TPTP Problem File: ITP259^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP259^2 : TPTP v9.0.0. Released v8.0.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_Delete 01385_095048
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0072_VEBT_Delete_01385_095048 [Des22]
% Status : Theorem
% Rating : 0.67 v9.0.0, 1.00 v8.1.0
% Syntax : Number of formulae : 9719 (2611 unt; 715 typ; 0 def)
% Number of atoms : 30669 (9889 equ; 0 cnn)
% Maximal formula atoms : 71 ( 3 avg)
% Number of connectives : 178416 (2434 ~; 323 |;2346 &;159139 @)
% ( 0 <=>;14174 =>; 0 <=; 0 <~>)
% Maximal formula depth : 40 ( 7 avg)
% Number of types : 13 ( 12 usr)
% Number of type conns : 4253 (4253 >; 0 *; 0 +; 0 <<)
% Number of symbols : 706 ( 703 usr; 23 con; 0-8 aty)
% Number of variables : 28925 (2576 ^;24827 !; 896 ?;28925 :)
% ( 626 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 06:36:53.484
%------------------------------------------------------------------------------
% Could-be-implicit typings (18)
thf(ty_t_VEBT__Definitions_OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_t_Code__Numeral_Ointeger,type,
code_integer: $tType ).
thf(ty_t_Product__Type_Ounit,type,
product_unit: $tType ).
thf(ty_t_Product__Type_Oprod,type,
product_prod: $tType > $tType > $tType ).
thf(ty_t_Extended__Nat_Oenat,type,
extended_enat: $tType ).
thf(ty_t_Complex_Ocomplex,type,
complex: $tType ).
thf(ty_t_String_Oliteral,type,
literal: $tType ).
thf(ty_t_Option_Ooption,type,
option: $tType > $tType ).
thf(ty_t_Filter_Ofilter,type,
filter: $tType > $tType ).
thf(ty_t_String_Ochar,type,
char: $tType ).
thf(ty_t_Real_Oreal,type,
real: $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Rat_Orat,type,
rat: $tType ).
thf(ty_t_Num_Onum,type,
num: $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
thf(ty_t_itself,type,
itself: $tType > $tType ).
% Explicit typings (697)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Odvd,type,
dvd:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom,type,
idom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring,type,
ring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oplus,type,
plus:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Onumeral,type,
numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Power_Opower,type,
power:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield,type,
field:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Oring__gcd,type,
ring_gcd:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oabs__if,type,
abs_if:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__1,type,
ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ouminus,type,
uminus:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Obot,type,
bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Otop,type,
top:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom,type,
semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Oinverse,type,
inverse:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring,type,
semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Oring__char__0,type,
ring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__ring,type,
comm_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Omult__zero,type,
mult_zero:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__Gcd,type,
semiring_Gcd:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__gcd,type,
semiring_gcd:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Olattice,type,
lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__0,type,
semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__add,type,
monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__ring__1,type,
comm_ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__divide,type,
idom_divide:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__modulo,type,
idom_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Transcendental_Oln,type,
ln:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__mult,type,
monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
thf(sy_cl_Parity_Oring__parity,type,
ring_parity:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom__abs__sgn,type,
idom_abs_sgn:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__ring,type,
ordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ozero__neq__one,type,
zero_neq_one:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield__char__0,type,
field_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__group__add,type,
ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder__bot,type,
order_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder__top,type,
order_top:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring,type,
comm_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ozero__less__one,type,
zero_less_one:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Odivision__ring,type,
division_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield__abs__sgn,type,
field_abs_sgn:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__add,type,
semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Osemiring__numeral,type,
semiring_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom__divide,type,
semidom_divide:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom__modulo,type,
semidom_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__mult,type,
semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__0,type,
comm_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__1,type,
comm_semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring,type,
linordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__modulo,type,
semiring_modulo:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__add,type,
comm_monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Parity_Osemiring__parity,type,
semiring_parity:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__ring__abs,type,
ordered_ring_abs:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring,type,
ordered_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__add,type,
ab_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__diff,type,
comm_monoid_diff:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__mult,type,
comm_monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oalgebraic__semidom,type,
algebraic_semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1__cancel,type,
semiring_1_cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__mult,type,
ab_semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__lattice,type,
bounded_lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Odistrib__lattice,type,
distrib_lattice:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Osemilattice__inf,type,
semilattice_inf:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Osemilattice__sup,type,
semilattice_sup:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring__0,type,
ordered_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Obanach,type,
real_Vector_banach:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring,type,
linordered_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Partial__Order_Occpo,type,
comple9053668089753744459l_ccpo:
!>[A: $tType] : $o ).
thf(sy_cl_Enum_Ofinite__distrib__lattice,type,
finite8700451911770168679attice:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__semigroup__add,type,
cancel_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__1,type,
linord6961819062388156250ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Onormalization__semidom,type,
normal8620421768224518004emidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__comm__semiring,type,
ordere2520102378445227354miring:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ot2__space,type,
topological_t2_space:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Osemiring__bits,type,
bit_semiring_bits:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__group__add,type,
topolo1633459387980952147up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__1__cancel,type,
comm_s4317794764714335236cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring__strict,type,
linord4710134922213307826strict:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1802427076303600483id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__monoid__add,type,
topolo6943815403480290642id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__field,type,
real_V7773925162809079976_field:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__1__no__zero__divisors,type,
ring_15535105094025558882visors:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ouniformity,type,
topolo4638772830378233104ormity:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel2418104881723323429up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Olinordered__ab__group__add,type,
linord5086331880401160121up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__comm__monoid__add,type,
ordere6911136660526730532id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__monoid__mult,type,
topolo1898628316856586783d_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__vector,type,
real_V4867850818363320053vector:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Ofloor__ceiling,type,
archim2362893244070406136eiling:
!>[A: $tType] : $o ).
thf(sy_cl_GCD_Osemiring__gcd__mult__normalize,type,
semiri6843258321239162965malize:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add__abs,type,
ordere166539214618696060dd_abs:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add,type,
ordere6658533253407199908up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__ab__group__add,type,
topolo1287966508704411220up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ometric__space,type,
real_V7819770556892013058_space:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors,type,
semiri3467727345109120633visors:
!>[A: $tType] : $o ).
thf(sy_cl_Boolean__Algebras_Oboolean__algebra,type,
boolea8198339166811842893lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__strict,type,
linord8928482502909563296strict:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Operfect__space,type,
topolo8386298272705272623_space:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ouniform__space,type,
topolo7287701948861334536_space:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__semigroup__mult,type,
topolo4211221413907600880p_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ocomplete__space,type,
real_V8037385150606011577_space:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__algebra__1,type,
real_V2191834092415804123ebra_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord181362715937106298miring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1__no__zero__divisors,type,
semiri2026040879449505780visors:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Oorder__topology,type,
topolo2564578578187576103pology:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Oring__bit__operations,type,
bit_ri3973907225187159222ations:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__lattice,type,
comple6319245703460814977attice:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Olinordered__ab__semigroup__add,type,
linord4140545234300271783up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__comm__monoid__add,type,
topolo5987344860129210374id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ounbounded__dense__linorder,type,
unboun7993243217541854897norder:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Ouniformity__dist,type,
real_V768167426530841204y_dist:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semiring__1__strict,type,
linord715952674999750819strict:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim462609752435547400_field:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__linorder,type,
comple5582772986160207858norder:
!>[A: $tType] : $o ).
thf(sy_cl_Limits_Otopological__comm__monoid__mult,type,
topolo4987421752381908075d_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__div__algebra,type,
real_V5047593784448816457lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__semilattice__inf__top,type,
bounde4346867609351753570nf_top:
!>[A: $tType] : $o ).
thf(sy_cl_Lattices_Obounded__semilattice__sup__bot,type,
bounde4967611905675639751up_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__field,type,
real_V3459762299906320749_field:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Olinorder__topology,type,
topolo1944317154257567458pology:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Otopological__space,type,
topolo4958980785337419405_space:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__semiring,type,
euclid3725896446679973847miring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni5634975068530333245id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__comm__monoid__add,type,
ordere8940638589300402666id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__comm__monoid__add,type,
strict7427464778891057005id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__vector,type,
real_V822414075346904944vector:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__comm__semiring__strict,type,
linord2810124833399127020strict:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Osemiring__bit__operations,type,
bit_se359711467146920520ations:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add__imp__le,type,
ordere2412721322843649153imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__ab__semigroup__add,type,
ordere580206878836729694up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__comm__monoid__diff,type,
ordere1170586879665033532d_diff:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__ab__semigroup__add,type,
strict9044650504122735259up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oordered__real__vector,type,
real_V5355595471888546746vector:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra,type,
real_V4412858255891104859lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors__cancel,type,
semiri6575147826004484403cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__ring__cancel,type,
euclid8851590272496341667cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra__1,type,
real_V2822296259951069270ebra_1:
!>[A: $tType] : $o ).
thf(sy_cl_Divides_Ounique__euclidean__semiring__numeral,type,
unique1627219031080169319umeral:
!>[A: $tType] : $o ).
thf(sy_cl_Complete__Lattices_Ocomplete__distrib__lattice,type,
comple592849572758109894attice:
!>[A: $tType] : $o ).
thf(sy_cl_Real__Vector__Spaces_Oreal__normed__div__algebra,type,
real_V8999393235501362500lgebra:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Onormalization__semidom__multiplicative,type,
normal6328177297339901930cative:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Ofirst__countable__topology,type,
topolo3112930676232923870pology:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Oeuclidean__semiring__cancel,type,
euclid4440199948858584721cancel:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__semiring,type,
euclid3128863361964157862miring:
!>[A: $tType] : $o ).
thf(sy_cl_Topological__Spaces_Olinear__continuum__topology,type,
topolo8458572112393995274pology:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__monoid__add__imp__le,type,
ordere1937475149494474687imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Olinear__continuum,type,
condit5016429287641298734tinuum:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__ring__with__nat,type,
euclid8789492081693882211th_nat:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__semiring__with__nat,type,
euclid5411537665997757685th_nat:
!>[A: $tType] : $o ).
thf(sy_cl_Countable__Complete__Lattices_Ocountable__complete__lattice,type,
counta3822494911875563373attice:
!>[A: $tType] : $o ).
thf(sy_cl_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,type,
semiri1453513574482234551roduct:
!>[A: $tType] : $o ).
thf(sy_cl_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,type,
bit_un5681908812861735899ations:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__lattice,type,
condit1219197933456340205attice:
!>[A: $tType] : $o ).
thf(sy_cl_Countable__Complete__Lattices_Ocountable__complete__distrib__lattice,type,
counta4013691401010221786attice:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__linorder,type,
condit6923001295902523014norder:
!>[A: $tType] : $o ).
thf(sy_c_Archimedean__Field_Oceiling,type,
archimedean_ceiling:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor,type,
archim6421214686448440834_floor:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Ofrac,type,
archimedean_frac:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Archimedean__Field_Oround,type,
archimedean_round:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_BNF__Cardinal__Order__Relation_OnatLeq,type,
bNF_Ca8665028551170535155natLeq: set @ ( product_prod @ nat @ nat ) ).
thf(sy_c_BNF__Cardinal__Order__Relation_OnatLess,type,
bNF_Ca8459412986667044542atLess: set @ ( product_prod @ nat @ nat ) ).
thf(sy_c_BNF__Cardinal__Order__Relation_OrelChain,type,
bNF_Ca3754400796208372196lChain:
!>[A: $tType,B: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( A > B ) > $o ) ).
thf(sy_c_BNF__Def_Orel__fun,type,
bNF_rel_fun:
!>[A: $tType,C: $tType,B: $tType,D: $tType] : ( ( A > C > $o ) > ( B > D > $o ) > ( A > B ) > ( C > D ) > $o ) ).
thf(sy_c_Basic__BNF__LFPs_Oprod_Osize__prod,type,
basic_BNF_size_prod:
!>[A: $tType,B: $tType] : ( ( A > nat ) > ( B > nat ) > ( product_prod @ A @ B ) > nat ) ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial,type,
gbinomial:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) > $o ).
thf(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: nat > int > int > int ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot,type,
bit_ri4277139882892585799ns_not:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit,type,
bit_ri4674362597316999326ke_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand,type,
bit_se5824344872417868541ns_and:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit,type,
bit_se4197421643247451524op_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit,type,
bit_se8732182000553998342ip_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask,type,
bit_se2239418461657761734s_mask:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor,type,
bit_se1065995026697491101ons_or:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit,type,
bit_se4730199178511100633sh_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit,type,
bit_se5668285175392031749et_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit,type,
bit_se2584673776208193580ke_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit,type,
bit_se2638667681897837118et_bit:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor,type,
bit_se5824344971392196577ns_xor:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit,type,
bit_se5641148757651400278ts_bit:
!>[A: $tType] : ( A > nat > $o ) ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Opossible__bit,type,
bit_se6407376104438227557le_bit:
!>[A: $tType] : ( ( itself @ A ) > nat > $o ) ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
bit_un7362597486090784418nd_num: num > num > ( option @ num ) ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
bit_un2480387367778600638or_num: num > num > ( option @ num ) ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra,type,
boolea2506097494486148201lgebra:
!>[A: $tType] : ( ( A > A > A ) > ( A > A > A ) > ( A > A ) > A > A > $o ) ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff,type,
boolea3799213064322606851m_diff:
!>[A: $tType] : ( ( A > A > A ) > ( A > A > A ) > ( A > A ) > A > A > ( A > A > A ) > $o ) ).
thf(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > ( product_prod @ code_integer @ $o ) ).
thf(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: code_integer > code_integer > ( product_prod @ code_integer @ code_integer ) ).
thf(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: code_integer > code_integer > ( product_prod @ code_integer @ code_integer ) ).
thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
thf(sy_c_Code__Numeral_Onum__of__integer,type,
code_num_of_integer: code_integer > num ).
thf(sy_c_Complete__Lattices_OInf__class_OInf,type,
complete_Inf_Inf:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Complete__Lattices_OSup__class_OSup,type,
complete_Sup_Sup:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Complete__Partial__Order_Occpo_Oadmissible,type,
comple1908693960933563346ssible:
!>[A: $tType] : ( ( ( set @ A ) > A ) > ( A > A > $o ) > ( A > $o ) > $o ) ).
thf(sy_c_Complete__Partial__Order_Occpo__class_Ofixp,type,
comple115746919287870866o_fixp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Complete__Partial__Order_Occpo__class_Oiterates,type,
comple6359979572994053840erates:
!>[A: $tType] : ( ( A > A ) > ( set @ A ) ) ).
thf(sy_c_Complete__Partial__Order_Occpo__class_Oiteratesp,type,
comple7512665784863727008ratesp:
!>[A: $tType] : ( ( A > A ) > A > $o ) ).
thf(sy_c_Complete__Partial__Order_Ochain,type,
comple1602240252501008431_chain:
!>[A: $tType] : ( ( A > A > $o ) > ( set @ A ) > $o ) ).
thf(sy_c_Complete__Partial__Order_Omonotone,type,
comple7038119648293358887notone:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( B > B > $o ) > ( A > B ) > $o ) ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocnj,type,
cnj: complex > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Complex_Ocomplex_OIm,type,
im: complex > real ).
thf(sy_c_Complex_Ocomplex_ORe,type,
re: complex > real ).
thf(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
thf(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
thf(sy_c_Complex_Orcis,type,
rcis: real > real > complex ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__above,type,
condit941137186595557371_above:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__below,type,
condit1013018076250108175_below:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Countable__Set_Ocountable,type,
countable_countable:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Deriv_Odifferentiable,type,
differentiable:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Deriv_Ohas__derivative,type,
has_derivative:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Deriv_Ohas__field__derivative,type,
has_field_derivative:
!>[A: $tType] : ( ( A > A ) > A > ( filter @ A ) > $o ) ).
thf(sy_c_Deriv_Ohas__vector__derivative,type,
has_ve8173657378732805170vative:
!>[B: $tType] : ( ( real > B ) > B > ( filter @ real ) > $o ) ).
thf(sy_c_Divides_Oadjust__div,type,
adjust_div: ( product_prod @ int @ int ) > int ).
thf(sy_c_Divides_Oadjust__mod,type,
adjust_mod: int > int > int ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > ( product_prod @ nat @ nat ) ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > ( product_prod @ int @ int ) > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux,type,
unique5940410009612947441es_aux:
!>[A: $tType] : ( ( product_prod @ A @ A ) > $o ) ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod,type,
unique8689654367752047608divmod:
!>[A: $tType] : ( num > num > ( product_prod @ A @ A ) ) ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step,type,
unique1321980374590559556d_step:
!>[A: $tType] : ( num > ( product_prod @ A @ A ) > ( product_prod @ A @ A ) ) ).
thf(sy_c_Euclidean__Division_Oeuclidean__semiring__class_Oeuclidean__size,type,
euclid6346220572633701492n_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Euclidean__Division_Ounique__euclidean__semiring__class_Odivision__segment,type,
euclid7384307370059645450egment:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Extended__Nat_OeSuc,type,
extended_eSuc: extended_enat > extended_enat ).
thf(sy_c_Extended__Nat_Oenat,type,
extended_enat2: nat > extended_enat ).
thf(sy_c_Extended__Nat_Oenat_Ocase__enat,type,
extended_case_enat:
!>[T: $tType] : ( ( nat > T ) > T > extended_enat > T ) ).
thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity,type,
extend4730790105801354508finity:
!>[A: $tType] : A ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer,type,
comm_s3205402744901411588hammer:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact,type,
semiring_char_0_fact:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Fields_Oinverse__class_Oinverse,type,
inverse_inverse:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Filter_Oabstract__filter,type,
abstract_filter:
!>[A: $tType] : ( ( product_unit > ( filter @ A ) ) > ( filter @ A ) ) ).
thf(sy_c_Filter_Oat__bot,type,
at_bot:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_Filter_Oat__top,type,
at_top:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_Filter_Oeventually,type,
eventually:
!>[A: $tType] : ( ( A > $o ) > ( filter @ A ) > $o ) ).
thf(sy_c_Filter_Ofilterlim,type,
filterlim:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Filter_Ofiltermap,type,
filtermap:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > ( filter @ B ) ) ).
thf(sy_c_Filter_Oprincipal,type,
principal:
!>[A: $tType] : ( ( set @ A ) > ( filter @ A ) ) ).
thf(sy_c_Filter_Oprod__filter,type,
prod_filter:
!>[A: $tType,B: $tType] : ( ( filter @ A ) > ( filter @ B ) > ( filter @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Finite__Set_Ocard,type,
finite_card:
!>[B: $tType] : ( ( set @ B ) > nat ) ).
thf(sy_c_Finite__Set_Ocomp__fun__commute__on,type,
finite4664212375090638736ute_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B > B ) > $o ) ).
thf(sy_c_Finite__Set_Ocomp__fun__idem__on,type,
finite673082921795544331dem_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B > B ) > $o ) ).
thf(sy_c_Finite__Set_Ofinite,type,
finite_finite:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Finite__Set_Ofold,type,
finite_fold:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > B > ( set @ A ) > B ) ).
thf(sy_c_Finite__Set_Ofolding__on_OF,type,
finite_folding_F:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > B > ( set @ A ) > B ) ).
thf(sy_c_Fun_Obij__betw,type,
bij_betw:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > ( set @ B ) > $o ) ).
thf(sy_c_Fun_Ocomp,type,
comp:
!>[B: $tType,C: $tType,A: $tType] : ( ( B > C ) > ( A > B ) > A > C ) ).
thf(sy_c_Fun_Ofun__upd,type,
fun_upd:
!>[A: $tType,B: $tType] : ( ( A > B ) > A > B > A > B ) ).
thf(sy_c_Fun_Oid,type,
id:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Fun_Oinj__on,type,
inj_on:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > $o ) ).
thf(sy_c_Fun_Omap__fun,type,
map_fun:
!>[C: $tType,A: $tType,B: $tType,D: $tType] : ( ( C > A ) > ( B > D ) > ( A > B ) > C > D ) ).
thf(sy_c_Fun_Ostrict__mono__on,type,
strict_mono_on:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > $o ) ).
thf(sy_c_Fun_Othe__inv__into,type,
the_inv_into:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > B > A ) ).
thf(sy_c_Fun__Def_Ois__measure,type,
fun_is_measure:
!>[A: $tType] : ( ( A > nat ) > $o ) ).
thf(sy_c_Fun__Def_Omax__strict,type,
fun_max_strict: set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ).
thf(sy_c_Fun__Def_Omax__weak,type,
fun_max_weak: set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ).
thf(sy_c_Fun__Def_Omin__strict,type,
fun_min_strict: set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ).
thf(sy_c_Fun__Def_Omin__weak,type,
fun_min_weak: set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ).
thf(sy_c_Fun__Def_Opair__leq,type,
fun_pair_leq: set @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) ).
thf(sy_c_Fun__Def_Opair__less,type,
fun_pair_less: set @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) ).
thf(sy_c_Fun__Def_Oreduction__pair,type,
fun_reduction_pair:
!>[A: $tType] : ( ( product_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) ) > $o ) ).
thf(sy_c_Fun__Def_Orp__inv__image,type,
fun_rp_inv_image:
!>[A: $tType,B: $tType] : ( ( product_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) ) > ( B > A ) > ( product_prod @ ( set @ ( product_prod @ B @ B ) ) @ ( set @ ( product_prod @ B @ B ) ) ) ) ).
thf(sy_c_GCD_OGcd__class_OGcd,type,
gcd_Gcd:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_GCD_OGcd__class_OLcm,type,
gcd_Lcm:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_GCD_Obezw,type,
bezw: nat > nat > ( product_prod @ int @ int ) ).
thf(sy_c_GCD_Obezw__rel,type,
bezw_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_GCD_Obounded__quasi__semilattice__set,type,
bounde6485984586167503788ce_set:
!>[A: $tType] : ( ( A > A > A ) > A > A > ( A > A ) > $o ) ).
thf(sy_c_GCD_Obounded__quasi__semilattice__set_OF,type,
bounde2362111253966948842tice_F:
!>[A: $tType] : ( ( A > A > A ) > A > A > ( set @ A ) > A ) ).
thf(sy_c_GCD_Ogcd__class_Ogcd,type,
gcd_gcd:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_GCD_Ogcd__class_Olcm,type,
gcd_lcm:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_GCD_Ogcd__nat__rel,type,
gcd_nat_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_GCD_Osemiring__1__class_Osemiring__char,type,
semiri4206861660011772517g_char:
!>[A: $tType] : ( ( itself @ A ) > nat ) ).
thf(sy_c_GCD_Osemiring__gcd__class_OGcd__fin,type,
semiring_gcd_Gcd_fin:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Groups_Oabs__class_Oabs,type,
abs_abs:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ogroup,type,
group:
!>[A: $tType] : ( ( A > A > A ) > A > ( A > A ) > $o ) ).
thf(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Omonoid,type,
monoid:
!>[A: $tType] : ( ( A > A > A ) > A > $o ) ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Oplus__class_Oplus,type,
plus_plus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Osgn__class_Osgn,type,
sgn_sgn:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Otimes__class_Otimes,type,
times_times:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Ouminus__class_Ouminus,type,
uminus_uminus:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum,type,
groups7311177749621191930dd_sum:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_H,type,
groups1027152243600224163dd_sum:
!>[C: $tType,A: $tType] : ( ( C > A ) > ( set @ C ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod,type,
groups7121269368397514597t_prod:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > A ) ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_H,type,
groups1962203154675924110t_prod:
!>[C: $tType,A: $tType] : ( ( C > A ) > ( set @ C ) > A ) ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum,type,
groups4207007520872428315er_sum:
!>[B: $tType,A: $tType] : ( ( B > A ) > A > ( list @ B ) > A ) ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list,type,
groups8242544230860333062m_list:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_Groups__List_Omonoid__list_OF,type,
groups_monoid_F:
!>[A: $tType] : ( ( A > A > A ) > A > ( list @ A ) > A ) ).
thf(sy_c_Groups__List_Omonoid__mult__class_Oprod__list,type,
groups5270119922927024881d_list:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_HOL_ONO__MATCH,type,
nO_MATCH:
!>[A: $tType,B: $tType] : ( A > B > $o ) ).
thf(sy_c_HOL_OThe,type,
the:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_HOL_OUniq,type,
uniq:
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf(sy_c_HOL_Oundefined,type,
undefined:
!>[A: $tType] : A ).
thf(sy_c_Hilbert__Choice_Obijection,type,
hilbert_bijection:
!>[A: $tType] : ( ( A > A ) > $o ) ).
thf(sy_c_Hilbert__Choice_Oinv__into,type,
hilbert_inv_into:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > B > A ) ).
thf(sy_c_If,type,
if:
!>[A: $tType] : ( $o > A > A > A ) ).
thf(sy_c_Inductive_Ocomplete__lattice__class_Ogfp,type,
complete_lattice_gfp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Inductive_Ocomplete__lattice__class_Olfp,type,
complete_lattice_lfp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate,type,
infini527867602293511546merate:
!>[A: $tType] : ( ( set @ A ) > nat > A ) ).
thf(sy_c_Int_OAbs__Integ,type,
abs_Integ: ( product_prod @ nat @ nat ) > int ).
thf(sy_c_Int_ORep__Integ,type,
rep_Integ: int > ( product_prod @ nat @ nat ) ).
thf(sy_c_Int_Ocr__int,type,
cr_int: ( product_prod @ nat @ nat ) > int > $o ).
thf(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > ( set @ ( product_prod @ int @ int ) ) ).
thf(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > ( set @ ( product_prod @ int @ int ) ) ).
thf(sy_c_Int_Ointrel,type,
intrel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Opcr__int,type,
pcr_int: ( product_prod @ nat @ nat ) > int > $o ).
thf(sy_c_Int_Opower__int,type,
power_int:
!>[A: $tType] : ( A > int > A ) ).
thf(sy_c_Int_Oring__1__class_OInts,type,
ring_1_Ints:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Int_Oring__1__class_Oof__int,type,
ring_1_of_int:
!>[A: $tType] : ( int > A ) ).
thf(sy_c_Lattices_Oinf__class_Oinf,type,
inf_inf:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Lattices_Osemilattice__neutr,type,
semilattice_neutr:
!>[A: $tType] : ( ( A > A > A ) > A > $o ) ).
thf(sy_c_Lattices_Osemilattice__neutr__order,type,
semila1105856199041335345_order:
!>[A: $tType] : ( ( A > A > A ) > A > ( A > A > $o ) > ( A > A > $o ) > $o ) ).
thf(sy_c_Lattices_Osup__class_Osup,type,
sup_sup:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Lattices__Big_Olinorder_OMax,type,
lattices_Max:
!>[A: $tType] : ( ( A > A > $o ) > ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Olinorder_OMin,type,
lattices_Min:
!>[A: $tType] : ( ( A > A > $o ) > ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax,type,
lattic643756798349783984er_Max:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Olinorder__class_OMin,type,
lattic643756798350308766er_Min:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min,type,
lattices_ord_arg_min:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( B > $o ) > B ) ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on,type,
lattic7623131987881927897min_on:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > B ) ).
thf(sy_c_Lattices__Big_Oord__class_Ois__arg__min,type,
lattic501386751177426532rg_min:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( B > $o ) > B > $o ) ).
thf(sy_c_Lattices__Big_Osemilattice__inf__class_OInf__fin,type,
lattic7752659483105999362nf_fin:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Osemilattice__order__set,type,
lattic4895041142388067077er_set:
!>[A: $tType] : ( ( A > A > A ) > ( A > A > $o ) > ( A > A > $o ) > $o ) ).
thf(sy_c_Lattices__Big_Osemilattice__set,type,
lattic149705377957585745ce_set:
!>[A: $tType] : ( ( A > A > A ) > $o ) ).
thf(sy_c_Lattices__Big_Osemilattice__set_OF,type,
lattic1715443433743089157tice_F:
!>[A: $tType] : ( ( A > A > A ) > ( set @ A ) > A ) ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin,type,
lattic5882676163264333800up_fin:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Lifting_OQuotient,type,
quotient:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( A > B ) > ( B > A ) > ( A > B > $o ) > $o ) ).
thf(sy_c_Limits_OBfun,type,
bfun:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Limits_OZfun,type,
zfun:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( filter @ A ) > $o ) ).
thf(sy_c_Limits_Oat__infinity,type,
at_infinity:
!>[A: $tType] : ( filter @ A ) ).
thf(sy_c_List_Oappend,type,
append:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oarg__min__list,type,
arg_min_list:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( list @ A ) > A ) ).
thf(sy_c_List_Oarg__min__list__rel,type,
arg_min_list_rel:
!>[A: $tType,B: $tType] : ( ( product_prod @ ( A > B ) @ ( list @ A ) ) > ( product_prod @ ( A > B ) @ ( list @ A ) ) > $o ) ).
thf(sy_c_List_Obind,type,
bind:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( A > ( list @ B ) ) > ( list @ B ) ) ).
thf(sy_c_List_Obutlast,type,
butlast:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oconcat,type,
concat:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ A ) ) ).
thf(sy_c_List_Ocoset,type,
coset:
!>[A: $tType] : ( ( list @ A ) > ( set @ A ) ) ).
thf(sy_c_List_Ocount__list,type,
count_list:
!>[A: $tType] : ( ( list @ A ) > A > nat ) ).
thf(sy_c_List_Odistinct,type,
distinct:
!>[A: $tType] : ( ( list @ A ) > $o ) ).
thf(sy_c_List_Odrop,type,
drop:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OdropWhile,type,
dropWhile:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oenumerate,type,
enumerate:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ ( product_prod @ nat @ A ) ) ) ).
thf(sy_c_List_Oextract,type,
extract:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( option @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) ) ).
thf(sy_c_List_Ofilter,type,
filter2:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Ofind,type,
find:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( option @ A ) ) ).
thf(sy_c_List_Ofold,type,
fold:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > ( list @ A ) > B > B ) ).
thf(sy_c_List_Ofolding__insort__key,type,
folding_insort_key:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( A > A > $o ) > ( set @ B ) > ( B > A ) > $o ) ).
thf(sy_c_List_Ofoldr,type,
foldr:
!>[A: $tType,B: $tType] : ( ( A > B > B ) > ( list @ A ) > B > B ) ).
thf(sy_c_List_Ogen__length,type,
gen_length:
!>[A: $tType] : ( nat > ( list @ A ) > nat ) ).
thf(sy_c_List_Oinsert,type,
insert:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olast,type,
last:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_Olenlex,type,
lenlex:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olex,type,
lex:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olexn,type,
lexn:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > nat > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olexord,type,
lexord:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olinorder_Osorted__key__list__of__set,type,
sorted8670434370408473282of_set:
!>[A: $tType,B: $tType] : ( ( A > A > $o ) > ( B > A ) > ( set @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Oinsort__insert__key,type,
linord329482645794927042rt_key:
!>[B: $tType,A: $tType] : ( ( B > A ) > B > ( list @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Oinsort__key,type,
linorder_insort_key:
!>[B: $tType,A: $tType] : ( ( B > A ) > B > ( list @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Osort__key,type,
linorder_sort_key:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( list @ B ) > ( list @ B ) ) ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set,type,
linord4507533701916653071of_set:
!>[A: $tType] : ( ( set @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist_OCons,type,
cons:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : ( list @ A ) ).
thf(sy_c_List_Olist_Ohd,type,
hd:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_Olist_Olist__all2,type,
list_all2:
!>[A: $tType,B: $tType] : ( ( A > B > $o ) > ( list @ A ) > ( list @ B ) > $o ) ).
thf(sy_c_List_Olist_Omap,type,
map:
!>[A: $tType,Aa: $tType] : ( ( A > Aa ) > ( list @ A ) > ( list @ Aa ) ) ).
thf(sy_c_List_Olist_Orec__list,type,
rec_list:
!>[C: $tType,A: $tType] : ( C > ( A > ( list @ A ) > C > C ) > ( list @ A ) > C ) ).
thf(sy_c_List_Olist_Oset,type,
set2:
!>[A: $tType] : ( ( list @ A ) > ( set @ A ) ) ).
thf(sy_c_List_Olist_Osize__list,type,
size_list:
!>[A: $tType] : ( ( A > nat ) > ( list @ A ) > nat ) ).
thf(sy_c_List_Olist_Otl,type,
tl:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist__ex,type,
list_ex:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Olist__update,type,
list_update:
!>[A: $tType] : ( ( list @ A ) > nat > A > ( list @ A ) ) ).
thf(sy_c_List_Olistrel,type,
listrel:
!>[A: $tType,B: $tType] : ( ( set @ ( product_prod @ A @ B ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) ) ) ).
thf(sy_c_List_Olistrel1,type,
listrel1:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ).
thf(sy_c_List_Olists,type,
lists:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( list @ A ) ) ) ).
thf(sy_c_List_Omeasures,type,
measures:
!>[A: $tType] : ( ( list @ ( A > nat ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_List_Omin__list,type,
min_list:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_On__lists,type,
n_lists:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( ( list @ A ) > nat > A ) ).
thf(sy_c_List_Onths,type,
nths:
!>[A: $tType] : ( ( list @ A ) > ( set @ nat ) > ( list @ A ) ) ).
thf(sy_c_List_Oord__class_Olexordp,type,
ord_lexordp:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Opartition,type,
partition:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ).
thf(sy_c_List_Oproduct,type,
product:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( list @ B ) > ( list @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_List_Oproduct__lists,type,
product_lists:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Oremdups,type,
remdups:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oremdups__adj,type,
remdups_adj:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oremove1,type,
remove1:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OremoveAll,type,
removeAll:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oreplicate,type,
replicate:
!>[A: $tType] : ( nat > A > ( list @ A ) ) ).
thf(sy_c_List_Orev,type,
rev:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Orotate,type,
rotate:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Orotate1,type,
rotate1:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oshuffles,type,
shuffles:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( set @ ( list @ A ) ) ) ).
thf(sy_c_List_Osorted__wrt,type,
sorted_wrt:
!>[A: $tType] : ( ( A > A > $o ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Osorted__wrt__rel,type,
sorted_wrt_rel:
!>[A: $tType] : ( ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) > ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) > $o ) ).
thf(sy_c_List_Osplice,type,
splice:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Osubseqs,type,
subseqs:
!>[A: $tType] : ( ( list @ A ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Otake,type,
take:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_OtakeWhile,type,
takeWhile:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Otranspose,type,
transpose:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Ounion,type,
union:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > ( list @ nat ) ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > ( list @ int ) > ( list @ int ) ).
thf(sy_c_List_Ozip,type,
zip:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( list @ B ) > ( list @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Map_Odom,type,
dom:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ A ) ) ).
thf(sy_c_Map_Omap__of,type,
map_of:
!>[A: $tType,B: $tType] : ( ( list @ ( product_prod @ A @ B ) ) > A > ( option @ B ) ) ).
thf(sy_c_Map_Omap__upds,type,
map_upds:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( list @ A ) > ( list @ B ) > A > ( option @ B ) ) ).
thf(sy_c_Map_Oran,type,
ran:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ B ) ) ).
thf(sy_c_Map_Orestrict__map,type,
restrict_map:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( set @ A ) > A > ( option @ B ) ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Ocompow,type,
compow:
!>[A: $tType] : ( nat > A > A ) ).
thf(sy_c_Nat_Ofunpow,type,
funpow:
!>[A: $tType] : ( nat > ( A > A ) > A > A ) ).
thf(sy_c_Nat_Onat_Ocase__nat,type,
case_nat:
!>[A: $tType] : ( A > ( nat > A ) > nat > A ) ).
thf(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
thf(sy_c_Nat_Oold_Onat_Orec__nat,type,
rec_nat:
!>[T: $tType] : ( T > ( nat > T > T ) > nat > T ) ).
thf(sy_c_Nat_Oold_Onat_Orec__set__nat,type,
rec_set_nat:
!>[T: $tType] : ( T > ( nat > T > T ) > nat > T > $o ) ).
thf(sy_c_Nat_Osemiring__1__class_ONats,type,
semiring_1_Nats:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux,type,
semiri8178284476397505188at_aux:
!>[A: $tType] : ( ( A > A ) > nat > A > A ) ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Nat__Bijection_Oint__decode,type,
nat_int_decode: nat > int ).
thf(sy_c_Nat__Bijection_Oint__encode,type,
nat_int_encode: int > nat ).
thf(sy_c_Nat__Bijection_Olist__decode,type,
nat_list_decode: nat > ( list @ nat ) ).
thf(sy_c_Nat__Bijection_Olist__decode__rel,type,
nat_list_decode_rel: nat > nat > $o ).
thf(sy_c_Nat__Bijection_Olist__encode,type,
nat_list_encode: ( list @ nat ) > nat ).
thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
nat_list_encode_rel: ( list @ nat ) > ( list @ nat ) > $o ).
thf(sy_c_Nat__Bijection_Oprod__decode,type,
nat_prod_decode: nat > ( product_prod @ nat @ nat ) ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: nat > nat > ( product_prod @ nat @ nat ) ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
nat_pr5047031295181774490ux_rel: ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) > $o ).
thf(sy_c_Nat__Bijection_Oprod__encode,type,
nat_prod_encode: ( product_prod @ nat @ nat ) > nat ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > ( set @ nat ) ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: ( set @ nat ) > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl,type,
neg_numeral_dbl:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec,type,
neg_numeral_dbl_dec:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc,type,
neg_numeral_dbl_inc:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Osub,type,
neg_numeral_sub:
!>[A: $tType] : ( num > num > A ) ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one2: num ).
thf(sy_c_Num_Onum_Ocase__num,type,
case_num:
!>[A: $tType] : ( A > ( num > A ) > ( num > A ) > num > A ) ).
thf(sy_c_Num_Onum_Orec__num,type,
rec_num:
!>[A: $tType] : ( A > ( num > A > A ) > ( num > A > A ) > num > A ) ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral,type,
numeral_numeral:
!>[A: $tType] : ( num > A ) ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Num_Oring__1__class_Oiszero,type,
ring_1_iszero:
!>[A: $tType] : ( A > $o ) ).
thf(sy_c_Num_Osqr,type,
sqr: num > num ).
thf(sy_c_Option_Ooption_ONone,type,
none:
!>[A: $tType] : ( option @ A ) ).
thf(sy_c_Option_Ooption_OSome,type,
some:
!>[A: $tType] : ( A > ( option @ A ) ) ).
thf(sy_c_Option_Ooption_Ocase__option,type,
case_option:
!>[B: $tType,A: $tType] : ( B > ( A > B ) > ( option @ A ) > B ) ).
thf(sy_c_Option_Ooption_Osize__option,type,
size_option:
!>[A: $tType] : ( ( A > nat ) > ( option @ A ) > nat ) ).
thf(sy_c_Option_Ooption_Othe,type,
the2:
!>[A: $tType] : ( ( option @ A ) > A ) ).
thf(sy_c_Order__Continuity_Ocountable__complete__lattice__class_Occlfp,type,
order_532582986084564980_cclfp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Order__Continuity_Oinf__continuous,type,
order_inf_continuous:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Order__Continuity_Osup__continuous,type,
order_sup_continuous:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Order__Relation_OunderS,type,
order_underS:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > A > ( set @ A ) ) ).
thf(sy_c_Orderings_Obot__class_Obot,type,
bot_bot:
!>[A: $tType] : A ).
thf(sy_c_Orderings_Oord_OLeast,type,
least:
!>[A: $tType] : ( ( A > A > $o ) > ( A > $o ) > A ) ).
thf(sy_c_Orderings_Oord_Omax,type,
max:
!>[A: $tType] : ( ( A > A > $o ) > A > A > A ) ).
thf(sy_c_Orderings_Oord_Omin,type,
min:
!>[A: $tType] : ( ( A > A > $o ) > A > A > A ) ).
thf(sy_c_Orderings_Oord__class_OLeast,type,
ord_Least:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Omax,type,
ord_max:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Orderings_Oord__class_Omin,type,
ord_min:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Orderings_Oorder__class_OGreatest,type,
order_Greatest:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_Orderings_Oorder__class_Oantimono,type,
order_antimono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Omono,type,
order_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono,type,
order_strict_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oordering__top,type,
ordering_top:
!>[A: $tType] : ( ( A > A > $o ) > ( A > A > $o ) > A > $o ) ).
thf(sy_c_Orderings_Otop__class_Otop,type,
top_top:
!>[A: $tType] : A ).
thf(sy_c_Power_Opower_Opower,type,
power2:
!>[A: $tType] : ( A > ( A > A > A ) > A > nat > A ) ).
thf(sy_c_Power_Opower__class_Opower,type,
power_power:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Product__Type_OPair,type,
product_Pair:
!>[A: $tType,B: $tType] : ( A > B > ( product_prod @ A @ B ) ) ).
thf(sy_c_Product__Type_OSigma,type,
product_Sigma:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > ( set @ B ) ) > ( set @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Product__Type_Oapsnd,type,
product_apsnd:
!>[B: $tType,C: $tType,A: $tType] : ( ( B > C ) > ( product_prod @ A @ B ) > ( product_prod @ A @ C ) ) ).
thf(sy_c_Product__Type_Oprod_Ocase__prod,type,
product_case_prod:
!>[A: $tType,B: $tType,C: $tType] : ( ( A > B > C ) > ( product_prod @ A @ B ) > C ) ).
thf(sy_c_Product__Type_Oprod_Ofst,type,
product_fst:
!>[A: $tType,B: $tType] : ( ( product_prod @ A @ B ) > A ) ).
thf(sy_c_Product__Type_Oprod_Osnd,type,
product_snd:
!>[A: $tType,B: $tType] : ( ( product_prod @ A @ B ) > B ) ).
thf(sy_c_Product__Type_Oproduct,type,
product_product:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( set @ B ) > ( set @ ( product_prod @ A @ B ) ) ) ).
thf(sy_c_Pure_Otype,type,
type2:
!>[A: $tType] : ( itself @ A ) ).
thf(sy_c_Rat_OAbs__Rat,type,
abs_Rat: ( product_prod @ int @ int ) > rat ).
thf(sy_c_Rat_OFract,type,
fract: int > int > rat ).
thf(sy_c_Rat_OFrct,type,
frct: ( product_prod @ int @ int ) > rat ).
thf(sy_c_Rat_ORep__Rat,type,
rep_Rat: rat > ( product_prod @ int @ int ) ).
thf(sy_c_Rat_Ofield__char__0__class_ORats,type,
field_char_0_Rats:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Rat_Ofield__char__0__class_Oof__rat,type,
field_char_0_of_rat:
!>[A: $tType] : ( rat > A ) ).
thf(sy_c_Rat_Onormalize,type,
normalize: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) ).
thf(sy_c_Rat_Opcr__rat,type,
pcr_rat: ( product_prod @ int @ int ) > rat > $o ).
thf(sy_c_Rat_Opositive,type,
positive: rat > $o ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > ( product_prod @ int @ int ) ).
thf(sy_c_Rat_Oratrel,type,
ratrel: ( product_prod @ int @ int ) > ( product_prod @ int @ int ) > $o ).
thf(sy_c_Real_OReal,type,
real2: ( nat > rat ) > real ).
thf(sy_c_Real_Ocauchy,type,
cauchy: ( nat > rat ) > $o ).
thf(sy_c_Real_Ocr__real,type,
cr_real: ( nat > rat ) > real > $o ).
thf(sy_c_Real_Opcr__real,type,
pcr_real: ( nat > rat ) > real > $o ).
thf(sy_c_Real_Opositive,type,
positive2: real > $o ).
thf(sy_c_Real_Orealrel,type,
realrel: ( nat > rat ) > ( nat > rat ) > $o ).
thf(sy_c_Real_Orep__real,type,
rep_real: real > nat > rat ).
thf(sy_c_Real_Ovanishes,type,
vanishes: ( nat > rat ) > $o ).
thf(sy_c_Real__Vector__Spaces_OReals,type,
real_Vector_Reals:
!>[A: $tType] : ( set @ A ) ).
thf(sy_c_Real__Vector__Spaces_Obounded__bilinear,type,
real_V2442710119149674383linear:
!>[A: $tType,B: $tType,C: $tType] : ( ( A > B > C ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear,type,
real_V3181309239436604168linear:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Oconstruct,type,
real_V4425403222259421789struct:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > A > B ) ).
thf(sy_c_Real__Vector__Spaces_Odependent,type,
real_V358717886546972837endent:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Odim,type,
real_Vector_dim:
!>[A: $tType] : ( ( set @ A ) > nat ) ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist,type,
real_V557655796197034286t_dist:
!>[A: $tType] : ( A > A > real ) ).
thf(sy_c_Real__Vector__Spaces_Oextend__basis,type,
real_V4986007116245087402_basis:
!>[A: $tType] : ( ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Real__Vector__Spaces_Olinear,type,
real_Vector_linear:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm,type,
real_V7770717601297561774m_norm:
!>[A: $tType] : ( A > real ) ).
thf(sy_c_Real__Vector__Spaces_Oof__real,type,
real_Vector_of_real:
!>[A: $tType] : ( real > A ) ).
thf(sy_c_Real__Vector__Spaces_Orepresentation,type,
real_V7696804695334737415tation:
!>[A: $tType] : ( ( set @ A ) > A > A > real ) ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR,type,
real_V8093663219630862766scaleR:
!>[A: $tType] : ( real > A > A ) ).
thf(sy_c_Real__Vector__Spaces_Ospan,type,
real_Vector_span:
!>[A: $tType] : ( ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Relation_OId,type,
id2:
!>[A: $tType] : ( set @ ( product_prod @ A @ A ) ) ).
thf(sy_c_Relation_OId__on,type,
id_on:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Relation_Oinv__image,type,
inv_image:
!>[B: $tType,A: $tType] : ( ( set @ ( product_prod @ B @ B ) ) > ( A > B ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Relation_Orelcomp,type,
relcomp:
!>[A: $tType,B: $tType,C: $tType] : ( ( set @ ( product_prod @ A @ B ) ) > ( set @ ( product_prod @ B @ C ) ) > ( set @ ( product_prod @ A @ C ) ) ) ).
thf(sy_c_Relation_Otransp,type,
transp:
!>[A: $tType] : ( ( A > A > $o ) > $o ) ).
thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime,type,
algebr8660921524188924756oprime:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Rings_Odivide__class_Odivide,type,
divide_divide:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Rings_Odvd__class_Odvd,type,
dvd_dvd:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Rings_Omodulo__class_Omodulo,type,
modulo_modulo:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Rings_Onormalization__semidom__class_Onormalize,type,
normal6383669964737779283malize:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool,type,
zero_neq_one_of_bool:
!>[A: $tType] : ( $o > A ) ).
thf(sy_c_Series_Osuminf,type,
suminf:
!>[A: $tType] : ( ( nat > A ) > A ) ).
thf(sy_c_Series_Osummable,type,
summable:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Series_Osums,type,
sums:
!>[A: $tType] : ( ( nat > A ) > A > $o ) ).
thf(sy_c_Set_OBall,type,
ball:
!>[A: $tType] : ( ( set @ A ) > ( A > $o ) > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Set_OPow,type,
pow2:
!>[A: $tType] : ( ( set @ A ) > ( set @ ( set @ A ) ) ) ).
thf(sy_c_Set_Odisjnt,type,
disjnt:
!>[A: $tType] : ( ( set @ A ) > ( set @ A ) > $o ) ).
thf(sy_c_Set_Ofilter,type,
filter3:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Oimage,type,
image:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ A ) > ( set @ B ) ) ).
thf(sy_c_Set_Oinsert,type,
insert2:
!>[A: $tType] : ( A > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Ois__singleton,type,
is_singleton:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Set_Oremove,type,
remove:
!>[A: $tType] : ( A > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Othe__elem,type,
the_elem:
!>[A: $tType] : ( ( set @ A ) > A ) ).
thf(sy_c_Set_Ovimage,type,
vimage:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( set @ B ) > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat,type,
set_fo6178422350223883121st_nat:
!>[A: $tType] : ( ( nat > A > A ) > nat > nat > A > A ) ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel,type,
set_fo1817059534552279752at_rel:
!>[A: $tType] : ( ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) > ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) > $o ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeast,type,
set_ord_atLeast:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost,type,
set_or1337092689740270186AtMost:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan,type,
set_or7035219750837199246ssThan:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatMost,type,
set_ord_atMost:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan,type,
set_ord_greaterThan:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost,type,
set_or3652927894154168847AtMost:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan,type,
set_or5935395276787703475ssThan:
!>[A: $tType] : ( A > A > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OlessThan,type,
set_ord_lessThan:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_String_OCode_Oabort,type,
abort:
!>[A: $tType] : ( literal > ( product_unit > A ) > A ) ).
thf(sy_c_String_OLiteral,type,
literal2: $o > $o > $o > $o > $o > $o > $o > literal > literal ).
thf(sy_c_String_Ochar_OChar,type,
char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_String_Ocomm__semiring__1__class_Oof__char,type,
comm_s6883823935334413003f_char:
!>[A: $tType] : ( char > A ) ).
thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of,type,
unique5772411509450598832har_of:
!>[A: $tType] : ( A > char ) ).
thf(sy_c_Topological__Spaces_Ocontinuous,type,
topolo3448309680560233919inuous:
!>[A: $tType,B: $tType] : ( ( filter @ A ) > ( A > B ) > $o ) ).
thf(sy_c_Topological__Spaces_Ocontinuous__on,type,
topolo81223032696312382ous_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > $o ) ).
thf(sy_c_Topological__Spaces_Omonoseq,type,
topological_monoseq:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Topological__Spaces_Oopen__class_Oopen,type,
topolo1002775350975398744n_open:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ot2__space__class_OLim,type,
topolo3827282254853284352ce_Lim:
!>[F: $tType,A: $tType] : ( ( filter @ F ) > ( F > A ) > A ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within,type,
topolo174197925503356063within:
!>[A: $tType] : ( A > ( set @ A ) > ( filter @ A ) ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Ocompact,type,
topolo2193935891317330818ompact:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oconnected,type,
topolo1966860045006549960nected:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oconvergent,type,
topolo6863149650580417670ergent:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds,type,
topolo7230453075368039082e_nhds:
!>[A: $tType] : ( A > ( filter @ A ) ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy,type,
topolo3814608138187158403Cauchy:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_Ocauchy__filter,type,
topolo6773858410816713723filter:
!>[A: $tType] : ( ( filter @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_Ototally__bounded,type,
topolo6688025880775521714ounded:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity,type,
topolo7806501430040627800ormity:
!>[A: $tType] : ( filter @ ( product_prod @ A @ A ) ) ).
thf(sy_c_Topological__Spaces_Ouniformly__continuous__on,type,
topolo6026614971017936543ous_on:
!>[A: $tType,B: $tType] : ( ( set @ A ) > ( A > B ) > $o ) ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh,type,
arcosh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh,type,
arsinh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oartanh,type,
artanh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocos,type,
cos:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh,type,
cosh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Ocot,type,
cot:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Odiffs,type,
diffs:
!>[A: $tType] : ( ( nat > A ) > nat > A ) ).
thf(sy_c_Transcendental_Oexp,type,
exp:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Oln__class_Oln,type,
ln_ln:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr,type,
powr:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Transcendental_Opowr__real,type,
powr_real: real > real > real ).
thf(sy_c_Transcendental_Osin,type,
sin:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh,type,
sinh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Otan,type,
tan:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transcendental_Otanh,type,
tanh:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Transfer_Obi__total,type,
bi_total:
!>[A: $tType,B: $tType] : ( ( A > B > $o ) > $o ) ).
thf(sy_c_Transitive__Closure_Ontrancl,type,
transitive_ntrancl:
!>[A: $tType] : ( nat > ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Transitive__Closure_Ortrancl,type,
transitive_rtrancl:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Transitive__Closure_Otrancl,type,
transitive_trancl:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: ( option @ ( product_prod @ nat @ nat ) ) > nat > ( list @ vEBT_VEBT ) > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Orec__VEBT,type,
vEBT_rec_VEBT:
!>[A: $tType] : ( ( ( option @ ( product_prod @ nat @ nat ) ) > nat > ( list @ ( product_prod @ vEBT_VEBT @ A ) ) > vEBT_VEBT > A > A ) > ( $o > $o > A ) > vEBT_VEBT > A ) ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead,type,
vEBT_VEBT_elim_dead: vEBT_VEBT > extended_enat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead__rel,type,
vEBT_V312737461966249ad_rel: ( product_prod @ vEBT_VEBT @ extended_enat ) > ( product_prod @ vEBT_VEBT @ extended_enat ) > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > ( list @ vEBT_VEBT ) > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > ( set @ nat ) ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__Delete_Ovebt__delete,type,
vEBT_vebt_delete: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Delete_Ovebt__delete__rel,type,
vEBT_vebt_delete_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Insert_Ovebt__insert,type,
vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
vEBT_vebt_insert_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
vEBT_VEBT_bit_concat: nat > nat > nat > nat ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
vEBT_VEBT_minNull: vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
vEBT_VEBT_set_vebt: vEBT_VEBT > ( set @ nat ) ).
thf(sy_c_VEBT__Member_Ovebt__member,type,
vEBT_vebt_member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
vEBT_vebt_member_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
vEBT_VEBT_add: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
vEBT_VEBT_greater: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
vEBT_VEBT_less: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
vEBT_VEBT_lesseq: ( option @ nat ) > ( option @ nat ) > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
vEBT_VEBT_max_in_set: ( set @ nat ) > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
vEBT_VEBT_min_in_set: ( set @ nat ) > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
vEBT_VEBT_mul: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift,type,
vEBT_V2048590022279873568_shift:
!>[A: $tType] : ( ( A > A > A ) > ( option @ A ) > ( option @ A ) > ( option @ A ) ) ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
vEBT_VEBT_power: ( option @ nat ) > ( option @ nat ) > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
vEBT_vebt_maxt: vEBT_VEBT > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
vEBT_vebt_mint: vEBT_VEBT > ( option @ nat ) ).
thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
vEBT_is_pred_in_set: ( set @ nat ) > nat > nat > $o ).
thf(sy_c_VEBT__Pred_Ovebt__pred,type,
vEBT_vebt_pred: vEBT_VEBT > nat > ( option @ nat ) ).
thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
vEBT_vebt_pred_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
vEBT_is_succ_in_set: ( set @ nat ) > nat > nat > $o ).
thf(sy_c_VEBT__Succ_Ovebt__succ,type,
vEBT_vebt_succ: vEBT_VEBT > nat > ( option @ nat ) ).
thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
vEBT_vebt_succ_rel: ( product_prod @ vEBT_VEBT @ nat ) > ( product_prod @ vEBT_VEBT @ nat ) > $o ).
thf(sy_c_Wellfounded_Oaccp,type,
accp:
!>[A: $tType] : ( ( A > A > $o ) > A > $o ) ).
thf(sy_c_Wellfounded_Ofinite__psubset,type,
finite_psubset:
!>[A: $tType] : ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ).
thf(sy_c_Wellfounded_Oless__than,type,
less_than: set @ ( product_prod @ nat @ nat ) ).
thf(sy_c_Wellfounded_Olex__prod,type,
lex_prod:
!>[A: $tType,B: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ B @ B ) ) > ( set @ ( product_prod @ ( product_prod @ A @ B ) @ ( product_prod @ A @ B ) ) ) ) ).
thf(sy_c_Wellfounded_Omax__ext,type,
max_ext:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ).
thf(sy_c_Wellfounded_Omeasure,type,
measure:
!>[A: $tType] : ( ( A > nat ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Wellfounded_Omin__ext,type,
min_ext:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ).
thf(sy_c_Wellfounded_Omlex__prod,type,
mlex_prod:
!>[A: $tType] : ( ( A > nat ) > ( set @ ( product_prod @ A @ A ) ) > ( set @ ( product_prod @ A @ A ) ) ) ).
thf(sy_c_Wellfounded_Opred__nat,type,
pred_nat: set @ ( product_prod @ nat @ nat ) ).
thf(sy_c_Wellfounded_Owf,type,
wf:
!>[A: $tType] : ( ( set @ ( product_prod @ A @ A ) ) > $o ) ).
thf(sy_c_fChoice,type,
fChoice:
!>[A: $tType] : ( ( A > $o ) > A ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_deg____,type,
deg: nat ).
thf(sy_v_m____,type,
m: nat ).
thf(sy_v_ma____,type,
ma: nat ).
thf(sy_v_mi____,type,
mi: nat ).
thf(sy_v_na____,type,
na: nat ).
thf(sy_v_summary____,type,
summary: vEBT_VEBT ).
thf(sy_v_treeList____,type,
treeList: list @ vEBT_VEBT ).
thf(sy_v_xa____,type,
xa: nat ).
% Relevant facts (8182)
thf(fact_0__C5_OIH_C_I2_J,axiom,
! [X: nat,Y: nat] :
( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ summary @ X ) @ Y )
= ( ( X != Y )
& ( vEBT_V8194947554948674370ptions @ summary @ Y ) ) ) ).
% "5.IH"(2)
thf(fact_1_not__min__Null__member,axiom,
! [T2: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ T2 )
=> ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T2 @ X_1 ) ) ).
% not_min_Null_member
thf(fact_2__C5_Ohyps_C_I3_J,axiom,
( m
= ( suc @ na ) ) ).
% "5.hyps"(3)
thf(fact_3__C5_Ohyps_C_I1_J,axiom,
vEBT_invar_vebt @ summary @ m ).
% "5.hyps"(1)
thf(fact_4__C5_Ohyps_C_I7_J,axiom,
ord_less_eq @ nat @ mi @ ma ).
% "5.hyps"(7)
thf(fact_5__C5_Ohyps_C_I6_J,axiom,
( ( mi = ma )
=> ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ treeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ).
% "5.hyps"(6)
thf(fact_6_mimapr,axiom,
ord_less @ nat @ mi @ ma ).
% mimapr
thf(fact_7_bit__split__inv,axiom,
! [X: nat,D2: nat] :
( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X @ D2 ) @ ( vEBT_VEBT_low @ X @ D2 ) @ D2 )
= X ) ).
% bit_split_inv
thf(fact_8__C5_Ohyps_C_I4_J,axiom,
( deg
= ( plus_plus @ nat @ na @ m ) ) ).
% "5.hyps"(4)
thf(fact_9_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T3: vEBT_VEBT,X3: nat] :
( ( vEBT_V5719532721284313246member @ T3 @ X3 )
| ( vEBT_VEBT_membermima @ T3 @ X3 ) ) ) ) ).
% both_member_options_def
thf(fact_10_False,axiom,
xa = mi ).
% False
thf(fact_11__092_060open_062mi_A_092_060le_062_Ax_A_092_060and_062_Ax_A_092_060le_062_Ama_092_060close_062,axiom,
( ( ord_less_eq @ nat @ mi @ xa )
& ( ord_less_eq @ nat @ xa @ ma ) ) ).
% \<open>mi \<le> x \<and> x \<le> ma\<close>
thf(fact_12_even__odd__cases,axiom,
! [X: nat] :
( ! [N: nat] :
( X
!= ( plus_plus @ nat @ N @ N ) )
=> ~ ! [N: nat] :
( X
!= ( plus_plus @ nat @ N @ ( suc @ N ) ) ) ) ).
% even_odd_cases
thf(fact_13_max__in__set__def,axiom,
( vEBT_VEBT_max_in_set
= ( ^ [Xs: set @ nat,X3: nat] :
( ( member @ nat @ X3 @ Xs )
& ! [Y2: nat] :
( ( member @ nat @ Y2 @ Xs )
=> ( ord_less_eq @ nat @ Y2 @ X3 ) ) ) ) ) ).
% max_in_set_def
thf(fact_14_min__in__set__def,axiom,
( vEBT_VEBT_min_in_set
= ( ^ [Xs: set @ nat,X3: nat] :
( ( member @ nat @ X3 @ Xs )
& ! [Y2: nat] :
( ( member @ nat @ Y2 @ Xs )
=> ( ord_less_eq @ nat @ X3 @ Y2 ) ) ) ) ) ).
% min_in_set_def
thf(fact_15__C5_OIH_C_I1_J,axiom,
! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ treeList ) )
=> ( ( vEBT_invar_vebt @ X2 @ na )
& ! [Xa: nat,Xb: nat] :
( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ X2 @ Xa ) @ Xb )
= ( ( Xa != Xb )
& ( vEBT_V8194947554948674370ptions @ X2 @ Xb ) ) ) ) ) ).
% "5.IH"(1)
thf(fact_16__092_060open_062x_A_061_Ami_092_060close_062,axiom,
xa = mi ).
% \<open>x = mi\<close>
thf(fact_17_nmpr,axiom,
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ na )
& ( m
= ( suc @ na ) ) ) ).
% nmpr
thf(fact_18_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% nat_add_left_cancel_le
thf(fact_19_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_20_add__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( plus_plus @ nat @ M @ ( suc @ N2 ) )
= ( suc @ ( plus_plus @ nat @ M @ N2 ) ) ) ).
% add_Suc_right
thf(fact_21_Suc__le__mono,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( suc @ M ) )
= ( ord_less_eq @ nat @ N2 @ M ) ) ).
% Suc_le_mono
thf(fact_22_lessI,axiom,
! [N2: nat] : ( ord_less @ nat @ N2 @ ( suc @ N2 ) ) ).
% lessI
thf(fact_23_Suc__mono,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).
% Suc_mono
thf(fact_24_Suc__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_less_eq
thf(fact_25_add__less__cancel__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_cancel_left
thf(fact_26_add__less__cancel__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_cancel_right
thf(fact_27_add__le__cancel__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_cancel_left
thf(fact_28_add__le__cancel__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_cancel_right
thf(fact_29_add__right__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ).
% add_right_cancel
thf(fact_30_add__left__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ).
% add_left_cancel
thf(fact_31_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_32_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_33_one__reorient,axiom,
! [A: $tType] :
( ( one @ A )
=> ! [X: A] :
( ( ( one_one @ A )
= X )
= ( X
= ( one_one @ A ) ) ) ) ).
% one_reorient
thf(fact_34_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus @ nat @ ( one_one @ nat ) ) ) ).
% Suc_eq_plus1_left
thf(fact_35_plus__1__eq__Suc,axiom,
( ( plus_plus @ nat @ ( one_one @ nat ) )
= suc ) ).
% plus_1_eq_Suc
thf(fact_36_Suc__eq__plus1,axiom,
( suc
= ( ^ [N3: nat] : ( plus_plus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ).
% Suc_eq_plus1
thf(fact_37_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F2: A > B,P: A > $o,A2: A] :
( ! [X4: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F2 @ Y3 ) @ ( F2 @ X4 ) )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_38_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F2: A > B,P: A > $o,A2: A] :
( ! [X4: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F2 @ Y3 ) @ ( F2 @ X4 ) )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct
thf(fact_39_add__right__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
=> ( B2 = C2 ) ) ) ).
% add_right_imp_eq
thf(fact_40_add__left__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
=> ( B2 = C2 ) ) ) ).
% add_left_imp_eq
thf(fact_41_add_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( plus_plus @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add.left_commute
thf(fact_42_add_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ( ( plus_plus @ A )
= ( ^ [A3: A,B3: A] : ( plus_plus @ A @ B3 @ A3 ) ) ) ) ).
% add.commute
thf(fact_43_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_44_Collect__mem__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( collect @ A
@ ^ [X3: A] : ( member @ A @ X3 @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_45_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X4: A] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_46_ext,axiom,
! [B: $tType,A: $tType,F2: A > B,G: A > B] :
( ! [X4: A] :
( ( F2 @ X4 )
= ( G @ X4 ) )
=> ( F2 = G ) ) ).
% ext
thf(fact_47_add_Oright__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= ( plus_plus @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ).
% add.right_cancel
thf(fact_48_add_Oleft__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( plus_plus @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ).
% add.left_cancel
thf(fact_49_add_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add.assoc
thf(fact_50_group__cancel_Oadd2,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4
= ( plus_plus @ A @ K @ B2 ) )
=> ( ( plus_plus @ A @ A2 @ B4 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.add2
thf(fact_51_group__cancel_Oadd1,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: A,K: A,A2: A,B2: A] :
( ( A4
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( plus_plus @ A @ A4 @ B2 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.add1
thf(fact_52_add__mono__thms__linordered__semiring_I4_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus @ A @ I @ K )
= ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_53_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_54_n__not__Suc__n,axiom,
! [N2: nat] :
( N2
!= ( suc @ N2 ) ) ).
% n_not_Suc_n
thf(fact_55_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_56_infinite__descent__measure,axiom,
! [A: $tType,P: A > $o,V: A > nat,X: A] :
( ! [X4: A] :
( ~ ( P @ X4 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X4 ) )
& ~ ( P @ Y3 ) ) )
=> ( P @ X ) ) ).
% infinite_descent_measure
thf(fact_57_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less @ nat @ X @ Y )
=> ( ord_less @ nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_58_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ~ ( P @ N )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N )
& ~ ( P @ M2 ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_59_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ! [M2: nat] :
( ( ord_less @ nat @ M2 @ N )
=> ( P @ M2 ) )
=> ( P @ N ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_60_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less @ nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_61_less__not__refl3,axiom,
! [S: nat,T2: nat] :
( ( ord_less @ nat @ S @ T2 )
=> ( S != T2 ) ) ).
% less_not_refl3
thf(fact_62_less__not__refl2,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ N2 @ M )
=> ( M != N2 ) ) ).
% less_not_refl2
thf(fact_63_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less @ nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_64_nat__neq__iff,axiom,
! [M: nat,N2: nat] :
( ( M != N2 )
= ( ( ord_less @ nat @ M @ N2 )
| ( ord_less @ nat @ N2 @ M ) ) ) ).
% nat_neq_iff
thf(fact_65_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq @ nat @ Y3 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_66_nat__le__linear,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
| ( ord_less_eq @ nat @ N2 @ M ) ) ).
% nat_le_linear
thf(fact_67_le__antisym,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( M = N2 ) ) ) ).
% le_antisym
thf(fact_68_eq__imp__le,axiom,
! [M: nat,N2: nat] :
( ( M = N2 )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% eq_imp_le
thf(fact_69_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I @ K ) ) ) ).
% le_trans
thf(fact_70_le__refl,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ N2 @ N2 ) ).
% le_refl
thf(fact_71_add__le__imp__le__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_imp_le_right
thf(fact_72_add__le__imp__le__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% add_le_imp_le_left
thf(fact_73_le__iff__add,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
? [C3: A] :
( B3
= ( plus_plus @ A @ A3 @ C3 ) ) ) ) ) ).
% le_iff_add
thf(fact_74_add__right__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add_right_mono
thf(fact_75_less__eqE,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ~ ! [C4: A] :
( B2
!= ( plus_plus @ A @ A2 @ C4 ) ) ) ) ).
% less_eqE
thf(fact_76_add__left__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% add_left_mono
thf(fact_77_add__mono,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_mono
thf(fact_78_add__mono__thms__linordered__semiring_I1_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I @ J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_79_add__mono__thms__linordered__semiring_I2_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_80_add__mono__thms__linordered__semiring_I3_J,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I @ J )
& ( K = L ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_81_add__less__imp__less__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_imp_less_right
thf(fact_82_add__less__imp__less__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ).
% add_less_imp_less_left
thf(fact_83_add__strict__right__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% add_strict_right_mono
thf(fact_84_add__strict__left__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% add_strict_left_mono
thf(fact_85_add__strict__mono,axiom,
! [A: $tType] :
( ( strict9044650504122735259up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_strict_mono
thf(fact_86_add__mono__thms__linordered__field_I1_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I @ J )
& ( K = L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_87_add__mono__thms__linordered__field_I2_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_88_add__mono__thms__linordered__field_I5_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I @ J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_89_not__less__less__Suc__eq,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( ord_less @ nat @ N2 @ ( suc @ M ) )
= ( N2 = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_90_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_91_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ K2 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I2 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_92_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_93_Suc__less__SucD,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N2 ) )
=> ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_less_SucD
thf(fact_94_less__antisym,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( ord_less @ nat @ N2 @ ( suc @ M ) )
=> ( M = N2 ) ) ) ).
% less_antisym
thf(fact_95_Suc__less__eq2,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ N2 ) @ M )
= ( ? [M3: nat] :
( ( M
= ( suc @ M3 ) )
& ( ord_less @ nat @ N2 @ M3 ) ) ) ) ).
% Suc_less_eq2
thf(fact_96_All__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N2 ) )
=> ( P @ I3 ) ) )
= ( ( P @ N2 )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N2 )
=> ( P @ I3 ) ) ) ) ).
% All_less_Suc
thf(fact_97_not__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ~ ( ord_less @ nat @ M @ N2 ) )
= ( ord_less @ nat @ N2 @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_98_less__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( suc @ N2 ) )
= ( ( ord_less @ nat @ M @ N2 )
| ( M = N2 ) ) ) ).
% less_Suc_eq
thf(fact_99_Ex__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N2 ) )
& ( P @ I3 ) ) )
= ( ( P @ N2 )
| ? [I3: nat] :
( ( ord_less @ nat @ I3 @ N2 )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_100_less__SucI,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ord_less @ nat @ M @ ( suc @ N2 ) ) ) ).
% less_SucI
thf(fact_101_less__SucE,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( suc @ N2 ) )
=> ( ~ ( ord_less @ nat @ M @ N2 )
=> ( M = N2 ) ) ) ).
% less_SucE
thf(fact_102_Suc__lessI,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( ( suc @ M )
!= N2 )
=> ( ord_less @ nat @ ( suc @ M ) @ N2 ) ) ) ).
% Suc_lessI
thf(fact_103_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_104_Suc__lessD,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ N2 )
=> ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_lessD
thf(fact_105_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_106_transitive__stepwise__le,axiom,
! [M: nat,N2: nat,R: nat > nat > $o] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ! [X4: nat] : ( R @ X4 @ X4 )
=> ( ! [X4: nat,Y4: nat,Z: nat] :
( ( R @ X4 @ Y4 )
=> ( ( R @ Y4 @ Z )
=> ( R @ X4 @ Z ) ) )
=> ( ! [N: nat] : ( R @ N @ ( suc @ N ) )
=> ( R @ M @ N2 ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_107_nat__induct__at__least,axiom,
! [M: nat,N2: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( P @ M )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_at_least
thf(fact_108_full__nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N: nat] :
( ! [M2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M2 ) @ N )
=> ( P @ M2 ) )
=> ( P @ N ) )
=> ( P @ N2 ) ) ).
% full_nat_induct
thf(fact_109_not__less__eq__eq,axiom,
! [M: nat,N2: nat] :
( ( ~ ( ord_less_eq @ nat @ M @ N2 ) )
= ( ord_less_eq @ nat @ ( suc @ N2 ) @ M ) ) ).
% not_less_eq_eq
thf(fact_110_Suc__n__not__le__n,axiom,
! [N2: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N2 ) @ N2 ) ).
% Suc_n_not_le_n
thf(fact_111_le__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
= ( ( ord_less_eq @ nat @ M @ N2 )
| ( M
= ( suc @ N2 ) ) ) ) ).
% le_Suc_eq
thf(fact_112_Suc__le__D,axiom,
! [N2: nat,M4: nat] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ M4 )
=> ? [M5: nat] :
( M4
= ( suc @ M5 ) ) ) ).
% Suc_le_D
thf(fact_113_le__SucI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ M @ ( suc @ N2 ) ) ) ).
% le_SucI
thf(fact_114_le__SucE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ~ ( ord_less_eq @ nat @ M @ N2 )
=> ( M
= ( suc @ N2 ) ) ) ) ).
% le_SucE
thf(fact_115_Suc__leD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N2 )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% Suc_leD
thf(fact_116_add__Suc__shift,axiom,
! [M: nat,N2: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N2 )
= ( plus_plus @ nat @ M @ ( suc @ N2 ) ) ) ).
% add_Suc_shift
thf(fact_117_add__Suc,axiom,
! [M: nat,N2: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N2 )
= ( suc @ ( plus_plus @ nat @ M @ N2 ) ) ) ).
% add_Suc
thf(fact_118_nat__arith_Osuc1,axiom,
! [A4: nat,K: nat,A2: nat] :
( ( A4
= ( plus_plus @ nat @ K @ A2 ) )
=> ( ( suc @ A4 )
= ( plus_plus @ nat @ K @ ( suc @ A2 ) ) ) ) ).
% nat_arith.suc1
thf(fact_119_less__mono__imp__le__mono,axiom,
! [F2: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( ord_less @ nat @ ( F2 @ I2 ) @ ( F2 @ J2 ) ) )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_120_le__neq__implies__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( M != N2 )
=> ( ord_less @ nat @ M @ N2 ) ) ) ).
% le_neq_implies_less
thf(fact_121_less__or__eq__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ( ord_less @ nat @ M @ N2 )
| ( M = N2 ) )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% less_or_eq_imp_le
thf(fact_122_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M6: nat,N3: nat] :
( ( ord_less @ nat @ M6 @ N3 )
| ( M6 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_123_less__imp__le__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% less_imp_le_nat
thf(fact_124_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M6: nat,N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
& ( M6 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_125_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ K @ L )
=> ( ( ( plus_plus @ nat @ M @ L )
= ( plus_plus @ nat @ K @ N2 ) )
=> ( ord_less @ nat @ M @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_126_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ I @ ( plus_plus @ nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_127_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ I @ ( plus_plus @ nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_128_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_129_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_130_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_131_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ K @ L )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_132_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ K )
=> ( ord_less @ nat @ I @ K ) ) ).
% add_lessD1
thf(fact_133_nat__le__iff__add,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M6: nat,N3: nat] :
? [K3: nat] :
( N3
= ( plus_plus @ nat @ M6 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_134_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ I @ ( plus_plus @ nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_135_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ I @ ( plus_plus @ nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_136_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_137_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ K @ L )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_138_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq @ nat @ K @ L )
=> ? [N: nat] :
( L
= ( plus_plus @ nat @ K @ N ) ) ) ).
% le_Suc_ex
thf(fact_139_add__leD2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N2 )
=> ( ord_less_eq @ nat @ K @ N2 ) ) ).
% add_leD2
thf(fact_140_add__leD1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N2 )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% add_leD1
thf(fact_141_le__add2,axiom,
! [N2: nat,M: nat] : ( ord_less_eq @ nat @ N2 @ ( plus_plus @ nat @ M @ N2 ) ) ).
% le_add2
thf(fact_142_le__add1,axiom,
! [N2: nat,M: nat] : ( ord_less_eq @ nat @ N2 @ ( plus_plus @ nat @ N2 @ M ) ) ).
% le_add1
thf(fact_143_add__leE,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N2 )
=> ~ ( ( ord_less_eq @ nat @ M @ N2 )
=> ~ ( ord_less_eq @ nat @ K @ N2 ) ) ) ).
