_less_eq @ nat @ X5 @ Y5 )
=> ( ord_less_eq @ B @ ( F2 @ X5 ) @ ( F2 @ Y5 ) ) )
=> ( ( sorted_wrt @ nat @ ( ord_less @ nat ) @ Ns )
=> ( ord_less_eq @ B @ ( groups7311177749621191930dd_sum @ nat @ B @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ nat ) @ Ns ) ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ nat @ B @ F2 @ Ns ) ) ) ) ) ) ).
% sorted_wrt_less_sum_mono_lowerbound
thf(fact_7972_min__ext__compat,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ R3 @ S3 ) @ R3 )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( relcomp @ ( set @ A ) @ ( set @ A ) @ ( set @ A ) @ ( min_ext @ A @ R3 ) @ ( sup_sup @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( min_ext @ A @ S3 ) @ ( insert @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ) ) ) @ ( min_ext @ A @ R3 ) ) ) ).
% min_ext_compat
thf(fact_7973_sorted__filter,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,P: B > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) ) ) ) ).
% sorted_filter
thf(fact_7974_sorted__map__same,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,G: ( list @ B ) > A,Xs2: list @ B] :
( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( map @ B @ A @ F2
@ ( filter2 @ B
@ ^ [X6: B] :
( ( F2 @ X6 )
= ( G @ Xs2 ) )
@ Xs2 ) ) ) ) ).
% sorted_map_same
thf(fact_7975_sorted__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) ) )
= ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ).
% sorted_insort_key
thf(fact_7976_sorted__map,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( sorted_wrt @ B
@ ^ [X6: B,Y6: B] : ( ord_less_eq @ A @ ( F2 @ X6 ) @ ( F2 @ Y6 ) )
@ Xs2 ) ) ) ).
% sorted_map
thf(fact_7977_sorted__map__remove1,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,X: B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( remove1 @ B @ X @ Xs2 ) ) ) ) ) ).
% sorted_map_remove1
thf(fact_7978_sorted__wrt__map,axiom,
! [A: $tType,B: $tType,R3: A > A > $o,F2: B > A,Xs2: list @ B] :
( ( sorted_wrt @ A @ R3 @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( sorted_wrt @ B
@ ^ [X6: B,Y6: B] : ( R3 @ ( F2 @ X6 ) @ ( F2 @ Y6 ) )
@ Xs2 ) ) ).
% sorted_wrt_map
thf(fact_7979_strict__sorted__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ L )
= ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ L )
& ( distinct @ A @ L ) ) ) ) ).
% strict_sorted_iff
thf(fact_7980_sorted__wrt__nth__less,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A,I3: nat,J: nat] :
( ( sorted_wrt @ A @ P @ Xs2 )
=> ( ( ord_less @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ J ) ) ) ) ) ).
% sorted_wrt_nth_less
thf(fact_7981_sorted__wrt__iff__nth__less,axiom,
! [A: $tType] :
( ( sorted_wrt @ A )
= ( ^ [P4: A > A > $o,Xs: list @ A] :
! [I: nat,J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( ( ord_less @ nat @ J2 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( P4 @ ( nth @ A @ Xs @ I ) @ ( nth @ A @ Xs @ J2 ) ) ) ) ) ) ).
% sorted_wrt_iff_nth_less
thf(fact_7982_sorted__distinct__set__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( distinct @ A @ Xs2 )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys2 )
=> ( ( distinct @ A @ Ys2 )
=> ( ( ( set2 @ A @ Xs2 )
= ( set2 @ A @ Ys2 ) )
=> ( Xs2 = Ys2 ) ) ) ) ) ) ) ).
% sorted_distinct_set_unique
thf(fact_7983_sorted__wrt__upt,axiom,
! [M: nat,N: nat] : ( sorted_wrt @ nat @ ( ord_less @ nat ) @ ( upt @ M @ N ) ) ).
% sorted_wrt_upt
thf(fact_7984_sorted__upt,axiom,
! [M: nat,N: nat] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( upt @ M @ N ) ) ).
% sorted_upt
thf(fact_7985_sorted__nths,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I6: set @ nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( nths @ A @ Xs2 @ I6 ) ) ) ) ).
% sorted_nths
thf(fact_7986_sorted0,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( nil @ A ) ) ) ).
% sorted0
thf(fact_7987_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( linord4507533701916653071of_set @ A @ A3 ) ) ) ).
% sorted_list_of_set.sorted_sorted_key_list_of_set
thf(fact_7988_sorted__insort,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ X
@ Xs2 ) )
= ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% sorted_insort
thf(fact_7989_sorted__remove1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,A2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remove1 @ A @ A2 @ Xs2 ) ) ) ) ).
% sorted_remove1
thf(fact_7990_sorted__remdups__adj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remdups_adj @ A @ Xs2 ) ) ) ) ).
% sorted_remdups_adj
thf(fact_7991_strict__sorted__imp__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% strict_sorted_imp_sorted
thf(fact_7992_strict__sorted__simps_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( sorted_wrt @ A @ ( ord_less @ A ) @ ( nil @ A ) ) ) ).
% strict_sorted_simps(1)
thf(fact_7993_sorted__wrt_Osimps_I1_J,axiom,
! [A: $tType,P: A > A > $o] : ( sorted_wrt @ A @ P @ ( nil @ A ) ) ).
% sorted_wrt.simps(1)
thf(fact_7994_sorted__list__of__set_Ostrict__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] : ( sorted_wrt @ A @ ( ord_less @ A ) @ ( linord4507533701916653071of_set @ A @ A3 ) ) ) ).
% sorted_list_of_set.strict_sorted_key_list_of_set
thf(fact_7995_sorted__wrt__true,axiom,
! [A: $tType,Xs2: list @ A] :
( sorted_wrt @ A
@ ^ [Uu3: A,Uv3: A] : $true
@ Xs2 ) ).
% sorted_wrt_true
thf(fact_7996_sorted__wrt1,axiom,
! [A: $tType,P: A > A > $o,X: A] : ( sorted_wrt @ A @ P @ ( cons @ A @ X @ ( nil @ A ) ) ) ).
% sorted_wrt1
thf(fact_7997_sorted1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ ( nil @ A ) ) ) ) ).
% sorted1
thf(fact_7998_sorted2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Zs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ ( cons @ A @ Y @ Zs2 ) ) )
= ( ( ord_less_eq @ A @ X @ Y )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ Y @ Zs2 ) ) ) ) ) ).
% sorted2
thf(fact_7999_sorted__replicate,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [N: nat,X: A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( replicate @ A @ N @ X ) ) ) ).
% sorted_replicate
thf(fact_8000_sorted__append,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( append @ A @ Xs2 @ Ys2 ) )
= ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys2 )
& ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ! [Y6: A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Ys2 ) )
=> ( ord_less_eq @ A @ X6 @ Y6 ) ) ) ) ) ) ).
% sorted_append
thf(fact_8001_sorted__simps_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Ys2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ Ys2 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
=> ( ord_less_eq @ A @ X @ X6 ) )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys2 ) ) ) ) ).
% sorted_simps(2)
thf(fact_8002_sorted__drop,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,N: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( drop @ A @ N @ Xs2 ) ) ) ) ).
% sorted_drop
thf(fact_8003_sorted__take,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,N: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( take @ A @ N @ Xs2 ) ) ) ) ).
% sorted_take
thf(fact_8004_sorted__wrt__drop,axiom,
! [A: $tType,F2: A > A > $o,Xs2: list @ A,N: nat] :
( ( sorted_wrt @ A @ F2 @ Xs2 )
=> ( sorted_wrt @ A @ F2 @ ( drop @ A @ N @ Xs2 ) ) ) ).
% sorted_wrt_drop
thf(fact_8005_sorted__wrt__take,axiom,
! [A: $tType,F2: A > A > $o,Xs2: list @ A,N: nat] :
( ( sorted_wrt @ A @ F2 @ Xs2 )
=> ( sorted_wrt @ A @ F2 @ ( take @ A @ N @ Xs2 ) ) ) ).
% sorted_wrt_take
thf(fact_8006_sorted__wrt_Oelims_I3_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ~ ( sorted_wrt @ A @ X @ Xa2 )
=> ~ ! [X5: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X5 @ Ys4 ) )
=> ( ! [Xa3: A] :
( ( member @ A @ Xa3 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X5 @ Xa3 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ).
% sorted_wrt.elims(3)
thf(fact_8007_sorted__wrt_Osimps_I2_J,axiom,
! [A: $tType,P: A > A > $o,X: A,Ys2: list @ A] :
( ( sorted_wrt @ A @ P @ ( cons @ A @ X @ Ys2 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
=> ( P @ X @ X6 ) )
& ( sorted_wrt @ A @ P @ Ys2 ) ) ) ).
% sorted_wrt.simps(2)
thf(fact_8008_sorted__wrt__append,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A,Ys2: list @ A] :
( ( sorted_wrt @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( ( sorted_wrt @ A @ P @ Xs2 )
& ( sorted_wrt @ A @ P @ Ys2 )
& ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ! [Y6: A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Ys2 ) )
=> ( P @ X6 @ Y6 ) ) ) ) ) ).
% sorted_wrt_append
thf(fact_8009_sorted__wrt__mono__rel,axiom,
! [A: $tType,Xs2: list @ A,P: A > A > $o,Q: A > A > $o] :
( ! [X5: A,Y5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ A @ Y5 @ ( set2 @ A @ Xs2 ) )
=> ( ( P @ X5 @ Y5 )
=> ( Q @ X5 @ Y5 ) ) ) )
=> ( ( sorted_wrt @ A @ P @ Xs2 )
=> ( sorted_wrt @ A @ Q @ Xs2 ) ) ) ).
% sorted_wrt_mono_rel
thf(fact_8010_strict__sorted__equal,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ Xs2 )
=> ( ( sorted_wrt @ A @ ( ord_less @ A ) @ Ys2 )
=> ( ( ( set2 @ A @ Ys2 )
= ( set2 @ A @ Xs2 ) )
=> ( Ys2 = Xs2 ) ) ) ) ) ).
% strict_sorted_equal
thf(fact_8011_strict__sorted__simps_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Ys2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ ( cons @ A @ X @ Ys2 ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Ys2 ) )
=> ( ord_less @ A @ X @ X6 ) )
& ( sorted_wrt @ A @ ( ord_less @ A ) @ Ys2 ) ) ) ) ).
% strict_sorted_simps(2)
thf(fact_8012_sorted__wrt01,axiom,
! [A: $tType,Xs2: list @ A,P: A > A > $o] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( sorted_wrt @ A @ P @ Xs2 ) ) ).
% sorted_wrt01
thf(fact_8013_sorted__remdups,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remdups @ A @ Xs2 ) ) ) ) ).
% sorted_remdups
thf(fact_8014_sorted__tl,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( tl @ A @ Xs2 ) ) ) ) ).
% sorted_tl
thf(fact_8015_sorted__wrt__filter,axiom,
! [A: $tType,F2: A > A > $o,Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ F2 @ Xs2 )
=> ( sorted_wrt @ A @ F2 @ ( filter2 @ A @ P @ Xs2 ) ) ) ).
% sorted_wrt_filter
thf(fact_8016_sorted__same,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [G: ( list @ A ) > A,Xs2: list @ A] :
( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( filter2 @ A
@ ^ [X6: A] :
( X6
= ( G @ Xs2 ) )
@ Xs2 ) ) ) ).
% sorted_same
thf(fact_8017_sorted__iff__nth__mono__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I: nat,J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( ( ord_less @ nat @ J2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I ) @ ( nth @ A @ Xs2 @ J2 ) ) ) ) ) ) ) ).
% sorted_iff_nth_mono_less
thf(fact_8018_sorted01,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% sorted01
thf(fact_8019_sorted__wrt_Oelims_I1_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A,Y: $o] :
( ( ( sorted_wrt @ A @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( nil @ A ) )
=> ~ Y )
=> ~ ! [X5: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X5 @ Ys4 ) )
=> ( Y
= ( ~ ( ! [Y6: A] :
( ( member @ A @ Y6 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X5 @ Y6 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ) ) ).
% sorted_wrt.elims(1)
thf(fact_8020_sorted__wrt_Oelims_I2_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ( sorted_wrt @ A @ X @ Xa2 )
=> ( ( Xa2
!= ( nil @ A ) )
=> ~ ! [X5: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X5 @ Ys4 ) )
=> ~ ( ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ( X @ X5 @ Xa ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ).
% sorted_wrt.elims(2)
thf(fact_8021_finite__sorted__distinct__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ? [X5: list @ A] :
( ( ( set2 @ A @ X5 )
= A3 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ X5 )
& ( distinct @ A @ X5 )
& ! [Y4: list @ A] :
( ( ( ( set2 @ A @ Y4 )
= A3 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Y4 )
& ( distinct @ A @ Y4 ) )
=> ( Y4 = X5 ) ) ) ) ) ).
% finite_sorted_distinct_unique
thf(fact_8022_sorted__list__of__set_Oidem__if__sorted__distinct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( distinct @ A @ Xs2 )
=> ( ( linord4507533701916653071of_set @ A @ ( set2 @ A @ Xs2 ) )
= Xs2 ) ) ) ) ).
% sorted_list_of_set.idem_if_sorted_distinct
thf(fact_8023_filter__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,P: B > $o,X: B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( P @ X )
=> ( ( filter2 @ B @ P @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( linorder_insort_key @ B @ A @ F2 @ X @ ( filter2 @ B @ P @ Xs2 ) ) ) ) ) ) ).
% filter_insort
thf(fact_8024_insort__remove1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,Xs2: list @ A] :
( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ A2
@ ( remove1 @ A @ A2 @ Xs2 ) )
= Xs2 ) ) ) ) ).
% insort_remove1
thf(fact_8025_sorted__iff__nth__Suc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I ) @ ( nth @ A @ Xs2 @ ( suc @ I ) ) ) ) ) ) ) ).
% sorted_iff_nth_Suc
thf(fact_8026_sorted__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I3: nat,J: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ J ) ) ) ) ) ) ).
% sorted_nth_mono
thf(fact_8027_sorted__iff__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I: nat,J2: nat] :
( ( ord_less_eq @ nat @ I @ J2 )
=> ( ( ord_less @ nat @ J2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I ) @ ( nth @ A @ Xs2 @ J2 ) ) ) ) ) ) ) ).
% sorted_iff_nth_mono
thf(fact_8028_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A] :
( ( finite_finite @ A @ A3 )
=> ~ ! [L3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ L3 )
=> ( ( ( set2 @ A @ L3 )
= A3 )
=> ( ( size_size @ ( list @ A ) @ L3 )
!= ( finite_card @ A @ A3 ) ) ) ) ) ) ).
% sorted_list_of_set.finite_set_strict_sorted
thf(fact_8029_sorted__wrt__less__idx,axiom,
! [Ns: list @ nat,I3: nat] :
( ( sorted_wrt @ nat @ ( ord_less @ nat ) @ Ns )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ nat ) @ Ns ) )
=> ( ord_less_eq @ nat @ I3 @ ( nth @ nat @ Ns @ I3 ) ) ) ) ).
% sorted_wrt_less_idx
thf(fact_8030_sorted__enumerate,axiom,
! [A: $tType,N: nat,Xs2: list @ A] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( map @ ( product_prod @ nat @ A ) @ nat @ ( product_fst @ nat @ A ) @ ( enumerate @ A @ N @ Xs2 ) ) ) ).