% add_leE
thf(fact_144_add__less__le__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_less_le_mono
thf(fact_145_add__le__less__mono,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) ) ) ) ) ).
% add_le_less_mono
thf(fact_146_add__mono__thms__linordered__field_I3_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I @ J )
& ( ord_less_eq @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_147_add__mono__thms__linordered__field_I4_J,axiom,
! [A: $tType] :
( ( ordere580206878836729694up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less_eq @ A @ I @ J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_148_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N2: nat,M: nat] :
( ! [N: nat] : ( ord_less @ A @ ( F2 @ N ) @ ( F2 @ ( suc @ N ) ) )
=> ( ( ord_less @ A @ ( F2 @ N2 ) @ ( F2 @ M ) )
= ( ord_less @ nat @ N2 @ M ) ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_149_lift__Suc__mono__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N2: nat,N4: nat] :
( ! [N: nat] : ( ord_less @ A @ ( F2 @ N ) @ ( F2 @ ( suc @ N ) ) )
=> ( ( ord_less @ nat @ N2 @ N4 )
=> ( ord_less @ A @ ( F2 @ N2 ) @ ( F2 @ N4 ) ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_150_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N2: nat,N4: nat] :
( ! [N: nat] : ( ord_less_eq @ A @ ( F2 @ ( suc @ N ) ) @ ( F2 @ N ) )
=> ( ( ord_less_eq @ nat @ N2 @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N4 ) @ ( F2 @ N2 ) ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_151_lift__Suc__mono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,N2: nat,N4: nat] :
( ! [N: nat] : ( ord_less_eq @ A @ ( F2 @ N ) @ ( F2 @ ( suc @ N ) ) )
=> ( ( ord_less_eq @ nat @ N2 @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N2 ) @ ( F2 @ N4 ) ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_152_le__imp__less__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less @ nat @ M @ ( suc @ N2 ) ) ) ).
% le_imp_less_Suc
thf(fact_153_less__eq__Suc__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat] : ( ord_less_eq @ nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_154_less__Suc__eq__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( suc @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% less_Suc_eq_le
thf(fact_155_le__less__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less @ nat @ N2 @ ( suc @ M ) )
= ( N2 = M ) ) ) ).
% le_less_Suc_eq
thf(fact_156_Suc__le__lessD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N2 )
=> ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_le_lessD
thf(fact_157_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ I @ N )
=> ( ( ord_less @ nat @ N @ J )
=> ( ( P @ ( suc @ N ) )
=> ( P @ N ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_158_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ I @ N )
=> ( ( ord_less @ nat @ N @ J )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_159_Suc__le__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N2 )
= ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_le_eq
thf(fact_160_Suc__leI,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_leI
thf(fact_161_less__imp__Suc__add,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ? [K2: nat] :
( N2
= ( suc @ ( plus_plus @ nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_162_less__iff__Suc__add,axiom,
( ( ord_less @ nat )
= ( ^ [M6: nat,N3: nat] :
? [K3: nat] :
( N3
= ( suc @ ( plus_plus @ nat @ M6 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_163_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_164_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_165_less__natE,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ~ ! [Q2: nat] :
( N2
!= ( suc @ ( plus_plus @ nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_166_mono__nat__linear__lb,axiom,
! [F2: nat > nat,M: nat,K: nat] :
( ! [M5: nat,N: nat] :
( ( ord_less @ nat @ M5 @ N )
=> ( ord_less @ nat @ ( F2 @ M5 ) @ ( F2 @ N ) ) )
=> ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( F2 @ M ) @ K ) @ ( F2 @ ( plus_plus @ nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_167_member__valid__both__member__options,axiom,
! [Tree: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ Tree @ N2 )
=> ( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_V5719532721284313246member @ Tree @ X )
| ( vEBT_VEBT_membermima @ Tree @ X ) ) ) ) ).
% member_valid_both_member_options
thf(fact_168_discrete,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A] : ( ord_less_eq @ A @ ( plus_plus @ A @ A3 @ ( one_one @ A ) ) ) ) ) ) ).
% discrete
thf(fact_169_buildup__nothing__in__leaf,axiom,
! [N2: nat,X: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N2 ) @ X ) ).
% buildup_nothing_in_leaf
thf(fact_170_buildup__nothing__in__min__max,axiom,
! [N2: nat,X: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N2 ) @ X ) ).
% buildup_nothing_in_min_max
thf(fact_171_ex__has__greatest__nat__lemma,axiom,
! [A: $tType,P: A > $o,K: A,F2: A > nat,N2: nat] :
( ( P @ K )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ? [Y3: A] :
( ( P @ Y3 )
& ~ ( ord_less_eq @ nat @ ( F2 @ Y3 ) @ ( F2 @ X4 ) ) ) )
=> ? [Y4: A] :
( ( P @ Y4 )
& ~ ( ord_less @ nat @ ( F2 @ Y4 ) @ ( plus_plus @ nat @ ( F2 @ K ) @ N2 ) ) ) ) ) ).
% ex_has_greatest_nat_lemma
thf(fact_172_add__mono1,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( plus_plus @ A @ B2 @ ( one_one @ A ) ) ) ) ) ).
% add_mono1
thf(fact_173_less__add__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A] : ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% less_add_one
thf(fact_174_both__member__options__equiv__member,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
= ( vEBT_vebt_member @ T2 @ X ) ) ) ).
% both_member_options_equiv_member
thf(fact_175_valid__member__both__member__options,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
=> ( vEBT_vebt_member @ T2 @ X ) ) ) ).
% valid_member_both_member_options
thf(fact_176_dual__order_Orefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% dual_order.refl
thf(fact_177_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% order_refl
thf(fact_178_min__Null__member,axiom,
! [T2: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_minNull @ T2 )
=> ~ ( vEBT_vebt_member @ T2 @ X ) ) ).
% min_Null_member
thf(fact_179_member__correct,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_vebt_member @ T2 @ X )
= ( member @ nat @ X @ ( vEBT_set_vebt @ T2 ) ) ) ) ).
% member_correct
thf(fact_180_nle__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( ord_less_eq @ A @ A2 @ B2 ) )
= ( ( ord_less_eq @ A @ B2 @ A2 )
& ( B2 != A2 ) ) ) ) ).
% nle_le
thf(fact_181_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ~ ( ord_less_eq @ A @ Y @ Z2 ) )
=> ( ( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less_eq @ A @ X @ Z2 ) )
=> ( ( ( ord_less_eq @ A @ X @ Z2 )
=> ~ ( ord_less_eq @ A @ Z2 @ Y ) )
=> ( ( ( ord_less_eq @ A @ Z2 @ Y )
=> ~ ( ord_less_eq @ A @ Y @ X ) )
=> ( ( ( ord_less_eq @ A @ Y @ Z2 )
=> ~ ( ord_less_eq @ A @ Z2 @ X ) )
=> ~ ( ( ord_less_eq @ A @ Z2 @ X )
=> ~ ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_182_order__class_Oorder__eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_183_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = B2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% ord_eq_le_trans
thf(fact_184_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( B2 = C2 )
=> ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% ord_le_eq_trans
thf(fact_185_order__antisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( X = Y ) ) ) ) ).
% order_antisym
thf(fact_186_order_Otrans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% order.trans
thf(fact_187_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z2 )
=> ( ord_less_eq @ A @ X @ Z2 ) ) ) ) ).
% order_trans
thf(fact_188_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > A > $o,A2: A,B2: A] :
( ! [A5: A,B5: A] :
( ( ord_less_eq @ A @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: A,B5: A] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% linorder_wlog
thf(fact_189_dual__order_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) )
= ( ^ [A3: A,B3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
& ( ord_less_eq @ A @ A3 @ B3 ) ) ) ) ) ).
% dual_order.eq_iff
thf(fact_190_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ) ).
% dual_order.antisym
thf(fact_191_dual__order_Otrans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less_eq @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.trans
thf(fact_192_antisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ) ).
% antisym
thf(fact_193_le__funD,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F2: A > B,G: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G @ X ) ) ) ) ).
% le_funD
thf(fact_194_le__funE,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F2: A > B,G: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G @ X ) ) ) ) ).
% le_funE
thf(fact_195_le__funI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F2: A > B,G: A > B] :
( ! [X4: A] : ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( G @ X4 ) )
=> ( ord_less_eq @ ( A > B ) @ F2 @ G ) ) ) ).
% le_funI
thf(fact_196_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( ord_less_eq @ ( A > B ) )
= ( ^ [F3: A > B,G2: A > B] :
! [X3: A] : ( ord_less_eq @ B @ ( F3 @ X3 ) @ ( G2 @ X3 ) ) ) ) ) ).
% le_fun_def
thf(fact_197_Orderings_Oorder__eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) )
= ( ^ [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
& ( ord_less_eq @ A @ B3 @ A3 ) ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_198_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less_eq @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less_eq @ B @ X4 @ Y4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_subst1
thf(fact_199_order__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ C @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_subst2
thf(fact_200_order__eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( X = Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% order_eq_refl
thf(fact_201_linorder__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linorder_linear
thf(fact_202_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( A2
= ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less_eq @ B @ X4 @ Y4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_203_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,B2: A,F2: A > B,C2: B] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ( F2 @ B2 )
= C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ B @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_204_linorder__le__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linorder_le_cases
thf(fact_205_order__antisym__conv,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% order_antisym_conv
thf(fact_206_lt__ex,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
? [Y4: A] : ( ord_less @ A @ Y4 @ X ) ) ).
% lt_ex
thf(fact_207_gt__ex,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
? [X_1: A] : ( ord_less @ A @ X @ X_1 ) ) ).
% gt_ex
thf(fact_208_dense,axiom,
! [A: $tType] :
( ( dense_order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [Z: A] :
( ( ord_less @ A @ X @ Z )
& ( ord_less @ A @ Z @ Y ) ) ) ) ).
% dense
thf(fact_209_less__imp__neq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% less_imp_neq
thf(fact_210_order_Oasym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% order.asym
thf(fact_211_ord__eq__less__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% ord_eq_less_trans
thf(fact_212_ord__less__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( B2 = C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% ord_less_eq_trans
thf(fact_213_less__induct,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,A2: A] :
( ! [X4: A] :
( ! [Y3: A] :
( ( ord_less @ A @ Y3 @ X4 )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A2 ) ) ) ).
% less_induct
thf(fact_214_antisym__conv3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ~ ( ord_less @ A @ Y @ X )
=> ( ( ~ ( ord_less @ A @ X @ Y ) )
= ( X = Y ) ) ) ) ).
% antisym_conv3
thf(fact_215_linorder__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ( X != Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_cases
thf(fact_216_dual__order_Oasym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ A2 @ B2 ) ) ) ).
% dual_order.asym
thf(fact_217_dual__order_Oirrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% dual_order.irrefl
thf(fact_218_exists__least__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( ( ^ [P2: A > $o] :
? [X5: A] : ( P2 @ X5 ) )
= ( ^ [P3: A > $o] :
? [N3: A] :
( ( P3 @ N3 )
& ! [M6: A] :
( ( ord_less @ A @ M6 @ N3 )
=> ~ ( P3 @ M6 ) ) ) ) ) ) ).
% exists_least_iff
thf(fact_219_linorder__less__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > A > $o,A2: A,B2: A] :
( ! [A5: A,B5: A] :
( ( ord_less @ A @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: A] : ( P @ A5 @ A5 )
=> ( ! [A5: A,B5: A] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A2 @ B2 ) ) ) ) ) ).
% linorder_less_wlog
thf(fact_220_order_Ostrict__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans
thf(fact_221_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less @ A @ X @ Y ) )
= ( ( ord_less @ A @ Y @ X )
| ( X = Y ) ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_222_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans
thf(fact_223_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( A2 != B2 ) ) ) ).
% order.strict_implies_not_eq
thf(fact_224_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( A2 != B2 ) ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_225_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_226_linorder__neqE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE
thf(fact_227_order__less__asym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_asym
thf(fact_228_linorder__neq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
= ( ( ord_less @ A @ X @ Y )
| ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neq_iff
thf(fact_229_order__less__asym_H,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% order_less_asym'
thf(fact_230_order__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_less_trans
thf(fact_231_ord__eq__less__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( A2
= ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less @ B @ X4 @ Y4 )
=> ( ord_less @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_232_ord__less__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,B2: A,F2: A > B,C2: B] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ( F2 @ B2 )
= C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ord_less @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ B @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% ord_less_eq_subst
thf(fact_233_order__less__irrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] :
~ ( ord_less @ A @ X @ X ) ) ).
% order_less_irrefl
thf(fact_234_order__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less @ B @ X4 @ Y4 )
=> ( ord_less @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_less_subst1
thf(fact_235_order__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ord_less @ C @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_less_subst2
thf(fact_236_order__less__not__sym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_not_sym
thf(fact_237_order__less__imp__triv,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,P: $o] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ X )
=> P ) ) ) ).
% order_less_imp_triv
thf(fact_238_linorder__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
| ( X = Y )
| ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_less_linear
thf(fact_239_order__less__imp__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% order_less_imp_not_eq
thf(fact_240_order__less__imp__not__eq2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( Y != X ) ) ) ).
% order_less_imp_not_eq2
thf(fact_241_order__less__imp__not__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% order_less_imp_not_less
thf(fact_242_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M7: nat] :
( ( P @ X )
=> ( ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq @ nat @ X4 @ M7 ) )
=> ~ ! [M5: nat] :
( ( P @ M5 )
=> ~ ! [X2: nat] :
( ( P @ X2 )
=> ( ord_less_eq @ nat @ X2 @ M5 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_243_ex__has__least__nat,axiom,
! [A: $tType,P: A > $o,K: A,M: A > nat] :
( ( P @ K )
=> ? [X4: A] :
( ( P @ X4 )
& ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ nat @ ( M @ X4 ) @ ( M @ Y3 ) ) ) ) ) ).
% ex_has_least_nat
thf(fact_244_leD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less @ A @ X @ Y ) ) ) ).
% leD
thf(fact_245_leI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% leI
thf(fact_246_nless__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( ord_less @ A @ A2 @ B2 ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% nless_le
thf(fact_247_antisym__conv1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% antisym_conv1
thf(fact_248_antisym__conv2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ~ ( ord_less @ A @ X @ Y ) )
= ( X = Y ) ) ) ) ).
% antisym_conv2
thf(fact_249_dense__ge,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z2: A,Y: A] :
( ! [X4: A] :
( ( ord_less @ A @ Z2 @ X4 )
=> ( ord_less_eq @ A @ Y @ X4 ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ).
% dense_ge
thf(fact_250_dense__le,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Y: A,Z2: A] :
( ! [X4: A] :
( ( ord_less @ A @ X4 @ Y )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ).
% dense_le
thf(fact_251_less__le__not__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ~ ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ).
% less_le_not_le
thf(fact_252_not__le__imp__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ~ ( ord_less_eq @ A @ Y @ X )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% not_le_imp_less
thf(fact_253_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( ( ord_less @ A @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ) ).
% order.order_iff_strict
thf(fact_254_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ) ).
% order.strict_iff_order
thf(fact_255_order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans1
thf(fact_256_order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% order.strict_trans2
thf(fact_257_order_Ostrict__iff__not,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
& ~ ( ord_less_eq @ A @ B3 @ A3 ) ) ) ) ) ).
% order.strict_iff_not
thf(fact_258_dense__ge__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ X )
=> ( ! [W: A] :
( ( ord_less @ A @ Z2 @ W )
=> ( ( ord_less @ A @ W @ X )
=> ( ord_less_eq @ A @ Y @ W ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_ge_bounded
thf(fact_259_dense__le__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ! [W: A] :
( ( ord_less @ A @ X @ W )
=> ( ( ord_less @ A @ W @ Y )
=> ( ord_less_eq @ A @ W @ Z2 ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_le_bounded
thf(fact_260_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( ( ord_less @ A @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_261_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_262_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans1
thf(fact_263_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% dual_order.strict_trans2
thf(fact_264_dual__order_Ostrict__iff__not,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
& ~ ( ord_less_eq @ A @ A3 @ B3 ) ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_265_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% order.strict_implies_order
thf(fact_266_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% dual_order.strict_implies_order
thf(fact_267_order__le__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less @ A @ X3 @ Y2 )
| ( X3 = Y2 ) ) ) ) ) ).
% order_le_less
thf(fact_268_order__less__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ( X3 != Y2 ) ) ) ) ) ).
% order_less_le
thf(fact_269_linorder__not__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less_eq @ A @ X @ Y ) )
= ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_not_le
thf(fact_270_linorder__not__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less @ A @ X @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linorder_not_less
thf(fact_271_order__less__imp__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% order_less_imp_le
thf(fact_272_order__le__neq__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% order_le_neq_trans
thf(fact_273_order__neq__le__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( A2 != B2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% order_neq_le_trans
thf(fact_274_order__le__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_le_less_trans
thf(fact_275_order__less__le__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% order_less_le_trans
thf(fact_276_order__le__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less_eq @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less @ B @ X4 @ Y4 )
=> ( ord_less @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_277_order__le__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ C @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_le_less_subst2
thf(fact_278_order__less__le__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F2: B > A,B2: B,C2: B] :
( ( ord_less @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C2 )
=> ( ! [X4: B,Y4: B] :
( ( ord_less_eq @ B @ X4 @ Y4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ A @ A2 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_279_order__less__le__subst2,axiom,
! [A: $tType,C: $tType] :
( ( ( order @ C )
& ( order @ A ) )
=> ! [A2: A,B2: A,F2: A > C,C2: C] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ C @ ( F2 @ B2 ) @ C2 )
=> ( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ord_less @ C @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less @ C @ ( F2 @ A2 ) @ C2 ) ) ) ) ) ).
% order_less_le_subst2
thf(fact_280_linorder__le__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less @ A @ Y @ X ) ) ) ).
% linorder_le_less_linear
thf(fact_281_order__le__imp__less__or__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ X @ Y )
| ( X = Y ) ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_282_Lattices__Big_Oex__has__greatest__nat,axiom,
! [A: $tType,P: A > $o,K: A,F2: A > nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less @ nat @ ( F2 @ Y4 ) @ B2 ) )
=> ? [X4: A] :
( ( P @ X4 )
& ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ nat @ ( F2 @ Y3 ) @ ( F2 @ X4 ) ) ) ) ) ) ).
% Lattices_Big.ex_has_greatest_nat
thf(fact_283_buildup__gives__valid,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N2 ) @ N2 ) ) ).
% buildup_gives_valid
thf(fact_284_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_285_valid__eq1,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_invar_vebt @ T2 @ D2 )
=> ( vEBT_VEBT_valid @ T2 @ D2 ) ) ).
% valid_eq1
thf(fact_286_valid__eq2,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_VEBT_valid @ T2 @ D2 )
=> ( vEBT_invar_vebt @ T2 @ D2 ) ) ).
% valid_eq2
thf(fact_287_deg__not__0,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ).
% deg_not_0
thf(fact_288_nat__descend__induct,axiom,
! [N2: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less @ nat @ N2 @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N2 )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ K2 @ I4 )
=> ( P @ I4 ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_289_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(4)
thf(fact_290_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_291_minf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ~ ( ord_less_eq @ A @ T2 @ X2 ) ) ) ).
% minf(8)
thf(fact_292_minf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ord_less_eq @ A @ X2 @ T2 ) ) ) ).
% minf(6)
thf(fact_293_pinf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ord_less_eq @ A @ T2 @ X2 ) ) ) ).
% pinf(8)
thf(fact_294_valid__tree__deg__neq__0,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ ( zero_zero @ nat ) ) ).
% valid_tree_deg_neq_0
thf(fact_295_valid__0__not,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ ( zero_zero @ nat ) ) ).
% valid_0_not
thf(fact_296_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N2: A] :
( ( ord_less_eq @ A @ N2 @ ( zero_zero @ A ) )
= ( N2
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_297_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N2: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N2 ) )
= ( N2
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_298_add__0,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add_0
thf(fact_299_zero__eq__add__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Y: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ X @ Y ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_300_add__eq__0__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_301_add__cancel__right__right,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( plus_plus @ A @ A2 @ B2 ) )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_right
thf(fact_302_add__cancel__right__left,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( plus_plus @ A @ B2 @ A2 ) )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_left
thf(fact_303_add__cancel__left__right,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= A2 )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_right
thf(fact_304_add__cancel__left__left,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [B2: A,A2: A] :
( ( ( plus_plus @ A @ B2 @ A2 )
= A2 )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_left
thf(fact_305_double__zero__sym,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ A2 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_zero_sym
thf(fact_306_add_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.right_neutral
thf(fact_307_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less @ nat @ N2 @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_308_neq0__conv,axiom,
! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ).
% neq0_conv
thf(fact_309_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_310_le0,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N2 ) ).
% le0
thf(fact_311_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A2 ) ).
% bot_nat_0.extremum
thf(fact_312_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% Nat.add_0_right
thf(fact_313_add__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus @ nat @ M @ N2 )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
& ( N2
= ( zero_zero @ nat ) ) ) ) ).
% add_is_0
thf(fact_314_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_315_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_316_le__add__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% le_add_same_cancel2
thf(fact_317_le__add__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% le_add_same_cancel1
thf(fact_318_add__le__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_le_same_cancel2
thf(fact_319_add__le__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_le_same_cancel1
thf(fact_320_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_321_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_322_less__add__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% less_add_same_cancel2
thf(fact_323_less__add__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ).
% less_add_same_cancel1
thf(fact_324_add__less__same__cancel2,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel2
thf(fact_325_add__less__same__cancel1,axiom,
! [A: $tType] :
( ( ordere1937475149494474687imp_le @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel1
thf(fact_326_zero__less__Suc,axiom,
! [N2: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) ).
% zero_less_Suc
thf(fact_327_less__Suc0,axiom,
! [N2: nat] :
( ( ord_less @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% less_Suc0
thf(fact_328_add__gr__0,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ M @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
| ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% add_gr_0
thf(fact_329_less__one,axiom,
! [N2: nat] :
( ( ord_less @ nat @ N2 @ ( one_one @ nat ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% less_one
thf(fact_330_less__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( ord_less @ ( A > B ) )
= ( ^ [F3: A > B,G2: A > B] :
( ( ord_less_eq @ ( A > B ) @ F3 @ G2 )
& ~ ( ord_less_eq @ ( A > B ) @ G2 @ F3 ) ) ) ) ) ).
% less_fun_def
thf(fact_331_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_332_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_333_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_334_zero__le,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_335_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N2 )
= ( N2
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_336_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [M: A,N2: A] :
( ( ord_less @ A @ M @ N2 )
=> ( N2
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_337_not__less__zero,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N2: A] :
~ ( ord_less @ A @ N2 @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_338_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [N2: A] :
( ( N2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N2 ) ) ) ).
% gr_zeroI
thf(fact_339_add_Ogroup__left__neutral,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add.group_left_neutral
thf(fact_340_add_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.comm_neutral
thf(fact_341_comm__monoid__add__class_Oadd__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_add_class.add_0
thf(fact_342_zero__neq__one,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_zero @ A )
!= ( one_one @ A ) ) ) ).
% zero_neq_one
thf(fact_343_not0__implies__Suc,axiom,
! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ? [M5: nat] :
( N2
= ( suc @ M5 ) ) ) ).
% not0_implies_Suc
thf(fact_344_Zero__not__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_345_Zero__neq__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_346_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= ( zero_zero @ nat ) ) ).
% Suc_neq_Zero
thf(fact_347_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N: nat] :
( ( P @ ( suc @ N ) )
=> ( P @ N ) )
=> ( P @ ( zero_zero @ nat ) ) ) ) ).
% zero_induct
thf(fact_348_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N2: nat] :
( ! [X4: nat] : ( P @ X4 @ ( zero_zero @ nat ) )
=> ( ! [Y4: nat] : ( P @ ( zero_zero @ nat ) @ ( suc @ Y4 ) )
=> ( ! [X4: nat,Y4: nat] :
( ( P @ X4 @ Y4 )
=> ( P @ ( suc @ X4 ) @ ( suc @ Y4 ) ) )
=> ( P @ M @ N2 ) ) ) ) ).
% diff_induct
thf(fact_349_nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N: nat] :
( ( P @ N )
=> ( P @ ( suc @ N ) ) )
=> ( P @ N2 ) ) ) ).
% nat_induct
thf(fact_350_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y
!= ( zero_zero @ nat ) )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_351_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat
!= ( zero_zero @ nat ) ) ) ).
% nat.discI
thf(fact_352_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( ( zero_zero @ nat )
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_353_old_Onat_Odistinct_I2_J,axiom,
! [Nat4: nat] :
( ( suc @ Nat4 )
!= ( zero_zero @ nat ) ) ).
% old.nat.distinct(2)
thf(fact_354_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( ( zero_zero @ nat )
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_355_infinite__descent0__measure,axiom,
! [A: $tType,V: A > nat,P: A > $o,X: A] :
( ! [X4: A] :
( ( ( V @ X4 )
= ( zero_zero @ nat ) )
=> ( P @ X4 ) )
=> ( ! [X4: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X4 ) )
=> ( ~ ( P @ X4 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X4 ) )
& ~ ( P @ Y3 ) ) ) )
=> ( P @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_356_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ~ ( P @ N )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_357_gr__implies__not0,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( N2
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_358_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less @ nat @ N2 @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_359_not__less0,axiom,
! [N2: nat] :
~ ( ord_less @ nat @ N2 @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_360_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_361_gr0I,axiom,
! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ).
% gr0I
thf(fact_362_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_363_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ N2 @ ( zero_zero @ nat ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_364_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_365_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_366_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_367_add__eq__self__zero,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus @ nat @ M @ N2 )
= M )
=> ( N2
= ( zero_zero @ nat ) ) ) ).
% add_eq_self_zero
thf(fact_368_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus @ nat @ ( zero_zero @ nat ) @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_369_less__numeral__extra_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(1)
thf(fact_370_add__nonpos__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_371_add__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ( plus_plus @ A @ X @ Y )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_372_add__nonpos__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_nonpos_nonpos
thf(fact_373_add__nonneg__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_374_add__increasing2,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_increasing2
thf(fact_375_add__decreasing2,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% add_decreasing2
thf(fact_376_add__increasing,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_increasing
thf(fact_377_add__decreasing,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% add_decreasing
thf(fact_378_zero__less__one__class_Ozero__le__one,axiom,
! [A: $tType] :
( ( zero_less_one @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_less_one_class.zero_le_one
thf(fact_379_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_380_not__one__le__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_le_zero
thf(fact_381_pos__add__strict,axiom,
! [A: $tType] :
( ( strict7427464778891057005id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_add_strict
thf(fact_382_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ! [C4: A] :
( ( B2
= ( plus_plus @ A @ A2 @ C4 ) )
=> ( C4
= ( zero_zero @ A ) ) ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_383_add__pos__pos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_pos_pos
thf(fact_384_add__neg__neg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_neg_neg
thf(fact_385_add__less__zeroD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( plus_plus @ A @ X @ Y ) @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ X @ ( zero_zero @ A ) )
| ( ord_less @ A @ Y @ ( zero_zero @ A ) ) ) ) ) ).
% add_less_zeroD
thf(fact_386_zero__less__one,axiom,
! [A: $tType] :
( ( zero_less_one @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_less_one
thf(fact_387_not__one__less__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_less_zero
thf(fact_388_less__Suc__eq__0__disj,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( suc @ N2 ) )
= ( ( M
= ( zero_zero @ nat ) )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less @ nat @ J3 @ N2 ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_389_gr0__implies__Suc,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ? [M5: nat] :
( N2
= ( suc @ M5 ) ) ) ).
% gr0_implies_Suc
thf(fact_390_All__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N2 ) )
=> ( P @ I3 ) ) )
= ( ( P @ ( zero_zero @ nat ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N2 )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_391_gr0__conv__Suc,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
= ( ? [M6: nat] :
( N2
= ( suc @ M6 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_392_Ex__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N2 ) )
& ( P @ I3 ) ) )
= ( ( P @ ( zero_zero @ nat ) )
| ? [I3: nat] :
( ( ord_less @ nat @ I3 @ N2 )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_393_one__is__add,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ ( zero_zero @ nat ) )
= ( plus_plus @ nat @ M @ N2 ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N2
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% one_is_add
thf(fact_394_add__is__1,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus @ nat @ M @ N2 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N2
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% add_is_1
thf(fact_395_ex__least__nat__le,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N2 )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_396_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K2 )
& ( ( plus_plus @ nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_397_One__nat__def,axiom,
( ( one_one @ nat )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% One_nat_def
thf(fact_398_pinf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P4: A > $o,Q: A > $o,Q3: A > $o] :
( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q3 @ X2 ) ) ) ) ) ) ) ).
% pinf(1)
thf(fact_399_pinf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P4: A > $o,Q: A > $o,Q3: A > $o] :
( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q3 @ X2 ) ) ) ) ) ) ) ).
% pinf(2)
thf(fact_400_pinf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( X2 != T2 ) ) ) ).
% pinf(3)
thf(fact_401_pinf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( X2 != T2 ) ) ) ).
% pinf(4)
thf(fact_402_pinf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ~ ( ord_less @ A @ X2 @ T2 ) ) ) ).
% pinf(5)
thf(fact_403_pinf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ord_less @ A @ T2 @ X2 ) ) ) ).
% pinf(7)
thf(fact_404_pinf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ( ord @ C )
=> ! [F4: D] :
? [Z: C] :
! [X2: C] :
( ( ord_less @ C @ Z @ X2 )
=> ( F4 = F4 ) ) ) ).
% pinf(11)
thf(fact_405_minf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P4: A > $o,Q: A > $o,Q3: A > $o] :
( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q3 @ X2 ) ) ) ) ) ) ) ).
% minf(1)
thf(fact_406_minf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o,P4: A > $o,Q: A > $o,Q3: A > $o] :
( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q3 @ X2 ) ) ) ) ) ) ) ).
% minf(2)
thf(fact_407_minf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( X2 != T2 ) ) ) ).
% minf(3)
thf(fact_408_minf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( X2 != T2 ) ) ) ).
% minf(4)
thf(fact_409_minf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ord_less @ A @ X2 @ T2 ) ) ) ).
% minf(5)
thf(fact_410_minf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ~ ( ord_less @ A @ T2 @ X2 ) ) ) ).
% minf(7)
thf(fact_411_minf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ( ord @ C )
=> ! [F4: D] :
? [Z: C] :
! [X2: C] :
( ( ord_less @ C @ X2 @ Z )
=> ( F4 = F4 ) ) ) ).
% minf(11)
thf(fact_412_is__num__normalize_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% is_num_normalize(1)
thf(fact_413_add__strict__increasing2,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_strict_increasing2
thf(fact_414_add__strict__increasing,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less @ A @ B2 @ ( plus_plus @ A @ A2 @ C2 ) ) ) ) ) ).
% add_strict_increasing
thf(fact_415_add__pos__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_pos_nonneg
thf(fact_416_add__nonpos__neg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_nonpos_neg
thf(fact_417_add__nonneg__pos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% add_nonneg_pos
thf(fact_418_add__neg__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_neg_nonpos
thf(fact_419_zero__less__two,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ) ).
% zero_less_two
thf(fact_420_ex__least__nat__less,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less @ nat @ K2 @ N2 )
& ! [I4: nat] :
( ( ord_less_eq @ nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_421_nat__induct__non__zero,axiom,
! [N2: nat,P: nat > $o] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( P @ ( one_one @ nat ) )
=> ( ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( P @ N )
=> ( P @ ( suc @ N ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_non_zero
thf(fact_422_pinf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T2: A] :
? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ~ ( ord_less_eq @ A @ X2 @ T2 ) ) ) ).
% pinf(6)
thf(fact_423_set__vebt__set__vebt_H__valid,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_set_vebt @ T2 )
= ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_set_vebt'_valid
thf(fact_424_double__eq__0__iff,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( plus_plus @ A @ A2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_eq_0_iff
thf(fact_425_field__le__epsilon,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ! [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
=> ( ord_less_eq @ A @ X @ ( plus_plus @ A @ Y @ E ) ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% field_le_epsilon
thf(fact_426_Euclid__induct,axiom,
! [P: nat > nat > $o,A2: nat,B2: nat] :
( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
= ( P @ B5 @ A5 ) )
=> ( ! [A5: nat] : ( P @ A5 @ ( zero_zero @ nat ) )
=> ( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
=> ( P @ A5 @ ( plus_plus @ nat @ A5 @ B5 ) ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% Euclid_induct
thf(fact_427_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ ( zero_zero @ nat ) )
=> ( ? [X_12: nat] : ( P @ X_12 )
=> ? [N: nat] :
( ~ ( P @ N )
& ( P @ ( suc @ N ) ) ) ) ) ).
% exists_least_lemma
thf(fact_428_dependent__nat__choice,axiom,
! [A: $tType,P: nat > A > $o,Q: nat > A > A > $o] :
( ? [X_12: A] : ( P @ ( zero_zero @ nat ) @ X_12 )
=> ( ! [X4: A,N: nat] :
( ( P @ N @ X4 )
=> ? [Y3: A] :
( ( P @ ( suc @ N ) @ Y3 )
& ( Q @ N @ X4 @ Y3 ) ) )
=> ? [F5: nat > A] :
! [N5: nat] :
( ( P @ N5 @ ( F5 @ N5 ) )
& ( Q @ N5 @ ( F5 @ N5 ) @ ( F5 @ ( suc @ N5 ) ) ) ) ) ) ).
% dependent_nat_choice
thf(fact_429_vebt__buildup_Ocases,axiom,
! [X: nat] :
( ( X
!= ( zero_zero @ nat ) )
=> ( ( X
!= ( suc @ ( zero_zero @ nat ) ) )
=> ~ ! [Va: nat] :
( X
!= ( suc @ ( suc @ Va ) ) ) ) ) ).
% vebt_buildup.cases
thf(fact_430_list__decode_Ocases,axiom,
! [X: nat] :
( ( X
!= ( zero_zero @ nat ) )
=> ~ ! [N: nat] :
( X
!= ( suc @ N ) ) ) ).
% list_decode.cases
thf(fact_431_verit__sum__simplify,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% verit_sum_simplify
thf(fact_432_add__0__iff,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [B2: A,A2: A] :
( ( B2
= ( plus_plus @ A @ B2 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% add_0_iff
thf(fact_433_field__lbound__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D1: A,D22: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D1 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ D22 )
=> ? [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
& ( ord_less @ A @ E @ D1 )
& ( ord_less @ A @ E @ D22 ) ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_434_pred__member,axiom,
! [T2: vEBT_VEBT,X: nat,Y: nat] :
( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Y )
= ( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less @ nat @ Y @ X )
& ! [Z5: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z5 )
& ( ord_less @ nat @ Z5 @ X ) )
=> ( ord_less_eq @ nat @ Z5 @ Y ) ) ) ) ).
% pred_member
thf(fact_435_succ__member,axiom,
! [T2: vEBT_VEBT,X: nat,Y: nat] :
( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Y )
= ( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less @ nat @ X @ Y )
& ! [Z5: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z5 )
& ( ord_less @ nat @ X @ Z5 ) )
=> ( ord_less_eq @ nat @ Y @ Z5 ) ) ) ) ).
% succ_member
thf(fact_436_verit__comp__simplify1_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(2)
thf(fact_437_verit__la__disequality,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
| ~ ( ord_less_eq @ A @ A2 @ B2 )
| ~ ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% verit_la_disequality
thf(fact_438_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(1)
thf(fact_439_linordered__field__no__lb,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X2: A] :
? [Y4: A] : ( ord_less @ A @ Y4 @ X2 ) ) ).
% linordered_field_no_lb
thf(fact_440_linordered__field__no__ub,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X2: A] :
? [X_1: A] : ( ord_less @ A @ X2 @ X_1 ) ) ).
% linordered_field_no_ub
thf(fact_441_verit__comp__simplify1_I3_J,axiom,
! [B: $tType] :
( ( linorder @ B )
=> ! [B6: B,A6: B] :
( ( ~ ( ord_less_eq @ B @ B6 @ A6 ) )
= ( ord_less @ B @ A6 @ B6 ) ) ) ).
% verit_comp_simplify1(3)
thf(fact_442_buildup__gives__empty,axiom,
! [N2: nat] :
( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N2 ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% buildup_gives_empty
thf(fact_443_set__vebt__finite,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( finite_finite @ nat @ ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_finite
thf(fact_444_triangle__Suc,axiom,
! [N2: nat] :
( ( nat_triangle @ ( suc @ N2 ) )
= ( plus_plus @ nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).
% triangle_Suc
thf(fact_445_complete__interval,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( P @ A2 )
=> ( ~ ( P @ B2 )
=> ? [C4: A] :
( ( ord_less_eq @ A @ A2 @ C4 )
& ( ord_less_eq @ A @ C4 @ B2 )
& ! [X2: A] :
( ( ( ord_less_eq @ A @ A2 @ X2 )
& ( ord_less @ A @ X2 @ C4 ) )
=> ( P @ X2 ) )
& ! [D3: A] :
( ! [X4: A] :
( ( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less @ A @ X4 @ D3 ) )
=> ( P @ X4 ) )
=> ( ord_less_eq @ A @ D3 @ C4 ) ) ) ) ) ) ) ).
% complete_interval
thf(fact_446_dbl__inc__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% dbl_inc_simps(2)
thf(fact_447_deg__SUcn__Node,axiom,
! [Tree: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N2 ) ) )
=> ? [Info: option @ ( product_prod @ nat @ nat ),TreeList: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( Tree
= ( vEBT_Node @ Info @ ( suc @ ( suc @ N2 ) ) @ TreeList @ S2 ) ) ) ).
% deg_SUcn_Node
thf(fact_448_deg1Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ ( one_one @ nat ) )
= ( ? [A3: $o,B3: $o] :
( T2
= ( vEBT_Leaf @ A3 @ B3 ) ) ) ) ).
% deg1Leaf
thf(fact_449_deg__1__Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ ( one_one @ nat ) )
=> ? [A5: $o,B5: $o] :
( T2
= ( vEBT_Leaf @ A5 @ B5 ) ) ) ).
% deg_1_Leaf
thf(fact_450_deg__1__Leafy,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( N2
= ( one_one @ nat ) )
=> ? [A5: $o,B5: $o] :
( T2
= ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ).
% deg_1_Leafy
thf(fact_451_Leaf__0__not,axiom,
! [A2: $o,B2: $o] :
~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A2 @ B2 ) @ ( zero_zero @ nat ) ) ).
% Leaf_0_not
thf(fact_452_frac__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( archimedean_frac @ A @ X )
= X )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
& ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% frac_eq
thf(fact_453_deg__deg__n,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( Deg = N2 ) ) ).
% deg_deg_n
thf(fact_454_succ__none__empty,axiom,
! [Xs2: set @ nat,A2: nat] :
( ~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A2 @ X_1 )
=> ( ( finite_finite @ nat @ Xs2 )
=> ~ ? [X2: nat] :
( ( member @ nat @ X2 @ Xs2 )
& ( ord_less @ nat @ A2 @ X2 ) ) ) ) ).
% succ_none_empty
thf(fact_455_pred__none__empty,axiom,
! [Xs2: set @ nat,A2: nat] :
( ~ ? [X_1: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A2 @ X_1 )
=> ( ( finite_finite @ nat @ Xs2 )
=> ~ ? [X2: nat] :
( ( member @ nat @ X2 @ Xs2 )
& ( ord_less @ nat @ X2 @ A2 ) ) ) ) ).
% pred_none_empty
thf(fact_456_bot__apply,axiom,
! [C: $tType,D: $tType] :
( ( bot @ C )
=> ( ( bot_bot @ ( D > C ) )
= ( ^ [X3: D] : ( bot_bot @ C ) ) ) ) ).
% bot_apply
thf(fact_457_VEBT_Oinject_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT,Y11: option @ ( product_prod @ nat @ nat ),Y12: nat,Y13: list @ vEBT_VEBT,Y14: vEBT_VEBT] :
( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
= ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
= ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
thf(fact_458_VEBT_Oinject_I2_J,axiom,
! [X21: $o,X222: $o,Y21: $o,Y222: $o] :
( ( ( vEBT_Leaf @ X21 @ X222 )
= ( vEBT_Leaf @ Y21 @ Y222 ) )
= ( ( X21 = Y21 )
& ( X222 = Y222 ) ) ) ).
% VEBT.inject(2)
thf(fact_459_obtain__set__succ,axiom,
! [X: nat,Z2: nat,A4: set @ nat,B4: set @ nat] :
( ( ord_less @ nat @ X @ Z2 )
=> ( ( vEBT_VEBT_max_in_set @ A4 @ Z2 )
=> ( ( finite_finite @ nat @ B4 )
=> ( ( A4 = B4 )
=> ? [X_1: nat] : ( vEBT_is_succ_in_set @ A4 @ X @ X_1 ) ) ) ) ) ).
% obtain_set_succ
thf(fact_460_obtain__set__pred,axiom,
! [Z2: nat,X: nat,A4: set @ nat] :
( ( ord_less @ nat @ Z2 @ X )
=> ( ( vEBT_VEBT_min_in_set @ A4 @ Z2 )
=> ( ( finite_finite @ nat @ A4 )
=> ? [X_1: nat] : ( vEBT_is_pred_in_set @ A4 @ X @ X_1 ) ) ) ) ).
% obtain_set_pred
thf(fact_461_frac__frac,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_frac @ A @ ( archimedean_frac @ A @ X ) )
= ( archimedean_frac @ A @ X ) ) ) ).
% frac_frac
thf(fact_462_triangle__0,axiom,
( ( nat_triangle @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% triangle_0
thf(fact_463_VEBT_Odistinct_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
!= ( vEBT_Leaf @ X21 @ X222 ) ) ).
% VEBT.distinct(1)
thf(fact_464_VEBT_Oexhaust,axiom,
! [Y: vEBT_VEBT] :
( ! [X112: option @ ( product_prod @ nat @ nat ),X122: nat,X132: list @ vEBT_VEBT,X142: vEBT_VEBT] :
( Y
!= ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
=> ~ ! [X212: $o,X223: $o] :
( Y
!= ( vEBT_Leaf @ X212 @ X223 ) ) ) ).
% VEBT.exhaust
thf(fact_465_bot__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( bot @ B )
=> ( ( bot_bot @ ( A > B ) )
= ( ^ [X3: A] : ( bot_bot @ B ) ) ) ) ).
% bot_fun_def
thf(fact_466_ex__min__if__finite,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ S3 )
& ~ ? [Xa: A] :
( ( member @ A @ Xa @ S3 )
& ( ord_less @ A @ Xa @ X4 ) ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_467_infinite__growing,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X6: set @ A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ? [Xa: A] :
( ( member @ A @ Xa @ X6 )
& ( ord_less @ A @ X4 @ Xa ) ) )
=> ~ ( finite_finite @ A @ X6 ) ) ) ) ).
% infinite_growing
thf(fact_468_bot_Oextremum__uniqueI,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( bot_bot @ A ) )
=> ( A2
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_uniqueI
thf(fact_469_bot_Oextremum__unique,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( bot_bot @ A ) )
= ( A2
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_unique
thf(fact_470_bot_Oextremum,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( bot_bot @ A ) @ A2 ) ) ).
% bot.extremum
thf(fact_471_bot_Onot__eq__extremum,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
( ( A2
!= ( bot_bot @ A ) )
= ( ord_less @ A @ ( bot_bot @ A ) @ A2 ) ) ) ).
% bot.not_eq_extremum
thf(fact_472_bot_Oextremum__strict,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ ( bot_bot @ A ) ) ) ).
% bot.extremum_strict
thf(fact_473_finite__nat__set__iff__bounded,axiom,
( ( finite_finite @ nat )
= ( ^ [N6: set @ nat] :
? [M6: nat] :
! [X3: nat] :
( ( member @ nat @ X3 @ N6 )
=> ( ord_less @ nat @ X3 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_474_bounded__nat__set__is__finite,axiom,
! [N7: set @ nat,N2: nat] :
( ! [X4: nat] :
( ( member @ nat @ X4 @ N7 )
=> ( ord_less @ nat @ X4 @ N2 ) )
=> ( finite_finite @ nat @ N7 ) ) ).
% bounded_nat_set_is_finite
thf(fact_475_finite__nat__set__iff__bounded__le,axiom,
( ( finite_finite @ nat )
= ( ^ [N6: set @ nat] :
? [M6: nat] :
! [X3: nat] :
( ( member @ nat @ X3 @ N6 )
=> ( ord_less_eq @ nat @ X3 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_476_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_477_vebt__delete_Osimps_I3_J,axiom,
! [A2: $o,B2: $o,N2: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ N2 ) ) )
= ( vEBT_Leaf @ A2 @ B2 ) ) ).
% vebt_delete.simps(3)
thf(fact_478_vebt__delete_Osimps_I1_J,axiom,
! [A2: $o,B2: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( zero_zero @ nat ) )
= ( vEBT_Leaf @ $false @ B2 ) ) ).
% vebt_delete.simps(1)
thf(fact_479_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ ( zero_zero @ nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_480_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,D2: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D2 )
= ( D2
= ( one_one @ nat ) ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_481_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu: option @ ( product_prod @ nat @ nat ),Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ ( zero_zero @ nat ) @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_482_frac__ge__0,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( archimedean_frac @ A @ X ) ) ) ).
% frac_ge_0
thf(fact_483_frac__lt__1,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less @ A @ ( archimedean_frac @ A @ X ) @ ( one_one @ A ) ) ) ).
% frac_lt_1
thf(fact_484_frac__1__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) )
= ( archimedean_frac @ A @ X ) ) ) ).
% frac_1_eq
thf(fact_485_invar__vebt_Ointros_I1_J,axiom,
! [A2: $o,B2: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ).
% invar_vebt.intros(1)
thf(fact_486_vebt__delete_Osimps_I2_J,axiom,
! [A2: $o,B2: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( vEBT_Leaf @ A2 @ $false ) ) ).
% vebt_delete.simps(2)
thf(fact_487_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ ( zero_zero @ nat ) ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_488_ex__gt__or__lt,axiom,
! [A: $tType] :
( ( condit5016429287641298734tinuum @ A )
=> ! [A2: A] :
? [B5: A] :
( ( ord_less @ A @ A2 @ B5 )
| ( ord_less @ A @ B5 @ A2 ) ) ) ).
% ex_gt_or_lt
thf(fact_489_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( ( ( X
= ( zero_zero @ nat ) )
=> A2 )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> B2 )
& ( X
= ( one_one @ nat ) ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_490_dbl__inc__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A )
= ( ^ [X3: A] : ( plus_plus @ A @ ( plus_plus @ A @ X3 @ X3 ) @ ( one_one @ A ) ) ) ) ) ).
% dbl_inc_def
thf(fact_491_List_Ofinite__set,axiom,
! [A: $tType,Xs2: list @ A] : ( finite_finite @ A @ ( set2 @ A @ Xs2 ) ) ).
% List.finite_set
thf(fact_492_vebt__member_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( ( ( X
= ( zero_zero @ nat ) )
=> A2 )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> B2 )
& ( X
= ( one_one @ nat ) ) ) ) ) ) ).
% vebt_member.simps(1)
thf(fact_493_is__succ__in__set__def,axiom,
( vEBT_is_succ_in_set
= ( ^ [Xs: set @ nat,X3: nat,Y2: nat] :
( ( member @ nat @ Y2 @ Xs )
& ( ord_less @ nat @ X3 @ Y2 )
& ! [Z5: nat] :
( ( member @ nat @ Z5 @ Xs )
=> ( ( ord_less @ nat @ X3 @ Z5 )
=> ( ord_less_eq @ nat @ Y2 @ Z5 ) ) ) ) ) ) ).
% is_succ_in_set_def
thf(fact_494_is__pred__in__set__def,axiom,
( vEBT_is_pred_in_set
= ( ^ [Xs: set @ nat,X3: nat,Y2: nat] :
( ( member @ nat @ Y2 @ Xs )
& ( ord_less @ nat @ Y2 @ X3 )
& ! [Z5: nat] :
( ( member @ nat @ Z5 @ Xs )
=> ( ( ord_less @ nat @ Z5 @ X3 )
=> ( ord_less_eq @ nat @ Z5 @ Y2 ) ) ) ) ) ) ).
% is_pred_in_set_def
thf(fact_495_finite__has__maximal,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ A4 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A4 )
=> ( ( ord_less_eq @ A @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_496_finite__has__minimal,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ A4 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A4 )
=> ( ( ord_less_eq @ A @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_497_tvalid,axiom,
vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ deg ).
% tvalid
thf(fact_498_VEBT__internal_OminNull_Osimps_I1_J,axiom,
vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).
% VEBT_internal.minNull.simps(1)
thf(fact_499_VEBT__internal_OminNull_Osimps_I2_J,axiom,
! [Uv: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).
% VEBT_internal.minNull.simps(2)
thf(fact_500_VEBT__internal_OminNull_Osimps_I3_J,axiom,
! [Uu: $o] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).
% VEBT_internal.minNull.simps(3)
thf(fact_501_infinite__nat__iff__unbounded__le,axiom,
! [S3: set @ nat] :
( ( ~ ( finite_finite @ nat @ S3 ) )
= ( ! [M6: nat] :
? [N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
& ( member @ nat @ N3 @ S3 ) ) ) ) ).
% infinite_nat_iff_unbounded_le
thf(fact_502_mi__eq__ma__no__ch,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
=> ( ( Mi = Ma )
=> ( ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) )
& ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).
% mi_eq_ma_no_ch
thf(fact_503_prod__decode__aux_Ocases,axiom,
! [X: product_prod @ nat @ nat] :
~ ! [K2: nat,M5: nat] :
( X
!= ( product_Pair @ nat @ nat @ K2 @ M5 ) ) ).
% prod_decode_aux.cases
thf(fact_504_bot__nat__def,axiom,
( ( bot_bot @ nat )
= ( zero_zero @ nat ) ) ).
% bot_nat_def
thf(fact_505_VEBT__internal_OminNull_Osimps_I5_J,axiom,
! [Uz: product_prod @ nat @ nat,Va2: nat,Vb: list @ vEBT_VEBT,Vc: vEBT_VEBT] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz ) @ Va2 @ Vb @ Vc ) ) ).
% VEBT_internal.minNull.simps(5)
thf(fact_506_vebt__delete_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,TrLst: list @ vEBT_VEBT,Smry: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ TrLst @ Smry ) ) ).
% vebt_delete.simps(5)
thf(fact_507_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va2: list @ vEBT_VEBT,Vb: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( zero_zero @ nat ) @ Va2 @ Vb ) @ X )
= ( ( X = Mi )
| ( X = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_508_vebt__delete_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,Tr: list @ vEBT_VEBT,Sm: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr @ Sm ) ) ).
% vebt_delete.simps(6)
thf(fact_509_vebt__member_Osimps_I3_J,axiom,
! [V2: product_prod @ nat @ nat,Uy: list @ vEBT_VEBT,Uz: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( zero_zero @ nat ) @ Uy @ Uz ) @ X ) ).
% vebt_member.simps(3)
thf(fact_510_VEBT__internal_OminNull_Oelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ! [Uv2: $o] :
( X
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ).
% VEBT_internal.minNull.elims(3)
thf(fact_511_vebt__member_Osimps_I4_J,axiom,
! [V2: product_prod @ nat @ nat,Vb: list @ vEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb @ Vc ) @ X ) ).
% vebt_member.simps(4)
thf(fact_512_finite__psubset__induct,axiom,
! [A: $tType,A4: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A4 )
=> ( ! [A7: set @ A] :
( ( finite_finite @ A @ A7 )
=> ( ! [B7: set @ A] :
( ( ord_less @ ( set @ A ) @ B7 @ A7 )
=> ( P @ B7 ) )
=> ( P @ A7 ) ) )
=> ( P @ A4 ) ) ) ).
% finite_psubset_induct
thf(fact_513_subset__code_I1_J,axiom,
! [A: $tType,Xs2: list @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ B4 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( member @ A @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_514_finite__has__maximal2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ? [X4: A] :
( ( member @ A @ X4 @ A4 )
& ( ord_less_eq @ A @ A2 @ X4 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A4 )
=> ( ( ord_less_eq @ A @ X4 @ Xa )
=> ( X4 = Xa ) ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_515_finite__has__minimal2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ? [X4: A] :
( ( member @ A @ X4 @ A4 )
& ( ord_less_eq @ A @ X4 @ A2 )
& ! [Xa: A] :
( ( member @ A @ Xa @ A4 )
=> ( ( ord_less_eq @ A @ Xa @ X4 )
=> ( X4 = Xa ) ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_516_finite__list,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ? [Xs3: list @ A] :
( ( set2 @ A @ Xs3 )
= A4 ) ) ).
% finite_list
thf(fact_517_unbounded__k__infinite,axiom,
! [K: nat,S3: set @ nat] :
( ! [M5: nat] :
( ( ord_less @ nat @ K @ M5 )
=> ? [N5: nat] :
( ( ord_less @ nat @ M5 @ N5 )
& ( member @ nat @ N5 @ S3 ) ) )
=> ~ ( finite_finite @ nat @ S3 ) ) ).
% unbounded_k_infinite
thf(fact_518_infinite__nat__iff__unbounded,axiom,
! [S3: set @ nat] :
( ( ~ ( finite_finite @ nat @ S3 ) )
= ( ! [M6: nat] :
? [N3: nat] :
( ( ord_less @ nat @ M6 @ N3 )
& ( member @ nat @ N3 @ S3 ) ) ) ) ).
% infinite_nat_iff_unbounded
thf(fact_519_divides__aux__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q4: A,R2: A] :
( ( unique5940410009612947441es_aux @ A @ ( product_Pair @ A @ A @ Q4 @ R2 ) )
= ( R2
= ( zero_zero @ A ) ) ) ) ).
% divides_aux_eq
thf(fact_520_arg__min__if__finite_I2_J,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ? [X2: A] :
( ( member @ A @ X2 @ S3 )
& ( ord_less @ B @ ( F2 @ X2 ) @ ( F2 @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_521_arg__min__least,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [S3: set @ A,Y: A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ A @ Y @ S3 )
=> ( ord_less_eq @ B @ ( F2 @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) ) @ ( F2 @ Y ) ) ) ) ) ) ).
% arg_min_least
thf(fact_522_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X222: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= ( zero_zero @ nat ) ) ).
% VEBT.size_gen(2)
thf(fact_523_count__notin,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( count_list @ A @ Xs2 @ X )
= ( zero_zero @ nat ) ) ) ).
% count_notin
thf(fact_524_option_Osize__gen_I2_J,axiom,
! [A: $tType,X: A > nat,X22: A] :
( ( size_option @ A @ X @ ( some @ A @ X22 ) )
= ( plus_plus @ nat @ ( X @ X22 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% option.size_gen(2)
thf(fact_525_set__encode__empty,axiom,
( ( nat_set_encode @ ( bot_bot @ ( set @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% set_encode_empty
thf(fact_526_Suc__diff__1,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( suc @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) )
= N2 ) ) ).
% Suc_diff_1
thf(fact_527_convex__bound__lt,axiom,
! [A: $tType] :
( ( linord715952674999750819strict @ A )
=> ! [X: A,A2: A,Y: A,U: A,V2: A] :
( ( ord_less @ A @ X @ A2 )
=> ( ( ord_less @ A @ Y @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ U )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ V2 )
=> ( ( ( plus_plus @ A @ U @ V2 )
= ( one_one @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ U @ X ) @ ( times_times @ A @ V2 @ Y ) ) @ A2 ) ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_528_arg__min__if__finite_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 ) @ S3 ) ) ) ) ).
% arg_min_if_finite(1)
thf(fact_529_mult__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( times_times @ nat @ M @ N2 )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( N2
= ( zero_zero @ nat ) ) ) ) ).
% mult_is_0
thf(fact_530_mult__0__right,axiom,
! [M: nat] :
( ( times_times @ nat @ M @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% mult_0_right
thf(fact_531_mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N2 ) )
= ( ( M = N2 )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel1
thf(fact_532_mult__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ( times_times @ nat @ M @ K )
= ( times_times @ nat @ N2 @ K ) )
= ( ( M = N2 )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel2
thf(fact_533_nat__mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times @ nat @ M @ N2 )
= ( one_one @ nat ) )
= ( ( M
= ( one_one @ nat ) )
& ( N2
= ( one_one @ nat ) ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_534_nat__1__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ( one_one @ nat )
= ( times_times @ nat @ M @ N2 ) )
= ( ( M
= ( one_one @ nat ) )
& ( N2
= ( one_one @ nat ) ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_535_mult__zero__left,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% mult_zero_left
thf(fact_536_mult__zero__right,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% mult_zero_right
thf(fact_537_mult__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% mult_eq_0_iff
thf(fact_538_mult__cancel__left,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( times_times @ A @ C2 @ A2 )
= ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_left
thf(fact_539_mult__cancel__right,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( times_times @ A @ A2 @ C2 )
= ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_right
thf(fact_540_diff__self,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% diff_self
thf(fact_541_diff__0__right,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% diff_0_right
thf(fact_542_zero__diff,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% zero_diff
thf(fact_543_diff__zero,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% diff_zero
thf(fact_544_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_545_mult__1,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% mult_1
thf(fact_546_mult_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.right_neutral
thf(fact_547_add__diff__cancel__right_H,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% add_diff_cancel_right'
thf(fact_548_add__diff__cancel__right,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ A2 @ B2 ) ) ) ).
% add_diff_cancel_right
thf(fact_549_add__diff__cancel__left_H,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ A2 )
= B2 ) ) ).
% add_diff_cancel_left'
thf(fact_550_add__diff__cancel__left,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) )
= ( minus_minus @ A @ A2 @ B2 ) ) ) ).
% add_diff_cancel_left
thf(fact_551_diff__add__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% diff_add_cancel
thf(fact_552_add__diff__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ).
% add_diff_cancel
thf(fact_553_mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times @ nat @ M @ N2 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% mult_eq_1_iff
thf(fact_554_one__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ ( zero_zero @ nat ) )
= ( times_times @ nat @ M @ N2 ) )
= ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% one_eq_mult_iff
thf(fact_555_mult__less__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N2 @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N2 ) ) ) ).
% mult_less_cancel2
thf(fact_556_nat__0__less__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( times_times @ nat @ M @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% nat_0_less_mult_iff
thf(fact_557_mult__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( times_times @ nat @ M @ ( suc @ N2 ) )
= ( plus_plus @ nat @ M @ ( times_times @ nat @ M @ N2 ) ) ) ).
% mult_Suc_right
thf(fact_558_Suc__diff__diff,axiom,
! [M: nat,N2: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ N2 ) @ K ) ) ).
% Suc_diff_diff
thf(fact_559_diff__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( minus_minus @ nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( minus_minus @ nat @ M @ N2 ) ) ).
% diff_Suc_Suc
thf(fact_560_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus @ nat @ ( zero_zero @ nat ) @ N2 )
= ( zero_zero @ nat ) ) ).
% diff_0_eq_0
thf(fact_561_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ M )
= ( zero_zero @ nat ) ) ).
% diff_self_eq_0
thf(fact_562_diff__diff__cancel,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq @ nat @ I @ N2 )
=> ( ( minus_minus @ nat @ N2 @ ( minus_minus @ nat @ N2 @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_563_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J ) @ K )
= ( minus_minus @ nat @ I @ ( plus_plus @ nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_564_lesseq__shift,axiom,
( ( ord_less_eq @ nat )
= ( ^ [X3: nat,Y2: nat] : ( vEBT_VEBT_lesseq @ ( some @ nat @ X3 ) @ ( some @ nat @ Y2 ) ) ) ) ).
% lesseq_shift
thf(fact_565_diff__ge__0__iff__ge,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% diff_ge_0_iff_ge
thf(fact_566_diff__gt__0__iff__gt,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ).
% diff_gt_0_iff_gt
thf(fact_567_mult__cancel__left1,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,B2: A] :
( ( C2
= ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left1
thf(fact_568_mult__cancel__left2,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,A2: A] :
( ( ( times_times @ A @ C2 @ A2 )
= C2 )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left2
thf(fact_569_mult__cancel__right1,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [C2: A,B2: A] :
( ( C2
= ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right1
thf(fact_570_mult__cancel__right2,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [A2: A,C2: A] :
( ( ( times_times @ A @ A2 @ C2 )
= C2 )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right2
thf(fact_571_le__add__diff__inverse2,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ) ).
% le_add_diff_inverse2
thf(fact_572_le__add__diff__inverse,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( plus_plus @ A @ B2 @ ( minus_minus @ A @ A2 @ B2 ) )
= A2 ) ) ) ).
% le_add_diff_inverse
thf(fact_573_diff__add__zero,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( zero_zero @ A ) ) ) ).
% diff_add_zero
thf(fact_574_diff__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(9)
thf(fact_575_one__le__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( times_times @ nat @ M @ N2 ) )
= ( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
& ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) ) ) ).
% one_le_mult_iff
thf(fact_576_mult__le__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N2 @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% mult_le_cancel2
thf(fact_577_zero__less__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N2 @ M ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% zero_less_diff
thf(fact_578_diff__is__0__eq,axiom,
! [M: nat,N2: nat] :
( ( ( minus_minus @ nat @ M @ N2 )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% diff_is_0_eq
thf(fact_579_diff__is__0__eq_H,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( minus_minus @ nat @ M @ N2 )
= ( zero_zero @ nat ) ) ) ).
% diff_is_0_eq'
thf(fact_580_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_581_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
= ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_582_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( plus_plus @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_583_diff__Suc__1,axiom,
! [N2: nat] :
( ( minus_minus @ nat @ ( suc @ N2 ) @ ( one_one @ nat ) )
= N2 ) ).
% diff_Suc_1
thf(fact_584_Suc__pred,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( suc @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) )
= N2 ) ) ).
% Suc_pred
thf(fact_585_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( suc @ ( minus_minus @ nat @ J @ K ) ) @ I )
= ( minus_minus @ nat @ ( suc @ J ) @ ( plus_plus @ nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_586_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ I @ ( suc @ ( minus_minus @ nat @ J @ K ) ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_587_left__diff__distrib,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% left_diff_distrib
thf(fact_588_right__diff__distrib,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% right_diff_distrib
thf(fact_589_left__diff__distrib_H,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( times_times @ A @ ( minus_minus @ A @ B2 @ C2 ) @ A2 )
= ( minus_minus @ A @ ( times_times @ A @ B2 @ A2 ) @ ( times_times @ A @ C2 @ A2 ) ) ) ) ).
% left_diff_distrib'
thf(fact_590_right__diff__distrib_H,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% right_diff_distrib'
thf(fact_591_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_592_diff__eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( A2 = B2 )
= ( C2 = D2 ) ) ) ) ).
% diff_eq_diff_eq
thf(fact_593_mult_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% mult.assoc
thf(fact_594_mult_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ( ( times_times @ A )
= ( ^ [A3: A,B3: A] : ( times_times @ A @ B3 @ A3 ) ) ) ) ).
% mult.commute
thf(fact_595_mult_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( times_times @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% mult.left_commute
thf(fact_596_diff__right__commute,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A2 @ C2 ) @ B2 )
= ( minus_minus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% diff_right_commute
thf(fact_597_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J ) @ K )
= ( minus_minus @ nat @ ( minus_minus @ nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_598_diff__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times @ nat @ ( minus_minus @ nat @ M @ N2 ) @ K )
= ( minus_minus @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N2 @ K ) ) ) ).
% diff_mult_distrib
thf(fact_599_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times @ nat @ K @ ( minus_minus @ nat @ M @ N2 ) )
= ( minus_minus @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) ) ) ).
% diff_mult_distrib2
thf(fact_600_inf__period_I2_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [P: A > $o,D4: A,Q: A > $o] :
( ! [X4: A,K2: A] :
( ( P @ X4 )
= ( P @ ( minus_minus @ A @ X4 @ ( times_times @ A @ K2 @ D4 ) ) ) )
=> ( ! [X4: A,K2: A] :
( ( Q @ X4 )
= ( Q @ ( minus_minus @ A @ X4 @ ( times_times @ A @ K2 @ D4 ) ) ) )
=> ! [X2: A,K4: A] :
( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) )
| ( Q @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_601_inf__period_I1_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [P: A > $o,D4: A,Q: A > $o] :
( ! [X4: A,K2: A] :
( ( P @ X4 )
= ( P @ ( minus_minus @ A @ X4 @ ( times_times @ A @ K2 @ D4 ) ) ) )
=> ( ! [X4: A,K2: A] :
( ( Q @ X4 )
= ( Q @ ( minus_minus @ A @ X4 @ ( times_times @ A @ K2 @ D4 ) ) ) )
=> ! [X2: A,K4: A] :
( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) )
& ( Q @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_602_square__diff__square__factored,axiom,
! [A: $tType] :
( ( comm_ring @ A )
=> ! [X: A,Y: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) )
= ( times_times @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ A @ X @ Y ) ) ) ) ).
% square_diff_square_factored
thf(fact_603_eq__add__iff2,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( C2
= ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% eq_add_iff2
thf(fact_604_eq__add__iff1,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 )
= D2 ) ) ) ).
% eq_add_iff1
thf(fact_605_mult__diff__mult,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [X: A,Y: A,A2: A,B2: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ Y ) @ ( times_times @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( times_times @ A @ X @ ( minus_minus @ A @ Y @ B2 ) ) @ ( times_times @ A @ ( minus_minus @ A @ X @ A2 ) @ B2 ) ) ) ) ).
% mult_diff_mult
thf(fact_606_ordered__ring__class_Ole__add__iff2,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ C2 @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_607_ordered__ring__class_Ole__add__iff1,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_608_less__add__iff2,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less @ A @ C2 @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% less_add_iff2
thf(fact_609_less__add__iff1,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,E2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% less_add_iff1
thf(fact_610_square__diff__one__factored,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A] :
( ( minus_minus @ A @ ( times_times @ A @ X @ X ) @ ( one_one @ A ) )
= ( times_times @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) @ ( minus_minus @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% square_diff_one_factored
thf(fact_611_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
= ( ord_less_eq @ A @ C2 @ D2 ) ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_612_diff__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ C2 ) ) ) ) ).
% diff_right_mono
thf(fact_613_diff__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ C2 @ A2 ) @ ( minus_minus @ A @ C2 @ B2 ) ) ) ) ).
% diff_left_mono
thf(fact_614_diff__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,D2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ D2 @ C2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% diff_mono
thf(fact_615_eq__iff__diff__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) )
= ( ^ [A3: A,B3: A] :
( ( minus_minus @ A @ A3 @ B3 )
= ( zero_zero @ A ) ) ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_616_diff__strict__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ C2 ) ) ) ) ).
% diff_strict_right_mono
thf(fact_617_diff__strict__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ord_less @ A @ ( minus_minus @ A @ C2 @ A2 ) @ ( minus_minus @ A @ C2 @ B2 ) ) ) ) ).
% diff_strict_left_mono
thf(fact_618_diff__eq__diff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= ( minus_minus @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
= ( ord_less @ A @ C2 @ D2 ) ) ) ) ).
% diff_eq_diff_less
thf(fact_619_diff__strict__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,D2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ D2 @ C2 )
=> ( ord_less @ A @ ( minus_minus @ A @ A2 @ C2 ) @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% diff_strict_mono
thf(fact_620_diff__diff__eq,axiom,
! [A: $tType] :
( ( cancel2418104881723323429up_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ).
% diff_diff_eq
thf(fact_621_add__implies__diff,axiom,
! [A: $tType] :
( ( cancel1802427076303600483id_add @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ( plus_plus @ A @ C2 @ B2 )
= A2 )
=> ( C2
= ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% add_implies_diff
thf(fact_622_diff__add__eq__diff__diff__swap,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( minus_minus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_623_diff__add__eq,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_add_eq
thf(fact_624_diff__diff__eq2,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( minus_minus @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% diff_diff_eq2
thf(fact_625_add__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% add_diff_eq
thf(fact_626_eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( A2
= ( minus_minus @ A @ C2 @ B2 ) )
= ( ( plus_plus @ A @ A2 @ B2 )
= C2 ) ) ) ).
% eq_diff_eq
thf(fact_627_diff__eq__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( minus_minus @ A @ A2 @ B2 )
= C2 )
= ( A2
= ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_eq_eq
thf(fact_628_group__cancel_Osub1,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A4: A,K: A,A2: A,B2: A] :
( ( A4
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( minus_minus @ A @ A4 @ B2 )
= ( plus_plus @ A @ K @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.sub1
thf(fact_629_add__diff__add,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C2 ) @ ( plus_plus @ A @ B2 @ D2 ) )
= ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( minus_minus @ A @ C2 @ D2 ) ) ) ) ).
% add_diff_add
thf(fact_630_mult__not__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
& ( B2
!= ( zero_zero @ A ) ) ) ) ) ).
% mult_not_zero
thf(fact_631_divisors__zero,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divisors_zero
thf(fact_632_no__zero__divisors,axiom,
! [A: $tType] :
( ( semiri3467727345109120633visors @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) ) ) ) ) ).
% no_zero_divisors
thf(fact_633_mult__left__cancel,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ C2 @ A2 )
= ( times_times @ A @ C2 @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% mult_left_cancel
thf(fact_634_mult__right__cancel,axiom,
! [A: $tType] :
( ( semiri6575147826004484403cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ A2 @ C2 )
= ( times_times @ A @ B2 @ C2 ) )
= ( A2 = B2 ) ) ) ) ).
% mult_right_cancel
thf(fact_635_fold__atLeastAtMost__nat_Ocases,axiom,
! [A: $tType,X: product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) )] :
~ ! [F5: nat > A > A,A5: nat,B5: nat,Acc: A] :
( X
!= ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ F5 @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ A5 @ ( product_Pair @ nat @ A @ B5 @ Acc ) ) ) ) ).
% fold_atLeastAtMost_nat.cases
thf(fact_636_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N: nat] :
( ( P @ ( suc @ N ) )
=> ( P @ N ) )
=> ( P @ ( minus_minus @ nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_637_combine__common__factor,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,E2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( times_times @ A @ A2 @ E2 ) @ ( plus_plus @ A @ ( times_times @ A @ B2 @ E2 ) @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ E2 ) @ C2 ) ) ) ).
% combine_common_factor
thf(fact_638_distrib__right,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% distrib_right
thf(fact_639_distrib__left,axiom,
! [A: $tType] :
( ( semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% distrib_left
thf(fact_640_comm__semiring__class_Odistrib,axiom,
! [A: $tType] :
( ( comm_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% comm_semiring_class.distrib
thf(fact_641_ring__class_Oring__distribs_I1_J,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_642_ring__class_Oring__distribs_I2_J,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_643_crossproduct__noteq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( A2 != B2 )
& ( C2 != D2 ) )
= ( ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) )
!= ( plus_plus @ A @ ( times_times @ A @ A2 @ D2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% crossproduct_noteq
thf(fact_644_crossproduct__eq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [W2: A,Y: A,X: A,Z2: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ W2 @ Y ) @ ( times_times @ A @ X @ Z2 ) )
= ( plus_plus @ A @ ( times_times @ A @ W2 @ Z2 ) @ ( times_times @ A @ X @ Y ) ) )
= ( ( W2 = X )
| ( Y = Z2 ) ) ) ) ).
% crossproduct_eq
thf(fact_645_mult_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.comm_neutral
thf(fact_646_comm__monoid__mult__class_Omult__1,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_mult_class.mult_1
thf(fact_647_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% minus_nat.diff_0
thf(fact_648_diffs0__imp__equal,axiom,
! [M: nat,N2: nat] :
( ( ( minus_minus @ nat @ M @ N2 )
= ( zero_zero @ nat ) )
=> ( ( ( minus_minus @ nat @ N2 @ M )
= ( zero_zero @ nat ) )
=> ( M = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_649_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( minus_minus @ nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_650_diff__less__mono2,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( ord_less @ nat @ M @ L )
=> ( ord_less @ nat @ ( minus_minus @ nat @ L @ N2 ) @ ( minus_minus @ nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_651_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times @ nat @ ( suc @ K ) @ M )
= ( times_times @ nat @ ( suc @ K ) @ N2 ) )
= ( M = N2 ) ) ).
% Suc_mult_cancel1
thf(fact_652_diff__le__mono2,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ L @ N2 ) @ ( minus_minus @ nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_653_le__diff__iff_H,axiom,
! [A2: nat,C2: nat,B2: nat] :
( ( ord_less_eq @ nat @ A2 @ C2 )
=> ( ( ord_less_eq @ nat @ B2 @ C2 )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ C2 @ A2 ) @ ( minus_minus @ nat @ C2 @ B2 ) )
= ( ord_less_eq @ nat @ B2 @ A2 ) ) ) ) ).
% le_diff_iff'
thf(fact_654_diff__le__self,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N2 ) @ M ) ).
% diff_le_self
thf(fact_655_diff__le__mono,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ L ) @ ( minus_minus @ nat @ N2 @ L ) ) ) ).
% diff_le_mono
thf(fact_656_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( minus_minus @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N2 @ K ) )
= ( minus_minus @ nat @ M @ N2 ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_657_le__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N2 @ K ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ) ) ).
% le_diff_iff
thf(fact_658_eq__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( ( minus_minus @ nat @ M @ K )
= ( minus_minus @ nat @ N2 @ K ) )
= ( M = N2 ) ) ) ) ).
% eq_diff_iff
thf(fact_659_mult__0,axiom,
! [N2: nat] :
( ( times_times @ nat @ ( zero_zero @ nat ) @ N2 )
= ( zero_zero @ nat ) ) ).
% mult_0
thf(fact_660_diff__add__inverse2,axiom,
! [M: nat,N2: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ N2 )
= M ) ).
% diff_add_inverse2
thf(fact_661_diff__add__inverse,axiom,
! [N2: nat,M: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ N2 @ M ) @ N2 )
= M ) ).
% diff_add_inverse
thf(fact_662_diff__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) )
= ( minus_minus @ nat @ M @ N2 ) ) ).
% diff_cancel2
thf(fact_663_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N2: nat] :
( ( minus_minus @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N2 ) )
= ( minus_minus @ nat @ M @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_664_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ K @ I ) @ ( times_times @ nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_665_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I @ K ) @ ( times_times @ nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_666_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ K @ L )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I @ K ) @ ( times_times @ nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_667_le__square,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ M ) ) ).
% le_square
thf(fact_668_le__cube,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ ( times_times @ nat @ M @ M ) ) ) ).
% le_cube
thf(fact_669_add__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times @ nat @ K @ ( plus_plus @ nat @ M @ N2 ) )
= ( plus_plus @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) ) ) ).
% add_mult_distrib2
thf(fact_670_add__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times @ nat @ ( plus_plus @ nat @ M @ N2 ) @ K )
= ( plus_plus @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N2 @ K ) ) ) ).
% add_mult_distrib
thf(fact_671_nat__mult__1__right,axiom,
! [N2: nat] :
( ( times_times @ nat @ N2 @ ( one_one @ nat ) )
= N2 ) ).
% nat_mult_1_right
thf(fact_672_nat__mult__1,axiom,
! [N2: nat] :
( ( times_times @ nat @ ( one_one @ nat ) @ N2 )
= N2 ) ).
% nat_mult_1
thf(fact_673_mult__eq__if,axiom,
( ( times_times @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( M6
= ( zero_zero @ nat ) )
@ ( zero_zero @ nat )
@ ( plus_plus @ nat @ N3 @ ( times_times @ nat @ ( minus_minus @ nat @ M6 @ ( one_one @ nat ) ) @ N3 ) ) ) ) ) ).
% mult_eq_if
thf(fact_674_le__iff__diff__le__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ A3 @ B3 ) @ ( zero_zero @ A ) ) ) ) ) ).
% le_iff_diff_le_0
thf(fact_675_less__iff__diff__less__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B3: A] : ( ord_less @ A @ ( minus_minus @ A @ A3 @ B3 ) @ ( zero_zero @ A ) ) ) ) ) ).
% less_iff_diff_less_0
thf(fact_676_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ( minus_minus @ A @ B2 @ A2 )
= C2 )
= ( B2
= ( plus_plus @ A @ C2 @ A2 ) ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_677_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ A2 @ ( minus_minus @ A @ B2 @ A2 ) )
= B2 ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_678_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_679_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 )
= ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ C2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_680_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ C2 )
= ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_681_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( minus_minus @ A @ ( plus_plus @ A @ C2 @ B2 ) @ A2 )
= ( plus_plus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_682_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ C2 @ B2 ) @ A2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_683_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( minus_minus @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_684_le__add__diff,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ C2 @ ( minus_minus @ A @ ( plus_plus @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% le_add_diff
thf(fact_685_diff__add,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ ( minus_minus @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% diff_add
thf(fact_686_le__diff__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( minus_minus @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% le_diff_eq
thf(fact_687_diff__le__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_le_eq
thf(fact_688_add__le__add__imp__diff__le,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I: A,K: A,N2: A,J: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ N2 )
=> ( ( ord_less_eq @ A @ N2 @ ( plus_plus @ A @ J @ K ) )
=> ( ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ N2 )
=> ( ( ord_less_eq @ A @ N2 @ ( plus_plus @ A @ J @ K ) )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ N2 @ K ) @ J ) ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_689_add__le__imp__le__diff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I: A,K: A,N2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ I @ K ) @ N2 )
=> ( ord_less_eq @ A @ I @ ( minus_minus @ A @ N2 @ K ) ) ) ) ).
% add_le_imp_le_diff
thf(fact_690_less__diff__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( minus_minus @ A @ C2 @ B2 ) )
= ( ord_less @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% less_diff_eq
thf(fact_691_diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( ord_less @ A @ A2 @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% diff_less_eq
thf(fact_692_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A] :
( ~ ( ord_less @ A @ A2 @ B2 )
=> ( ( plus_plus @ A @ B2 @ ( minus_minus @ A @ A2 @ B2 ) )
= A2 ) ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_693_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: $tType] :
( ( ordere2520102378445227354miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_694_zero__le__mult__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_mult_iff
thf(fact_695_mult__nonneg__nonpos2,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ B2 @ A2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_696_mult__nonpos__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonpos_nonneg
thf(fact_697_mult__nonneg__nonpos,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos
thf(fact_698_mult__nonneg__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_699_split__mult__neg__le,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ).
% split_mult_neg_le
thf(fact_700_mult__le__0__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% mult_le_0_iff
thf(fact_701_mult__right__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_right_mono
thf(fact_702_mult__right__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_right_mono_neg
thf(fact_703_mult__left__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_left_mono
thf(fact_704_mult__nonpos__nonpos,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_705_mult__left__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_left_mono_neg
thf(fact_706_split__mult__pos__le,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% split_mult_pos_le
thf(fact_707_zero__le__square,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ A2 ) ) ) ).
% zero_le_square
thf(fact_708_mult__mono_H,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_mono'
thf(fact_709_mult__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_mono
thf(fact_710_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: $tType] :
( ( linord2810124833399127020strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_711_mult__less__cancel__right__disj,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_712_mult__strict__right__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_strict_right_mono
thf(fact_713_mult__strict__right__mono__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_714_mult__less__cancel__left__disj,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_715_mult__strict__left__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_strict_left_mono
thf(fact_716_mult__strict__left__mono__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_717_mult__less__cancel__left__pos,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_718_mult__less__cancel__left__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_719_zero__less__mult__pos2,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ B2 @ A2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ).
% zero_less_mult_pos2
thf(fact_720_zero__less__mult__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ).
% zero_less_mult_pos
thf(fact_721_zero__less__mult__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_less_mult_iff
thf(fact_722_mult__pos__neg2,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ B2 @ A2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_pos_neg2
thf(fact_723_mult__pos__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_pos_pos
thf(fact_724_mult__pos__neg,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_pos_neg
thf(fact_725_mult__neg__pos,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_neg_pos
thf(fact_726_mult__less__0__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% mult_less_0_iff
thf(fact_727_not__square__less__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( times_times @ A @ A2 @ A2 ) @ ( zero_zero @ A ) ) ) ).
% not_square_less_zero
thf(fact_728_mult__neg__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_neg_neg
thf(fact_729_add__scale__eq__noteq,axiom,
! [A: $tType] :
( ( semiri1453513574482234551roduct @ A )
=> ! [R2: A,A2: A,B2: A,C2: A,D2: A] :
( ( R2
!= ( zero_zero @ A ) )
=> ( ( ( A2 = B2 )
& ( C2 != D2 ) )
=> ( ( plus_plus @ A @ A2 @ ( times_times @ A @ R2 @ C2 ) )
!= ( plus_plus @ A @ B2 @ ( times_times @ A @ R2 @ D2 ) ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_730_less__1__mult,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [M: A,N2: A] :
( ( ord_less @ A @ ( one_one @ A ) @ M )
=> ( ( ord_less @ A @ ( one_one @ A ) @ N2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( times_times @ A @ M @ N2 ) ) ) ) ) ).
% less_1_mult
thf(fact_731_diff__less__Suc,axiom,
! [M: nat,N2: nat] : ( ord_less @ nat @ ( minus_minus @ nat @ M @ N2 ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_732_Suc__diff__Suc,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ N2 @ M )
=> ( ( suc @ ( minus_minus @ nat @ M @ ( suc @ N2 ) ) )
= ( minus_minus @ nat @ M @ N2 ) ) ) ).
% Suc_diff_Suc
thf(fact_733_diff__less,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( minus_minus @ nat @ M @ N2 ) @ M ) ) ) ).
% diff_less
thf(fact_734_Suc__diff__le,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N2 )
= ( suc @ ( minus_minus @ nat @ M @ N2 ) ) ) ) ).
% Suc_diff_le
thf(fact_735_diff__less__mono,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( ord_less @ nat @ A2 @ B2 )
=> ( ( ord_less_eq @ nat @ C2 @ A2 )
=> ( ord_less @ nat @ ( minus_minus @ nat @ A2 @ C2 ) @ ( minus_minus @ nat @ B2 @ C2 ) ) ) ) ).
% diff_less_mono
thf(fact_736_less__diff__iff,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N2 @ K ) )
= ( ord_less @ nat @ M @ N2 ) ) ) ) ).
% less_diff_iff
thf(fact_737_set__encode__eq,axiom,
! [A4: set @ nat,B4: set @ nat] :
( ( finite_finite @ nat @ A4 )
=> ( ( finite_finite @ nat @ B4 )
=> ( ( ( nat_set_encode @ A4 )
= ( nat_set_encode @ B4 ) )
= ( A4 = B4 ) ) ) ) ).
% set_encode_eq
thf(fact_738_diff__add__0,axiom,
! [N2: nat,M: nat] :
( ( minus_minus @ nat @ N2 @ ( plus_plus @ nat @ N2 @ M ) )
= ( zero_zero @ nat ) ) ).
% diff_add_0
thf(fact_739_add__diff__inverse__nat,axiom,
! [M: nat,N2: nat] :
( ~ ( ord_less @ nat @ M @ N2 )
=> ( ( plus_plus @ nat @ N2 @ ( minus_minus @ nat @ M @ N2 ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_740_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
= ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_741_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ ( suc @ K ) @ M ) @ ( times_times @ nat @ ( suc @ K ) @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% Suc_mult_less_cancel1
thf(fact_742_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ( minus_minus @ nat @ J @ I )
= K )
= ( J
= ( plus_plus @ nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_743_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I ) @ K )
= ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_744_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ I @ J ) @ K )
= ( plus_plus @ nat @ I @ ( minus_minus @ nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_745_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( ord_less_eq @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
= ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_746_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
= ( ord_less_eq @ nat @ J @ ( plus_plus @ nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_747_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ nat @ ( times_times @ nat @ I @ K ) @ ( times_times @ nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_748_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ nat @ ( times_times @ nat @ K @ I ) @ ( times_times @ nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_749_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ ( suc @ K ) @ M ) @ ( times_times @ nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% Suc_mult_le_cancel1
thf(fact_750_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N2: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N2 ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) @ N2 ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_751_mult__Suc,axiom,
! [M: nat,N2: nat] :
( ( times_times @ nat @ ( suc @ M ) @ N2 )
= ( plus_plus @ nat @ N2 @ ( times_times @ nat @ M @ N2 ) ) ) ).
% mult_Suc
thf(fact_752_mult__eq__self__implies__10,axiom,
! [M: nat,N2: nat] :
( ( M
= ( times_times @ nat @ M @ N2 ) )
=> ( ( N2
= ( one_one @ nat ) )
| ( M
= ( zero_zero @ nat ) ) ) ) ).
% mult_eq_self_implies_10
thf(fact_753_VEBT__internal_Ovalid_H_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,Uv2: $o,D5: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D5 ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) @ Deg3 ) ) ) ).
% VEBT_internal.valid'.cases
thf(fact_754_mult__less__le__imp__less,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_755_mult__le__less__imp__less,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_756_mult__right__le__imp__le,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_right_le_imp_le
thf(fact_757_mult__left__le__imp__le,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_left_le_imp_le
thf(fact_758_mult__le__cancel__left__pos,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_759_mult__le__cancel__left__neg,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_760_mult__less__cancel__right,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_right
thf(fact_761_mult__strict__mono_H,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_762_mult__right__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semiring @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_right_less_imp_less
thf(fact_763_mult__less__cancel__left,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_less_cancel_left
thf(fact_764_mult__strict__mono,axiom,
! [A: $tType] :
( ( linord8928482502909563296strict @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_765_mult__left__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semiring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% mult_left_less_imp_less
thf(fact_766_mult__le__cancel__right,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_le_cancel_right
thf(fact_767_mult__le__cancel__left,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% mult_le_cancel_left
thf(fact_768_sum__squares__ge__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) ) ) ).
% sum_squares_ge_zero
thf(fact_769_mult__left__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ Y @ X ) @ X ) ) ) ) ) ).
% mult_left_le_one_le
thf(fact_770_mult__right__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ X @ Y ) @ X ) ) ) ) ) ).
% mult_right_le_one_le
thf(fact_771_mult__le__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_one
thf(fact_772_mult__left__le,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [C2: A,A2: A] :
( ( ord_less_eq @ A @ C2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ A2 ) ) ) ) ).
% mult_left_le
thf(fact_773_not__sum__squares__lt__zero,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) @ ( zero_zero @ A ) ) ) ).
% not_sum_squares_lt_zero
thf(fact_774_diff__Suc__less,axiom,
! [N2: nat,I: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).
% diff_Suc_less
thf(fact_775_nat__diff__split__asm,axiom,
! [P: nat > $o,A2: nat,B2: nat] :
( ( P @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( ~ ( ( ( ord_less @ nat @ A2 @ B2 )
& ~ ( P @ ( zero_zero @ nat ) ) )
| ? [D6: nat] :
( ( A2
= ( plus_plus @ nat @ B2 @ D6 ) )
& ~ ( P @ D6 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_776_nat__diff__split,axiom,
! [P: nat > $o,A2: nat,B2: nat] :
( ( P @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( ( ( ord_less @ nat @ A2 @ B2 )
=> ( P @ ( zero_zero @ nat ) ) )
& ! [D6: nat] :
( ( A2
= ( plus_plus @ nat @ B2 @ D6 ) )
=> ( P @ D6 ) ) ) ) ).
% nat_diff_split
thf(fact_777_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq @ nat @ K @ J )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
= ( ord_less @ nat @ J @ ( plus_plus @ nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_778_n__less__n__mult__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ N2 @ ( times_times @ nat @ N2 @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_779_n__less__m__mult__n,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ N2 @ ( times_times @ nat @ M @ N2 ) ) ) ) ).
% n_less_m_mult_n
thf(fact_780_one__less__mult,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
=> ( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( times_times @ nat @ M @ N2 ) ) ) ) ).
% one_less_mult
thf(fact_781_set__encode__inf,axiom,
! [A4: set @ nat] :
( ~ ( finite_finite @ nat @ A4 )
=> ( ( nat_set_encode @ A4 )
= ( zero_zero @ nat ) ) ) ).
% set_encode_inf
thf(fact_782_mult__less__cancel__right2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A] :
( ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ C2 )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_783_mult__less__cancel__right1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_784_mult__less__cancel__left2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A] :
( ( ord_less @ A @ ( times_times @ A @ C2 @ A2 ) @ C2 )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_785_mult__less__cancel__left1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_786_mult__le__cancel__right2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ C2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_787_mult__le__cancel__right1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( times_times @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_788_mult__le__cancel__left2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C2 @ A2 ) @ C2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_789_mult__le__cancel__left1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ ( times_times @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_790_field__le__mult__one__interval,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ! [Z: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z )
=> ( ( ord_less @ A @ Z @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ Z @ X ) @ Y ) ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% field_le_mult_one_interval
thf(fact_791_convex__bound__le,axiom,
! [A: $tType] :
( ( linord6961819062388156250ring_1 @ A )
=> ! [X: A,A2: A,Y: A,U: A,V2: A] :
( ( ord_less_eq @ A @ X @ A2 )
=> ( ( ord_less_eq @ A @ Y @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ U )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ V2 )
=> ( ( ( plus_plus @ A @ U @ V2 )
= ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ U @ X ) @ ( times_times @ A @ V2 @ Y ) ) @ A2 ) ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_792_Suc__diff__eq__diff__pred,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N2 )
= ( minus_minus @ nat @ M @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_793_Suc__pred_H,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( N2
= ( suc @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ).
% Suc_pred'
thf(fact_794_add__eq__if,axiom,
( ( plus_plus @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( M6
= ( zero_zero @ nat ) )
@ N3
@ ( suc @ ( plus_plus @ nat @ ( minus_minus @ nat @ M6 @ ( one_one @ nat ) ) @ N3 ) ) ) ) ) ).
% add_eq_if
thf(fact_795_VEBT__internal_Onaive__member_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A5: $o,B5: $o,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ X4 ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) @ X4 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_796_frac__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archimedean_frac @ A @ ( plus_plus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% frac_add
thf(fact_797_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_798_sum__squares__eq__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_799_succ__correct,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% succ_correct
thf(fact_800_pred__correct,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% pred_correct
thf(fact_801_less__shift,axiom,
( ( ord_less @ nat )
= ( ^ [X3: nat,Y2: nat] : ( vEBT_VEBT_less @ ( some @ nat @ X3 ) @ ( some @ nat @ Y2 ) ) ) ) ).
% less_shift
thf(fact_802_greater__shift,axiom,
( ( ord_less @ nat )
= ( ^ [Y2: nat,X3: nat] : ( vEBT_VEBT_greater @ ( some @ nat @ X3 ) @ ( some @ nat @ Y2 ) ) ) ) ).
% greater_shift
thf(fact_803_succ__corr,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Sx ) ) ) ).
% succ_corr
thf(fact_804_pred__corr,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Px: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Px ) )
= ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X @ Px ) ) ) ).
% pred_corr
thf(fact_805_psubsetI,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4 != B4 )
=> ( ord_less @ ( set @ A ) @ A4 @ B4 ) ) ) ).
% psubsetI
thf(fact_806_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_807_psubset__imp__ex__mem,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ? [B5: A] : ( member @ A @ B5 @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_808_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N2 ) )
= ( ( K
= ( zero_zero @ nat ) )
| ( M = N2 ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_809_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ K ) )
= ( plus_plus @ nat @ ( times_times @ nat @ ( plus_plus @ nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_810_psubset__trans,axiom,
! [A: $tType,A4: set @ A,B4: set @ A,C5: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ( ord_less @ ( set @ A ) @ B4 @ C5 )
=> ( ord_less @ ( set @ A ) @ A4 @ C5 ) ) ) ).
% psubset_trans
thf(fact_811_psubsetD,axiom,
! [A: $tType,A4: set @ A,B4: set @ A,C2: A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ( member @ A @ C2 @ A4 )
=> ( member @ A @ C2 @ B4 ) ) ) ).
% psubsetD
thf(fact_812_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N2 ) )
= ( M = N2 ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_813_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ord_less @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel1
thf(fact_814_not__psubset__empty,axiom,
! [A: $tType,A4: set @ A] :
~ ( ord_less @ ( set @ A ) @ A4 @ ( bot_bot @ ( set @ A ) ) ) ).
% not_psubset_empty
thf(fact_815_psubsetE,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ ( set @ A ) @ B4 @ A4 ) ) ) ).
% psubsetE
thf(fact_816_psubset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A8: set @ A,B8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A8 @ B8 )
& ( A8 != B8 ) ) ) ) ).
% psubset_eq
thf(fact_817_psubset__imp__subset,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ ( set @ A ) @ A4 @ B4 ) ) ).
% psubset_imp_subset
thf(fact_818_psubset__subset__trans,axiom,
! [A: $tType,A4: set @ A,B4: set @ A,C5: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ C5 )
=> ( ord_less @ ( set @ A ) @ A4 @ C5 ) ) ) ).
% psubset_subset_trans
thf(fact_819_subset__not__subset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A8: set @ A,B8: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A8 @ B8 )
& ~ ( ord_less_eq @ ( set @ A ) @ B8 @ A8 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_820_subset__psubset__trans,axiom,
! [A: $tType,A4: set @ A,B4: set @ A,C5: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( ord_less @ ( set @ A ) @ B4 @ C5 )
=> ( ord_less @ ( set @ A ) @ A4 @ C5 ) ) ) ).
% subset_psubset_trans
thf(fact_821_subset__iff__psubset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A8: set @ A,B8: set @ A] :
( ( ord_less @ ( set @ A ) @ A8 @ B8 )
| ( A8 = B8 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_822_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% nat_mult_le_cancel1
thf(fact_823_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ J @ I )
=> ( ( ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M )
= ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I @ J ) @ U ) @ M )
= N2 ) ) ) ).
% nat_eq_add_iff1
thf(fact_824_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M )
= ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( M
= ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_825_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ J @ I )
=> ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_le_add_iff1
thf(fact_826_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_le_add_iff2
thf(fact_827_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ J @ I )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_diff_add_eq1
thf(fact_828_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( minus_minus @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( minus_minus @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_829_sum__squares__le__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) @ ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_830_sum__squares__gt__zero__iff,axiom,
! [A: $tType] :
( ( linord4710134922213307826strict @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( times_times @ A @ X @ X ) @ ( times_times @ A @ Y @ Y ) ) )
= ( ( X
!= ( zero_zero @ A ) )
| ( Y
!= ( zero_zero @ A ) ) ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_831_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ J @ I )
=> ( ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).
% nat_less_add_iff1
thf(fact_832_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ I @ U ) @ M ) @ ( plus_plus @ nat @ ( times_times @ nat @ J @ U ) @ N2 ) )
= ( ord_less @ nat @ M @ ( plus_plus @ nat @ ( times_times @ nat @ ( minus_minus @ nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_less_add_iff2
thf(fact_833_geqmaxNone,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( ord_less_eq @ nat @ Ma @ X )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( none @ nat ) ) ) ) ).
% geqmaxNone
thf(fact_834_mul__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( times_times @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_mul @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% mul_shift
thf(fact_835_add__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( plus_plus @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_add @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% add_shift
thf(fact_836_maxt__corr,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X ) ) ) ).
% maxt_corr
thf(fact_837_maxt__sound,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X )
=> ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) ) ) ) ).
% maxt_sound
thf(fact_838_mint__corr,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X ) ) ) ).
% mint_corr
thf(fact_839_mint__sound,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X )
=> ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ X ) ) ) ) ).
% mint_sound
thf(fact_840_Suc__if__eq,axiom,
! [A: $tType,F2: nat > A,H: nat > A,G: A,N2: nat] :
( ! [N: nat] :
( ( F2 @ ( suc @ N ) )
= ( H @ N ) )
=> ( ( ( F2 @ ( zero_zero @ nat ) )
= G )
=> ( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( F2 @ N2 )
= G ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( F2 @ N2 )
= ( H @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% Suc_if_eq
thf(fact_841_mult__le__cancel__iff1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ Z2 ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mult_le_cancel_iff1
thf(fact_842_mult__le__cancel__iff2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ Z2 @ X ) @ ( times_times @ A @ Z2 @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mult_le_cancel_iff2
thf(fact_843_maxbmo,axiom,
! [T2: vEBT_VEBT,X: nat] :
( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ X ) )
=> ( vEBT_V8194947554948674370ptions @ T2 @ X ) ) ).
% maxbmo
thf(fact_844_minminNull,axiom,
! [T2: vEBT_VEBT] :
( ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) )
=> ( vEBT_VEBT_minNull @ T2 ) ) ).
% minminNull
thf(fact_845_minNullmin,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ T2 )
=> ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) ) ) ).
% minNullmin
thf(fact_846_mint__member,axiom,
! [T2: vEBT_VEBT,N2: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% mint_member
thf(fact_847_maxt__member,axiom,
! [T2: vEBT_VEBT,N2: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% maxt_member
thf(fact_848_mint__corr__help,axiom,
! [T2: vEBT_VEBT,N2: nat,Mini: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some @ nat @ Mini ) )
=> ( ( vEBT_vebt_member @ T2 @ X )
=> ( ord_less_eq @ nat @ Mini @ X ) ) ) ) ).
% mint_corr_help
thf(fact_849_maxt__corr__help,axiom,
! [T2: vEBT_VEBT,N2: nat,Maxi: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some @ nat @ Maxi ) )
=> ( ( vEBT_vebt_member @ T2 @ X )
=> ( ord_less_eq @ nat @ X @ Maxi ) ) ) ) ).
% maxt_corr_help
thf(fact_850_mint__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( none @ nat ) )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% mint_corr_help_empty
thf(fact_851_maxt__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( none @ nat ) )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% maxt_corr_help_empty
thf(fact_852_add__def,axiom,
( vEBT_VEBT_add
= ( vEBT_V2048590022279873568_shift @ nat @ ( plus_plus @ nat ) ) ) ).
% add_def
thf(fact_853_mul__def,axiom,
( vEBT_VEBT_mul
= ( vEBT_V2048590022279873568_shift @ nat @ ( times_times @ nat ) ) ) ).
% mul_def
thf(fact_854_vebt__succ_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N2: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) )
= ( none @ nat ) ) ).
% vebt_succ.simps(2)
thf(fact_855_vebt__pred_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o] :
( ( vEBT_vebt_pred @ ( vEBT_Leaf @ Uu @ Uv ) @ ( zero_zero @ nat ) )
= ( none @ nat ) ) ).
% vebt_pred.simps(1)
thf(fact_856_option_Osize__gen_I1_J,axiom,
! [A: $tType,X: A > nat] :
( ( size_option @ A @ X @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size_gen(1)
thf(fact_857_vebt__pred_Osimps_I5_J,axiom,
! [V2: product_prod @ nat @ nat,Vd: list @ vEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( zero_zero @ nat ) @ Vd @ Ve ) @ Vf )
= ( none @ nat ) ) ).
% vebt_pred.simps(5)
thf(fact_858_vebt__succ_Osimps_I4_J,axiom,
! [V2: product_prod @ nat @ nat,Vc: list @ vEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( zero_zero @ nat ) @ Vc @ Vd ) @ Ve )
= ( none @ nat ) ) ).
% vebt_succ.simps(4)
thf(fact_859_vebt__pred_Osimps_I6_J,axiom,
! [V2: product_prod @ nat @ nat,Vh: list @ vEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh @ Vi ) @ Vj )
= ( none @ nat ) ) ).
% vebt_pred.simps(6)
thf(fact_860_vebt__succ_Osimps_I5_J,axiom,
! [V2: product_prod @ nat @ nat,Vg: list @ vEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V2 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg @ Vh ) @ Vi )
= ( none @ nat ) ) ).
% vebt_succ.simps(5)
thf(fact_861_vebt__pred_Osimps_I2_J,axiom,
! [A2: $o,Uw: $o] :
( ( A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ Uw ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ Uw ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( none @ nat ) ) ) ) ).
% vebt_pred.simps(2)
thf(fact_862_vebt__succ_Osimps_I1_J,axiom,
! [B2: $o,Uu: $o] :
( ( B2
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B2 ) @ ( zero_zero @ nat ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B2 ) @ ( zero_zero @ nat ) )
= ( none @ nat ) ) ) ) ).
% vebt_succ.simps(1)
thf(fact_863_vebt__pred_Osimps_I3_J,axiom,
! [B2: $o,A2: $o,Va2: nat] :
( ( B2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A2 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_pred.simps(3)
thf(fact_864_mult__less__iff1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Z2 )
=> ( ( ord_less @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ Z2 ) )
= ( ord_less @ A @ X @ Y ) ) ) ) ).
% mult_less_iff1
thf(fact_865_vebt__maxt_Osimps_I1_J,axiom,
! [B2: $o,A2: $o] :
( ( B2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( A2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_maxt.simps(1)
thf(fact_866_vebt__mint_Osimps_I1_J,axiom,
! [A2: $o,B2: $o] :
( ( A2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A2
=> ( ( B2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B2
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A2 @ B2 ) )
= ( none @ nat ) ) ) ) ) ) ).
% vebt_mint.simps(1)
thf(fact_867_diff__shunt__var,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( minus_minus @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ).
% diff_shunt_var
thf(fact_868_prod__decode__aux_Osimps,axiom,
( nat_prod_decode_aux
= ( ^ [K3: nat,M6: nat] : ( if @ ( product_prod @ nat @ nat ) @ ( ord_less_eq @ nat @ M6 @ K3 ) @ ( product_Pair @ nat @ nat @ M6 @ ( minus_minus @ nat @ K3 @ M6 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus @ nat @ M6 @ ( suc @ K3 ) ) ) ) ) ) ).
% prod_decode_aux.simps
thf(fact_869_prod__decode__aux_Oelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ nat @ nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y )
=> ( ( ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( product_Pair @ nat @ nat @ Xa2 @ ( minus_minus @ nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus @ nat @ Xa2 @ ( suc @ X ) ) ) ) ) ) ) ).
% prod_decode_aux.elims
thf(fact_870_vebt__delete_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A5: $o,B5: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( zero_zero @ nat ) ) )
=> ( ! [A5: $o,B5: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [A5: $o,B5: $o,N: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( suc @ N ) ) ) )
=> ( ! [Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,Uu2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) @ Uu2 ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst2: list @ vEBT_VEBT,Smry2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) @ X4 ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr2: list @ vEBT_VEBT,Sm2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) @ X4 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ X4 ) ) ) ) ) ) ) ) ).
% vebt_delete.cases
thf(fact_871_VEBT__internal_Omembermima_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ X4 ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) @ X4 ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT,Vd2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) @ X4 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_872_vebt__pred_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,Uv2: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ ( zero_zero @ nat ) ) )
=> ( ! [A5: $o,Uw2: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ Uw2 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [A5: $o,B5: $o,Va: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( suc @ Va ) ) ) )
=> ( ! [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT,Vb2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) @ Vb2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) @ Vf2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) @ Vj2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ X4 ) ) ) ) ) ) ) ) ).
% vebt_pred.cases
thf(fact_873_vebt__succ_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [Uu2: $o,B5: $o] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ B5 ) @ ( zero_zero @ nat ) ) )
=> ( ! [Uv2: $o,Uw2: $o,N: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N ) ) )
=> ( ! [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT,Va3: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) @ Va3 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT,Ve2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) @ Ve2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) @ Vi2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ X4 ) ) ) ) ) ) ) ).
% vebt_succ.cases
thf(fact_874_vebt__delete_Osimps_I4_J,axiom,
! [Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList2 @ Summary ) @ Uu )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList2 @ Summary ) ) ).
% vebt_delete.simps(4)
thf(fact_875_vebt__member_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list @ vEBT_VEBT,Uw: vEBT_VEBT,X: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu @ Uv @ Uw ) @ X ) ).
% vebt_member.simps(2)
thf(fact_876_VEBT__internal_OminNull_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list @ vEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw @ Ux @ Uy ) ) ).
% VEBT_internal.minNull.simps(4)
thf(fact_877_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list @ vEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_878_VEBT__internal_OminNull_Oelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( X
!= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).
% VEBT_internal.minNull.elims(2)
thf(fact_879_VEBT__internal_OminNull_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Y: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ Y )
=> ( ( ? [Uv2: $o] :
( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> Y )
=> ( ( ? [Uu2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> Y )
=> ( ( ? [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ Y )
=> ~ ( ? [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> Y ) ) ) ) ) ) ).
% VEBT_internal.minNull.elims(1)
thf(fact_880_vebt__mint_Oelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_mint @ X )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( Y
= ( none @ nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat] :
( ? [Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( some @ nat @ Mi2 ) ) ) ) ) ) ).
% vebt_mint.elims
thf(fact_881_vebt__maxt_Oelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat] :
( ? [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( some @ nat @ Ma2 ) ) ) ) ) ) ).
% vebt_maxt.elims
thf(fact_882_vebt__member_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A5: $o,B5: $o,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ X4 ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ X4 ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ X4 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ X4 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ X4 ) ) ) ) ) ) ).
% vebt_member.cases
thf(fact_883_vebt__insert_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ nat] :
( ! [A5: $o,B5: $o,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ X4 ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) @ X4 ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) @ X4 ) )
=> ( ! [V3: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) @ X4 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ X4 ) ) ) ) ) ) ).
% vebt_insert.cases
thf(fact_884_vebt__maxt_Opelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_maxt @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ X )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A5 @ B5 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( some @ nat @ Ma2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_maxt.pelims
thf(fact_885_vebt__mint_Opelims,axiom,
! [X: vEBT_VEBT,Y: option @ nat] :
( ( ( vEBT_vebt_mint @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ X )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A5 @ B5 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( some @ nat @ Mi2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_mint.pelims
thf(fact_886_option_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( option @ A ) @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(3)
thf(fact_887_option_Osize_I4_J,axiom,
! [A: $tType,X22: A] :
( ( size_size @ ( option @ A ) @ ( some @ A @ X22 ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(4)
thf(fact_888_prod__encode__prod__decode__aux,axiom,
! [K: nat,M: nat] :
( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
= ( plus_plus @ nat @ ( nat_triangle @ K ) @ M ) ) ).
% prod_encode_prod_decode_aux
thf(fact_889_frac__unique__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: A] :
( ( ( archimedean_frac @ A @ X )
= A2 )
= ( ( member @ A @ ( minus_minus @ A @ X @ A2 ) @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ A2 @ ( one_one @ A ) ) ) ) ) ).
% frac_unique_iff
thf(fact_890_power_Opower__eq__if,axiom,
! [A: $tType] :
( ( power2 @ A )
= ( ^ [One: A,Times: A > A > A,P5: A,M6: nat] :
( if @ A
@ ( M6
= ( zero_zero @ nat ) )
@ One
@ ( Times @ P5 @ ( power2 @ A @ One @ Times @ P5 @ ( minus_minus @ nat @ M6 @ ( one_one @ nat ) ) ) ) ) ) ) ).
% power.power_eq_if
thf(fact_891_dbl__dec__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A )
= ( ^ [X3: A] : ( minus_minus @ A @ ( plus_plus @ A @ X3 @ X3 ) @ ( one_one @ A ) ) ) ) ) ).
% dbl_dec_def
thf(fact_892_prod__encode__eq,axiom,
! [X: product_prod @ nat @ nat,Y: product_prod @ nat @ nat] :
( ( ( nat_prod_encode @ X )
= ( nat_prod_encode @ Y ) )
= ( X = Y ) ) ).
% prod_encode_eq
thf(fact_893_frac__in__Ints__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( member @ A @ ( archimedean_frac @ A @ X ) @ ( ring_1_Ints @ A ) )
= ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ).
% frac_in_Ints_iff
thf(fact_894_dbl__dec__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% dbl_dec_simps(3)
thf(fact_895_frac__eq__0__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( archimedean_frac @ A @ X )
= ( zero_zero @ A ) )
= ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ).
% frac_eq_0_iff
thf(fact_896_frac__gt__0__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( archimedean_frac @ A @ X ) )
= ( ~ ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ) ).
% frac_gt_0_iff
thf(fact_897_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X: A,Y: A] :
( ( ( size_size @ A @ X )
!= ( size_size @ A @ Y ) )
=> ( X != Y ) ) ) ).
% size_neq_size_imp_neq
thf(fact_898_Ints__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_0
thf(fact_899_Ints__mult,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ B2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( ring_1_Ints @ A ) ) ) ) ) ).
% Ints_mult
thf(fact_900_Ints__add,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ B2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( ring_1_Ints @ A ) ) ) ) ) ).
% Ints_add
thf(fact_901_Ints__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( member @ A @ ( one_one @ A ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_1
thf(fact_902_Ints__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ B2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( ring_1_Ints @ A ) ) ) ) ) ).
% Ints_diff
thf(fact_903_Ints__double__eq__0__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( ( plus_plus @ A @ A2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_904_power_Opower_Opower__Suc,axiom,
! [A: $tType,One2: A,Times2: A > A > A,A2: A,N2: nat] :
( ( power2 @ A @ One2 @ Times2 @ A2 @ ( suc @ N2 ) )
= ( Times2 @ A2 @ ( power2 @ A @ One2 @ Times2 @ A2 @ N2 ) ) ) ).
% power.power.power_Suc
thf(fact_905_power_Opower_Opower__0,axiom,
! [A: $tType,One2: A,Times2: A > A > A,A2: A] :
( ( power2 @ A @ One2 @ Times2 @ A2 @ ( zero_zero @ nat ) )
= One2 ) ).
% power.power.power_0
thf(fact_906_option_Osize__neq,axiom,
! [A: $tType,X: option @ A] :
( ( size_size @ ( option @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% option.size_neq
thf(fact_907_Ints__odd__nonzero,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ A2 )
!= ( zero_zero @ A ) ) ) ) ).
% Ints_odd_nonzero
thf(fact_908_le__prod__encode__1,axiom,
! [A2: nat,B2: nat] : ( ord_less_eq @ nat @ A2 @ ( nat_prod_encode @ ( product_Pair @ nat @ nat @ A2 @ B2 ) ) ) ).
% le_prod_encode_1
thf(fact_909_le__prod__encode__2,axiom,
! [B2: nat,A2: nat] : ( ord_less_eq @ nat @ B2 @ ( nat_prod_encode @ ( product_Pair @ nat @ nat @ A2 @ B2 ) ) ) ).
% le_prod_encode_2
thf(fact_910_Ints__odd__less__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( ( ord_less @ A @ ( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% Ints_odd_less_0
thf(fact_911_VEBT__internal_OminNull_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Y: $o] :
( ( ( vEBT_VEBT_minNull @ X )
= Y )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ( Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
=> ( ! [Uu2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
=> ( ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ( Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> ( ~ Y
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(1)
thf(fact_912_VEBT__internal_OminNull_Opelims_I2_J,axiom,
! [X: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ( ( X
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Uw2: nat,Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(2)
thf(fact_913_VEBT__internal_OminNull_Opelims_I3_J,axiom,
! [X: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X )
=> ( ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
=> ( ! [Uv2: $o] :
( ( X
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
=> ( ! [Uu2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
=> ~ ! [Uz2: product_prod @ nat @ nat,Va3: nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
=> ~ ( accp @ vEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(3)
thf(fact_914_vebt__insert_Osimps_I4_J,axiom,
! [V2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ X ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary ) ) ).
% vebt_insert.simps(4)
thf(fact_915_power__decreasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,M: nat,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ B2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ B2 @ M ) @ ( power_power @ A @ B2 @ N2 ) )
= ( ord_less_eq @ nat @ N2 @ M ) ) ) ) ) ).
% power_decreasing_iff
thf(fact_916_pair__lessI2,axiom,
! [A2: nat,B2: nat,S: nat,T2: nat] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( ord_less @ nat @ S @ T2 )
=> ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ A2 @ S ) @ ( product_Pair @ nat @ nat @ B2 @ T2 ) ) @ fun_pair_less ) ) ) ).
% pair_lessI2
thf(fact_917_pair__less__iff1,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ Y ) @ ( product_Pair @ nat @ nat @ X @ Z2 ) ) @ fun_pair_less )
= ( ord_less @ nat @ Y @ Z2 ) ) ).
% pair_less_iff1
thf(fact_918_set__encode__inverse,axiom,
! [A4: set @ nat] :
( ( finite_finite @ nat @ A4 )
=> ( ( nat_set_decode @ ( nat_set_encode @ A4 ) )
= A4 ) ) ).
% set_encode_inverse
thf(fact_919_frac__neg,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( archimedean_frac @ A @ ( uminus_uminus @ A @ X ) )
= ( zero_zero @ A ) ) )
& ( ~ ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( archimedean_frac @ A @ ( uminus_uminus @ A @ X ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( archimedean_frac @ A @ X ) ) ) ) ) ) ).
% frac_neg
thf(fact_920_power__shift,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( power_power @ nat @ X @ Y )
= Z2 )
= ( ( vEBT_VEBT_power @ ( some @ nat @ X ) @ ( some @ nat @ Y ) )
= ( some @ nat @ Z2 ) ) ) ).
% power_shift
thf(fact_921_local_Opower__def,axiom,
( vEBT_VEBT_power
= ( vEBT_V2048590022279873568_shift @ nat @ ( power_power @ nat ) ) ) ).
% local.power_def
thf(fact_922_neg__equal__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= ( uminus_uminus @ A @ B2 ) )
= ( A2 = B2 ) ) ) ).
% neg_equal_iff_equal
thf(fact_923_add_Oinverse__inverse,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( uminus_uminus @ A @ ( uminus_uminus @ A @ A2 ) )
= A2 ) ) ).
% add.inverse_inverse
thf(fact_924_verit__minus__simplify_I4_J,axiom,
! [B: $tType] :
( ( group_add @ B )
=> ! [B2: B] :
( ( uminus_uminus @ B @ ( uminus_uminus @ B @ B2 ) )
= B2 ) ) ).
% verit_minus_simplify(4)
thf(fact_925_compl__le__compl__iff,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% compl_le_compl_iff
thf(fact_926_neg__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% neg_le_iff_le
thf(fact_927_neg__equal__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ( uminus_uminus @ A @ A2 )
= A2 )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% neg_equal_zero
thf(fact_928_equal__neg__zero,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( A2
= ( uminus_uminus @ A @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% equal_neg_zero
thf(fact_929_neg__equal__0__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( ( uminus_uminus @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% neg_equal_0_iff_equal
thf(fact_930_neg__0__equal__iff__equal,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( uminus_uminus @ A @ A2 ) )
= ( ( zero_zero @ A )
= A2 ) ) ) ).
% neg_0_equal_iff_equal
thf(fact_931_add_Oinverse__neutral,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( uminus_uminus @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% add.inverse_neutral
thf(fact_932_compl__less__compl__iff,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) )
= ( ord_less @ A @ Y @ X ) ) ) ).
% compl_less_compl_iff
thf(fact_933_neg__less__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% neg_less_iff_less
thf(fact_934_mult__minus__right,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% mult_minus_right
thf(fact_935_minus__mult__minus,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( times_times @ A @ A2 @ B2 ) ) ) ).
% minus_mult_minus
thf(fact_936_mult__minus__left,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( uminus_uminus @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% mult_minus_left
thf(fact_937_add__minus__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ A2 @ ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) )
= B2 ) ) ).
% add_minus_cancel
thf(fact_938_minus__add__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( plus_plus @ A @ A2 @ B2 ) )
= B2 ) ) ).
% minus_add_cancel
thf(fact_939_minus__add__distrib,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_add_distrib
thf(fact_940_power__one,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [N2: nat] :
( ( power_power @ A @ ( one_one @ A ) @ N2 )
= ( one_one @ A ) ) ) ).
% power_one
thf(fact_941_minus__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( minus_minus @ A @ B2 @ A2 ) ) ) ).
% minus_diff_eq
thf(fact_942_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power @ nat @ X @ M )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( X
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_943_power__Suc__0,axiom,
! [N2: nat] :
( ( power_power @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% power_Suc_0
thf(fact_944_nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( power_power @ nat @ X @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N2
= ( zero_zero @ nat ) ) ) ) ).
% nat_zero_less_power_iff
thf(fact_945_power__one__right,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( one_one @ nat ) )
= A2 ) ) ).
% power_one_right
thf(fact_946_set__decode__inverse,axiom,
! [N2: nat] :
( ( nat_set_encode @ ( nat_set_decode @ N2 ) )
= N2 ) ).
% set_decode_inverse
thf(fact_947_neg__less__eq__nonneg,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_eq_nonneg
thf(fact_948_less__eq__neg__nonpos,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% less_eq_neg_nonpos
thf(fact_949_neg__le__0__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_le_0_iff_le
thf(fact_950_neg__0__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_le_iff_le
thf(fact_951_neg__less__0__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_0_iff_less
thf(fact_952_neg__0__less__iff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_less_iff_less
thf(fact_953_neg__less__pos,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_pos
thf(fact_954_less__neg__neg,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% less_neg_neg
thf(fact_955_ab__left__minus,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% ab_left_minus
thf(fact_956_add_Oright__inverse,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( zero_zero @ A ) ) ) ).
% add.right_inverse
thf(fact_957_verit__minus__simplify_I3_J,axiom,
! [B: $tType] :
( ( group_add @ B )
=> ! [B2: B] :
( ( minus_minus @ B @ ( zero_zero @ B ) @ B2 )
= ( uminus_uminus @ B @ B2 ) ) ) ).
% verit_minus_simplify(3)
thf(fact_958_diff__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ).
% diff_0
thf(fact_959_power__inject__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ( power_power @ A @ A2 @ M )
= ( power_power @ A @ A2 @ N2 ) )
= ( M = N2 ) ) ) ) ).
% power_inject_exp
thf(fact_960_power__0__Suc,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] :
( ( power_power @ A @ ( zero_zero @ A ) @ ( suc @ N2 ) )
= ( zero_zero @ A ) ) ) ).
% power_0_Suc
thf(fact_961_mult__minus1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ Z2 )
= ( uminus_uminus @ A @ Z2 ) ) ) ).
% mult_minus1
thf(fact_962_mult__minus1__right,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: A] :
( ( times_times @ A @ Z2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ Z2 ) ) ) ).
% mult_minus1_right
thf(fact_963_uminus__add__conv__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( minus_minus @ A @ B2 @ A2 ) ) ) ).
% uminus_add_conv_diff
thf(fact_964_diff__minus__eq__add,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( plus_plus @ A @ A2 @ B2 ) ) ) ).
% diff_minus_eq_add
thf(fact_965_power__Suc0__right,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% power_Suc0_right
thf(fact_966_dbl__inc__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% dbl_inc_simps(4)
thf(fact_967_set__decode__zero,axiom,
( ( nat_set_decode @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% set_decode_zero
thf(fact_968_add__neg__numeral__special_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% add_neg_numeral_special(7)
thf(fact_969_add__neg__numeral__special_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% add_neg_numeral_special(8)
thf(fact_970_diff__numeral__special_I12_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(12)
thf(fact_971_minus__one__mult__self,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) )
= ( one_one @ A ) ) ) ).
% minus_one_mult_self
thf(fact_972_left__minus__one__mult__self,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat,A2: A] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ A2 ) )
= A2 ) ) ).
% left_minus_one_mult_self
thf(fact_973_power__strict__increasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,X: nat,Y: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ B2 )
=> ( ( ord_less @ A @ ( power_power @ A @ B2 @ X ) @ ( power_power @ A @ B2 @ Y ) )
= ( ord_less @ nat @ X @ Y ) ) ) ) ).
% power_strict_increasing_iff
thf(fact_974_power__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A,N2: nat] :
( ( ( power_power @ A @ A2 @ N2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% power_eq_0_iff
thf(fact_975_dbl__dec__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( zero_zero @ A ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% dbl_dec_simps(2)
thf(fact_976_power__strict__decreasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,M: nat,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ B2 @ ( one_one @ A ) )
=> ( ( ord_less @ A @ ( power_power @ A @ B2 @ M ) @ ( power_power @ A @ B2 @ N2 ) )
= ( ord_less @ nat @ N2 @ M ) ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_977_power__increasing__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: A,X: nat,Y: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ B2 @ X ) @ ( power_power @ A @ B2 @ Y ) )
= ( ord_less_eq @ nat @ X @ Y ) ) ) ) ).
% power_increasing_iff
thf(fact_978_power__mono__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ) ).
% power_mono_iff
thf(fact_979_minus__equation__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= B2 )
= ( ( uminus_uminus @ A @ B2 )
= A2 ) ) ) ).
% minus_equation_iff
thf(fact_980_equation__minus__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( uminus_uminus @ A @ B2 ) )
= ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% equation_minus_iff
thf(fact_981_verit__negate__coefficient_I3_J,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( ( uminus_uminus @ A @ A2 )
= ( uminus_uminus @ A @ B2 ) ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_982_power__minus,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ A2 ) @ N2 )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% power_minus
thf(fact_983_power__not__zero,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A,N2: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ A2 @ N2 )
!= ( zero_zero @ A ) ) ) ) ).
% power_not_zero
thf(fact_984_compl__le__swap2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ X )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% compl_le_swap2
thf(fact_985_compl__le__swap1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ ( uminus_uminus @ A @ X ) )
=> ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% compl_le_swap1
thf(fact_986_compl__mono,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% compl_mono
thf(fact_987_le__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_minus_iff
thf(fact_988_minus__le__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ A2 ) ) ) ).
% minus_le_iff
thf(fact_989_le__imp__neg__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_imp_neg_le
thf(fact_990_compl__less__swap2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ Y ) @ X )
=> ( ord_less @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% compl_less_swap2
thf(fact_991_compl__less__swap1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ ( uminus_uminus @ A @ X ) )
=> ( ord_less @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% compl_less_swap1
thf(fact_992_verit__negate__coefficient_I2_J,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_993_less__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( ord_less @ A @ B2 @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% less_minus_iff
thf(fact_994_minus__less__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ A2 ) ) ) ).
% minus_less_iff
thf(fact_995_minus__mult__commute,axiom,
! [A: $tType] :
( ( ring @ A )
=> ! [A2: A,B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( times_times @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_mult_commute
thf(fact_996_square__eq__iff,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ A2 )
= ( times_times @ A @ B2 @ B2 ) )
= ( ( A2 = B2 )
| ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% square_eq_iff
thf(fact_997_finite__maxlen,axiom,
! [A: $tType,M7: set @ ( list @ A )] :
( ( finite_finite @ ( list @ A ) @ M7 )
=> ? [N: nat] :
! [X2: list @ A] :
( ( member @ ( list @ A ) @ X2 @ M7 )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ X2 ) @ N ) ) ) ).
% finite_maxlen
thf(fact_998_length__induct,axiom,
! [A: $tType,P: ( list @ A ) > $o,Xs2: list @ A] :
( ! [Xs3: list @ A] :
( ! [Ys: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys ) @ ( size_size @ ( list @ A ) @ Xs3 ) )
=> ( P @ Ys ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs2 ) ) ).
% length_induct
thf(fact_999_group__cancel_Oneg1,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A4: A,K: A,A2: A] :
( ( A4
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( uminus_uminus @ A @ A4 )
= ( plus_plus @ A @ ( uminus_uminus @ A @ K ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ) ).
% group_cancel.neg1
thf(fact_1000_add_Oinverse__distrib__swap,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% add.inverse_distrib_swap
thf(fact_1001_is__num__normalize_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% is_num_normalize(8)
thf(fact_1002_one__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ( ( one_one @ A )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% one_neq_neg_one
thf(fact_1003_minus__diff__commute,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [B2: A,A2: A] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ B2 ) @ A2 )
= ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% minus_diff_commute
thf(fact_1004_minus__diff__minus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% minus_diff_minus
thf(fact_1005_Ints__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( power_power @ A @ A2 @ N2 ) @ ( ring_1_Ints @ A ) ) ) ) ).
% Ints_power
thf(fact_1006_minus__in__Ints__iff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A] :
( ( member @ A @ ( uminus_uminus @ A @ X ) @ ( ring_1_Ints @ A ) )
= ( member @ A @ X @ ( ring_1_Ints @ A ) ) ) ) ).
% minus_in_Ints_iff
thf(fact_1007_Ints__minus,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( uminus_uminus @ A @ A2 ) @ ( ring_1_Ints @ A ) ) ) ) ).
% Ints_minus
thf(fact_1008_subset__decode__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ ( set @ nat ) @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N2 ) )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% subset_decode_imp_le
thf(fact_1009_power__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) ) ) ) ) ).
% power_mono
thf(fact_1010_zero__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% zero_le_power
thf(fact_1011_zero__less__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% zero_less_power
thf(fact_1012_finite__set__decode,axiom,
! [N2: nat] : ( finite_finite @ nat @ ( nat_set_decode @ N2 ) ) ).
% finite_set_decode
thf(fact_1013_one__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% one_le_power
thf(fact_1014_left__right__inverse__power,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [X: A,Y: A,N2: nat] :
( ( ( times_times @ A @ X @ Y )
= ( one_one @ A ) )
=> ( ( times_times @ A @ ( power_power @ A @ X @ N2 ) @ ( power_power @ A @ Y @ N2 ) )
= ( one_one @ A ) ) ) ) ).
% left_right_inverse_power
thf(fact_1015_le__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) ) ) ).
% le_minus_one_simps(2)
thf(fact_1016_le__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(4)
thf(fact_1017_neg__eq__iff__add__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( uminus_uminus @ A @ A2 )
= B2 )
= ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_1018_eq__neg__iff__add__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( uminus_uminus @ A @ B2 ) )
= ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_1019_add_Oinverse__unique,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ A2 )
= B2 ) ) ) ).
% add.inverse_unique
thf(fact_1020_ab__group__add__class_Oab__left__minus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% ab_group_add_class.ab_left_minus
thf(fact_1021_add__eq__0__iff,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B2: A] :
( ( ( plus_plus @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% add_eq_0_iff
thf(fact_1022_zero__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ( ( zero_zero @ A )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% zero_neq_neg_one
thf(fact_1023_less__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) ) ) ).
% less_minus_one_simps(2)
thf(fact_1024_less__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% less_minus_one_simps(4)
thf(fact_1025_power__Suc2,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N2: nat] :
( ( power_power @ A @ A2 @ ( suc @ N2 ) )
= ( times_times @ A @ ( power_power @ A @ A2 @ N2 ) @ A2 ) ) ) ).
% power_Suc2
thf(fact_1026_power__Suc,axiom,
! [A: $tType] :
( ( power @ A )
=> ! [A2: A,N2: nat] :
( ( power_power @ A @ A2 @ ( suc @ N2 ) )
= ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% power_Suc
thf(fact_1027_square__eq__1__iff,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [X: A] :
( ( ( times_times @ A @ X @ X )
= ( one_one @ A ) )
= ( ( X
= ( one_one @ A ) )
| ( X
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% square_eq_1_iff
thf(fact_1028_power__0,axiom,
! [A: $tType] :
( ( power @ A )
=> ! [A2: A] :
( ( power_power @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% power_0
thf(fact_1029_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ( ( minus_minus @ A )
= ( ^ [A3: A,B3: A] : ( plus_plus @ A @ A3 @ ( uminus_uminus @ A @ B3 ) ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_1030_diff__conv__add__uminus,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( minus_minus @ A )
= ( ^ [A3: A,B3: A] : ( plus_plus @ A @ A3 @ ( uminus_uminus @ A @ B3 ) ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_1031_group__cancel_Osub2,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4
= ( plus_plus @ A @ K @ B2 ) )
=> ( ( minus_minus @ A @ A2 @ B4 )
= ( plus_plus @ A @ ( uminus_uminus @ A @ K ) @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ) ).
% group_cancel.sub2
thf(fact_1032_power__add,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( power_power @ A @ A2 @ ( plus_plus @ nat @ M @ N2 ) )
= ( times_times @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% power_add
thf(fact_1033_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ I )
=> ( ( ord_less @ nat @ ( power_power @ nat @ I @ M ) @ ( power_power @ nat @ I @ N2 ) )
=> ( ord_less @ nat @ M @ N2 ) ) ) ).
% nat_power_less_imp_less
thf(fact_1034_count__le__length,axiom,
! [A: $tType,Xs2: list @ A,X: A] : ( ord_less_eq @ nat @ ( count_list @ A @ Xs2 @ X ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% count_le_length
thf(fact_1035_vebt__insert_Osimps_I2_J,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S ) @ X )
= ( vEBT_Node @ Info2 @ ( zero_zero @ nat ) @ Ts2 @ S ) ) ).
% vebt_insert.simps(2)
thf(fact_1036_power__less__imp__less__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% power_less_imp_less_base
thf(fact_1037_power__le__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( one_one @ A ) ) ) ) ) ).
% power_le_one
thf(fact_1038_power__inject__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( ( power_power @ A @ A2 @ ( suc @ N2 ) )
= ( power_power @ A @ B2 @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( A2 = B2 ) ) ) ) ) ).
% power_inject_base
thf(fact_1039_power__le__imp__le__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( suc @ N2 ) ) @ ( power_power @ A @ B2 @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% power_le_imp_le_base
thf(fact_1040_power__less__power__Suc,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N2 ) @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ).
% power_less_power_Suc
thf(fact_1041_power__gt1__lemma,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ).
% power_gt1_lemma
thf(fact_1042_le__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ).
% le_minus_one_simps(1)
thf(fact_1043_le__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(3)
thf(fact_1044_less__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ).
% less_minus_one_simps(1)
thf(fact_1045_less__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% less_minus_one_simps(3)
thf(fact_1046_power__gt1,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ ( suc @ N2 ) ) ) ) ) ).
% power_gt1
thf(fact_1047_power__0__left,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N2 )
= ( one_one @ A ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N2 )
= ( zero_zero @ A ) ) ) ) ) ).
% power_0_left
thf(fact_1048_power__less__imp__less__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) )
=> ( ord_less @ nat @ M @ N2 ) ) ) ) ).
% power_less_imp_less_exp
thf(fact_1049_power__strict__increasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,N7: nat,A2: A] :
( ( ord_less @ nat @ N2 @ N7 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ A2 @ N7 ) ) ) ) ) ).
% power_strict_increasing
thf(fact_1050_power__increasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,N7: nat,A2: A] :
( ( ord_less_eq @ nat @ N2 @ N7 )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ A2 @ N7 ) ) ) ) ) ).
% power_increasing
thf(fact_1051_zero__power,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N2 )
= ( zero_zero @ A ) ) ) ) ).
% zero_power
thf(fact_1052_length__pos__if__in__set,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_1053_power__gt__expt,axiom,
! [N2: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
=> ( ord_less @ nat @ K @ ( power_power @ nat @ N2 @ K ) ) ) ).
% power_gt_expt
thf(fact_1054_nat__one__le__power,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ I )
=> ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( power_power @ nat @ I @ N2 ) ) ) ).
% nat_one_le_power
thf(fact_1055_pair__lessI1,axiom,
! [A2: nat,B2: nat,S: nat,T2: nat] :
( ( ord_less @ nat @ A2 @ B2 )
=> ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ A2 @ S ) @ ( product_Pair @ nat @ nat @ B2 @ T2 ) ) @ fun_pair_less ) ) ).
% pair_lessI1
thf(fact_1056_power__Suc__less,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ A2 @ N2 ) ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ).
% power_Suc_less
thf(fact_1057_power__Suc__le__self,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( suc @ N2 ) ) @ A2 ) ) ) ) ).
% power_Suc_le_self
thf(fact_1058_power__Suc__less__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ ( suc @ N2 ) ) @ ( one_one @ A ) ) ) ) ) ).
% power_Suc_less_one
thf(fact_1059_power__strict__decreasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,N7: nat,A2: A] :
( ( ord_less @ nat @ N2 @ N7 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N7 ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1060_power__decreasing,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,N7: nat,A2: A] :
( ( ord_less_eq @ nat @ N2 @ N7 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N7 ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_decreasing
thf(fact_1061_power__le__imp__le__exp,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ) ) ).
% power_le_imp_le_exp
thf(fact_1062_power__eq__iff__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ( power_power @ A @ A2 @ N2 )
= ( power_power @ A @ B2 @ N2 ) )
= ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1063_power__eq__imp__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( ( power_power @ A @ A2 @ N2 )
= ( power_power @ A @ B2 @ N2 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1064_self__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ A @ A2 @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ).
% self_le_power
thf(fact_1065_one__less__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ).
% one_less_power
thf(fact_1066_vebt__insert_Osimps_I3_J,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Ts2: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S ) @ X )
= ( vEBT_Node @ Info2 @ ( suc @ ( zero_zero @ nat ) ) @ Ts2 @ S ) ) ).
% vebt_insert.simps(3)
thf(fact_1067_vebt__insert_Osimps_I1_J,axiom,
! [X: nat,A2: $o,B2: $o] :
( ( ( X
= ( zero_zero @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ $true @ B2 ) ) )
& ( ( X
!= ( zero_zero @ nat ) )
=> ( ( ( X
= ( one_one @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ A2 @ $true ) ) )
& ( ( X
!= ( one_one @ nat ) )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A2 @ B2 ) @ X )
= ( vEBT_Leaf @ A2 @ B2 ) ) ) ) ) ) ).
% vebt_insert.simps(1)
thf(fact_1068_VEBT_Osize_I4_J,axiom,
! [X21: $o,X222: $o] :
( ( size_size @ vEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= ( zero_zero @ nat ) ) ).
% VEBT.size(4)
thf(fact_1069_power__strict__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) ) ) ) ) ) ).
% power_strict_mono
thf(fact_1070_power__eq__if,axiom,
! [A: $tType] :
( ( power @ A )
=> ( ( power_power @ A )
= ( ^ [P5: A,M6: nat] :
( if @ A
@ ( M6
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( times_times @ A @ P5 @ ( power_power @ A @ P5 @ ( minus_minus @ nat @ M6 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% power_eq_if
thf(fact_1071_power__minus__mult,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [N2: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( times_times @ A @ ( power_power @ A @ A2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) @ A2 )
= ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% power_minus_mult
thf(fact_1072_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( plus_plus @ nat @ N2 @ K ) )
= ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_1073_pair__leqI2,axiom,
! [A2: nat,B2: nat,S: nat,T2: nat] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( ord_less_eq @ nat @ S @ T2 )
=> ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ A2 @ S ) @ ( product_Pair @ nat @ nat @ B2 @ T2 ) ) @ fun_pair_leq ) ) ) ).
% pair_leqI2
thf(fact_1074_pair__leqI1,axiom,
! [A2: nat,B2: nat,S: nat,T2: nat] :
( ( ord_less @ nat @ A2 @ B2 )
=> ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ A2 @ S ) @ ( product_Pair @ nat @ nat @ B2 @ T2 ) ) @ fun_pair_leq ) ) ).
% pair_leqI1
thf(fact_1075_realpow__pos__nth,axiom,
! [N2: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
& ( ( power_power @ real @ R3 @ N2 )
= A2 ) ) ) ) ).
% realpow_pos_nth
thf(fact_1076_realpow__pos__nth__unique,axiom,
! [N2: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [X4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X4 )
& ( ( power_power @ real @ X4 @ N2 )
= A2 )
& ! [Y3: real] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ Y3 )
& ( ( power_power @ real @ Y3 @ N2 )
= A2 ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1077__C5_Ohyps_C_I9_J,axiom,
( ( mi != ma )
=> ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) )
=> ( ( ( ( vEBT_VEBT_high @ ma @ na )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ treeList @ I4 ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ na )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ treeList @ I4 ) @ ( vEBT_VEBT_low @ X2 @ na ) ) )
=> ( ( ord_less @ nat @ mi @ X2 )
& ( ord_less_eq @ nat @ X2 @ ma ) ) ) ) ) ) ).
% "5.hyps"(9)
thf(fact_1078_of__nat__zero__less__power__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ X ) @ N2 ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_1079_power__minus_H,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: A,N2: nat] :
( ( nO_MATCH @ A @ A @ ( one_one @ A ) @ X )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ X ) @ N2 )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( power_power @ A @ X @ N2 ) ) ) ) ) ).
% power_minus'
thf(fact_1080_prod__decode__triangle__add,axiom,
! [K: nat,M: nat] :
( ( nat_prod_decode @ ( plus_plus @ nat @ ( nat_triangle @ K ) @ M ) )
= ( nat_prod_decode_aux @ K @ M ) ) ).
% prod_decode_triangle_add
thf(fact_1081_inthall,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,N2: nat] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ N2 ) ) ) ) ).
% inthall
thf(fact_1082__C5_Ohyps_C_I2_J,axiom,
( ( size_size @ ( list @ vEBT_VEBT ) @ treeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) ) ).
% "5.hyps"(2)
thf(fact_1083_numeral__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: num,N2: num] :
( ( ( numeral_numeral @ A @ M )
= ( numeral_numeral @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% numeral_eq_iff
thf(fact_1084_semiring__norm_I78_J,axiom,
! [M: num,N2: num] :
( ( ord_less @ num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less @ num @ M @ N2 ) ) ).
% semiring_norm(78)
thf(fact_1085_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y22: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y22 ) )
= ( X22 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_1086_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less @ num @ M @ one2 ) ).
% semiring_norm(75)
thf(fact_1087_negative__zless,axiom,
! [N2: nat,M: nat] : ( ord_less @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) @ ( semiring_1_of_nat @ int @ M ) ) ).
% negative_zless
thf(fact_1088_negative__eq__positive,axiom,
! [N2: nat,M: nat] :
( ( ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) )
= ( semiring_1_of_nat @ int @ M ) )
= ( ( N2
= ( zero_zero @ nat ) )
& ( M
= ( zero_zero @ nat ) ) ) ) ).
% negative_eq_positive
thf(fact_1089__C5_Ohyps_C_I8_J,axiom,
ord_less @ nat @ ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ deg ) ).
% "5.hyps"(8)
thf(fact_1090_real__add__minus__iff,axiom,
! [X: real,A2: real] :
( ( ( plus_plus @ real @ X @ ( uminus_uminus @ real @ A2 ) )
= ( zero_zero @ real ) )
= ( X = A2 ) ) ).
% real_add_minus_iff
thf(fact_1091_of__nat__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat,N2: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( semiring_1_of_nat @ A @ N2 ) )
= ( M = N2 ) ) ) ).
% of_nat_eq_iff
thf(fact_1092_prod__decode__eq,axiom,
! [X: nat,Y: nat] :
( ( ( nat_prod_decode @ X )
= ( nat_prod_decode @ Y ) )
= ( X = Y ) ) ).
% prod_decode_eq
thf(fact_1093_dp,axiom,
ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ deg ).
% dp
thf(fact_1094_high__bound__aux,axiom,
! [Ma: nat,N2: nat,M: nat] :
( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N2 @ M ) ) )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ Ma @ N2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_1095__C5_Ohyps_C_I5_J,axiom,
! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ m ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ treeList @ I4 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ summary @ I4 ) ) ) ).
% "5.hyps"(5)
thf(fact_1096_member__bound,axiom,
! [Tree: vEBT_VEBT,X: nat,N2: nat] :
( ( vEBT_vebt_member @ Tree @ X )
=> ( ( vEBT_invar_vebt @ Tree @ N2 )
=> ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% member_bound
thf(fact_1097_numeral__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: num,N2: num] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less_eq @ num @ M @ N2 ) ) ) ).
% numeral_le_iff
thf(fact_1098_numeral__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: num,N2: num] :
( ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less @ num @ M @ N2 ) ) ) ).
% numeral_less_iff
thf(fact_1099_high__inv,axiom,
! [X: nat,N2: nat,Y: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) @ X ) @ N2 )
= Y ) ) ).
% high_inv
thf(fact_1100_numeral__times__numeral,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [M: num,N2: num] :
( ( times_times @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( numeral_numeral @ A @ ( times_times @ num @ M @ N2 ) ) ) ) ).
% numeral_times_numeral
thf(fact_1101_mult__numeral__left__semiring__numeral,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [V2: num,W2: num,Z2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ Z2 ) )
= ( times_times @ A @ ( numeral_numeral @ A @ ( times_times @ num @ V2 @ W2 ) ) @ Z2 ) ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_1102_low__inv,axiom,
! [X: nat,N2: nat,Y: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) @ X ) @ N2 )
= X ) ) ).
% low_inv
thf(fact_1103_add__numeral__left,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [V2: num,W2: num,Z2: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ V2 ) @ ( plus_plus @ A @ ( numeral_numeral @ A @ W2 ) @ Z2 ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ V2 @ W2 ) ) @ Z2 ) ) ) ).
% add_numeral_left
thf(fact_1104_numeral__plus__numeral,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [M: num,N2: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N2 ) ) ) ) ).
% numeral_plus_numeral
thf(fact_1105_semiring__norm_I76_J,axiom,
! [N2: num] : ( ord_less @ num @ one2 @ ( bit0 @ N2 ) ) ).
% semiring_norm(76)
thf(fact_1106_num__double,axiom,
! [N2: num] :
( ( times_times @ num @ ( bit0 @ one2 ) @ N2 )
= ( bit0 @ N2 ) ) ).
% num_double
thf(fact_1107_neg__numeral__eq__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N2: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( M = N2 ) ) ) ).
% neg_numeral_eq_iff
thf(fact_1108_bit__concat__def,axiom,
( vEBT_VEBT_bit_concat
= ( ^ [H2: nat,L2: nat,D6: nat] : ( plus_plus @ nat @ ( times_times @ nat @ H2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ D6 ) ) @ L2 ) ) ) ).
% bit_concat_def
thf(fact_1109_set__n__deg__not__0,axiom,
! [TreeList2: list @ vEBT_VEBT,N2: nat,M: nat] :
( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 ) ) ) ).
% set_n_deg_not_0
thf(fact_1110_misiz,axiom,
! [T2: vEBT_VEBT,N2: nat,M: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( some @ nat @ M )
= ( vEBT_vebt_mint @ T2 ) )
=> ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% misiz
thf(fact_1111_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less @ real @ ( zero_zero @ real ) @ ( times_times @ real @ X @ X ) ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% not_real_square_gt_zero
thf(fact_1112_insert__simp__mima,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
| ( X = Ma ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).
% insert_simp_mima
thf(fact_1113_helpyd,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( some @ nat @ Y ) )
=> ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% helpyd
thf(fact_1114_helpypredd,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( some @ nat @ Y ) )
=> ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% helpypredd
thf(fact_1115_valid__insert__both__member__options__pres,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ Y ) @ X ) ) ) ) ) ).
% valid_insert_both_member_options_pres
thf(fact_1116_valid__insert__both__member__options__add,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ X ) @ X ) ) ) ).
% valid_insert_both_member_options_add
thf(fact_1117_post__member__pre__member,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ nat @ Y @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T2 @ X ) @ Y )
=> ( ( vEBT_vebt_member @ T2 @ Y )
| ( X = Y ) ) ) ) ) ) ).
% post_member_pre_member
thf(fact_1118_delt__out__of__range,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).
% delt_out_of_range
thf(fact_1119__092_060open_062ma_A_092_060le_062_A2_A_094_Adeg_092_060close_062,axiom,
ord_less_eq @ nat @ ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ deg ) ).
% \<open>ma \<le> 2 ^ deg\<close>
thf(fact_1120_del__single__cont,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
& ( X = Ma ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).
% del_single_cont
thf(fact_1121_xdegrel,axiom,
ord_less @ nat @ xa @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ deg ) ).
% xdegrel
thf(fact_1122_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
& ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_1123_pred__max,axiom,
! [Deg: nat,Ma: nat,X: nat,Mi: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( some @ nat @ Ma ) ) ) ) ).
% pred_max
thf(fact_1124_succ__min,axiom,
! [Deg: nat,X: nat,Mi: nat,Ma: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( some @ nat @ Mi ) ) ) ) ).
% succ_min
thf(fact_1125_prod__decode__inverse,axiom,
! [N2: nat] :
( ( nat_prod_encode @ ( nat_prod_decode @ N2 ) )
= N2 ) ).
% prod_decode_inverse
thf(fact_1126_prod__encode__inverse,axiom,
! [X: product_prod @ nat @ nat] :
( ( nat_prod_decode @ ( nat_prod_encode @ X ) )
= X ) ).
% prod_encode_inverse
thf(fact_1127_neg__numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( ord_less_eq @ num @ N2 @ M ) ) ) ).
% neg_numeral_le_iff
thf(fact_1128_distrib__right__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( semiring @ A ) )
=> ! [A2: A,B2: A,V2: num] :
( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( numeral_numeral @ A @ V2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ V2 ) ) @ ( times_times @ A @ B2 @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% distrib_right_numeral
thf(fact_1129_distrib__left__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( semiring @ A ) )
=> ! [V2: num,B2: A,C2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ B2 ) @ ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ C2 ) ) ) ) ).
% distrib_left_numeral
thf(fact_1130_neg__numeral__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( ord_less @ num @ N2 @ M ) ) ) ).
% neg_numeral_less_iff
thf(fact_1131_one__eq__numeral__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: num] :
( ( ( one_one @ A )
= ( numeral_numeral @ A @ N2 ) )
= ( one2 = N2 ) ) ) ).
% one_eq_numeral_iff
thf(fact_1132_numeral__eq__one__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: num] :
( ( ( numeral_numeral @ A @ N2 )
= ( one_one @ A ) )
= ( N2 = one2 ) ) ) ).
% numeral_eq_one_iff
thf(fact_1133_left__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ring @ A ) )
=> ! [A2: A,B2: A,V2: num] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( numeral_numeral @ A @ V2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ V2 ) ) @ ( times_times @ A @ B2 @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1134_right__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ring @ A ) )
=> ! [V2: num,B2: A,C2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ B2 ) @ ( times_times @ A @ ( numeral_numeral @ A @ V2 ) @ C2 ) ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1135_mult__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N2: num] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( numeral_numeral @ A @ ( times_times @ num @ M @ N2 ) ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_1136_mult__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N2: num] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N2 ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ M @ N2 ) ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_1137_mult__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num,N2: num] :
( ( times_times @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( times_times @ num @ M @ N2 ) ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_1138_semiring__norm_I168_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V2: num,W2: num,Y: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ Y ) )
= ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ V2 @ W2 ) ) ) @ Y ) ) ) ).
% semiring_norm(168)
thf(fact_1139_add__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( uminus_uminus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_1140_diff__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N2 ) ) ) ) ).
% diff_numeral_simps(2)
thf(fact_1141_diff__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N2 ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ M @ N2 ) ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_1142_power__zero__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [K: num] :
( ( power_power @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ nat @ K ) )
= ( zero_zero @ A ) ) ) ).
% power_zero_numeral
thf(fact_1143_Suc__numeral,axiom,
! [N2: num] :
( ( suc @ ( numeral_numeral @ nat @ N2 ) )
= ( numeral_numeral @ nat @ ( plus_plus @ num @ N2 @ one2 ) ) ) ).
% Suc_numeral
thf(fact_1144_of__nat__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_0
thf(fact_1145_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( ( zero_zero @ A )
= ( semiring_1_of_nat @ A @ N2 ) )
= ( ( zero_zero @ nat )
= N2 ) ) ) ).
% of_nat_0_eq_iff
thf(fact_1146_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_eq_0_iff
thf(fact_1147_of__nat__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ) ).
% of_nat_less_iff
thf(fact_1148_of__nat__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: num] :
( ( semiring_1_of_nat @ A @ ( numeral_numeral @ nat @ N2 ) )
= ( numeral_numeral @ A @ N2 ) ) ) ).
% of_nat_numeral
thf(fact_1149_of__nat__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% of_nat_le_iff
thf(fact_1150_of__nat__add,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N2: nat] :
( ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ).
% of_nat_add
thf(fact_1151_of__nat__mult,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N2: nat] :
( ( semiring_1_of_nat @ A @ ( times_times @ nat @ M @ N2 ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ).
% of_nat_mult
thf(fact_1152_of__nat__eq__1__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( ( semiring_1_of_nat @ A @ N2 )
= ( one_one @ A ) )
= ( N2
= ( one_one @ nat ) ) ) ) ).
% of_nat_eq_1_iff
thf(fact_1153_of__nat__1__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( ( one_one @ A )
= ( semiring_1_of_nat @ A @ N2 ) )
= ( N2
= ( one_one @ nat ) ) ) ) ).
% of_nat_1_eq_iff
thf(fact_1154_of__nat__1,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( one_one @ nat ) )
= ( one_one @ A ) ) ) ).
% of_nat_1
thf(fact_1155_numeral__le__one__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ N2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ num @ N2 @ one2 ) ) ) ).
% numeral_le_one_iff
thf(fact_1156_one__less__numeral__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] :
( ( ord_less @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less @ num @ one2 @ N2 ) ) ) ).
% one_less_numeral_iff
thf(fact_1157_numeral__plus__one,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ N2 ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ N2 @ one2 ) ) ) ) ).
% numeral_plus_one
thf(fact_1158_one__plus__numeral,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ N2 ) ) ) ) ).
% one_plus_numeral
thf(fact_1159_neg__one__eq__numeral__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N2: num] :
( ( ( uminus_uminus @ A @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( N2 = one2 ) ) ) ).
% neg_one_eq_numeral_iff
thf(fact_1160_numeral__eq__neg__one__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N2: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( N2 = one2 ) ) ) ).
% numeral_eq_neg_one_iff
thf(fact_1161_of__nat__le__0__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_le_0_iff
thf(fact_1162_of__nat__Suc,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ M ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ M ) ) ) ) ).
% of_nat_Suc
thf(fact_1163_not__neg__one__le__neg__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
( ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) )
= ( M != one2 ) ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_1164_neg__numeral__less__neg__one__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( M != one2 ) ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1165_one__add__one,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% one_add_one
thf(fact_1166_diff__numeral__special_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ N2 ) ) ) ) ).