% sorted_enumerate
thf(fact_8031_map__sorted__distinct__set__unique,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,Ys2: list @ B] :
( ( inj_on @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ ( set2 @ B @ Ys2 ) ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Ys2 ) )
=> ( ( distinct @ A @ ( map @ B @ A @ F2 @ Ys2 ) )
=> ( ( ( set2 @ B @ Xs2 )
= ( set2 @ B @ Ys2 ) )
=> ( Xs2 = Ys2 ) ) ) ) ) ) ) ) ).
% map_sorted_distinct_set_unique
thf(fact_8032_sorted__list__of__set_Osorted__key__list__of__set__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A3: set @ A,L: list @ A] :
( ( finite_finite @ A @ A3 )
=> ( ( ( sorted_wrt @ A @ ( ord_less @ A ) @ L )
& ( ( set2 @ A @ L )
= A3 )
& ( ( size_size @ ( list @ A ) @ L )
= ( finite_card @ A @ A3 ) ) )
= ( ( linord4507533701916653071of_set @ A @ A3 )
= L ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_unique
thf(fact_8033_sorted__insort__is__snoc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,A2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X5 @ A2 ) )
=> ( ( linorder_insort_key @ A @ A
@ ^ [X6: A] : X6
@ A2
@ Xs2 )
= ( append @ A @ Xs2 @ ( cons @ A @ A2 @ ( nil @ A ) ) ) ) ) ) ) ).
% sorted_insort_is_snoc
thf(fact_8034_insort__key__remove1,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [A2: B,Xs2: list @ B,F2: B > A] :
( ( member @ B @ A2 @ ( set2 @ B @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( ( hd @ B
@ ( filter2 @ B
@ ^ [X6: B] :
( ( F2 @ A2 )
= ( F2 @ X6 ) )
@ Xs2 ) )
= A2 )
=> ( ( linorder_insort_key @ B @ A @ F2 @ A2 @ ( remove1 @ B @ A2 @ Xs2 ) )
= Xs2 ) ) ) ) ) ).
% insort_key_remove1
thf(fact_8035_max__ext__compat,axiom,
! [A: $tType,R3: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ R3 @ S3 ) @ R3 )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( relcomp @ ( set @ A ) @ ( set @ A ) @ ( set @ A ) @ ( max_ext @ A @ R3 ) @ ( sup_sup @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( max_ext @ A @ S3 ) @ ( insert @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ) ) ) @ ( max_ext @ A @ R3 ) ) ) ).
% max_ext_compat
thf(fact_8036_nth__nth__transpose__sorted,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I3: nat,J: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) )
=> ( ( ord_less @ nat @ J
@ ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] : ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Ys ) )
@ Xs2 ) ) )
=> ( ( nth @ A @ ( nth @ ( list @ A ) @ ( transpose @ A @ Xs2 ) @ I3 ) @ J )
= ( nth @ A @ ( nth @ ( list @ A ) @ Xs2 @ J ) @ I3 ) ) ) ) ) ).
% nth_nth_transpose_sorted
thf(fact_8037_rev__rev__ident,axiom,
! [A: $tType,Xs2: list @ A] :
( ( rev @ A @ ( rev @ A @ Xs2 ) )
= Xs2 ) ).
% rev_rev_ident
thf(fact_8038_rev__is__rev__conv,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( rev @ A @ Xs2 )
= ( rev @ A @ Ys2 ) )
= ( Xs2 = Ys2 ) ) ).
% rev_is_rev_conv
thf(fact_8039_Nil__is__rev__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( nil @ A )
= ( rev @ A @ Xs2 ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% Nil_is_rev_conv
thf(fact_8040_rev__is__Nil__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( rev @ A @ Xs2 )
= ( nil @ A ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% rev_is_Nil_conv
thf(fact_8041_set__rev,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( rev @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rev
thf(fact_8042_length__rev,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( rev @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_rev
thf(fact_8043_rev__append,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( rev @ A @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( rev @ A @ Ys2 ) @ ( rev @ A @ Xs2 ) ) ) ).
% rev_append
thf(fact_8044_distinct__rev,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ ( rev @ A @ Xs2 ) )
= ( distinct @ A @ Xs2 ) ) ).
% distinct_rev
thf(fact_8045_rev__replicate,axiom,
! [A: $tType,N: nat,X: A] :
( ( rev @ A @ ( replicate @ A @ N @ X ) )
= ( replicate @ A @ N @ X ) ) ).
% rev_replicate
thf(fact_8046_remdups__adj__rev,axiom,
! [A: $tType,Xs2: list @ A] :
( ( remdups_adj @ A @ ( rev @ A @ Xs2 ) )
= ( rev @ A @ ( remdups_adj @ A @ Xs2 ) ) ) ).
% remdups_adj_rev
thf(fact_8047_inj__on__rev,axiom,
! [A: $tType,A3: set @ ( list @ A )] : ( inj_on @ ( list @ A ) @ ( list @ A ) @ ( rev @ A ) @ A3 ) ).
% inj_on_rev
thf(fact_8048_singleton__rev__conv,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( ( cons @ A @ X @ ( nil @ A ) )
= ( rev @ A @ Xs2 ) )
= ( ( cons @ A @ X @ ( nil @ A ) )
= Xs2 ) ) ).
% singleton_rev_conv
thf(fact_8049_rev__singleton__conv,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( ( rev @ A @ Xs2 )
= ( cons @ A @ X @ ( nil @ A ) ) )
= ( Xs2
= ( cons @ A @ X @ ( nil @ A ) ) ) ) ).
% rev_singleton_conv
thf(fact_8050_rev__eq__Cons__iff,axiom,
! [A: $tType,Xs2: list @ A,Y: A,Ys2: list @ A] :
( ( ( rev @ A @ Xs2 )
= ( cons @ A @ Y @ Ys2 ) )
= ( Xs2
= ( append @ A @ ( rev @ A @ Ys2 ) @ ( cons @ A @ Y @ ( nil @ A ) ) ) ) ) ).
% rev_eq_Cons_iff
thf(fact_8051_rev__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( rev @ A @ ( concat @ A @ Xs2 ) )
= ( concat @ A @ ( map @ ( list @ A ) @ ( list @ A ) @ ( rev @ A ) @ ( rev @ ( list @ A ) @ Xs2 ) ) ) ) ).
% rev_concat
thf(fact_8052_rev__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( rev @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( rev @ B @ Xs2 ) ) ) ).
% rev_map
thf(fact_8053_sorted__upto,axiom,
! [M: int,N: int] : ( sorted_wrt @ int @ ( ord_less_eq @ int ) @ ( upto @ M @ N ) ) ).
% sorted_upto
thf(fact_8054_sorted__wrt__upto,axiom,
! [I3: int,J: int] : ( sorted_wrt @ int @ ( ord_less @ int ) @ ( upto @ I3 @ J ) ) ).
% sorted_wrt_upto
thf(fact_8055_sorted__wrt__rev,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A] :
( ( sorted_wrt @ A @ P @ ( rev @ A @ Xs2 ) )
= ( sorted_wrt @ A
@ ^ [X6: A,Y6: A] : ( P @ Y6 @ X6 )
@ Xs2 ) ) ).
% sorted_wrt_rev
thf(fact_8056_rev__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( rev @ A @ ( filter2 @ A @ P @ Xs2 ) )
= ( filter2 @ A @ P @ ( rev @ A @ Xs2 ) ) ) ).
% rev_filter
thf(fact_8057_zip__rev,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys2 ) )
=> ( ( zip @ A @ B @ ( rev @ A @ Xs2 ) @ ( rev @ B @ Ys2 ) )
= ( rev @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ) ).
% zip_rev
thf(fact_8058_rev_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( rev @ A @ ( cons @ A @ X @ Xs2 ) )
= ( append @ A @ ( rev @ A @ Xs2 ) @ ( cons @ A @ X @ ( nil @ A ) ) ) ) ).
% rev.simps(2)
thf(fact_8059_rev__swap,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A] :
( ( ( rev @ A @ Xs2 )
= Ys2 )
= ( Xs2
= ( rev @ A @ Ys2 ) ) ) ).
% rev_swap
thf(fact_8060_rev_Osimps_I1_J,axiom,
! [A: $tType] :
( ( rev @ A @ ( nil @ A ) )
= ( nil @ A ) ) ).
% rev.simps(1)
thf(fact_8061_take__rev,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( take @ A @ N @ ( rev @ A @ Xs2 ) )
= ( rev @ A @ ( drop @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) @ Xs2 ) ) ) ).
% take_rev
thf(fact_8062_rev__take,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( rev @ A @ ( take @ A @ I3 @ Xs2 ) )
= ( drop @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I3 ) @ ( rev @ A @ Xs2 ) ) ) ).
% rev_take
thf(fact_8063_rev__drop,axiom,
! [A: $tType,I3: nat,Xs2: list @ A] :
( ( rev @ A @ ( drop @ A @ I3 @ Xs2 ) )
= ( take @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I3 ) @ ( rev @ A @ Xs2 ) ) ) ).
% rev_drop
thf(fact_8064_drop__rev,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( drop @ A @ N @ ( rev @ A @ Xs2 ) )
= ( rev @ A @ ( take @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N ) @ Xs2 ) ) ) ).
% drop_rev
thf(fact_8065_rotate__rev,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( rotate @ A @ N @ ( rev @ A @ Xs2 ) )
= ( rev @ A @ ( rotate @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( modulo_modulo @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) @ Xs2 ) ) ) ).
% rotate_rev
thf(fact_8066_rev__nth,axiom,
! [A: $tType,N: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rev @ A @ Xs2 ) @ N )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( suc @ N ) ) ) ) ) ).
% rev_nth
thf(fact_8067_rev__update,axiom,
! [A: $tType,K: nat,Xs2: list @ A,Y: A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( rev @ A @ ( list_update @ A @ Xs2 @ K @ Y ) )
= ( list_update @ A @ ( rev @ A @ Xs2 ) @ ( minus_minus @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ K ) @ ( one_one @ nat ) ) @ Y ) ) ) ).
% rev_update
thf(fact_8068_sorted__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) ) ) ).
% sorted_transpose
thf(fact_8069_sorted__rev__iff__nth__Suc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
= ( ! [I: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ ( suc @ I ) ) @ ( nth @ A @ Xs2 @ I ) ) ) ) ) ) ).
% sorted_rev_iff_nth_Suc
thf(fact_8070_sorted__rev__iff__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
= ( ! [I: nat,J2: nat] :
( ( ord_less_eq @ nat @ I @ J2 )
=> ( ( ord_less @ nat @ J2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ J2 ) @ ( nth @ A @ Xs2 @ I ) ) ) ) ) ) ) ).
% sorted_rev_iff_nth_mono
thf(fact_8071_sorted__rev__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I3: nat,J: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ I3 @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ J ) @ ( nth @ A @ Xs2 @ I3 ) ) ) ) ) ) ).
% sorted_rev_nth_mono
thf(fact_8072_max__ext_Ocases,axiom,
! [A: $tType,A1: set @ A,A22: set @ A,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ A1 @ A22 ) @ ( max_ext @ A @ R3 ) )
=> ~ ( ( finite_finite @ A @ A1 )
=> ( ( finite_finite @ A @ A22 )
=> ( ( A22
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ! [X3: A] :
( ( member @ A @ X3 @ A1 )
=> ? [Xa3: A] :
( ( member @ A @ Xa3 @ A22 )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X3 @ Xa3 ) @ R3 ) ) ) ) ) ) ) ).
% max_ext.cases
thf(fact_8073_max__ext_Osimps,axiom,
! [A: $tType,A1: set @ A,A22: set @ A,R3: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ A1 @ A22 ) @ ( max_ext @ A @ R3 ) )
= ( ( finite_finite @ A @ A1 )
& ( finite_finite @ A @ A22 )
& ( A22
!= ( bot_bot @ ( set @ A ) ) )
& ! [X6: A] :
( ( member @ A @ X6 @ A1 )
=> ? [Y6: A] :
( ( member @ A @ Y6 @ A22 )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X6 @ Y6 ) @ R3 ) ) ) ) ) ).
% max_ext.simps
thf(fact_8074_max__ext_Omax__extI,axiom,
! [A: $tType,X9: set @ A,Y7: set @ A,R3: set @ ( product_prod @ A @ A )] :
( ( finite_finite @ A @ X9 )
=> ( ( finite_finite @ A @ Y7 )
=> ( ( Y7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ X9 )
=> ? [Xa: A] :
( ( member @ A @ Xa @ Y7 )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X5 @ Xa ) @ R3 ) ) )
=> ( member @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ X9 @ Y7 ) @ ( max_ext @ A @ R3 ) ) ) ) ) ) ).
% max_ext.max_extI
thf(fact_8075_foldr__max__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Y: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
=> ( ( ( Xs2
= ( nil @ A ) )
=> ( ( foldr @ A @ A @ ( ord_max @ A ) @ Xs2 @ Y )
= Y ) )
& ( ( Xs2
!= ( nil @ A ) )
=> ( ( foldr @ A @ A @ ( ord_max @ A ) @ Xs2 @ Y )
= ( ord_max @ A @ ( nth @ A @ Xs2 @ ( zero_zero @ nat ) ) @ Y ) ) ) ) ) ) ).
% foldr_max_sorted
thf(fact_8076_length__transpose__sorted,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ( Xs2
= ( nil @ ( list @ A ) ) )
=> ( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( zero_zero @ nat ) ) )
& ( ( Xs2
!= ( nil @ ( list @ A ) ) )
=> ( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ ( zero_zero @ nat ) ) ) ) ) ) ) ).
% length_transpose_sorted
thf(fact_8077_transpose__column__length,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I3: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] : ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Ys ) )
@ ( transpose @ A @ Xs2 ) ) )
= ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ I3 ) ) ) ) ) ).
% transpose_column_length
thf(fact_8078_transpose__column,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I3: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( map @ ( list @ A ) @ A
@ ^ [Ys: list @ A] : ( nth @ A @ Ys @ I3 )
@ ( filter2 @ ( list @ A )
@ ^ [Ys: list @ A] : ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Ys ) )
@ ( transpose @ A @ Xs2 ) ) )
= ( nth @ ( list @ A ) @ Xs2 @ I3 ) ) ) ) ).
% transpose_column
thf(fact_8079_folding__insort__key_Ofinite__set__strict__sorted,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ~ ! [L3: list @ B] :
( ( sorted_wrt @ A @ Less @ ( map @ B @ A @ F2 @ L3 ) )
=> ( ( ( set2 @ B @ L3 )
= A3 )
=> ( ( size_size @ ( list @ B ) @ L3 )
!= ( finite_card @ B @ A3 ) ) ) ) ) ) ) ).
% folding_insort_key.finite_set_strict_sorted
thf(fact_8080_transpose__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( transpose @ A @ ( transpose @ A @ Xs2 ) )
= ( takeWhile @ ( list @ A )
@ ^ [X6: list @ A] :
( X6
!= ( nil @ A ) )
@ Xs2 ) ) ) ).
% transpose_transpose
thf(fact_8081_takeWhile__idem,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( takeWhile @ A @ P @ ( takeWhile @ A @ P @ Xs2 ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ).