% diff_numeral_special(3)
thf(fact_1167_diff__numeral__special_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ M @ one2 ) ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_1168_zero__eq__power2,axiom,
! [A: $tType] :
( ( semiri2026040879449505780visors @ A )
=> ! [A2: A] :
( ( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% zero_eq_power2
thf(fact_1169_of__nat__0__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N2 ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% of_nat_0_less_iff
thf(fact_1170_dbl__dec__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_dec @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl_inc @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_1171_dbl__inc__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_inc @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl_dec @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_1172_add__2__eq__Suc_H,axiom,
! [N2: nat] :
( ( plus_plus @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc'
thf(fact_1173_add__2__eq__Suc,axiom,
! [N2: nat] :
( ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc
thf(fact_1174_Suc__1,axiom,
( ( suc @ ( one_one @ nat ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ).
% Suc_1
thf(fact_1175_of__nat__less__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W2: nat,X: nat] :
( ( ord_less @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W2 ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less @ nat @ ( power_power @ nat @ B2 @ W2 ) @ X ) ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_1176_of__nat__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W2: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W2 ) )
= ( ord_less @ nat @ X @ ( power_power @ nat @ B2 @ W2 ) ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_1177_of__nat__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W2: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W2 ) )
= ( ord_less_eq @ nat @ X @ ( power_power @ nat @ B2 @ W2 ) ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_1178_of__nat__le__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W2: nat,X: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W2 ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ W2 ) @ X ) ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_1179_power2__eq__iff__nonneg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( X = Y ) ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1180_power2__less__eq__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% power2_less_eq_zero_iff
thf(fact_1181_zero__less__power2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_power2
thf(fact_1182_add__neg__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_1183_diff__numeral__special_I10_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_1184_diff__numeral__special_I11_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% diff_numeral_special(11)
thf(fact_1185_sum__power2__eq__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1186_power__minus1__even,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
= ( one_one @ A ) ) ) ).
% power_minus1_even
thf(fact_1187_numeral__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I: num,N2: nat,X: nat] :
( ( ord_less @ A @ ( power_power @ A @ ( numeral_numeral @ A @ I ) @ N2 ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ I ) @ N2 ) @ X ) ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_1188_of__nat__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,I: num,N2: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( numeral_numeral @ A @ I ) @ N2 ) )
= ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ I ) @ N2 ) ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_1189_numeral__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [I: num,N2: nat,X: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( numeral_numeral @ A @ I ) @ N2 ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ I ) @ N2 ) @ X ) ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_1190_of__nat__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,I: num,N2: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( numeral_numeral @ A @ I ) @ N2 ) )
= ( ord_less_eq @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ I ) @ N2 ) ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_1191_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ? [N: nat] : ( ord_less @ real @ ( power_power @ real @ X @ N ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1192_realpow__square__minus__le,axiom,
! [U: real,X: real] : ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( power_power @ real @ U @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% realpow_square_minus_le
thf(fact_1193_real__add__less__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( plus_plus @ real @ X @ Y ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ Y @ ( uminus_uminus @ real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_1194_real__0__less__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ Y ) )
= ( ord_less @ real @ ( uminus_uminus @ real @ X ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_1195_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ X @ Y ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ Y @ ( uminus_uminus @ real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1196_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ Y ) )
= ( ord_less_eq @ real @ ( uminus_uminus @ real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_1197_of__nat__less__two__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat] : ( ord_less @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% of_nat_less_two_power
thf(fact_1198_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ? [N: nat] : ( ord_less @ real @ Y @ ( power_power @ real @ X @ N ) ) ) ).
% real_arch_pow
thf(fact_1199_power2__nat__le__imp__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ N2 )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ).
% power2_nat_le_imp_le
thf(fact_1200_power2__nat__le__eq__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% power2_nat_le_eq_le
thf(fact_1201_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ord_less_eq @ nat @ M @ ( power_power @ nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_1202_less__exp,axiom,
! [N2: nat] : ( ord_less @ nat @ N2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% less_exp
thf(fact_1203_Bernoulli__inequality,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X ) ) @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ N2 ) ) ) ).
% Bernoulli_inequality
thf(fact_1204_numerals_I1_J,axiom,
( ( numeral_numeral @ nat @ one2 )
= ( one_one @ nat ) ) ).
% numerals(1)
thf(fact_1205_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ! [Y3: real] :
? [N: nat] : ( ord_less @ real @ Y3 @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_1206_Suc__double__not__eq__double,axiom,
! [M: nat,N2: nat] :
( ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
!= ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% Suc_double_not_eq_double
thf(fact_1207_double__not__eq__Suc__double,axiom,
! [M: nat,N2: nat] :
( ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M )
!= ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% double_not_eq_Suc_double
thf(fact_1208_numeral__Bit0,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ ( bit0 @ N2 ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% numeral_Bit0
thf(fact_1209_mult__numeral__1__right,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( numeral_numeral @ A @ one2 ) )
= A2 ) ) ).
% mult_numeral_1_right
thf(fact_1210_mult__numeral__1,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ one2 ) @ A2 )
= A2 ) ) ).
% mult_numeral_1
thf(fact_1211_numeral__One,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ( ( numeral_numeral @ A @ one2 )
= ( one_one @ A ) ) ) ).
% numeral_One
thf(fact_1212_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one2
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_1213_add__One__commute,axiom,
! [N2: num] :
( ( plus_plus @ num @ one2 @ N2 )
= ( plus_plus @ num @ N2 @ one2 ) ) ).
% add_One_commute
thf(fact_1214_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq @ num @ X @ one2 )
= ( X = one2 ) ) ).
% le_num_One_iff
thf(fact_1215_pos2,axiom,
ord_less @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ).
% pos2
thf(fact_1216_less__eq__real__def,axiom,
( ( ord_less_eq @ real )
= ( ^ [X3: real,Y2: real] :
( ( ord_less @ real @ X3 @ Y2 )
| ( X3 = Y2 ) ) ) ) ).
% less_eq_real_def
thf(fact_1217_mult__2,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [Z2: A] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Z2 )
= ( plus_plus @ A @ Z2 @ Z2 ) ) ) ).
% mult_2
thf(fact_1218_mult__2__right,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [Z2: A] :
( ( times_times @ A @ Z2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ Z2 @ Z2 ) ) ) ).
% mult_2_right
thf(fact_1219_left__add__twice,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ B2 ) ) ) ).
% left_add_twice
thf(fact_1220_zero__power2,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% zero_power2
thf(fact_1221_one__power2,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( power_power @ A @ ( one_one @ A ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% one_power2
thf(fact_1222_numeral__2__eq__2,axiom,
( ( numeral_numeral @ nat @ ( bit0 @ one2 ) )
= ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% numeral_2_eq_2
thf(fact_1223_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N2 ) @ ( minus_minus @ nat @ ( power_power @ nat @ K @ M ) @ ( power_power @ nat @ K @ N2 ) ) ) ) ).
% diff_le_diff_pow
thf(fact_1224_nat__1__add__1,axiom,
( ( plus_plus @ nat @ ( one_one @ nat ) @ ( one_one @ nat ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ).
% nat_1_add_1
thf(fact_1225_power2__sum,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A,Y: A] :
( ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) ) ) ) ).
% power2_sum
thf(fact_1226_sum__squares__bound,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sum_squares_bound
thf(fact_1227_nat__induct2,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ( P @ ( one_one @ nat ) )
=> ( ! [N: nat] :
( ( P @ N )
=> ( P @ ( plus_plus @ nat @ N @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct2
thf(fact_1228_power2__diff,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A] :
( ( power_power @ A @ ( minus_minus @ A @ X @ Y ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) @ Y ) ) ) ) ).
% power2_diff
thf(fact_1229_power2__le__imp__le,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% power2_le_imp_le
thf(fact_1230_power2__eq__imp__eq,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( X = Y ) ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1231_zero__le__power2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% zero_le_power2
thf(fact_1232_power2__less__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ A ) ) ) ).
% power2_less_0
thf(fact_1233_power2__eq__1__iff,axiom,
! [A: $tType] :
( ( ring_15535105094025558882visors @ A )
=> ! [A2: A] :
( ( ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
= ( ( A2
= ( one_one @ A ) )
| ( A2
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% power2_eq_1_iff
thf(fact_1234_less__2__cases__iff,axiom,
! [N2: nat] :
( ( ord_less @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ( N2
= ( zero_zero @ nat ) )
| ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% less_2_cases_iff
thf(fact_1235_less__2__cases,axiom,
! [N2: nat] :
( ( ord_less @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
=> ( ( N2
= ( zero_zero @ nat ) )
| ( N2
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% less_2_cases
thf(fact_1236_mult__1s__ring__1_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [B2: A] :
( ( times_times @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) )
= ( uminus_uminus @ A @ B2 ) ) ) ).
% mult_1s_ring_1(2)
thf(fact_1237_mult__1s__ring__1_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [B2: A] :
( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) ) ).
% mult_1s_ring_1(1)
thf(fact_1238_uminus__numeral__One,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% uminus_numeral_One
thf(fact_1239_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral @ nat @ one2 )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% numeral_1_eq_Suc_0
thf(fact_1240_Suc__nat__number__of__add,axiom,
! [V2: num,N2: nat] :
( ( suc @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V2 ) @ N2 ) )
= ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( plus_plus @ num @ V2 @ one2 ) ) @ N2 ) ) ).
% Suc_nat_number_of_add
thf(fact_1241_list__eq__iff__nth__eq,axiom,
! [A: $tType] :
( ( ^ [Y5: list @ A,Z3: list @ A] : ( Y5 = Z3 ) )
= ( ^ [Xs: list @ A,Ys2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( nth @ A @ Xs @ I3 )
= ( nth @ A @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_1242_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P: nat > A > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ? [X7: A] : ( P @ I3 @ X7 ) ) )
= ( ? [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ( P @ I3 @ ( nth @ A @ Xs @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_1243_nth__equalityI,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys3 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( nth @ A @ Ys3 @ I2 ) ) )
=> ( Xs2 = Ys3 ) ) ) ).
% nth_equalityI
thf(fact_1244_real__arch__simple,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [N: nat] : ( ord_less_eq @ A @ X @ ( semiring_1_of_nat @ A @ N ) ) ) ).
% real_arch_simple
thf(fact_1245_reals__Archimedean2,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [N: nat] : ( ord_less @ A @ X @ ( semiring_1_of_nat @ A @ N ) ) ) ).
% reals_Archimedean2
thf(fact_1246_mult__of__nat__commute,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: nat,Y: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ X ) @ Y )
= ( times_times @ A @ Y @ ( semiring_1_of_nat @ A @ X ) ) ) ) ).
% mult_of_nat_commute
thf(fact_1247_zless__iff__Suc__zadd,axiom,
( ( ord_less @ int )
= ( ^ [W3: int,Z5: int] :
? [N3: nat] :
( Z5
= ( plus_plus @ int @ W3 @ ( semiring_1_of_nat @ int @ ( suc @ N3 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_1248_int__Suc,axiom,
! [N2: nat] :
( ( semiring_1_of_nat @ int @ ( suc @ N2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( one_one @ int ) ) ) ).
% int_Suc
thf(fact_1249_int__ops_I4_J,axiom,
! [A2: nat] :
( ( semiring_1_of_nat @ int @ ( suc @ A2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( one_one @ int ) ) ) ).
% int_ops(4)
thf(fact_1250_not__zle__0__negative,axiom,
! [N2: nat] :
~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) ) ).
% not_zle_0_negative
thf(fact_1251_negative__zless__0,axiom,
! [N2: nat] : ( ord_less @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) @ ( zero_zero @ int ) ) ).
% negative_zless_0
thf(fact_1252_negD,axiom,
! [X: int] :
( ( ord_less @ int @ X @ ( zero_zero @ int ) )
=> ? [N: nat] :
( X
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) ) ) ).
% negD
thf(fact_1253_int__of__nat__induct,axiom,
! [P: int > $o,Z2: int] :
( ! [N: nat] : ( P @ ( semiring_1_of_nat @ int @ N ) )
=> ( ! [N: nat] : ( P @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) )
=> ( P @ Z2 ) ) ) ).
% int_of_nat_induct
thf(fact_1254_int__cases,axiom,
! [Z2: int] :
( ! [N: nat] :
( Z2
!= ( semiring_1_of_nat @ int @ N ) )
=> ~ ! [N: nat] :
( Z2
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N ) ) ) ) ) ).
% int_cases
thf(fact_1255_zero__neq__numeral,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: num] :
( ( zero_zero @ A )
!= ( numeral_numeral @ A @ N2 ) ) ) ).
% zero_neq_numeral
thf(fact_1256_nat__less__real__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat,M6: nat] : ( ord_less_eq @ real @ ( plus_plus @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( one_one @ real ) ) @ ( semiring_1_of_nat @ real @ M6 ) ) ) ) ).
% nat_less_real_le
thf(fact_1257_int__ops_I1_J,axiom,
( ( semiring_1_of_nat @ int @ ( zero_zero @ nat ) )
= ( zero_zero @ int ) ) ).
% int_ops(1)
thf(fact_1258_int__zle__neg,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ M ) ) )
= ( ( N2
= ( zero_zero @ nat ) )
& ( M
= ( zero_zero @ nat ) ) ) ) ).
% int_zle_neg
thf(fact_1259_nat__int__comparison_I2_J,axiom,
( ( ord_less @ nat )
= ( ^ [A3: nat,B3: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_1260_nat__le__real__less,axiom,
( ( ord_less_eq @ nat )
= ( ^ [N3: nat,M6: nat] : ( ord_less @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( plus_plus @ real @ ( semiring_1_of_nat @ real @ M6 ) @ ( one_one @ real ) ) ) ) ) ).
% nat_le_real_less
thf(fact_1261_nat__int__comparison_I3_J,axiom,
( ( ord_less_eq @ nat )
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_1262_zle__int,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% zle_int
thf(fact_1263_int__ops_I5_J,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ A2 @ B2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% int_ops(5)
thf(fact_1264_int__plus,axiom,
! [N2: nat,M: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ N2 @ M ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( semiring_1_of_nat @ int @ M ) ) ) ).
% int_plus
thf(fact_1265_zadd__int__left,axiom,
! [M: nat,N2: nat,Z2: int] :
( ( plus_plus @ int @ ( semiring_1_of_nat @ int @ M ) @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ Z2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ M @ N2 ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_1266_neg__numeral__neq__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N2: num] :
( ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) )
!= ( numeral_numeral @ A @ N2 ) ) ) ).
% neg_numeral_neq_numeral
thf(fact_1267_numeral__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [M: num,N2: num] :
( ( numeral_numeral @ A @ M )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_1268_int__ops_I6_J,axiom,
! [A2: nat,B2: nat] :
( ( ( ord_less @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) )
=> ( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( zero_zero @ int ) ) )
& ( ~ ( ord_less @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) )
=> ( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ) ) ).
% int_ops(6)
thf(fact_1269_int__ops_I7_J,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( times_times @ nat @ A2 @ B2 ) )
= ( times_times @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% int_ops(7)
thf(fact_1270_int__ops_I2_J,axiom,
( ( semiring_1_of_nat @ int @ ( one_one @ nat ) )
= ( one_one @ int ) ) ).
% int_ops(2)
thf(fact_1271_Ints__of__nat,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] : ( member @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_of_nat
thf(fact_1272_power2__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ X @ Y ) ) ) ) ).
% power2_less_imp_less
thf(fact_1273_sum__power2__le__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y
= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1274_sum__power2__ge__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1275_sum__power2__gt__zero__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( ( X
!= ( zero_zero @ A ) )
| ( Y
!= ( zero_zero @ A ) ) ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_1276_not__sum__power2__lt__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ A @ ( plus_plus @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ A ) ) ) ).
% not_sum_power2_lt_zero
thf(fact_1277_num_Osize_I4_J,axiom,
( ( size_size @ num @ one2 )
= ( zero_zero @ nat ) ) ).
% num.size(4)
thf(fact_1278_square__le__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ) ).
% square_le_1
thf(fact_1279_zero__le__even__power_H,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% zero_le_even_power'
thf(fact_1280_power__odd__eq,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A,N2: nat] :
( ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( times_times @ A @ A2 @ ( power_power @ A @ ( power_power @ A @ A2 @ N2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% power_odd_eq
thf(fact_1281_Ints__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: num] : ( member @ A @ ( numeral_numeral @ A @ N2 ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_numeral
thf(fact_1282_ex__power__ivl2,axiom,
! [B2: nat,K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ? [N: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
& ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_1283_ex__power__ivl1,axiom,
! [B2: nat,K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ K )
=> ? [N: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N ) @ K )
& ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_1284_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X: nat,N2: nat,M: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N2 @ M ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ N2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_1285_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X: nat,N2: nat,M: nat] :
( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N2 @ M ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( vEBT_VEBT_low @ X @ N2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_1286_odd__0__le__power__imp__0__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1287_odd__power__less__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) @ ( zero_zero @ A ) ) ) ) ).
% odd_power_less_zero
thf(fact_1288_power__minus1__odd,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% power_minus1_odd
thf(fact_1289_of__nat__0__le__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% of_nat_0_le_iff
thf(fact_1290_of__nat__less__0__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat] :
~ ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) ) ) ).
% of_nat_less_0_iff
thf(fact_1291_all__set__conv__all__nth,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) ) )
= ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I3 ) ) ) ) ) ).
% all_set_conv_all_nth
thf(fact_1292_all__nth__imp__all__set,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,X: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( P @ X ) ) ) ).
% all_nth_imp_all_set
thf(fact_1293_in__set__conv__nth,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ I3 )
= X ) ) ) ) ).
% in_set_conv_nth
thf(fact_1294_list__ball__nth,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,P: A > $o] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( P @ ( nth @ A @ Xs2 @ N2 ) ) ) ) ).
% list_ball_nth
thf(fact_1295_nth__mem,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ A @ ( nth @ A @ Xs2 @ N2 ) @ ( set2 @ A @ Xs2 ) ) ) ).
% nth_mem
thf(fact_1296_of__nat__neq__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ N2 ) )
!= ( zero_zero @ A ) ) ) ).
% of_nat_neq_0
thf(fact_1297_of__nat__less__imp__less,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) )
=> ( ord_less @ nat @ M @ N2 ) ) ) ).
% of_nat_less_imp_less
thf(fact_1298_less__imp__of__nat__less,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ).
% less_imp_of_nat_less
thf(fact_1299_of__nat__mono,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [I: nat,J: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ I ) @ ( semiring_1_of_nat @ A @ J ) ) ) ) ).
% of_nat_mono
thf(fact_1300_not__numeral__le__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ N2 ) @ ( zero_zero @ A ) ) ) ).
% not_numeral_le_zero
thf(fact_1301_zero__le__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% zero_le_numeral
thf(fact_1302_not__numeral__less__zero,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ N2 ) @ ( zero_zero @ A ) ) ) ).
% not_numeral_less_zero
thf(fact_1303_zero__less__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] : ( ord_less @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% zero_less_numeral
thf(fact_1304_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ C2 )
=> ( ! [M5: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M5 )
=> ( ord_less_eq @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M5 ) @ X ) @ C2 ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_1305_one__le__numeral,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] : ( ord_less_eq @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% one_le_numeral
thf(fact_1306_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less @ int @ I @ J )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less @ int @ ( times_times @ int @ ( semiring_1_of_nat @ int @ K ) @ I ) @ ( times_times @ int @ ( semiring_1_of_nat @ int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1307_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ? [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
& ( K
= ( semiring_1_of_nat @ int @ N ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1308_pos__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% pos_int_cases
thf(fact_1309_int__cases4,axiom,
! [M: int] :
( ! [N: nat] :
( M
!= ( semiring_1_of_nat @ int @ N ) )
=> ~ ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( M
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) ) ) ) ).
% int_cases4
thf(fact_1310_int__cases3,axiom,
! [K: int] :
( ( K
!= ( zero_zero @ int ) )
=> ( ! [N: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
=> ~ ! [N: nat] :
( ( K
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% int_cases3
thf(fact_1311_neg__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ~ ! [N: nat] :
( ( K
= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% neg_int_cases
thf(fact_1312_not__numeral__less__one,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [N2: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ N2 ) @ ( one_one @ A ) ) ) ).
% not_numeral_less_one
thf(fact_1313_not__numeral__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_1314_neg__numeral__le__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% neg_numeral_le_numeral
thf(fact_1315_zero__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N2: num] :
( ( zero_zero @ A )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% zero_neq_neg_numeral
thf(fact_1316_not__numeral__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_1317_neg__numeral__less__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num,N2: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% neg_numeral_less_numeral
thf(fact_1318_one__plus__numeral__commute,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [X: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% one_plus_numeral_commute
thf(fact_1319_numeral__neq__neg__one,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ N2 )
!= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% numeral_neq_neg_one
thf(fact_1320_one__neq__neg__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [N2: num] :
( ( one_one @ A )
!= ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% one_neq_neg_numeral
thf(fact_1321_invar__vebt_Ointros_I2_J,axiom,
! [TreeList2: list @ vEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M = N2 )
=> ( ( Deg
= ( plus_plus @ nat @ N2 @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_1322_invar__vebt_Ointros_I3_J,axiom,
! [TreeList2: list @ vEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M
= ( suc @ N2 ) )
=> ( ( Deg
= ( plus_plus @ nat @ N2 @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_1323_invar__vebt_Ointros_I4_J,axiom,
! [TreeList2: list @ vEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M = N2 )
=> ( ( Deg
= ( plus_plus @ nat @ N2 @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
=> ( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less @ nat @ Mi @ X4 )
& ( ord_less_eq @ nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_1324_ex__less__of__nat__mult,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N: nat] : ( ord_less @ A @ Y @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N ) @ X ) ) ) ) ).
% ex_less_of_nat_mult
thf(fact_1325_of__nat__diff,axiom,
! [A: $tType] :
( ( semiring_1_cancel @ A )
=> ! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ M @ N2 ) )
= ( minus_minus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ) ).
% of_nat_diff
thf(fact_1326_not__zero__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] :
~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_1327_neg__numeral__le__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) @ ( zero_zero @ A ) ) ) ).
% neg_numeral_le_zero
thf(fact_1328_not__zero__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] :
~ ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_1329_neg__numeral__less__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) @ ( zero_zero @ A ) ) ) ).
% neg_numeral_less_zero
thf(fact_1330_neg__numeral__le__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) ) ) ).
% neg_numeral_le_one
thf(fact_1331_neg__one__le__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ M ) ) ) ).
% neg_one_le_numeral
thf(fact_1332_neg__numeral__le__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% neg_numeral_le_neg_one
thf(fact_1333_not__numeral__le__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_numeral_le_neg_one
thf(fact_1334_not__one__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_one_le_neg_numeral
thf(fact_1335_neg__numeral__less__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) ) ) ).
% neg_numeral_less_one
thf(fact_1336_neg__one__less__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] : ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ M ) ) ) ).
% neg_one_less_numeral
thf(fact_1337_not__numeral__less__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_numeral_less_neg_one
thf(fact_1338_not__one__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_one_less_neg_numeral
thf(fact_1339_not__neg__one__less__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: num] :
~ ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_1340_invar__vebt_Ointros_I5_J,axiom,
! [TreeList2: list @ vEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( M
= ( suc @ N2 ) )
=> ( ( Deg
= ( plus_plus @ nat @ N2 @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq @ nat @ Mi @ Ma )
=> ( ( ord_less @ nat @ Ma @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less @ nat @ Mi @ X4 )
& ( ord_less_eq @ nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_1341_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y: nat] :
( ( P @ ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ X @ Y ) ) )
= ( ( ( ord_less_eq @ nat @ Y @ X )
=> ( P @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ X ) @ ( semiring_1_of_nat @ int @ Y ) ) ) )
& ( ( ord_less @ nat @ X @ Y )
=> ( P @ ( zero_zero @ int ) ) ) ) ) ).
% zdiff_int_split
thf(fact_1342_num_Osize_I5_J,axiom,
! [X22: num] :
( ( size_size @ num @ ( bit0 @ X22 ) )
= ( plus_plus @ nat @ ( size_size @ num @ X22 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size(5)
thf(fact_1343_realpow__pos__nth2,axiom,
! [A2: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
& ( ( power_power @ real @ R3 @ ( suc @ N2 ) )
= A2 ) ) ) ).
% realpow_pos_nth2
thf(fact_1344_prod__decode__def,axiom,
( nat_prod_decode
= ( nat_prod_decode_aux @ ( zero_zero @ nat ) ) ) ).
% prod_decode_def
thf(fact_1345_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A1: vEBT_VEBT,A22: nat] :
( ( ? [A3: $o,B3: $o] :
( A1
= ( vEBT_Leaf @ A3 @ B3 ) )
& ( A22
= ( suc @ ( zero_zero @ nat ) ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
( ( A1
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ A22 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ N3 )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
& ( A22
= ( plus_plus @ nat @ N3 @ N3 ) )
& ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
( ( A1
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ A22 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
& ( A22
= ( plus_plus @ nat @ N3 @ ( suc @ N3 ) ) )
& ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A1
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi3 @ Ma3 ) ) @ A22 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ N3 )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
& ( A22
= ( plus_plus @ nat @ N3 @ N3 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A22 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) )
| ? [TreeList3: list @ vEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A1
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi3 @ Ma3 ) ) @ A22 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList3 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
& ( A22
= ( plus_plus @ nat @ N3 @ ( suc @ N3 ) ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList3 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A22 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_1346_invar__vebt_Ocases,axiom,
! [A12: vEBT_VEBT,A23: nat] :
( ( vEBT_invar_vebt @ A12 @ A23 )
=> ( ( ? [A5: $o,B5: $o] :
( A12
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( A23
!= ( suc @ ( zero_zero @ nat ) ) ) )
=> ( ! [TreeList: list @ vEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat] :
( ( A12
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( A23 = Deg2 )
=> ( ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( M5 = N )
=> ( ( Deg2
= ( plus_plus @ nat @ N @ M5 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList: list @ vEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat] :
( ( A12
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( A23 = Deg2 )
=> ( ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( M5
= ( suc @ N ) )
=> ( ( Deg2
= ( plus_plus @ nat @ N @ M5 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList: list @ vEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A12
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( A23 = Deg2 )
=> ( ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( M5 = N )
=> ( ( Deg2
= ( plus_plus @ nat @ N @ M5 ) )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) )
=> ( ( ord_less_eq @ nat @ Mi2 @ Ma2 )
=> ( ( ord_less @ nat @ Ma2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
=> ( ( ord_less @ nat @ Mi2 @ X2 )
& ( ord_less_eq @ nat @ X2 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList: list @ vEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M5: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A12
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( A23 = Deg2 )
=> ( ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_invar_vebt @ X2 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M5 )
=> ( ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( M5
= ( suc @ N ) )
=> ( ( Deg2
= ( plus_plus @ nat @ N @ M5 ) )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) )
=> ( ( ord_less_eq @ nat @ Mi2 @ Ma2 )
=> ( ( ord_less @ nat @ Ma2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M5 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N ) ) )
& ! [X2: nat] :
( ( ( ( vEBT_VEBT_high @ X2 @ N )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
=> ( ( ord_less @ nat @ Mi2 @ X2 )
& ( ord_less_eq @ nat @ X2 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_1347_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N3: nat,TreeList3: list @ vEBT_VEBT,X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X3 @ N3 ) ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) ) ) ).
% in_children_def
thf(fact_1348_both__member__options__from__chilf__to__complete__tree,axiom,
! [X: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_1349_divmod__step__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [L: num,R2: A,Q4: A] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ L ) @ R2 )
=> ( ( unique1321980374590559556d_step @ A @ L @ ( product_Pair @ A @ A @ Q4 @ R2 ) )
= ( product_Pair @ A @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q4 ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ R2 @ ( numeral_numeral @ A @ L ) ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ L ) @ R2 )
=> ( ( unique1321980374590559556d_step @ A @ L @ ( product_Pair @ A @ A @ Q4 @ R2 ) )
= ( product_Pair @ A @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q4 ) @ R2 ) ) ) ) ) ).
% divmod_step_eq
thf(fact_1350_member__inv,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
& ( ( X = Mi )
| ( X = Ma )
| ( ( ord_less @ nat @ X @ Ma )
& ( ord_less @ nat @ Mi @ X )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
& ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% member_inv
thf(fact_1351_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
| ( X = Mi )
| ( X = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_1352_mintlistlength,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( Mi != Ma )
=> ( ( ord_less @ nat @ Mi @ Ma )
& ? [M5: nat] :
( ( ( some @ nat @ M5 )
= ( vEBT_vebt_mint @ Summary ) )
& ( ord_less @ nat @ M5 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% mintlistlength
thf(fact_1353_both__member__options__ding,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( ord_less @ nat @ X @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ X ) ) ) ) ).
% both_member_options_ding
thf(fact_1354_succ__list__to__short,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList2: list @ vEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( none @ nat ) ) ) ) ) ).
% succ_list_to_short
thf(fact_1355_pred__list__to__short,axiom,
! [Deg: nat,X: nat,Ma: nat,TreeList2: list @ vEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( none @ nat ) ) ) ) ) ).
% pred_list_to_short
thf(fact_1356_pow__sum,axiom,
! [A2: nat,B2: nat] :
( ( divide_divide @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ A2 @ B2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 ) ) ).
% pow_sum
thf(fact_1357_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X3: nat,N3: nat] : ( divide_divide @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% high_def
thf(fact_1358_power__minus__is__div,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq @ nat @ B2 @ A2 )
=> ( ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ A2 @ B2 ) )
= ( divide_divide @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% power_minus_is_div
thf(fact_1359_divide__eq__0__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_eq_0_iff
thf(fact_1360_divide__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( divide_divide @ A @ C2 @ A2 )
= ( divide_divide @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_left
thf(fact_1361_divide__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_right
thf(fact_1362_division__ring__divide__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% division_ring_divide_zero
thf(fact_1363_div__by__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% div_by_0
thf(fact_1364_div__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% div_0
thf(fact_1365_times__divide__eq__right,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% times_divide_eq_right
thf(fact_1366_divide__divide__eq__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% divide_divide_eq_right
thf(fact_1367_divide__divide__eq__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% divide_divide_eq_left
thf(fact_1368_times__divide__eq__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( times_times @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( divide_divide @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 ) ) ) ).
% times_divide_eq_left
thf(fact_1369_div__by__1,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% div_by_1
thf(fact_1370__092_060open_062deg_Adiv_A2_A_061_An_092_060close_062,axiom,
( ( divide_divide @ nat @ deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= na ) ).
% \<open>deg div 2 = n\<close>
thf(fact_1371_int__eq__iff__numeral,axiom,
! [M: nat,V2: num] :
( ( ( semiring_1_of_nat @ int @ M )
= ( numeral_numeral @ int @ V2 ) )
= ( M
= ( numeral_numeral @ nat @ V2 ) ) ) ).
% int_eq_iff_numeral
thf(fact_1372_nonzero__mult__divide__mult__cancel__right2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1373_nonzero__mult__divide__mult__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1374_nonzero__mult__divide__mult__cancel__left2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1375_nonzero__mult__divide__mult__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1376_mult__divide__mult__cancel__left__if,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( zero_zero @ A ) ) )
& ( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1377_nonzero__mult__div__cancel__right,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ B2 )
= A2 ) ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1378_nonzero__mult__div__cancel__left,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ A2 )
= B2 ) ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1379_divide__eq__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( one_one @ A ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_1_iff
thf(fact_1380_one__eq__divide__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( one_one @ A )
= ( divide_divide @ A @ A2 @ B2 ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% one_eq_divide_iff
thf(fact_1381_divide__self,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ).
% divide_self
thf(fact_1382_divide__self__if,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( A2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) )
& ( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ) ).
% divide_self_if
thf(fact_1383_divide__eq__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ( divide_divide @ A @ B2 @ A2 )
= ( one_one @ A ) )
= ( ( A2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_eq_1
thf(fact_1384_eq__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ( one_one @ A )
= ( divide_divide @ A @ B2 @ A2 ) )
= ( ( A2
!= ( zero_zero @ A ) )
& ( A2 = B2 ) ) ) ) ).
% eq_divide_eq_1
thf(fact_1385_one__divide__eq__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ( divide_divide @ A @ ( one_one @ A ) @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% one_divide_eq_0_iff
thf(fact_1386_zero__eq__1__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% zero_eq_1_divide_iff
thf(fact_1387_div__self,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ A2 )
= ( one_one @ A ) ) ) ) ).
% div_self
thf(fact_1388_divide__minus1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A] :
( ( divide_divide @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ X ) ) ) ).
% divide_minus1
thf(fact_1389_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( K
= ( zero_zero @ nat ) )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( zero_zero @ nat ) ) )
& ( ( K
!= ( zero_zero @ nat ) )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( divide_divide @ nat @ M @ N2 ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1390_negative__zle,axiom,
! [N2: nat,M: nat] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) @ ( semiring_1_of_nat @ int @ M ) ) ).
% negative_zle
thf(fact_1391_zero__le__divide__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_le_divide_1_iff
thf(fact_1392_divide__le__0__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% divide_le_0_1_iff
thf(fact_1393_zero__less__divide__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_less_divide_1_iff
thf(fact_1394_less__divide__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1395_less__divide__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1396_divide__less__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1397_divide__less__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1398_divide__less__0__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% divide_less_0_1_iff
thf(fact_1399_le__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) ) @ B2 ) ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_1400_divide__le__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_1401_divide__eq__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) )
= A2 )
= ( ( ( ( numeral_numeral @ A @ W2 )
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) ) ) )
& ( ( ( numeral_numeral @ A @ W2 )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1402_eq__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( A2
= ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) ) )
= ( ( ( ( numeral_numeral @ A @ W2 )
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) )
= B2 ) )
& ( ( ( numeral_numeral @ A @ W2 )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1403_divide__less__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) ) @ A2 )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_1404_less__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ ( numeral_numeral @ A @ W2 ) ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ W2 ) ) @ B2 ) ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_1405_nonzero__divide__mult__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1406_nonzero__divide__mult__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ B2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1407_numeral__less__real__of__nat__iff,axiom,
! [W2: num,N2: nat] :
( ( ord_less @ real @ ( numeral_numeral @ real @ W2 ) @ ( semiring_1_of_nat @ real @ N2 ) )
= ( ord_less @ nat @ ( numeral_numeral @ nat @ W2 ) @ N2 ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_1408_real__of__nat__less__numeral__iff,axiom,
! [N2: nat,W2: num] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( numeral_numeral @ real @ W2 ) )
= ( ord_less @ nat @ N2 @ ( numeral_numeral @ nat @ W2 ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_1409_numeral__le__real__of__nat__iff,axiom,
! [N2: num,M: nat] :
( ( ord_less_eq @ real @ ( numeral_numeral @ real @ N2 ) @ ( semiring_1_of_nat @ real @ M ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ N2 ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_1410_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less @ int @ W2 @ ( plus_plus @ int @ Z2 @ ( one_one @ int ) ) )
= ( ord_less_eq @ int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1411_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq @ int @ W2 @ ( minus_minus @ int @ Z2 @ ( one_one @ int ) ) )
= ( ord_less @ int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_1412_divide__le__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% divide_le_eq_1_neg
thf(fact_1413_divide__le__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% divide_le_eq_1_pos
thf(fact_1414_le__divide__eq__1__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% le_divide_eq_1_neg
thf(fact_1415_le__divide__eq__1__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% le_divide_eq_1_pos
thf(fact_1416_le__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_1417_divide__le__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) @ B2 ) ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_1418_divide__eq__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= A2 )
= ( ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) )
& ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_1419_eq__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( A2
= ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) )
= ( ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= B2 ) )
& ( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_1420_divide__less__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,W2: num,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) @ B2 ) ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_1421_less__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,W2: num] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_1422_minus__1__div__2__eq,axiom,
! [A: $tType] :
( ( euclid8789492081693882211th_nat @ A )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% minus_1_div_2_eq
thf(fact_1423_set__decode__Suc,axiom,
! [N2: nat,X: nat] :
( ( member @ nat @ ( suc @ N2 ) @ ( nat_set_decode @ X ) )
= ( member @ nat @ N2 @ ( nat_set_decode @ ( divide_divide @ nat @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% set_decode_Suc
thf(fact_1424_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus @ int @ ( zero_zero @ int ) @ L )
= ( uminus_uminus @ int @ L ) ) ).
% minus_int_code(2)
thf(fact_1425_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ~ ! [N: nat] :
( K
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) ) ) ).
% nonpos_int_cases
thf(fact_1426_negative__zle__0,axiom,
! [N2: nat] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) @ ( zero_zero @ int ) ) ).
% negative_zle_0
thf(fact_1427_not__int__zless__negative,axiom,
! [N2: nat,M: nat] :
~ ( ord_less @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_1428_int__cases2,axiom,
! [Z2: int] :
( ! [N: nat] :
( Z2
!= ( semiring_1_of_nat @ int @ N ) )
=> ~ ! [N: nat] :
( Z2
!= ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N ) ) ) ) ).
% int_cases2
thf(fact_1429_uminus__int__code_I1_J,axiom,
( ( uminus_uminus @ int @ ( zero_zero @ int ) )
= ( zero_zero @ int ) ) ).
% uminus_int_code(1)
thf(fact_1430_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( times_times @ real @ U @ U ) ) @ ( times_times @ real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_1431_q__pos__lemma,axiom,
! [B6: int,Q5: int,R4: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( times_times @ int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ R4 @ B6 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B6 )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ Q5 ) ) ) ) ).
% q_pos_lemma
thf(fact_1432_pos__zmult__eq__1__iff,axiom,
! [M: int,N2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ M )
=> ( ( ( times_times @ int @ M @ N2 )
= ( one_one @ int ) )
= ( ( M
= ( one_one @ int ) )
& ( N2
= ( one_one @ int ) ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1433_zdiv__mono2__lemma,axiom,
! [B2: int,Q4: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 )
= ( plus_plus @ int @ ( times_times @ int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( times_times @ int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ R4 @ B6 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B6 )
=> ( ( ord_less_eq @ int @ B6 @ B2 )
=> ( ord_less_eq @ int @ Q4 @ Q5 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_1434_zdiv__mono2__neg__lemma,axiom,
! [B2: int,Q4: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 )
= ( plus_plus @ int @ ( times_times @ int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less @ int @ ( plus_plus @ int @ ( times_times @ int @ B6 @ Q5 ) @ R4 ) @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R4 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B6 )
=> ( ( ord_less_eq @ int @ B6 @ B2 )
=> ( ord_less_eq @ int @ Q5 @ Q4 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_1435_unique__quotient__lemma,axiom,
! [B2: int,Q5: int,R4: int,Q4: int,R2: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q5 ) @ R4 ) @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R4 )
=> ( ( ord_less @ int @ R4 @ B2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ord_less_eq @ int @ Q5 @ Q4 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_1436_unique__quotient__lemma__neg,axiom,
! [B2: int,Q5: int,R4: int,Q4: int,R2: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q5 ) @ R4 ) @ ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( ord_less @ int @ B2 @ R4 )
=> ( ord_less_eq @ int @ Q4 @ Q5 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_1437_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times @ int @ K @ ( zero_zero @ int ) )
= ( zero_zero @ int ) ) ).
% times_int_code(1)
thf(fact_1438_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times @ int @ ( zero_zero @ int ) @ L )
= ( zero_zero @ int ) ) ).
% times_int_code(2)
thf(fact_1439_incr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus @ int @ X4 @ D2 ) ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( plus_plus @ int @ X2 @ ( times_times @ int @ K @ D2 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1440_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less @ int @ I @ J )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ord_less @ int @ ( times_times @ int @ K @ I ) @ ( times_times @ int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1441_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus @ int @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) @ Z2 )
!= ( zero_zero @ int ) ) ).
% odd_nonzero
thf(fact_1442_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus @ int @ K @ ( zero_zero @ int ) )
= K ) ).
% plus_int_code(1)
thf(fact_1443_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus @ int @ ( zero_zero @ int ) @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1444_nat__int__comparison_I1_J,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A3: nat,B3: nat] :
( ( semiring_1_of_nat @ int @ A3 )
= ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_1445_int__if,axiom,
! [P: $o,A2: nat,B2: nat] :
( ( P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ A2 ) ) )
& ( ~ P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ B2 ) ) ) ) ).
% int_if
thf(fact_1446_int__int__eq,axiom,
! [M: nat,N2: nat] :
( ( ( semiring_1_of_nat @ int @ M )
= ( semiring_1_of_nat @ int @ N2 ) )
= ( M = N2 ) ) ).
% int_int_eq
thf(fact_1447_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less @ int @ K @ I )
=> ( ( P @ ( plus_plus @ int @ K @ ( one_one @ int ) ) )
=> ( ! [I2: int] :
( ( ord_less @ int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1448_zless__add1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less @ int @ W2 @ ( plus_plus @ int @ Z2 @ ( one_one @ int ) ) )
= ( ( ord_less @ int @ W2 @ Z2 )
| ( W2 = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1449_less__int__code_I1_J,axiom,
~ ( ord_less @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ) ).
% less_int_code(1)
thf(fact_1450_less__eq__int__code_I1_J,axiom,
ord_less_eq @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ).
% less_eq_int_code(1)
thf(fact_1451_zle__iff__zadd,axiom,
( ( ord_less_eq @ int )
= ( ^ [W3: int,Z5: int] :
? [N3: nat] :
( Z5
= ( plus_plus @ int @ W3 @ ( semiring_1_of_nat @ int @ N3 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1452_complete__real,axiom,
! [S3: set @ real] :
( ? [X2: real] : ( member @ real @ X2 @ S3 )
=> ( ? [Z4: real] :
! [X4: real] :
( ( member @ real @ X4 @ S3 )
=> ( ord_less_eq @ real @ X4 @ Z4 ) )
=> ? [Y4: real] :
( ! [X2: real] :
( ( member @ real @ X2 @ S3 )
=> ( ord_less_eq @ real @ X2 @ Y4 ) )
& ! [Z4: real] :
( ! [X4: real] :
( ( member @ real @ X4 @ S3 )
=> ( ord_less_eq @ real @ X4 @ Z4 ) )
=> ( ord_less_eq @ real @ Y4 @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_1453_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N: nat] :
( K
!= ( semiring_1_of_nat @ int @ N ) ) ) ).
% nonneg_int_cases
thf(fact_1454_verit__la__generic,axiom,
! [A2: int,X: int] :
( ( ord_less_eq @ int @ A2 @ X )
| ( A2 = X )
| ( ord_less_eq @ int @ X @ A2 ) ) ).
% verit_la_generic
thf(fact_1455_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ? [N: nat] :
( K
= ( semiring_1_of_nat @ int @ N ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1456_imp__le__cong,axiom,
! [X: int,X8: int,P: $o,P4: $o] :
( ( X = X8 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_1457_conj__le__cong,axiom,
! [X: int,X8: int,P: $o,P4: $o] :
( ( X = X8 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
& P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X8 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_1458_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( one_one @ int ) @ Z2 )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1459_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less @ int @ W2 @ Z2 )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ W2 @ ( one_one @ int ) ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1460_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less @ int @ ( plus_plus @ int @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) @ Z2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ Z2 @ ( zero_zero @ int ) ) ) ).
% odd_less_0_iff
thf(fact_1461_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1462_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq @ int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq @ int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1463_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq @ int @ ( plus_plus @ int @ W2 @ ( one_one @ int ) ) @ Z2 )
= ( ord_less @ int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1464_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less @ int @ I @ K )
=> ( ( P @ ( minus_minus @ int @ K @ ( one_one @ int ) ) )
=> ( ! [I2: int] :
( ( ord_less @ int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1465_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M5: nat,N: nat] :
( Z2
!= ( minus_minus @ int @ ( semiring_1_of_nat @ int @ M5 ) @ ( semiring_1_of_nat @ int @ N ) ) ) ).
% int_diff_cases
thf(fact_1466_plusinfinity,axiom,
! [D2: int,P4: int > $o,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus @ int @ X4 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less @ int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_1467_minusinfinity,axiom,
! [D2: int,P1: int > $o,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X4: int,K2: int] :
( ( P1 @ X4 )
= ( P1 @ ( minus_minus @ int @ X4 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less @ int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P1 @ X4 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_1468_decr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus @ int @ X4 @ D2 ) ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( minus_minus @ int @ X2 @ ( times_times @ int @ K @ D2 ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1469_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus @ int @ K @ ( zero_zero @ int ) )
= K ) ).
% minus_int_code(1)
thf(fact_1470_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq @ int @ I @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq @ int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1471_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq @ int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq @ int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus @ int @ I2 @ ( one_one @ int ) ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1472_int__distrib_I4_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times @ int @ W2 @ ( minus_minus @ int @ Z1 @ Z22 ) )
= ( minus_minus @ int @ ( times_times @ int @ W2 @ Z1 ) @ ( times_times @ int @ W2 @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1473_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times @ int @ ( minus_minus @ int @ Z1 @ Z22 ) @ W2 )
= ( minus_minus @ int @ ( times_times @ int @ Z1 @ W2 ) @ ( times_times @ int @ Z22 @ W2 ) ) ) ).
% int_distrib(3)
thf(fact_1474_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times @ int @ ( plus_plus @ int @ Z1 @ Z22 ) @ W2 )
= ( plus_plus @ int @ ( times_times @ int @ Z1 @ W2 ) @ ( times_times @ int @ Z22 @ W2 ) ) ) ).
% int_distrib(1)
thf(fact_1475_int__distrib_I2_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times @ int @ W2 @ ( plus_plus @ int @ Z1 @ Z22 ) )
= ( plus_plus @ int @ ( times_times @ int @ W2 @ Z1 ) @ ( times_times @ int @ W2 @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1476_zmult__eq__1__iff,axiom,
! [M: int,N2: int] :
( ( ( times_times @ int @ M @ N2 )
= ( one_one @ int ) )
= ( ( ( M
= ( one_one @ int ) )
& ( N2
= ( one_one @ int ) ) )
| ( ( M
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
& ( N2
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1477_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N2: int] :
( ( ( times_times @ int @ M @ N2 )
= ( one_one @ int ) )
=> ( ( M
= ( one_one @ int ) )
| ( M
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1478_minus__real__def,axiom,
( ( minus_minus @ real )
= ( ^ [X3: real,Y2: real] : ( plus_plus @ real @ X3 @ ( uminus_uminus @ real @ Y2 ) ) ) ) ).
% minus_real_def
thf(fact_1479_divide__divide__eq__left_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) ) ) ).
% divide_divide_eq_left'
thf(fact_1480_divide__divide__times__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,Z2: A,W2: A] :
( ( divide_divide @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ Z2 @ W2 ) )
= ( divide_divide @ A @ ( times_times @ A @ X @ W2 ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ).
% divide_divide_times_eq
thf(fact_1481_times__divide__times__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,Z2: A,W2: A] :
( ( times_times @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ Z2 @ W2 ) )
= ( divide_divide @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ Y @ W2 ) ) ) ) ).
% times_divide_times_eq
thf(fact_1482_add__divide__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% add_divide_distrib
thf(fact_1483_diff__divide__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% diff_divide_distrib
thf(fact_1484_minus__divide__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% minus_divide_left
thf(fact_1485_minus__divide__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ).
% minus_divide_divide
thf(fact_1486_minus__divide__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ).
% minus_divide_right
thf(fact_1487_int__ops_I3_J,axiom,
! [N2: num] :
( ( semiring_1_of_nat @ int @ ( numeral_numeral @ nat @ N2 ) )
= ( numeral_numeral @ int @ N2 ) ) ).
% int_ops(3)
thf(fact_1488_divide__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_le_0_iff
thf(fact_1489_divide__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_right_mono
thf(fact_1490_zero__le__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1491_divide__nonneg__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1492_divide__nonneg__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1493_divide__nonpos__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1494_divide__nonpos__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1495_divide__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( divide_divide @ A @ A2 @ C2 ) ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1496_divide__neg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_neg_neg
thf(fact_1497_divide__neg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_neg_pos
thf(fact_1498_divide__pos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_pos_neg
thf(fact_1499_divide__pos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_pos_pos
thf(fact_1500_divide__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_less_0_iff
thf(fact_1501_divide__less__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) )
& ( C2
!= ( zero_zero @ A ) ) ) ) ) ).
% divide_less_cancel
thf(fact_1502_zero__less__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_less_divide_iff
thf(fact_1503_divide__strict__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_strict_right_mono
thf(fact_1504_divide__strict__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_1505_frac__eq__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ X @ Y )
= ( divide_divide @ A @ W2 @ Z2 ) )
= ( ( times_times @ A @ X @ Z2 )
= ( times_times @ A @ W2 @ Y ) ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1506_divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ( divide_divide @ A @ B2 @ C2 )
= A2 )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ A2 @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq
thf(fact_1507_eq__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq
thf(fact_1508_divide__eq__imp,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( B2
= ( times_times @ A @ A2 @ C2 ) )
=> ( ( divide_divide @ A @ B2 @ C2 )
= A2 ) ) ) ) ).
% divide_eq_imp
thf(fact_1509_eq__divide__imp,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ A2 @ C2 )
= B2 )
=> ( A2
= ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% eq_divide_imp
thf(fact_1510_nonzero__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ B2 @ C2 )
= A2 )
= ( B2
= ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1511_nonzero__eq__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( A2
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( times_times @ A @ A2 @ C2 )
= B2 ) ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1512_right__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( one_one @ A ) )
= ( A2 = B2 ) ) ) ) ).
% right_inverse_eq
thf(fact_1513_divide__numeral__1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ one2 ) )
= A2 ) ) ).
% divide_numeral_1
thf(fact_1514_nonzero__minus__divide__right,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_1515_nonzero__minus__divide__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ ( uminus_uminus @ A @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_1516_power__one__over,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,N2: nat] :
( ( power_power @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ N2 )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% power_one_over
thf(fact_1517_frac__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,W2: A,Z2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W2 )
=> ( ( ord_less_eq @ A @ W2 @ Z2 )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W2 ) ) ) ) ) ) ) ).
% frac_le
thf(fact_1518_frac__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W2: A,Z2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W2 )
=> ( ( ord_less_eq @ A @ W2 @ Z2 )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W2 ) ) ) ) ) ) ) ).
% frac_less
thf(fact_1519_frac__less2,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W2: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W2 )
=> ( ( ord_less @ A @ W2 @ Z2 )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z2 ) @ ( divide_divide @ A @ Y @ W2 ) ) ) ) ) ) ) ).
% frac_less2
thf(fact_1520_divide__le__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% divide_le_cancel
thf(fact_1521_divide__nonneg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_neg
thf(fact_1522_divide__nonneg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_pos
thf(fact_1523_divide__nonpos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_neg
thf(fact_1524_divide__nonpos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_pos
thf(fact_1525_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_1526_div__positive,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_positive
thf(fact_1527_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_1528_divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_1529_less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_1530_neg__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% neg_divide_less_eq
thf(fact_1531_neg__less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_less_divide_eq
thf(fact_1532_pos__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_divide_less_eq
thf(fact_1533_pos__less__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% pos_less_divide_eq
thf(fact_1534_mult__imp__div__pos__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less @ A @ X @ ( times_times @ A @ Z2 @ Y ) )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 ) ) ) ) ).
% mult_imp_div_pos_less
thf(fact_1535_mult__imp__less__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less @ A @ ( times_times @ A @ Z2 @ Y ) @ X )
=> ( ord_less @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_1536_divide__strict__left__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_1537_divide__strict__left__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_1538_less__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% less_divide_eq_1
thf(fact_1539_divide__less__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ A2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ A2 @ B2 ) )
| ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_less_eq_1
thf(fact_1540_divide__eq__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ( divide_divide @ A @ B2 @ C2 )
= ( numeral_numeral @ A @ W2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( numeral_numeral @ A @ W2 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_1541_eq__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ( numeral_numeral @ A @ W2 )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( numeral_numeral @ A @ W2 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_1542_add__divide__eq__if__simps_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= B2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_1543_add__divide__eq__if__simps_I1_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= A2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ A2 @ Z2 ) @ B2 ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_1544_add__frac__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W2 @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W2 @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ) ) ).
% add_frac_eq
thf(fact_1545_add__frac__num,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Z2 @ Y ) ) @ Y ) ) ) ) ).
% add_frac_num
thf(fact_1546_add__num__frac,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Z2 @ Y ) ) @ Y ) ) ) ) ).
% add_num_frac
thf(fact_1547_add__divide__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ X @ ( divide_divide @ A @ Y @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ) ).
% add_divide_eq_iff
thf(fact_1548_divide__add__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( divide_divide @ A @ X @ Z2 ) @ Y )
= ( divide_divide @ A @ ( plus_plus @ A @ X @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% divide_add_eq_iff
thf(fact_1549_add__divide__eq__if__simps_I4_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= A2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ A2 @ ( divide_divide @ A @ B2 @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ A2 @ Z2 ) @ B2 ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_1550_diff__frac__eq,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [Y: A,Z2: A,X: A,W2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W2 @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W2 @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) ) ) ) ) ).
% diff_frac_eq
thf(fact_1551_diff__divide__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ X @ ( divide_divide @ A @ Y @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ) ).
% diff_divide_eq_iff
thf(fact_1552_divide__diff__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ X @ Z2 ) @ Y )
= ( divide_divide @ A @ ( minus_minus @ A @ X @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% divide_diff_eq_iff
thf(fact_1553_gt__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) @ B2 ) ) ) ).
% gt_half_sum
thf(fact_1554_less__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less @ A @ A2 @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ) ) ) ).
% less_half_sum
thf(fact_1555_eq__minus__divide__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
= ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ C2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_1556_minus__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) )
= A2 )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ B2 )
= ( times_times @ A @ A2 @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_1557_nonzero__neg__divide__eq__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= C2 )
= ( ( uminus_uminus @ A @ A2 )
= ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_1558_nonzero__neg__divide__eq__eq2,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( C2
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) )
= ( ( times_times @ A @ C2 @ B2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_1559_divide__eq__minus__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ( B2
!= ( zero_zero @ A ) )
& ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_1560_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( divide_divide @ nat @ M @ N2 ) ) ) ).
% nat_mult_div_cancel1
thf(fact_1561_two__realpow__ge__one,axiom,
! [N2: nat] : ( ord_less_eq @ real @ ( one_one @ real ) @ ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% two_realpow_ge_one
thf(fact_1562_distrib__right__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( semiring @ A )
=> ! [X: B,Y: B,C2: A,A2: A,B2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ C2 )
=> ( ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% distrib_right_NO_MATCH
thf(fact_1563_distrib__left__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( semiring @ A )
=> ! [X: B,Y: B,A2: A,B2: A,C2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ A2 )
=> ( ( times_times @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% distrib_left_NO_MATCH
thf(fact_1564_right__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( ring @ A )
=> ! [X: B,Y: B,A2: A,B2: A,C2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ A2 )
=> ( ( times_times @ A @ A2 @ ( minus_minus @ A @ B2 @ C2 ) )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% right_diff_distrib_NO_MATCH
thf(fact_1565_left__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ( ring @ A )
=> ! [X: B,Y: B,C2: A,A2: A,B2: A] :
( ( nO_MATCH @ B @ A @ ( divide_divide @ B @ X @ Y ) @ C2 )
=> ( ( times_times @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) ) ) ) ) ).
% left_diff_distrib_NO_MATCH
thf(fact_1566_divide__left__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_1567_mult__imp__le__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ ( times_times @ A @ Z2 @ Y ) @ X )
=> ( ord_less_eq @ A @ Z2 @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_1568_mult__imp__div__pos__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ X @ ( times_times @ A @ Z2 @ Y ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ Z2 ) ) ) ) ).
% mult_imp_div_pos_le
thf(fact_1569_pos__le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% pos_le_divide_eq
thf(fact_1570_pos__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_divide_le_eq
thf(fact_1571_neg__le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_le_divide_eq
thf(fact_1572_neg__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% neg_divide_le_eq
thf(fact_1573_divide__left__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ C2 @ A2 ) @ ( divide_divide @ A @ C2 @ B2 ) ) ) ) ) ) ).
% divide_left_mono
thf(fact_1574_le__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_1575_divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_1576_divide__le__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( one_one @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ A2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ A2 @ B2 ) )
| ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_le_eq_1
thf(fact_1577_le__divide__eq__1,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( divide_divide @ A @ B2 @ A2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ A2 @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% le_divide_eq_1
thf(fact_1578_divide__less__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( numeral_numeral @ A @ W2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_1579_less__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ord_less @ A @ ( numeral_numeral @ A @ W2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( numeral_numeral @ A @ W2 ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_1580_frac__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A,W2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W2 @ Z2 ) )
= ( ord_less_eq @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W2 @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% frac_le_eq
thf(fact_1581_frac__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,Z2: A,X: A,W2: A] :
( ( Y
!= ( zero_zero @ A ) )
=> ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( divide_divide @ A @ W2 @ Z2 ) )
= ( ord_less @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ X @ Z2 ) @ ( times_times @ A @ W2 @ Y ) ) @ ( times_times @ A @ Y @ Z2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% frac_less_eq
thf(fact_1582_pos__minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_1583_pos__less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_1584_neg__minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_1585_neg__less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_1586_minus__divide__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_1587_less__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_1588_divide__eq__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ( divide_divide @ A @ B2 @ C2 )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( B2
= ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
= ( zero_zero @ A ) ) ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_1589_eq__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( C2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 )
= B2 ) )
& ( ( C2
= ( zero_zero @ A ) )
=> ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) )
= ( zero_zero @ A ) ) ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_1590_minus__divide__add__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ X @ Z2 ) ) @ Y )
= ( divide_divide @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ X ) @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_1591_add__divide__eq__if__simps_I3_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= B2 ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( divide_divide @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ A2 ) @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_1592_field__sum__of__halves,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( plus_plus @ A @ ( divide_divide @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= X ) ) ).
% field_sum_of_halves
thf(fact_1593_add__divide__eq__if__simps_I6_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ Z2 ) ) @ B2 )
= ( divide_divide @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ A2 ) @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_1594_add__divide__eq__if__simps_I5_J,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,A2: A,B2: A] :
( ( ( Z2
= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( uminus_uminus @ A @ B2 ) ) )
& ( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ A2 @ Z2 ) @ B2 )
= ( divide_divide @ A @ ( minus_minus @ A @ A2 @ ( times_times @ A @ B2 @ Z2 ) ) @ Z2 ) ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_1595_minus__divide__diff__eq__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( Z2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ X @ Z2 ) ) @ Y )
= ( divide_divide @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ X ) @ ( times_times @ A @ Y @ Z2 ) ) @ Z2 ) ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_1596_power__diff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,N2: nat,M: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( power_power @ A @ A2 @ ( minus_minus @ nat @ M @ N2 ) )
= ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_diff
thf(fact_1597_div__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ~ ( ord_less @ nat @ M @ N2 )
=> ( ( divide_divide @ nat @ M @ N2 )
= ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M @ N2 ) @ N2 ) ) ) ) ) ).
% div_geq
thf(fact_1598_divide__le__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( numeral_numeral @ A @ W2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_1599_le__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ W2 ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( numeral_numeral @ A @ W2 ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_1600_le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_1601_minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_1602_neg__le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_1603_neg__minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_1604_pos__le__minus__divide__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) )
= ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_1605_pos__minus__divide__le__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( divide_divide @ A @ B2 @ C2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( times_times @ A @ A2 @ C2 ) ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_1606_half__gt__zero__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% half_gt_zero_iff
thf(fact_1607_half__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% half_gt_zero
thf(fact_1608_scaling__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [U: A,V2: A,R2: A,S: A] :
( ( ord_less_eq @ A @ U @ V2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ R2 )
=> ( ( ord_less_eq @ A @ R2 @ S )
=> ( ord_less_eq @ A @ ( plus_plus @ A @ U @ ( divide_divide @ A @ ( times_times @ A @ R2 @ ( minus_minus @ A @ V2 @ U ) ) @ S ) ) @ V2 ) ) ) ) ) ).
% scaling_mono
thf(fact_1609_divide__less__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ord_less @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_1610_less__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_1611_field__less__half__sum,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ X @ ( divide_divide @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% field_less_half_sum
thf(fact_1612_nat__approx__posE,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [E2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E2 )
=> ~ ! [N: nat] :
~ ( ord_less @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ ( suc @ N ) ) ) @ E2 ) ) ) ).
% nat_approx_posE
thf(fact_1613_inverse__of__nat__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( N2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ M ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_1614_divide__le__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,C2: A,W2: num] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_1615_le__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [W2: num,B2: A,C2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ ( divide_divide @ A @ B2 @ C2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) @ B2 ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( times_times @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ C2 ) ) )
& ( ~ ( ord_less @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_1616_triangle__def,axiom,
( nat_triangle
= ( ^ [N3: nat] : ( divide_divide @ nat @ ( times_times @ nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% triangle_def
thf(fact_1617_arith__geo__mean,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [U: A,X: A,Y: A] :
( ( ( power_power @ A @ U @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( times_times @ A @ X @ Y ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ U @ ( divide_divide @ A @ ( plus_plus @ A @ X @ Y ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_1618_bits__1__div__2,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% bits_1_div_2
thf(fact_1619_one__div__two__eq__zero,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% one_div_two_eq_zero
thf(fact_1620_div__add__self2__no__field,axiom,
! [B: $tType,A: $tType] :
( ( ( euclid4440199948858584721cancel @ A )
& ( field @ B ) )
=> ! [X: B,B2: A,A2: A] :
( ( nO_MATCH @ B @ A @ X @ B2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% div_add_self2_no_field
thf(fact_1621_div__add__self1__no__field,axiom,
! [B: $tType,A: $tType] :
( ( ( euclid4440199948858584721cancel @ A )
& ( field @ B ) )
=> ! [X: B,B2: A,A2: A] :
( ( nO_MATCH @ B @ A @ X @ B2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% div_add_self1_no_field
thf(fact_1622_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide @ nat @ ( plus_plus @ nat @ M @ M ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= M ) ).
% add_self_div_2
thf(fact_1623_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide @ nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( divide_divide @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_1624_nested__mint,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat,Va2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( N2
= ( suc @ ( suc @ Va2 ) ) )
=> ( ~ ( ord_less @ nat @ Ma @ Mi )
=> ( ( Ma != Mi )
=> ( ord_less @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Va2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide @ nat @ Va2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) ) ) ) ) ) ).
% nested_mint
thf(fact_1625_div__mult__self__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ M @ N2 ) @ N2 )
= M ) ) ).
% div_mult_self_is_m
thf(fact_1626_bits__div__by__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% bits_div_by_0
thf(fact_1627_bits__div__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% bits_div_0
thf(fact_1628_bits__div__by__1,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% bits_div_by_1
thf(fact_1629_zdiv__numeral__Bit0,axiom,
! [V2: num,W2: num] :
( ( divide_divide @ int @ ( numeral_numeral @ int @ ( bit0 @ V2 ) ) @ ( numeral_numeral @ int @ ( bit0 @ W2 ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ V2 ) @ ( numeral_numeral @ int @ W2 ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_1630_summaxma,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
=> ( ( Mi != Ma )
=> ( ( the2 @ nat @ ( vEBT_vebt_maxt @ Summary ) )
= ( vEBT_VEBT_high @ Ma @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% summaxma
thf(fact_1631_div__mult__mult1__if,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2
= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( zero_zero @ A ) ) )
& ( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1632_div__mult__mult2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% div_mult_mult2
thf(fact_1633_div__mult__mult1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% div_mult_mult1
thf(fact_1634_div__minus1__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ A2 ) ) ) ).
% div_minus1_right
thf(fact_1635_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= M ) ).
% div_by_Suc_0
thf(fact_1636_div__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( divide_divide @ nat @ M @ N2 )
= ( zero_zero @ nat ) ) ) ).
% div_less
thf(fact_1637_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ L )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_pos_pos_trivial
thf(fact_1638_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_neg_neg_trivial
thf(fact_1639_div__mult__self4,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self4
thf(fact_1640_div__mult__self3,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ C2 @ B2 ) @ A2 ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self3
thf(fact_1641_div__mult__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self2
thf(fact_1642_div__mult__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) @ B2 )
= ( plus_plus @ A @ C2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_mult_self1
thf(fact_1643_div__mult__self1__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( divide_divide @ nat @ ( times_times @ nat @ N2 @ M ) @ N2 )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_1644_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_1645_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less @ int @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% half_negative_int_iff
thf(fact_1646_zdiv__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ C2 )
=> ( ( divide_divide @ int @ A2 @ ( times_times @ int @ B2 @ C2 ) )
= ( divide_divide @ int @ ( divide_divide @ int @ A2 @ B2 ) @ C2 ) ) ) ).
% zdiv_zmult2_eq
thf(fact_1647_div__neg__pos__less0,axiom,
! [A2: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_neg_pos_less0
thf(fact_1648_neg__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_1649_pos__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_1650_zdiv__int,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ A2 @ B2 ) )
= ( divide_divide @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% zdiv_int
thf(fact_1651_zdiv__mono1,axiom,
! [A2: int,A6: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A6 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A6 @ B2 ) ) ) ) ).
% zdiv_mono1
thf(fact_1652_zdiv__mono2,axiom,
! [A2: int,B6: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B6 )
=> ( ( ord_less_eq @ int @ B6 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A2 @ B6 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_1653_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide @ int @ I @ K )
= ( zero_zero @ int ) )
= ( ( K
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I )
& ( ord_less @ int @ I @ K ) )
| ( ( ord_less_eq @ int @ I @ ( zero_zero @ int ) )
& ( ord_less @ int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_1654_zdiv__mono1__neg,axiom,
! [A2: int,A6: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A6 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A6 @ B2 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_1655_zdiv__mono2__neg,axiom,
! [A2: int,B6: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B6 )
=> ( ( ord_less_eq @ int @ B6 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B6 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_1656_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) )
= ( ( K
= ( zero_zero @ int ) )
| ( L
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) )
| ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
& ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ) ).
% div_int_pos_iff
thf(fact_1657_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ L @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_1658_div__nonneg__neg__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonneg_neg_le0
thf(fact_1659_div__nonpos__pos__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonpos_pos_le0
thf(fact_1660_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ I @ K ) )
= ( ord_less_eq @ int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_1661_neg__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_1662_pos__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_1663_nonneg1__imp__zdiv__pos__iff,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ( ord_less_eq @ int @ B2 @ A2 )
& ( ord_less @ int @ ( zero_zero @ int ) @ B2 ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_1664_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ ( one_one @ int ) @ K )
=> ( ord_less @ int @ ( divide_divide @ int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_1665_real__of__nat__div4,axiom,
! [N2: nat,X: nat] : ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N2 @ X ) ) @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( semiring_1_of_nat @ real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_1666_verit__less__mono__div__int2,axiom,
! [A4: int,B4: int,N2: int] :
( ( ord_less_eq @ int @ A4 @ B4 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( uminus_uminus @ int @ N2 ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ B4 @ N2 ) @ ( divide_divide @ int @ A4 @ N2 ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_1667_div__eq__minus1,axiom,
! [B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ B2 )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ).
% div_eq_minus1
thf(fact_1668_real__of__nat__div2,axiom,
! [N2: nat,X: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( minus_minus @ real @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( semiring_1_of_nat @ real @ X ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N2 @ X ) ) ) ) ).
% real_of_nat_div2
thf(fact_1669_real__of__nat__div3,axiom,
! [N2: nat,X: nat] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( semiring_1_of_nat @ real @ X ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N2 @ X ) ) ) @ ( one_one @ real ) ) ).
% real_of_nat_div3
thf(fact_1670_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ ( plus_plus @ int @ K @ L ) @ ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ K @ L )
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_1671_int__div__pos__eq,axiom,
! [A2: int,B2: int,Q4: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( divide_divide @ int @ A2 @ B2 )
= Q4 ) ) ) ) ).
% int_div_pos_eq
thf(fact_1672_int__div__neg__eq,axiom,
! [A2: int,B2: int,Q4: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( divide_divide @ int @ A2 @ B2 )
= Q4 ) ) ) ) ).
% int_div_neg_eq
thf(fact_1673_split__zdiv,axiom,
! [P: int > $o,N2: int,K: int] :
( ( P @ ( divide_divide @ int @ N2 @ K ) )
= ( ( ( K
= ( zero_zero @ int ) )
=> ( P @ ( zero_zero @ int ) ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J3 )
& ( ord_less @ int @ J3 @ K )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) )
& ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ! [I3: int,J3: int] :
( ( ( ord_less @ int @ K @ J3 )
& ( ord_less_eq @ int @ J3 @ ( zero_zero @ int ) )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% split_zdiv
thf(fact_1674_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( divide_divide @ int @ ( power_power @ int @ K @ M ) @ K )
= ( power_power @ int @ K @ ( minus_minus @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_1675_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( plus_plus @ int @ ( divide_divide @ int @ ( minus_minus @ int @ K @ L ) @ L ) @ ( one_one @ int ) ) ) ) ) ).
% div_pos_geq
thf(fact_1676_div__le__mono,axiom,
! [M: nat,N2: nat,K: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ K ) @ ( divide_divide @ nat @ N2 @ K ) ) ) ).
% div_le_mono
thf(fact_1677_div__le__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ N2 ) @ M ) ).
% div_le_dividend
thf(fact_1678_neg__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( divide_divide @ int @ ( plus_plus @ int @ B2 @ ( one_one @ int ) ) @ A2 ) ) ) ).
% neg_zdiv_mult_2
thf(fact_1679_pos__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( divide_divide @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( divide_divide @ int @ B2 @ A2 ) ) ) ).
% pos_zdiv_mult_2
thf(fact_1680_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N2: nat] :
( ( ( divide_divide @ nat @ M @ N2 )
= ( zero_zero @ nat ) )
= ( ( ord_less @ nat @ M @ N2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_1681_Suc__div__le__mono,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ N2 ) @ ( divide_divide @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_div_le_mono
thf(fact_1682_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( times_times @ nat @ I @ N2 ) )
=> ( ord_less @ nat @ ( divide_divide @ nat @ M @ N2 ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_1683_div__times__less__eq__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ ( divide_divide @ nat @ M @ N2 ) @ N2 ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_1684_times__div__less__eq__dividend,axiom,
! [N2: nat,M: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ N2 @ ( divide_divide @ nat @ M @ N2 ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_1685_div__add__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% div_add_self1
thf(fact_1686_div__add__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% div_add_self2
thf(fact_1687_not__exp__less__eq__0__int,axiom,
! [N2: nat] :
~ ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ ( zero_zero @ int ) ) ).
% not_exp_less_eq_0_int
thf(fact_1688_div__greater__zero__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ M @ N2 ) )
= ( ( ord_less_eq @ nat @ N2 @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% div_greater_zero_iff
thf(fact_1689_div__le__mono2,axiom,
! [M: nat,N2: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ K @ N2 ) @ ( divide_divide @ nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_1690_div__less__iff__less__mult,axiom,
! [Q4: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Q4 )
=> ( ( ord_less @ nat @ ( divide_divide @ nat @ M @ Q4 ) @ N2 )
= ( ord_less @ nat @ M @ ( times_times @ nat @ N2 @ Q4 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_1691_div__less__dividend,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( divide_divide @ nat @ M @ N2 ) @ M ) ) ) ).
% div_less_dividend
thf(fact_1692_div__eq__dividend__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ( divide_divide @ nat @ M @ N2 )
= M )
= ( N2
= ( one_one @ nat ) ) ) ) ).
% div_eq_dividend_iff
thf(fact_1693_div__if,axiom,
( ( divide_divide @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( ( ord_less @ nat @ M6 @ N3 )
| ( N3
= ( zero_zero @ nat ) ) )
@ ( zero_zero @ nat )
@ ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M6 @ N3 ) @ N3 ) ) ) ) ) ).
% div_if
thf(fact_1694_div__nat__eqI,axiom,
! [N2: nat,Q4: nat,M: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ N2 @ Q4 ) @ M )
=> ( ( ord_less @ nat @ M @ ( times_times @ nat @ N2 @ ( suc @ Q4 ) ) )
=> ( ( divide_divide @ nat @ M @ N2 )
= Q4 ) ) ) ).
% div_nat_eqI
thf(fact_1695_less__eq__div__iff__mult__less__eq,axiom,
! [Q4: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Q4 )
=> ( ( ord_less_eq @ nat @ M @ ( divide_divide @ nat @ N2 @ Q4 ) )
= ( ord_less_eq @ nat @ ( times_times @ nat @ M @ Q4 ) @ N2 ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_1696_dividend__less__times__div,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ nat @ M @ ( plus_plus @ nat @ N2 @ ( times_times @ nat @ N2 @ ( divide_divide @ nat @ M @ N2 ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1697_dividend__less__div__times,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ nat @ M @ ( plus_plus @ nat @ N2 @ ( times_times @ nat @ ( divide_divide @ nat @ M @ N2 ) @ N2 ) ) ) ) ).
% dividend_less_div_times
thf(fact_1698_split__div,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( divide_divide @ nat @ M @ N2 ) )
= ( ( ( N2
= ( zero_zero @ nat ) )
=> ( P @ ( zero_zero @ nat ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ! [I3: nat,J3: nat] :
( ( ord_less @ nat @ J3 @ N2 )
=> ( ( M
= ( plus_plus @ nat @ ( times_times @ nat @ N2 @ I3 ) @ J3 ) )
=> ( P @ I3 ) ) ) ) ) ) ).
% split_div
thf(fact_1699_exp__add__not__zero__imp__right,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N2 ) )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
!= ( zero_zero @ A ) ) ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1700_exp__add__not__zero__imp__left,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N2 ) )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M )
!= ( zero_zero @ A ) ) ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1701_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat,M: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ M ) )
!= ( zero_zero @ A ) ) ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1702_div__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N2 ) ) ) ) ) ).
% div_exp_eq
thf(fact_1703_power__diff__power__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,N2: nat,M: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) )
= ( power_power @ A @ A2 @ ( minus_minus @ nat @ M @ N2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ N2 @ M )
=> ( ( divide_divide @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ A2 @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1704_le__div__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( divide_divide @ nat @ M @ N2 )
= ( suc @ ( divide_divide @ nat @ ( minus_minus @ nat @ M @ N2 ) @ N2 ) ) ) ) ) ).
% le_div_geq
thf(fact_1705_split__div_H,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( divide_divide @ nat @ M @ N2 ) )
= ( ( ( N2
= ( zero_zero @ nat ) )
& ( P @ ( zero_zero @ nat ) ) )
| ? [Q6: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ N2 @ Q6 ) @ M )
& ( ord_less @ nat @ M @ ( times_times @ nat @ N2 @ ( suc @ Q6 ) ) )
& ( P @ Q6 ) ) ) ) ).