% takeWhile_idem
thf(fact_8082_takeWhile__eq__all__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( takeWhile @ A @ P @ Xs2 )
= Xs2 )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X6 ) ) ) ) ).
% takeWhile_eq_all_conv
thf(fact_8083_takeWhile__append2,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ Xs2 @ ( takeWhile @ A @ P @ Ys2 ) ) ) ) ).
% takeWhile_append2
thf(fact_8084_takeWhile__append1,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% takeWhile_append1
thf(fact_8085_takeWhile__replicate,axiom,
! [A: $tType,P: A > $o,X: A,N: nat] :
( ( ( P @ X )
=> ( ( takeWhile @ A @ P @ ( replicate @ A @ N @ X ) )
= ( replicate @ A @ N @ X ) ) )
& ( ~ ( P @ X )
=> ( ( takeWhile @ A @ P @ ( replicate @ A @ N @ X ) )
= ( nil @ A ) ) ) ) ).
% takeWhile_replicate
thf(fact_8086_length__concat__rev,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( size_size @ ( list @ A ) @ ( concat @ A @ ( rev @ ( list @ A ) @ Xs2 ) ) )
= ( size_size @ ( list @ A ) @ ( concat @ A @ Xs2 ) ) ) ).
% length_concat_rev
thf(fact_8087_sorted__takeWhile,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% sorted_takeWhile
thf(fact_8088_distinct__takeWhile,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( takeWhile @ A @ P @ Xs2 ) ) ) ).
% distinct_takeWhile
thf(fact_8089_takeWhile__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) )
=> ( ( nth @ A @ ( takeWhile @ A @ P @ Xs2 ) @ J )
= ( nth @ A @ Xs2 @ J ) ) ) ).
% takeWhile_nth
thf(fact_8090_nth__length__takeWhile,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ~ ( P @ ( nth @ A @ Xs2 @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ).
% nth_length_takeWhile
thf(fact_8091_folding__insort__key_Oinj__on,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( inj_on @ B @ A @ F2 @ S3 ) ) ).
% folding_insort_key.inj_on
thf(fact_8092_takeWhile_Osimps_I1_J,axiom,
! [A: $tType,P: A > $o] :
( ( takeWhile @ A @ P @ ( nil @ A ) )
= ( nil @ A ) ) ).
% takeWhile.simps(1)
thf(fact_8093_takeWhile__tail,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A,L: list @ A] :
( ~ ( P @ X )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ ( cons @ A @ X @ L ) ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ) ).
% takeWhile_tail
thf(fact_8094_takeWhile_Osimps_I2_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ( ( P @ X )
=> ( ( takeWhile @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( takeWhile @ A @ P @ Xs2 ) ) ) )
& ( ~ ( P @ X )
=> ( ( takeWhile @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( nil @ A ) ) ) ) ).
% takeWhile.simps(2)
thf(fact_8095_takeWhile__eq__Nil__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( takeWhile @ A @ P @ Xs2 )
= ( nil @ A ) )
= ( ( Xs2
= ( nil @ A ) )
| ~ ( P @ ( hd @ A @ Xs2 ) ) ) ) ).
% takeWhile_eq_Nil_iff
thf(fact_8096_takeWhile__eq__take,axiom,
! [A: $tType] :
( ( takeWhile @ A )
= ( ^ [P4: A > $o,Xs: list @ A] : ( take @ A @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P4 @ Xs ) ) @ Xs ) ) ) ).
% takeWhile_eq_take
thf(fact_8097_takeWhile__cong,axiom,
! [A: $tType,L: list @ A,K: list @ A,P: A > $o,Q: A > $o] :
( ( L = K )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ L ) )
=> ( ( P @ X5 )
= ( Q @ X5 ) ) )
=> ( ( takeWhile @ A @ P @ L )
= ( takeWhile @ A @ Q @ K ) ) ) ) ).
% takeWhile_cong
thf(fact_8098_set__takeWhileD,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( takeWhile @ A @ P @ Xs2 ) ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
& ( P @ X ) ) ) ).
% set_takeWhileD
thf(fact_8099_zip__takeWhile__snd,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,P: B > $o,Ys2: list @ B] :
( ( zip @ A @ B @ Xs2 @ ( takeWhile @ B @ P @ Ys2 ) )
= ( takeWhile @ ( product_prod @ A @ B ) @ ( comp @ B @ $o @ ( product_prod @ A @ B ) @ P @ ( product_snd @ A @ B ) ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% zip_takeWhile_snd
thf(fact_8100_zip__takeWhile__fst,axiom,
! [A: $tType,B: $tType,P: A > $o,Xs2: list @ A,Ys2: list @ B] :
( ( zip @ A @ B @ ( takeWhile @ A @ P @ Xs2 ) @ Ys2 )
= ( takeWhile @ ( product_prod @ A @ B ) @ ( comp @ A @ $o @ ( product_prod @ A @ B ) @ P @ ( product_fst @ A @ B ) ) @ ( zip @ A @ B @ Xs2 @ Ys2 ) ) ) ).
% zip_takeWhile_fst
thf(fact_8101_length__takeWhile__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_takeWhile_le
thf(fact_8102_folding__insort__key_Odistinct__if__distinct__map,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,Xs2: list @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( distinct @ B @ Xs2 ) ) ) ).
% folding_insort_key.distinct_if_distinct_map
thf(fact_8103_takeWhile__map,axiom,
! [A: $tType,B: $tType,P: A > $o,F2: B > A,Xs2: list @ B] :
( ( takeWhile @ A @ P @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( takeWhile @ B @ ( comp @ A @ $o @ B @ P @ F2 ) @ Xs2 ) ) ) ).
% takeWhile_map
thf(fact_8104_takeWhile__append,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ Xs2 @ ( takeWhile @ A @ P @ Ys2 ) ) ) )
& ( ~ ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% takeWhile_append
thf(fact_8105_length__takeWhile__less__P__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) )
=> ( ( ord_less_eq @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ).
% length_takeWhile_less_P_nth
thf(fact_8106_takeWhile__eq__take__P__nth,axiom,
! [A: $tType,N: nat,Xs2: list @ A,P: A > $o] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
=> ( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) ) )
=> ( ( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ~ ( P @ ( nth @ A @ Xs2 @ N ) ) )
=> ( ( takeWhile @ A @ P @ Xs2 )
= ( take @ A @ N @ Xs2 ) ) ) ) ).
% takeWhile_eq_take_P_nth
thf(fact_8107_sorted__list__of__set_Ofolding__insort__key__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( folding_insort_key @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less @ A ) @ ( top_top @ ( set @ A ) )
@ ^ [X6: A] : X6 ) ) ).
% sorted_list_of_set.folding_insort_key_axioms
thf(fact_8108_filter__equals__takeWhile__sorted__rev,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,T2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) )
=> ( ( filter2 @ B
@ ^ [X6: B] : ( ord_less @ A @ T2 @ ( F2 @ X6 ) )
@ Xs2 )
= ( takeWhile @ B
@ ^ [X6: B] : ( ord_less @ A @ T2 @ ( F2 @ X6 ) )
@ Xs2 ) ) ) ) ).
% filter_equals_takeWhile_sorted_rev
thf(fact_8109_folding__insort__key_Osorted__key__list__of__set__unique,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B,L: list @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( ( sorted_wrt @ A @ Less @ ( map @ B @ A @ F2 @ L ) )
& ( ( set2 @ B @ L )
= A3 )
& ( ( size_size @ ( list @ B ) @ L )
= ( finite_card @ B @ A3 ) ) )
= ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 )
= L ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_unique
thf(fact_8110_folding__insort__key_Osorted__key__list__of__set__remove,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,X: B,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( insert @ B @ X @ A3 ) @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( remove1 @ B @ X @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_remove
thf(fact_8111_linorder_Osorted__key__list__of__set_Ocong,axiom,
! [B: $tType,A: $tType] :
( ( sorted8670434370408473282of_set @ A @ B )
= ( sorted8670434370408473282of_set @ A @ B ) ) ).
% linorder.sorted_key_list_of_set.cong
thf(fact_8112_folding__insort__key_Osorted__key__list__of__set__inject,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B,B3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( ord_less_eq @ ( set @ B ) @ B3 @ S3 )
=> ( ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 )
= ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ B3 ) )
=> ( ( finite_finite @ B @ A3 )
=> ( ( finite_finite @ B @ B3 )
=> ( A3 = B3 ) ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_inject
thf(fact_8113_folding__insort__key_Osorted__key__list__of__set__empty,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( bot_bot @ ( set @ B ) ) )
= ( nil @ B ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_empty
thf(fact_8114_folding__insort__key_Oset__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( set2 @ B @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) )
= A3 ) ) ) ) ).
% folding_insort_key.set_sorted_key_list_of_set
thf(fact_8115_folding__insort__key_Olength__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( size_size @ ( list @ B ) @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) )
= ( finite_card @ B @ A3 ) ) ) ) ).
% folding_insort_key.length_sorted_key_list_of_set
thf(fact_8116_folding__insort__key_Odistinct__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( distinct @ A @ ( map @ B @ A @ F2 @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) ) ) ) ) ).
% folding_insort_key.distinct_sorted_key_list_of_set
thf(fact_8117_folding__insort__key_Osorted__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( sorted_wrt @ A @ Less_eq @ ( map @ B @ A @ F2 @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) ) ) ) ) ).
% folding_insort_key.sorted_sorted_key_list_of_set
thf(fact_8118_folding__insort__key_Ostrict__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( sorted_wrt @ A @ Less @ ( map @ B @ A @ F2 @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) ) ) ) ) ).
% folding_insort_key.strict_sorted_key_list_of_set
thf(fact_8119_folding__insort__key_Osorted__key__list__of__set__eq__Nil__iff,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A3 @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 )
= ( nil @ B ) )
= ( A3
= ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_eq_Nil_iff
thf(fact_8120_folding__insort__key_Oidem__if__sorted__distinct,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,Xs2: list @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ S3 )
=> ( ( sorted_wrt @ A @ Less_eq @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( distinct @ B @ Xs2 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( set2 @ B @ Xs2 ) )
= Xs2 ) ) ) ) ) ).
% folding_insort_key.idem_if_sorted_distinct
thf(fact_8121_folding__insort__key_Osorted__key__list__of__set__insert__remove,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,X: B,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( insert @ B @ X @ A3 ) @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( insert @ B @ X @ A3 ) )
= ( insort_key @ A @ B @ Less_eq @ F2 @ X @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( minus_minus @ ( set @ B ) @ A3 @ ( insert @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_insert_remove
thf(fact_8122_folding__insort__key_Osorted__key__list__of__set__insert,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,X: B,A3: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( insert @ B @ X @ A3 ) @ S3 )
=> ( ( finite_finite @ B @ A3 )
=> ( ~ ( member @ B @ X @ A3 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ ( insert @ B @ X @ A3 ) )
= ( insort_key @ A @ B @ Less_eq @ F2 @ X @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq @ F2 @ A3 ) ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_insert
thf(fact_8123_linorder_Oinsort__key_Ocong,axiom,
! [B: $tType,A: $tType] :
( ( insort_key @ A @ B )
= ( insort_key @ A @ B ) ) ).
% linorder.insort_key.cong
thf(fact_8124_folding__insort__key_Oinsort__key__commute,axiom,
! [A: $tType,B: $tType,Less_eq: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,X: B,Y: B] :
( ( folding_insort_key @ A @ B @ Less_eq @ Less @ S3 @ F2 )
=> ( ( member @ B @ X @ S3 )
=> ( ( member @ B @ Y @ S3 )
=> ( ( comp @ ( list @ B ) @ ( list @ B ) @ ( list @ B ) @ ( insort_key @ A @ B @ Less_eq @ F2 @ Y ) @ ( insort_key @ A @ B @ Less_eq @ F2 @ X ) )
= ( comp @ ( list @ B ) @ ( list @ B ) @ ( list @ B ) @ ( insort_key @ A @ B @ Less_eq @ F2 @ X ) @ ( insort_key @ A @ B @ Less_eq @ F2 @ Y ) ) ) ) ) ) ).
% folding_insort_key.insort_key_commute
thf(fact_8125_extract__def,axiom,
! [A: $tType] :
( ( extract @ A )
= ( ^ [P4: A > $o,Xs: list @ A] :
( case_list @ ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) @ A @ ( none @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) )
@ ^ [Y6: A,Ys: list @ A] : ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ ( takeWhile @ A @ ( comp @ $o @ $o @ A @ (~) @ P4 ) @ Xs ) @ ( product_Pair @ A @ ( list @ A ) @ Y6 @ Ys ) ) )
@ ( dropWhile @ A @ ( comp @ $o @ $o @ A @ (~) @ P4 ) @ Xs ) ) ) ) ).
% extract_def
thf(fact_8126_sorted__find__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) )
=> ( ( find @ A @ P @ Xs2 )
= ( some @ A
@ ( lattic643756798350308766er_Min @ A
@ ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) ) ) ) ) ) ) ) ).
% sorted_find_Min
thf(fact_8127_dropWhile__idem,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( dropWhile @ A @ P @ ( dropWhile @ A @ P @ Xs2 ) )
= ( dropWhile @ A @ P @ Xs2 ) ) ).
% dropWhile_idem
thf(fact_8128_dropWhile__eq__Nil__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( dropWhile @ A @ P @ Xs2 )
= ( nil @ A ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X6 ) ) ) ) ).
% dropWhile_eq_Nil_conv
thf(fact_8129_dropWhile__append1,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( dropWhile @ A @ P @ Xs2 ) @ Ys2 ) ) ) ) ).
% dropWhile_append1
thf(fact_8130_dropWhile__append2,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( dropWhile @ A @ P @ Ys2 ) ) ) ).
% dropWhile_append2
thf(fact_8131_dropWhile__replicate,axiom,
! [A: $tType,P: A > $o,X: A,N: nat] :
( ( ( P @ X )
=> ( ( dropWhile @ A @ P @ ( replicate @ A @ N @ X ) )
= ( nil @ A ) ) )
& ( ~ ( P @ X )
=> ( ( dropWhile @ A @ P @ ( replicate @ A @ N @ X ) )
= ( replicate @ A @ N @ X ) ) ) ) ).
% dropWhile_replicate
thf(fact_8132_takeWhile__dropWhile__id,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( append @ A @ ( takeWhile @ A @ P @ Xs2 ) @ ( dropWhile @ A @ P @ Xs2 ) )
= Xs2 ) ).
% takeWhile_dropWhile_id
thf(fact_8133_sorted__dropWhile,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) ) ) ).
% sorted_dropWhile
thf(fact_8134_length__dropWhile__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_dropWhile_le
thf(fact_8135_find__cong,axiom,
! [A: $tType,Xs2: list @ A,Ys2: list @ A,P: A > $o,Q: A > $o] :
( ( Xs2 = Ys2 )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Ys2 ) )
=> ( ( P @ X5 )
= ( Q @ X5 ) ) )
=> ( ( find @ A @ P @ Xs2 )
= ( find @ A @ Q @ Ys2 ) ) ) ) ).
% find_cong
thf(fact_8136_dropWhile__cong,axiom,
! [A: $tType,L: list @ A,K: list @ A,P: A > $o,Q: A > $o] :
( ( L = K )
=> ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ L ) )
=> ( ( P @ X5 )
= ( Q @ X5 ) ) )
=> ( ( dropWhile @ A @ P @ L )
= ( dropWhile @ A @ Q @ K ) ) ) ) ).