% split_div'
thf(fact_1706_nat__bit__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N: nat] :
( ( P @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( P @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
=> ( ! [N: nat] :
( ( P @ N )
=> ( P @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_bit_induct
thf(fact_1707_div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_1708_Suc__n__div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_1709_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ ( zero_zero @ int ) )
=> ( ( P @ ( uminus_uminus @ int @ ( one_one @ int ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( zero_zero @ int ) )
=> ( P @ ( times_times @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus @ int @ ( one_one @ int ) ) )
=> ( P @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_1710_del__x__mi__lets__in__not__minNull,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H: nat,Summary: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_not_minNull
thf(fact_1711_del__x__not__mi__newnode__not__nil,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,Newlist: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_newnode_not_nil
thf(fact_1712_inrange,axiom,
! [T2: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ord_less_eq @ ( set @ nat ) @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ nat ) ) ) ) ) ).
% inrange
thf(fact_1713_linear__plus__1__le__power,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X ) @ ( one_one @ real ) ) @ ( power_power @ real @ ( plus_plus @ real @ X @ ( one_one @ real ) ) @ N2 ) ) ) ).
% linear_plus_1_le_power
thf(fact_1714_set__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5668285175392031749et_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% set_bit_0
thf(fact_1715_enat__ord__number_I1_J,axiom,
! [M: num,N2: num] :
( ( ord_less_eq @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( numeral_numeral @ extended_enat @ N2 ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) ) ) ).
% enat_ord_number(1)
thf(fact_1716_enat__ord__number_I2_J,axiom,
! [M: num,N2: num] :
( ( ord_less @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( numeral_numeral @ extended_enat @ N2 ) )
= ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) ) ) ).
% enat_ord_number(2)
thf(fact_1717_i0__less,axiom,
! [N2: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 )
= ( N2
!= ( zero_zero @ extended_enat ) ) ) ).
% i0_less
thf(fact_1718_Icc__eq__Icc,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,H: A,L3: A,H3: A] :
( ( ( set_or1337092689740270186AtMost @ A @ L @ H )
= ( set_or1337092689740270186AtMost @ A @ L3 @ H3 ) )
= ( ( ( L = L3 )
& ( H = H3 ) )
| ( ~ ( ord_less_eq @ A @ L @ H )
& ~ ( ord_less_eq @ A @ L3 @ H3 ) ) ) ) ) ).
% Icc_eq_Icc
thf(fact_1719_atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,L: A,U: A] :
( ( member @ A @ I @ ( set_or1337092689740270186AtMost @ A @ L @ U ) )
= ( ( ord_less_eq @ A @ L @ I )
& ( ord_less_eq @ A @ I @ U ) ) ) ) ).
% atLeastAtMost_iff
thf(fact_1720_set__bit__nonnegative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5668285175392031749et_bit @ int @ N2 @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% set_bit_nonnegative_int_iff
thf(fact_1721_set__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se5668285175392031749et_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% set_bit_negative_int_iff
thf(fact_1722_finite__atLeastAtMost,axiom,
! [L: nat,U: nat] : ( finite_finite @ nat @ ( set_or1337092689740270186AtMost @ nat @ L @ U ) ) ).
% finite_atLeastAtMost
thf(fact_1723_atLeastatMost__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% atLeastatMost_empty_iff
thf(fact_1724_atLeastatMost__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% atLeastatMost_empty_iff2
thf(fact_1725_atLeastatMost__subset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ~ ( ord_less_eq @ A @ A2 @ B2 )
| ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_1726_atLeastatMost__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastatMost_empty
thf(fact_1727_infinite__Icc__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Icc_iff
thf(fact_1728_list__update__beyond,axiom,
! [A: $tType,Xs2: list @ A,I: nat,X: A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I )
=> ( ( list_update @ A @ Xs2 @ I @ X )
= Xs2 ) ) ).
% list_update_beyond
thf(fact_1729_nth__list__update__eq,axiom,
! [A: $tType,I: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I @ X ) @ I )
= X ) ) ).
% nth_list_update_eq
thf(fact_1730_set__swap,axiom,
! [A: $tType,I: nat,Xs2: list @ A,J: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( set2 @ A @ ( list_update @ A @ ( list_update @ A @ Xs2 @ I @ ( nth @ A @ Xs2 @ J ) ) @ J @ ( nth @ A @ Xs2 @ I ) ) )
= ( set2 @ A @ Xs2 ) ) ) ) ).
% set_swap
thf(fact_1731_not__iless0,axiom,
! [N2: extended_enat] :
~ ( ord_less @ extended_enat @ N2 @ ( zero_zero @ extended_enat ) ) ).
% not_iless0
thf(fact_1732_ile0__eq,axiom,
! [N2: extended_enat] :
( ( ord_less_eq @ extended_enat @ N2 @ ( zero_zero @ extended_enat ) )
= ( N2
= ( zero_zero @ extended_enat ) ) ) ).
% ile0_eq
thf(fact_1733_i0__lb,axiom,
! [N2: extended_enat] : ( ord_less_eq @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 ) ).
% i0_lb
thf(fact_1734_enat__less__induct,axiom,
! [P: extended_enat > $o,N2: extended_enat] :
( ! [N: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_less @ extended_enat @ M2 @ N )
=> ( P @ M2 ) )
=> ( P @ N ) )
=> ( P @ N2 ) ) ).
% enat_less_induct
thf(fact_1735_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N2: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ ( times_times @ extended_enat @ M @ N2 ) )
= ( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ M )
& ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 ) ) ) ).
% enat_0_less_mult_iff
thf(fact_1736_infinite__Icc,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Icc
thf(fact_1737_ex__nat__less,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [M6: nat] :
( ( ord_less_eq @ nat @ M6 @ N2 )
& ( P @ M6 ) ) )
= ( ? [X3: nat] :
( ( member @ nat @ X3 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
& ( P @ X3 ) ) ) ) ).
% ex_nat_less
thf(fact_1738_all__nat__less,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [M6: nat] :
( ( ord_less_eq @ nat @ M6 @ N2 )
=> ( P @ M6 ) ) )
= ( ! [X3: nat] :
( ( member @ nat @ X3 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ( P @ X3 ) ) ) ) ).
% all_nat_less
thf(fact_1739_set__update__subsetI,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ A,X: A,I: nat] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( list_update @ A @ Xs2 @ I @ X ) ) @ A4 ) ) ) ).
% set_update_subsetI
thf(fact_1740_atLeastatMost__psubset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ~ ( ord_less_eq @ A @ A2 @ B2 )
| ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 )
& ( ( ord_less @ A @ C2 @ A2 )
| ( ord_less @ A @ B2 @ D2 ) ) ) )
& ( ord_less_eq @ A @ C2 @ D2 ) ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1741_set__update__memI,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ A @ X @ ( set2 @ A @ ( list_update @ A @ Xs2 @ N2 @ X ) ) ) ) ).
% set_update_memI
thf(fact_1742_list__update__same__conv,axiom,
! [A: $tType,I: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( list_update @ A @ Xs2 @ I @ X )
= Xs2 )
= ( ( nth @ A @ Xs2 @ I )
= X ) ) ) ).
% list_update_same_conv
thf(fact_1743_nth__list__update,axiom,
! [A: $tType,I: nat,Xs2: list @ A,J: nat,X: A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( I = J )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I @ X ) @ J )
= X ) )
& ( ( I != J )
=> ( ( nth @ A @ ( list_update @ A @ Xs2 @ I @ X ) @ J )
= ( nth @ A @ Xs2 @ J ) ) ) ) ) ).
% nth_list_update
thf(fact_1744_subset__eq__atLeast0__atMost__finite,axiom,
! [N7: set @ nat,N2: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N7 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ( finite_finite @ nat @ N7 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_1745_Bolzano,axiom,
! [A2: real,B2: real,P: real > real > $o] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [A5: real,B5: real,C4: real] :
( ( P @ A5 @ B5 )
=> ( ( P @ B5 @ C4 )
=> ( ( ord_less_eq @ real @ A5 @ B5 )
=> ( ( ord_less_eq @ real @ B5 @ C4 )
=> ( P @ A5 @ C4 ) ) ) ) )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [A5: real,B5: real] :
( ( ( ord_less_eq @ real @ A5 @ X4 )
& ( ord_less_eq @ real @ X4 @ B5 )
& ( ord_less @ real @ ( minus_minus @ real @ B5 @ A5 ) @ D3 ) )
=> ( P @ A5 @ B5 ) ) ) ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% Bolzano
thf(fact_1746_insert__simp__excp,axiom,
! [Mi: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,X: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( ord_less @ nat @ X @ Mi )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ ( ord_max @ nat @ Mi @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_excp
thf(fact_1747_insert__simp__norm,axiom,
! [X: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( ord_less @ nat @ Mi @ X )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( X != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( ord_max @ nat @ X @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_norm
thf(fact_1748_unset__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2638667681897837118et_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% unset_bit_0
thf(fact_1749_succ__less__length__list,axiom,
! [Deg: nat,Mi: nat,X: nat,TreeList2: list @ vEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% succ_less_length_list
thf(fact_1750_succ__greatereq__min,axiom,
! [Deg: nat,Mi: nat,X: nat,Ma: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ Mi @ X )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% succ_greatereq_min
thf(fact_1751_pred__lesseq__max,axiom,
! [Deg: nat,X: nat,Ma: nat,Mi: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% pred_lesseq_max
thf(fact_1752_pred__less__length__list,axiom,
! [Deg: nat,X: nat,Ma: nat,TreeList2: list @ vEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ord_less_eq @ nat @ X @ Ma )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% pred_less_length_list
thf(fact_1753_set__vebt_H__def,axiom,
( vEBT_VEBT_set_vebt
= ( ^ [T3: vEBT_VEBT] : ( collect @ nat @ ( vEBT_vebt_member @ T3 ) ) ) ) ).
% set_vebt'_def
thf(fact_1754_idiff__0,axiom,
! [N2: extended_enat] :
( ( minus_minus @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 )
= ( zero_zero @ extended_enat ) ) ).
% idiff_0
thf(fact_1755_idiff__0__right,axiom,
! [N2: extended_enat] :
( ( minus_minus @ extended_enat @ N2 @ ( zero_zero @ extended_enat ) )
= N2 ) ).
% idiff_0_right
thf(fact_1756_finite__interval__int1,axiom,
! [A2: int,B2: int] :
( finite_finite @ int
@ ( collect @ int
@ ^ [I3: int] :
( ( ord_less_eq @ int @ A2 @ I3 )
& ( ord_less_eq @ int @ I3 @ B2 ) ) ) ) ).
% finite_interval_int1
thf(fact_1757_finite__interval__int4,axiom,
! [A2: int,B2: int] :
( finite_finite @ int
@ ( collect @ int
@ ^ [I3: int] :
( ( ord_less @ int @ A2 @ I3 )
& ( ord_less @ int @ I3 @ B2 ) ) ) ) ).
% finite_interval_int4
thf(fact_1758_succ__empty,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_succ @ T2 @ X )
= ( none @ nat ) )
= ( ( collect @ nat
@ ^ [Y2: nat] :
( ( vEBT_vebt_member @ T2 @ Y2 )
& ( ord_less @ nat @ X @ Y2 ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% succ_empty
thf(fact_1759_pred__empty,axiom,
! [T2: vEBT_VEBT,N2: nat,X: nat] :
( ( vEBT_invar_vebt @ T2 @ N2 )
=> ( ( ( vEBT_vebt_pred @ T2 @ X )
= ( none @ nat ) )
= ( ( collect @ nat
@ ^ [Y2: nat] :
( ( vEBT_vebt_member @ T2 @ Y2 )
& ( ord_less @ nat @ Y2 @ X ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% pred_empty
thf(fact_1760_unset__bit__nonnegative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2638667681897837118et_bit @ int @ N2 @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% unset_bit_nonnegative_int_iff
thf(fact_1761_unset__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se2638667681897837118et_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% unset_bit_negative_int_iff
thf(fact_1762_max__bot,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_max @ A @ ( bot_bot @ A ) @ X )
= X ) ) ).
% max_bot
thf(fact_1763_max__bot2,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_max @ A @ X @ ( bot_bot @ A ) )
= X ) ) ).
% max_bot2
thf(fact_1764_max__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_max @ nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( suc @ ( ord_max @ nat @ M @ N2 ) ) ) ).
% max_Suc_Suc
thf(fact_1765_max__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( ord_max @ nat @ A2 @ B2 )
= ( zero_zero @ nat ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_1766_max__nat_Oleft__neutral,axiom,
! [A2: nat] :
( ( ord_max @ nat @ ( zero_zero @ nat ) @ A2 )
= A2 ) ).
% max_nat.left_neutral
thf(fact_1767_max__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( zero_zero @ nat )
= ( ord_max @ nat @ A2 @ B2 ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_1768_max__nat_Oright__neutral,axiom,
! [A2: nat] :
( ( ord_max @ nat @ A2 @ ( zero_zero @ nat ) )
= A2 ) ).
% max_nat.right_neutral
thf(fact_1769_max__0L,axiom,
! [N2: nat] :
( ( ord_max @ nat @ ( zero_zero @ nat ) @ N2 )
= N2 ) ).
% max_0L
thf(fact_1770_max__0R,axiom,
! [N2: nat] :
( ( ord_max @ nat @ N2 @ ( zero_zero @ nat ) )
= N2 ) ).
% max_0R
thf(fact_1771_finite__interval__int3,axiom,
! [A2: int,B2: int] :
( finite_finite @ int
@ ( collect @ int
@ ^ [I3: int] :
( ( ord_less @ int @ A2 @ I3 )
& ( ord_less_eq @ int @ I3 @ B2 ) ) ) ) ).
% finite_interval_int3
thf(fact_1772_finite__interval__int2,axiom,
! [A2: int,B2: int] :
( finite_finite @ int
@ ( collect @ int
@ ^ [I3: int] :
( ( ord_less_eq @ int @ A2 @ I3 )
& ( ord_less @ int @ I3 @ B2 ) ) ) ) ).
% finite_interval_int2
thf(fact_1773_finite__Collect__less__nat,axiom,
! [K: nat] :
( finite_finite @ nat
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less @ nat @ N3 @ K ) ) ) ).
% finite_Collect_less_nat
thf(fact_1774_finite__Collect__le__nat,axiom,
! [K: nat] :
( finite_finite @ nat
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less_eq @ nat @ N3 @ K ) ) ) ).
% finite_Collect_le_nat
thf(fact_1775_max__number__of_I1_J,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ V2 ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ U ) ) ) ) ) ).
% max_number_of(1)
thf(fact_1776_max__0__1_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( numeral_numeral @ A @ X ) @ ( zero_zero @ A ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(4)
thf(fact_1777_max__0__1_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(3)
thf(fact_1778_max__0__1_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_max @ A @ ( zero_zero @ A ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% max_0_1(1)
thf(fact_1779_max__0__1_I2_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_max @ A @ ( one_one @ A ) @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% max_0_1(2)
thf(fact_1780_max__0__1_I6_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(6)
thf(fact_1781_max__0__1_I5_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_max @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ X ) ) ) ).
% max_0_1(5)
thf(fact_1782_max__number__of_I2_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_max @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( numeral_numeral @ A @ U ) ) ) ) ) ).
% max_number_of(2)
thf(fact_1783_max__number__of_I3_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ V2 ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) ) ) ) ).
% max_number_of(3)
thf(fact_1784_max__number__of_I4_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_max @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) ) ) ) ).
% max_number_of(4)
thf(fact_1785_del__x__not__mi,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,Newlist: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi
thf(fact_1786_del__x__not__mi__new__node__nil,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,Sn: vEBT_VEBT,Summary: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ Sn )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_new_node_nil
thf(fact_1787_del__x__not__mia,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,H: nat,L: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Mi
@ ( if @ nat @ ( X = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) )
= ( none @ nat ) )
@ Mi
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
@ ( vEBT_vebt_delete @ Summary @ H ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ ( if @ nat @ ( X = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ H ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ).
% del_x_not_mia
thf(fact_1788_del__in__range,axiom,
! [Mi: nat,X: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_eq @ nat @ Mi @ X )
& ( ord_less_eq @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ) ) ).
% del_in_range
thf(fact_1789_del__x__mi,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H: nat,Summary: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,L: nat] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
@ ( vEBT_vebt_delete @ Summary @ H ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ H ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_update @ vEBT_VEBT @ TreeList2 @ H @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi
thf(fact_1790_del__x__mi__lets__in,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H: nat,Summary: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xn @ ( if @ nat @ ( Xn = Ma ) @ ( plus_plus @ nat @ ( times_times @ nat @ H @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ H ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in
thf(fact_1791_del__x__mi__lets__in__minNull,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H: nat,Summary: vEBT_VEBT,TreeList2: list @ vEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list @ vEBT_VEBT,Sn: vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= H )
=> ( ( Xn
= ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= L )
=> ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ H ) @ L ) )
=> ( ( Newlist
= ( list_update @ vEBT_VEBT @ TreeList2 @ H @ Newnode ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ Xn
@ ( if @ nat @ ( Xn = Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ Sn )
= ( none @ nat ) )
@ Xn
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ Newlist @ ( the2 @ nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_minNull
thf(fact_1792_del__x__mia,axiom,
! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X = Mi )
& ( ord_less @ nat @ X @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if @ nat
@ ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if @ nat
@ ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ) ) ).
% del_x_mia
thf(fact_1793_bot__enat__def,axiom,
( ( bot_bot @ extended_enat )
= ( zero_zero @ extended_enat ) ) ).
% bot_enat_def
thf(fact_1794_max__def__raw,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_max @ A )
= ( ^ [A3: A,B3: A] : ( if @ A @ ( ord_less_eq @ A @ A3 @ B3 ) @ B3 @ A3 ) ) ) ) ).
% max_def_raw
thf(fact_1795_iadd__is__0,axiom,
! [M: extended_enat,N2: extended_enat] :
( ( ( plus_plus @ extended_enat @ M @ N2 )
= ( zero_zero @ extended_enat ) )
= ( ( M
= ( zero_zero @ extended_enat ) )
& ( N2
= ( zero_zero @ extended_enat ) ) ) ) ).
% iadd_is_0
thf(fact_1796_zero__one__enat__neq_I1_J,axiom,
( ( zero_zero @ extended_enat )
!= ( one_one @ extended_enat ) ) ).
% zero_one_enat_neq(1)
thf(fact_1797_less__set__def,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A8: set @ A,B8: set @ A] :
( ord_less @ ( A > $o )
@ ^ [X3: A] : ( member @ A @ X3 @ A8 )
@ ^ [X3: A] : ( member @ A @ X3 @ B8 ) ) ) ) ).
% less_set_def
thf(fact_1798_imult__is__0,axiom,
! [M: extended_enat,N2: extended_enat] :
( ( ( times_times @ extended_enat @ M @ N2 )
= ( zero_zero @ extended_enat ) )
= ( ( M
= ( zero_zero @ extended_enat ) )
| ( N2
= ( zero_zero @ extended_enat ) ) ) ) ).
% imult_is_0
thf(fact_1799_of__nat__max,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ A @ ( ord_max @ nat @ X @ Y ) )
= ( ord_max @ A @ ( semiring_1_of_nat @ A @ X ) @ ( semiring_1_of_nat @ A @ Y ) ) ) ) ).
% of_nat_max
thf(fact_1800_lambda__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ( ( ^ [H2: A] : ( zero_zero @ A ) )
= ( times_times @ A @ ( zero_zero @ A ) ) ) ) ).
% lambda_zero
thf(fact_1801_lambda__one,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( ^ [X3: A] : X3 )
= ( times_times @ A @ ( one_one @ A ) ) ) ) ).
% lambda_one
thf(fact_1802_finite__M__bounded__by__nat,axiom,
! [P: nat > $o,I: nat] :
( finite_finite @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( P @ K3 )
& ( ord_less @ nat @ K3 @ I ) ) ) ) ).
% finite_M_bounded_by_nat
thf(fact_1803_finite__less__ub,axiom,
! [F2: nat > nat,U: nat] :
( ! [N: nat] : ( ord_less_eq @ nat @ N @ ( F2 @ N ) )
=> ( finite_finite @ nat
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less_eq @ nat @ ( F2 @ N3 ) @ U ) ) ) ) ).
% finite_less_ub
thf(fact_1804_max__absorb2,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_max @ A @ X @ Y )
= Y ) ) ) ).
% max_absorb2
thf(fact_1805_max__absorb1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_max @ A @ X @ Y )
= X ) ) ) ).
% max_absorb1
thf(fact_1806_max__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_max @ A )
= ( ^ [A3: A,B3: A] : ( if @ A @ ( ord_less_eq @ A @ A3 @ B3 ) @ B3 @ A3 ) ) ) ) ).
% max_def
thf(fact_1807_max__add__distrib__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ X @ ( ord_max @ A @ Y @ Z2 ) )
= ( ord_max @ A @ ( plus_plus @ A @ X @ Y ) @ ( plus_plus @ A @ X @ Z2 ) ) ) ) ).
% max_add_distrib_right
thf(fact_1808_max__add__distrib__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ord_max @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( plus_plus @ A @ Y @ Z2 ) ) ) ) ).
% max_add_distrib_left
thf(fact_1809_max__diff__distrib__left,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( minus_minus @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ord_max @ A @ ( minus_minus @ A @ X @ Z2 ) @ ( minus_minus @ A @ Y @ Z2 ) ) ) ) ).
% max_diff_distrib_left
thf(fact_1810_nat__add__max__right,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( plus_plus @ nat @ M @ ( ord_max @ nat @ N2 @ Q4 ) )
= ( ord_max @ nat @ ( plus_plus @ nat @ M @ N2 ) @ ( plus_plus @ nat @ M @ Q4 ) ) ) ).
% nat_add_max_right
thf(fact_1811_nat__add__max__left,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( plus_plus @ nat @ ( ord_max @ nat @ M @ N2 ) @ Q4 )
= ( ord_max @ nat @ ( plus_plus @ nat @ M @ Q4 ) @ ( plus_plus @ nat @ N2 @ Q4 ) ) ) ).
% nat_add_max_left
thf(fact_1812_nat__mult__max__right,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( times_times @ nat @ M @ ( ord_max @ nat @ N2 @ Q4 ) )
= ( ord_max @ nat @ ( times_times @ nat @ M @ N2 ) @ ( times_times @ nat @ M @ Q4 ) ) ) ).
% nat_mult_max_right
thf(fact_1813_nat__mult__max__left,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( times_times @ nat @ ( ord_max @ nat @ M @ N2 ) @ Q4 )
= ( ord_max @ nat @ ( times_times @ nat @ M @ Q4 ) @ ( times_times @ nat @ N2 @ Q4 ) ) ) ).
% nat_mult_max_left
thf(fact_1814_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T3: vEBT_VEBT] : ( collect @ nat @ ( vEBT_V8194947554948674370ptions @ T3 ) ) ) ) ).
% set_vebt_def
thf(fact_1815_numeral__code_I2_J,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ ( bit0 @ N2 ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% numeral_code(2)
thf(fact_1816_finite__int__segment,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] :
( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ A2 @ X3 )
& ( ord_less_eq @ A @ X3 @ B2 ) ) ) ) ) ).
% finite_int_segment
thf(fact_1817_nat__less__as__int,axiom,
( ( ord_less @ nat )
= ( ^ [A3: nat,B3: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% nat_less_as_int
thf(fact_1818_nat__leq__as__int,axiom,
( ( ord_less_eq @ nat )
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% nat_leq_as_int
thf(fact_1819_nat__minus__add__max,axiom,
! [N2: nat,M: nat] :
( ( plus_plus @ nat @ ( minus_minus @ nat @ N2 @ M ) @ M )
= ( ord_max @ nat @ N2 @ M ) ) ).
% nat_minus_add_max
thf(fact_1820_finite__lists__length__eq,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( finite_finite @ A @ A4 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N2 ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_1821_finite__lists__length__le,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( finite_finite @ A @ A4 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ N2 ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_1822_aset_I2_J,axiom,
! [D4: int,A4: set @ int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ A4 )
=> ( X4
!= ( minus_minus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ A4 )
=> ( X4
!= ( minus_minus @ int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( plus_plus @ int @ X4 @ D4 ) ) ) )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
=> ( ( P @ ( plus_plus @ int @ X2 @ D4 ) )
| ( Q @ ( plus_plus @ int @ X2 @ D4 ) ) ) ) ) ) ) ).
% aset(2)
thf(fact_1823_aset_I1_J,axiom,
! [D4: int,A4: set @ int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ A4 )
=> ( X4
!= ( minus_minus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ A4 )
=> ( X4
!= ( minus_minus @ int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( plus_plus @ int @ X4 @ D4 ) ) ) )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
=> ( ( P @ ( plus_plus @ int @ X2 @ D4 ) )
& ( Q @ ( plus_plus @ int @ X2 @ D4 ) ) ) ) ) ) ) ).
% aset(1)
thf(fact_1824_bset_I2_J,axiom,
! [D4: int,B4: set @ int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ B4 )
=> ( X4
!= ( plus_plus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ B4 )
=> ( X4
!= ( plus_plus @ int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( minus_minus @ int @ X4 @ D4 ) ) ) )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
=> ( ( P @ ( minus_minus @ int @ X2 @ D4 ) )
| ( Q @ ( minus_minus @ int @ X2 @ D4 ) ) ) ) ) ) ) ).
% bset(2)
thf(fact_1825_bset_I1_J,axiom,
! [D4: int,B4: set @ int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ B4 )
=> ( X4
!= ( plus_plus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ B4 )
=> ( X4
!= ( plus_plus @ int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( minus_minus @ int @ X4 @ D4 ) ) ) )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
=> ( ( P @ ( minus_minus @ int @ X2 @ D4 ) )
& ( Q @ ( minus_minus @ int @ X2 @ D4 ) ) ) ) ) ) ) ).
% bset(1)
thf(fact_1826_periodic__finite__ex,axiom,
! [D2: int,P: int > $o] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ! [X4: int,K2: int] :
( ( P @ X4 )
= ( P @ ( minus_minus @ int @ X4 @ ( times_times @ int @ K2 @ D2 ) ) ) )
=> ( ( ? [X7: int] : ( P @ X7 ) )
= ( ? [X3: int] :
( ( member @ int @ X3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D2 ) )
& ( P @ X3 ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_1827_aset_I7_J,axiom,
! [D4: int,A4: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ T2 @ X2 )
=> ( ord_less @ int @ T2 @ ( plus_plus @ int @ X2 @ D4 ) ) ) ) ) ).
% aset(7)
thf(fact_1828_aset_I5_J,axiom,
! [D4: int,T2: int,A4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ T2 @ A4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ X2 @ T2 )
=> ( ord_less @ int @ ( plus_plus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(5)
thf(fact_1829_aset_I4_J,axiom,
! [D4: int,T2: int,A4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ T2 @ A4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X2 != T2 )
=> ( ( plus_plus @ int @ X2 @ D4 )
!= T2 ) ) ) ) ) ).
% aset(4)
thf(fact_1830_aset_I3_J,axiom,
! [D4: int,T2: int,A4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ ( plus_plus @ int @ T2 @ ( one_one @ int ) ) @ A4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X2 = T2 )
=> ( ( plus_plus @ int @ X2 @ D4 )
= T2 ) ) ) ) ) ).
% aset(3)
thf(fact_1831_bset_I7_J,axiom,
! [D4: int,T2: int,B4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ T2 @ B4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ T2 @ X2 )
=> ( ord_less @ int @ T2 @ ( minus_minus @ int @ X2 @ D4 ) ) ) ) ) ) ).
% bset(7)
thf(fact_1832_bset_I5_J,axiom,
! [D4: int,B4: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less @ int @ X2 @ T2 )
=> ( ord_less @ int @ ( minus_minus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ).
% bset(5)
thf(fact_1833_bset_I4_J,axiom,
! [D4: int,T2: int,B4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ T2 @ B4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X2 != T2 )
=> ( ( minus_minus @ int @ X2 @ D4 )
!= T2 ) ) ) ) ) ).
% bset(4)
thf(fact_1834_bset_I3_J,axiom,
! [D4: int,T2: int,B4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ ( minus_minus @ int @ T2 @ ( one_one @ int ) ) @ B4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X2 = T2 )
=> ( ( minus_minus @ int @ X2 @ D4 )
= T2 ) ) ) ) ) ).
% bset(3)
thf(fact_1835_vebt__insert_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
& ~ ( ( X = Mi )
| ( X = Ma ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ X @ Mi ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ Ma ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) ) ).
% vebt_insert.simps(5)
thf(fact_1836_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option @ ( product_prod @ nat @ nat ),V2: nat,TreeList2: list @ vEBT_VEBT,S: vEBT_VEBT,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S ) @ X )
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_1837_aset_I8_J,axiom,
! [D4: int,A4: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ T2 @ X2 )
=> ( ord_less_eq @ int @ T2 @ ( plus_plus @ int @ X2 @ D4 ) ) ) ) ) ).
% aset(8)
thf(fact_1838_aset_I6_J,axiom,
! [D4: int,T2: int,A4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ ( plus_plus @ int @ T2 @ ( one_one @ int ) ) @ A4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ X2 @ T2 )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(6)
thf(fact_1839_bset_I8_J,axiom,
! [D4: int,T2: int,B4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ( member @ int @ ( minus_minus @ int @ T2 @ ( one_one @ int ) ) @ B4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ T2 @ X2 )
=> ( ord_less_eq @ int @ T2 @ ( minus_minus @ int @ X2 @ D4 ) ) ) ) ) ) ).
% bset(8)
thf(fact_1840_bset_I6_J,axiom,
! [D4: int,B4: set @ int,T2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq @ int @ X2 @ T2 )
=> ( ord_less_eq @ int @ ( minus_minus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ).
% bset(6)
thf(fact_1841_cpmi,axiom,
! [D4: int,P: int > $o,P4: int > $o,B4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less @ int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ B4 )
=> ( X4
!= ( plus_plus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus @ int @ X4 @ ( times_times @ int @ K2 @ D4 ) ) ) )
=> ( ( ? [X7: int] : ( P @ X7 ) )
= ( ? [X3: int] :
( ( member @ int @ X3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
& ( P4 @ X3 ) )
| ? [X3: int] :
( ( member @ int @ X3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
& ? [Y2: int] :
( ( member @ int @ Y2 @ B4 )
& ( P @ ( plus_plus @ int @ Y2 @ X3 ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_1842_cppi,axiom,
! [D4: int,P: int > $o,P4: int > $o,A4: set @ int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D4 )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less @ int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa: int] :
( ( member @ int @ Xa @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb: int] :
( ( member @ int @ Xb @ A4 )
=> ( X4
!= ( minus_minus @ int @ Xb @ Xa ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus @ int @ X4 @ D4 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus @ int @ X4 @ ( times_times @ int @ K2 @ D4 ) ) ) )
=> ( ( ? [X7: int] : ( P @ X7 ) )
= ( ? [X3: int] :
( ( member @ int @ X3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
& ( P4 @ X3 ) )
| ? [X3: int] :
( ( member @ int @ X3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
& ? [Y2: int] :
( ( member @ int @ Y2 @ A4 )
& ( P @ ( minus_minus @ int @ Y2 @ X3 ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_1843_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V2: nat,TreeList2: list @ vEBT_VEBT,Vd: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V2 ) @ TreeList2 @ Vd ) @ X )
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_1844_vebt__insert_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( vEBT_Leaf @ $true @ B5 ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A5 @ $true ) ) )
& ( ( Xa2
!= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) )
=> ( Y
!= ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) )
=> ( Y
!= ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) ) )
=> ( ! [V3: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( Y
!= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) ) ) ) ) ) ) ) ).
% vebt_insert.elims
thf(fact_1845_vebt__member_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( ( X != Mi )
=> ( ( X != Ma )
=> ( ~ ( ord_less @ nat @ X @ Mi )
& ( ~ ( ord_less @ nat @ X @ Mi )
=> ( ~ ( ord_less @ nat @ Ma @ X )
& ( ~ ( ord_less @ nat @ Ma @ X )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.simps(5)
thf(fact_1846_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V2: nat,TreeList2: list @ vEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ X )
= ( ( X = Mi )
| ( X = Ma )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ V2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_1847_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_1848_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_1849_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( Y
= ( ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> Y )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ( Y
= ( ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_1850_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_1851_vebt__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(2)
thf(fact_1852_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> Y )
=> ( ( ? [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> Y )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ( Y
= ( ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ( Y
= ( ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_1853_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ! [Uu2: $o,Uv2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_1854_vebt__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(3)
thf(fact_1855_vebt__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( Y
= ( ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> Y )
=> ( ( ? [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> Y )
=> ( ( ? [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> Y )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( Y
= ( ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(1)
thf(fact_1856_vebt__succ_Osimps_I6_J,axiom,
! [X: nat,Mi: nat,Ma: nat,Va2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( some @ nat @ Mi ) ) )
& ( ~ ( ord_less @ nat @ X @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% vebt_succ.simps(6)
thf(fact_1857_vebt__pred_Osimps_I7_J,axiom,
! [Ma: nat,X: nat,Mi: nat,Va2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( some @ nat @ Ma ) ) )
& ( ~ ( ord_less @ nat @ Ma @ X )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi @ X ) @ ( some @ nat @ Mi ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ).
% vebt_pred.simps(7)
thf(fact_1858_vebt__delete_Osimps_I7_J,axiom,
! [X: nat,Mi: nat,Ma: nat,Va2: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) )
& ( ~ ( ( ord_less @ nat @ X @ Mi )
| ( ord_less @ nat @ Ma @ X ) )
=> ( ( ( ( X = Mi )
& ( X = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) )
& ( ~ ( ( X = Mi )
& ( X = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X )
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( X = Mi ) @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
@ ( if @ nat
@ ( ( ( X = Mi )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X != Mi )
=> ( X = Ma ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_update @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( X = Mi ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList2 @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) ) ) ) ) ) ).
% vebt_delete.simps(7)
thf(fact_1859_vebt__delete_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X @ Xa2 )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ B5 ) ) ) )
=> ( ! [A5: $o] :
( ? [B5: $o] :
( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( Y
!= ( vEBT_Leaf @ A5 @ $false ) ) ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ? [N: nat] :
( Xa2
= ( suc @ ( suc @ N ) ) )
=> ( Y
!= ( vEBT_Leaf @ A5 @ B5 ) ) ) )
=> ( ! [Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( Y
!= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst2: list @ vEBT_VEBT,Smry2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr2: list @ vEBT_VEBT,Sm2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) )
=> ( Y
!= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ~ ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) )
& ( ~ ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( ( ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) )
& ( ~ ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.elims
thf(fact_1860_vebt__succ_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y )
=> ( ! [Uu2: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ B5 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ~ ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N: nat] :
( Xa2
= ( suc @ N ) )
=> ( Y
!= ( none @ nat ) ) ) )
=> ( ( ? [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ~ ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( some @ nat @ Mi2 ) ) )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.elims
thf(fact_1861_vebt__pred_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_pred @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
!= ( none @ nat ) ) ) )
=> ( ! [A5: $o] :
( ? [Uw2: $o] :
( X
= ( vEBT_Leaf @ A5 @ Uw2 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ~ ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ? [Va: nat] :
( Xa2
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) ) ) ) ) )
=> ( ( ? [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ( ( ? [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) )
=> ( Y
!= ( none @ nat ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ~ ( ( ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( some @ nat @ Ma2 ) ) )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi2 @ Xa2 ) @ ( some @ nat @ Mi2 ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.elims
thf(fact_1862_finite__nth__roots,axiom,
! [N2: nat,C2: complex] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( finite_finite @ complex
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= C2 ) ) ) ) ).
% finite_nth_roots
thf(fact_1863_finite__roots__unity,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [N2: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 )
=> ( finite_finite @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( power_power @ A @ Z5 @ N2 )
= ( one_one @ A ) ) ) ) ) ) ).
% finite_roots_unity
thf(fact_1864_vebt__succ_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_succ @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ B5 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( Y
= ( none @ nat ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ B5 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N: nat] :
( ( Xa2
= ( suc @ N ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vc2: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vg2: list @ vEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vg2 @ Vh2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( some @ nat @ Mi2 ) ) )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_less @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( none @ nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_succ_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.pelims
thf(fact_1865_vebt__pred_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: option @ nat] :
( ( ( vEBT_vebt_pred @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [A5: $o,Uw2: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ Uw2 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ Uw2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ! [Va: nat] :
( ( Xa2
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( B5
=> ( Y
= ( some @ nat @ ( one_one @ nat ) ) ) )
& ( ~ B5
=> ( ( A5
=> ( Y
= ( some @ nat @ ( zero_zero @ nat ) ) ) )
& ( ~ A5
=> ( Y
= ( none @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( suc @ Va ) ) ) ) ) ) )
=> ( ! [Uy2: nat,Uz2: list @ vEBT_VEBT,Va3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uy2 @ Uz2 @ Va3 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vd2: list @ vEBT_VEBT,Ve2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Vd2 @ Ve2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vh2: list @ vEBT_VEBT,Vi2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) )
=> ( ( Y
= ( none @ nat ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vh2 @ Vi2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( ( ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( some @ nat @ Ma2 ) ) )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( Y
= ( if @ ( option @ nat ) @ ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ ( option @ nat )
@ ( ( ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
!= ( none @ nat ) )
& ( vEBT_VEBT_greater @ ( some @ nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( some @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( if @ ( option @ nat )
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( none @ nat ) )
@ ( if @ ( option @ nat ) @ ( ord_less @ nat @ Mi2 @ Xa2 ) @ ( some @ nat @ Mi2 ) @ ( none @ nat ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) )
@ ( none @ nat ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_pred_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.pelims
thf(fact_1866_max_Oabsorb3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= A2 ) ) ) ).
% max.absorb3
thf(fact_1867_max_Oabsorb4,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= B2 ) ) ) ).
% max.absorb4
thf(fact_1868_max__less__iff__conj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ ( ord_max @ A @ X @ Y ) @ Z2 )
= ( ( ord_less @ A @ X @ Z2 )
& ( ord_less @ A @ Y @ Z2 ) ) ) ) ).
% max_less_iff_conj
thf(fact_1869_max__enat__simps_I2_J,axiom,
! [Q4: extended_enat] :
( ( ord_max @ extended_enat @ Q4 @ ( zero_zero @ extended_enat ) )
= Q4 ) ).
% max_enat_simps(2)
thf(fact_1870_max__enat__simps_I3_J,axiom,
! [Q4: extended_enat] :
( ( ord_max @ extended_enat @ ( zero_zero @ extended_enat ) @ Q4 )
= Q4 ) ).
% max_enat_simps(3)
thf(fact_1871_max_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( ord_max @ A @ B2 @ C2 ) @ A2 )
= ( ( ord_less_eq @ A @ B2 @ A2 )
& ( ord_less_eq @ A @ C2 @ A2 ) ) ) ) ).
% max.bounded_iff
thf(fact_1872_max_Oabsorb2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= B2 ) ) ) ).
% max.absorb2
thf(fact_1873_max_Oabsorb1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_max @ A @ A2 @ B2 )
= A2 ) ) ) ).
% max.absorb1
thf(fact_1874_finite__atLeastAtMost__int,axiom,
! [L: int,U: int] : ( finite_finite @ int @ ( set_or1337092689740270186AtMost @ int @ L @ U ) ) ).
% finite_atLeastAtMost_int
thf(fact_1875_max_Omono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,A2: A,D2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ( ord_less_eq @ A @ D2 @ B2 )
=> ( ord_less_eq @ A @ ( ord_max @ A @ C2 @ D2 ) @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ) ).
% max.mono
thf(fact_1876_max_OorderE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( A2
= ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.orderE
thf(fact_1877_max_OorderI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( ord_max @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% max.orderI
thf(fact_1878_max_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( ord_max @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less_eq @ A @ B2 @ A2 )
=> ~ ( ord_less_eq @ A @ C2 @ A2 ) ) ) ) ).
% max.boundedE
thf(fact_1879_max_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ord_less_eq @ A @ ( ord_max @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% max.boundedI
thf(fact_1880_max_Oorder__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( A3
= ( ord_max @ A @ A3 @ B3 ) ) ) ) ) ).
% max.order_iff
thf(fact_1881_max_Ocobounded1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ A2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ).
% max.cobounded1
thf(fact_1882_max_Ocobounded2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] : ( ord_less_eq @ A @ B2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ).
% max.cobounded2
thf(fact_1883_le__max__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less_eq @ A @ Z2 @ ( ord_max @ A @ X @ Y ) )
= ( ( ord_less_eq @ A @ Z2 @ X )
| ( ord_less_eq @ A @ Z2 @ Y ) ) ) ) ).
% le_max_iff_disj
thf(fact_1884_max_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( ( ord_max @ A @ A3 @ B3 )
= A3 ) ) ) ) ).
% max.absorb_iff1
thf(fact_1885_max_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( ( ord_max @ A @ A3 @ B3 )
= B3 ) ) ) ) ).
% max.absorb_iff2
thf(fact_1886_max_OcoboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ord_less_eq @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.coboundedI1
thf(fact_1887_max_OcoboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less_eq @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.coboundedI2
thf(fact_1888_less__max__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ ( ord_max @ A @ X @ Y ) )
= ( ( ord_less @ A @ Z2 @ X )
| ( ord_less @ A @ Z2 @ Y ) ) ) ) ).
% less_max_iff_disj
thf(fact_1889_max_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( ord_max @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% max.strict_boundedE
thf(fact_1890_max_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [B3: A,A3: A] :
( ( A3
= ( ord_max @ A @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ) ).
% max.strict_order_iff
thf(fact_1891_max_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ A2 )
=> ( ord_less @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.strict_coboundedI1
thf(fact_1892_max_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% max.strict_coboundedI2
thf(fact_1893_vebt__delete_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Xa2
= ( zero_zero @ nat ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ B5 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( zero_zero @ nat ) ) ) ) ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Xa2
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( Y
= ( vEBT_Leaf @ A5 @ $false ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ! [N: nat] :
( ( Xa2
= ( suc @ ( suc @ N ) ) )
=> ( ( Y
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ ( suc @ ( suc @ N ) ) ) ) ) ) )
=> ( ! [Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Deg2 @ TreeList @ Summary2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst2: list @ vEBT_VEBT,Smry2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ TrLst2 @ Smry2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr2: list @ vEBT_VEBT,Sm2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( zero_zero @ nat ) ) @ Tr2 @ Sm2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( ( ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) )
& ( ~ ( ( ord_less @ nat @ Xa2 @ Mi2 )
| ( ord_less @ nat @ Ma2 @ Xa2 ) )
=> ( ( ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) )
& ( ~ ( ( Xa2 = Mi2 )
& ( Xa2 = Ma2 ) )
=> ( Y
= ( if @ vEBT_VEBT @ ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
@ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( if @ nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
= ( none @ nat ) )
@ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( vEBT_Node
@ ( some @ ( product_prod @ nat @ nat )
@ ( product_Pair @ nat @ nat @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
@ ( if @ nat
@ ( ( ( Xa2 = Mi2 )
=> ( ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa2 != Mi2 )
=> ( Xa2 = Ma2 ) ) )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_maxt @ ( nth @ vEBT_VEBT @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_delete @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( Xa2 = Mi2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( the2 @ nat @ ( vEBT_vebt_mint @ ( nth @ vEBT_VEBT @ TreeList @ ( the2 @ nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ Summary2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_delete_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.pelims
thf(fact_1894_vebt__insert_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( vEBT_Leaf @ $true @ B5 ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A5 @ $true ) ) )
& ( ( Xa2
!= ( one_one @ nat ) )
=> ( Y
= ( vEBT_Leaf @ A5 @ B5 ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) )
=> ( ( Y
= ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info @ ( zero_zero @ nat ) @ Ts @ S2 ) @ Xa2 ) ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Ts: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) )
=> ( ( Y
= ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Info @ ( suc @ ( zero_zero @ nat ) ) @ Ts @ S2 ) @ Xa2 ) ) ) )
=> ( ! [V3: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) )
=> ( ( Y
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( Y
= ( if @ vEBT_VEBT
@ ( ( ord_less @ nat @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
& ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max @ nat @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_update @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_insert @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( if @ vEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if @ nat @ ( ord_less @ nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_insert_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_insert.pelims
thf(fact_1895_vebt__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_vebt_member @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Y
= ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( Y
= ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(1)
thf(fact_1896_vebt__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Uy2: list @ vEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( zero_zero @ nat ) @ Uy2 @ Uz2 ) @ Xa2 ) ) )
=> ( ! [V3: product_prod @ nat @ nat,Vb2: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ V3 ) @ ( suc @ ( zero_zero @ nat ) ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) )
=> ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(3)
thf(fact_1897_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Y
= ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ( ( Y
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) @ Xa2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_1898_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) @ Xa2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_1899_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ( ! [Uu2: option @ ( product_prod @ nat @ nat ),Uv2: list @ vEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uu2 @ ( zero_zero @ nat ) @ Uv2 @ Uw2 ) @ Xa2 ) ) )
=> ~ ! [Uy2: option @ ( product_prod @ nat @ nat ),V3: nat,TreeList: list @ vEBT_VEBT,S2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V5765760719290551771er_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList @ S2 ) @ Xa2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_1900_vebt__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_vebt_member @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) )
=> ~ ( ( ( Xa2
= ( zero_zero @ nat ) )
=> A5 )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( ( ( Xa2
= ( one_one @ nat ) )
=> B5 )
& ( Xa2
= ( one_one @ nat ) ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_vebt_member_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Xa2 != Mi2 )
=> ( ( Xa2 != Ma2 )
=> ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
& ( ~ ( ord_less @ nat @ Xa2 @ Mi2 )
=> ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
& ( ~ ( ord_less @ nat @ Ma2 @ Xa2 )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(2)
thf(fact_1901_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Xa2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) @ Xa2 ) )
=> ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) @ Xa2 ) )
=> ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_1902_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ( ! [Ux2: list @ vEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) )
=> ( ~ Y
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( zero_zero @ nat ) @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ( ( Y
= ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) @ Xa2 ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ( ( Y
= ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_1903_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list @ vEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( zero_zero @ nat ) @ Va3 @ Vb2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList: list @ vEBT_VEBT,Vc2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( some @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList @ Vc2 ) @ Xa2 ) )
=> ~ ( ( Xa2 = Mi2 )
| ( Xa2 = Ma2 )
| ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList: list @ vEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_V4351362008482014158ma_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ V3 ) @ TreeList @ Vd2 ) @ Xa2 ) )
=> ~ ( ( ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth @ vEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( ord_less @ nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide @ nat @ ( suc @ V3 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( size_size @ ( list @ vEBT_VEBT ) @ TreeList ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_1904_arcosh__1,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arcosh @ A @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% arcosh_1
thf(fact_1905_lemma__termdiff3,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [H: A,Z2: A,K5: real,N2: nat] :
( ( H
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ Z2 @ H ) ) @ K5 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H ) @ N2 ) @ ( power_power @ A @ Z2 @ N2 ) ) @ H ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) @ ( times_times @ real @ ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( semiring_1_of_nat @ real @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) @ ( power_power @ real @ K5 @ ( minus_minus @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ H ) ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_1906_artanh__0,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ( ( artanh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% artanh_0
thf(fact_1907_lemma__NBseq__def2,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [X6: A > B] :
( ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X6 @ N3 ) ) @ K6 ) ) )
= ( ? [N6: nat] :
! [N3: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( X6 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% lemma_NBseq_def2
thf(fact_1908_lemma__NBseq__def,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [X6: A > B] :
( ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X6 @ N3 ) ) @ K6 ) ) )
= ( ? [N6: nat] :
! [N3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( X6 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% lemma_NBseq_def
thf(fact_1909_norm__le__zero__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( zero_zero @ real ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% norm_le_zero_iff
thf(fact_1910_zero__less__norm__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
= ( X
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_norm_iff
thf(fact_1911_norm__one,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ( ( real_V7770717601297561774m_norm @ A @ ( one_one @ A ) )
= ( one_one @ real ) ) ) ).
% norm_one
thf(fact_1912_norm__eq__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( real_V7770717601297561774m_norm @ A @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% norm_eq_zero
thf(fact_1913_norm__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( real_V7770717601297561774m_norm @ A @ ( zero_zero @ A ) )
= ( zero_zero @ real ) ) ) ).
% norm_zero
thf(fact_1914_square__norm__one,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ X )
= ( one_one @ real ) ) ) ) ).
% square_norm_one
thf(fact_1915_artanh__def,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ( ( artanh @ A )
= ( ^ [X3: A] : ( divide_divide @ A @ ( ln_ln @ A @ ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ X3 ) @ ( minus_minus @ A @ ( one_one @ A ) @ X3 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% artanh_def
thf(fact_1916_ln__inj__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( ln_ln @ real @ X )
= ( ln_ln @ real @ Y ) )
= ( X = Y ) ) ) ) ).
% ln_inj_iff
thf(fact_1917_ln__less__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_1918_ln__le__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_1919_ln__less__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_less_zero_iff
thf(fact_1920_ln__gt__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
= ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_gt_zero_iff
thf(fact_1921_ln__eq__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ln_ln @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( one_one @ real ) ) ) ) ).
% ln_eq_zero_iff
thf(fact_1922_ln__one,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( ln_ln @ A @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% ln_one
thf(fact_1923_ln__le__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_le_zero_iff
thf(fact_1924_ln__ge__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_ge_zero_iff
thf(fact_1925_ln__less__self,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( ln_ln @ real @ X ) @ X ) ) ).
% ln_less_self
thf(fact_1926_ln__bound,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ X ) ) ).
% ln_bound
thf(fact_1927_ln__gt__zero__imp__gt__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_1928_ln__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less @ real @ ( ln_ln @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% ln_less_zero
thf(fact_1929_ln__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) ) ) ).
% ln_gt_zero
thf(fact_1930_ln__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) ) ) ).
% ln_ge_zero
thf(fact_1931_ln__ge__zero__imp__ge__one,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( ln_ln @ real @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_1932_ln__add__one__self__le__self,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self
thf(fact_1933_ln__mult,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ln_ln @ real @ ( times_times @ real @ X @ Y ) )
= ( plus_plus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) ) ) ) ).
% ln_mult
thf(fact_1934_ln__eq__minus__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ln_ln @ real @ X )
= ( minus_minus @ real @ X @ ( one_one @ real ) ) )
=> ( X
= ( one_one @ real ) ) ) ) ).
% ln_eq_minus_one
thf(fact_1935_ln__div,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ln_ln @ real @ ( divide_divide @ real @ X @ Y ) )
= ( minus_minus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) ) ) ) ).
% ln_div
thf(fact_1936_ln__le__minus__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( minus_minus @ real @ X @ ( one_one @ real ) ) ) ) ).
% ln_le_minus_one
thf(fact_1937_ln__diff__le,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ ( ln_ln @ real @ X ) @ ( ln_ln @ real @ Y ) ) @ ( divide_divide @ real @ ( minus_minus @ real @ X @ Y ) @ Y ) ) ) ) ).
% ln_diff_le
thf(fact_1938_ln__add__one__self__le__self2,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self2
thf(fact_1939_ln__realpow,axiom,
! [X: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( power_power @ real @ X @ N2 ) )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_realpow
thf(fact_1940_ln__one__minus__pos__upper__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ ( minus_minus @ real @ ( one_one @ real ) @ X ) ) @ ( uminus_uminus @ real @ X ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_1941_ln__one__plus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ X @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) ) ) ) ).
% ln_one_plus_pos_lower_bound
thf(fact_1942_norm__not__less__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
~ ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( zero_zero @ real ) ) ) ).
% norm_not_less_zero
thf(fact_1943_norm__ge__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) ) ) ).
% norm_ge_zero
thf(fact_1944_ln__one__minus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( minus_minus @ real @ ( uminus_uminus @ real @ X ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( ln_ln @ real @ ( minus_minus @ real @ ( one_one @ real ) @ X ) ) ) ) ) ).
% ln_one_minus_pos_lower_bound
thf(fact_1945_norm__uminus__minus,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A] :
( ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ X ) @ Y ) )
= ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% norm_uminus_minus
thf(fact_1946_nonzero__norm__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ B2 ) ) ) ) ) ).
% nonzero_norm_divide
thf(fact_1947_power__eq__imp__eq__norm,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [W2: A,N2: nat,Z2: A] :
( ( ( power_power @ A @ W2 @ N2 )
= ( power_power @ A @ Z2 @ N2 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( real_V7770717601297561774m_norm @ A @ W2 )
= ( real_V7770717601297561774m_norm @ A @ Z2 ) ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_1948_norm__mult__less,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [X: A,R2: real,Y: A,S: real] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ R2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Y ) @ S )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ X @ Y ) ) @ ( times_times @ real @ R2 @ S ) ) ) ) ) ).
% norm_mult_less
thf(fact_1949_norm__triangle__lt,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A,E2: real] :
( ( ord_less @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) @ E2 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ E2 ) ) ) ).
% norm_triangle_lt
thf(fact_1950_norm__add__less,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,R2: real,Y: A,S: real] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ R2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Y ) @ S )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ real @ R2 @ S ) ) ) ) ) ).
% norm_add_less
thf(fact_1951_norm__add__leD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: real] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ C2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ B2 ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ C2 ) ) ) ) ).
% norm_add_leD
thf(fact_1952_norm__triangle__le,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A,E2: real] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) @ E2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ E2 ) ) ) ).
% norm_triangle_le
thf(fact_1953_norm__triangle__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ Y ) ) ) ) ).
% norm_triangle_ineq
thf(fact_1954_norm__triangle__mono,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,R2: real,B2: A,S: real] :
( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ R2 )
=> ( ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ B2 ) @ S )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( plus_plus @ real @ R2 @ S ) ) ) ) ) ).
% norm_triangle_mono
thf(fact_1955_norm__diff__triangle__less,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A,Y: A,E1: real,Z2: A,E22: real] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X @ Y ) ) @ E1 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y @ Z2 ) ) @ E22 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X @ Z2 ) ) @ ( plus_plus @ real @ E1 @ E22 ) ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_1956_norm__diff__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) @ ( real_V7770717601297561774m_norm @ A @ B2 ) ) @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% norm_diff_ineq
thf(fact_1957_power__eq__1__iff,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [W2: A,N2: nat] :
( ( ( power_power @ A @ W2 @ N2 )
= ( one_one @ A ) )
=> ( ( ( real_V7770717601297561774m_norm @ A @ W2 )
= ( one_one @ real ) )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% power_eq_1_iff
thf(fact_1958_norm__diff__triangle__ineq,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ C2 @ D2 ) ) ) @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ A2 @ C2 ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_1959_ln__2__less__1,axiom,
ord_less @ real @ ( ln_ln @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ).
% ln_2_less_1
thf(fact_1960_ln__series,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ( ln_ln @ real @ X )
= ( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ ( one_one @ real ) ) @ ( suc @ N3 ) ) ) ) ) ) ) ).
% ln_series
thf(fact_1961_arsinh__0,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arsinh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% arsinh_0
thf(fact_1962_dbl__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% dbl_simps(4)
thf(fact_1963_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_1964_neg__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q4: int,R2: int] :
( ( ord_less_eq @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( eucl_rel_int @ ( plus_plus @ int @ A2 @ ( one_one @ int ) ) @ B2 @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) @ ( product_Pair @ int @ int @ Q4 @ ( minus_minus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ R2 ) @ ( one_one @ int ) ) ) ) ) ) ).
% neg_eucl_rel_int_mult_2
thf(fact_1965_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X3: nat,N3: nat] : ( modulo_modulo @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% low_def
thf(fact_1966_abs__idempotent,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( abs_abs @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_idempotent
thf(fact_1967_abs__abs,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( abs_abs @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_abs
thf(fact_1968_abs__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ( ( abs_abs @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% abs_zero
thf(fact_1969_abs__eq__0,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ( abs_abs @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_eq_0
thf(fact_1970_abs__0__eq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( abs_abs @ A @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_0_eq
thf(fact_1971_abs__0,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( abs_abs @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% abs_0
thf(fact_1972_mod__self,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% mod_self
thf(fact_1973_mod__by__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% mod_by_0
thf(fact_1974_mod__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% mod_0
thf(fact_1975_bits__mod__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% bits_mod_0
thf(fact_1976_abs__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] :
( ( abs_abs @ A @ ( numeral_numeral @ A @ N2 ) )
= ( numeral_numeral @ A @ N2 ) ) ) ).
% abs_numeral
thf(fact_1977_abs__mult__self__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ A2 ) )
= ( times_times @ A @ A2 @ A2 ) ) ) ).
% abs_mult_self_eq
thf(fact_1978_abs__add__abs,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) )
= ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_add_abs
thf(fact_1979_abs__1,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( abs_abs @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% abs_1
thf(fact_1980_mod__add__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_add_self2
thf(fact_1981_mod__add__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ B2 @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_add_self1
thf(fact_1982_abs__divide,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_divide
thf(fact_1983_abs__minus__cancel,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( uminus_uminus @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_minus_cancel
thf(fact_1984_abs__minus,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( uminus_uminus @ A @ A2 ) )
= ( abs_abs @ A @ A2 ) ) ) ).
% abs_minus
thf(fact_1985_abs__of__nat,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat] :
( ( abs_abs @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% abs_of_nat
thf(fact_1986_mod__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( modulo_modulo @ nat @ M @ N2 )
= M ) ) ).
% mod_less
thf(fact_1987_dbl__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% dbl_simps(2)
thf(fact_1988_abs__le__zero__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_le_zero_iff
thf(fact_1989_abs__le__self__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ A2 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% abs_le_self_iff
thf(fact_1990_abs__of__nonneg,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( abs_abs @ A @ A2 )
= A2 ) ) ) ).
% abs_of_nonneg
thf(fact_1991_zero__less__abs__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( abs_abs @ A @ A2 ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_abs_iff
thf(fact_1992_mod__mult__self1__is__0,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,A2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ B2 @ A2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_mult_self1_is_0
thf(fact_1993_mod__mult__self2__is__0,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_mult_self2_is_0
thf(fact_1994_mod__by__1,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% mod_by_1
thf(fact_1995_bits__mod__by__1,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% bits_mod_by_1
thf(fact_1996_mod__div__trivial,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% mod_div_trivial
thf(fact_1997_bits__mod__div__trivial,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( zero_zero @ A ) ) ) ).
% bits_mod_div_trivial
thf(fact_1998_mod__mult__self1,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self1
thf(fact_1999_mod__mult__self2,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self2
thf(fact_2000_mod__mult__self3,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( times_times @ A @ C2 @ B2 ) @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self3
thf(fact_2001_mod__mult__self4,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% mod_mult_self4
thf(fact_2002_abs__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num] :
( ( abs_abs @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( numeral_numeral @ A @ N2 ) ) ) ).
% abs_neg_numeral
thf(fact_2003_abs__neg__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( abs_abs @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( one_one @ A ) ) ) ).
% abs_neg_one
thf(fact_2004_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% mod_by_Suc_0
thf(fact_2005_dbl__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ).
% dbl_simps(5)
thf(fact_2006_dbl__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( uminus_uminus @ A @ ( neg_numeral_dbl @ A @ ( numeral_numeral @ A @ K ) ) ) ) ) ).
% dbl_simps(1)
thf(fact_2007_divide__le__0__abs__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ ( abs_abs @ A @ B2 ) ) @ ( zero_zero @ A ) )
= ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_le_0_abs_iff
thf(fact_2008_zero__le__divide__abs__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ ( abs_abs @ A @ B2 ) ) )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_2009_abs__of__nonpos,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% abs_of_nonpos
thf(fact_2010_mod__minus1__right,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A] :
( ( modulo_modulo @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% mod_minus1_right
thf(fact_2011_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ M @ ( times_times @ nat @ K @ N2 ) ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self1
thf(fact_2012_Suc__mod__mult__self2,axiom,
! [M: nat,N2: nat,K: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ M @ ( times_times @ nat @ N2 @ K ) ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self2
thf(fact_2013_Suc__mod__mult__self3,axiom,
! [K: nat,N2: nat,M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ ( times_times @ nat @ K @ N2 ) @ M ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self3
thf(fact_2014_Suc__mod__mult__self4,axiom,
! [N2: nat,K: nat,M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( plus_plus @ nat @ ( times_times @ nat @ N2 @ K ) @ M ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N2 ) ) ).
% Suc_mod_mult_self4
thf(fact_2015_artanh__minus__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( artanh @ real @ ( uminus_uminus @ real @ X ) )
= ( uminus_uminus @ real @ ( artanh @ real @ X ) ) ) ) ).
% artanh_minus_real
thf(fact_2016_bits__one__mod__two__eq__one,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% bits_one_mod_two_eq_one
thf(fact_2017_one__mod__two__eq__one,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% one_mod_two_eq_one
thf(fact_2018_zero__less__power__abs__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N2 ) )
= ( ( A2
!= ( zero_zero @ A ) )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% zero_less_power_abs_iff
thf(fact_2019_mod2__Suc__Suc,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% mod2_Suc_Suc
thf(fact_2020_Suc__times__numeral__mod__eq,axiom,
! [K: num,N2: nat] :
( ( ( numeral_numeral @ nat @ K )
!= ( one_one @ nat ) )
=> ( ( modulo_modulo @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ K ) @ N2 ) ) @ ( numeral_numeral @ nat @ K ) )
= ( one_one @ nat ) ) ) ).
% Suc_times_numeral_mod_eq
thf(fact_2021_dbl__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ).
% dbl_simps(3)
thf(fact_2022_powser__zero,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [F2: nat > A] :
( ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) )
= ( F2 @ ( zero_zero @ nat ) ) ) ) ).
% powser_zero
thf(fact_2023_not__mod__2__eq__0__eq__1,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ A ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_2024_not__mod__2__eq__1__eq__0,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( one_one @ A ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_2025_minus__1__mod__2__eq,axiom,
! [A: $tType] :
( ( euclid8789492081693882211th_nat @ A )
=> ( ( modulo_modulo @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% minus_1_mod_2_eq
thf(fact_2026_bits__minus__1__mod__2__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( modulo_modulo @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ).
% bits_minus_1_mod_2_eq
thf(fact_2027_not__mod2__eq__Suc__0__eq__0,axiom,
! [N2: nat] :
( ( ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
!= ( suc @ ( zero_zero @ nat ) ) )
= ( ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ nat ) ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_2028_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo @ nat @ ( plus_plus @ nat @ M @ M ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( zero_zero @ nat ) ) ).
% add_self_mod_2
thf(fact_2029_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ nat ) ) ) ).
% mod2_gr_0
thf(fact_2030_unique__remainder,axiom,
! [A2: int,B2: int,Q4: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q5 @ R4 ) )
=> ( R2 = R4 ) ) ) ).
% unique_remainder
thf(fact_2031_unique__quotient,axiom,
! [A2: int,B2: int,Q4: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q5 @ R4 ) )
=> ( Q4 = Q5 ) ) ) ).
% unique_quotient
thf(fact_2032_abs__le__D1,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% abs_le_D1
thf(fact_2033_abs__ge__self,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_self
thf(fact_2034_abs__eq__0__iff,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( ( abs_abs @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% abs_eq_0_iff
thf(fact_2035_abs__mult,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_mult
thf(fact_2036_abs__one,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( abs_abs @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% abs_one
thf(fact_2037_abs__minus__commute,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( abs_abs @ A @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ).
% abs_minus_commute
thf(fact_2038_abs__eq__iff,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [X: A,Y: A] :
( ( ( abs_abs @ A @ X )
= ( abs_abs @ A @ Y ) )
= ( ( X = Y )
| ( X
= ( uminus_uminus @ A @ Y ) ) ) ) ) ).
% abs_eq_iff
thf(fact_2039_mod__add__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_eq
thf(fact_2040_mod__add__cong,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,A6: A,B2: A,B6: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ A6 @ C2 ) )
=> ( ( ( modulo_modulo @ A @ B2 @ C2 )
= ( modulo_modulo @ A @ B6 @ C2 ) )
=> ( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A6 @ B6 ) @ C2 ) ) ) ) ) ).
% mod_add_cong
thf(fact_2041_mod__add__left__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ B2 ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_left_eq
thf(fact_2042_mod__add__right__eq,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 )
= ( modulo_modulo @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% mod_add_right_eq
thf(fact_2043_mod__Suc__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( modulo_modulo @ nat @ M @ N2 ) ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ ( suc @ M ) ) @ N2 ) ) ).
% mod_Suc_Suc_eq
thf(fact_2044_mod__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( modulo_modulo @ nat @ M @ N2 ) ) @ N2 )
= ( modulo_modulo @ nat @ ( suc @ M ) @ N2 ) ) ).
% mod_Suc_eq
thf(fact_2045_mod__less__eq__dividend,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ N2 ) @ M ) ).
% mod_less_eq_dividend
thf(fact_2046_Ints__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( ring_1_Ints @ A ) )
=> ( member @ A @ ( abs_abs @ A @ A2 ) @ ( ring_1_Ints @ A ) ) ) ) ).
% Ints_abs
thf(fact_2047_eucl__rel__int__by0,axiom,
! [K: int] : ( eucl_rel_int @ K @ ( zero_zero @ int ) @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ K ) ) ).
% eucl_rel_int_by0
thf(fact_2048_div__int__unique,axiom,
! [K: int,L: int,Q4: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( ( divide_divide @ int @ K @ L )
= Q4 ) ) ).
% div_int_unique
thf(fact_2049_abs__ge__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_zero
thf(fact_2050_abs__not__less__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ ( zero_zero @ A ) ) ) ).
% abs_not_less_zero
thf(fact_2051_abs__of__pos,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( abs_abs @ A @ A2 )
= A2 ) ) ) ).
% abs_of_pos
thf(fact_2052_abs__triangle__ineq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_triangle_ineq
thf(fact_2053_abs__mult__less,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ C2 )
=> ( ( ord_less @ A @ ( abs_abs @ A @ B2 ) @ D2 )
=> ( ord_less @ A @ ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( times_times @ A @ C2 @ D2 ) ) ) ) ) ).
% abs_mult_less
thf(fact_2054_abs__triangle__ineq2,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% abs_triangle_ineq2
thf(fact_2055_abs__triangle__ineq3,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) ) ) ).
% abs_triangle_ineq3
thf(fact_2056_abs__triangle__ineq2__sym,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ B2 @ A2 ) ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_2057_nonzero__abs__divide,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% nonzero_abs_divide
thf(fact_2058_abs__ge__minus__self,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ ( abs_abs @ A @ A2 ) ) ) ).
% abs_ge_minus_self
thf(fact_2059_abs__le__iff,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
= ( ( ord_less_eq @ A @ A2 @ B2 )
& ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_le_iff
thf(fact_2060_abs__le__D2,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ).
% abs_le_D2
thf(fact_2061_abs__leI,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_leI
thf(fact_2062_abs__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ A2 ) @ B2 )
= ( ( ord_less @ A @ A2 @ B2 )
& ( ord_less @ A @ ( uminus_uminus @ A @ A2 ) @ B2 ) ) ) ) ).
% abs_less_iff
thf(fact_2063_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ A2 ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2064_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2065_mod__eq__self__iff__div__eq__0,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= A2 )
= ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_2066_cong__exp__iff__simps_I9_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num,N2: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q4 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_2067_cong__exp__iff__simps_I4_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ one2 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_2068_mod__eqE,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ C2 )
= ( modulo_modulo @ A @ B2 @ C2 ) )
=> ~ ! [D5: A] :
( B2
!= ( plus_plus @ A @ A2 @ ( times_times @ A @ C2 @ D5 ) ) ) ) ) ).
% mod_eqE
thf(fact_2069_div__add1__eq,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) @ ( divide_divide @ A @ ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ C2 ) @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 ) ) ) ) ).
% div_add1_eq
thf(fact_2070_mod__Suc,axiom,
! [M: nat,N2: nat] :
( ( ( ( suc @ ( modulo_modulo @ nat @ M @ N2 ) )
= N2 )
=> ( ( modulo_modulo @ nat @ ( suc @ M ) @ N2 )
= ( zero_zero @ nat ) ) )
& ( ( ( suc @ ( modulo_modulo @ nat @ M @ N2 ) )
!= N2 )
=> ( ( modulo_modulo @ nat @ ( suc @ M ) @ N2 )
= ( suc @ ( modulo_modulo @ nat @ M @ N2 ) ) ) ) ) ).
% mod_Suc
thf(fact_2071_mod__induct,axiom,
! [P: nat > $o,N2: nat,P6: nat,M: nat] :
( ( P @ N2 )
=> ( ( ord_less @ nat @ N2 @ P6 )
=> ( ( ord_less @ nat @ M @ P6 )
=> ( ! [N: nat] :
( ( ord_less @ nat @ N @ P6 )
=> ( ( P @ N )
=> ( P @ ( modulo_modulo @ nat @ ( suc @ N ) @ P6 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_2072_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N2: nat] :
( ! [M5: nat] : ( P @ M5 @ ( zero_zero @ nat ) )
=> ( ! [M5: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( P @ N @ ( modulo_modulo @ nat @ M5 @ N ) )
=> ( P @ M5 @ N ) ) )
=> ( P @ M @ N2 ) ) ) ).
% gcd_nat_induct
thf(fact_2073_mod__less__divisor,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less @ nat @ ( modulo_modulo @ nat @ M @ N2 ) @ N2 ) ) ).
% mod_less_divisor
thf(fact_2074_mod__Suc__le__divisor,axiom,
! [M: nat,N2: nat] : ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ ( suc @ N2 ) ) @ N2 ) ).
% mod_Suc_le_divisor
thf(fact_2075_mod__eq__0D,axiom,
! [M: nat,D2: nat] :
( ( ( modulo_modulo @ nat @ M @ D2 )
= ( zero_zero @ nat ) )
=> ? [Q2: nat] :
( M
= ( times_times @ nat @ D2 @ Q2 ) ) ) ).
% mod_eq_0D
thf(fact_2076_mod__geq,axiom,
! [M: nat,N2: nat] :
( ~ ( ord_less @ nat @ M @ N2 )
=> ( ( modulo_modulo @ nat @ M @ N2 )
= ( modulo_modulo @ nat @ ( minus_minus @ nat @ M @ N2 ) @ N2 ) ) ) ).
% mod_geq
thf(fact_2077_mod__if,axiom,
( ( modulo_modulo @ nat )
= ( ^ [M6: nat,N3: nat] : ( if @ nat @ ( ord_less @ nat @ M6 @ N3 ) @ M6 @ ( modulo_modulo @ nat @ ( minus_minus @ nat @ M6 @ N3 ) @ N3 ) ) ) ) ).
% mod_if
thf(fact_2078_le__mod__geq,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( modulo_modulo @ nat @ M @ N2 )
= ( modulo_modulo @ nat @ ( minus_minus @ nat @ M @ N2 ) @ N2 ) ) ) ).
% le_mod_geq
thf(fact_2079_nat__mod__eq__iff,axiom,
! [X: nat,N2: nat,Y: nat] :
( ( ( modulo_modulo @ nat @ X @ N2 )
= ( modulo_modulo @ nat @ Y @ N2 ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus @ nat @ X @ ( times_times @ nat @ N2 @ Q1 ) )
= ( plus_plus @ nat @ Y @ ( times_times @ nat @ N2 @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_2080_dbl__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl @ A )
= ( ^ [X3: A] : ( plus_plus @ A @ X3 @ X3 ) ) ) ) ).
% dbl_def
thf(fact_2081_dense__eq0__I,axiom,
! [A: $tType] :
( ( ( ordere166539214618696060dd_abs @ A )
& ( dense_linorder @ A ) )
=> ! [X: A] :
( ! [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ E ) )
=> ( X
= ( zero_zero @ A ) ) ) ) ).
% dense_eq0_I
thf(fact_2082_abs__eq__mult,axiom,
! [A: $tType] :
( ( ordered_ring_abs @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
| ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
& ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
| ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ( abs_abs @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% abs_eq_mult
thf(fact_2083_abs__mult__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( times_times @ A @ ( abs_abs @ A @ Y ) @ X )
= ( abs_abs @ A @ ( times_times @ A @ Y @ X ) ) ) ) ) ).
% abs_mult_pos
thf(fact_2084_abs__minus__le__zero,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( abs_abs @ A @ A2 ) ) @ ( zero_zero @ A ) ) ) ).
% abs_minus_le_zero
thf(fact_2085_eq__abs__iff_H,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( abs_abs @ A @ B2 ) )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ( B2 = A2 )
| ( B2
= ( uminus_uminus @ A @ A2 ) ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_2086_abs__eq__iff_H,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( abs_abs @ A @ A2 )
= B2 )
= ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
& ( ( A2 = B2 )
| ( A2
= ( uminus_uminus @ A @ B2 ) ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_2087_abs__div__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ( divide_divide @ A @ ( abs_abs @ A @ X ) @ Y )
= ( abs_abs @ A @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% abs_div_pos
thf(fact_2088_zero__le__power__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( abs_abs @ A @ A2 ) @ N2 ) ) ) ).
% zero_le_power_abs
thf(fact_2089_abs__if__raw,axiom,
! [A: $tType] :
( ( abs_if @ A )
=> ( ( abs_abs @ A )
= ( ^ [A3: A] : ( if @ A @ ( ord_less @ A @ A3 @ ( zero_zero @ A ) ) @ ( uminus_uminus @ A @ A3 ) @ A3 ) ) ) ) ).
% abs_if_raw
thf(fact_2090_abs__of__neg,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ A2 )
= ( uminus_uminus @ A @ A2 ) ) ) ) ).
% abs_of_neg
thf(fact_2091_abs__if,axiom,
! [A: $tType] :
( ( abs_if @ A )
=> ( ( abs_abs @ A )
= ( ^ [A3: A] : ( if @ A @ ( ord_less @ A @ A3 @ ( zero_zero @ A ) ) @ ( uminus_uminus @ A @ A3 ) @ A3 ) ) ) ) ).
% abs_if
thf(fact_2092_abs__diff__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,A2: A,R2: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ A2 ) ) @ R2 )
= ( ( ord_less_eq @ A @ ( minus_minus @ A @ A2 @ R2 ) @ X )
& ( ord_less_eq @ A @ X @ ( plus_plus @ A @ A2 @ R2 ) ) ) ) ) ).
% abs_diff_le_iff
thf(fact_2093_abs__triangle__ineq4,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ B2 ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ).
% abs_triangle_ineq4
thf(fact_2094_abs__diff__triangle__ineq,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ C2 @ D2 ) ) ) @ ( plus_plus @ A @ ( abs_abs @ A @ ( minus_minus @ A @ A2 @ C2 ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_2095_abs__diff__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,A2: A,R2: A] :
( ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ A2 ) ) @ R2 )
= ( ( ord_less @ A @ ( minus_minus @ A @ A2 @ R2 ) @ X )
& ( ord_less @ A @ X @ ( plus_plus @ A @ A2 @ R2 ) ) ) ) ) ).
% abs_diff_less_iff
thf(fact_2096_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( modulo_modulo @ A @ A2 @ B2 )
= A2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2097_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2098_cong__exp__iff__simps_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num,Q4: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
= ( zero_zero @ A ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ Q4 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(2)
thf(fact_2099_cong__exp__iff__simps_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ one2 ) )
= ( zero_zero @ A ) ) ) ).
% cong_exp_iff_simps(1)
thf(fact_2100_cong__exp__iff__simps_I6_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q4: num,N2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_2101_cong__exp__iff__simps_I8_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_2102_mult__div__mod__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [B2: A,A2: A] :
( ( plus_plus @ A @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) )
= A2 ) ) ).
% mult_div_mod_eq
thf(fact_2103_mod__mult__div__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) )
= A2 ) ) ).
% mod_mult_div_eq
thf(fact_2104_mod__div__mult__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) )
= A2 ) ) ).
% mod_div_mult_eq
thf(fact_2105_div__mult__mod__eq,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) )
= A2 ) ) ).
% div_mult_mod_eq
thf(fact_2106_mod__div__decomp,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( A2
= ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% mod_div_decomp
thf(fact_2107_cancel__div__mod__rules_I1_J,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ C2 )
= ( plus_plus @ A @ A2 @ C2 ) ) ) ).
% cancel_div_mod_rules(1)
thf(fact_2108_cancel__div__mod__rules_I2_J,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ C2 )
= ( plus_plus @ A @ A2 @ C2 ) ) ) ).
% cancel_div_mod_rules(2)
thf(fact_2109_div__mult1__eq,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) ) @ ( divide_divide @ A @ ( times_times @ A @ A2 @ ( modulo_modulo @ A @ B2 @ C2 ) ) @ C2 ) ) ) ) ).
% div_mult1_eq
thf(fact_2110_minus__mult__div__eq__mod,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% minus_mult_div_eq_mod
thf(fact_2111_minus__mod__eq__mult__div,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( times_times @ A @ B2 @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_2112_minus__mod__eq__div__mult,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) ) ) ).
% minus_mod_eq_div_mult
thf(fact_2113_minus__div__mult__eq__mod,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ A @ A2 @ ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ).
% minus_div_mult_eq_mod
thf(fact_2114_mod__le__divisor,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ nat @ ( modulo_modulo @ nat @ M @ N2 ) @ N2 ) ) ).
% mod_le_divisor
thf(fact_2115_div__less__mono,axiom,
! [A4: nat,B4: nat,N2: nat] :
( ( ord_less @ nat @ A4 @ B4 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( modulo_modulo @ nat @ A4 @ N2 )
= ( zero_zero @ nat ) )
=> ( ( ( modulo_modulo @ nat @ B4 @ N2 )
= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( divide_divide @ nat @ A4 @ N2 ) @ ( divide_divide @ nat @ B4 @ N2 ) ) ) ) ) ) ).
% div_less_mono
thf(fact_2116_abs__real__def,axiom,
( ( abs_abs @ real )
= ( ^ [A3: real] : ( if @ real @ ( ord_less @ real @ A3 @ ( zero_zero @ real ) ) @ ( uminus_uminus @ real @ A3 ) @ A3 ) ) ) ).
% abs_real_def
thf(fact_2117_mod__eq__nat1E,axiom,
! [M: nat,Q4: nat,N2: nat] :
( ( ( modulo_modulo @ nat @ M @ Q4 )
= ( modulo_modulo @ nat @ N2 @ Q4 ) )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ~ ! [S2: nat] :
( M
!= ( plus_plus @ nat @ N2 @ ( times_times @ nat @ Q4 @ S2 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_2118_mod__eq__nat2E,axiom,
! [M: nat,Q4: nat,N2: nat] :
( ( ( modulo_modulo @ nat @ M @ Q4 )
= ( modulo_modulo @ nat @ N2 @ Q4 ) )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ~ ! [S2: nat] :
( N2
!= ( plus_plus @ nat @ M @ ( times_times @ nat @ Q4 @ S2 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_2119_nat__mod__eq__lemma,axiom,
! [X: nat,N2: nat,Y: nat] :
( ( ( modulo_modulo @ nat @ X @ N2 )
= ( modulo_modulo @ nat @ Y @ N2 ) )
=> ( ( ord_less_eq @ nat @ Y @ X )
=> ? [Q2: nat] :
( X
= ( plus_plus @ nat @ Y @ ( times_times @ nat @ N2 @ Q2 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_2120_eucl__rel__int__dividesI,axiom,
! [L: int,K: int,Q4: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ( K
= ( times_times @ int @ Q4 @ L ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q4 @ ( zero_zero @ int ) ) ) ) ) ).
% eucl_rel_int_dividesI
thf(fact_2121_div__mod__decomp,axiom,
! [A4: nat,N2: nat] :
( A4
= ( plus_plus @ nat @ ( times_times @ nat @ ( divide_divide @ nat @ A4 @ N2 ) @ N2 ) @ ( modulo_modulo @ nat @ A4 @ N2 ) ) ) ).
% div_mod_decomp
thf(fact_2122_mod__mult2__eq,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( modulo_modulo @ nat @ M @ ( times_times @ nat @ N2 @ Q4 ) )
= ( plus_plus @ nat @ ( times_times @ nat @ N2 @ ( modulo_modulo @ nat @ ( divide_divide @ nat @ M @ N2 ) @ Q4 ) ) @ ( modulo_modulo @ nat @ M @ N2 ) ) ) ).
% mod_mult2_eq
thf(fact_2123_finite__abs__int__segment,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A] :
( finite_finite @ A
@ ( collect @ A
@ ^ [K3: A] :
( ( member @ A @ K3 @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ ( abs_abs @ A @ K3 ) @ A2 ) ) ) ) ) ).
% finite_abs_int_segment
thf(fact_2124_abs__add__one__gt__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] : ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( abs_abs @ A @ X ) ) ) ) ).
% abs_add_one_gt_zero
thf(fact_2125_Ints__nonzero__abs__ge1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( X
!= ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( abs_abs @ A @ X ) ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_2126_mod__mult2__eq_H,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ M ) @ ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ M ) ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) @ ( modulo_modulo @ A @ A2 @ ( semiring_1_of_nat @ A @ M ) ) ) ) ) ).
% mod_mult2_eq'
thf(fact_2127_Ints__nonzero__abs__less1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( ord_less @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) )
=> ( X
= ( zero_zero @ A ) ) ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_2128_Ints__eq__abs__less1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( member @ A @ X @ ( ring_1_Ints @ A ) )
=> ( ( member @ A @ Y @ ( ring_1_Ints @ A ) )
=> ( ( X = Y )
= ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ Y ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_2129_split__mod,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( modulo_modulo @ nat @ M @ N2 ) )
= ( ( ( N2
= ( zero_zero @ nat ) )
=> ( P @ M ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ! [I3: nat,J3: nat] :
( ( ord_less @ nat @ J3 @ N2 )
=> ( ( M
= ( plus_plus @ nat @ ( times_times @ nat @ N2 @ I3 ) @ J3 ) )
=> ( P @ J3 ) ) ) ) ) ) ).
% split_mod
thf(fact_2130_real__of__nat__div__aux,axiom,
! [X: nat,D2: nat] :
( ( divide_divide @ real @ ( semiring_1_of_nat @ real @ X ) @ ( semiring_1_of_nat @ real @ D2 ) )
= ( plus_plus @ real @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ X @ D2 ) ) @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ ( modulo_modulo @ nat @ X @ D2 ) ) @ ( semiring_1_of_nat @ real @ D2 ) ) ) ) ).
% real_of_nat_div_aux
thf(fact_2131_abs__le__square__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ ( abs_abs @ A @ Y ) )
= ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_2132_abs__square__eq__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) )
= ( ( abs_abs @ A @ X )
= ( one_one @ A ) ) ) ) ).
% abs_square_eq_1
thf(fact_2133_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( plus_plus @ A @ ( times_times @ A @ B2 @ ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2134_Suc__times__mod__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ M )
=> ( ( modulo_modulo @ nat @ ( suc @ ( times_times @ nat @ M @ N2 ) ) @ M )
= ( one_one @ nat ) ) ) ).
% Suc_times_mod_eq
thf(fact_2135_abs__sqrt__wlog,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P: A > A > $o,X: A] :
( ! [X4: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X4 )
=> ( P @ X4 @ ( power_power @ A @ X4 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ ( abs_abs @ A @ X ) @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_2136_power2__le__iff__abs__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ Y ) ) ) ) ).
% power2_le_iff_abs_le
thf(fact_2137_abs__square__le__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) )
= ( ord_less_eq @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% abs_square_le_1
thf(fact_2138_abs__square__less__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( power_power @ A @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) )
= ( ord_less @ A @ ( abs_abs @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% abs_square_less_1
thf(fact_2139_divmod__digit__0_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
=> ( ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_2140_bits__stable__imp__add__self,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( plus_plus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) ) ) ) ).
% bits_stable_imp_add_self
thf(fact_2141_div__exp__mod__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat,M: nat] :
( ( modulo_modulo @ A @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( divide_divide @ A @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ N2 @ M ) ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_2142_zminus1__lemma,axiom,
! [A2: int,B2: int,Q4: int,R2: int] :
( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( ( B2
!= ( zero_zero @ int ) )
=> ( eucl_rel_int @ ( uminus_uminus @ int @ A2 ) @ B2
@ ( product_Pair @ int @ int
@ ( if @ int
@ ( R2
= ( zero_zero @ int ) )
@ ( uminus_uminus @ int @ Q4 )
@ ( minus_minus @ int @ ( uminus_uminus @ int @ Q4 ) @ ( one_one @ int ) ) )
@ ( if @ int
@ ( R2
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( minus_minus @ int @ B2 @ R2 ) ) ) ) ) ) ).
% zminus1_lemma
thf(fact_2143_verit__le__mono__div,axiom,
! [A4: nat,B4: nat,N2: nat] :
( ( ord_less @ nat @ A4 @ B4 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ nat
@ ( plus_plus @ nat @ ( divide_divide @ nat @ A4 @ N2 )
@ ( if @ nat
@ ( ( modulo_modulo @ nat @ B4 @ N2 )
= ( zero_zero @ nat ) )
@ ( one_one @ nat )
@ ( zero_zero @ nat ) ) )
@ ( divide_divide @ nat @ B4 @ N2 ) ) ) ) ).
% verit_le_mono_div
thf(fact_2144_divmod__digit__0_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_2145_mult__exp__mod__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ M ) ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_2146_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q4: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
= ( ( K
= ( plus_plus @ int @ ( times_times @ int @ L @ Q4 ) @ R2 ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
& ( ord_less @ int @ R2 @ L ) ) )
& ( ~ ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ R2 )
& ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) ) ) )
& ( ~ ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( Q4
= ( zero_zero @ int ) ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_2147_mod__double__modulus,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: A,X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ M )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ( modulo_modulo @ A @ X @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( modulo_modulo @ A @ X @ M ) )
| ( ( modulo_modulo @ A @ X @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( plus_plus @ A @ ( modulo_modulo @ A @ X @ M ) @ M ) ) ) ) ) ) ).
% mod_double_modulus
thf(fact_2148_divmod__digit__1_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
=> ( ( minus_minus @ A @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ B2 )
= ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_2149_unset__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se2638667681897837118et_bit @ A @ ( suc @ N2 ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2638667681897837118et_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_2150_set__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se5668285175392031749et_bit @ A @ ( suc @ N2 ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5668285175392031749et_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_2151_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( ln_ln @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) ) @ X ) ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_2152_divmod__digit__1_I1_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( modulo_modulo @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) )
=> ( ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) @ ( one_one @ A ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_2153_pos__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q4: int,R2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( eucl_rel_int @ A2 @ B2 @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) @ ( product_Pair @ int @ int @ Q4 @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ R2 ) ) ) ) ) ) ).
% pos_eucl_rel_int_mult_2
thf(fact_2154_suminf__geometric,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( ( suminf @ A @ ( power_power @ A @ C2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( minus_minus @ A @ ( one_one @ A ) @ C2 ) ) ) ) ) ).
% suminf_geometric
thf(fact_2155_suminf__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% suminf_zero
thf(fact_2156_lemma__interval,axiom,
! [A2: real,X: real,B2: real] :
( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [Y3: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y3 ) ) @ D5 )
=> ( ( ord_less_eq @ real @ A2 @ Y3 )
& ( ord_less_eq @ real @ Y3 @ B2 ) ) ) ) ) ) ).
% lemma_interval
thf(fact_2157_monoseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( topological_monoseq @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_2158_arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( arctan @ X )
= ( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_2159_pi__series,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( suminf @ real
@ ^ [K3: nat] : ( divide_divide @ real @ ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( one_one @ real ) ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ).
% pi_series
thf(fact_2160_lemma__interval__lt,axiom,
! [A2: real,X: real,B2: real] :
( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [Y3: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y3 ) ) @ D5 )
=> ( ( ord_less @ real @ A2 @ Y3 )
& ( ord_less @ real @ Y3 @ B2 ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_2161_arctan__eq__zero__iff,axiom,
! [X: real] :
( ( ( arctan @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% arctan_eq_zero_iff
thf(fact_2162_arctan__zero__zero,axiom,
( ( arctan @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% arctan_zero_zero
thf(fact_2163_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ L )
=> ( ( modulo_modulo @ int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_2164_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ K )
=> ( ( modulo_modulo @ int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_2165_zabs__less__one__iff,axiom,
! [Z2: int] :
( ( ord_less @ int @ ( abs_abs @ int @ Z2 ) @ ( one_one @ int ) )
= ( Z2
= ( zero_zero @ int ) ) ) ).
% zabs_less_one_iff
thf(fact_2166_arctan__less__zero__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( arctan @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% arctan_less_zero_iff
thf(fact_2167_zero__less__arctan__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( arctan @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_less_arctan_iff
thf(fact_2168_arctan__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( arctan @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% arctan_le_zero_iff
thf(fact_2169_zero__le__arctan__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arctan @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_le_arctan_iff
thf(fact_2170_zmod__numeral__Bit0,axiom,
! [V2: num,W2: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ ( bit0 @ V2 ) ) @ ( numeral_numeral @ int @ ( bit0 @ W2 ) ) )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ V2 ) @ ( numeral_numeral @ int @ W2 ) ) ) ) ).
% zmod_numeral_Bit0
thf(fact_2171_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ord_less @ int @ ( abs_abs @ int @ ( modulo_modulo @ int @ K @ L ) ) @ ( abs_abs @ int @ L ) ) ) ).
% abs_mod_less
thf(fact_2172_pi__neq__zero,axiom,
( pi
!= ( zero_zero @ real ) ) ).
% pi_neq_zero
thf(fact_2173_arctan__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( arctan @ X ) @ ( arctan @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ).
% arctan_less_iff
thf(fact_2174_arctan__monotone,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( arctan @ X ) @ ( arctan @ Y ) ) ) ).
% arctan_monotone
thf(fact_2175_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ M )
=> ( ord_less_eq @ int @ ( modulo_modulo @ int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_2176_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less @ int @ ( modulo_modulo @ int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_2177_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less @ int @ L @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_2178_zmod__zminus1__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ K ) @ L )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
!= ( zero_zero @ int ) ) ) ).
% zmod_zminus1_not_zero
thf(fact_2179_zmod__zminus2__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo @ int @ K @ ( uminus_uminus @ int @ L ) )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
!= ( zero_zero @ int ) ) ) ).
% zmod_zminus2_not_zero
thf(fact_2180_zmod__eq__0__iff,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo @ int @ M @ D2 )
= ( zero_zero @ int ) )
= ( ? [Q6: int] :
( M
= ( times_times @ int @ D2 @ Q6 ) ) ) ) ).
% zmod_eq_0_iff
thf(fact_2181_zmod__eq__0D,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo @ int @ M @ D2 )
= ( zero_zero @ int ) )
=> ? [Q2: int] :
( M
= ( times_times @ int @ D2 @ Q2 ) ) ) ).
% zmod_eq_0D
thf(fact_2182_abs__zmult__eq__1,axiom,
! [M: int,N2: int] :
( ( ( abs_abs @ int @ ( times_times @ int @ M @ N2 ) )
= ( one_one @ int ) )
=> ( ( abs_abs @ int @ M )
= ( one_one @ int ) ) ) ).
% abs_zmult_eq_1
thf(fact_2183_pi__gt__zero,axiom,
ord_less @ real @ ( zero_zero @ real ) @ pi ).
% pi_gt_zero
thf(fact_2184_pi__not__less__zero,axiom,
~ ( ord_less @ real @ pi @ ( zero_zero @ real ) ) ).
% pi_not_less_zero
thf(fact_2185_pi__ge__zero,axiom,
ord_less_eq @ real @ ( zero_zero @ real ) @ pi ).
% pi_ge_zero
thf(fact_2186_zmod__int,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ A2 @ B2 ) )
= ( modulo_modulo @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% zmod_int
thf(fact_2187_infinite__int__iff__unbounded,axiom,
! [S3: set @ int] :
( ( ~ ( finite_finite @ int @ S3 ) )
= ( ! [M6: int] :
? [N3: int] :
( ( ord_less @ int @ M6 @ ( abs_abs @ int @ N3 ) )
& ( member @ int @ N3 @ S3 ) ) ) ) ).
% infinite_int_iff_unbounded
thf(fact_2188_mod__int__unique,axiom,
! [K: int,L: int,Q4: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
=> ( ( modulo_modulo @ int @ K @ L )
= R2 ) ) ).
% mod_int_unique
thf(fact_2189_arctan__ubound,axiom,
! [Y: real] : ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% arctan_ubound
thf(fact_2190_arctan__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% arctan_bounded
thf(fact_2191_arctan__lbound,axiom,
! [Y: real] : ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) ) ).
% arctan_lbound
thf(fact_2192_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_2193_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( modulo_modulo @ int @ K @ L ) @ ( zero_zero @ int ) ) ) ).
% neg_mod_sign
thf(fact_2194_neg__mod__conj,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
& ( ord_less @ int @ B2 @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ).
% neg_mod_conj
thf(fact_2195_pos__mod__conj,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ A2 @ B2 ) )
& ( ord_less @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ B2 ) ) ) ).
% pos_mod_conj
thf(fact_2196_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( ( modulo_modulo @ int @ I @ K )
= I )
= ( ( K
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I )
& ( ord_less @ int @ I @ K ) )
| ( ( ord_less_eq @ int @ I @ ( zero_zero @ int ) )
& ( ord_less @ int @ K @ I ) ) ) ) ).
% zmod_trivial_iff
thf(fact_2197_zabs__def,axiom,
( ( abs_abs @ int )
= ( ^ [I3: int] : ( if @ int @ ( ord_less @ int @ I3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ int @ I3 ) @ I3 ) ) ) ).
% zabs_def
thf(fact_2198_zdiv__mono__strict,axiom,
! [A4: int,B4: int,N2: int] :
( ( ord_less @ int @ A4 @ B4 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( ( modulo_modulo @ int @ A4 @ N2 )
= ( zero_zero @ int ) )
=> ( ( ( modulo_modulo @ int @ B4 @ N2 )
= ( zero_zero @ int ) )
=> ( ord_less @ int @ ( divide_divide @ int @ A4 @ N2 ) @ ( divide_divide @ int @ B4 @ N2 ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_2199_zmod__zminus2__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( zero_zero @ int ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( minus_minus @ int @ ( modulo_modulo @ int @ A2 @ B2 ) @ B2 ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_2200_zmod__zminus1__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( zero_zero @ int ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( minus_minus @ int @ B2 @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_2201_div__mod__decomp__int,axiom,
! [A4: int,N2: int] :
( A4
= ( plus_plus @ int @ ( times_times @ int @ ( divide_divide @ int @ A4 @ N2 ) @ N2 ) @ ( modulo_modulo @ int @ A4 @ N2 ) ) ) ).
% div_mod_decomp_int
thf(fact_2202_eucl__rel__int,axiom,
! [K: int,L: int] : ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ ( divide_divide @ int @ K @ L ) @ ( modulo_modulo @ int @ K @ L ) ) ) ).
% eucl_rel_int
thf(fact_2203_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ ( plus_plus @ int @ K @ L ) @ ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ K @ L )
= ( plus_plus @ int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_2204_pi__less__4,axiom,
ord_less @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ).
% pi_less_4
thf(fact_2205_mod__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ( ord_less_eq @ int @ L @ K )
=> ( ( modulo_modulo @ int @ K @ L )
= ( modulo_modulo @ int @ ( minus_minus @ int @ K @ L ) @ L ) ) ) ) ).
% mod_pos_geq
thf(fact_2206_int__mod__pos__eq,axiom,
! [A2: int,B2: int,Q4: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ R2 )
=> ( ( ord_less @ int @ R2 @ B2 )
=> ( ( modulo_modulo @ int @ A2 @ B2 )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_2207_int__mod__neg__eq,axiom,
! [A2: int,B2: int,Q4: int,R2: int] :
( ( A2
= ( plus_plus @ int @ ( times_times @ int @ B2 @ Q4 ) @ R2 ) )
=> ( ( ord_less_eq @ int @ R2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ B2 @ R2 )
=> ( ( modulo_modulo @ int @ A2 @ B2 )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_2208_split__zmod,axiom,
! [P: int > $o,N2: int,K: int] :
( ( P @ ( modulo_modulo @ int @ N2 @ K ) )
= ( ( ( K
= ( zero_zero @ int ) )
=> ( P @ N2 ) )
& ( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J3 )
& ( ord_less @ int @ J3 @ K )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) )
& ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ! [I3: int,J3: int] :
( ( ( ord_less @ int @ K @ J3 )
& ( ord_less_eq @ int @ J3 @ ( zero_zero @ int ) )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) ) ) ) ).
% split_zmod
thf(fact_2209_minus__mod__int__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ L )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ K ) @ L )
= ( minus_minus @ int @ ( minus_minus @ int @ L @ ( one_one @ int ) ) @ ( modulo_modulo @ int @ ( minus_minus @ int @ K @ ( one_one @ int ) ) @ L ) ) ) ) ).
% minus_mod_int_eq
thf(fact_2210_zmod__minus1,axiom,
! [B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ B2 )
= ( minus_minus @ int @ B2 @ ( one_one @ int ) ) ) ) ).
% zmod_minus1
thf(fact_2211_pi__half__neq__zero,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ real ) ) ).
% pi_half_neq_zero
thf(fact_2212_pi__half__less__two,axiom,
ord_less @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% pi_half_less_two
thf(fact_2213_zmod__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ C2 )
=> ( ( modulo_modulo @ int @ A2 @ ( times_times @ int @ B2 @ C2 ) )
= ( plus_plus @ int @ ( times_times @ int @ B2 @ ( modulo_modulo @ int @ ( divide_divide @ int @ A2 @ B2 ) @ C2 ) ) @ ( modulo_modulo @ int @ A2 @ B2 ) ) ) ) ).
% zmod_zmult2_eq
thf(fact_2214_zdiv__zminus1__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% zdiv_zminus1_eq_if
thf(fact_2215_zdiv__zminus2__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( ( ( modulo_modulo @ int @ A2 @ B2 )
= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) ) )
& ( ( ( modulo_modulo @ int @ A2 @ B2 )
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ A2 @ ( uminus_uminus @ int @ B2 ) )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ A2 @ B2 ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% zdiv_zminus2_eq_if
thf(fact_2216_monoseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( topological_monoseq @ real @ ( power_power @ real @ X ) ) ) ) ).
% monoseq_realpow
thf(fact_2217_nat__intermed__int__val,axiom,
! [M: nat,N2: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ( ord_less_eq @ nat @ M @ I2 )
& ( ord_less @ nat @ I2 @ N2 ) )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less_eq @ int @ ( F2 @ M ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N2 ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ M @ I2 )
& ( ord_less_eq @ nat @ I2 @ N2 )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_2218_decr__lemma,axiom,
! [D2: int,X: int,Z2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ord_less @ int @ ( minus_minus @ int @ X @ ( times_times @ int @ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ X @ Z2 ) ) @ ( one_one @ int ) ) @ D2 ) ) @ Z2 ) ) ).
% decr_lemma
thf(fact_2219_incr__lemma,axiom,
! [D2: int,Z2: int,X: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ D2 )
=> ( ord_less @ int @ Z2 @ ( plus_plus @ int @ X @ ( times_times @ int @ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ X @ Z2 ) ) @ ( one_one @ int ) ) @ D2 ) ) ) ) ).
% incr_lemma
thf(fact_2220_verit__le__mono__div__int,axiom,
! [A4: int,B4: int,N2: int] :
( ( ord_less @ int @ A4 @ B4 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less_eq @ int
@ ( plus_plus @ int @ ( divide_divide @ int @ A4 @ N2 )
@ ( if @ int
@ ( ( modulo_modulo @ int @ B4 @ N2 )
= ( zero_zero @ int ) )
@ ( one_one @ int )
@ ( zero_zero @ int ) ) )
@ ( divide_divide @ int @ B4 @ N2 ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_2221_pi__half__gt__zero,axiom,
ord_less @ real @ ( zero_zero @ real ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% pi_half_gt_zero
thf(fact_2222_pi__half__ge__zero,axiom,
ord_less_eq @ real @ ( zero_zero @ real ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ).
% pi_half_ge_zero
thf(fact_2223_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( P @ ( divide_divide @ int @ N2 @ K ) @ ( modulo_modulo @ int @ N2 @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ J3 )
& ( ord_less @ int @ J3 @ K )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_2224_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N2: int] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ( ( P @ ( divide_divide @ int @ N2 @ K ) @ ( modulo_modulo @ int @ N2 @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less @ int @ K @ J3 )
& ( ord_less_eq @ int @ J3 @ ( zero_zero @ int ) )
& ( N2
= ( plus_plus @ int @ ( times_times @ int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_2225_m2pi__less__pi,axiom,
ord_less @ real @ ( uminus_uminus @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_2226_nat__ivt__aux,axiom,
! [N2: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N2 )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ int @ ( F2 @ ( zero_zero @ nat ) ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N2 ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ I2 @ N2 )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_2227_minus__pi__half__less__zero,axiom,
ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( zero_zero @ real ) ).
% minus_pi_half_less_zero
thf(fact_2228_pos__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( modulo_modulo @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ B2 @ A2 ) ) ) ) ) ).
% pos_zmod_mult_2
thf(fact_2229_nat0__intermed__int__val,axiom,
! [N2: nat,F2: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N2 )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( F2 @ ( plus_plus @ nat @ I2 @ ( one_one @ nat ) ) ) @ ( F2 @ I2 ) ) ) @ ( one_one @ int ) ) )
=> ( ( ord_less_eq @ int @ ( F2 @ ( zero_zero @ nat ) ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( F2 @ N2 ) )
=> ? [I2: nat] :
( ( ord_less_eq @ nat @ I2 @ N2 )
& ( ( F2 @ I2 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_2230_arctan__add,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( abs_abs @ real @ Y ) @ ( one_one @ real ) )
=> ( ( plus_plus @ real @ ( arctan @ X ) @ ( arctan @ Y ) )
= ( arctan @ ( divide_divide @ real @ ( plus_plus @ real @ X @ Y ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( times_times @ real @ X @ Y ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_2231_neg__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( modulo_modulo @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ B2 ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ A2 ) )
= ( minus_minus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( plus_plus @ int @ B2 @ ( one_one @ int ) ) @ A2 ) ) @ ( one_one @ int ) ) ) ) ).
% neg_zmod_mult_2
thf(fact_2232_arctan__double,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( arctan @ X ) )
= ( arctan @ ( divide_divide @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_2233_sin__cos__npi,axiom,
! [N2: nat] :
( ( sin @ real @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N2 ) ) ).
% sin_cos_npi
thf(fact_2234_flip__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se8732182000553998342ip_bit @ A @ ( suc @ N2 ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se8732182000553998342ip_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_2235_signed__take__bit__rec,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4674362597316999326ke_bit @ A )
= ( ^ [N3: nat,A3: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( uminus_uminus @ A @ ( modulo_modulo @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
@ ( plus_plus @ A @ ( modulo_modulo @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4674362597316999326ke_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_2236_summable__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( summable @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_2237_product__nth,axiom,
! [A: $tType,B: $tType,N2: nat,Xs2: list @ A,Ys3: list @ B] :
( ( ord_less @ nat @ N2 @ ( times_times @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys3 ) ) )
=> ( ( nth @ ( product_prod @ A @ B ) @ ( product @ A @ B @ Xs2 @ Ys3 ) @ N2 )
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ ( divide_divide @ nat @ N2 @ ( size_size @ ( list @ B ) @ Ys3 ) ) ) @ ( nth @ B @ Ys3 @ ( modulo_modulo @ nat @ N2 @ ( size_size @ ( list @ B ) @ Ys3 ) ) ) ) ) ) ).
% product_nth
thf(fact_2238_tanh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( tanh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( minus_minus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ).
% tanh_ln_real
thf(fact_2239_cos__pi__eq__zero,axiom,
! [M: nat] :
( ( cos @ real @ ( divide_divide @ real @ ( times_times @ real @ pi @ ( semiring_1_of_nat @ real @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ).
% cos_pi_eq_zero
thf(fact_2240_sin__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sin_zero
thf(fact_2241_flip__bit__nonnegative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se8732182000553998342ip_bit @ int @ N2 @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% flip_bit_nonnegative_int_iff
thf(fact_2242_flip__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se8732182000553998342ip_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% flip_bit_negative_int_iff
thf(fact_2243_signed__take__bit__of__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ N2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% signed_take_bit_of_0
thf(fact_2244_tanh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tanh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% tanh_0
thf(fact_2245_tanh__real__zero__iff,axiom,
! [X: real] :
( ( ( tanh @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% tanh_real_zero_iff
thf(fact_2246_tanh__real__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( tanh @ real @ X ) @ ( tanh @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ).
% tanh_real_less_iff
thf(fact_2247_summable__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( summable @ A
@ ^ [N3: nat] : ( zero_zero @ A ) ) ) ).
% summable_zero
thf(fact_2248_summable__single,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [I: nat,F2: nat > A] :
( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( R5 = I ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ).
% summable_single
thf(fact_2249_summable__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
= ( summable @ A @ F2 ) ) ) ).
% summable_iff_shift
thf(fact_2250_cos__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% cos_zero
thf(fact_2251_signed__take__bit__Suc__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( suc @ N2 ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% signed_take_bit_Suc_1
thf(fact_2252_signed__take__bit__of__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_ri4674362597316999326ke_bit @ A @ N2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% signed_take_bit_of_minus_1
thf(fact_2253_signed__take__bit__numeral__of__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: num] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( numeral_numeral @ nat @ K ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% signed_take_bit_numeral_of_1
thf(fact_2254_sin__pi,axiom,
( ( sin @ real @ pi )
= ( zero_zero @ real ) ) ).
% sin_pi
thf(fact_2255_tanh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( tanh @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% tanh_real_pos_iff
thf(fact_2256_tanh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( tanh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% tanh_real_neg_iff
thf(fact_2257_tanh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( tanh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% tanh_real_nonpos_iff
thf(fact_2258_tanh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( tanh @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% tanh_real_nonneg_iff
thf(fact_2259_summable__cmult__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( summable @ A @ F2 ) ) ) ) ).
% summable_cmult_iff
thf(fact_2260_summable__divide__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: nat > A,C2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( F2 @ N3 ) @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( summable @ A @ F2 ) ) ) ) ).
% summable_divide_iff
thf(fact_2261_summable__If__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [P: nat > $o,F2: nat > A] :
( ( finite_finite @ nat @ ( collect @ nat @ P ) )
=> ( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( P @ R5 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ) ).
% summable_If_finite
thf(fact_2262_summable__If__finite__set,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [A4: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ A4 )
=> ( summable @ A
@ ^ [R5: nat] : ( if @ A @ ( member @ nat @ R5 @ A4 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) ) ) ) ) ).
% summable_If_finite_set
thf(fact_2263_signed__take__bit__Suc__bit0,axiom,
! [N2: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N2 ) @ ( numeral_numeral @ int @ ( bit0 @ K ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_Suc_bit0
thf(fact_2264_sin__cos__squared__add3,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ X ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ X ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add3
thf(fact_2265_sin__npi2,axiom,
! [N2: nat] :
( ( sin @ real @ ( times_times @ real @ pi @ ( semiring_1_of_nat @ real @ N2 ) ) )
= ( zero_zero @ real ) ) ).
% sin_npi2
thf(fact_2266_sin__npi,axiom,
! [N2: nat] :
( ( sin @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_npi
thf(fact_2267_summable__geometric__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( summable @ A @ ( power_power @ A @ C2 ) )
= ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) ) ) ) ).
% summable_geometric_iff
thf(fact_2268_signed__take__bit__Suc__minus__bit0,axiom,
! [N2: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% signed_take_bit_Suc_minus_bit0
thf(fact_2269_signed__take__bit__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( uminus_uminus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_2270_cos__pi__half,axiom,
( ( cos @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ).
% cos_pi_half
thf(fact_2271_sin__two__pi,axiom,
( ( sin @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_two_pi
thf(fact_2272_sin__cos__squared__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add
thf(fact_2273_sin__cos__squared__add2,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_cos_squared_add2
thf(fact_2274_sin__2npi,axiom,
! [N2: nat] :
( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% sin_2npi
thf(fact_2275_cos__one__sin__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
= ( one_one @ A ) )
=> ( ( sin @ A @ X )
= ( zero_zero @ A ) ) ) ) ).
% cos_one_sin_zero
thf(fact_2276_sin__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sin @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( sin @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% sin_add
thf(fact_2277_summable__comparison__test_H,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [G: nat > real,N7: nat,F2: nat > A] :
( ( summable @ real @ G )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ N7 @ N )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) @ ( G @ N ) ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_comparison_test'
thf(fact_2278_summable__comparison__test,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,G: nat > real] :
( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) @ ( G @ N ) ) )
=> ( ( summable @ real @ G )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_comparison_test
thf(fact_2279_summable__const__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [C2: A] :
( ( summable @ A
@ ^ [Uu3: nat] : C2 )
= ( C2
= ( zero_zero @ A ) ) ) ) ).
% summable_const_iff
thf(fact_2280_summable__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,G: nat > A] :
( ( summable @ A @ F2 )
=> ( ( summable @ A @ G )
=> ( summable @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% summable_add
thf(fact_2281_cos__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cos @ A @ ( plus_plus @ A @ X @ Y ) )
= ( minus_minus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% cos_add
thf(fact_2282_cos__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cos @ A @ ( minus_minus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) @ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ) ).
% cos_diff
thf(fact_2283_summable__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) ) )
= ( summable @ A @ F2 ) ) ) ).
% summable_Suc_iff
thf(fact_2284_summable__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_2285_sin__zero__norm__cos__one,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( cos @ A @ X ) )
= ( one_one @ real ) ) ) ) ).
% sin_zero_norm_cos_one
thf(fact_2286_sin__zero__abs__cos__one,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ( ( abs_abs @ real @ ( cos @ real @ X ) )
= ( one_one @ real ) ) ) ).
% sin_zero_abs_cos_one
thf(fact_2287_powser__insidea,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,X: A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ) ) ).
% powser_insidea
thf(fact_2288_sincos__principal__value,axiom,
! [X: real] :
? [Y4: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ Y4 )
& ( ord_less_eq @ real @ Y4 @ pi )
& ( ( sin @ real @ Y4 )
= ( sin @ real @ X ) )
& ( ( cos @ real @ Y4 )
= ( cos @ real @ X ) ) ) ).
% sincos_principal_value
thf(fact_2289_suminf__le,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,G: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( F2 @ N ) @ ( G @ N ) )
=> ( ( summable @ A @ F2 )
=> ( ( summable @ A @ G )
=> ( ord_less_eq @ A @ ( suminf @ A @ F2 ) @ ( suminf @ A @ G ) ) ) ) ) ) ).
% suminf_le
thf(fact_2290_summable__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [N7: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N7 )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ N7 )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_finite
thf(fact_2291_sin__x__le__x,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( sin @ real @ X ) @ X ) ) ).
% sin_x_le_x
thf(fact_2292_summable__mult__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_mult_D
thf(fact_2293_summable__zero__power,axiom,
! [A: $tType] :
( ( ( comm_ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( summable @ A @ ( power_power @ A @ ( zero_zero @ A ) ) ) ) ).
% summable_zero_power
thf(fact_2294_cos__arctan__not__zero,axiom,
! [X: real] :
( ( cos @ real @ ( arctan @ X ) )
!= ( zero_zero @ real ) ) ).
% cos_arctan_not_zero
thf(fact_2295_suminf__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,G: nat > A] :
( ( summable @ A @ F2 )
=> ( ( summable @ A @ G )
=> ( ( plus_plus @ A @ ( suminf @ A @ F2 ) @ ( suminf @ A @ G ) )
= ( suminf @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ) ).
% suminf_add
thf(fact_2296_tanh__real__lt__1,axiom,
! [X: real] : ( ord_less @ real @ ( tanh @ real @ X ) @ ( one_one @ real ) ) ).
% tanh_real_lt_1
thf(fact_2297_cos__squared__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cos_squared_eq
thf(fact_2298_sin__squared__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sin_squared_eq
thf(fact_2299_suminf__eq__zero__iff,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ( ( suminf @ A @ F2 )
= ( zero_zero @ A ) )
= ( ! [N3: nat] :
( ( F2 @ N3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_2300_suminf__nonneg,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_nonneg
thf(fact_2301_suminf__pos,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_pos
thf(fact_2302_sin__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ pi )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero
thf(fact_2303_sin__x__ge__neg__x,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( uminus_uminus @ real @ X ) @ ( sin @ real @ X ) ) ) ).
% sin_x_ge_neg_x
thf(fact_2304_sin__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_ge_zero
thf(fact_2305_summable__zero__power_H,axiom,
! [A: $tType] :
( ( ( ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ).
% summable_zero_power'
thf(fact_2306_summable__0__powser,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A] :
( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ).
% summable_0_powser
thf(fact_2307_cos__monotone__0__pi__le,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less_eq @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) ) ) ) ) ).
% cos_monotone_0_pi_le
thf(fact_2308_cos__mono__le__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ord_less_eq @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) )
= ( ord_less_eq @ real @ Y @ X ) ) ) ) ) ) ).
% cos_mono_le_eq
thf(fact_2309_cos__inj__pi,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ( cos @ real @ X )
= ( cos @ real @ Y ) )
=> ( X = Y ) ) ) ) ) ) ).
% cos_inj_pi
thf(fact_2310_sin__times__pi__eq__0,axiom,
! [X: real] :
( ( ( sin @ real @ ( times_times @ real @ X @ pi ) )
= ( zero_zero @ real ) )
= ( member @ real @ X @ ( ring_1_Ints @ real ) ) ) ).
% sin_times_pi_eq_0
thf(fact_2311_summable__powser__split__head,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% summable_powser_split_head
thf(fact_2312_powser__split__head_I3_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% powser_split_head(3)
thf(fact_2313_summable__powser__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: nat > A,M: nat,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( plus_plus @ nat @ N3 @ M ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_2314_sin__times__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( times_times @ A @ ( sin @ A @ W2 ) @ ( sin @ A @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( cos @ A @ ( minus_minus @ A @ W2 @ Z2 ) ) @ ( cos @ A @ ( plus_plus @ A @ W2 @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% sin_times_sin
thf(fact_2315_sin__times__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( times_times @ A @ ( sin @ A @ W2 ) @ ( cos @ A @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( sin @ A @ ( plus_plus @ A @ W2 @ Z2 ) ) @ ( sin @ A @ ( minus_minus @ A @ W2 @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% sin_times_cos
thf(fact_2316_cos__times__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( times_times @ A @ ( cos @ A @ W2 ) @ ( sin @ A @ Z2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( sin @ A @ ( plus_plus @ A @ W2 @ Z2 ) ) @ ( sin @ A @ ( minus_minus @ A @ W2 @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% cos_times_sin
thf(fact_2317_sin__plus__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( plus_plus @ A @ ( sin @ A @ W2 ) @ ( sin @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_2318_sin__diff__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( minus_minus @ A @ ( sin @ A @ W2 ) @ ( sin @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_2319_cos__diff__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( minus_minus @ A @ ( cos @ A @ W2 ) @ ( cos @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( sin @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( sin @ A @ ( divide_divide @ A @ ( minus_minus @ A @ Z2 @ W2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_2320_summable__norm__comparison__test,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,G: nat > real] :
( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) @ ( G @ N ) ) )
=> ( ( summable @ real @ G )
=> ( summable @ real
@ ^ [N3: nat] : ( real_V7770717601297561774m_norm @ A @ ( F2 @ N3 ) ) ) ) ) ) ).
% summable_norm_comparison_test
thf(fact_2321_summable__rabs__comparison__test,axiom,
! [F2: nat > real,G: nat > real] :
( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ real @ ( abs_abs @ real @ ( F2 @ N ) ) @ ( G @ N ) ) )
=> ( ( summable @ real @ G )
=> ( summable @ real
@ ^ [N3: nat] : ( abs_abs @ real @ ( F2 @ N3 ) ) ) ) ) ).
% summable_rabs_comparison_test
thf(fact_2322_cos__double__sin,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ W2 ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ ( sin @ A @ W2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_2323_suminf__pos2,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,I: nat] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ).
% suminf_pos2
thf(fact_2324_suminf__pos__iff,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( suminf @ A @ F2 ) )
= ( ? [I3: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I3 ) ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_2325_tanh__real__gt__neg1,axiom,
! [X: real] : ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( tanh @ real @ X ) ) ).
% tanh_real_gt_neg1
thf(fact_2326_cos__two__neq__zero,axiom,
( ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ real ) ) ).
% cos_two_neq_zero
thf(fact_2327_powser__inside,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,X: A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) ) ) ) ) ).
% powser_inside
thf(fact_2328_cos__monotone__0__pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ord_less @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_2329_cos__mono__less__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ pi )
=> ( ( ord_less @ real @ ( cos @ real @ X ) @ ( cos @ real @ Y ) )
= ( ord_less @ real @ Y @ X ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_2330_sin__eq__0__pi,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ X )
=> ( ( ord_less @ real @ X @ pi )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ) ).
% sin_eq_0_pi
thf(fact_2331_complete__algebra__summable__geometric,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( summable @ A @ ( power_power @ A @ X ) ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_2332_summable__geometric,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( summable @ A @ ( power_power @ A @ C2 ) ) ) ) ).
% summable_geometric
thf(fact_2333_sin__zero__pi__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ pi )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% sin_zero_pi_iff
thf(fact_2334_suminf__split__head,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) ) )
= ( minus_minus @ A @ ( suminf @ A @ F2 ) @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% suminf_split_head
thf(fact_2335_cos__monotone__minus__pi__0_H,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less_eq @ real @ ( cos @ real @ Y ) @ ( cos @ real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0'
thf(fact_2336_sincos__total__pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ pi )
& ( X
= ( cos @ real @ T4 ) )
& ( Y
= ( sin @ real @ T4 ) ) ) ) ) ).
% sincos_total_pi
thf(fact_2337_sin__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( sin @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
= ( cos @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% sin_expansion_lemma
thf(fact_2338_cos__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( cos @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
= ( uminus_uminus @ real @ ( sin @ real @ ( plus_plus @ real @ X @ ( divide_divide @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ M ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_expansion_lemma
thf(fact_2339_sin__gt__zero__02,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero_02
thf(fact_2340_cos__two__less__zero,axiom,
ord_less @ real @ ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ real ) ).
% cos_two_less_zero
thf(fact_2341_cos__two__le__zero,axiom,
ord_less_eq @ real @ ( cos @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( zero_zero @ real ) ).
% cos_two_le_zero
thf(fact_2342_cos__is__zero,axiom,
? [X4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X4 )
& ( ord_less_eq @ real @ X4 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X4 )
= ( zero_zero @ real ) )
& ! [Y3: real] :
( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y3 )
& ( ord_less_eq @ real @ Y3 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ Y3 )
= ( zero_zero @ real ) ) )
=> ( Y3 = X4 ) ) ) ).
% cos_is_zero
thf(fact_2343_cos__monotone__minus__pi__0,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( cos @ real @ Y ) @ ( cos @ real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_2344_cos__total,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ? [X4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X4 )
& ( ord_less_eq @ real @ X4 @ pi )
& ( ( cos @ real @ X4 )
= Y )
& ! [Y3: real] :
( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y3 )
& ( ord_less_eq @ real @ Y3 @ pi )
& ( ( cos @ real @ Y3 )
= Y ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% cos_total
thf(fact_2345_signed__take__bit__int__less__exp,axiom,
! [N2: nat,K: int] : ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% signed_take_bit_int_less_exp
thf(fact_2346_sincos__total__pi__half,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( X
= ( cos @ real @ T4 ) )
& ( Y
= ( sin @ real @ T4 ) ) ) ) ) ) ).
% sincos_total_pi_half
thf(fact_2347_sincos__total__2pi__le,axiom,
! [X: real,Y: real] :
( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
& ( X
= ( cos @ real @ T4 ) )
& ( Y
= ( sin @ real @ T4 ) ) ) ) ).
% sincos_total_2pi_le
thf(fact_2348_sincos__total__2pi,axiom,
! [X: real,Y: real] :
( ( ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) )
=> ~ ! [T4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
=> ( ( ord_less @ real @ T4 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ( X
= ( cos @ real @ T4 ) )
=> ( Y
!= ( sin @ real @ T4 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_2349_powser__split__head_I1_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
= ( plus_plus @ A @ ( F2 @ ( zero_zero @ nat ) )
@ ( times_times @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ Z2 ) ) ) ) ) ).
% powser_split_head(1)
thf(fact_2350_powser__split__head_I2_J,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: nat > A,Z2: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
=> ( ( times_times @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ Z2 )
= ( minus_minus @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% powser_split_head(2)
thf(fact_2351_sin__integer__2pi,axiom,
! [N2: real] :
( ( member @ real @ N2 @ ( ring_1_Ints @ real ) )
=> ( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ N2 ) )
= ( zero_zero @ real ) ) ) ).
% sin_integer_2pi
thf(fact_2352_suminf__exist__split,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [R2: real,F2: nat > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ( ( summable @ A @ F2 )
=> ? [N9: nat] :
! [N5: nat] :
( ( ord_less_eq @ nat @ N9 @ N5 )
=> ( ord_less @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( suminf @ A
@ ^ [I3: nat] : ( F2 @ ( plus_plus @ nat @ I3 @ N5 ) ) ) )
@ R2 ) ) ) ) ) ).
% suminf_exist_split
thf(fact_2353_sin__pi__divide__n__ge__0,axiom,
! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ ( divide_divide @ real @ pi @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_2354_summable__power__series,axiom,
! [F2: nat > real,Z2: real] :
( ! [I2: nat] : ( ord_less_eq @ real @ ( F2 @ I2 ) @ ( one_one @ real ) )
=> ( ! [I2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ I2 ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Z2 )
=> ( ( ord_less @ real @ Z2 @ ( one_one @ real ) )
=> ( summable @ real
@ ^ [I3: nat] : ( times_times @ real @ ( F2 @ I3 ) @ ( power_power @ real @ Z2 @ I3 ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_2355_Abel__lemma,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [R2: real,R0: real,A2: nat > A,M7: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ R2 )
=> ( ( ord_less @ real @ R2 @ R0 )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ ( A2 @ N ) ) @ ( power_power @ real @ R0 @ N ) ) @ M7 )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ ( A2 @ N3 ) ) @ ( power_power @ real @ R2 @ N3 ) ) ) ) ) ) ) ).
% Abel_lemma
thf(fact_2356_signed__take__bit__int__less__self__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) @ K )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_2357_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ K @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) )
= ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_2358_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less @ int @ K @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) )
= ( ord_less @ int @ K @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_2359_cos__times__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( times_times @ A @ ( cos @ A @ W2 ) @ ( cos @ A @ Z2 ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( cos @ A @ ( minus_minus @ A @ W2 @ Z2 ) ) @ ( cos @ A @ ( plus_plus @ A @ W2 @ Z2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% cos_times_cos
thf(fact_2360_cos__plus__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A,Z2: A] :
( ( plus_plus @ A @ ( cos @ A @ W2 ) @ ( cos @ A @ Z2 ) )
= ( times_times @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( cos @ A @ ( divide_divide @ A @ ( plus_plus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) @ ( cos @ A @ ( divide_divide @ A @ ( minus_minus @ A @ W2 @ Z2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_2361_summable__ratio__test,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [C2: real,N7: nat,F2: nat > A] :
( ( ord_less @ real @ C2 @ ( one_one @ real ) )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ N7 @ N )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ ( suc @ N ) ) ) @ ( times_times @ real @ C2 @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) ) ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_ratio_test
thf(fact_2362_sin__gt__zero2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) ) ) ) ).
% sin_gt_zero2
thf(fact_2363_sin__lt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ pi @ X )
=> ( ( ord_less @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ord_less @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_lt_zero
thf(fact_2364_cos__double__less__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
=> ( ord_less @ real @ ( cos @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) ) @ ( one_one @ real ) ) ) ) ).
% cos_double_less_one
thf(fact_2365_cos__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_gt_zero
thf(fact_2366_signed__take__bit__int__less__eq,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ K )
=> ( ord_less_eq @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) @ ( minus_minus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N2 ) ) ) ) ) ).
% signed_take_bit_int_less_eq
thf(fact_2367_cos__double__cos,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [W2: A] :
( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ W2 ) )
= ( minus_minus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ ( cos @ A @ W2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( one_one @ A ) ) ) ) ).
% cos_double_cos
thf(fact_2368_signed__take__bit__int__eq__self,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) @ K )
=> ( ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_2369_signed__take__bit__int__eq__self__iff,axiom,
! [N2: nat,K: int] :
( ( ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K )
= K )
= ( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) @ K )
& ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_2370_sin__le__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ pi @ X )
=> ( ( ord_less @ real @ X @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( ord_less_eq @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_le_zero
thf(fact_2371_sin__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( sin @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% sin_less_zero
thf(fact_2372_sin__monotone__2pi,axiom,
! [Y: real,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( sin @ real @ Y ) @ ( sin @ real @ X ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_2373_sin__mono__less__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( sin @ real @ X ) @ ( sin @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_2374_cos__gt__zero__pi,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_2375_cos__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( cos @ real @ X ) ) ) ) ).
% cos_ge_zero
thf(fact_2376_sin__pi__divide__n__gt__0,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sin @ real @ ( divide_divide @ real @ pi @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_2377_signed__take__bit__int__greater__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less @ int @ K @ ( uminus_uminus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N2 ) ) ) @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_2378_signed__take__bit__Suc,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ ( suc @ N2 ) @ A2 )
= ( plus_plus @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_ri4674362597316999326ke_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_2379_tan__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( divide_divide @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( tan @ A @ X ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( tan @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_2380_sum__gp,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [N2: nat,M: nat,X: A] :
( ( ( ord_less @ nat @ N2 @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) @ M ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ ( suc @ N2 ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_2381_prod_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I5: set @ B,X: B > A,Y: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( X @ I3 )
!= ( one_one @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( Y @ I3 )
!= ( one_one @ A ) ) ) ) )
=> ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( times_times @ A @ ( X @ I3 ) @ ( Y @ I3 ) )
!= ( one_one @ A ) ) ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_2382_sum_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I5: set @ B,X: B > A,Y: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( X @ I3 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( Y @ I3 )
!= ( zero_zero @ A ) ) ) ) )
=> ( finite_finite @ B
@ ( collect @ B
@ ^ [I3: B] :
( ( member @ B @ I3 @ I5 )
& ( ( plus_plus @ A @ ( X @ I3 ) @ ( Y @ I3 ) )
!= ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_2383_geometric__deriv__sums,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [Z2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ ( one_one @ real ) )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( power_power @ A @ Z2 @ N3 ) )
@ ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( minus_minus @ A @ ( one_one @ A ) @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_2384_sin__zero__iff,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [N3: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) )
| ? [N3: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( uminus_uminus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% sin_zero_iff
thf(fact_2385_dvd__0__right,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] : ( dvd_dvd @ A @ A2 @ ( zero_zero @ A ) ) ) ).
% dvd_0_right
thf(fact_2386_dvd__0__left__iff,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( zero_zero @ A ) @ A2 )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% dvd_0_left_iff
thf(fact_2387_dvd__add__triv__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ A2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_triv_right_iff
thf(fact_2388_dvd__add__triv__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_triv_left_iff
thf(fact_2389_div__dvd__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ B2 @ A2 ) @ ( divide_divide @ A @ C2 @ A2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ) ).
% div_dvd_div
thf(fact_2390_dvd__minus__iff,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A] :
( ( dvd_dvd @ A @ X @ ( uminus_uminus @ A @ Y ) )
= ( dvd_dvd @ A @ X @ Y ) ) ) ).
% dvd_minus_iff
thf(fact_2391_minus__dvd__iff,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A] :
( ( dvd_dvd @ A @ ( uminus_uminus @ A @ X ) @ Y )
= ( dvd_dvd @ A @ X @ Y ) ) ) ).
% minus_dvd_iff
thf(fact_2392_abs__dvd__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: A,K: A] :
( ( dvd_dvd @ A @ ( abs_abs @ A @ M ) @ K )
= ( dvd_dvd @ A @ M @ K ) ) ) ).
% abs_dvd_iff
thf(fact_2393_dvd__abs__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [M: A,K: A] :
( ( dvd_dvd @ A @ M @ ( abs_abs @ A @ K ) )
= ( dvd_dvd @ A @ M @ K ) ) ) ).
% dvd_abs_iff
thf(fact_2394_tan__pi,axiom,
( ( tan @ real @ pi )
= ( zero_zero @ real ) ) ).
% tan_pi
thf(fact_2395_tan__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tan @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% tan_zero
thf(fact_2396_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd @ nat @ M @ ( one_one @ nat ) )
= ( M
= ( one_one @ nat ) ) ) ).
% nat_dvd_1_iff_1
thf(fact_2397_Ints__sum,axiom,
! [A: $tType,B: $tType] :
( ( ring_1 @ B )
=> ! [A4: set @ A,F2: A > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( member @ B @ ( F2 @ X4 ) @ ( ring_1_Ints @ B ) ) )
=> ( member @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ A4 ) @ ( ring_1_Ints @ B ) ) ) ) ).
% Ints_sum
thf(fact_2398_sum_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B] :
( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [Uu3: B] : ( zero_zero @ A )
@ A4 )
= ( zero_zero @ A ) ) ) ).
% sum.neutral_const
thf(fact_2399_of__nat__sum,axiom,
! [A: $tType,B: $tType] :
( ( semiring_1 @ A )
=> ! [F2: B > nat,A4: set @ B] :
( ( semiring_1_of_nat @ A @ ( groups7311177749621191930dd_sum @ B @ nat @ F2 @ A4 ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( semiring_1_of_nat @ A @ ( F2 @ X3 ) )
@ A4 ) ) ) ).
% of_nat_sum
thf(fact_2400_sums__zero,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( sums @ A
@ ^ [N3: nat] : ( zero_zero @ A )
@ ( zero_zero @ A ) ) ) ).
% sums_zero
thf(fact_2401_dvd__mult__cancel__left,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_mult_cancel_left
thf(fact_2402_dvd__mult__cancel__right,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_mult_cancel_right
thf(fact_2403_dvd__times__left__cancel__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( times_times @ A @ A2 @ C2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_2404_dvd__times__right__cancel__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ B2 @ A2 ) @ ( times_times @ A @ C2 @ A2 ) )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_2405_dvd__add__times__triv__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ ( times_times @ A @ C2 @ A2 ) ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_2406_dvd__add__times__triv__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ ( times_times @ A @ C2 @ A2 ) @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_2407_unit__prod,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% unit_prod
thf(fact_2408_dvd__mult__div__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ A2 ) )
= B2 ) ) ) ).
% dvd_mult_div_cancel
thf(fact_2409_dvd__div__mult__self,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% dvd_div_mult_self
thf(fact_2410_div__add,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ) ).
% div_add
thf(fact_2411_unit__div__1__div__1,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ ( one_one @ A ) @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= A2 ) ) ) ).
% unit_div_1_div_1
thf(fact_2412_unit__div__1__unit,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) @ ( one_one @ A ) ) ) ) ).
% unit_div_1_unit
thf(fact_2413_unit__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ).
% unit_div
thf(fact_2414_sum_Oempty,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A] :
( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( bot_bot @ ( set @ B ) ) )
= ( zero_zero @ A ) ) ) ).
% sum.empty
thf(fact_2415_sum__eq__0__iff,axiom,
! [A: $tType,B: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [F4: set @ B,F2: B > A] :
( ( finite_finite @ B @ F4 )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ F4 )
= ( zero_zero @ A ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ F4 )
=> ( ( F2 @ X3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_2416_sum_Oinfinite,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A] :
( ~ ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( zero_zero @ A ) ) ) ) ).
% sum.infinite
thf(fact_2417_div__diff,axiom,
! [A: $tType] :
( ( idom_modulo @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( minus_minus @ A @ A2 @ B2 ) @ C2 )
= ( minus_minus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ) ).
% div_diff
thf(fact_2418_dvd__imp__mod__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( modulo_modulo @ A @ B2 @ A2 )
= ( zero_zero @ A ) ) ) ) ).
% dvd_imp_mod_0
thf(fact_2419_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) ).
% dvd_1_left
thf(fact_2420_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( M
= ( suc @ ( zero_zero @ nat ) ) ) ) ).
% dvd_1_iff_1
thf(fact_2421_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( ( K
= ( zero_zero @ nat ) )
| ( dvd_dvd @ nat @ M @ N2 ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_2422_sum_Odelta_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum.delta'
thf(fact_2423_sum_Odelta,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( zero_zero @ A ) )
@ S3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum.delta
thf(fact_2424_sum__abs,axiom,
! [B: $tType,A: $tType] :
( ( ordere166539214618696060dd_abs @ B )
=> ! [F2: A > B,A4: set @ A] :
( ord_less_eq @ B @ ( abs_abs @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ A4 ) )
@ ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I3: A] : ( abs_abs @ B @ ( F2 @ I3 ) )
@ A4 ) ) ) ).
% sum_abs
thf(fact_2425_unit__div__mult__self,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ A2 ) @ A2 )
= B2 ) ) ) ).
% unit_div_mult_self
thf(fact_2426_unit__mult__div__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ B2 @ ( divide_divide @ A @ ( one_one @ A ) @ A2 ) )
= ( divide_divide @ A @ B2 @ A2 ) ) ) ) ).
% unit_mult_div_div
thf(fact_2427_pow__divides__pow__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% pow_divides_pow_iff
thf(fact_2428_tan__npi,axiom,
! [N2: nat] :
( ( tan @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ pi ) )
= ( zero_zero @ real ) ) ).
% tan_npi
thf(fact_2429_sum__abs__ge__zero,axiom,
! [B: $tType,A: $tType] :
( ( ordere166539214618696060dd_abs @ B )
=> ! [F2: A > B,A4: set @ A] :
( ord_less_eq @ B @ ( zero_zero @ B )
@ ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I3: A] : ( abs_abs @ B @ ( F2 @ I3 ) )
@ A4 ) ) ) ).
% sum_abs_ge_zero
thf(fact_2430_even__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ).
% even_add
thf(fact_2431_odd__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) )
= ( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
!= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) ) ) ) ).
% odd_add
thf(fact_2432_even__Suc,axiom,
! [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ N2 ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% even_Suc
thf(fact_2433_even__Suc__Suc__iff,axiom,
! [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ N2 ) ) )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% even_Suc_Suc_iff
thf(fact_2434_powser__sums__zero__iff,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: nat > A,X: A] :
( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) )
@ X )
= ( ( A2 @ ( zero_zero @ nat ) )
= X ) ) ) ).
% powser_sums_zero_iff
thf(fact_2435_even__plus__one__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_plus_one_iff
thf(fact_2436_even__diff,axiom,
! [A: $tType] :
( ( ring_parity @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% even_diff
thf(fact_2437_odd__Suc__div__two,axiom,
! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( divide_divide @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( suc @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_2438_even__Suc__div__two,axiom,
! [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( divide_divide @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_2439_sum_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ ( suc @ N2 ) @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ ( suc @ N2 ) @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_2440_set__decode__0,axiom,
! [X: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ ( nat_set_decode @ X ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ X ) ) ) ).
% set_decode_0
thf(fact_2441_sum__zero__power,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A4: set @ nat,C2: nat > A] :
( ( ( ( finite_finite @ nat @ A4 )
& ( member @ nat @ ( zero_zero @ nat ) @ A4 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ I3 ) )
@ A4 )
= ( C2 @ ( zero_zero @ nat ) ) ) )
& ( ~ ( ( finite_finite @ nat @ A4 )
& ( member @ nat @ ( zero_zero @ nat ) @ A4 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ I3 ) )
@ A4 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_zero_power
thf(fact_2442_even__succ__div__2,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_succ_div_2
thf(fact_2443_odd__succ__div__two,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ) ).
% odd_succ_div_two
thf(fact_2444_even__succ__div__two,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_succ_div_two
thf(fact_2445_zero__le__power__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W2: num] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W2 ) ) )
= ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_2446_even__power,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( power_power @ A @ A2 @ N2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% even_power
thf(fact_2447_power__less__zero__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W2: num] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W2 ) ) @ ( zero_zero @ A ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_2448_power__less__zero__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ N2 ) @ ( zero_zero @ A ) )
= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% power_less_zero_eq
thf(fact_2449_neg__one__odd__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% neg_one_odd_power
thf(fact_2450_neg__one__even__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 )
= ( one_one @ A ) ) ) ) ).
% neg_one_even_power
thf(fact_2451_odd__Suc__minus__one,axiom,
! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( suc @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) )
= N2 ) ) ).
% odd_Suc_minus_one
thf(fact_2452_even__diff__nat,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ M @ N2 ) )
= ( ( ord_less @ nat @ M @ N2 )
| ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( plus_plus @ nat @ M @ N2 ) ) ) ) ).
% even_diff_nat
thf(fact_2453_sum__zero__power_H,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A4: set @ nat,C2: nat > A,D2: nat > A] :
( ( ( ( finite_finite @ nat @ A4 )
& ( member @ nat @ ( zero_zero @ nat ) @ A4 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( divide_divide @ A @ ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ I3 ) ) @ ( D2 @ I3 ) )
@ A4 )
= ( divide_divide @ A @ ( C2 @ ( zero_zero @ nat ) ) @ ( D2 @ ( zero_zero @ nat ) ) ) ) )
& ( ~ ( ( finite_finite @ nat @ A4 )
& ( member @ nat @ ( zero_zero @ nat ) @ A4 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( divide_divide @ A @ ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ I3 ) ) @ ( D2 @ I3 ) )
@ A4 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_zero_power'
thf(fact_2454_odd__two__times__div__two__succ,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( one_one @ A ) )
= A2 ) ) ) ).
% odd_two_times_div_two_succ
thf(fact_2455_semiring__parity__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ A ) ) )
= ( N2
= ( zero_zero @ nat ) ) ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_2456_zero__less__power__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W2: num] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W2 ) ) )
= ( ( ( numeral_numeral @ nat @ W2 )
= ( zero_zero @ nat ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( A2
!= ( zero_zero @ A ) ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_2457_odd__two__times__div__two__nat,axiom,
! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_2458_power__le__zero__eq__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,W2: num] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ ( numeral_numeral @ nat @ W2 ) ) @ ( zero_zero @ A ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ W2 ) )
& ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ W2 ) )
& ( A2
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_2459_even__succ__div__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_2460_even__succ__mod__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( modulo_modulo @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( modulo_modulo @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_2461_sum__mono,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [K5: set @ B,F2: B > A,G: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ K5 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ K5 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ K5 ) ) ) ) ).
% sum_mono
thf(fact_2462_sum_Odistrib,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,H: B > A,A4: set @ B] :
( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ ( G @ X3 ) @ ( H @ X3 ) )
@ A4 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ H @ A4 ) ) ) ) ).
% sum.distrib
thf(fact_2463_gcd__nat_Oasym,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ~ ( ( dvd_dvd @ nat @ B2 @ A2 )
& ( B2 != A2 ) ) ) ).
% gcd_nat.asym
thf(fact_2464_gcd__nat_Orefl,axiom,
! [A2: nat] : ( dvd_dvd @ nat @ A2 @ A2 ) ).
% gcd_nat.refl
thf(fact_2465_gcd__nat_Otrans,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( dvd_dvd @ nat @ B2 @ C2 )
=> ( dvd_dvd @ nat @ A2 @ C2 ) ) ) ).
% gcd_nat.trans
thf(fact_2466_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A3: nat,B3: nat] :
( ( dvd_dvd @ nat @ A3 @ B3 )
& ( dvd_dvd @ nat @ B3 @ A3 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_2467_gcd__nat_Oirrefl,axiom,
! [A2: nat] :
~ ( ( dvd_dvd @ nat @ A2 @ A2 )
& ( A2 != A2 ) ) ).
% gcd_nat.irrefl
thf(fact_2468_gcd__nat_Oantisym,axiom,
! [A2: nat,B2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( dvd_dvd @ nat @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% gcd_nat.antisym
thf(fact_2469_gcd__nat_Ostrict__trans,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ( ( ( dvd_dvd @ nat @ B2 @ C2 )
& ( B2 != C2 ) )
=> ( ( dvd_dvd @ nat @ A2 @ C2 )
& ( A2 != C2 ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_2470_gcd__nat_Ostrict__trans1,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( ( dvd_dvd @ nat @ B2 @ C2 )
& ( B2 != C2 ) )
=> ( ( dvd_dvd @ nat @ A2 @ C2 )
& ( A2 != C2 ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_2471_gcd__nat_Ostrict__trans2,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ( ( dvd_dvd @ nat @ B2 @ C2 )
=> ( ( dvd_dvd @ nat @ A2 @ C2 )
& ( A2 != C2 ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_2472_gcd__nat_Ostrict__iff__not,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
= ( ( dvd_dvd @ nat @ A2 @ B2 )
& ~ ( dvd_dvd @ nat @ B2 @ A2 ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_2473_gcd__nat_Oorder__iff__strict,axiom,
( ( dvd_dvd @ nat )
= ( ^ [A3: nat,B3: nat] :
( ( ( dvd_dvd @ nat @ A3 @ B3 )
& ( A3 != B3 ) )
| ( A3 = B3 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_2474_gcd__nat_Ostrict__iff__order,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
= ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_2475_gcd__nat_Ostrict__implies__order,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ( dvd_dvd @ nat @ A2 @ B2 ) ) ).
% gcd_nat.strict_implies_order
thf(fact_2476_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ( A2 != B2 ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_2477_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A2: nat,B2: nat] :
( ( A2 != B2 )
=> ( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_2478_dvd__refl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] : ( dvd_dvd @ A @ A2 @ A2 ) ) ).
% dvd_refl
thf(fact_2479_dvd__trans,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ C2 )
=> ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_trans
thf(fact_2480_dvd__antisym,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd @ nat @ M @ N2 )
=> ( ( dvd_dvd @ nat @ N2 @ M )
=> ( M = N2 ) ) ) ).
% dvd_antisym
thf(fact_2481_sum_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,A4: set @ B] :
( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
!= ( zero_zero @ A ) )
=> ~ ! [A5: B] :
( ( member @ B @ A5 @ A4 )
=> ( ( G @ A5 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_2482_sum_Oneutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( zero_zero @ A ) ) ) ) ).
% sum.neutral
thf(fact_2483_sums__le,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,G: nat > A,S: A,T2: A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( F2 @ N ) @ ( G @ N ) )
=> ( ( sums @ A @ F2 @ S )
=> ( ( sums @ A @ G @ T2 )
=> ( ord_less_eq @ A @ S @ T2 ) ) ) ) ) ).
% sums_le
thf(fact_2484_sums__0,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A] :
( ! [N: nat] :
( ( F2 @ N )
= ( zero_zero @ A ) )
=> ( sums @ A @ F2 @ ( zero_zero @ A ) ) ) ) ).
% sums_0
thf(fact_2485_sums__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [N7: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N7 )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ N7 )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( sums @ A @ F2 @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ N7 ) ) ) ) ) ).
% sums_finite
thf(fact_2486_sums__If__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [P: nat > $o,F2: nat > A] :
( ( finite_finite @ nat @ ( collect @ nat @ P ) )
=> ( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( P @ R5 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( collect @ nat @ P ) ) ) ) ) ).
% sums_If_finite
thf(fact_2487_sums__If__finite__set,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [A4: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ A4 )
=> ( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( member @ nat @ R5 @ A4 ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ A4 ) ) ) ) ).
% sums_If_finite_set
thf(fact_2488_dvd__0__left,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( zero_zero @ A ) @ A2 )
=> ( A2
= ( zero_zero @ A ) ) ) ) ).
% dvd_0_left
thf(fact_2489_dvd__field__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [A3: A,B3: A] :
( ( A3
= ( zero_zero @ A ) )
=> ( B3
= ( zero_zero @ A ) ) ) ) ) ) ).
% dvd_field_iff
thf(fact_2490_dvd__productE,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [P6: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ P6 @ ( times_times @ A @ A2 @ B2 ) )
=> ~ ! [X4: A,Y4: A] :
( ( P6
= ( times_times @ A @ X4 @ Y4 ) )
=> ( ( dvd_dvd @ A @ X4 @ A2 )
=> ~ ( dvd_dvd @ A @ Y4 @ B2 ) ) ) ) ) ).
% dvd_productE
thf(fact_2491_division__decomp,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
=> ? [B9: A,C6: A] :
( ( A2
= ( times_times @ A @ B9 @ C6 ) )
& ( dvd_dvd @ A @ B9 @ B2 )
& ( dvd_dvd @ A @ C6 @ C2 ) ) ) ) ).
% division_decomp
thf(fact_2492_dvdE,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ~ ! [K2: A] :
( A2
!= ( times_times @ A @ B2 @ K2 ) ) ) ) ).
% dvdE
thf(fact_2493_dvdI,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ! [A2: A,B2: A,K: A] :
( ( A2
= ( times_times @ A @ B2 @ K ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% dvdI
thf(fact_2494_dvd__def,axiom,
! [A: $tType] :
( ( dvd @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [B3: A,A3: A] :
? [K3: A] :
( A3
= ( times_times @ A @ B3 @ K3 ) ) ) ) ) ).
% dvd_def
thf(fact_2495_dvd__mult,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult
thf(fact_2496_dvd__mult2,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult2
thf(fact_2497_dvd__mult__left,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
=> ( dvd_dvd @ A @ A2 @ C2 ) ) ) ).
% dvd_mult_left
thf(fact_2498_dvd__triv__left,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) ) ) ).
% dvd_triv_left
thf(fact_2499_mult__dvd__mono,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ D2 )
=> ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ).
% mult_dvd_mono
thf(fact_2500_dvd__mult__right,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
=> ( dvd_dvd @ A @ B2 @ C2 ) ) ) ).
% dvd_mult_right
thf(fact_2501_dvd__triv__right,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ A2 ) ) ) ).
% dvd_triv_right
thf(fact_2502_dvd__add__right__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_add_right_iff
thf(fact_2503_dvd__add__left__iff,axiom,
! [A: $tType] :
( ( comm_s4317794764714335236cancel @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% dvd_add_left_iff
thf(fact_2504_dvd__add,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ C2 )
=> ( dvd_dvd @ A @ A2 @ ( plus_plus @ A @ B2 @ C2 ) ) ) ) ) ).
% dvd_add
thf(fact_2505_dvd__unit__imp__unit,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ A2 @ ( one_one @ A ) ) ) ) ) ).
% dvd_unit_imp_unit
thf(fact_2506_unit__imp__dvd,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% unit_imp_dvd
thf(fact_2507_one__dvd,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] : ( dvd_dvd @ A @ ( one_one @ A ) @ A2 ) ) ).
% one_dvd
thf(fact_2508_dvd__diff,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( dvd_dvd @ A @ X @ Y )
=> ( ( dvd_dvd @ A @ X @ Z2 )
=> ( dvd_dvd @ A @ X @ ( minus_minus @ A @ Y @ Z2 ) ) ) ) ) ).
% dvd_diff
thf(fact_2509_dvd__div__eq__iff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
= ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_2510_dvd__div__eq__cancel,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ C2 )
= ( divide_divide @ A @ B2 @ C2 ) )
=> ( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_2511_div__div__div__same,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [D2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ D2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ ( divide_divide @ A @ A2 @ D2 ) @ ( divide_divide @ A @ B2 @ D2 ) )
= ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_div_div_same
thf(fact_2512_gcd__nat_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_2513_gcd__nat_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ( dvd_dvd @ nat @ A2 @ ( zero_zero @ nat ) )
& ( A2
!= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_2514_gcd__nat_Oextremum__unique,axiom,
! [A2: nat] :
( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% gcd_nat.extremum_unique
thf(fact_2515_gcd__nat_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ( dvd_dvd @ nat @ ( zero_zero @ nat ) @ A2 )
& ( ( zero_zero @ nat )
!= A2 ) ) ).
% gcd_nat.extremum_strict
thf(fact_2516_gcd__nat_Oextremum,axiom,
! [A2: nat] : ( dvd_dvd @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% gcd_nat.extremum
thf(fact_2517_dvd__if__abs__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [L: A,K: A] :
( ( ( abs_abs @ A @ L )
= ( abs_abs @ A @ K ) )
=> ( dvd_dvd @ A @ L @ K ) ) ) ).
% dvd_if_abs_eq
thf(fact_2518_dvd__mod__iff,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( dvd_dvd @ A @ C2 @ A2 ) ) ) ) ).
% dvd_mod_iff
thf(fact_2519_dvd__mod__imp__dvd,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ ( modulo_modulo @ A @ A2 @ B2 ) )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( dvd_dvd @ A @ C2 @ A2 ) ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_2520_sum__nonpos,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( zero_zero @ A ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( zero_zero @ A ) ) ) ) ).
% sum_nonpos
thf(fact_2521_sum__nonneg,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X4 ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) ) ) ) ).
% sum_nonneg
thf(fact_2522_dvd__diff__nat,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ K @ M )
=> ( ( dvd_dvd @ nat @ K @ N2 )
=> ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N2 ) ) ) ) ).
% dvd_diff_nat
thf(fact_2523_sum__mono__inv,axiom,
! [A: $tType,I6: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [F2: I6 > A,I5: set @ I6,G: I6 > A,I: I6] :
( ( ( groups7311177749621191930dd_sum @ I6 @ A @ F2 @ I5 )
= ( groups7311177749621191930dd_sum @ I6 @ A @ G @ I5 ) )
=> ( ! [I2: I6] :
( ( member @ I6 @ I2 @ I5 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member @ I6 @ I @ I5 )
=> ( ( finite_finite @ I6 @ I5 )
=> ( ( F2 @ I )
= ( G @ I ) ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_2524_sum__cong__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ nat,F2: nat > A,G: nat > A] :
( ~ ( member @ nat @ ( zero_zero @ nat ) @ A4 )
=> ( ! [X4: nat] :
( ( member @ nat @ ( suc @ X4 ) @ A4 )
=> ( ( F2 @ ( suc @ X4 ) )
= ( G @ ( suc @ X4 ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ A4 )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ A4 ) ) ) ) ) ).