% dropWhile_cong
thf(fact_8137_set__dropWhileD,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_dropWhileD
thf(fact_8138_hd__dropWhile,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( dropWhile @ A @ P @ Xs2 )
!= ( nil @ A ) )
=> ~ ( P @ ( hd @ A @ ( dropWhile @ A @ P @ Xs2 ) ) ) ) ).
% hd_dropWhile
thf(fact_8139_dropWhile__eq__self__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( dropWhile @ A @ P @ Xs2 )
= Xs2 )
= ( ( Xs2
= ( nil @ A ) )
| ~ ( P @ ( hd @ A @ Xs2 ) ) ) ) ).
% dropWhile_eq_self_iff
thf(fact_8140_find_Osimps_I2_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ( ( P @ X )
=> ( ( find @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( some @ A @ X ) ) )
& ( ~ ( P @ X )
=> ( ( find @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( find @ A @ P @ Xs2 ) ) ) ) ).
% find.simps(2)
thf(fact_8141_remdups__adj__Cons_H,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( remdups_adj @ A @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X
@ ( remdups_adj @ A
@ ( dropWhile @ A
@ ^ [Y6: A] : ( Y6 = X )
@ Xs2 ) ) ) ) ).
% remdups_adj_Cons'
thf(fact_8142_dropWhile_Osimps_I2_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs2: list @ A] :
( ( ( P @ X )
=> ( ( dropWhile @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( dropWhile @ A @ P @ Xs2 ) ) )
& ( ~ ( P @ X )
=> ( ( dropWhile @ A @ P @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ Xs2 ) ) ) ) ).
% dropWhile.simps(2)
thf(fact_8143_dropWhile__append3,axiom,
! [A: $tType,P: A > $o,Y: A,Xs2: list @ A,Ys2: list @ A] :
( ~ ( P @ Y )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) )
= ( append @ A @ ( dropWhile @ A @ P @ Xs2 ) @ ( cons @ A @ Y @ Ys2 ) ) ) ) ).
% dropWhile_append3
thf(fact_8144_dropWhile_Osimps_I1_J,axiom,
! [A: $tType,P: A > $o] :
( ( dropWhile @ A @ P @ ( nil @ A ) )
= ( nil @ A ) ) ).
% dropWhile.simps(1)
thf(fact_8145_find__None__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( find @ A @ P @ Xs2 )
= ( none @ A ) )
= ( ~ ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) ) ) ).
% find_None_iff
thf(fact_8146_find__None__iff2,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( none @ A )
= ( find @ A @ P @ Xs2 ) )
= ( ~ ? [X6: A] :
( ( member @ A @ X6 @ ( set2 @ A @ Xs2 ) )
& ( P @ X6 ) ) ) ) ).
% find_None_iff2
thf(fact_8147_find_Osimps_I1_J,axiom,
! [A: $tType,Uu: A > $o] :
( ( find @ A @ Uu @ ( nil @ A ) )
= ( none @ A ) ) ).
% find.simps(1)
thf(fact_8148_distinct__dropWhile,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ A @ ( dropWhile @ A @ P @ Xs2 ) ) ) ).
% distinct_dropWhile
thf(fact_8149_dropWhile__eq__drop,axiom,
! [A: $tType] :
( ( dropWhile @ A )
= ( ^ [P4: A > $o,Xs: list @ A] : ( drop @ A @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P4 @ Xs ) ) @ Xs ) ) ) ).
% dropWhile_eq_drop
thf(fact_8150_find__dropWhile,axiom,
! [A: $tType] :
( ( find @ A )
= ( ^ [P4: A > $o,Xs: list @ A] :
( case_list @ ( option @ A ) @ A @ ( none @ A )
@ ^ [X6: A,Xa4: list @ A] : ( some @ A @ X6 )
@ ( dropWhile @ A @ ( comp @ $o @ $o @ A @ (~) @ P4 ) @ Xs ) ) ) ) ).
% find_dropWhile
thf(fact_8151_dropWhile__map,axiom,
! [A: $tType,B: $tType,P: A > $o,F2: B > A,Xs2: list @ B] :
( ( dropWhile @ A @ P @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( map @ B @ A @ F2 @ ( dropWhile @ B @ ( comp @ A @ $o @ B @ P @ F2 ) @ Xs2 ) ) ) ).
% dropWhile_map
thf(fact_8152_takeWhile__eq__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ~ ( P @ X5 ) )
=> ( ( takeWhile @ A @ P @ Xs2 )
= ( filter2 @ A @ P @ Xs2 ) ) ) ).
% takeWhile_eq_filter
thf(fact_8153_dropWhile__eq__Cons__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Y: A,Ys2: list @ A] :
( ( ( dropWhile @ A @ P @ Xs2 )
= ( cons @ A @ Y @ Ys2 ) )
= ( ( Xs2
= ( append @ A @ ( takeWhile @ A @ P @ Xs2 ) @ ( cons @ A @ Y @ Ys2 ) ) )
& ~ ( P @ Y ) ) ) ).
% dropWhile_eq_Cons_conv
thf(fact_8154_dropWhile__append,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys2: list @ A] :
( ( ! [X5: A] :
( ( member @ A @ X5 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X5 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( dropWhile @ A @ P @ Ys2 ) ) )
& ( ~ ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys2 ) )
= ( append @ A @ ( dropWhile @ A @ P @ Xs2 ) @ Ys2 ) ) ) ) ).
% dropWhile_append
thf(fact_8155_remdups__adj__append__dropWhile,axiom,
! [A: $tType,Xs2: list @ A,Y: A,Ys2: list @ A] :
( ( remdups_adj @ A @ ( append @ A @ Xs2 @ ( cons @ A @ Y @ Ys2 ) ) )
= ( append @ A @ ( remdups_adj @ A @ ( append @ A @ Xs2 @ ( cons @ A @ Y @ ( nil @ A ) ) ) )
@ ( remdups_adj @ A
@ ( dropWhile @ A
@ ^ [X6: A] : ( X6 = Y )
@ Ys2 ) ) ) ) ).
% remdups_adj_append_dropWhile
thf(fact_8156_tl__remdups__adj,axiom,
! [A: $tType,Ys2: list @ A] :
( ( Ys2
!= ( nil @ A ) )
=> ( ( tl @ A @ ( remdups_adj @ A @ Ys2 ) )
= ( remdups_adj @ A
@ ( dropWhile @ A
@ ^ [X6: A] :
( X6
= ( hd @ A @ Ys2 ) )
@ ( tl @ A @ Ys2 ) ) ) ) ) ).
% tl_remdups_adj
thf(fact_8157_dropWhile__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ( ( nth @ A @ ( dropWhile @ A @ P @ Xs2 ) @ J )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ) ).
% dropWhile_nth
thf(fact_8158_dropWhile__neq__rev,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( dropWhile @ A
@ ^ [Y6: A] : ( Y6 != X )
@ ( rev @ A @ Xs2 ) )
= ( cons @ A @ X
@ ( rev @ A
@ ( takeWhile @ A
@ ^ [Y6: A] : ( Y6 != X )
@ Xs2 ) ) ) ) ) ) ).
% dropWhile_neq_rev
thf(fact_8159_takeWhile__neq__rev,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( takeWhile @ A
@ ^ [Y6: A] : ( Y6 != X )
@ ( rev @ A @ Xs2 ) )
= ( rev @ A
@ ( tl @ A
@ ( dropWhile @ A
@ ^ [Y6: A] : ( Y6 != X )
@ Xs2 ) ) ) ) ) ) ).
% takeWhile_neq_rev
thf(fact_8160_find__Some__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,X: A] :
( ( ( find @ A @ P @ Xs2 )
= ( some @ A @ X ) )
= ( ? [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P @ ( nth @ A @ Xs2 @ I ) )
& ( X
= ( nth @ A @ Xs2 @ I ) )
& ! [J2: nat] :
( ( ord_less @ nat @ J2 @ I )
=> ~ ( P @ ( nth @ A @ Xs2 @ J2 ) ) ) ) ) ) ).
% find_Some_iff
thf(fact_8161_find__Some__iff2,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( ( some @ A @ X )
= ( find @ A @ P @ Xs2 ) )
= ( ? [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P @ ( nth @ A @ Xs2 @ I ) )
& ( X
= ( nth @ A @ Xs2 @ I ) )
& ! [J2: nat] :
( ( ord_less @ nat @ J2 @ I )
=> ~ ( P @ ( nth @ A @ Xs2 @ J2 ) ) ) ) ) ) ).
% find_Some_iff2
thf(fact_8162_partition__filter__conv,axiom,
! [A: $tType] :
( ( partition @ A )
= ( ^ [F6: A > $o,Xs: list @ A] : ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( filter2 @ A @ F6 @ Xs ) @ ( filter2 @ A @ ( comp @ $o @ $o @ A @ (~) @ F6 ) @ Xs ) ) ) ) ).
% partition_filter_conv
thf(fact_8163_lists__length__Suc__eq,axiom,
! [A: $tType,A3: set @ A,N: nat] :
( ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ( size_size @ ( list @ A ) @ Xs )
= ( suc @ N ) ) ) )
= ( image @ ( product_prod @ ( list @ A ) @ A ) @ ( list @ A )
@ ( product_case_prod @ ( list @ A ) @ A @ ( list @ A )
@ ^ [Xs: list @ A,N3: A] : ( cons @ A @ N3 @ Xs ) )
@ ( product_Sigma @ ( list @ A ) @ A
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A3 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N ) ) )
@ ^ [Uu3: list @ A] : A3 ) ) ) ).
% lists_length_Suc_eq
thf(fact_8164_Sigma__empty1,axiom,
! [B: $tType,A: $tType,B3: A > ( set @ B )] :
( ( product_Sigma @ A @ B @ ( bot_bot @ ( set @ A ) ) @ B3 )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ).
% Sigma_empty1
thf(fact_8165_Times__empty,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B] :
( ( ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) )
= ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ( B3
= ( bot_bot @ ( set @ B ) ) ) ) ) ).
% Times_empty
thf(fact_8166_Sigma__empty2,axiom,
! [B: $tType,A: $tType,A3: set @ A] :
( ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : ( bot_bot @ ( set @ B ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ).
% Sigma_empty2
thf(fact_8167_fst__image__times,axiom,
! [B: $tType,A: $tType,B3: set @ B,A3: set @ A] :
( ( ( B3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( B3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
= A3 ) ) ) ).
% fst_image_times
thf(fact_8168_snd__image__times,axiom,
! [B: $tType,A: $tType,A3: set @ B,B3: set @ A] :
( ( ( A3
= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ ( product_prod @ B @ A ) @ A @ ( product_snd @ B @ A )
@ ( product_Sigma @ B @ A @ A3
@ ^ [Uu3: B] : B3 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( A3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( image @ ( product_prod @ B @ A ) @ A @ ( product_snd @ B @ A )
@ ( product_Sigma @ B @ A @ A3
@ ^ [Uu3: B] : B3 ) )
= B3 ) ) ) ).
% snd_image_times
thf(fact_8169_set__product,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys2: list @ B] :
( ( set2 @ ( product_prod @ A @ B ) @ ( product @ A @ B @ Xs2 @ Ys2 ) )
= ( product_Sigma @ A @ B @ ( set2 @ A @ Xs2 )
@ ^ [Uu3: A] : ( set2 @ B @ Ys2 ) ) ) ).
% set_product
thf(fact_8170_Sigma__interval__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( order @ A )
=> ! [A3: set @ B,V: B > A,W: A] :
( ( inf_inf @ ( set @ ( product_prod @ B @ A ) )
@ ( product_Sigma @ B @ A @ A3
@ ^ [I: B] : ( set_ord_atMost @ A @ ( V @ I ) ) )
@ ( product_Sigma @ B @ A @ A3
@ ^ [I: B] : ( set_or3652927894154168847AtMost @ A @ ( V @ I ) @ W ) ) )
= ( bot_bot @ ( set @ ( product_prod @ B @ A ) ) ) ) ) ).
% Sigma_interval_disjoint
thf(fact_8171_partition__filter1,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( product_fst @ ( list @ A ) @ ( list @ A ) @ ( partition @ A @ P @ Xs2 ) )
= ( filter2 @ A @ P @ Xs2 ) ) ).
% partition_filter1
thf(fact_8172_fst__image__Sigma,axiom,
! [B: $tType,A: $tType,A3: set @ A,B3: A > ( set @ B )] :
( ( image @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ ( product_Sigma @ A @ B @ A3 @ B3 ) )
= ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ( B3 @ X6 )
!= ( bot_bot @ ( set @ B ) ) ) ) ) ) ).
% fst_image_Sigma
thf(fact_8173_finite__cartesian__product__iff,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B] :
( ( finite_finite @ ( product_prod @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
= ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ( B3
= ( bot_bot @ ( set @ B ) ) )
| ( ( finite_finite @ A @ A3 )
& ( finite_finite @ B @ B3 ) ) ) ) ).
% finite_cartesian_product_iff
thf(fact_8174_finite__cartesian__productD2,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B] :
( ( finite_finite @ ( product_prod @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
=> ( ( A3
!= ( bot_bot @ ( set @ A ) ) )
=> ( finite_finite @ B @ B3 ) ) ) ).
% finite_cartesian_productD2
thf(fact_8175_finite__cartesian__productD1,axiom,
! [B: $tType,A: $tType,A3: set @ A,B3: set @ B] :
( ( finite_finite @ ( product_prod @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
=> ( ( B3
!= ( bot_bot @ ( set @ B ) ) )
=> ( finite_finite @ A @ A3 ) ) ) ).
% finite_cartesian_productD1
thf(fact_8176_finite__SigmaI2,axiom,
! [B: $tType,A: $tType,A3: set @ A,B3: A > ( set @ B )] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [X6: A] :
( ( member @ A @ X6 @ A3 )
& ( ( B3 @ X6 )
!= ( bot_bot @ ( set @ B ) ) ) ) ) )
=> ( ! [A6: A] :
( ( member @ A @ A6 @ A3 )
=> ( finite_finite @ B @ ( B3 @ A6 ) ) )
=> ( finite_finite @ ( product_prod @ A @ B ) @ ( product_Sigma @ A @ B @ A3 @ B3 ) ) ) ) ).
% finite_SigmaI2
thf(fact_8177_times__subset__iff,axiom,
! [A: $tType,B: $tType,A3: set @ A,C4: set @ B,B3: set @ A,D5: set @ B] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ B ) )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : C4 )
@ ( product_Sigma @ A @ B @ B3
@ ^ [Uu3: A] : D5 ) )
= ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ( C4
= ( bot_bot @ ( set @ B ) ) )
| ( ( ord_less_eq @ ( set @ A ) @ A3 @ B3 )
& ( ord_less_eq @ ( set @ B ) @ C4 @ D5 ) ) ) ) ).
% times_subset_iff
thf(fact_8178_Sigma__empty__iff,axiom,
! [B: $tType,A: $tType,I6: set @ A,X9: A > ( set @ B )] :
( ( ( product_Sigma @ A @ B @ I6 @ X9 )
= ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) )
= ( ! [X6: A] :
( ( member @ A @ X6 @ I6 )
=> ( ( X9 @ X6 )
= ( bot_bot @ ( set @ B ) ) ) ) ) ) ).
% Sigma_empty_iff
thf(fact_8179_times__eq__iff,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B,C4: set @ A,D5: set @ B] :
( ( ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 )
= ( product_Sigma @ A @ B @ C4
@ ^ [Uu3: A] : D5 ) )
= ( ( ( A3 = C4 )
& ( B3 = D5 ) )
| ( ( ( A3
= ( bot_bot @ ( set @ A ) ) )
| ( B3
= ( bot_bot @ ( set @ B ) ) ) )
& ( ( C4
= ( bot_bot @ ( set @ A ) ) )
| ( D5
= ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ).
% times_eq_iff
thf(fact_8180_card__cartesian__product,axiom,
! [A: $tType,B: $tType,A3: set @ A,B3: set @ B] :
( ( finite_card @ ( product_prod @ A @ B )
@ ( product_Sigma @ A @ B @ A3
@ ^ [Uu3: A] : B3 ) )
= ( times_times @ nat @ ( finite_card @ A @ A3 ) @ ( finite_card @ B @ B3 ) ) ) ).
% card_cartesian_product
thf(fact_8181_partition_Osimps_I1_J,axiom,
! [A: $tType,P: A > $o] :
( ( partition @ A @ P @ ( nil @ A ) )
= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( nil @ A ) @ ( nil @ A ) ) ) ).
% partition.simps(1)
% Type constructors (777)
thf(tcon_fun___Conditionally__Complete__Lattices_Oconditionally__complete__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( condit1219197933456340205attice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Countable__Complete__Lattices_Ocountable__complete__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( counta3822494911875563373attice @ A17 )
=> ( counta3822494911875563373attice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Complete__Lattices_Ocomplete__distrib__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( comple592849572758109894attice @ A17 )
=> ( comple592849572758109894attice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__semilattice__sup__bot,axiom,
! [A14: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounde4967611905675639751up_bot @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__semilattice__inf__top,axiom,
! [A14: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounde4346867609351753570nf_top @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Complete__Lattices_Ocomplete__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( comple6319245703460814977attice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Boolean__Algebras_Oboolean__algebra,axiom,
! [A14: $tType,A17: $tType] :
( ( boolea8198339166811842893lgebra @ A17 )
=> ( boolea8198339166811842893lgebra @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__lattice__bot,axiom,
! [A14: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounded_lattice_bot @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Complete__Partial__Order_Occpo,axiom,
! [A14: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( comple9053668089753744459l_ccpo @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__sup,axiom,
! [A14: $tType,A17: $tType] :
( ( semilattice_sup @ A17 )
=> ( semilattice_sup @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__inf,axiom,
! [A14: $tType,A17: $tType] :
( ( semilattice_inf @ A17 )
=> ( semilattice_inf @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Odistrib__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( distrib_lattice @ A17 )
=> ( distrib_lattice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__lattice,axiom,
! [A14: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounded_lattice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder__top,axiom,
! [A14: $tType,A17: $tType] :
( ( order_top @ A17 )
=> ( order_top @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder__bot,axiom,
! [A14: $tType,A17: $tType] :
( ( order_bot @ A17 )
=> ( order_bot @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A14: $tType,A17: $tType] :
( ( preorder @ A17 )
=> ( preorder @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Olattice,axiom,
! [A14: $tType,A17: $tType] :
( ( lattice @ A17 )
=> ( lattice @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A14: $tType,A17: $tType] :
( ( order @ A17 )
=> ( order @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A14: $tType,A17: $tType] :
( ( ord @ A17 )
=> ( ord @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Obot,axiom,
! [A14: $tType,A17: $tType] :
( ( bot @ A17 )
=> ( bot @ ( A14 > A17 ) ) ) ).
thf(tcon_fun___Groups_Ouminus,axiom,
! [A14: $tType,A17: $tType] :
( ( uminus @ A17 )
=> ( uminus @ ( A14 > A17 ) ) ) ).
thf(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__linorder,axiom,
condit6923001295902523014norder @ int ).
thf(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_1,axiom,
condit1219197933456340205attice @ int ).
thf(tcon_Int_Oint___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,axiom,
bit_un5681908812861735899ations @ int ).
thf(tcon_Int_Oint___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
semiri1453513574482234551roduct @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring__with__nat,axiom,
euclid5411537665997757685th_nat @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__ring__with__nat,axiom,
euclid8789492081693882211th_nat @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__monoid__add__imp__le,axiom,
ordere1937475149494474687imp_le @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring,axiom,
euclid3128863361964157862miring @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring__cancel,axiom,
euclid4440199948858584721cancel @ int ).
thf(tcon_Int_Oint___Divides_Ounique__euclidean__semiring__numeral,axiom,
unique1627219031080169319umeral @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__ring__cancel,axiom,
euclid8851590272496341667cancel @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors__cancel,axiom,
semiri6575147826004484403cancel @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__ab__semigroup__add,axiom,
strict9044650504122735259up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__cancel__ab__semigroup__add,axiom,
ordere580206878836729694up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add__imp__le,axiom,
ordere2412721322843649153imp_le @ int ).
thf(tcon_Int_Oint___Bit__Operations_Osemiring__bit__operations,axiom,
bit_se359711467146920520ations @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__comm__semiring__strict,axiom,
linord2810124833399127020strict @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__comm__monoid__add,axiom,
strict7427464778891057005id_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__cancel__comm__monoid__add,axiom,
ordere8940638589300402666id_add @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring,axiom,
euclid3725896446679973847miring @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Otopological__space,axiom,
topolo4958980785337419405_space @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Olinorder__topology,axiom,
topolo1944317154257567458pology @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Odiscrete__topology,axiom,
topolo8865339358273720382pology @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__1__strict,axiom,
linord715952674999750819strict @ int ).
thf(tcon_Int_Oint___Limits_Otopological__comm__monoid__add,axiom,
topolo5987344860129210374id_add @ int ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__semigroup__add,axiom,
linord4140545234300271783up_add @ int ).
thf(tcon_Int_Oint___Bit__Operations_Oring__bit__operations,axiom,
bit_ri3973907225187159222ations @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Oorder__topology,axiom,
topolo2564578578187576103pology @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1__no__zero__divisors,axiom,
semiri2026040879449505780visors @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord181362715937106298miring @ int ).
thf(tcon_Int_Oint___Limits_Otopological__semigroup__mult,axiom,
topolo4211221413907600880p_mult @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__ring,axiom,
euclid5891614535332579305n_ring @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__strict,axiom,
linord8928482502909563296strict @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors,axiom,
semiri3467727345109120633visors @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add,axiom,
ordere6658533253407199908up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__group__add__abs,axiom,
ordere166539214618696060dd_abs @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__gcd__mult__normalize,axiom,
semiri6843258321239162965malize @ int ).
thf(tcon_Int_Oint___Limits_Otopological__monoid__mult,axiom,
topolo1898628316856586783d_mult @ int ).
thf(tcon_Int_Oint___Groups_Oordered__comm__monoid__add,axiom,
ordere6911136660526730532id_add @ int ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord5086331880401160121up_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__ab__semigroup__add,axiom,
cancel2418104881723323429up_add @ int ).
thf(tcon_Int_Oint___Rings_Oring__1__no__zero__divisors,axiom,
ring_15535105094025558882visors @ int ).
thf(tcon_Int_Oint___Limits_Otopological__monoid__add,axiom,
topolo6943815403480290642id_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__comm__monoid__add,axiom,
cancel1802427076303600483id_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__ring__strict,axiom,
linord4710134922213307826strict @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__1__cancel,axiom,
comm_s4317794764714335236cancel @ int ).
thf(tcon_Int_Oint___Bit__Operations_Osemiring__bits,axiom,
bit_semiring_bits @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Ot2__space,axiom,
topological_t2_space @ int ).
thf(tcon_Int_Oint___Rings_Oordered__comm__semiring,axiom,
ordere2520102378445227354miring @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__1,axiom,
linord6961819062388156250ring_1 @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__group__add,axiom,
ordered_ab_group_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__semigroup__add,axiom,
cancel_semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring,axiom,
linordered_semiring @ int ).
thf(tcon_Int_Oint___Rings_Oordered__semiring__0,axiom,
ordered_semiring_0 @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semidom,axiom,
linordered_semidom @ int ).
thf(tcon_Int_Oint___Lattices_Osemilattice__sup_2,axiom,
semilattice_sup @ int ).
thf(tcon_Int_Oint___Lattices_Osemilattice__inf_3,axiom,
semilattice_inf @ int ).
thf(tcon_Int_Oint___Lattices_Odistrib__lattice_4,axiom,
distrib_lattice @ int ).
thf(tcon_Int_Oint___Groups_Oab__semigroup__mult,axiom,
ab_semigroup_mult @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1__cancel,axiom,
semiring_1_cancel @ int ).
thf(tcon_Int_Oint___Rings_Oalgebraic__semidom,axiom,
algebraic_semidom @ int ).
thf(tcon_Int_Oint___Groups_Ocomm__monoid__mult,axiom,
comm_monoid_mult @ int ).
thf(tcon_Int_Oint___Groups_Oab__semigroup__add,axiom,
ab_semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Oordered__semiring,axiom,
ordered_semiring @ int ).
thf(tcon_Int_Oint___Rings_Oordered__ring__abs,axiom,
ordered_ring_abs @ int ).
thf(tcon_Int_Oint___Parity_Osemiring__parity,axiom,
semiring_parity @ int ).
thf(tcon_Int_Oint___Groups_Ocomm__monoid__add,axiom,
comm_monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__modulo,axiom,
semiring_modulo @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__ring,axiom,
linordered_ring @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__1,axiom,
comm_semiring_1 @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__0,axiom,
comm_semiring_0 @ int ).
thf(tcon_Int_Oint___Groups_Osemigroup__mult,axiom,
semigroup_mult @ int ).
thf(tcon_Int_Oint___Rings_Osemidom__modulo,axiom,
semidom_modulo @ int ).
thf(tcon_Int_Oint___Rings_Osemidom__divide,axiom,
semidom_divide @ int ).
thf(tcon_Int_Oint___Num_Osemiring__numeral,axiom,
semiring_numeral @ int ).
thf(tcon_Int_Oint___Groups_Osemigroup__add,axiom,
semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Ozero__less__one,axiom,
zero_less_one @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring,axiom,
comm_semiring @ int ).
thf(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0 @ int ).
thf(tcon_Int_Oint___Groups_Oab__group__add,axiom,
ab_group_add @ int ).
thf(tcon_Int_Oint___Rings_Ozero__neq__one,axiom,
zero_neq_one @ int ).
thf(tcon_Int_Oint___Rings_Oordered__ring,axiom,
ordered_ring @ int ).
thf(tcon_Int_Oint___Rings_Oidom__abs__sgn,axiom,
idom_abs_sgn @ int ).
thf(tcon_Int_Oint___Parity_Oring__parity,axiom,
ring_parity @ int ).
thf(tcon_Int_Oint___Orderings_Opreorder_5,axiom,
preorder @ int ).
thf(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder @ int ).
thf(tcon_Int_Oint___Groups_Omonoid__mult,axiom,
monoid_mult @ int ).
thf(tcon_Int_Oint___Rings_Oidom__modulo,axiom,
idom_modulo @ int ).
thf(tcon_Int_Oint___Rings_Oidom__divide,axiom,
idom_divide @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__ring__1,axiom,
comm_ring_1 @ int ).
thf(tcon_Int_Oint___Groups_Omonoid__add,axiom,
monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1 @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__0,axiom,
semiring_0 @ int ).
thf(tcon_Int_Oint___Orderings_Ono__top,axiom,
no_top @ int ).
thf(tcon_Int_Oint___Orderings_Ono__bot,axiom,
no_bot @ int ).
thf(tcon_Int_Oint___Lattices_Olattice_6,axiom,
lattice @ int ).
thf(tcon_Int_Oint___Groups_Ogroup__add,axiom,
group_add @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__gcd,axiom,
semiring_gcd @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__Gcd,axiom,
semiring_Gcd @ int ).
thf(tcon_Int_Oint___Rings_Omult__zero,axiom,
mult_zero @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__ring,axiom,
comm_ring @ int ).
thf(tcon_Int_Oint___Orderings_Oorder_7,axiom,
order @ int ).
thf(tcon_Int_Oint___Num_Oneg__numeral,axiom,
neg_numeral @ int ).
thf(tcon_Int_Oint___Nat_Oring__char__0,axiom,
ring_char_0 @ int ).
thf(tcon_Int_Oint___Rings_Osemiring,axiom,
semiring @ int ).
thf(tcon_Int_Oint___Rings_Osemidom,axiom,
semidom @ int ).
thf(tcon_Int_Oint___Orderings_Oord_8,axiom,
ord @ int ).
thf(tcon_Int_Oint___Groups_Ouminus_9,axiom,
uminus @ int ).
thf(tcon_Int_Oint___Rings_Oring__1,axiom,
ring_1 @ int ).
thf(tcon_Int_Oint___Rings_Oabs__if,axiom,
abs_if @ int ).
thf(tcon_Int_Oint___GCD_Oring__gcd,axiom,
ring_gcd @ int ).
thf(tcon_Int_Oint___Power_Opower,axiom,
power @ int ).
thf(tcon_Int_Oint___Num_Onumeral,axiom,
numeral @ int ).
thf(tcon_Int_Oint___Groups_Ozero,axiom,
zero @ int ).
thf(tcon_Int_Oint___Groups_Oplus,axiom,
plus @ int ).
thf(tcon_Int_Oint___Rings_Oring,axiom,
ring @ int ).
thf(tcon_Int_Oint___Rings_Oidom,axiom,
idom @ int ).
thf(tcon_Int_Oint___Groups_Oone,axiom,
one @ int ).
thf(tcon_Int_Oint___Rings_Odvd,axiom,
dvd @ int ).
thf(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_10,axiom,
condit6923001295902523014norder @ nat ).
thf(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_11,axiom,
condit1219197933456340205attice @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_12,axiom,
bit_un5681908812861735899ations @ nat ).
thf(tcon_Nat_Onat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_13,axiom,
semiri1453513574482234551roduct @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring__with__nat_14,axiom,
euclid5411537665997757685th_nat @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_15,axiom,
ordere1937475149494474687imp_le @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring_16,axiom,
euclid3128863361964157862miring @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring__cancel_17,axiom,
euclid4440199948858584721cancel @ nat ).