% sum_cong_Suc
thf(fact_2525_sums__single,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [I: nat,F2: nat > A] :
( sums @ A
@ ^ [R5: nat] : ( if @ A @ ( R5 = I ) @ ( F2 @ R5 ) @ ( zero_zero @ A ) )
@ ( F2 @ I ) ) ) ).
% sums_single
thf(fact_2526_sums__add,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,A2: A,G: nat > A,B2: A] :
( ( sums @ A @ F2 @ A2 )
=> ( ( sums @ A @ G @ B2 )
=> ( sums @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% sums_add
thf(fact_2527_sum_Ointer__filter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A,P: B > $o] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( P @ X3 ) ) ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( if @ A @ ( P @ X3 ) @ ( G @ X3 ) @ ( zero_zero @ A ) )
@ A4 ) ) ) ) ).
% sum.inter_filter
thf(fact_2528_sums__If__finite__set_H,axiom,
! [A: $tType] :
( ( ( topolo1287966508704411220up_add @ A )
& ( topological_t2_space @ A ) )
=> ! [G: nat > A,S3: A,A4: set @ nat,S4: A,F2: nat > A] :
( ( sums @ A @ G @ S3 )
=> ( ( finite_finite @ nat @ A4 )
=> ( ( S4
= ( plus_plus @ A @ S3
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ A4 ) ) )
=> ( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( member @ nat @ N3 @ A4 ) @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ S4 ) ) ) ) ) ).
% sums_If_finite_set'
thf(fact_2529_subset__divisors__dvd,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [C3: A] : ( dvd_dvd @ A @ C3 @ A2 ) )
@ ( collect @ A
@ ^ [C3: A] : ( dvd_dvd @ A @ C3 @ B2 ) ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% subset_divisors_dvd
thf(fact_2530_strict__subset__divisors__dvd,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ ( set @ A )
@ ( collect @ A
@ ^ [C3: A] : ( dvd_dvd @ A @ C3 @ A2 ) )
@ ( collect @ A
@ ^ [C3: A] : ( dvd_dvd @ A @ C3 @ B2 ) ) )
= ( ( dvd_dvd @ A @ A2 @ B2 )
& ~ ( dvd_dvd @ A @ B2 @ A2 ) ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_2531_sum__nonneg__eq__0__iff,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [A4: set @ B,F2: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X4 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 )
= ( zero_zero @ A ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ( F2 @ X3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_2532_sum__le__included,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,T2: set @ C,G: C > A,I: C > B,F2: B > A] :
( ( finite_finite @ B @ S )
=> ( ( finite_finite @ C @ T2 )
=> ( ! [X4: C] :
( ( member @ C @ X4 @ T2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( G @ X4 ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S )
=> ? [Xa: C] :
( ( member @ C @ Xa @ T2 )
& ( ( I @ Xa )
= X4 )
& ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S ) @ ( groups7311177749621191930dd_sum @ C @ A @ G @ T2 ) ) ) ) ) ) ) ).
% sum_le_included
thf(fact_2533_sum__strict__mono__ex1,axiom,
! [A: $tType,I6: $tType] :
( ( ordere8940638589300402666id_add @ A )
=> ! [A4: set @ I6,F2: I6 > A,G: I6 > A] :
( ( finite_finite @ I6 @ A4 )
=> ( ! [X4: I6] :
( ( member @ I6 @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ? [X2: I6] :
( ( member @ I6 @ X2 @ A4 )
& ( ord_less @ A @ ( F2 @ X2 ) @ ( G @ X2 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ I6 @ A @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ I6 @ A @ G @ A4 ) ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_2534_sum_Orelated,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [R: A > A > $o,S3: set @ B,H: B > A,G: B > A] :
( ( R @ ( zero_zero @ A ) @ ( zero_zero @ A ) )
=> ( ! [X1: A,Y1: A,X23: A,Y23: A] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus @ A @ X1 @ Y1 ) @ ( plus_plus @ A @ X23 @ Y23 ) ) )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( R @ ( H @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups7311177749621191930dd_sum @ B @ A @ H @ S3 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ) ) ).
% sum.related
thf(fact_2535_sum__strict__mono,axiom,
! [A: $tType,B: $tType] :
( ( strict7427464778891057005id_add @ A )
=> ! [A4: set @ B,F2: B > A,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) ) ) ) ) ) ).
% sum_strict_mono
thf(fact_2536_sum_Oreindex__bij__witness__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_add @ A )
=> ! [S4: set @ B,T5: set @ C,S3: set @ B,I: C > B,J: B > C,T6: set @ C,G: B > A,H: C > A] :
( ( finite_finite @ B @ S4 )
=> ( ( finite_finite @ C @ T5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) )
=> ( ( I @ ( J @ A5 ) )
= A5 ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) )
=> ( member @ C @ ( J @ A5 ) @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( ( J @ ( I @ B5 ) )
= B5 ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( member @ B @ ( I @ B5 ) @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S4 )
=> ( ( G @ A5 )
= ( zero_zero @ A ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ T5 )
=> ( ( H @ B5 )
= ( zero_zero @ A ) ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S3 )
=> ( ( H @ ( J @ A5 ) )
= ( G @ A5 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ C @ A @ H @ T6 ) ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_2537_not__is__unit__0,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ~ ( dvd_dvd @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% not_is_unit_0
thf(fact_2538_pinf_I9_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z: B] :
! [X2: B] :
( ( ord_less @ B @ Z @ X2 )
=> ( ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) )
= ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) ) ) ) ).
% pinf(9)
thf(fact_2539_pinf_I10_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z: B] :
! [X2: B] :
( ( ord_less @ B @ Z @ X2 )
=> ( ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) )
= ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) ) ) ) ) ).
% pinf(10)
thf(fact_2540_minf_I9_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z: B] :
! [X2: B] :
( ( ord_less @ B @ X2 @ Z )
=> ( ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) )
= ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) ) ) ) ).
% minf(9)
thf(fact_2541_minf_I10_J,axiom,
! [B: $tType] :
( ( ( plus @ B )
& ( linorder @ B )
& ( dvd @ B ) )
=> ! [D2: B,S: B] :
? [Z: B] :
! [X2: B] :
( ( ord_less @ B @ X2 @ Z )
=> ( ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) )
= ( ~ ( dvd_dvd @ B @ D2 @ ( plus_plus @ B @ X2 @ S ) ) ) ) ) ) ).
% minf(10)
thf(fact_2542_dvd__div__eq__0__iff,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_2543_is__unit__mult__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) )
= ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
& ( dvd_dvd @ A @ B2 @ ( one_one @ A ) ) ) ) ) ).
% is_unit_mult_iff
thf(fact_2544_dvd__mult__unit__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_mult_unit_iff
thf(fact_2545_mult__unit__dvd__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% mult_unit_dvd_iff
thf(fact_2546_dvd__mult__unit__iff_H,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_2547_mult__unit__dvd__iff_H,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_2548_unit__mult__left__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( times_times @ A @ A2 @ B2 )
= ( times_times @ A @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_mult_left_cancel
thf(fact_2549_unit__mult__right__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( times_times @ A @ B2 @ A2 )
= ( times_times @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_mult_right_cancel
thf(fact_2550_dvd__div__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ B2 @ C2 ) @ A2 )
= ( divide_divide @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 ) ) ) ) ).
% dvd_div_mult
thf(fact_2551_div__mult__swap,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% div_mult_swap
thf(fact_2552_div__div__eq__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% div_div_eq_right
thf(fact_2553_dvd__div__mult2__eq,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ B2 @ C2 ) @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% dvd_div_mult2_eq
thf(fact_2554_dvd__mult__imp__div,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 )
=> ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ).
% dvd_mult_imp_div
thf(fact_2555_div__mult__div__if__dvd,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,D2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( dvd_dvd @ A @ D2 @ C2 )
=> ( ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( divide_divide @ A @ C2 @ D2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ D2 ) ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_2556_div__plus__div__distrib__dvd__right,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_2557_div__plus__div__distrib__dvd__left,axiom,
! [A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ A2 @ B2 ) @ C2 )
= ( plus_plus @ A @ ( divide_divide @ A @ A2 @ C2 ) @ ( divide_divide @ A @ B2 @ C2 ) ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_2558_dvd__div__unit__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% dvd_div_unit_iff
thf(fact_2559_div__unit__dvd__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% div_unit_dvd_iff
thf(fact_2560_unit__div__cancel,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= ( divide_divide @ A @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ) ).
% unit_div_cancel
thf(fact_2561_dvd__neg__div,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% dvd_neg_div
thf(fact_2562_dvd__div__neg,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( uminus_uminus @ A @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% dvd_div_neg
thf(fact_2563_sums__mult2__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [C2: A,F2: nat > A,D2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 )
@ ( times_times @ A @ D2 @ C2 ) )
= ( sums @ A @ F2 @ D2 ) ) ) ) ).
% sums_mult2_iff
thf(fact_2564_sums__mult__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [C2: A,F2: nat > A,D2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) )
@ ( times_times @ A @ C2 @ D2 ) )
= ( sums @ A @ F2 @ D2 ) ) ) ) ).
% sums_mult_iff
thf(fact_2565_mod__0__imp__dvd,axiom,
! [A: $tType] :
( ( semiring_modulo @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% mod_0_imp_dvd
thf(fact_2566_dvd__eq__mod__eq__0,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ( ( dvd_dvd @ A )
= ( ^ [A3: A,B3: A] :
( ( modulo_modulo @ A @ B3 @ A3 )
= ( zero_zero @ A ) ) ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_2567_mod__eq__0__iff__dvd,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [A2: A,B2: A] :
( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% mod_eq_0_iff_dvd
thf(fact_2568_dvd__power__le,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A,Y: A,N2: nat,M: nat] :
( ( dvd_dvd @ A @ X @ Y )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( dvd_dvd @ A @ ( power_power @ A @ X @ N2 ) @ ( power_power @ A @ Y @ M ) ) ) ) ) ).
% dvd_power_le
thf(fact_2569_power__le__dvd,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N2: nat,B2: A,M: nat] :
( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N2 ) @ B2 )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( dvd_dvd @ A @ ( power_power @ A @ A2 @ M ) @ B2 ) ) ) ) ).
% power_le_dvd
thf(fact_2570_le__imp__power__dvd,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( dvd_dvd @ A @ ( power_power @ A @ A2 @ M ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% le_imp_power_dvd
thf(fact_2571_dvd__minus__mod,axiom,
! [A: $tType] :
( ( semidom_modulo @ A )
=> ! [B2: A,A2: A] : ( dvd_dvd @ A @ B2 @ ( minus_minus @ A @ A2 @ ( modulo_modulo @ A @ A2 @ B2 ) ) ) ) ).
% dvd_minus_mod
thf(fact_2572_nat__dvd__not__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N2 )
=> ~ ( dvd_dvd @ nat @ N2 @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_2573_dvd__pos__nat,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( dvd_dvd @ nat @ M @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ M ) ) ) ).
% dvd_pos_nat
thf(fact_2574_dvd__minus__self,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N2 @ M ) )
= ( ( ord_less @ nat @ N2 @ M )
| ( dvd_dvd @ nat @ M @ N2 ) ) ) ).
% dvd_minus_self
thf(fact_2575_sum__nonneg__leq__bound,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,F2: B > A,B4: A,I: B] :
( ( finite_finite @ B @ S )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ S )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S )
= B4 )
=> ( ( member @ B @ I @ S )
=> ( ord_less_eq @ A @ ( F2 @ I ) @ B4 ) ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_2576_sum__nonneg__0,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [S: set @ B,F2: B > A,I: B] :
( ( finite_finite @ B @ S )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ S )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ S )
= ( zero_zero @ A ) )
=> ( ( member @ B @ I @ S )
=> ( ( F2 @ I )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_2577_dvd__diffD,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N2 ) )
=> ( ( dvd_dvd @ nat @ K @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( dvd_dvd @ nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_2578_dvd__diffD1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ K @ ( minus_minus @ nat @ M @ N2 ) )
=> ( ( dvd_dvd @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( dvd_dvd @ nat @ K @ N2 ) ) ) ) ).
% dvd_diffD1
thf(fact_2579_less__eq__dvd__minus,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( dvd_dvd @ nat @ M @ N2 )
= ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_2580_bezout__lemma__nat,axiom,
! [D2: nat,A2: nat,B2: nat,X: nat,Y: nat] :
( ( dvd_dvd @ nat @ D2 @ A2 )
=> ( ( dvd_dvd @ nat @ D2 @ B2 )
=> ( ( ( ( times_times @ nat @ A2 @ X )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y ) @ D2 ) )
| ( ( times_times @ nat @ B2 @ X )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y ) @ D2 ) ) )
=> ? [X4: nat,Y4: nat] :
( ( dvd_dvd @ nat @ D2 @ A2 )
& ( dvd_dvd @ nat @ D2 @ ( plus_plus @ nat @ A2 @ B2 ) )
& ( ( ( times_times @ nat @ A2 @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ Y4 ) @ D2 ) )
| ( ( times_times @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y4 ) @ D2 ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_2581_bezout__add__nat,axiom,
! [A2: nat,B2: nat] :
? [D5: nat,X4: nat,Y4: nat] :
( ( dvd_dvd @ nat @ D5 @ A2 )
& ( dvd_dvd @ nat @ D5 @ B2 )
& ( ( ( times_times @ nat @ A2 @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y4 ) @ D5 ) )
| ( ( times_times @ nat @ B2 @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ A2 @ Y4 ) @ D5 ) ) ) ) ).
% bezout_add_nat
thf(fact_2582_bezout1__nat,axiom,
! [A2: nat,B2: nat] :
? [D5: nat,X4: nat,Y4: nat] :
( ( dvd_dvd @ nat @ D5 @ A2 )
& ( dvd_dvd @ nat @ D5 @ B2 )
& ( ( ( minus_minus @ nat @ ( times_times @ nat @ A2 @ X4 ) @ ( times_times @ nat @ B2 @ Y4 ) )
= D5 )
| ( ( minus_minus @ nat @ ( times_times @ nat @ B2 @ X4 ) @ ( times_times @ nat @ A2 @ Y4 ) )
= D5 ) ) ) ).
% bezout1_nat
thf(fact_2583_sum_Osetdiff__irrelevant,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G
@ ( minus_minus @ ( set @ B ) @ A4
@ ( collect @ B
@ ^ [X3: B] :
( ( G @ X3 )
= ( zero_zero @ A ) ) ) ) )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_2584_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_2585_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_2586_sum__pos2,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [I5: set @ B,I: B,F2: B > A] :
( ( finite_finite @ B @ I5 )
=> ( ( member @ B @ I @ I5 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ I5 ) ) ) ) ) ) ) ).
% sum_pos2
thf(fact_2587_sum__pos,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [I5: set @ B,F2: B > A] :
( ( finite_finite @ B @ I5 )
=> ( ( I5
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ I5 ) ) ) ) ) ) ).
% sum_pos
thf(fact_2588_sum_Omono__neutral__cong__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ T6 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ S3 ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_2589_sum_Omono__neutral__cong__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T6: set @ B,S3: set @ B,H: B > A,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ X4 )
= ( zero_zero @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ T6 ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_2590_sum_Omono__neutral__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ T6 )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_2591_sum_Omono__neutral__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ T6 ) ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_2592_sum_Osame__carrierI,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [C5: set @ B,A4: set @ B,B4: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ C5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ C5 @ A4 ) )
=> ( ( G @ A5 )
= ( zero_zero @ A ) ) )
=> ( ! [B5: B] :
( ( member @ B @ B5 @ ( minus_minus @ ( set @ B ) @ C5 @ B4 ) )
=> ( ( H @ B5 )
= ( zero_zero @ A ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ C5 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ C5 ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ B4 ) ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_2593_sum_Osame__carrier,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [C5: set @ B,A4: set @ B,B4: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ C5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ C5 @ A4 ) )
=> ( ( G @ A5 )
= ( zero_zero @ A ) ) )
=> ( ! [B5: B] :
( ( member @ B @ B5 @ ( minus_minus @ ( set @ B ) @ C5 @ B4 ) )
=> ( ( H @ B5 )
= ( zero_zero @ A ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ B4 ) )
= ( ( groups7311177749621191930dd_sum @ B @ A @ G @ C5 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ C5 ) ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_2594_sum_Osubset__diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: set @ B,A4: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ B4 @ A4 )
=> ( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A4 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B4 ) ) ) ) ) ) ).
% sum.subset_diff
thf(fact_2595_sums__mult__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A,A2: A] :
( ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) )
@ A2 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( sums @ A @ F2 @ ( divide_divide @ A @ A2 @ C2 ) ) ) ) ) ).
% sums_mult_D
thf(fact_2596_sums__Suc__imp,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ S )
=> ( sums @ A @ F2 @ S ) ) ) ) ).
% sums_Suc_imp
thf(fact_2597_sums__Suc,axiom,
! [A: $tType] :
( ( ( topolo5987344860129210374id_add @ A )
& ( topological_t2_space @ A ) )
=> ! [F2: nat > A,L: A] :
( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ L )
=> ( sums @ A @ F2 @ ( plus_plus @ A @ L @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% sums_Suc
thf(fact_2598_sums__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A] :
( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ S )
= ( sums @ A @ F2 @ ( plus_plus @ A @ S @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% sums_Suc_iff
thf(fact_2599_sums__zero__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [N2: nat,F2: nat > A,S: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N2 )
=> ( ( F2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ( sums @ A
@ ^ [I3: nat] : ( F2 @ ( plus_plus @ nat @ I3 @ N2 ) )
@ S )
= ( sums @ A @ F2 @ S ) ) ) ) ).
% sums_zero_iff_shift
thf(fact_2600_unity__coeff__ex,axiom,
! [A: $tType] :
( ( ( dvd @ A )
& ( semiring_0 @ A ) )
=> ! [P: A > $o,L: A] :
( ( ? [X3: A] : ( P @ ( times_times @ A @ L @ X3 ) ) )
= ( ? [X3: A] :
( ( dvd_dvd @ A @ L @ ( plus_plus @ A @ X3 @ ( zero_zero @ A ) ) )
& ( P @ X3 ) ) ) ) ) ).
% unity_coeff_ex
thf(fact_2601_unit__dvdE,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ~ ( ( A2
!= ( zero_zero @ A ) )
=> ! [C4: A] :
( B2
!= ( times_times @ A @ A2 @ C4 ) ) ) ) ) ).
% unit_dvdE
thf(fact_2602_dvd__div__eq__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= C2 )
= ( B2
= ( times_times @ A @ C2 @ A2 ) ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_2603_div__dvd__iff__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( dvd_dvd @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( dvd_dvd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_2604_dvd__div__iff__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ( dvd_dvd @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_2605_dvd__div__div__eq__mult,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ D2 )
=> ( ( ( divide_divide @ A @ B2 @ A2 )
= ( divide_divide @ A @ D2 @ C2 ) )
= ( ( times_times @ A @ B2 @ C2 )
= ( times_times @ A @ A2 @ D2 ) ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_2606_unit__div__eq__0__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ) ).
% unit_div_eq_0_iff
thf(fact_2607_inf__period_I4_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [D2: A,D4: A,T2: A] :
( ( dvd_dvd @ A @ D2 @ D4 )
=> ! [X2: A,K4: A] :
( ( ~ ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ X2 @ T2 ) ) )
= ( ~ ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) @ T2 ) ) ) ) ) ) ).
% inf_period(4)
thf(fact_2608_inf__period_I3_J,axiom,
! [A: $tType] :
( ( ( comm_ring @ A )
& ( dvd @ A ) )
=> ! [D2: A,D4: A,T2: A] :
( ( dvd_dvd @ A @ D2 @ D4 )
=> ! [X2: A,K4: A] :
( ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ X2 @ T2 ) )
= ( dvd_dvd @ A @ D2 @ ( plus_plus @ A @ ( minus_minus @ A @ X2 @ ( times_times @ A @ K4 @ D4 ) ) @ T2 ) ) ) ) ) ).
% inf_period(3)
thf(fact_2609_is__unit__div__mult2__eq,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_2610_unit__div__mult__swap,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ A2 @ ( divide_divide @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ) ).
% unit_div_mult_swap
thf(fact_2611_unit__div__commute,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 )
= ( divide_divide @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 ) ) ) ) ).
% unit_div_commute
thf(fact_2612_div__mult__unit2,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( divide_divide @ A @ ( divide_divide @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% div_mult_unit2
thf(fact_2613_unit__eq__div2,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( A2
= ( divide_divide @ A @ C2 @ B2 ) )
= ( ( times_times @ A @ A2 @ B2 )
= C2 ) ) ) ) ).
% unit_eq_div2
thf(fact_2614_unit__eq__div1,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= C2 )
= ( A2
= ( times_times @ A @ C2 @ B2 ) ) ) ) ) ).
% unit_eq_div1
thf(fact_2615_is__unit__power__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,N2: nat] :
( ( dvd_dvd @ A @ ( power_power @ A @ A2 @ N2 ) @ ( one_one @ A ) )
= ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% is_unit_power_iff
thf(fact_2616_unit__imp__mod__eq__0,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ).
% unit_imp_mod_eq_0
thf(fact_2617_dvd__imp__le,axiom,
! [K: nat,N2: nat] :
( ( dvd_dvd @ nat @ K @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ nat @ K @ N2 ) ) ) ).
% dvd_imp_le
thf(fact_2618_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( dvd_dvd @ nat @ M @ N2 ) ) ) ).
% dvd_mult_cancel
thf(fact_2619_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) )
= ( dvd_dvd @ nat @ M @ N2 ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_2620_bezout__add__strong__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ? [D5: nat,X4: nat,Y4: nat] :
( ( dvd_dvd @ nat @ D5 @ A2 )
& ( dvd_dvd @ nat @ D5 @ B2 )
& ( ( times_times @ nat @ A2 @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y4 ) @ D5 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_2621_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( modulo_modulo @ nat @ M @ N2 ) )
= ( ~ ( dvd_dvd @ nat @ N2 @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_2622_mod__eq__dvd__iff__nat,axiom,
! [N2: nat,M: nat,Q4: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( ( modulo_modulo @ nat @ M @ Q4 )
= ( modulo_modulo @ nat @ N2 @ Q4 ) )
= ( dvd_dvd @ nat @ Q4 @ ( minus_minus @ nat @ M @ N2 ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_2623_real__of__nat__div,axiom,
! [D2: nat,N2: nat] :
( ( dvd_dvd @ nat @ D2 @ N2 )
=> ( ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N2 @ D2 ) )
= ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( semiring_1_of_nat @ real @ D2 ) ) ) ) ).
% real_of_nat_div
thf(fact_2624_sum__power__add,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,M: nat,I5: set @ nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( power_power @ A @ X @ ( plus_plus @ nat @ M @ I3 ) )
@ I5 )
= ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ I5 ) ) ) ) ).
% sum_power_add
thf(fact_2625_sum__mono2,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [B4: set @ B,A4: set @ B,F2: B > A] :
( ( finite_finite @ B @ B4 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ B4 )
=> ( ! [B5: B] :
( ( member @ B @ B5 @ ( minus_minus @ ( set @ B ) @ B4 @ A4 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ B5 ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ B4 ) ) ) ) ) ) ).
% sum_mono2
thf(fact_2626_sums__if_H,axiom,
! [G: nat > real,X: real] :
( ( sums @ real @ G @ X )
=> ( sums @ real
@ ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ real ) @ ( G @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ X ) ) ).
% sums_if'
thf(fact_2627_sum_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ N2 @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ N2 @ M ) ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_2628_sums__if,axiom,
! [G: nat > real,X: real,F2: nat > real,Y: real] :
( ( sums @ real @ G @ X )
=> ( ( sums @ real @ F2 @ Y )
=> ( sums @ real
@ ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( F2 @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( G @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ real @ X @ Y ) ) ) ) ).
% sums_if
thf(fact_2629_suminf__finite,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ! [N7: set @ nat,F2: nat > A] :
( ( finite_finite @ nat @ N7 )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ N7 )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( ( suminf @ A @ F2 )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ N7 ) ) ) ) ) ).
% suminf_finite
thf(fact_2630_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( finite_finite @ nat
@ ( collect @ nat
@ ^ [D6: nat] : ( dvd_dvd @ nat @ D6 @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_2631_powser__sums__if,axiom,
! [A: $tType] :
( ( ( ring_1 @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [M: nat,Z2: A] :
( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( if @ A @ ( N3 = M ) @ ( one_one @ A ) @ ( zero_zero @ A ) ) @ ( power_power @ A @ Z2 @ N3 ) )
@ ( power_power @ A @ Z2 @ M ) ) ) ).
% powser_sums_if
thf(fact_2632_powser__sums__zero,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: nat > A] :
( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ ( zero_zero @ A ) @ N3 ) )
@ ( A2 @ ( zero_zero @ nat ) ) ) ) ).
% powser_sums_zero
thf(fact_2633_sum__shift__lb__Suc0__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,K: nat] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_2634_sum_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_2635_sum_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N2 ) ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_2636_sum_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ ( suc @ N2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_2637_even__zero,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( zero_zero @ A ) ) ) ).
% even_zero
thf(fact_2638_is__unit__div__mult__cancel__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ B2 @ A2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_2639_is__unit__div__mult__cancel__left,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( divide_divide @ A @ A2 @ ( times_times @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ B2 ) ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_2640_is__unitE,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ~ ( ( A2
!= ( zero_zero @ A ) )
=> ! [B5: A] :
( ( B5
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ B5 @ ( one_one @ A ) )
=> ( ( ( divide_divide @ A @ ( one_one @ A ) @ A2 )
= B5 )
=> ( ( ( divide_divide @ A @ ( one_one @ A ) @ B5 )
= A2 )
=> ( ( ( times_times @ A @ A2 @ B5 )
= ( one_one @ A ) )
=> ( ( divide_divide @ A @ C2 @ A2 )
!= ( times_times @ A @ C2 @ B5 ) ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_2641_odd__even__add,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A,B2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 )
=> ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ) ).
% odd_even_add
thf(fact_2642_odd__one,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( one_one @ A ) ) ) ).
% odd_one
thf(fact_2643_dvd__power__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [X: A,M: nat,N2: nat] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( dvd_dvd @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ N2 ) )
= ( ( dvd_dvd @ A @ X @ ( one_one @ A ) )
| ( ord_less_eq @ nat @ M @ N2 ) ) ) ) ) ).
% dvd_power_iff
thf(fact_2644_dvd__power,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N2: nat,X: A] :
( ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
| ( X
= ( one_one @ A ) ) )
=> ( dvd_dvd @ A @ X @ ( power_power @ A @ X @ N2 ) ) ) ) ).
% dvd_power
thf(fact_2645_sum__strict__mono2,axiom,
! [B: $tType,A: $tType] :
( ( ordere8940638589300402666id_add @ B )
=> ! [B4: set @ A,A4: set @ A,B2: A,F2: A > B] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( member @ A @ B2 @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) )
=> ( ( ord_less @ B @ ( zero_zero @ B ) @ ( F2 @ B2 ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ B4 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ X4 ) ) )
=> ( ord_less @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ B4 ) ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_2646_div2__even__ext__nat,axiom,
! [X: nat,Y: nat] :
( ( ( divide_divide @ nat @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ X )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Y ) )
=> ( X = Y ) ) ) ).
% div2_even_ext_nat
thf(fact_2647_even__even__mod__4__iff,axiom,
! [N2: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
= ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_2648_dvd__mult__cancel1,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ M @ N2 ) @ M )
= ( N2
= ( one_one @ nat ) ) ) ) ).
% dvd_mult_cancel1
thf(fact_2649_dvd__mult__cancel2,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( dvd_dvd @ nat @ ( times_times @ nat @ N2 @ M ) @ M )
= ( N2
= ( one_one @ nat ) ) ) ) ).
% dvd_mult_cancel2
thf(fact_2650_dvd__minus__add,axiom,
! [Q4: nat,N2: nat,R2: nat,M: nat] :
( ( ord_less_eq @ nat @ Q4 @ N2 )
=> ( ( ord_less_eq @ nat @ Q4 @ ( times_times @ nat @ R2 @ M ) )
=> ( ( dvd_dvd @ nat @ M @ ( minus_minus @ nat @ N2 @ Q4 ) )
= ( dvd_dvd @ nat @ M @ ( plus_plus @ nat @ N2 @ ( minus_minus @ nat @ ( times_times @ nat @ R2 @ M ) @ Q4 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_2651_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N2: nat] :
( ( dvd_dvd @ nat @ ( power_power @ nat @ I @ M ) @ ( power_power @ nat @ I @ N2 ) )
=> ( ( ord_less @ nat @ ( one_one @ nat ) @ I )
=> ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% power_dvd_imp_le
thf(fact_2652_mod__nat__eqI,axiom,
! [R2: nat,N2: nat,M: nat] :
( ( ord_less @ nat @ R2 @ N2 )
=> ( ( ord_less_eq @ nat @ R2 @ M )
=> ( ( dvd_dvd @ nat @ N2 @ ( minus_minus @ nat @ M @ R2 ) )
=> ( ( modulo_modulo @ nat @ M @ N2 )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_2653_sum_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ M )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_2654_sum__Suc__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N2: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ I3 ) ) @ ( F2 @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( minus_minus @ A @ ( F2 @ ( suc @ N2 ) ) @ ( F2 @ M ) ) ) ) ) ).
% sum_Suc_diff
thf(fact_2655_convex__sum__bound__le,axiom,
! [A: $tType,B: $tType] :
( ( linordered_idom @ B )
=> ! [I5: set @ A,X: A > B,A2: A > B,B2: B,Delta: B] :
( ! [I2: A] :
( ( member @ A @ I2 @ I5 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( X @ I2 ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ A @ B @ X @ I5 )
= ( one_one @ B ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I5 )
=> ( ord_less_eq @ B @ ( abs_abs @ B @ ( minus_minus @ B @ ( A2 @ I2 ) @ B2 ) ) @ Delta ) )
=> ( ord_less_eq @ B
@ ( abs_abs @ B
@ ( minus_minus @ B
@ ( groups7311177749621191930dd_sum @ A @ B
@ ^ [I3: A] : ( times_times @ B @ ( A2 @ I3 ) @ ( X @ I3 ) )
@ I5 )
@ B2 ) )
@ Delta ) ) ) ) ) ).
% convex_sum_bound_le
thf(fact_2656_sum_Oub__add__nat,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A,P6: nat] :
( ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ N2 @ P6 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N2 @ P6 ) ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_2657_even__iff__mod__2__eq__zero,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_2658_odd__iff__mod__2__eq__one,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
= ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_2659_power__mono__odd,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) ) ) ) ) ).
% power_mono_odd
thf(fact_2660_sum__le__suminf,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,I5: set @ nat] :
( ( summable @ A @ F2 )
=> ( ( finite_finite @ nat @ I5 )
=> ( ! [N: nat] :
( ( member @ nat @ N @ ( uminus_uminus @ ( set @ nat ) @ I5 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ I5 ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ).
% sum_le_suminf
thf(fact_2661_odd__pos,axiom,
! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ).
% odd_pos
thf(fact_2662_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( ( dvd_dvd @ nat @ ( power_power @ nat @ K @ M ) @ ( power_power @ nat @ K @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% dvd_power_iff_le
thf(fact_2663_even__unset__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
| ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% even_unset_bit_iff
thf(fact_2664_set__encode__def,axiom,
( nat_set_encode
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% set_encode_def
thf(fact_2665_even__set__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
& ( M
!= ( zero_zero @ nat ) ) ) ) ) ).
% even_set_bit_iff
thf(fact_2666_even__flip__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
!= ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% even_flip_bit_iff
thf(fact_2667_oddE,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ~ ! [B5: A] :
( A2
!= ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B5 ) @ ( one_one @ A ) ) ) ) ) ).
% oddE
thf(fact_2668_parity__cases,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( zero_zero @ A ) ) )
=> ~ ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
!= ( one_one @ A ) ) ) ) ) ).
% parity_cases
thf(fact_2669_mod2__eq__if,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [A2: A] :
( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( one_one @ A ) ) ) ) ) ).
% mod2_eq_if
thf(fact_2670_zero__le__even__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,A2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) ) ) ) ).
% zero_le_even_power
thf(fact_2671_zero__le__odd__power,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,A2: A] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ).
% zero_le_odd_power
thf(fact_2672_zero__le__power__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) )
= ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_le_power_eq
thf(fact_2673_minus__one__power__iff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 )
= ( one_one @ A ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% minus_one_power_iff
thf(fact_2674_power__mono__even,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less_eq @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) ) ) ) ) ).
% power_mono_even
thf(fact_2675_sum__natinterval__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N2: nat,F2: nat > A] :
( ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( plus_plus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( minus_minus @ A @ ( F2 @ M ) @ ( F2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( plus_plus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( zero_zero @ A ) ) ) ) ) ).
% sum_natinterval_diff
thf(fact_2676_sum__telescope_H_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N2: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( minus_minus @ A @ ( F2 @ K3 ) @ ( F2 @ ( minus_minus @ nat @ K3 @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N2 ) )
= ( minus_minus @ A @ ( F2 @ N2 ) @ ( F2 @ M ) ) ) ) ) ).
% sum_telescope''
thf(fact_2677_summable__partial__sum__bound,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,E2: real] :
( ( summable @ A @ F2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ~ ! [N9: nat] :
~ ! [M2: nat] :
( ( ord_less_eq @ nat @ N9 @ M2 )
=> ! [N5: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ M2 @ N5 ) ) ) @ E2 ) ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_2678_geometric__sums,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ C2 ) @ ( one_one @ real ) )
=> ( sums @ A @ ( power_power @ A @ C2 ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( minus_minus @ A @ ( one_one @ A ) @ C2 ) ) ) ) ) ).
% geometric_sums
thf(fact_2679_power__half__series,axiom,
( sums @ real
@ ^ [N3: nat] : ( power_power @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( suc @ N3 ) )
@ ( one_one @ real ) ) ).
% power_half_series
thf(fact_2680_even__set__encode__iff,axiom,
! [A4: set @ nat] :
( ( finite_finite @ nat @ A4 )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( nat_set_encode @ A4 ) )
= ( ~ ( member @ nat @ ( zero_zero @ nat ) @ A4 ) ) ) ) ).
% even_set_encode_iff
thf(fact_2681_tan__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( tan @ real @ X ) ) ) ) ).
% tan_gt_zero
thf(fact_2682_lemma__tan__total,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ? [X4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X4 )
& ( ord_less @ real @ X4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ord_less @ real @ Y @ ( tan @ real @ X4 ) ) ) ) ).
% lemma_tan_total
thf(fact_2683_lemma__tan__total1,axiom,
! [Y: real] :
? [X4: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X4 )
& ( ord_less @ real @ X4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X4 )
= Y ) ) ).
% lemma_tan_total1
thf(fact_2684_tan__mono__lt__eq,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_2685_tan__monotone_H,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ Y @ X )
= ( ord_less @ real @ ( tan @ real @ Y ) @ ( tan @ real @ X ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_2686_tan__monotone,axiom,
! [Y: real,X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( tan @ real @ Y ) @ ( tan @ real @ X ) ) ) ) ) ).
% tan_monotone
thf(fact_2687_tan__total,axiom,
! [Y: real] :
? [X4: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X4 )
& ( ord_less @ real @ X4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X4 )
= Y )
& ! [Y3: real] :
( ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y3 )
& ( ord_less @ real @ Y3 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ Y3 )
= Y ) )
=> ( Y3 = X4 ) ) ) ).
% tan_total
thf(fact_2688_set__decode__def,axiom,
( nat_set_decode
= ( ^ [X3: nat] :
( collect @ nat
@ ^ [N3: nat] :
~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ) ) ).
% set_decode_def
thf(fact_2689_mask__eq__sum__exp,axiom,
! [A: $tType] :
( ( semiring_parity @ A )
=> ! [N2: nat] :
( ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ A ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
@ ( collect @ nat
@ ^ [Q6: nat] : ( ord_less @ nat @ Q6 @ N2 ) ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_2690_zero__less__power__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N2 ) )
= ( ( N2
= ( zero_zero @ nat ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( A2
!= ( zero_zero @ A ) ) )
| ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ) ).
% zero_less_power_eq
thf(fact_2691_sum__gp__multiplied,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [M: nat,N2: nat,X: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) )
= ( minus_minus @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ X @ ( suc @ N2 ) ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_2692_sum_Oin__pairs,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.in_pairs
thf(fact_2693_add__tan__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) )
= ( divide_divide @ A @ ( sin @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_2694_tan__total__pos,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ? [X4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X4 )
& ( ord_less @ real @ X4 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X4 )
= Y ) ) ) ).
% tan_total_pos
thf(fact_2695_tan__pos__pi2__le,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( tan @ real @ X ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_2696_tan__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( tan @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% tan_less_zero
thf(fact_2697_tan__mono__le,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) ) ) ) ) ).
% tan_mono_le
thf(fact_2698_tan__mono__le__eq,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( tan @ real @ X ) @ ( tan @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_2699_tan__bound__pi2,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
=> ( ord_less @ real @ ( abs_abs @ real @ ( tan @ real @ X ) ) @ ( one_one @ real ) ) ) ).
% tan_bound_pi2
thf(fact_2700_arctan__unique,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ( tan @ real @ X )
= Y )
=> ( ( arctan @ Y )
= X ) ) ) ) ).
% arctan_unique
thf(fact_2701_arctan__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( arctan @ ( tan @ real @ X ) )
= X ) ) ) ).
% arctan_tan
thf(fact_2702_arctan,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arctan @ Y ) )
& ( ord_less @ real @ ( arctan @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ ( arctan @ Y ) )
= Y ) ) ).
% arctan
thf(fact_2703_even__mask__div__iff_H,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ) ).
% even_mask_div_iff'
thf(fact_2704_power__le__zero__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,N2: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N2 ) @ ( zero_zero @ A ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) )
| ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
& ( A2
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_2705_mask__eq__sum__exp__nat,axiom,
! [N2: nat] :
( ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
@ ( collect @ nat
@ ^ [Q6: nat] : ( ord_less @ nat @ Q6 @ N2 ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_2706_gauss__sum__nat,axiom,
! [N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( divide_divide @ nat @ ( times_times @ nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% gauss_sum_nat
thf(fact_2707_even__mod__4__div__2,axiom,
! [N2: nat] :
( ( ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( suc @ ( zero_zero @ nat ) ) )
=> ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_2708_tan__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( plus_plus @ A @ X @ Y ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( plus_plus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_2709_tan__diff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ ( minus_minus @ A @ X @ Y ) )
!= ( zero_zero @ A ) )
=> ( ( tan @ A @ ( minus_minus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_2710_lemma__tan__add1,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cos @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tan @ A @ X ) @ ( tan @ A @ Y ) ) )
= ( divide_divide @ A @ ( cos @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_2711_tan__total__pi4,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ? [Z: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) @ Z )
& ( ord_less @ real @ Z @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) ) )
& ( ( tan @ real @ Z )
= X ) ) ) ).
% tan_total_pi4
thf(fact_2712_even__mask__div__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
= ( zero_zero @ A ) )
| ( ord_less_eq @ nat @ M @ N2 ) ) ) ) ).
% even_mask_div_iff
thf(fact_2713_double__gauss__sum,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N2: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) ) ) ) ).
% double_gauss_sum
thf(fact_2714_double__arith__series,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,D2: A,N2: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ I3 ) @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) )
= ( times_times @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ D2 ) ) ) ) ) ).
% double_arith_series
thf(fact_2715_arith__series__nat,axiom,
! [A2: nat,D2: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I3: nat] : ( plus_plus @ nat @ A2 @ ( times_times @ nat @ I3 @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( divide_divide @ nat @ ( times_times @ nat @ ( suc @ N2 ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ nat @ N2 @ D2 ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% arith_series_nat
thf(fact_2716_Sum__Icc__nat,axiom,
! [M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( divide_divide @ nat @ ( minus_minus @ nat @ ( times_times @ nat @ N2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) @ ( times_times @ nat @ M @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Sum_Icc_nat
thf(fact_2717_Bernoulli__inequality__even,axiom,
! [N2: nat,X: real] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X ) ) @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ N2 ) ) ) ).
% Bernoulli_inequality_even
thf(fact_2718_gauss__sum,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( divide_divide @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% gauss_sum
thf(fact_2719_arith__series,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [A2: A,D2: A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A2 @ ( times_times @ A @ ( semiring_1_of_nat @ A @ I3 ) @ D2 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( divide_divide @ A @ ( times_times @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ D2 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% arith_series
thf(fact_2720_double__gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N2: nat] :
( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_2721_even__mult__exp__div__exp__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ ( times_times @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( ( ord_less @ nat @ N2 @ M )
| ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
= ( zero_zero @ A ) )
| ( ( ord_less_eq @ nat @ M @ N2 )
& ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_2722_sum__gp__offset,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,M: nat,N2: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ M @ N2 ) ) )
= ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ M @ N2 ) ) )
= ( divide_divide @ A @ ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N2 ) ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp_offset
thf(fact_2723_tan__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tan @ A )
= ( ^ [X3: A] : ( divide_divide @ A @ ( sin @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X3 ) ) @ ( plus_plus @ A @ ( cos @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X3 ) ) @ ( one_one @ A ) ) ) ) ) ) ).
% tan_half
thf(fact_2724_gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) )
= ( divide_divide @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_2725_cos__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
=> ? [N: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_zero_lemma
thf(fact_2726_sin__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
=> ? [N: nat] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_zero_lemma
thf(fact_2727_cos__zero__iff,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
= ( ? [N3: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) )
| ? [N3: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 )
& ( X
= ( uminus_uminus @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% cos_zero_iff
thf(fact_2728_lemma__termdiff2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [H: A,Z2: A,N2: nat] :
( ( H
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H ) @ N2 ) @ ( power_power @ A @ Z2 @ N2 ) ) @ H ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
= ( times_times @ A @ H
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [Q6: nat] : ( times_times @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H ) @ Q6 ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ ( minus_minus @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Q6 ) ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) @ P5 ) ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_2729_diffs__equiv,axiom,
! [A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( ring_1 @ A ) )
=> ! [C2: nat > A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( C2 @ N3 ) ) @ ( power_power @ A @ X @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ) ).
% diffs_equiv
thf(fact_2730_vebt__buildup_Oelims,axiom,
! [X: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X
= ( suc @ ( zero_zero @ nat ) ) )
=> ( Y
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_2731_signed__take__bit__Suc__minus__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ ( minus_minus @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) @ ( one_one @ int ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_Suc_minus_bit1
thf(fact_2732_sin__paired,axiom,
! [X: real] :
( sums @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( sin @ real @ X ) ) ).
% sin_paired
thf(fact_2733_sin__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( sin @ real @ X )
= ( divide_divide @ real @ ( tan @ real @ X ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( tan @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_2734_intind,axiom,
! [A: $tType,I: nat,N2: nat,P: A > $o,X: A] :
( ( ord_less @ nat @ I @ N2 )
=> ( ( P @ X )
=> ( P @ ( nth @ A @ ( replicate @ A @ N2 @ X ) @ I ) ) ) ) ).
% intind
thf(fact_2735_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y32: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y32 ) )
= ( X32 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_2736_lessThan__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ( set_ord_lessThan @ A @ X )
= ( set_ord_lessThan @ A @ Y ) )
= ( X = Y ) ) ) ).
% lessThan_eq_iff
thf(fact_2737_lessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,K: A] :
( ( member @ A @ I @ ( set_ord_lessThan @ A @ K ) )
= ( ord_less @ A @ I @ K ) ) ) ).
% lessThan_iff
thf(fact_2738_real__sqrt__zero,axiom,
( ( sqrt @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% real_sqrt_zero
thf(fact_2739_real__sqrt__eq__zero__cancel__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_2740_real__sqrt__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( sqrt @ X ) @ ( sqrt @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ).
% real_sqrt_less_iff
thf(fact_2741_int__dvd__int__iff,axiom,
! [M: nat,N2: nat] :
( ( dvd_dvd @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) )
= ( dvd_dvd @ nat @ M @ N2 ) ) ).
% int_dvd_int_iff
thf(fact_2742_replicate__eq__replicate,axiom,
! [A: $tType,M: nat,X: A,N2: nat,Y: A] :
( ( ( replicate @ A @ M @ X )
= ( replicate @ A @ N2 @ Y ) )
= ( ( M = N2 )
& ( ( M
!= ( zero_zero @ nat ) )
=> ( X = Y ) ) ) ) ).
% replicate_eq_replicate
thf(fact_2743_zdvd1__eq,axiom,
! [X: int] :
( ( dvd_dvd @ int @ X @ ( one_one @ int ) )
= ( ( abs_abs @ int @ X )
= ( one_one @ int ) ) ) ).
% zdvd1_eq
thf(fact_2744_finite__lessThan,axiom,
! [K: nat] : ( finite_finite @ nat @ ( set_ord_lessThan @ nat @ K ) ) ).
% finite_lessThan
thf(fact_2745_semiring__norm_I80_J,axiom,
! [M: num,N2: num] :
( ( ord_less @ num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( ord_less @ num @ M @ N2 ) ) ).
% semiring_norm(80)
thf(fact_2746_lessThan__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_lessThan @ A @ X ) @ ( set_ord_lessThan @ A @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ).
% lessThan_subset_iff
thf(fact_2747_fact__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% fact_0
thf(fact_2748_real__sqrt__lt__0__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( sqrt @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% real_sqrt_lt_0_iff
thf(fact_2749_real__sqrt__gt__0__iff,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( sqrt @ Y ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ Y ) ) ).
% real_sqrt_gt_0_iff
thf(fact_2750_real__sqrt__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sqrt @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% real_sqrt_le_0_iff
thf(fact_2751_real__sqrt__ge__0__iff,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ Y ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y ) ) ).
% real_sqrt_ge_0_iff
thf(fact_2752_fact__1,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( one_one @ nat ) )
= ( one_one @ A ) ) ) ).
% fact_1
thf(fact_2753_real__sqrt__lt__1__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( sqrt @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ).
% real_sqrt_lt_1_iff
thf(fact_2754_real__sqrt__gt__1__iff,axiom,
! [Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ ( sqrt @ Y ) )
= ( ord_less @ real @ ( one_one @ real ) @ Y ) ) ).
% real_sqrt_gt_1_iff
thf(fact_2755_Ball__set__replicate,axiom,
! [A: $tType,N2: nat,A2: A,P: A > $o] :
( ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ ( replicate @ A @ N2 @ A2 ) ) )
=> ( P @ X3 ) ) )
= ( ( P @ A2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ).
% Ball_set_replicate
thf(fact_2756_Bex__set__replicate,axiom,
! [A: $tType,N2: nat,A2: A,P: A > $o] :
( ( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ ( replicate @ A @ N2 @ A2 ) ) )
& ( P @ X3 ) ) )
= ( ( P @ A2 )
& ( N2
!= ( zero_zero @ nat ) ) ) ) ).
% Bex_set_replicate
thf(fact_2757_in__set__replicate,axiom,
! [A: $tType,X: A,N2: nat,Y: A] :
( ( member @ A @ X @ ( set2 @ A @ ( replicate @ A @ N2 @ Y ) ) )
= ( ( X = Y )
& ( N2
!= ( zero_zero @ nat ) ) ) ) ).
% in_set_replicate
thf(fact_2758_nth__replicate,axiom,
! [A: $tType,I: nat,N2: nat,X: A] :
( ( ord_less @ nat @ I @ N2 )
=> ( ( nth @ A @ ( replicate @ A @ N2 @ X ) @ I )
= X ) ) ).
% nth_replicate
thf(fact_2759_semiring__norm_I81_J,axiom,
! [M: num,N2: num] :
( ( ord_less @ num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less @ num @ M @ N2 ) ) ).
% semiring_norm(81)
thf(fact_2760_semiring__norm_I77_J,axiom,
! [N2: num] : ( ord_less @ num @ one2 @ ( bit1 @ N2 ) ) ).
% semiring_norm(77)
thf(fact_2761_lessThan__0,axiom,
( ( set_ord_lessThan @ nat @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% lessThan_0
thf(fact_2762_dbl__inc__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_inc @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bit1 @ K ) ) ) ) ).
% dbl_inc_simps(5)
thf(fact_2763_fact__Suc__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ A ) ) ) ).
% fact_Suc_0
thf(fact_2764_fact__Suc,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( semiring_char_0_fact @ A @ ( suc @ N2 ) )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N2 ) ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ).
% fact_Suc
thf(fact_2765_sum_OlessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N2 ) ) @ ( G @ N2 ) ) ) ) ).
% sum.lessThan_Suc
thf(fact_2766_zdiv__numeral__Bit1,axiom,
! [V2: num,W2: num] :
( ( divide_divide @ int @ ( numeral_numeral @ int @ ( bit1 @ V2 ) ) @ ( numeral_numeral @ int @ ( bit0 @ W2 ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ V2 ) @ ( numeral_numeral @ int @ W2 ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_2767_semiring__norm_I79_J,axiom,
! [M: num,N2: num] :
( ( ord_less @ num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( ord_less_eq @ num @ M @ N2 ) ) ).
% semiring_norm(79)
thf(fact_2768_semiring__norm_I74_J,axiom,
! [M: num,N2: num] :
( ( ord_less_eq @ num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less @ num @ M @ N2 ) ) ).
% semiring_norm(74)
thf(fact_2769_dbl__inc__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ one2 ) ) ) ) ).
% dbl_inc_simps(3)
thf(fact_2770_div__Suc__eq__div__add3,axiom,
! [M: nat,N2: nat] :
( ( divide_divide @ nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
= ( divide_divide @ nat @ M @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N2 ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_2771_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V2: num] :
( ( divide_divide @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral @ nat @ V2 ) )
= ( divide_divide @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ ( numeral_numeral @ nat @ V2 ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_2772_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo @ nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
= ( modulo_modulo @ nat @ M @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N2 ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_2773_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V2: num] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral @ nat @ V2 ) )
= ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ ( numeral_numeral @ nat @ V2 ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_2774_dbl__dec__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_dec @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit1 @ one2 ) ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_2775_real__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( sqrt @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X ) ) ).
% real_sqrt_pow2
thf(fact_2776_real__sqrt__pow2__iff,axiom,
! [X: real] :
( ( ( power_power @ real @ ( sqrt @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% real_sqrt_pow2_iff
thf(fact_2777_zmod__numeral__Bit1,axiom,
! [V2: num,W2: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ ( bit1 @ V2 ) ) @ ( numeral_numeral @ int @ ( bit0 @ W2 ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ V2 ) @ ( numeral_numeral @ int @ W2 ) ) ) @ ( one_one @ int ) ) ) ).
% zmod_numeral_Bit1
thf(fact_2778_cos__3over2__pi,axiom,
( ( cos @ real @ ( times_times @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ pi ) )
= ( zero_zero @ real ) ) ).
% cos_3over2_pi
thf(fact_2779_signed__take__bit__Suc__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_ri4674362597316999326ke_bit @ int @ ( suc @ N2 ) @ ( numeral_numeral @ int @ ( bit1 @ K ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ ( numeral_numeral @ int @ K ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% signed_take_bit_Suc_bit1
thf(fact_2780_int__sum,axiom,
! [B: $tType,F2: B > nat,A4: set @ B] :
( ( semiring_1_of_nat @ int @ ( groups7311177749621191930dd_sum @ B @ nat @ F2 @ A4 ) )
= ( groups7311177749621191930dd_sum @ B @ int
@ ^ [X3: B] : ( semiring_1_of_nat @ int @ ( F2 @ X3 ) )
@ A4 ) ) ).
% int_sum
thf(fact_2781_real__sqrt__less__mono,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_less_mono
thf(fact_2782_sum__diff__distrib,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [Q: A > nat,P: A > nat,N2: A] :
( ! [X4: A] : ( ord_less_eq @ nat @ ( Q @ X4 ) @ ( P @ X4 ) )
=> ( ( minus_minus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ P @ ( set_ord_lessThan @ A @ N2 ) ) @ ( groups7311177749621191930dd_sum @ A @ nat @ Q @ ( set_ord_lessThan @ A @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( minus_minus @ nat @ ( P @ X3 ) @ ( Q @ X3 ) )
@ ( set_ord_lessThan @ A @ N2 ) ) ) ) ) ).
% sum_diff_distrib
thf(fact_2783_lessThan__non__empty,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
( ( set_ord_lessThan @ A @ X )
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% lessThan_non_empty
thf(fact_2784_infinite__Iio,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_bot @ A ) )
=> ! [A2: A] :
~ ( finite_finite @ A @ ( set_ord_lessThan @ A @ A2 ) ) ) ).
% infinite_Iio
thf(fact_2785_fact__nonzero,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semiri3467727345109120633visors @ A ) )
=> ! [N2: nat] :
( ( semiring_char_0_fact @ A @ N2 )
!= ( zero_zero @ A ) ) ) ).
% fact_nonzero
thf(fact_2786_verit__eq__simplify_I14_J,axiom,
! [X22: num,X32: num] :
( ( bit0 @ X22 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_2787_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one2
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_2788_uminus__dvd__conv_I2_J,axiom,
( ( dvd_dvd @ int )
= ( ^ [D6: int,T3: int] : ( dvd_dvd @ int @ D6 @ ( uminus_uminus @ int @ T3 ) ) ) ) ).
% uminus_dvd_conv(2)
thf(fact_2789_uminus__dvd__conv_I1_J,axiom,
( ( dvd_dvd @ int )
= ( ^ [D6: int] : ( dvd_dvd @ int @ ( uminus_uminus @ int @ D6 ) ) ) ) ).
% uminus_dvd_conv(1)
thf(fact_2790_zdvd__zdiffD,axiom,
! [K: int,M: int,N2: int] :
( ( dvd_dvd @ int @ K @ ( minus_minus @ int @ M @ N2 ) )
=> ( ( dvd_dvd @ int @ K @ N2 )
=> ( dvd_dvd @ int @ K @ M ) ) ) ).
% zdvd_zdiffD
thf(fact_2791_zdvd__antisym__abs,axiom,
! [A2: int,B2: int] :
( ( dvd_dvd @ int @ A2 @ B2 )
=> ( ( dvd_dvd @ int @ B2 @ A2 )
=> ( ( abs_abs @ int @ A2 )
= ( abs_abs @ int @ B2 ) ) ) ) ).
% zdvd_antisym_abs
thf(fact_2792_lessThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_lessThan @ A )
= ( ^ [U2: A] :
( collect @ A
@ ^ [X3: A] : ( ord_less @ A @ X3 @ U2 ) ) ) ) ) ).
% lessThan_def
thf(fact_2793_real__sqrt__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( sqrt @ X ) ) ) ).
% real_sqrt_gt_zero
thf(fact_2794_real__sqrt__eq__zero__cancel,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( sqrt @ X )
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ real ) ) ) ) ).
% real_sqrt_eq_zero_cancel
thf(fact_2795_real__sqrt__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_zero
thf(fact_2796_Iio__eq__empty__iff,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( order_bot @ A ) )
=> ! [N2: A] :
( ( ( set_ord_lessThan @ A @ N2 )
= ( bot_bot @ ( set @ A ) ) )
= ( N2
= ( bot_bot @ A ) ) ) ) ).
% Iio_eq_empty_iff
thf(fact_2797_fact__ge__zero,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ).
% fact_ge_zero
thf(fact_2798_fact__gt__zero,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat] : ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ).
% fact_gt_zero
thf(fact_2799_fact__not__neg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat] :
~ ( ord_less @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( zero_zero @ A ) ) ) ).
% fact_not_neg
thf(fact_2800_fact__ge__1,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat] : ( ord_less_eq @ A @ ( one_one @ A ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ).
% fact_ge_1
thf(fact_2801_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one2 )
=> ( ! [X23: num] :
( Y
!= ( bit0 @ X23 ) )
=> ~ ! [X33: num] :
( Y
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_2802_lessThan__strict__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M: A,N2: A] :
( ( ord_less @ ( set @ A ) @ ( set_ord_lessThan @ A @ M ) @ ( set_ord_lessThan @ A @ N2 ) )
= ( ord_less @ A @ M @ N2 ) ) ) ).
% lessThan_strict_subset_iff
thf(fact_2803_fact__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ A @ ( semiring_char_0_fact @ A @ M ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ).
% fact_mono
thf(fact_2804_replicate__length__same,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( X4 = X ) )
=> ( ( replicate @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ X )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_2805_replicate__eqI,axiom,
! [A: $tType,Xs2: list @ A,N2: nat,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= N2 )
=> ( ! [Y4: A] :
( ( member @ A @ Y4 @ ( set2 @ A @ Xs2 ) )
=> ( Y4 = X ) )
=> ( Xs2
= ( replicate @ A @ N2 @ X ) ) ) ) ).
% replicate_eqI
thf(fact_2806_fact__dvd,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( dvd_dvd @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( semiring_char_0_fact @ A @ M ) ) ) ) ).
% fact_dvd
thf(fact_2807_zdvd__antisym__nonneg,axiom,
! [M: int,N2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ M )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( dvd_dvd @ int @ M @ N2 )
=> ( ( dvd_dvd @ int @ N2 @ M )
=> ( M = N2 ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_2808_zdvd__not__zless,axiom,
! [M: int,N2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ M )
=> ( ( ord_less @ int @ M @ N2 )
=> ~ ( dvd_dvd @ int @ N2 @ M ) ) ) ).
% zdvd_not_zless
thf(fact_2809_zdvd__mono,axiom,
! [K: int,M: int,T2: int] :
( ( K
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ M @ T2 )
= ( dvd_dvd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ T2 ) ) ) ) ).
% zdvd_mono
thf(fact_2810_zdvd__mult__cancel,axiom,
! [K: int,M: int,N2: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ N2 ) )
=> ( ( K
!= ( zero_zero @ int ) )
=> ( dvd_dvd @ int @ M @ N2 ) ) ) ).
% zdvd_mult_cancel
thf(fact_2811_lessThan__empty__iff,axiom,
! [N2: nat] :
( ( ( set_ord_lessThan @ nat @ N2 )
= ( bot_bot @ ( set @ nat ) ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% lessThan_empty_iff
thf(fact_2812_zdvd__reduce,axiom,
! [K: int,N2: int,M: int] :
( ( dvd_dvd @ int @ K @ ( plus_plus @ int @ N2 @ ( times_times @ int @ K @ M ) ) )
= ( dvd_dvd @ int @ K @ N2 ) ) ).
% zdvd_reduce
thf(fact_2813_zdvd__period,axiom,
! [A2: int,D2: int,X: int,T2: int,C2: int] :
( ( dvd_dvd @ int @ A2 @ D2 )
=> ( ( dvd_dvd @ int @ A2 @ ( plus_plus @ int @ X @ T2 ) )
= ( dvd_dvd @ int @ A2 @ ( plus_plus @ int @ ( plus_plus @ int @ X @ ( times_times @ int @ C2 @ D2 ) ) @ T2 ) ) ) ) ).
% zdvd_period
thf(fact_2814_abs__div,axiom,
! [Y: int,X: int] :
( ( dvd_dvd @ int @ Y @ X )
=> ( ( abs_abs @ int @ ( divide_divide @ int @ X @ Y ) )
= ( divide_divide @ int @ ( abs_abs @ int @ X ) @ ( abs_abs @ int @ Y ) ) ) ) ).
% abs_div
thf(fact_2815_sum__subtractf__nat,axiom,
! [A: $tType,A4: set @ A,G: A > nat,F2: A > nat] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ nat @ ( G @ X4 ) @ ( F2 @ X4 ) ) )
=> ( ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( minus_minus @ nat @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ A4 )
= ( minus_minus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ A @ nat @ G @ A4 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_2816_finite__divisors__int,axiom,
! [I: int] :
( ( I
!= ( zero_zero @ int ) )
=> ( finite_finite @ int
@ ( collect @ int
@ ^ [D6: int] : ( dvd_dvd @ int @ D6 @ I ) ) ) ) ).
% finite_divisors_int
thf(fact_2817_sum__eq__Suc0__iff,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ( F2 @ X3 )
= ( suc @ ( zero_zero @ nat ) ) )
& ! [Y2: A] :
( ( member @ A @ Y2 @ A4 )
=> ( ( X3 != Y2 )
=> ( ( F2 @ Y2 )
= ( zero_zero @ nat ) ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_2818_sum__SucD,axiom,
! [A: $tType,F2: A > nat,A4: set @ A,N2: nat] :
( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 )
= ( suc @ N2 ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ A4 )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ ( F2 @ X4 ) ) ) ) ).
% sum_SucD
thf(fact_2819_sum__eq__1__iff,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 )
= ( one_one @ nat ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ( F2 @ X3 )
= ( one_one @ nat ) )
& ! [Y2: A] :
( ( member @ A @ Y2 @ A4 )
=> ( ( X3 != Y2 )
=> ( ( F2 @ Y2 )
= ( zero_zero @ nat ) ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_2820_real__div__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( divide_divide @ real @ X @ ( sqrt @ X ) )
= ( sqrt @ X ) ) ) ).
% real_div_sqrt
thf(fact_2821_sqrt__add__le__add__sqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ X @ Y ) ) @ ( plus_plus @ real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ) ) ).
% sqrt_add_le_add_sqrt
thf(fact_2822_Maclaurin__zero,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: real,N2: nat,Diff: nat > A > real] :
( ( X
= ( zero_zero @ real ) )
=> ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ A ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
= ( Diff @ ( zero_zero @ nat ) @ ( zero_zero @ A ) ) ) ) ) ) ).
% Maclaurin_zero
thf(fact_2823_Maclaurin__lemma,axiom,
! [H: real,F2: real > real,J: nat > real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H )
=> ? [B10: real] :
( ( F2 @ H )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( J @ M6 ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ H @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ B10 @ ( divide_divide @ real @ ( power_power @ real @ H @ N2 ) @ ( semiring_char_0_fact @ real @ N2 ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_2824_numeral__Bit1,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ ( bit1 @ N2 ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ N2 ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_Bit1
thf(fact_2825_eval__nat__numeral_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral @ nat @ ( bit1 @ N2 ) )
= ( suc @ ( numeral_numeral @ nat @ ( bit0 @ N2 ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_2826_fact__less__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N2 )
=> ( ord_less @ A @ ( semiring_char_0_fact @ A @ M ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ) ).
% fact_less_mono
thf(fact_2827_cong__exp__iff__simps_I10_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num,N2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_2828_cong__exp__iff__simps_I12_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num,N2: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
!= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit0 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_2829_cong__exp__iff__simps_I13_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num,N2: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q4 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ Q4 ) ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_2830_fact__mod,axiom,
! [A: $tType] :
( ( ( linordered_semidom @ A )
& ( semidom_modulo @ A ) )
=> ! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( modulo_modulo @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( semiring_char_0_fact @ A @ M ) )
= ( zero_zero @ A ) ) ) ) ).
% fact_mod
thf(fact_2831_fact__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat] : ( ord_less_eq @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( semiring_1_of_nat @ A @ ( power_power @ nat @ N2 @ N2 ) ) ) ) ).
% fact_le_power
thf(fact_2832_zdvd__imp__le,axiom,
! [Z2: int,N2: int] :
( ( dvd_dvd @ int @ Z2 @ N2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less_eq @ int @ Z2 @ N2 ) ) ) ).
% zdvd_imp_le
thf(fact_2833_dvd__imp__le__int,axiom,
! [I: int,D2: int] :
( ( I
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ D2 @ I )
=> ( ord_less_eq @ int @ ( abs_abs @ int @ D2 ) @ ( abs_abs @ int @ I ) ) ) ) ).
% dvd_imp_le_int
thf(fact_2834_sum_Onat__diff__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ N2 @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% sum.nat_diff_reindex
thf(fact_2835_numeral__code_I3_J,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ ( bit1 @ N2 ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ N2 ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_code(3)
thf(fact_2836_sum__nth__roots,axiom,
! [N2: nat,C2: complex] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( groups7311177749621191930dd_sum @ complex @ complex
@ ^ [X3: complex] : X3
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= C2 ) ) )
= ( zero_zero @ complex ) ) ) ).
% sum_nth_roots
thf(fact_2837_sum__roots__unity,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( groups7311177749621191930dd_sum @ complex @ complex
@ ^ [X3: complex] : X3
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= ( one_one @ complex ) ) ) )
= ( zero_zero @ complex ) ) ) ).
% sum_roots_unity
thf(fact_2838_sqrt2__less__2,axiom,
ord_less @ real @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ).
% sqrt2_less_2
thf(fact_2839_cong__exp__iff__simps_I3_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num,Q4: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
!= ( zero_zero @ A ) ) ) ).
% cong_exp_iff_simps(3)
thf(fact_2840_numeral__3__eq__3,axiom,
( ( numeral_numeral @ nat @ ( bit1 @ one2 ) )
= ( suc @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% numeral_3_eq_3
thf(fact_2841_Suc3__eq__add__3,axiom,
! [N2: nat] :
( ( suc @ ( suc @ ( suc @ N2 ) ) )
= ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ N2 ) ) ).
% Suc3_eq_add_3
thf(fact_2842_suminf__le__const,axiom,
! [A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,X: A] :
( ( summable @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) @ X )
=> ( ord_less_eq @ A @ ( suminf @ A @ F2 ) @ X ) ) ) ) ).
% suminf_le_const
thf(fact_2843_diffs__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( diffs @ A )
= ( ^ [C3: nat > A,N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( C3 @ ( suc @ N3 ) ) ) ) ) ) ).
% diffs_def
thf(fact_2844_sum_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_2845_sum__lessThan__telescope_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ ( F2 @ M ) ) ) ) ).
% sum_lessThan_telescope'
thf(fact_2846_sum__lessThan__telescope,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( minus_minus @ A @ ( F2 @ M ) @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ).
% sum_lessThan_telescope
thf(fact_2847_zdvd__mult__cancel1,axiom,
! [M: int,N2: int] :
( ( M
!= ( zero_zero @ int ) )
=> ( ( dvd_dvd @ int @ ( times_times @ int @ M @ N2 ) @ M )
= ( ( abs_abs @ int @ N2 )
= ( one_one @ int ) ) ) ) ).
% zdvd_mult_cancel1
thf(fact_2848_summableI__nonneg__bounded,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( ordere6911136660526730532id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,X: A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N ) ) @ X )
=> ( summable @ A @ F2 ) ) ) ) ).
% summableI_nonneg_bounded
thf(fact_2849_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( modulo_modulo @ int @ K @ L ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( ( L
= ( zero_zero @ int ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) )
| ( ord_less @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_2850_sum_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_2851_sums__iff__shift,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,N2: nat,S: A] :
( ( sums @ A
@ ^ [I3: nat] : ( F2 @ ( plus_plus @ nat @ I3 @ N2 ) )
@ S )
= ( sums @ A @ F2 @ ( plus_plus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ) ).
% sums_iff_shift
thf(fact_2852_sums__iff__shift_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,N2: nat,S: A] :
( ( sums @ A
@ ^ [I3: nat] : ( F2 @ ( plus_plus @ nat @ I3 @ N2 ) )
@ ( minus_minus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) ) )
= ( sums @ A @ F2 @ S ) ) ) ).
% sums_iff_shift'
thf(fact_2853_sums__split__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,S: A,N2: nat] :
( ( sums @ A @ F2 @ S )
=> ( sums @ A
@ ^ [I3: nat] : ( F2 @ ( plus_plus @ nat @ I3 @ N2 ) )
@ ( minus_minus @ A @ S @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_2854_bset_I9_J,axiom,
! [D2: int,D4: int,B4: set @ int,T2: int] :
( ( dvd_dvd @ int @ D2 @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ X2 @ T2 ) )
=> ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ ( minus_minus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% bset(9)
thf(fact_2855_bset_I10_J,axiom,
! [D2: int,D4: int,B4: set @ int,T2: int] :
( ( dvd_dvd @ int @ D2 @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ B4 )
=> ( X2
!= ( plus_plus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ X2 @ T2 ) )
=> ~ ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ ( minus_minus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% bset(10)
thf(fact_2856_aset_I9_J,axiom,
! [D2: int,D4: int,A4: set @ int,T2: int] :
( ( dvd_dvd @ int @ D2 @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ X2 @ T2 ) )
=> ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ ( plus_plus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(9)
thf(fact_2857_aset_I10_J,axiom,
! [D2: int,D4: int,A4: set @ int,T2: int] :
( ( dvd_dvd @ int @ D2 @ D4 )
=> ! [X2: int] :
( ! [Xa3: int] :
( ( member @ int @ Xa3 @ ( set_or1337092689740270186AtMost @ int @ ( one_one @ int ) @ D4 ) )
=> ! [Xb2: int] :
( ( member @ int @ Xb2 @ A4 )
=> ( X2
!= ( minus_minus @ int @ Xb2 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ X2 @ T2 ) )
=> ~ ( dvd_dvd @ int @ D2 @ ( plus_plus @ int @ ( plus_plus @ int @ X2 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(10)
thf(fact_2858_real__less__rsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ Y )
=> ( ord_less @ real @ X @ ( sqrt @ Y ) ) ) ).
% real_less_rsqrt
thf(fact_2859_num_Osize_I6_J,axiom,
! [X32: num] :
( ( size_size @ num @ ( bit1 @ X32 ) )
= ( plus_plus @ nat @ ( size_size @ num @ X32 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size(6)
thf(fact_2860_cong__exp__iff__simps_I7_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [Q4: num,N2: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ N2 ) @ ( numeral_numeral @ A @ Q4 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(7)
thf(fact_2861_cong__exp__iff__simps_I11_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,Q4: num] :
( ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ one2 ) @ ( numeral_numeral @ A @ ( bit0 @ Q4 ) ) ) )
= ( ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ Q4 ) )
= ( zero_zero @ A ) ) ) ) ).
% cong_exp_iff_simps(11)
thf(fact_2862_Suc__div__eq__add3__div,axiom,
! [M: nat,N2: nat] :
( ( divide_divide @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
= ( divide_divide @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ N2 ) ) ).
% Suc_div_eq_add3_div
thf(fact_2863_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N2: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
= ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) @ M ) @ N2 ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_2864_sum__count__set,axiom,
! [A: $tType,Xs2: list @ A,X6: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ X6 )
=> ( ( finite_finite @ A @ X6 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ ( count_list @ A @ Xs2 ) @ X6 )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% sum_count_set
thf(fact_2865_one__diff__power__eq,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N2 ) )
= ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% one_diff_power_eq
thf(fact_2866_power__diff__1__eq,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( minus_minus @ A @ ( power_power @ A @ X @ N2 ) @ ( one_one @ A ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ ( one_one @ A ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% power_diff_1_eq
thf(fact_2867_geometric__sum,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,N2: nat] :
( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ X @ N2 ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ X @ ( one_one @ A ) ) ) ) ) ) ).
% geometric_sum
thf(fact_2868_suminf__split__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A @ F2 )
= ( plus_plus @ A
@ ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ K ) ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_2869_suminf__minus__initial__segment,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,K: nat] :
( ( summable @ A @ F2 )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) ) )
= ( minus_minus @ A @ ( suminf @ A @ F2 ) @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ K ) ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_2870_real__le__lsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ X @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( sqrt @ X ) @ Y ) ) ) ) ).
% real_le_lsqrt
thf(fact_2871_real__sqrt__unique,axiom,
! [Y: real,X: real] :
( ( ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( sqrt @ X )
= Y ) ) ) ).
% real_sqrt_unique
thf(fact_2872_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ U )
=> ( ord_less @ real @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_2873_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X: real,Y: real] :
( ( ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= Y )
=> ( X
= ( zero_zero @ real ) ) ) ).
% real_sqrt_sum_squares_eq_cancel2
thf(fact_2874_real__sqrt__sum__squares__eq__cancel,axiom,
! [X: real,Y: real] :
( ( ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= X )
=> ( Y
= ( zero_zero @ real ) ) ) ).
% real_sqrt_sum_squares_eq_cancel
thf(fact_2875_sum__less__suminf,axiom,
! [A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,N2: nat] :
( ( summable @ A @ F2 )
=> ( ! [M5: nat] :
( ( ord_less_eq @ nat @ N2 @ M5 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ M5 ) ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) @ ( suminf @ A @ F2 ) ) ) ) ) ).
% sum_less_suminf
thf(fact_2876_fact__num__eq__if,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [M6: nat] :
( if @ A
@ ( M6
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ M6 ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ M6 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_2877_fact__reduce,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( semiring_char_0_fact @ A @ N2 )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ).
% fact_reduce
thf(fact_2878_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ nat ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( one_one @ nat ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
| ( ( modulo_modulo @ nat @ M @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_2879_sum__gp__strict,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N2 ) )
= ( semiring_1_of_nat @ A @ N2 ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_lessThan @ nat @ N2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N2 ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp_strict
thf(fact_2880_lemma__termdiff1,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [Z2: A,H: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( minus_minus @ A @ ( times_times @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H ) @ ( minus_minus @ nat @ M @ P5 ) ) @ ( power_power @ A @ Z2 @ P5 ) ) @ ( power_power @ A @ Z2 @ M ) )
@ ( set_ord_lessThan @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( times_times @ A @ ( power_power @ A @ Z2 @ P5 ) @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ Z2 @ H ) @ ( minus_minus @ nat @ M @ P5 ) ) @ ( power_power @ A @ Z2 @ ( minus_minus @ nat @ M @ P5 ) ) ) )
@ ( set_ord_lessThan @ nat @ M ) ) ) ) ).
% lemma_termdiff1
thf(fact_2881_power__diff__sumr2,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat,Y: A] :
( ( minus_minus @ A @ ( power_power @ A @ X @ N2 ) @ ( power_power @ A @ Y @ N2 ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N2 @ ( suc @ I3 ) ) ) @ ( power_power @ A @ X @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% power_diff_sumr2
thf(fact_2882_diff__power__eq__sum,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat,Y: A] :
( ( minus_minus @ A @ ( power_power @ A @ X @ ( suc @ N2 ) ) @ ( power_power @ A @ Y @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [P5: nat] : ( times_times @ A @ ( power_power @ A @ X @ P5 ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N2 @ P5 ) ) )
@ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_2883_real__less__lsqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ X @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( sqrt @ X ) @ Y ) ) ) ) ).
% real_less_lsqrt
thf(fact_2884_sqrt__sum__squares__le__sum,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( plus_plus @ real @ X @ Y ) ) ) ) ).