thf(tcon_Nat_Onat___Divides_Ounique__euclidean__semiring__numeral_18,axiom,
unique1627219031080169319umeral @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors__cancel_19,axiom,
semiri6575147826004484403cancel @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__ab__semigroup__add_20,axiom,
strict9044650504122735259up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__diff,axiom,
ordere1170586879665033532d_diff @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__ab__semigroup__add_21,axiom,
ordere580206878836729694up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add__imp__le_22,axiom,
ordere2412721322843649153imp_le @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Osemiring__bit__operations_23,axiom,
bit_se359711467146920520ations @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__comm__semiring__strict_24,axiom,
linord2810124833399127020strict @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__comm__monoid__add_25,axiom,
strict7427464778891057005id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__add_26,axiom,
ordere8940638589300402666id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni5634975068530333245id_add @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring_27,axiom,
euclid3725896446679973847miring @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Otopological__space_28,axiom,
topolo4958980785337419405_space @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Olinorder__topology_29,axiom,
topolo1944317154257567458pology @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Odiscrete__topology_30,axiom,
topolo8865339358273720382pology @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__comm__monoid__add_31,axiom,
topolo5987344860129210374id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Olinordered__ab__semigroup__add_32,axiom,
linord4140545234300271783up_add @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Oorder__topology_33,axiom,
topolo2564578578187576103pology @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1__no__zero__divisors_34,axiom,
semiri2026040879449505780visors @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_35,axiom,
linord181362715937106298miring @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__semigroup__mult_36,axiom,
topolo4211221413907600880p_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semiring__strict_37,axiom,
linord8928482502909563296strict @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors_38,axiom,
semiri3467727345109120633visors @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add_39,axiom,
ordere6658533253407199908up_add @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__gcd__mult__normalize_40,axiom,
semiri6843258321239162965malize @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__monoid__mult_41,axiom,
topolo1898628316856586783d_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__comm__monoid__add_42,axiom,
ordere6911136660526730532id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add_43,axiom,
cancel2418104881723323429up_add @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__monoid__add_44,axiom,
topolo6943815403480290642id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add_45,axiom,
cancel1802427076303600483id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__1__cancel_46,axiom,
comm_s4317794764714335236cancel @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Osemiring__bits_47,axiom,
bit_semiring_bits @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Ot2__space_48,axiom,
topological_t2_space @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__comm__semiring_49,axiom,
ordere2520102378445227354miring @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__semigroup__add_50,axiom,
cancel_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semiring_51,axiom,
linordered_semiring @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring__0_52,axiom,
ordered_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semidom_53,axiom,
linordered_semidom @ nat ).
thf(tcon_Nat_Onat___Lattices_Osemilattice__sup_54,axiom,
semilattice_sup @ nat ).
thf(tcon_Nat_Onat___Lattices_Osemilattice__inf_55,axiom,
semilattice_inf @ nat ).
thf(tcon_Nat_Onat___Lattices_Odistrib__lattice_56,axiom,
distrib_lattice @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__mult_57,axiom,
ab_semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1__cancel_58,axiom,
semiring_1_cancel @ nat ).
thf(tcon_Nat_Onat___Rings_Oalgebraic__semidom_59,axiom,
algebraic_semidom @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__mult_60,axiom,
comm_monoid_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__diff,axiom,
comm_monoid_diff @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__add_61,axiom,
ab_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring_62,axiom,
ordered_semiring @ nat ).
thf(tcon_Nat_Onat___Parity_Osemiring__parity_63,axiom,
semiring_parity @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__add_64,axiom,
comm_monoid_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__modulo_65,axiom,
semiring_modulo @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__1_66,axiom,
comm_semiring_1 @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__0_67,axiom,
comm_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__mult_68,axiom,
semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom__modulo_69,axiom,
semidom_modulo @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom__divide_70,axiom,
semidom_divide @ nat ).
thf(tcon_Nat_Onat___Num_Osemiring__numeral_71,axiom,
semiring_numeral @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__add_72,axiom,
semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Ozero__less__one_73,axiom,
zero_less_one @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring_74,axiom,
comm_semiring @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder__bot_75,axiom,
order_bot @ nat ).
thf(tcon_Nat_Onat___Nat_Osemiring__char__0_76,axiom,
semiring_char_0 @ nat ).
thf(tcon_Nat_Onat___Rings_Ozero__neq__one_77,axiom,
zero_neq_one @ nat ).
thf(tcon_Nat_Onat___Orderings_Opreorder_78,axiom,
preorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder_79,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__mult_80,axiom,
monoid_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__add_81,axiom,
monoid_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1_82,axiom,
semiring_1 @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__0_83,axiom,
semiring_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Ono__top_84,axiom,
no_top @ nat ).
thf(tcon_Nat_Onat___Lattices_Olattice_85,axiom,
lattice @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__gcd_86,axiom,
semiring_gcd @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__Gcd_87,axiom,
semiring_Gcd @ nat ).
thf(tcon_Nat_Onat___Rings_Omult__zero_88,axiom,
mult_zero @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_89,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring_90,axiom,
semiring @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom_91,axiom,
semidom @ nat ).
thf(tcon_Nat_Onat___Orderings_Oord_92,axiom,
ord @ nat ).
thf(tcon_Nat_Onat___Orderings_Obot_93,axiom,
bot @ nat ).
thf(tcon_Nat_Onat___Power_Opower_94,axiom,
power @ nat ).
thf(tcon_Nat_Onat___Num_Onumeral_95,axiom,
numeral @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero_96,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Groups_Oplus_97,axiom,
plus @ nat ).
thf(tcon_Nat_Onat___Groups_Oone_98,axiom,
one @ nat ).
thf(tcon_Nat_Onat___Rings_Odvd_99,axiom,
dvd @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_Num_Onum___Orderings_Opreorder_100,axiom,
preorder @ num ).
thf(tcon_Num_Onum___Orderings_Olinorder_101,axiom,
linorder @ num ).
thf(tcon_Num_Onum___Orderings_Oorder_102,axiom,
order @ num ).
thf(tcon_Num_Onum___Orderings_Oord_103,axiom,
ord @ num ).
thf(tcon_Num_Onum___Groups_Oplus_104,axiom,
plus @ num ).
thf(tcon_Num_Onum___Nat_Osize_105,axiom,
size @ num ).
thf(tcon_Rat_Orat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_106,axiom,
semiri1453513574482234551roduct @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_107,axiom,
ordere1937475149494474687imp_le @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors__cancel_108,axiom,
semiri6575147826004484403cancel @ rat ).
thf(tcon_Rat_Orat___Groups_Ostrict__ordered__ab__semigroup__add_109,axiom,
strict9044650504122735259up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__cancel__ab__semigroup__add_110,axiom,
ordere580206878836729694up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add__imp__le_111,axiom,
ordere2412721322843649153imp_le @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__comm__semiring__strict_112,axiom,
linord2810124833399127020strict @ rat ).
thf(tcon_Rat_Orat___Groups_Ostrict__ordered__comm__monoid__add_113,axiom,
strict7427464778891057005id_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__cancel__comm__monoid__add_114,axiom,
ordere8940638589300402666id_add @ rat ).
thf(tcon_Rat_Orat___Archimedean__Field_Oarchimedean__field,axiom,
archim462609752435547400_field @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__1__strict_115,axiom,
linord715952674999750819strict @ rat ).
thf(tcon_Rat_Orat___Orderings_Ounbounded__dense__linorder,axiom,
unboun7993243217541854897norder @ rat ).
thf(tcon_Rat_Orat___Groups_Olinordered__ab__semigroup__add_116,axiom,
linord4140545234300271783up_add @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1__no__zero__divisors_117,axiom,
semiri2026040879449505780visors @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__nonzero__semiring_118,axiom,
linord181362715937106298miring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__strict_119,axiom,
linord8928482502909563296strict @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors_120,axiom,
semiri3467727345109120633visors @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add_121,axiom,
ordere6658533253407199908up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__group__add__abs_122,axiom,
ordere166539214618696060dd_abs @ rat ).
thf(tcon_Rat_Orat___Archimedean__Field_Ofloor__ceiling,axiom,
archim2362893244070406136eiling @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__comm__monoid__add_123,axiom,
ordere6911136660526730532id_add @ rat ).
thf(tcon_Rat_Orat___Groups_Olinordered__ab__group__add_124,axiom,
linord5086331880401160121up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__ab__semigroup__add_125,axiom,
cancel2418104881723323429up_add @ rat ).
thf(tcon_Rat_Orat___Rings_Oring__1__no__zero__divisors_126,axiom,
ring_15535105094025558882visors @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__comm__monoid__add_127,axiom,
cancel1802427076303600483id_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__ring__strict_128,axiom,
linord4710134922213307826strict @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__1__cancel_129,axiom,
comm_s4317794764714335236cancel @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__comm__semiring_130,axiom,
ordere2520102378445227354miring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__1_131,axiom,
linord6961819062388156250ring_1 @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__group__add_132,axiom,
ordered_ab_group_add @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__semigroup__add_133,axiom,
cancel_semigroup_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring_134,axiom,
linordered_semiring @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__semiring__0_135,axiom,
ordered_semiring_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semidom_136,axiom,
linordered_semidom @ rat ).
thf(tcon_Rat_Orat___Orderings_Odense__linorder,axiom,
dense_linorder @ rat ).
thf(tcon_Rat_Orat___Lattices_Osemilattice__sup_137,axiom,
semilattice_sup @ rat ).
thf(tcon_Rat_Orat___Lattices_Osemilattice__inf_138,axiom,
semilattice_inf @ rat ).
thf(tcon_Rat_Orat___Lattices_Odistrib__lattice_139,axiom,
distrib_lattice @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__semigroup__mult_140,axiom,
ab_semigroup_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1__cancel_141,axiom,
semiring_1_cancel @ rat ).
thf(tcon_Rat_Orat___Groups_Ocomm__monoid__mult_142,axiom,
comm_monoid_mult @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__semigroup__add_143,axiom,
ab_semigroup_add @ rat ).
thf(tcon_Rat_Orat___Fields_Olinordered__field,axiom,
linordered_field @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__semiring_144,axiom,
ordered_semiring @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__ring__abs_145,axiom,
ordered_ring_abs @ rat ).
thf(tcon_Rat_Orat___Groups_Ocomm__monoid__add_146,axiom,
comm_monoid_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__ring_147,axiom,
linordered_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__idom_148,axiom,
linordered_idom @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__1_149,axiom,
comm_semiring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__0_150,axiom,
comm_semiring_0 @ rat ).
thf(tcon_Rat_Orat___Orderings_Odense__order,axiom,
dense_order @ rat ).
thf(tcon_Rat_Orat___Groups_Osemigroup__mult_151,axiom,
semigroup_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Osemidom__divide_152,axiom,
semidom_divide @ rat ).
thf(tcon_Rat_Orat___Num_Osemiring__numeral_153,axiom,
semiring_numeral @ rat ).
thf(tcon_Rat_Orat___Groups_Osemigroup__add_154,axiom,
semigroup_add @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield__abs__sgn,axiom,
field_abs_sgn @ rat ).
thf(tcon_Rat_Orat___Fields_Odivision__ring,axiom,
division_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Ozero__less__one_155,axiom,
zero_less_one @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring_156,axiom,
comm_semiring @ rat ).
thf(tcon_Rat_Orat___Nat_Osemiring__char__0_157,axiom,
semiring_char_0 @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__group__add_158,axiom,
ab_group_add @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield__char__0,axiom,
field_char_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Ozero__neq__one_159,axiom,
zero_neq_one @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__ring_160,axiom,
ordered_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom__abs__sgn_161,axiom,
idom_abs_sgn @ rat ).
thf(tcon_Rat_Orat___Orderings_Opreorder_162,axiom,
preorder @ rat ).
thf(tcon_Rat_Orat___Orderings_Olinorder_163,axiom,
linorder @ rat ).
thf(tcon_Rat_Orat___Groups_Omonoid__mult_164,axiom,
monoid_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom__divide_165,axiom,
idom_divide @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__ring__1_166,axiom,
comm_ring_1 @ rat ).
thf(tcon_Rat_Orat___Groups_Omonoid__add_167,axiom,
monoid_add @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1_168,axiom,
semiring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__0_169,axiom,
semiring_0 @ rat ).
thf(tcon_Rat_Orat___Orderings_Ono__top_170,axiom,
no_top @ rat ).
thf(tcon_Rat_Orat___Orderings_Ono__bot_171,axiom,
no_bot @ rat ).
thf(tcon_Rat_Orat___Lattices_Olattice_172,axiom,
lattice @ rat ).
thf(tcon_Rat_Orat___Groups_Ogroup__add_173,axiom,
group_add @ rat ).
thf(tcon_Rat_Orat___Rings_Omult__zero_174,axiom,
mult_zero @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__ring_175,axiom,
comm_ring @ rat ).
thf(tcon_Rat_Orat___Orderings_Oorder_176,axiom,
order @ rat ).
thf(tcon_Rat_Orat___Num_Oneg__numeral_177,axiom,
neg_numeral @ rat ).
thf(tcon_Rat_Orat___Nat_Oring__char__0_178,axiom,
ring_char_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring_179,axiom,
semiring @ rat ).
thf(tcon_Rat_Orat___Fields_Oinverse,axiom,
inverse @ rat ).
thf(tcon_Rat_Orat___Rings_Osemidom_180,axiom,
semidom @ rat ).
thf(tcon_Rat_Orat___Orderings_Oord_181,axiom,
ord @ rat ).
thf(tcon_Rat_Orat___Groups_Ouminus_182,axiom,
uminus @ rat ).
thf(tcon_Rat_Orat___Rings_Oring__1_183,axiom,
ring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Oabs__if_184,axiom,
abs_if @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield,axiom,
field @ rat ).
thf(tcon_Rat_Orat___Power_Opower_185,axiom,
power @ rat ).
thf(tcon_Rat_Orat___Num_Onumeral_186,axiom,
numeral @ rat ).
thf(tcon_Rat_Orat___Groups_Ozero_187,axiom,
zero @ rat ).
thf(tcon_Rat_Orat___Groups_Oplus_188,axiom,
plus @ rat ).
thf(tcon_Rat_Orat___Rings_Oring_189,axiom,
ring @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom_190,axiom,
idom @ rat ).
thf(tcon_Rat_Orat___Groups_Oone_191,axiom,
one @ rat ).
thf(tcon_Rat_Orat___Rings_Odvd_192,axiom,
dvd @ rat ).
thf(tcon_Set_Oset___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_193,axiom,
! [A14: $tType] : ( condit1219197933456340205attice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Countable__Complete__Lattices_Ocountable__complete__lattice_194,axiom,
! [A14: $tType] : ( counta3822494911875563373attice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Complete__Lattices_Ocomplete__distrib__lattice_195,axiom,
! [A14: $tType] : ( comple592849572758109894attice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__semilattice__sup__bot_196,axiom,
! [A14: $tType] : ( bounde4967611905675639751up_bot @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__semilattice__inf__top_197,axiom,
! [A14: $tType] : ( bounde4346867609351753570nf_top @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Complete__Lattices_Ocomplete__lattice_198,axiom,
! [A14: $tType] : ( comple6319245703460814977attice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Boolean__Algebras_Oboolean__algebra_199,axiom,
! [A14: $tType] : ( boolea8198339166811842893lgebra @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__lattice__bot_200,axiom,
! [A14: $tType] : ( bounded_lattice_bot @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Complete__Partial__Order_Occpo_201,axiom,
! [A14: $tType] : ( comple9053668089753744459l_ccpo @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__sup_202,axiom,
! [A14: $tType] : ( semilattice_sup @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__inf_203,axiom,
! [A14: $tType] : ( semilattice_inf @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Odistrib__lattice_204,axiom,
! [A14: $tType] : ( distrib_lattice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__lattice_205,axiom,
! [A14: $tType] : ( bounded_lattice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder__top_206,axiom,
! [A14: $tType] : ( order_top @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder__bot_207,axiom,
! [A14: $tType] : ( order_bot @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Opreorder_208,axiom,
! [A14: $tType] : ( preorder @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Lattices_Olattice_209,axiom,
! [A14: $tType] : ( lattice @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_210,axiom,
! [A14: $tType] : ( order @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_211,axiom,
! [A14: $tType] : ( ord @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Orderings_Obot_212,axiom,
! [A14: $tType] : ( bot @ ( set @ A14 ) ) ).
thf(tcon_Set_Oset___Groups_Ouminus_213,axiom,
! [A14: $tType] : ( uminus @ ( set @ A14 ) ) ).
thf(tcon_HOL_Obool___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_214,axiom,
condit1219197933456340205attice @ $o ).
thf(tcon_HOL_Obool___Countable__Complete__Lattices_Ocountable__complete__lattice_215,axiom,
counta3822494911875563373attice @ $o ).
thf(tcon_HOL_Obool___Complete__Lattices_Ocomplete__distrib__lattice_216,axiom,
comple592849572758109894attice @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Otopological__space_217,axiom,
topolo4958980785337419405_space @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Olinorder__topology_218,axiom,
topolo1944317154257567458pology @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Odiscrete__topology_219,axiom,
topolo8865339358273720382pology @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__semilattice__sup__bot_220,axiom,
bounde4967611905675639751up_bot @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__semilattice__inf__top_221,axiom,
bounde4346867609351753570nf_top @ $o ).
thf(tcon_HOL_Obool___Complete__Lattices_Ocomplete__lattice_222,axiom,
comple6319245703460814977attice @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Oorder__topology_223,axiom,
topolo2564578578187576103pology @ $o ).
thf(tcon_HOL_Obool___Boolean__Algebras_Oboolean__algebra_224,axiom,
boolea8198339166811842893lgebra @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__lattice__bot_225,axiom,
bounded_lattice_bot @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Ot2__space_226,axiom,
topological_t2_space @ $o ).
thf(tcon_HOL_Obool___Complete__Partial__Order_Occpo_227,axiom,
comple9053668089753744459l_ccpo @ $o ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__sup_228,axiom,
semilattice_sup @ $o ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__inf_229,axiom,
semilattice_inf @ $o ).
thf(tcon_HOL_Obool___Lattices_Odistrib__lattice_230,axiom,
distrib_lattice @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__lattice_231,axiom,
bounded_lattice @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder__top_232,axiom,
order_top @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder__bot_233,axiom,
order_bot @ $o ).
thf(tcon_HOL_Obool___Orderings_Opreorder_234,axiom,
preorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Olinorder_235,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Lattices_Olattice_236,axiom,
lattice @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_237,axiom,
order @ $o ).
thf(tcon_HOL_Obool___Orderings_Oord_238,axiom,
ord @ $o ).
thf(tcon_HOL_Obool___Orderings_Obot_239,axiom,
bot @ $o ).
thf(tcon_HOL_Obool___Groups_Ouminus_240,axiom,
uminus @ $o ).
thf(tcon_List_Olist___Nat_Osize_241,axiom,
! [A14: $tType] : ( size @ ( list @ A14 ) ) ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_242,axiom,
condit6923001295902523014norder @ real ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_243,axiom,
condit1219197933456340205attice @ real ).
thf(tcon_Real_Oreal___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_244,axiom,
semiri1453513574482234551roduct @ real ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Olinear__continuum,axiom,
condit5016429287641298734tinuum @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__monoid__add__imp__le_245,axiom,
ordere1937475149494474687imp_le @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Olinear__continuum__topology,axiom,
topolo8458572112393995274pology @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ofirst__countable__topology,axiom,
topolo3112930676232923870pology @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__div__algebra,axiom,
real_V8999393235501362500lgebra @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra__1,axiom,
real_V2822296259951069270ebra_1 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors__cancel_246,axiom,
semiri6575147826004484403cancel @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra,axiom,
real_V4412858255891104859lgebra @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oordered__real__vector,axiom,
real_V5355595471888546746vector @ real ).
thf(tcon_Real_Oreal___Groups_Ostrict__ordered__ab__semigroup__add_247,axiom,
strict9044650504122735259up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__cancel__ab__semigroup__add_248,axiom,
ordere580206878836729694up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add__imp__le_249,axiom,
ordere2412721322843649153imp_le @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__comm__semiring__strict_250,axiom,
linord2810124833399127020strict @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__vector,axiom,
real_V822414075346904944vector @ real ).
thf(tcon_Real_Oreal___Groups_Ostrict__ordered__comm__monoid__add_251,axiom,
strict7427464778891057005id_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__cancel__comm__monoid__add_252,axiom,
ordere8940638589300402666id_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Otopological__space_253,axiom,
topolo4958980785337419405_space @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Olinorder__topology_254,axiom,
topolo1944317154257567458pology @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__field,axiom,
real_V3459762299906320749_field @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__div__algebra,axiom,
real_V5047593784448816457lgebra @ real ).
thf(tcon_Real_Oreal___Archimedean__Field_Oarchimedean__field_255,axiom,
archim462609752435547400_field @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__1__strict_256,axiom,
linord715952674999750819strict @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ouniformity__dist,axiom,
real_V768167426530841204y_dist @ real ).
thf(tcon_Real_Oreal___Orderings_Ounbounded__dense__linorder_257,axiom,
unboun7993243217541854897norder @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__comm__monoid__add_258,axiom,
topolo5987344860129210374id_add @ real ).
thf(tcon_Real_Oreal___Groups_Olinordered__ab__semigroup__add_259,axiom,
linord4140545234300271783up_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Oorder__topology_260,axiom,
topolo2564578578187576103pology @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1__no__zero__divisors_261,axiom,
semiri2026040879449505780visors @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__nonzero__semiring_262,axiom,
linord181362715937106298miring @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__algebra__1,axiom,
real_V2191834092415804123ebra_1 @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ocomplete__space,axiom,
real_V8037385150606011577_space @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__semigroup__mult_263,axiom,
topolo4211221413907600880p_mult @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ouniform__space,axiom,
topolo7287701948861334536_space @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Operfect__space,axiom,
topolo8386298272705272623_space @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__strict_264,axiom,
linord8928482502909563296strict @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors_265,axiom,
semiri3467727345109120633visors @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__algebra,axiom,
real_V6157519004096292374lgebra @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ometric__space,axiom,
real_V7819770556892013058_space @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__ab__group__add,axiom,
topolo1287966508704411220up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add_266,axiom,
ordere6658533253407199908up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__group__add__abs_267,axiom,
ordere166539214618696060dd_abs @ real ).
thf(tcon_Real_Oreal___Archimedean__Field_Ofloor__ceiling_268,axiom,
archim2362893244070406136eiling @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__vector,axiom,
real_V4867850818363320053vector @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__comm__monoid__add_269,axiom,
ordere6911136660526730532id_add @ real ).
thf(tcon_Real_Oreal___Groups_Olinordered__ab__group__add_270,axiom,
linord5086331880401160121up_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__ab__semigroup__add_271,axiom,
cancel2418104881723323429up_add @ real ).
thf(tcon_Real_Oreal___Rings_Oring__1__no__zero__divisors_272,axiom,
ring_15535105094025558882visors @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__field,axiom,
real_V7773925162809079976_field @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__monoid__add_273,axiom,
topolo6943815403480290642id_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__comm__monoid__add_274,axiom,
cancel1802427076303600483id_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__ring__strict_275,axiom,
linord4710134922213307826strict @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__1__cancel_276,axiom,
comm_s4317794764714335236cancel @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__group__add,axiom,
topolo1633459387980952147up_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ot2__space_277,axiom,
topological_t2_space @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__comm__semiring_278,axiom,
ordere2520102378445227354miring @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__1_279,axiom,
linord6961819062388156250ring_1 @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__group__add_280,axiom,
ordered_ab_group_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__semigroup__add_281,axiom,
cancel_semigroup_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring_282,axiom,
linordered_semiring @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Obanach,axiom,
real_Vector_banach @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__semiring__0_283,axiom,
ordered_semiring_0 @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semidom_284,axiom,
linordered_semidom @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__linorder_285,axiom,
dense_linorder @ real ).
thf(tcon_Real_Oreal___Lattices_Osemilattice__sup_286,axiom,
semilattice_sup @ real ).
thf(tcon_Real_Oreal___Lattices_Osemilattice__inf_287,axiom,
semilattice_inf @ real ).
thf(tcon_Real_Oreal___Lattices_Odistrib__lattice_288,axiom,
distrib_lattice @ real ).
thf(tcon_Real_Oreal___Groups_Oab__semigroup__mult_289,axiom,
ab_semigroup_mult @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1__cancel_290,axiom,
semiring_1_cancel @ real ).
thf(tcon_Real_Oreal___Groups_Ocomm__monoid__mult_291,axiom,
comm_monoid_mult @ real ).
thf(tcon_Real_Oreal___Groups_Oab__semigroup__add_292,axiom,
ab_semigroup_add @ real ).
thf(tcon_Real_Oreal___Fields_Olinordered__field_293,axiom,
linordered_field @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__semiring_294,axiom,
ordered_semiring @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__ring__abs_295,axiom,
ordered_ring_abs @ real ).
thf(tcon_Real_Oreal___Groups_Ocomm__monoid__add_296,axiom,
comm_monoid_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__ring_297,axiom,
linordered_ring @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__idom_298,axiom,
linordered_idom @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__1_299,axiom,
comm_semiring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__0_300,axiom,
comm_semiring_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__order_301,axiom,
dense_order @ real ).
thf(tcon_Real_Oreal___Groups_Osemigroup__mult_302,axiom,
semigroup_mult @ real ).
thf(tcon_Real_Oreal___Rings_Osemidom__divide_303,axiom,
semidom_divide @ real ).
thf(tcon_Real_Oreal___Num_Osemiring__numeral_304,axiom,
semiring_numeral @ real ).
thf(tcon_Real_Oreal___Groups_Osemigroup__add_305,axiom,
semigroup_add @ real ).
thf(tcon_Real_Oreal___Fields_Ofield__abs__sgn_306,axiom,
field_abs_sgn @ real ).
thf(tcon_Real_Oreal___Fields_Odivision__ring_307,axiom,
division_ring @ real ).
thf(tcon_Real_Oreal___Rings_Ozero__less__one_308,axiom,
zero_less_one @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring_309,axiom,
comm_semiring @ real ).
thf(tcon_Real_Oreal___Nat_Osemiring__char__0_310,axiom,
semiring_char_0 @ real ).
thf(tcon_Real_Oreal___Groups_Oab__group__add_311,axiom,
ab_group_add @ real ).
thf(tcon_Real_Oreal___Fields_Ofield__char__0_312,axiom,
field_char_0 @ real ).
thf(tcon_Real_Oreal___Rings_Ozero__neq__one_313,axiom,
zero_neq_one @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__ring_314,axiom,
ordered_ring @ real ).
thf(tcon_Real_Oreal___Rings_Oidom__abs__sgn_315,axiom,
idom_abs_sgn @ real ).
thf(tcon_Real_Oreal___Orderings_Opreorder_316,axiom,
preorder @ real ).
thf(tcon_Real_Oreal___Orderings_Olinorder_317,axiom,
linorder @ real ).
thf(tcon_Real_Oreal___Groups_Omonoid__mult_318,axiom,
monoid_mult @ real ).
thf(tcon_Real_Oreal___Transcendental_Oln,axiom,
ln @ real ).
thf(tcon_Real_Oreal___Rings_Oidom__divide_319,axiom,
idom_divide @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__ring__1_320,axiom,
comm_ring_1 @ real ).
thf(tcon_Real_Oreal___Groups_Omonoid__add_321,axiom,
monoid_add @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1_322,axiom,
semiring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__0_323,axiom,
semiring_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__top_324,axiom,
no_top @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__bot_325,axiom,
no_bot @ real ).
thf(tcon_Real_Oreal___Lattices_Olattice_326,axiom,
lattice @ real ).
thf(tcon_Real_Oreal___Groups_Ogroup__add_327,axiom,
group_add @ real ).
thf(tcon_Real_Oreal___Rings_Omult__zero_328,axiom,
mult_zero @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__ring_329,axiom,
comm_ring @ real ).
thf(tcon_Real_Oreal___Orderings_Oorder_330,axiom,
order @ real ).
thf(tcon_Real_Oreal___Num_Oneg__numeral_331,axiom,
neg_numeral @ real ).
thf(tcon_Real_Oreal___Nat_Oring__char__0_332,axiom,
ring_char_0 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring_333,axiom,
semiring @ real ).
thf(tcon_Real_Oreal___Fields_Oinverse_334,axiom,
inverse @ real ).
thf(tcon_Real_Oreal___Rings_Osemidom_335,axiom,
semidom @ real ).
thf(tcon_Real_Oreal___Orderings_Oord_336,axiom,
ord @ real ).
thf(tcon_Real_Oreal___Groups_Ouminus_337,axiom,
uminus @ real ).
thf(tcon_Real_Oreal___Rings_Oring__1_338,axiom,
ring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Oabs__if_339,axiom,
abs_if @ real ).
thf(tcon_Real_Oreal___Fields_Ofield_340,axiom,
field @ real ).
thf(tcon_Real_Oreal___Power_Opower_341,axiom,
power @ real ).
thf(tcon_Real_Oreal___Num_Onumeral_342,axiom,
numeral @ real ).
thf(tcon_Real_Oreal___Groups_Ozero_343,axiom,
zero @ real ).
thf(tcon_Real_Oreal___Groups_Oplus_344,axiom,
plus @ real ).
thf(tcon_Real_Oreal___Rings_Oring_345,axiom,
ring @ real ).
thf(tcon_Real_Oreal___Rings_Oidom_346,axiom,
idom @ real ).
thf(tcon_Real_Oreal___Groups_Oone_347,axiom,
one @ real ).
thf(tcon_Real_Oreal___Rings_Odvd_348,axiom,
dvd @ real ).
thf(tcon_String_Ochar___Nat_Osize_349,axiom,
size @ char ).
thf(tcon_Filter_Ofilter___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_350,axiom,
! [A14: $tType] : ( condit1219197933456340205attice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Countable__Complete__Lattices_Ocountable__complete__lattice_351,axiom,
! [A14: $tType] : ( counta3822494911875563373attice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__sup__bot_352,axiom,
! [A14: $tType] : ( bounde4967611905675639751up_bot @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__inf__top_353,axiom,
! [A14: $tType] : ( bounde4346867609351753570nf_top @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Complete__Lattices_Ocomplete__lattice_354,axiom,
! [A14: $tType] : ( comple6319245703460814977attice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__lattice__bot_355,axiom,
! [A14: $tType] : ( bounded_lattice_bot @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Complete__Partial__Order_Occpo_356,axiom,
! [A14: $tType] : ( comple9053668089753744459l_ccpo @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Osemilattice__sup_357,axiom,
! [A14: $tType] : ( semilattice_sup @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Osemilattice__inf_358,axiom,
! [A14: $tType] : ( semilattice_inf @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Odistrib__lattice_359,axiom,
! [A14: $tType] : ( distrib_lattice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__lattice_360,axiom,
! [A14: $tType] : ( bounded_lattice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder__top_361,axiom,
! [A14: $tType] : ( order_top @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder__bot_362,axiom,
! [A14: $tType] : ( order_bot @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Opreorder_363,axiom,
! [A14: $tType] : ( preorder @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Olattice_364,axiom,
! [A14: $tType] : ( lattice @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder_365,axiom,
! [A14: $tType] : ( order @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oord_366,axiom,
! [A14: $tType] : ( ord @ ( filter @ A14 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Obot_367,axiom,
! [A14: $tType] : ( bot @ ( filter @ A14 ) ) ).
thf(tcon_Option_Ooption___Nat_Osize_368,axiom,
! [A14: $tType] : ( size @ ( option @ A14 ) ) ).
thf(tcon_Complex_Ocomplex___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_369,axiom,
semiri1453513574482234551roduct @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ofirst__countable__topology_370,axiom,
topolo3112930676232923870pology @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__div__algebra_371,axiom,
real_V8999393235501362500lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra__1_372,axiom,
real_V2822296259951069270ebra_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors__cancel_373,axiom,
semiri6575147826004484403cancel @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra_374,axiom,
real_V4412858255891104859lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__vector_375,axiom,
real_V822414075346904944vector @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Otopological__space_376,axiom,
topolo4958980785337419405_space @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__field_377,axiom,
real_V3459762299906320749_field @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__div__algebra_378,axiom,
real_V5047593784448816457lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ouniformity__dist_379,axiom,
real_V768167426530841204y_dist @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__comm__monoid__add_380,axiom,
topolo5987344860129210374id_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1__no__zero__divisors_381,axiom,
semiri2026040879449505780visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__algebra__1_382,axiom,
real_V2191834092415804123ebra_1 @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ocomplete__space_383,axiom,
real_V8037385150606011577_space @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__semigroup__mult_384,axiom,
topolo4211221413907600880p_mult @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ouniform__space_385,axiom,
topolo7287701948861334536_space @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Operfect__space_386,axiom,
topolo8386298272705272623_space @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors_387,axiom,
semiri3467727345109120633visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__algebra_388,axiom,
real_V6157519004096292374lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ometric__space_389,axiom,
real_V7819770556892013058_space @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__ab__group__add_390,axiom,
topolo1287966508704411220up_add @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__vector_391,axiom,
real_V4867850818363320053vector @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__ab__semigroup__add_392,axiom,
cancel2418104881723323429up_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring__1__no__zero__divisors_393,axiom,
ring_15535105094025558882visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__field_394,axiom,
real_V7773925162809079976_field @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__monoid__add_395,axiom,
topolo6943815403480290642id_add @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__comm__monoid__add_396,axiom,
cancel1802427076303600483id_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1__cancel_397,axiom,
comm_s4317794764714335236cancel @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__group__add_398,axiom,
topolo1633459387980952147up_add @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ot2__space_399,axiom,
topological_t2_space @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__semigroup__add_400,axiom,
cancel_semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Obanach_401,axiom,
real_Vector_banach @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__semigroup__mult_402,axiom,
ab_semigroup_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1__cancel_403,axiom,
semiring_1_cancel @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__mult_404,axiom,
comm_monoid_mult @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__semigroup__add_405,axiom,
ab_semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__add_406,axiom,
comm_monoid_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1_407,axiom,
comm_semiring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__0_408,axiom,
comm_semiring_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Osemigroup__mult_409,axiom,
semigroup_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemidom__divide_410,axiom,
semidom_divide @ complex ).
thf(tcon_Complex_Ocomplex___Num_Osemiring__numeral_411,axiom,
semiring_numeral @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Osemigroup__add_412,axiom,
semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield__abs__sgn_413,axiom,
field_abs_sgn @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Odivision__ring_414,axiom,
division_ring @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring_415,axiom,
comm_semiring @ complex ).
thf(tcon_Complex_Ocomplex___Nat_Osemiring__char__0_416,axiom,
semiring_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__group__add_417,axiom,
ab_group_add @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield__char__0_418,axiom,
field_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ozero__neq__one_419,axiom,
zero_neq_one @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom__abs__sgn_420,axiom,
idom_abs_sgn @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Omonoid__mult_421,axiom,
monoid_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom__divide_422,axiom,
idom_divide @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__ring__1_423,axiom,
comm_ring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Omonoid__add_424,axiom,
monoid_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1_425,axiom,
semiring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__0_426,axiom,
semiring_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ogroup__add_427,axiom,
group_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Omult__zero_428,axiom,
mult_zero @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__ring_429,axiom,
comm_ring @ complex ).
thf(tcon_Complex_Ocomplex___Num_Oneg__numeral_430,axiom,
neg_numeral @ complex ).
thf(tcon_Complex_Ocomplex___Nat_Oring__char__0_431,axiom,
ring_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring_432,axiom,
semiring @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Oinverse_433,axiom,
inverse @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemidom_434,axiom,
semidom @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ouminus_435,axiom,
uminus @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring__1_436,axiom,
ring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield_437,axiom,
field @ complex ).
thf(tcon_Complex_Ocomplex___Power_Opower_438,axiom,
power @ complex ).
thf(tcon_Complex_Ocomplex___Num_Onumeral_439,axiom,
numeral @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ozero_440,axiom,
zero @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oplus_441,axiom,
plus @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring_442,axiom,
ring @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom_443,axiom,
idom @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oone_444,axiom,
one @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Odvd_445,axiom,
dvd @ complex ).
thf(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_446,axiom,
condit6923001295902523014norder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_447,axiom,
condit1219197933456340205attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Countable__Complete__Lattices_Ocountable__complete__lattice_448,axiom,
counta3822494911875563373attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__distrib__lattice_449,axiom,
comple592849572758109894attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__ab__semigroup__add_450,axiom,
strict9044650504122735259up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__comm__monoid__add_451,axiom,
strict7427464778891057005id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocanonically__ordered__monoid__add_452,axiom,
canoni5634975068530333245id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__sup__bot_453,axiom,
bounde4967611905675639751up_bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__inf__top_454,axiom,
bounde4346867609351753570nf_top @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__linorder,axiom,
comple5582772986160207858norder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Olinordered__ab__semigroup__add_455,axiom,
linord4140545234300271783up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__lattice_456,axiom,
comple6319245703460814977attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Olinordered__nonzero__semiring_457,axiom,
linord181362715937106298miring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__no__zero__divisors_458,axiom,
semiri3467727345109120633visors @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oordered__ab__semigroup__add_459,axiom,
ordere6658533253407199908up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oordered__comm__monoid__add_460,axiom,
ordere6911136660526730532id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__lattice__bot_461,axiom,
bounded_lattice_bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Oordered__comm__semiring_462,axiom,
ordere2520102378445227354miring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Partial__Order_Occpo_463,axiom,
comple9053668089753744459l_ccpo @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__sup_464,axiom,
semilattice_sup @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__inf_465,axiom,
semilattice_inf @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Odistrib__lattice_466,axiom,
distrib_lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__lattice_467,axiom,
bounded_lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__mult_468,axiom,
ab_semigroup_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__mult_469,axiom,
comm_monoid_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__add_470,axiom,
ab_semigroup_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Oordered__semiring_471,axiom,
ordered_semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__add_472,axiom,
comm_monoid_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__1_473,axiom,
comm_semiring_1 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__0_474,axiom,
comm_semiring_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Osemigroup__mult_475,axiom,
semigroup_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Num_Osemiring__numeral_476,axiom,
semiring_numeral @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Osemigroup__add_477,axiom,
semigroup_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ozero__less__one_478,axiom,
zero_less_one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring_479,axiom,
comm_semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Owellorder_480,axiom,
wellorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder__top_481,axiom,
order_top @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder__bot_482,axiom,
order_bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Nat_Osemiring__char__0_483,axiom,
semiring_char_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ozero__neq__one_484,axiom,
zero_neq_one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Opreorder_485,axiom,
preorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Olinorder_486,axiom,
linorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Omonoid__mult_487,axiom,
monoid_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Omonoid__add_488,axiom,
monoid_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__1_489,axiom,
semiring_1 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__0_490,axiom,
semiring_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Olattice_491,axiom,
lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Omult__zero_492,axiom,
mult_zero @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder_493,axiom,
order @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring_494,axiom,
semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oord_495,axiom,
ord @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Obot_496,axiom,
bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Power_Opower_497,axiom,
power @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Num_Onumeral_498,axiom,
numeral @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ozero_499,axiom,
zero @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oplus_500,axiom,
plus @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oone_501,axiom,
one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Odvd_502,axiom,
dvd @ extended_enat ).
thf(tcon_Product__Type_Oprod___Topological__Spaces_Otopological__space_503,axiom,
! [A14: $tType,A17: $tType] :
( ( ( topolo4958980785337419405_space @ A14 )
& ( topolo4958980785337419405_space @ A17 ) )
=> ( topolo4958980785337419405_space @ ( product_prod @ A14 @ A17 ) ) ) ).
thf(tcon_Product__Type_Oprod___Topological__Spaces_Ot2__space_504,axiom,
! [A14: $tType,A17: $tType] :
( ( ( topological_t2_space @ A14 )
& ( topological_t2_space @ A17 ) )
=> ( topological_t2_space @ ( product_prod @ A14 @ A17 ) ) ) ).
thf(tcon_Product__Type_Oprod___Nat_Osize_505,axiom,
! [A14: $tType,A17: $tType] : ( size @ ( product_prod @ A14 @ A17 ) ) ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_506,axiom,
bit_un5681908812861735899ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_507,axiom,
semiri1453513574482234551roduct @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring__with__nat_508,axiom,
euclid5411537665997757685th_nat @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__ring__with__nat_509,axiom,
euclid8789492081693882211th_nat @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__monoid__add__imp__le_510,axiom,
ordere1937475149494474687imp_le @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring_511,axiom,
euclid3128863361964157862miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring__cancel_512,axiom,
euclid4440199948858584721cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Divides_Ounique__euclidean__semiring__numeral_513,axiom,
unique1627219031080169319umeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__ring__cancel_514,axiom,
euclid8851590272496341667cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors__cancel_515,axiom,
semiri6575147826004484403cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__ab__semigroup__add_516,axiom,
strict9044650504122735259up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__ab__semigroup__add_517,axiom,
ordere580206878836729694up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add__imp__le_518,axiom,
ordere2412721322843649153imp_le @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bit__operations_519,axiom,
bit_se359711467146920520ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__comm__semiring__strict_520,axiom,
linord2810124833399127020strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__comm__monoid__add_521,axiom,
strict7427464778891057005id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__comm__monoid__add_522,axiom,
ordere8940638589300402666id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring_523,axiom,
euclid3725896446679973847miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1__strict_524,axiom,
linord715952674999750819strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__semigroup__add_525,axiom,
linord4140545234300271783up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Oring__bit__operations_526,axiom,
bit_ri3973907225187159222ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__no__zero__divisors_527,axiom,
semiri2026040879449505780visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__nonzero__semiring_528,axiom,
linord181362715937106298miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__ring_529,axiom,
euclid5891614535332579305n_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__strict_530,axiom,
linord8928482502909563296strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors_531,axiom,
semiri3467727345109120633visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add_532,axiom,
ordere6658533253407199908up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add__abs_533,axiom,
ordere166539214618696060dd_abs @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__comm__monoid__add_534,axiom,
ordere6911136660526730532id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__group__add_535,axiom,
linord5086331880401160121up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__ab__semigroup__add_536,axiom,
cancel2418104881723323429up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring__1__no__zero__divisors_537,axiom,
ring_15535105094025558882visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__comm__monoid__add_538,axiom,
cancel1802427076303600483id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring__strict_539,axiom,
linord4710134922213307826strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1__cancel_540,axiom,
comm_s4317794764714335236cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bits_541,axiom,
bit_semiring_bits @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__comm__semiring_542,axiom,
ordere2520102378445227354miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1_543,axiom,
linord6961819062388156250ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add_544,axiom,
ordered_ab_group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__semigroup__add_545,axiom,
cancel_semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring_546,axiom,
linordered_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring__0_547,axiom,
ordered_semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semidom_548,axiom,
linordered_semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__mult_549,axiom,
ab_semigroup_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__cancel_550,axiom,
semiring_1_cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oalgebraic__semidom_551,axiom,
algebraic_semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__mult_552,axiom,
comm_monoid_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__add_553,axiom,
ab_semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring_554,axiom,
ordered_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring__abs_555,axiom,
ordered_ring_abs @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Parity_Osemiring__parity_556,axiom,
semiring_parity @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__add_557,axiom,
comm_monoid_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__modulo_558,axiom,
semiring_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring_559,axiom,
linordered_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__idom_560,axiom,
linordered_idom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1_561,axiom,
comm_semiring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__0_562,axiom,
comm_semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__mult_563,axiom,
semigroup_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom__modulo_564,axiom,
semidom_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom__divide_565,axiom,
semidom_divide @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Osemiring__numeral_566,axiom,
semiring_numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__add_567,axiom,
semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ozero__less__one_568,axiom,
zero_less_one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring_569,axiom,
comm_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Nat_Osemiring__char__0_570,axiom,
semiring_char_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__group__add_571,axiom,
ab_group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ozero__neq__one_572,axiom,
zero_neq_one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring_573,axiom,
ordered_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__abs__sgn_574,axiom,
idom_abs_sgn @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Parity_Oring__parity_575,axiom,
ring_parity @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Opreorder_576,axiom,
preorder @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Olinorder_577,axiom,
linorder @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Omonoid__mult_578,axiom,
monoid_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__modulo_579,axiom,
idom_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__divide_580,axiom,
idom_divide @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring__1_581,axiom,
comm_ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Omonoid__add_582,axiom,
monoid_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1_583,axiom,
semiring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__0_584,axiom,
semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ogroup__add_585,axiom,
group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Omult__zero_586,axiom,
mult_zero @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring_587,axiom,
comm_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Oorder_588,axiom,
order @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Oneg__numeral_589,axiom,
neg_numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Nat_Oring__char__0_590,axiom,
ring_char_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring_591,axiom,
semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom_592,axiom,
semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Oord_593,axiom,
ord @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ouminus_594,axiom,
uminus @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring__1_595,axiom,
ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oabs__if_596,axiom,
abs_if @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Power_Opower_597,axiom,
power @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Onumeral_598,axiom,
numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ozero_599,axiom,
zero @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oplus_600,axiom,
plus @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring_601,axiom,
ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom_602,axiom,
idom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oone_603,axiom,
one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Odvd_604,axiom,
dvd @ code_integer ).
thf(tcon_VEBT__Definitions_OVEBT___Nat_Osize_605,axiom,
size @ vEBT_VEBT ).
% Helper facts (4)
thf(help_If_3_1_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $true @ X @ Y )
= X ) ).
thf(help_fChoice_1_1_T,axiom,
! [A: $tType,P: A > $o] :
( ( P @ ( fChoice @ A @ P ) )
= ( ? [X4: A] : ( P @ X4 ) ) ) ).
% Conjectures (2)
thf(conj_0,hypothesis,
ord_less @ nat @ i @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) ).
thf(conj_1,conjecture,
( ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ treeList2 @ i ) @ x )
= ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ treeList @ i ) @ x ) ) ).
%------------------------------------------------------------------------------