% sqrt_sum_squares_le_sum
thf(fact_2885_ln__sqrt,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( sqrt @ X ) )
= ( divide_divide @ real @ ( ln_ln @ real @ X ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% ln_sqrt
thf(fact_2886_real__sum__nat__ivl__bounded2,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N2: nat,F2: nat > A,K5: A,K: nat] :
( ! [P7: nat] :
( ( ord_less @ nat @ P7 @ N2 )
=> ( ord_less_eq @ A @ ( F2 @ P7 ) @ K5 ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ K5 )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N2 @ K ) ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ K5 ) ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_2887_sum__less__suminf2,axiom,
! [A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: nat > A,N2: nat,I: nat] :
( ( summable @ A @ F2 )
=> ( ! [M5: nat] :
( ( ord_less_eq @ nat @ N2 @ M5 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ M5 ) ) )
=> ( ( ord_less_eq @ nat @ N2 @ I )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ I ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_lessThan @ nat @ N2 ) ) @ ( suminf @ A @ F2 ) ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_2888_one__diff__power__eq_H,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ N2 ) )
= ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( power_power @ A @ X @ ( minus_minus @ nat @ N2 @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% one_diff_power_eq'
thf(fact_2889_termdiff__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,K5: real,C2: nat > A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ K5 )
=> ( ! [X4: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X4 ) @ K5 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X4 @ N3 ) ) ) )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) ) ) ) ) ).
% termdiff_converges
thf(fact_2890_arsinh__real__aux,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ X @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) ) ).
% arsinh_real_aux
thf(fact_2891_real__sqrt__power__even,axiom,
! [N2: nat,X: real] :
( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( sqrt @ X ) @ N2 )
= ( power_power @ real @ X @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% real_sqrt_power_even
thf(fact_2892_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X: real,Y: real,Xa2: real,Ya: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sqrt @ ( times_times @ real @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( plus_plus @ real @ ( power_power @ real @ Xa2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Ya @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_ge_zero
thf(fact_2893_arith__geo__mean__sqrt,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less_eq @ real @ ( sqrt @ ( times_times @ real @ X @ Y ) ) @ ( divide_divide @ real @ ( plus_plus @ real @ X @ Y ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% arith_geo_mean_sqrt
thf(fact_2894_sum__split__even__odd,axiom,
! [F2: nat > real,G: nat > real,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) @ ( F2 @ I3 ) @ ( G @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( F2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( G @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) @ ( one_one @ nat ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% sum_split_even_odd
thf(fact_2895_real__sqrt__sum__squares__less,axiom,
! [X: real,U: real,Y: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ( ord_less @ real @ ( abs_abs @ real @ Y ) @ ( divide_divide @ real @ U @ ( sqrt @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ord_less @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ U ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_2896_odd__mod__4__div__2,axiom,
! [N2: nat] :
( ( ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
=> ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_2897_sqrt__sum__squares__half__less,axiom,
! [X: real,U: real,Y: real] :
( ( ord_less @ real @ X @ ( divide_divide @ real @ U @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ Y @ ( divide_divide @ real @ U @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less @ real @ ( sqrt @ ( plus_plus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ Y @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ U ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_2898_sin__cos__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sin @ real @ X ) )
=> ( ( sin @ real @ X )
= ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( cos @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% sin_cos_sqrt
thf(fact_2899_Sum__Icc__int,axiom,
! [M: int,N2: int] :
( ( ord_less_eq @ int @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ int @ int
@ ^ [X3: int] : X3
@ ( set_or1337092689740270186AtMost @ int @ M @ N2 ) )
= ( divide_divide @ int @ ( minus_minus @ int @ ( times_times @ int @ N2 @ ( plus_plus @ int @ N2 @ ( one_one @ int ) ) ) @ ( times_times @ int @ M @ ( minus_minus @ int @ M @ ( one_one @ int ) ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_2900_sum__pos__lt__pair,axiom,
! [F2: nat > real,K: nat] :
( ( summable @ real @ F2 )
=> ( ! [D5: nat] : ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ ( F2 @ ( plus_plus @ nat @ K @ ( times_times @ nat @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) @ D5 ) ) ) @ ( F2 @ ( plus_plus @ nat @ K @ ( plus_plus @ nat @ ( times_times @ nat @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) @ D5 ) @ ( one_one @ nat ) ) ) ) ) )
=> ( ord_less @ real @ ( groups7311177749621191930dd_sum @ nat @ real @ F2 @ ( set_ord_lessThan @ nat @ K ) ) @ ( suminf @ real @ F2 ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_2901_vebt__buildup_Osimps_I3_J,axiom,
! [Va2: nat] :
( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_2902_cos__tan,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( cos @ real @ X )
= ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( plus_plus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( tan @ real @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_2903_Maclaurin__minus__cos__expansion,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ? [T4: real] :
( ( ord_less @ real @ X @ T4 )
& ( ord_less @ real @ T4 @ ( zero_zero @ real ) )
& ( ( cos @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( cos_coeff @ M6 ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( cos @ real @ ( plus_plus @ real @ T4 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_2904_Maclaurin__cos__expansion2,axiom,
! [X: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less @ real @ T4 @ X )
& ( ( cos @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( cos_coeff @ M6 ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( cos @ real @ ( plus_plus @ real @ T4 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_2905_Maclaurin__sin__expansion3,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less @ real @ T4 @ X )
& ( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( sin_coeff @ M6 ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T4 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_2906_Maclaurin__sin__expansion4,axiom,
! [X: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ X )
& ( ( sin @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( sin_coeff @ M6 ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( sin @ real @ ( plus_plus @ real @ T4 @ ( times_times @ real @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) @ pi ) ) ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_2907_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ real ) @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( divide_divide @ nat @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_char_0_fact @ real @ N3 ) ) ) ) ) ).
% sin_coeff_def
thf(fact_2908_sum__bounds__lt__plus1,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,Mm: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( F2 @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ Mm ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ Mm ) ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_2909_sin__coeff__0,axiom,
( ( sin_coeff @ ( zero_zero @ nat ) )
= ( zero_zero @ real ) ) ).
% sin_coeff_0
thf(fact_2910_cos__coeff__0,axiom,
( ( cos_coeff @ ( zero_zero @ nat ) )
= ( one_one @ real ) ) ).
% cos_coeff_0
thf(fact_2911_sumr__cos__zero__one,axiom,
! [N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( cos_coeff @ M6 ) @ ( power_power @ real @ ( zero_zero @ real ) @ M6 ) )
@ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) )
= ( one_one @ real ) ) ).
% sumr_cos_zero_one
thf(fact_2912_fact__ge__self,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ N2 @ ( semiring_char_0_fact @ nat @ N2 ) ) ).
% fact_ge_self
thf(fact_2913_fact__mono__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( semiring_char_0_fact @ nat @ M ) @ ( semiring_char_0_fact @ nat @ N2 ) ) ) ).
% fact_mono_nat
thf(fact_2914_fact__less__mono__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ M @ N2 )
=> ( ord_less @ nat @ ( semiring_char_0_fact @ nat @ M ) @ ( semiring_char_0_fact @ nat @ N2 ) ) ) ) ).
% fact_less_mono_nat
thf(fact_2915_sin__coeff__Suc,axiom,
! [N2: nat] :
( ( sin_coeff @ ( suc @ N2 ) )
= ( divide_divide @ real @ ( cos_coeff @ N2 ) @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) ) ) ).
% sin_coeff_Suc
thf(fact_2916_fact__ge__Suc__0__nat,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( semiring_char_0_fact @ nat @ N2 ) ) ).
% fact_ge_Suc_0_nat
thf(fact_2917_dvd__fact,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ M )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( dvd_dvd @ nat @ M @ ( semiring_char_0_fact @ nat @ N2 ) ) ) ) ).
% dvd_fact
thf(fact_2918_cos__coeff__Suc,axiom,
! [N2: nat] :
( ( cos_coeff @ ( suc @ N2 ) )
= ( divide_divide @ real @ ( uminus_uminus @ real @ ( sin_coeff @ N2 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) ) ) ).
% cos_coeff_Suc
thf(fact_2919_fact__diff__Suc,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ N2 @ ( suc @ M ) )
=> ( ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N2 ) )
= ( times_times @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N2 ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ M @ N2 ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_2920_fact__div__fact__le__pow,axiom,
! [R2: nat,N2: nat] :
( ( ord_less_eq @ nat @ R2 @ N2 )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ N2 ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N2 @ R2 ) ) ) @ ( power_power @ nat @ N2 @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_2921_fact__fact__dvd__fact,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: nat,N2: nat] : ( dvd_dvd @ A @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ N2 ) ) @ ( semiring_char_0_fact @ A @ ( plus_plus @ nat @ K @ N2 ) ) ) ) ).
% fact_fact_dvd_fact
thf(fact_2922_cos__coeff__def,axiom,
( cos_coeff
= ( ^ [N3: nat] : ( if @ real @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( divide_divide @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( zero_zero @ real ) ) ) ) ).
% cos_coeff_def
thf(fact_2923_choose__dvd,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( dvd_dvd @ A @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N2 @ K ) ) ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ).
% choose_dvd
thf(fact_2924_divmod__algorithm__code_I8_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( ( ord_less @ num @ M @ N2 )
=> ( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ ( bit1 @ M ) ) ) ) )
& ( ~ ( ord_less @ num @ M @ N2 )
=> ( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( unique1321980374590559556d_step @ A @ ( bit1 @ N2 ) @ ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ).
% divmod_algorithm_code(8)
thf(fact_2925_divmod__algorithm__code_I7_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( ( ord_less_eq @ num @ M @ N2 )
=> ( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ ( bit0 @ M ) ) ) ) )
& ( ~ ( ord_less_eq @ num @ M @ N2 )
=> ( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( unique1321980374590559556d_step @ A @ ( bit1 @ N2 ) @ ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ).
% divmod_algorithm_code(7)
thf(fact_2926_Maclaurin__exp__lt,axiom,
! [X: real,N2: nat] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( abs_abs @ real @ T4 ) )
& ( ord_less @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) )
& ( ( exp @ real @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( divide_divide @ real @ ( power_power @ real @ X @ M6 ) @ ( semiring_char_0_fact @ real @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( exp @ real @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_2927_monoseq__def,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( topological_monoseq @ A )
= ( ^ [X7: nat > A] :
( ! [M6: nat,N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
=> ( ord_less_eq @ A @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) )
| ! [M6: nat,N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
=> ( ord_less_eq @ A @ ( X7 @ N3 ) @ ( X7 @ M6 ) ) ) ) ) ) ) ).
% monoseq_def
thf(fact_2928_monoI2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [M5: nat,N: nat] :
( ( ord_less_eq @ nat @ M5 @ N )
=> ( ord_less_eq @ A @ ( X6 @ N ) @ ( X6 @ M5 ) ) )
=> ( topological_monoseq @ A @ X6 ) ) ) ).
% monoI2
thf(fact_2929_exp__less__mono,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( exp @ real @ X ) @ ( exp @ real @ Y ) ) ) ).
% exp_less_mono
thf(fact_2930_exp__less__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( exp @ real @ X ) @ ( exp @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ).
% exp_less_cancel_iff
thf(fact_2931_exp__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% exp_zero
thf(fact_2932_exp__eq__one__iff,axiom,
! [X: real] :
( ( ( exp @ real @ X )
= ( one_one @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% exp_eq_one_iff
thf(fact_2933_exp__less__one__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( exp @ real @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% exp_less_one_iff
thf(fact_2934_one__less__exp__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ ( exp @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% one_less_exp_iff
thf(fact_2935_exp__le__one__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% exp_le_one_iff
thf(fact_2936_one__le__exp__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ ( exp @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% one_le_exp_iff
thf(fact_2937_exp__ln,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( exp @ real @ ( ln_ln @ real @ X ) )
= X ) ) ).
% exp_ln
thf(fact_2938_exp__ln__iff,axiom,
! [X: real] :
( ( ( exp @ real @ ( ln_ln @ real @ X ) )
= X )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% exp_ln_iff
thf(fact_2939_dvd__numeral__simp,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( unique5940410009612947441es_aux @ A @ ( unique8689654367752047608divmod @ A @ N2 @ M ) ) ) ) ).
% dvd_numeral_simp
thf(fact_2940_divmod__algorithm__code_I2_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num] :
( ( unique8689654367752047608divmod @ A @ M @ one2 )
= ( product_Pair @ A @ A @ ( numeral_numeral @ A @ M ) @ ( zero_zero @ A ) ) ) ) ).
% divmod_algorithm_code(2)
thf(fact_2941_divmod__algorithm__code_I3_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num] :
( ( unique8689654367752047608divmod @ A @ one2 @ ( bit0 @ N2 ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% divmod_algorithm_code(3)
thf(fact_2942_divmod__algorithm__code_I4_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num] :
( ( unique8689654367752047608divmod @ A @ one2 @ ( bit1 @ N2 ) )
= ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% divmod_algorithm_code(4)
thf(fact_2943_exp__less__cancel,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( exp @ real @ X ) @ ( exp @ real @ Y ) )
=> ( ord_less @ real @ X @ Y ) ) ).
% exp_less_cancel
thf(fact_2944_exp__not__eq__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( exp @ A @ X )
!= ( zero_zero @ A ) ) ) ).
% exp_not_eq_zero
thf(fact_2945_not__exp__less__zero,axiom,
! [X: real] :
~ ( ord_less @ real @ ( exp @ real @ X ) @ ( zero_zero @ real ) ) ).
% not_exp_less_zero
thf(fact_2946_exp__gt__zero,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( exp @ real @ X ) ) ).
% exp_gt_zero
thf(fact_2947_exp__total,axiom,
! [Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ? [X4: real] :
( ( exp @ real @ X4 )
= Y ) ) ).
% exp_total
thf(fact_2948_exp__ge__zero,axiom,
! [X: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( exp @ real @ X ) ) ).
% exp_ge_zero
thf(fact_2949_not__exp__le__zero,axiom,
! [X: real] :
~ ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( zero_zero @ real ) ) ).
% not_exp_le_zero
thf(fact_2950_mult__exp__exp,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ Y ) )
= ( exp @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% mult_exp_exp
thf(fact_2951_exp__add__commuting,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A,Y: A] :
( ( ( times_times @ A @ X @ Y )
= ( times_times @ A @ Y @ X ) )
=> ( ( exp @ A @ ( plus_plus @ A @ X @ Y ) )
= ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ Y ) ) ) ) ) ).
% exp_add_commuting
thf(fact_2952_exp__gt__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( one_one @ real ) @ ( exp @ real @ X ) ) ) ).
% exp_gt_one
thf(fact_2953_exp__minus__inverse,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( times_times @ A @ ( exp @ A @ X ) @ ( exp @ A @ ( uminus_uminus @ A @ X ) ) )
= ( one_one @ A ) ) ) ).
% exp_minus_inverse
thf(fact_2954_exp__ge__add__one__self__aux,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( exp @ real @ X ) ) ) ).
% exp_ge_add_one_self_aux
thf(fact_2955_lemma__exp__total,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ Y )
=> ? [X4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X4 )
& ( ord_less_eq @ real @ X4 @ ( minus_minus @ real @ Y @ ( one_one @ real ) ) )
& ( ( exp @ real @ X4 )
= Y ) ) ) ).
% lemma_exp_total
thf(fact_2956_ln__ge__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ Y @ ( ln_ln @ real @ X ) )
= ( ord_less_eq @ real @ ( exp @ real @ Y ) @ X ) ) ) ).
% ln_ge_iff
thf(fact_2957_exp__divide__power__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [N2: nat,X: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( power_power @ A @ ( exp @ A @ ( divide_divide @ A @ X @ ( semiring_1_of_nat @ A @ N2 ) ) ) @ N2 )
= ( exp @ A @ X ) ) ) ) ).
% exp_divide_power_eq
thf(fact_2958_tanh__altdef,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( tanh @ A )
= ( ^ [X3: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( exp @ A @ X3 ) @ ( exp @ A @ ( uminus_uminus @ A @ X3 ) ) ) @ ( plus_plus @ A @ ( exp @ A @ X3 ) @ ( exp @ A @ ( uminus_uminus @ A @ X3 ) ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_2959_divmod__int__def,axiom,
( ( unique8689654367752047608divmod @ int )
= ( ^ [M6: num,N3: num] : ( product_Pair @ int @ int @ ( divide_divide @ int @ ( numeral_numeral @ int @ M6 ) @ ( numeral_numeral @ int @ N3 ) ) @ ( modulo_modulo @ int @ ( numeral_numeral @ int @ M6 ) @ ( numeral_numeral @ int @ N3 ) ) ) ) ) ).
% divmod_int_def
thf(fact_2960_divmod__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique8689654367752047608divmod @ A )
= ( ^ [M6: num,N3: num] : ( product_Pair @ A @ A @ ( divide_divide @ A @ ( numeral_numeral @ A @ M6 ) @ ( numeral_numeral @ A @ N3 ) ) @ ( modulo_modulo @ A @ ( numeral_numeral @ A @ M6 ) @ ( numeral_numeral @ A @ N3 ) ) ) ) ) ) ).
% divmod_def
thf(fact_2961_divmod_H__nat__def,axiom,
( ( unique8689654367752047608divmod @ nat )
= ( ^ [M6: num,N3: num] : ( product_Pair @ nat @ nat @ ( divide_divide @ nat @ ( numeral_numeral @ nat @ M6 ) @ ( numeral_numeral @ nat @ N3 ) ) @ ( modulo_modulo @ nat @ ( numeral_numeral @ nat @ M6 ) @ ( numeral_numeral @ nat @ N3 ) ) ) ) ) ).
% divmod'_nat_def
thf(fact_2962_exp__bound,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( plus_plus @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% exp_bound
thf(fact_2963_real__exp__bound__lemma,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less_eq @ real @ ( exp @ real @ X ) @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X ) ) ) ) ) ).
% real_exp_bound_lemma
thf(fact_2964_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N2: nat,X: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( semiring_1_of_nat @ real @ N2 ) ) @ X )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ real @ ( power_power @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( divide_divide @ real @ X @ ( semiring_1_of_nat @ real @ N2 ) ) ) @ N2 ) @ ( exp @ real @ X ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_2965_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ N2 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ real @ ( power_power @ real @ ( minus_minus @ real @ ( one_one @ real ) @ ( divide_divide @ real @ X @ ( semiring_1_of_nat @ real @ N2 ) ) ) @ N2 ) @ ( exp @ real @ ( uminus_uminus @ real @ X ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_2966_divmod__divmod__step,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique8689654367752047608divmod @ A )
= ( ^ [M6: num,N3: num] : ( if @ ( product_prod @ A @ A ) @ ( ord_less @ num @ M6 @ N3 ) @ ( product_Pair @ A @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ M6 ) ) @ ( unique1321980374590559556d_step @ A @ N3 @ ( unique8689654367752047608divmod @ A @ M6 @ ( bit0 @ N3 ) ) ) ) ) ) ) ).
% divmod_divmod_step
thf(fact_2967_exp__lower__Taylor__quadratic,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( plus_plus @ real @ ( plus_plus @ real @ ( one_one @ real ) @ X ) @ ( divide_divide @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( exp @ real @ X ) ) ) ).
% exp_lower_Taylor_quadratic
thf(fact_2968_mono__SucI1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
=> ( topological_monoseq @ A @ X6 ) ) ) ).
% mono_SucI1
thf(fact_2969_mono__SucI2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) )
=> ( topological_monoseq @ A @ X6 ) ) ) ).
% mono_SucI2
thf(fact_2970_monoseq__Suc,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( topological_monoseq @ A )
= ( ^ [X7: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X7 @ N3 ) @ ( X7 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq @ A @ ( X7 @ ( suc @ N3 ) ) @ ( X7 @ N3 ) ) ) ) ) ) ).
% monoseq_Suc
thf(fact_2971_monoI1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [M5: nat,N: nat] :
( ( ord_less_eq @ nat @ M5 @ N )
=> ( ord_less_eq @ A @ ( X6 @ M5 ) @ ( X6 @ N ) ) )
=> ( topological_monoseq @ A @ X6 ) ) ) ).
% monoI1
thf(fact_2972_minus__one__div__numeral,axiom,
! [N2: num] :
( ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ one2 @ N2 ) ) ) ) ).
% minus_one_div_numeral
thf(fact_2973_one__div__minus__numeral,axiom,
! [N2: num] :
( ( divide_divide @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ one2 @ N2 ) ) ) ) ).
% one_div_minus_numeral
thf(fact_2974_minus__numeral__div__numeral,axiom,
! [M: num,N2: num] :
( ( divide_divide @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ M @ N2 ) ) ) ) ).
% minus_numeral_div_numeral
thf(fact_2975_numeral__div__minus__numeral,axiom,
! [M: num,N2: num] :
( ( divide_divide @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( uminus_uminus @ int @ ( adjust_div @ ( unique8689654367752047608divmod @ int @ M @ N2 ) ) ) ) ).
% numeral_div_minus_numeral
thf(fact_2976_pochhammer__double,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [Z2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Z2 ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N2 ) ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ N2 ) ) ) ) ).
% pochhammer_double
thf(fact_2977_pochhammer__1,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( one_one @ nat ) )
= A2 ) ) ).
% pochhammer_1
thf(fact_2978_pochhammer__0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% pochhammer_0
thf(fact_2979_pochhammer__Suc0,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% pochhammer_Suc0
thf(fact_2980_pochhammer__pos,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( comm_s3205402744901411588hammer @ A @ X @ N2 ) ) ) ) ).
% pochhammer_pos
thf(fact_2981_pochhammer__neq__0__mono,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat,N2: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ M )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( comm_s3205402744901411588hammer @ A @ A2 @ N2 )
!= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_2982_pochhammer__eq__0__mono,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N2: nat,M: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ N2 )
= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( comm_s3205402744901411588hammer @ A @ A2 @ M )
= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_2983_pochhammer__fact,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( comm_semiring_1 @ A ) )
=> ( ( semiring_char_0_fact @ A )
= ( comm_s3205402744901411588hammer @ A @ ( one_one @ A ) ) ) ) ).
% pochhammer_fact
thf(fact_2984_pochhammer__nonneg,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: A,N2: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( comm_s3205402744901411588hammer @ A @ X @ N2 ) ) ) ) ).
% pochhammer_nonneg
thf(fact_2985_pochhammer__0__left,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N2: nat] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( comm_s3205402744901411588hammer @ A @ ( zero_zero @ A ) @ N2 )
= ( one_one @ A ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( comm_s3205402744901411588hammer @ A @ ( zero_zero @ A ) @ N2 )
= ( zero_zero @ A ) ) ) ) ) ).
% pochhammer_0_left
thf(fact_2986_pochhammer__rec,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N2 ) )
= ( times_times @ A @ A2 @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ N2 ) ) ) ) ).
% pochhammer_rec
thf(fact_2987_pochhammer__Suc,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N2 ) )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ A2 @ N2 ) @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ N2 ) ) ) ) ) ).
% pochhammer_Suc
thf(fact_2988_pochhammer__rec_H,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [Z2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ Z2 @ ( suc @ N2 ) )
= ( times_times @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ N2 ) ) @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N2 ) ) ) ) ).
% pochhammer_rec'
thf(fact_2989_pochhammer__eq__0__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N2: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ A2 @ N2 )
= ( zero_zero @ A ) )
= ( ? [K3: nat] :
( ( ord_less @ nat @ K3 @ N2 )
& ( A2
= ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ K3 ) ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_2990_pochhammer__of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( idom @ A ) )
=> ! [N2: nat,K: nat] :
( ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ K )
= ( zero_zero @ A ) )
= ( ord_less @ nat @ N2 @ K ) ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_2991_pochhammer__of__nat__eq__0__lemma,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N2: nat,K: nat] :
( ( ord_less @ nat @ N2 @ K )
=> ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ K )
= ( zero_zero @ A ) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_2992_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( idom @ A ) )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ K )
!= ( zero_zero @ A ) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_2993_pochhammer__product_H,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [Z2: A,N2: nat,M: nat] :
( ( comm_s3205402744901411588hammer @ A @ Z2 @ ( plus_plus @ nat @ N2 @ M ) )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ N2 ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ N2 ) ) @ M ) ) ) ) ).
% pochhammer_product'
thf(fact_2994_pochhammer__product,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [M: nat,N2: nat,Z2: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( comm_s3205402744901411588hammer @ A @ Z2 @ N2 )
= ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ M ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( semiring_1_of_nat @ A @ M ) ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ).
% pochhammer_product
thf(fact_2995_pochhammer__absorb__comp,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [R2: A,K: nat] :
( ( times_times @ A @ ( minus_minus @ A @ R2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ R2 ) @ K ) )
= ( times_times @ A @ R2 @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ R2 ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% pochhammer_absorb_comp
thf(fact_2996_pochhammer__same,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( comm_ring_1 @ A )
& ( semiri3467727345109120633visors @ A ) )
=> ! [N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ N2 )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ).
% pochhammer_same
thf(fact_2997_pochhammer__minus,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [B2: A,K: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ B2 ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ B2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% pochhammer_minus
thf(fact_2998_pochhammer__minus_H,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [B2: A,K: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ B2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ B2 ) @ K ) ) ) ) ).
% pochhammer_minus'
thf(fact_2999_fact__double,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [N2: nat] :
( ( semiring_char_0_fact @ A @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A @ ( times_times @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) @ ( comm_s3205402744901411588hammer @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N2 ) ) @ ( semiring_char_0_fact @ A @ N2 ) ) ) ) ).
% fact_double
thf(fact_3000_pochhammer__times__pochhammer__half,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [Z2: A,N2: nat] :
( ( times_times @ A @ ( comm_s3205402744901411588hammer @ A @ Z2 @ ( suc @ N2 ) ) @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] : ( plus_plus @ A @ Z2 @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ K3 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ nat ) ) ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_3001_pochhammer__code,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A3: A,N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( set_fo6178422350223883121st_nat @ A
@ ^ [O: nat] : ( times_times @ A @ ( plus_plus @ A @ A3 @ ( semiring_1_of_nat @ A @ O ) ) )
@ ( zero_zero @ nat )
@ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) )
@ ( one_one @ A ) ) ) ) ) ) ).
% pochhammer_code
thf(fact_3002_of__nat__code,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] :
( semiri8178284476397505188at_aux @ A
@ ^ [I3: A] : ( plus_plus @ A @ I3 @ ( one_one @ A ) )
@ N3
@ ( zero_zero @ A ) ) ) ) ) ).
% of_nat_code
thf(fact_3003_gchoose__row__sum__weighted,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [R2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ R2 @ K3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ R2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ A @ K3 ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ M ) )
= ( times_times @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( suc @ M ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( gbinomial @ A @ R2 @ ( suc @ M ) ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_3004_central__binomial__lower__bound,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ real @ ( divide_divide @ real @ ( power_power @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit0 @ one2 ) ) ) @ N2 ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) @ ( semiring_1_of_nat @ real @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ N2 ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_3005_binomial__Suc__n,axiom,
! [N2: nat] :
( ( binomial @ ( suc @ N2 ) @ N2 )
= ( suc @ N2 ) ) ).
% binomial_Suc_n
thf(fact_3006_binomial__n__n,axiom,
! [N2: nat] :
( ( binomial @ N2 @ N2 )
= ( one_one @ nat ) ) ).
% binomial_n_n
thf(fact_3007_Ints__prod,axiom,
! [A: $tType,B: $tType] :
( ( ( comm_monoid_mult @ B )
& ( ring_1 @ B ) )
=> ! [A4: set @ A,F2: A > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( member @ B @ ( F2 @ X4 ) @ ( ring_1_Ints @ B ) ) )
=> ( member @ B @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ A4 ) @ ( ring_1_Ints @ B ) ) ) ) ).
% Ints_prod
thf(fact_3008_gbinomial__1,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A] :
( ( gbinomial @ A @ A2 @ ( one_one @ nat ) )
= A2 ) ) ).
% gbinomial_1
thf(fact_3009_prod_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B] :
( ( groups7121269368397514597t_prod @ B @ A
@ ^ [Uu3: B] : ( one_one @ A )
@ A4 )
= ( one_one @ A ) ) ) ).
% prod.neutral_const
thf(fact_3010_of__nat__prod,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_1 @ A )
=> ! [F2: B > nat,A4: set @ B] :
( ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ B @ nat @ F2 @ A4 ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [X3: B] : ( semiring_1_of_nat @ A @ ( F2 @ X3 ) )
@ A4 ) ) ) ).
% of_nat_prod
thf(fact_3011_prod__zero__iff,axiom,
! [A: $tType,B: $tType] :
( ( semidom @ A )
=> ! [A4: set @ B,F2: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 )
= ( zero_zero @ A ) )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ( F2 @ X3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% prod_zero_iff
thf(fact_3012_prod_Oempty,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A] :
( ( groups7121269368397514597t_prod @ B @ A @ G @ ( bot_bot @ ( set @ B ) ) )
= ( one_one @ A ) ) ) ).
% prod.empty
thf(fact_3013_prod_Oinfinite,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,G: B > A] :
( ~ ( finite_finite @ B @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A4 )
= ( one_one @ A ) ) ) ) ).
% prod.infinite
thf(fact_3014_gbinomial__0_I2_J,axiom,
! [B: $tType] :
( ( ( semiring_char_0 @ B )
& ( semidom_divide @ B ) )
=> ! [K: nat] :
( ( gbinomial @ B @ ( zero_zero @ B ) @ ( suc @ K ) )
= ( zero_zero @ B ) ) ) ).
% gbinomial_0(2)
thf(fact_3015_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ ( zero_zero @ nat ) @ ( suc @ K ) )
= ( zero_zero @ nat ) ) ).
% binomial_0_Suc
thf(fact_3016_binomial__1,axiom,
! [N2: nat] :
( ( binomial @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= N2 ) ).
% binomial_1
thf(fact_3017_binomial__eq__0__iff,axiom,
! [N2: nat,K: nat] :
( ( ( binomial @ N2 @ K )
= ( zero_zero @ nat ) )
= ( ord_less @ nat @ N2 @ K ) ) ).
% binomial_eq_0_iff
thf(fact_3018_gbinomial__0_I1_J,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A] :
( ( gbinomial @ A @ A2 @ ( zero_zero @ nat ) )
= ( one_one @ A ) ) ) ).
% gbinomial_0(1)
thf(fact_3019_binomial__Suc__Suc,axiom,
! [N2: nat,K: nat] :
( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
= ( plus_plus @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_3020_gbinomial__Suc0,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A] :
( ( gbinomial @ A @ A2 @ ( suc @ ( zero_zero @ nat ) ) )
= A2 ) ) ).
% gbinomial_Suc0
thf(fact_3021_binomial__n__0,axiom,
! [N2: nat] :
( ( binomial @ N2 @ ( zero_zero @ nat ) )
= ( one_one @ nat ) ) ).
% binomial_n_0
thf(fact_3022_prod_Odelta,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( one_one @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( one_one @ A ) )
@ S3 )
= ( one_one @ A ) ) ) ) ) ) ).
% prod.delta
thf(fact_3023_prod_Odelta_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,A2: B,B2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( one_one @ A ) )
@ S3 )
= ( B2 @ A2 ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( A2 = K3 ) @ ( B2 @ K3 ) @ ( one_one @ A ) )
@ S3 )
= ( one_one @ A ) ) ) ) ) ) ).
% prod.delta'
thf(fact_3024_zero__less__binomial__iff,axiom,
! [N2: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( binomial @ N2 @ K ) )
= ( ord_less_eq @ nat @ K @ N2 ) ) ).
% zero_less_binomial_iff
thf(fact_3025_prod_OlessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N2 ) ) @ ( G @ N2 ) ) ) ) ).
% prod.lessThan_Suc
thf(fact_3026_prod_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ ( suc @ N2 ) @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ ( suc @ N2 ) @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_3027_prod_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A,A4: set @ B] :
( ( ( groups7121269368397514597t_prod @ B @ A @ G @ A4 )
!= ( one_one @ A ) )
=> ~ ! [A5: B] :
( ( member @ B @ A5 @ A4 )
=> ( ( G @ A5 )
= ( one_one @ A ) ) ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_3028_prod_Oneutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,G: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A4 )
= ( one_one @ A ) ) ) ) ).
% prod.neutral
thf(fact_3029_choose__one,axiom,
! [N2: nat] :
( ( binomial @ N2 @ ( one_one @ nat ) )
= N2 ) ).
% choose_one
thf(fact_3030_prod__mono,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A4: set @ B,F2: B > A,G: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A4 ) ) ) ) ).
% prod_mono
thf(fact_3031_prod__nonneg,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X4 ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) ) ) ) ).
% prod_nonneg
thf(fact_3032_prod__pos,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( F2 @ X4 ) ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) ) ) ) ).
% prod_pos
thf(fact_3033_prod__ge__1,axiom,
! [A: $tType,B: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( F2 @ X4 ) ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) ) ) ) ).
% prod_ge_1
thf(fact_3034_prod__zero,axiom,
! [B: $tType,A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A4: set @ B,F2: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ? [X2: B] :
( ( member @ B @ X2 @ A4 )
& ( ( F2 @ X2 )
= ( zero_zero @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 )
= ( zero_zero @ A ) ) ) ) ) ).
% prod_zero
thf(fact_3035_binomial__eq__0,axiom,
! [N2: nat,K: nat] :
( ( ord_less @ nat @ N2 @ K )
=> ( ( binomial @ N2 @ K )
= ( zero_zero @ nat ) ) ) ).
% binomial_eq_0
thf(fact_3036_prod__atLeastAtMost__code,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [F2: nat > A,A2: nat,B2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ A2 @ B2 ) )
= ( set_fo6178422350223883121st_nat @ A
@ ^ [A3: nat] : ( times_times @ A @ ( F2 @ A3 ) )
@ A2
@ B2
@ ( one_one @ A ) ) ) ) ).
% prod_atLeastAtMost_code
thf(fact_3037_Suc__times__binomial__eq,axiom,
! [N2: nat,K: nat] :
( ( times_times @ nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) )
= ( times_times @ nat @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).
% Suc_times_binomial_eq
thf(fact_3038_Suc__times__binomial,axiom,
! [K: nat,N2: nat] :
( ( times_times @ nat @ ( suc @ K ) @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) )
= ( times_times @ nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) ) ).
% Suc_times_binomial
thf(fact_3039_binomial__symmetric,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( binomial @ N2 @ K )
= ( binomial @ N2 @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ).
% binomial_symmetric
thf(fact_3040_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times @ nat @ ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ M @ R2 ) @ K ) @ ( plus_plus @ nat @ M @ K ) ) @ ( binomial @ ( plus_plus @ nat @ M @ K ) @ K ) )
= ( times_times @ nat @ ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus @ nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_3041_binomial__le__pow,axiom,
! [R2: nat,N2: nat] :
( ( ord_less_eq @ nat @ R2 @ N2 )
=> ( ord_less_eq @ nat @ ( binomial @ N2 @ R2 ) @ ( power_power @ nat @ N2 @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_3042_prod_Ointer__filter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,G: B > A,P: B > $o] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( P @ X3 ) ) ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [X3: B] : ( if @ A @ ( P @ X3 ) @ ( G @ X3 ) @ ( one_one @ A ) )
@ A4 ) ) ) ) ).
% prod.inter_filter
thf(fact_3043_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_3044_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_3045_prod__le__1,axiom,
! [B: $tType,A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [A4: set @ B,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ X4 ) )
& ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( one_one @ A ) ) ) )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( one_one @ A ) ) ) ) ).
% prod_le_1
thf(fact_3046_prod_Orelated,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [R: A > A > $o,S3: set @ B,H: B > A,G: B > A] :
( ( R @ ( one_one @ A ) @ ( one_one @ A ) )
=> ( ! [X1: A,Y1: A,X23: A,Y23: A] :
( ( ( R @ X1 @ X23 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times @ A @ X1 @ Y1 ) @ ( times_times @ A @ X23 @ Y23 ) ) )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( R @ ( H @ X4 ) @ ( G @ X4 ) ) )
=> ( R @ ( groups7121269368397514597t_prod @ B @ A @ H @ S3 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ S3 ) ) ) ) ) ) ) ).
% prod.related
thf(fact_3047_prod_Oreindex__bij__witness__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S4: set @ B,T5: set @ C,S3: set @ B,I: C > B,J: B > C,T6: set @ C,G: B > A,H: C > A] :
( ( finite_finite @ B @ S4 )
=> ( ( finite_finite @ C @ T5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) )
=> ( ( I @ ( J @ A5 ) )
= A5 ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) )
=> ( member @ C @ ( J @ A5 ) @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( ( J @ ( I @ B5 ) )
= B5 ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( member @ B @ ( I @ B5 ) @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S4 )
=> ( ( G @ A5 )
= ( one_one @ A ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ T5 )
=> ( ( H @ B5 )
= ( one_one @ A ) ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S3 )
=> ( ( H @ ( J @ A5 ) )
= ( G @ A5 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ S3 )
= ( groups7121269368397514597t_prod @ C @ A @ H @ T6 ) ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_3048_zero__less__binomial,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( binomial @ N2 @ K ) ) ) ).
% zero_less_binomial
thf(fact_3049_Suc__times__binomial__add,axiom,
! [A2: nat,B2: nat] :
( ( times_times @ nat @ ( suc @ A2 ) @ ( binomial @ ( suc @ ( plus_plus @ nat @ A2 @ B2 ) ) @ ( suc @ A2 ) ) )
= ( times_times @ nat @ ( suc @ B2 ) @ ( binomial @ ( suc @ ( plus_plus @ nat @ A2 @ B2 ) ) @ A2 ) ) ) ).
% Suc_times_binomial_add
thf(fact_3050_binomial__Suc__Suc__eq__times,axiom,
! [N2: nat,K: nat] :
( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
= ( divide_divide @ nat @ ( times_times @ nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) @ ( suc @ K ) ) ) ).
% binomial_Suc_Suc_eq_times
thf(fact_3051_choose__mult,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( times_times @ nat @ ( binomial @ N2 @ M ) @ ( binomial @ M @ K ) )
= ( times_times @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ ( minus_minus @ nat @ N2 @ K ) @ ( minus_minus @ nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_3052_binomial__absorb__comp,axiom,
! [N2: nat,K: nat] :
( ( times_times @ nat @ ( minus_minus @ nat @ N2 @ K ) @ ( binomial @ N2 @ K ) )
= ( times_times @ nat @ N2 @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ K ) ) ) ).
% binomial_absorb_comp
thf(fact_3053_gbinomial__Suc__Suc,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( plus_plus @ A @ ( gbinomial @ A @ A2 @ K ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_3054_gbinomial__of__nat__symmetric,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( gbinomial @ A @ ( semiring_1_of_nat @ A @ N2 ) @ K )
= ( gbinomial @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_3055_of__nat__aux_Osimps_I2_J,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [Inc: A > A,N2: nat,I: A] :
( ( semiri8178284476397505188at_aux @ A @ Inc @ ( suc @ N2 ) @ I )
= ( semiri8178284476397505188at_aux @ A @ Inc @ N2 @ ( Inc @ I ) ) ) ) ).
% of_nat_aux.simps(2)
thf(fact_3056_prod_Osetdiff__irrelevant,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G
@ ( minus_minus @ ( set @ B ) @ A4
@ ( collect @ B
@ ^ [X3: B] :
( ( G @ X3 )
= ( one_one @ A ) ) ) ) )
= ( groups7121269368397514597t_prod @ B @ A @ G @ A4 ) ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_3057_of__nat__aux_Osimps_I1_J,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [Inc: A > A,I: A] :
( ( semiri8178284476397505188at_aux @ A @ Inc @ ( zero_zero @ nat ) @ I )
= I ) ) ).
% of_nat_aux.simps(1)
thf(fact_3058_prod_Onat__diff__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ N2 @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% prod.nat_diff_reindex
thf(fact_3059_prod_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ N2 @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ N2 @ M ) ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_3060_gbinomial__Suc,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ A2 @ ( suc @ K ) )
= ( divide_divide @ A
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ K ) )
@ ( semiring_char_0_fact @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_Suc
thf(fact_3061_less__1__prod2,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [I5: set @ A,I: A,F2: A > B] :
( ( finite_finite @ A @ I5 )
=> ( ( member @ A @ I @ I5 )
=> ( ( ord_less @ B @ ( one_one @ B ) @ ( F2 @ I ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I5 )
=> ( ord_less_eq @ B @ ( one_one @ B ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ B @ ( one_one @ B ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ I5 ) ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_3062_less__1__prod,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [I5: set @ A,F2: A > B] :
( ( finite_finite @ A @ I5 )
=> ( ( I5
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I5 )
=> ( ord_less @ B @ ( one_one @ B ) @ ( F2 @ I2 ) ) )
=> ( ord_less @ B @ ( one_one @ B ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ I5 ) ) ) ) ) ) ).
% less_1_prod
thf(fact_3063_prod_Osame__carrier,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [C5: set @ B,A4: set @ B,B4: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ C5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ C5 @ A4 ) )
=> ( ( G @ A5 )
= ( one_one @ A ) ) )
=> ( ! [B5: B] :
( ( member @ B @ B5 @ ( minus_minus @ ( set @ B ) @ C5 @ B4 ) )
=> ( ( H @ B5 )
= ( one_one @ A ) ) )
=> ( ( ( groups7121269368397514597t_prod @ B @ A @ G @ A4 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ B4 ) )
= ( ( groups7121269368397514597t_prod @ B @ A @ G @ C5 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ C5 ) ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_3064_prod_Osame__carrierI,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [C5: set @ B,A4: set @ B,B4: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ C5 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ C5 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ ( minus_minus @ ( set @ B ) @ C5 @ A4 ) )
=> ( ( G @ A5 )
= ( one_one @ A ) ) )
=> ( ! [B5: B] :
( ( member @ B @ B5 @ ( minus_minus @ ( set @ B ) @ C5 @ B4 ) )
=> ( ( H @ B5 )
= ( one_one @ A ) ) )
=> ( ( ( groups7121269368397514597t_prod @ B @ A @ G @ C5 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ C5 ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ A4 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ B4 ) ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_3065_prod_Omono__neutral__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ S3 )
= ( groups7121269368397514597t_prod @ B @ A @ G @ T6 ) ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_3066_prod_Omono__neutral__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ T6 )
= ( groups7121269368397514597t_prod @ B @ A @ G @ S3 ) ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_3067_prod_Omono__neutral__cong__left,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [T6: set @ B,S3: set @ B,H: B > A,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ X4 )
= ( one_one @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ S3 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ T6 ) ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_3068_prod_Omono__neutral__cong__right,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [T6: set @ B,S3: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ T6 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ S3 ) ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_3069_prod_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_3070_prod_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ ( suc @ N2 ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_3071_prod_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N2 ) ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_3072_binomial__absorption,axiom,
! [K: nat,N2: nat] :
( ( times_times @ nat @ ( suc @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) )
= ( times_times @ nat @ N2 @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ K ) ) ) ).
% binomial_absorption
thf(fact_3073_gbinomial__addition__formula,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ A2 @ ( suc @ K ) )
= ( plus_plus @ A @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_addition_formula
thf(fact_3074_gbinomial__absorb__comp,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( gbinomial @ A @ A2 @ K ) )
= ( times_times @ A @ A2 @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_absorb_comp
thf(fact_3075_gbinomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [K: nat,A2: A] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ K ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ K ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_3076_gbinomial__mult__1_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ A2 )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_3077_gbinomial__mult__1,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ A2 @ ( gbinomial @ A @ A2 @ K ) )
= ( plus_plus @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_3078_binomial__fact__lemma,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( times_times @ nat @ ( times_times @ nat @ ( semiring_char_0_fact @ nat @ K ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N2 @ K ) ) ) @ ( binomial @ N2 @ K ) )
= ( semiring_char_0_fact @ nat @ N2 ) ) ) ).
% binomial_fact_lemma
thf(fact_3079_prod_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_3080_prod_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ M )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_3081_prod_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_3082_fact__prod,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] :
( semiring_1_of_nat @ A
@ ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N3 ) ) ) ) ) ) ).
% fact_prod
thf(fact_3083_prod__mono__strict,axiom,
! [A: $tType,B: $tType] :
( ( linordered_semidom @ A )
=> ! [A4: set @ B,F2: B > A,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less @ A @ ( F2 @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ A4 ) ) ) ) ) ) ).
% prod_mono_strict
thf(fact_3084_binomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( semiring_1_of_nat @ A @ K ) ) @ K ) @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K ) ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_3085_binomial__maximum_H,axiom,
! [N2: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ K ) @ ( binomial @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ N2 ) ) ).
% binomial_maximum'
thf(fact_3086_binomial__mono,axiom,
! [K: nat,K7: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K7 ) @ N2 )
=> ( ord_less_eq @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K7 ) ) ) ) ).
% binomial_mono
thf(fact_3087_binomial__maximum,axiom,
! [N2: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ).
% binomial_maximum
thf(fact_3088_binomial__antimono,axiom,
! [K: nat,K7: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ K )
=> ( ( ord_less_eq @ nat @ K7 @ N2 )
=> ( ord_less_eq @ nat @ ( binomial @ N2 @ K7 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_3089_binomial__le__pow2,axiom,
! [N2: nat,K: nat] : ( ord_less_eq @ nat @ ( binomial @ N2 @ K ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% binomial_le_pow2
thf(fact_3090_choose__reduce__nat,axiom,
! [N2: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( binomial @ N2 @ K )
= ( plus_plus @ nat @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_3091_times__binomial__minus1__eq,axiom,
! [K: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( times_times @ nat @ K @ ( binomial @ N2 @ K ) )
= ( times_times @ nat @ N2 @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_3092_prod_Oub__add__nat,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A,P6: nat] :
( ( ord_less_eq @ nat @ M @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ ( plus_plus @ nat @ N2 @ P6 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N2 @ P6 ) ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_3093_fold__atLeastAtMost__nat_Oelims,axiom,
! [A: $tType,X: nat > A > A,Xa2: nat,Xb3: nat,Xc: A,Y: A] :
( ( ( set_fo6178422350223883121st_nat @ A @ X @ Xa2 @ Xb3 @ Xc )
= Y )
=> ( ( ( ord_less @ nat @ Xb3 @ Xa2 )
=> ( Y = Xc ) )
& ( ~ ( ord_less @ nat @ Xb3 @ Xa2 )
=> ( Y
= ( set_fo6178422350223883121st_nat @ A @ X @ ( plus_plus @ nat @ Xa2 @ ( one_one @ nat ) ) @ Xb3 @ ( X @ Xa2 @ Xc ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
thf(fact_3094_fold__atLeastAtMost__nat_Osimps,axiom,
! [A: $tType] :
( ( set_fo6178422350223883121st_nat @ A )
= ( ^ [F3: nat > A > A,A3: nat,B3: nat,Acc2: A] : ( if @ A @ ( ord_less @ nat @ B3 @ A3 ) @ Acc2 @ ( set_fo6178422350223883121st_nat @ A @ F3 @ ( plus_plus @ nat @ A3 @ ( one_one @ nat ) ) @ B3 @ ( F3 @ A3 @ Acc2 ) ) ) ) ) ).
% fold_atLeastAtMost_nat.simps
thf(fact_3095_Suc__times__gbinomial,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) ) )
= ( times_times @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% Suc_times_gbinomial
thf(fact_3096_gbinomial__absorption,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) @ ( gbinomial @ A @ A2 @ ( suc @ K ) ) )
= ( times_times @ A @ A2 @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_absorption
thf(fact_3097_binomial__altdef__nat,axiom,
! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( binomial @ N2 @ K )
= ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ N2 ) @ ( times_times @ nat @ ( semiring_char_0_fact @ nat @ K ) @ ( semiring_char_0_fact @ nat @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_3098_gbinomial__trinomial__revision,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,M: nat,A2: A] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( times_times @ A @ ( gbinomial @ A @ A2 @ M ) @ ( gbinomial @ A @ ( semiring_1_of_nat @ A @ M ) @ K ) )
= ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( minus_minus @ nat @ M @ K ) ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_3099_fact__eq__fact__times,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( semiring_char_0_fact @ nat @ M )
= ( times_times @ nat @ ( semiring_char_0_fact @ nat @ N2 )
@ ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N2 ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_3100_prod__mono2,axiom,
! [B: $tType,A: $tType] :
( ( linordered_idom @ B )
=> ! [B4: set @ A,A4: set @ A,F2: A > B] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) )
=> ( ord_less_eq @ B @ ( one_one @ B ) @ ( F2 @ B5 ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ A5 ) ) )
=> ( ord_less_eq @ B @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ A4 ) @ ( groups7121269368397514597t_prod @ A @ B @ F2 @ B4 ) ) ) ) ) ) ) ).
% prod_mono2
thf(fact_3101_binomial__less__binomial__Suc,axiom,
! [K: nat,N2: nat] :
( ( ord_less @ nat @ K @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_3102_binomial__strict__mono,axiom,
! [K: nat,K7: nat,N2: nat] :
( ( ord_less @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K7 ) @ N2 )
=> ( ord_less @ nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K7 ) ) ) ) ).
% binomial_strict_mono
thf(fact_3103_binomial__strict__antimono,axiom,
! [K: nat,K7: nat,N2: nat] :
( ( ord_less @ nat @ K @ K7 )
=> ( ( ord_less_eq @ nat @ N2 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K ) )
=> ( ( ord_less_eq @ nat @ K7 @ N2 )
=> ( ord_less @ nat @ ( binomial @ N2 @ K7 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_3104_central__binomial__odd,axiom,
! [N2: nat] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( binomial @ N2 @ ( suc @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
= ( binomial @ N2 @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% central_binomial_odd
thf(fact_3105_gbinomial__code,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] :
( if @ A
@ ( K3
= ( zero_zero @ nat ) )
@ ( one_one @ A )
@ ( divide_divide @ A
@ ( set_fo6178422350223883121st_nat @ A
@ ^ [L2: nat] : ( times_times @ A @ ( minus_minus @ A @ A3 @ ( semiring_1_of_nat @ A @ L2 ) ) )
@ ( zero_zero @ nat )
@ ( minus_minus @ nat @ K3 @ ( one_one @ nat ) )
@ ( one_one @ A ) )
@ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ) ).
% gbinomial_code
thf(fact_3106_binomial__addition__formula,axiom,
! [N2: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( binomial @ N2 @ ( suc @ K ) )
= ( plus_plus @ nat @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_3107_binomial__fact,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K ) )
= ( divide_divide @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ) ) ).
% binomial_fact
thf(fact_3108_fact__binomial,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K ) ) )
= ( divide_divide @ A @ ( semiring_char_0_fact @ A @ N2 ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ) ).
% fact_binomial
thf(fact_3109_gbinomial__factors,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( times_times @ A @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) ) @ ( gbinomial @ A @ A2 @ K ) ) ) ) ).
% gbinomial_factors
thf(fact_3110_gbinomial__rec,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( suc @ K ) )
= ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( divide_divide @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ ( semiring_1_of_nat @ A @ ( suc @ K ) ) ) ) ) ) ).
% gbinomial_rec
thf(fact_3111_gbinomial__negated__upper,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] : ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( minus_minus @ A @ ( semiring_1_of_nat @ A @ K3 ) @ A3 ) @ ( one_one @ A ) ) @ K3 ) ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_3112_gbinomial__index__swap,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ ( one_one @ A ) ) @ K ) )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ N2 ) ) ) ) ).
% gbinomial_index_swap
thf(fact_3113_pochhammer__Suc__prod,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% pochhammer_Suc_prod
thf(fact_3114_pochhammer__prod__rev,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A3: A,N3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A3 @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N3 @ I3 ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N3 ) ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_3115_binomial__code,axiom,
( binomial
= ( ^ [N3: nat,K3: nat] : ( if @ nat @ ( ord_less @ nat @ N3 @ K3 ) @ ( zero_zero @ nat ) @ ( if @ nat @ ( ord_less @ nat @ N3 @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K3 ) ) @ ( binomial @ N3 @ ( minus_minus @ nat @ N3 @ K3 ) ) @ ( divide_divide @ nat @ ( set_fo6178422350223883121st_nat @ nat @ ( times_times @ nat ) @ ( plus_plus @ nat @ ( minus_minus @ nat @ N3 @ K3 ) @ ( one_one @ nat ) ) @ N3 @ ( one_one @ nat ) ) @ ( semiring_char_0_fact @ nat @ K3 ) ) ) ) ) ) ).
% binomial_code
thf(fact_3116_fact__div__fact,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( divide_divide @ nat @ ( semiring_char_0_fact @ nat @ M ) @ ( semiring_char_0_fact @ nat @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_3117_choose__two,axiom,
! [N2: nat] :
( ( binomial @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( divide_divide @ nat @ ( times_times @ nat @ N2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% choose_two
thf(fact_3118_gbinomial__minus,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( gbinomial @ A @ ( uminus_uminus @ A @ A2 ) @ K )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K ) @ ( gbinomial @ A @ ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( one_one @ A ) ) @ K ) ) ) ) ).
% gbinomial_minus
thf(fact_3119_prod_Oin__pairs,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.in_pairs
thf(fact_3120_gbinomial__reduce__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( gbinomial @ A @ A2 @ K )
= ( plus_plus @ A @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ K ) ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_3121_sum__atLeastAtMost__code,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,A2: nat,B2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ A2 @ B2 ) )
= ( set_fo6178422350223883121st_nat @ A
@ ^ [A3: nat] : ( plus_plus @ A @ ( F2 @ A3 ) )
@ A2
@ B2
@ ( zero_zero @ A ) ) ) ) ).
% sum_atLeastAtMost_code
thf(fact_3122_pochhammer__Suc__prod__rev,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ A2 @ ( suc @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N2 @ I3 ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_3123_gbinomial__pochhammer,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] : ( divide_divide @ A @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) @ ( comm_s3205402744901411588hammer @ A @ ( uminus_uminus @ A @ A3 ) @ K3 ) ) @ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_3124_gbinomial__pochhammer_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] : ( divide_divide @ A @ ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ ( minus_minus @ A @ A3 @ ( semiring_1_of_nat @ A @ K3 ) ) @ ( one_one @ A ) ) @ K3 ) @ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_3125_gbinomial__sum__up__index,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] : ( gbinomial @ A @ ( semiring_1_of_nat @ A @ J3 ) @ K )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( one_one @ A ) ) @ ( plus_plus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ).
% gbinomial_sum_up_index
thf(fact_3126_gbinomial__absorption_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( gbinomial @ A @ A2 @ K )
= ( times_times @ A @ ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ K ) ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ ( minus_minus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_3127_fact__code,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( set_fo6178422350223883121st_nat @ nat @ ( times_times @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 @ ( one_one @ nat ) ) ) ) ) ) ).
% fact_code
thf(fact_3128_gbinomial__partial__row__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ A2 @ K3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( semiring_1_of_nat @ A @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( times_times @ A @ ( divide_divide @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( gbinomial @ A @ A2 @ ( plus_plus @ nat @ M @ ( one_one @ nat ) ) ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_3129_choose__even__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ I3 ) ) @ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% choose_even_sum
thf(fact_3130_choose__odd__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] :
( if @ A
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 )
@ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ I3 ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% choose_odd_sum
thf(fact_3131_gbinomial__r__part__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M ) ) @ ( one_one @ A ) ) ) @ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ) ).
% gbinomial_r_part_sum
thf(fact_3132_atMost__eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ( set_ord_atMost @ A @ X )
= ( set_ord_atMost @ A @ Y ) )
= ( X = Y ) ) ) ).
% atMost_eq_iff
thf(fact_3133_atMost__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,K: A] :
( ( member @ A @ I @ ( set_ord_atMost @ A @ K ) )
= ( ord_less_eq @ A @ I @ K ) ) ) ).
% atMost_iff
thf(fact_3134_finite__atMost,axiom,
! [K: nat] : ( finite_finite @ nat @ ( set_ord_atMost @ nat @ K ) ) ).
% finite_atMost
thf(fact_3135_atMost__subset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ X ) @ ( set_ord_atMost @ A @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ).
% atMost_subset_iff
thf(fact_3136_prod__eq__1__iff,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ( ( groups7121269368397514597t_prod @ A @ nat @ F2 @ A4 )
= ( one_one @ nat ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ( F2 @ X3 )
= ( one_one @ nat ) ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_3137_Icc__subset__Iic__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [L: A,H: A,H3: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ H ) @ ( set_ord_atMost @ A @ H3 ) )
= ( ~ ( ord_less_eq @ A @ L @ H )
| ( ord_less_eq @ A @ H @ H3 ) ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_3138_sum_OatMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ).
% sum.atMost_Suc
thf(fact_3139_prod_OatMost__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ).
% prod.atMost_Suc
thf(fact_3140_prod__pos__nat__iff,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( groups7121269368397514597t_prod @ A @ nat @ F2 @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( F2 @ X3 ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_3141_int__prod,axiom,
! [B: $tType,F2: B > nat,A4: set @ B] :
( ( semiring_1_of_nat @ int @ ( groups7121269368397514597t_prod @ B @ nat @ F2 @ A4 ) )
= ( groups7121269368397514597t_prod @ B @ int
@ ^ [X3: B] : ( semiring_1_of_nat @ int @ ( F2 @ X3 ) )
@ A4 ) ) ).
% int_prod
thf(fact_3142_not__empty__eq__Iic__eq__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [H: A] :
( ( bot_bot @ ( set @ A ) )
!= ( set_ord_atMost @ A @ H ) ) ) ).
% not_empty_eq_Iic_eq_empty
thf(fact_3143_infinite__Iic,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_bot @ A ) )
=> ! [A2: A] :
~ ( finite_finite @ A @ ( set_ord_atMost @ A @ A2 ) ) ) ).
% infinite_Iic
thf(fact_3144_not__Iic__eq__Icc,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [H3: A,L: A,H: A] :
( ( set_ord_atMost @ A @ H3 )
!= ( set_or1337092689740270186AtMost @ A @ L @ H ) ) ) ).
% not_Iic_eq_Icc
thf(fact_3145_atMost__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_atMost @ A )
= ( ^ [U2: A] :
( collect @ A
@ ^ [X3: A] : ( ord_less_eq @ A @ X3 @ U2 ) ) ) ) ) ).
% atMost_def
thf(fact_3146_atMost__atLeast0,axiom,
( ( set_ord_atMost @ nat )
= ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) ) ) ).
% atMost_atLeast0
thf(fact_3147_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ K ) )
= ( set_ord_atMost @ nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_3148_not__Iic__le__Icc,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [H: A,L3: A,H3: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ H ) @ ( set_or1337092689740270186AtMost @ A @ L3 @ H3 ) ) ) ).
% not_Iic_le_Icc
thf(fact_3149_Iic__subset__Iio__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ A2 ) @ ( set_ord_lessThan @ A @ B2 ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% Iic_subset_Iio_iff
thf(fact_3150_prod__int__eq,axiom,
! [I: nat,J: nat] :
( ( groups7121269368397514597t_prod @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_or1337092689740270186AtMost @ nat @ I @ J ) )
= ( groups7121269368397514597t_prod @ int @ int
@ ^ [X3: int] : X3
@ ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ I ) @ ( semiring_1_of_nat @ int @ J ) ) ) ) ).
% prod_int_eq
thf(fact_3151_sum__choose__upper,axiom,
! [M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ K3 @ M )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( binomial @ ( suc @ N2 ) @ ( suc @ M ) ) ) ).
% sum_choose_upper
thf(fact_3152_sum_OatMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_3153_sum__telescope,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [F2: nat > A,I: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ ( F2 @ I3 ) @ ( F2 @ ( suc @ I3 ) ) )
@ ( set_ord_atMost @ nat @ I ) )
= ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ ( F2 @ ( suc @ I ) ) ) ) ) ).
% sum_telescope
thf(fact_3154_polyfun__eq__coeffs,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N2: nat,D2: nat > A] :
( ( ! [X3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ X3 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( D2 @ I3 ) @ ( power_power @ A @ X3 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq @ nat @ I3 @ N2 )
=> ( ( C2 @ I3 )
= ( D2 @ I3 ) ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_3155_bounded__imp__summable,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linord2810124833399127020strict @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [A2: nat > A,B4: A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ A2 @ ( set_ord_atMost @ nat @ N ) ) @ B4 )
=> ( summable @ A @ A2 ) ) ) ) ).
% bounded_imp_summable
thf(fact_3156_prod_OatMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_3157_prod__int__plus__eq,axiom,
! [I: nat,J: nat] :
( ( groups7121269368397514597t_prod @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_or1337092689740270186AtMost @ nat @ I @ ( plus_plus @ nat @ I @ J ) ) )
= ( groups7121269368397514597t_prod @ int @ int
@ ^ [X3: int] : X3
@ ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ I ) @ ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ I @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_3158_sum_Onested__swap_H,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat > nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ ( A2 @ I3 ) @ ( set_ord_lessThan @ nat @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( A2 @ I3 @ J3 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% sum.nested_swap'
thf(fact_3159_prod_Onested__swap_H,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat > nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( groups7121269368397514597t_prod @ nat @ A @ ( A2 @ I3 ) @ ( set_ord_lessThan @ nat @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( A2 @ I3 @ J3 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% prod.nested_swap'
thf(fact_3160_sum__choose__lower,axiom,
! [R2: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ ( plus_plus @ nat @ R2 @ K3 ) @ K3 )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( binomial @ ( suc @ ( plus_plus @ nat @ R2 @ N2 ) ) @ N2 ) ) ).
% sum_choose_lower
thf(fact_3161_choose__rising__sum_I2_J,axiom,
! [N2: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus @ nat @ N2 @ J3 ) @ N2 )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ N2 @ M ) @ ( one_one @ nat ) ) @ M ) ) ).
% choose_rising_sum(2)
thf(fact_3162_choose__rising__sum_I1_J,axiom,
! [N2: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus @ nat @ N2 @ J3 ) @ N2 )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( plus_plus @ nat @ ( plus_plus @ nat @ N2 @ M ) @ ( one_one @ nat ) ) @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ).
% choose_rising_sum(1)
thf(fact_3163_zero__polynom__imp__zero__coeffs,axiom,
! [A: $tType] :
( ( ( ab_semigroup_mult @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [C2: nat > A,N2: nat,K: nat] :
( ! [W: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ W @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( C2 @ K )
= ( zero_zero @ A ) ) ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_3164_polyfun__eq__0,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N2: nat] :
( ( ! [X3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ X3 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq @ nat @ I3 @ N2 )
=> ( ( C2 @ I3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_eq_0
thf(fact_3165_ln__prod,axiom,
! [A: $tType,I5: set @ A,F2: A > real] :
( ( finite_finite @ A @ I5 )
=> ( ! [I2: A] :
( ( member @ A @ I2 @ I5 )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ I2 ) ) )
=> ( ( ln_ln @ real @ ( groups7121269368397514597t_prod @ A @ real @ F2 @ I5 ) )
= ( groups7311177749621191930dd_sum @ A @ real
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_3166_sum_OatMost__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ N2 ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% sum.atMost_shift
thf(fact_3167_sum__up__index__split,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_ord_atMost @ nat @ M ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( plus_plus @ nat @ M @ N2 ) ) ) ) ) ) ).
% sum_up_index_split
thf(fact_3168_prod_OatMost__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ N2 ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) )
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ).
% prod.atMost_shift
thf(fact_3169_gbinomial__parallel__sum,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( gbinomial @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ K3 ) ) @ K3 )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( gbinomial @ A @ ( plus_plus @ A @ ( plus_plus @ A @ A2 @ ( semiring_1_of_nat @ A @ N2 ) ) @ ( one_one @ A ) ) @ N2 ) ) ) ).
% gbinomial_parallel_sum
thf(fact_3170_sum__choose__diagonal,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( binomial @ ( minus_minus @ nat @ N2 @ K3 ) @ ( minus_minus @ nat @ M @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( binomial @ ( suc @ N2 ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_3171_vandermonde,axiom,
! [M: nat,N2: nat,R2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( binomial @ M @ K3 ) @ ( binomial @ N2 @ ( minus_minus @ nat @ R2 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R2 ) )
= ( binomial @ ( plus_plus @ nat @ M @ N2 ) @ R2 ) ) ).
% vandermonde
thf(fact_3172_sum__gp__basic,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( times_times @ A @ ( minus_minus @ A @ ( one_one @ A ) @ X ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N2 ) ) )
= ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N2 ) ) ) ) ) ).
% sum_gp_basic
thf(fact_3173_polyfun__finite__roots,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N2: nat] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ X3 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) )
= ( ? [I3: nat] :
( ( ord_less_eq @ nat @ I3 @ N2 )
& ( ( C2 @ I3 )
!= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_finite_roots
thf(fact_3174_polyfun__roots__finite,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N2: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( finite_finite @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z5 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_3175_polyfun__linear__factor__root,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: nat > A,A2: A,N2: nat] :
( ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ A2 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) )
=> ~ ! [B5: nat > A] :
~ ! [Z4: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z4 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( times_times @ A @ ( minus_minus @ A @ Z4 @ A2 )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( B5 @ I3 ) @ ( power_power @ A @ Z4 @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_3176_polyfun__linear__factor,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [C2: nat > A,N2: nat,A2: A] :
? [B5: nat > A] :
! [Z4: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z4 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( plus_plus @ A
@ ( times_times @ A @ ( minus_minus @ A @ Z4 @ A2 )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( B5 @ I3 ) @ ( power_power @ A @ Z4 @ I3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ A2 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ) ).
% polyfun_linear_factor
thf(fact_3177_sum__power__shift,axiom,
! [A: $tType] :
( ( ( monoid_mult @ A )
& ( comm_ring @ A ) )
=> ! [M: nat,N2: nat,X: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_3178_binomial,axiom,
! [A2: nat,B2: nat,N2: nat] :
( ( power_power @ nat @ ( plus_plus @ nat @ A2 @ B2 ) @ N2 )
= ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( times_times @ nat @ ( semiring_1_of_nat @ nat @ ( binomial @ N2 @ K3 ) ) @ ( power_power @ nat @ A2 @ K3 ) ) @ ( power_power @ nat @ B2 @ ( minus_minus @ nat @ N2 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ).
% binomial
thf(fact_3179_sum_Oin__pairs__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% sum.in_pairs_0
thf(fact_3180_polynomial__product,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [M: nat,A2: nat > A,N2: nat,B2: nat > A,X: A] :
( ! [I2: nat] :
( ( ord_less @ nat @ M @ I2 )
=> ( ( A2 @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [J2: nat] :
( ( ord_less @ nat @ N2 @ J2 )
=> ( ( B2 @ J2 )
= ( zero_zero @ A ) ) )
=> ( ( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ X @ I3 ) )
@ ( set_ord_atMost @ nat @ M ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] : ( times_times @ A @ ( B2 @ J3 ) @ ( power_power @ A @ X @ J3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [R5: nat] :
( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( A2 @ K3 ) @ ( B2 @ ( minus_minus @ nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R5 ) )
@ ( power_power @ A @ X @ R5 ) )
@ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N2 ) ) ) ) ) ) ) ).
% polynomial_product
thf(fact_3181_prod_Oin__pairs__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_atMost @ nat @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( G @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ I3 ) ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% prod.in_pairs_0
thf(fact_3182_polyfun__eq__const,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,N2: nat,K: A] :
( ( ! [X3: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ X3 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= K ) )
= ( ( ( C2 @ ( zero_zero @ nat ) )
= K )
& ! [X3: nat] :
( ( member @ nat @ X3 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N2 ) )
=> ( ( C2 @ X3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% polyfun_eq_const
thf(fact_3183_gbinomial__sum__lower__neg,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( gbinomial @ A @ A2 @ K3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( gbinomial @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ M ) ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_3184_binomial__ring,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( power_power @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N2 )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K3 ) ) @ ( power_power @ A @ A2 @ K3 ) ) @ ( power_power @ A @ B2 @ ( minus_minus @ nat @ N2 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% binomial_ring
thf(fact_3185_pochhammer__binomial__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( comm_s3205402744901411588hammer @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N2 )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K3 ) ) @ ( comm_s3205402744901411588hammer @ A @ A2 @ K3 ) ) @ ( comm_s3205402744901411588hammer @ A @ B2 @ ( minus_minus @ nat @ N2 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% pochhammer_binomial_sum
thf(fact_3186_polynomial__product__nat,axiom,
! [M: nat,A2: nat > nat,N2: nat,B2: nat > nat,X: nat] :
( ! [I2: nat] :
( ( ord_less @ nat @ M @ I2 )
=> ( ( A2 @ I2 )
= ( zero_zero @ nat ) ) )
=> ( ! [J2: nat] :
( ( ord_less @ nat @ N2 @ J2 )
=> ( ( B2 @ J2 )
= ( zero_zero @ nat ) ) )
=> ( ( times_times @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I3: nat] : ( times_times @ nat @ ( A2 @ I3 ) @ ( power_power @ nat @ X @ I3 ) )
@ ( set_ord_atMost @ nat @ M ) )
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [J3: nat] : ( times_times @ nat @ ( B2 @ J3 ) @ ( power_power @ nat @ X @ J3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [R5: nat] :
( times_times @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [K3: nat] : ( times_times @ nat @ ( A2 @ K3 ) @ ( B2 @ ( minus_minus @ nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost @ nat @ R5 ) )
@ ( power_power @ nat @ X @ R5 ) )
@ ( set_ord_atMost @ nat @ ( plus_plus @ nat @ M @ N2 ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_3187_sum_Ozero__middle,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [P6: nat,K: nat,G: nat > A,H: nat > A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ P6 )
=> ( ( ord_less_eq @ nat @ K @ P6 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] : ( if @ A @ ( ord_less @ nat @ J3 @ K ) @ ( G @ J3 ) @ ( if @ A @ ( J3 = K ) @ ( zero_zero @ A ) @ ( H @ ( minus_minus @ nat @ J3 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( set_ord_atMost @ nat @ P6 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] : ( if @ A @ ( ord_less @ nat @ J3 @ K ) @ ( G @ J3 ) @ ( H @ J3 ) )
@ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ P6 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_3188_prod_Ozero__middle,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [P6: nat,K: nat,G: nat > A,H: nat > A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ P6 )
=> ( ( ord_less_eq @ nat @ K @ P6 )
=> ( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J3: nat] : ( if @ A @ ( ord_less @ nat @ J3 @ K ) @ ( G @ J3 ) @ ( if @ A @ ( J3 = K ) @ ( one_one @ A ) @ ( H @ ( minus_minus @ nat @ J3 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( set_ord_atMost @ nat @ P6 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J3: nat] : ( if @ A @ ( ord_less @ nat @ J3 @ K ) @ ( G @ J3 ) @ ( H @ J3 ) )
@ ( set_ord_atMost @ nat @ ( minus_minus @ nat @ P6 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_3189_gbinomial__partial__sum__poly,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat,A2: A,X: A,Y: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ A2 ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( uminus_uminus @ A @ A2 ) @ K3 ) @ ( power_power @ A @ ( uminus_uminus @ A @ X ) @ K3 ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_3190_root__polyfun,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N2: nat,Z2: A,A2: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( ( power_power @ A @ Z2 @ N2 )
= A2 )
= ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] :
( times_times @ A
@ ( if @ A
@ ( I3
= ( zero_zero @ nat ) )
@ ( uminus_uminus @ A @ A2 )
@ ( if @ A @ ( I3 = N2 ) @ ( one_one @ A ) @ ( zero_zero @ A ) ) )
@ ( power_power @ A @ Z2 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) ) ) ).
% root_polyfun
thf(fact_3191_sum__gp0,axiom,
! [A: $tType] :
( ( ( division_ring @ A )
& ( comm_ring @ A ) )
=> ! [X: A,N2: nat] :
( ( ( X
= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N2 ) )
= ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) )
& ( ( X
!= ( one_one @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ ( power_power @ A @ X ) @ ( set_ord_atMost @ nat @ N2 ) )
= ( divide_divide @ A @ ( minus_minus @ A @ ( one_one @ A ) @ ( power_power @ A @ X @ ( suc @ N2 ) ) ) @ ( minus_minus @ A @ ( one_one @ A ) @ X ) ) ) ) ) ) ).
% sum_gp0
thf(fact_3192_choose__alternating__linear__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat] :
( ( N2
!= ( one_one @ nat ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ I3 ) @ ( semiring_1_of_nat @ A @ I3 ) ) @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ I3 ) ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) ) ).
% choose_alternating_linear_sum
thf(fact_3193_gbinomial__sum__nat__pow2,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( divide_divide @ A @ ( gbinomial @ A @ ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ M @ K3 ) ) @ K3 ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ K3 ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_3194_gbinomial__partial__sum__poly__xpos,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [M: nat,A2: A,X: A,Y: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ A2 ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( gbinomial @ A @ ( minus_minus @ A @ ( plus_plus @ A @ ( semiring_1_of_nat @ A @ K3 ) @ A2 ) @ ( one_one @ A ) ) @ K3 ) @ ( power_power @ A @ X @ K3 ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ ( minus_minus @ nat @ M @ K3 ) ) )
@ ( set_ord_atMost @ nat @ M ) ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_3195_polyfun__diff__alt,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N2: nat,A2: nat > A,X: A,Y: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( minus_minus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ X @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ Y @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( times_times @ A @ ( A2 @ ( plus_plus @ nat @ ( plus_plus @ nat @ J3 @ K3 ) @ ( one_one @ nat ) ) ) @ ( power_power @ A @ Y @ K3 ) ) @ ( power_power @ A @ X @ J3 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N2 @ J3 ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_3196_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat @ ( binomial @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ nat ) ) ) @ ( set_ord_atMost @ nat @ M ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_3197_choose__linear__sum,axiom,
! [N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I3: nat] : ( times_times @ nat @ I3 @ ( binomial @ N2 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( times_times @ nat @ N2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ).
% choose_linear_sum
thf(fact_3198_choose__alternating__sum,axiom,
! [A: $tType] :
( ( comm_ring_1 @ A )
=> ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ I3 ) @ ( semiring_1_of_nat @ A @ ( binomial @ N2 @ I3 ) ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) ) ).
% choose_alternating_sum
thf(fact_3199_polyfun__extremal__lemma,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [E2: real,C2: nat > A,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: real] :
! [Z4: A] :
( ( ord_less_eq @ real @ M8 @ ( real_V7770717601297561774m_norm @ A @ Z4 ) )
=> ( ord_less_eq @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z4 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
@ ( times_times @ real @ E2 @ ( power_power @ real @ ( real_V7770717601297561774m_norm @ A @ Z4 ) @ ( suc @ N2 ) ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_3200_polyfun__diff,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [N2: nat,A2: nat > A,X: A,Y: A] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 )
=> ( ( minus_minus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ X @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ Y @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( times_times @ A @ ( minus_minus @ A @ X @ Y )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] :
( times_times @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( A2 @ I3 ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ ( minus_minus @ nat @ I3 @ J3 ) @ ( one_one @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J3 ) @ N2 ) )
@ ( power_power @ A @ X @ J3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ) ) ).
% polyfun_diff
thf(fact_3201_sin__x__sin__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] :
( if @ A
@ ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 )
& ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
@ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( times_times @ A @ ( sin @ A @ X ) @ ( sin @ A @ Y ) ) ) ) ).
% sin_x_sin_y
thf(fact_3202_sums__cos__x__plus__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 ) @ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) ) @ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( cos @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% sums_cos_x_plus_y
thf(fact_3203_divmod__BitM__2__eq,axiom,
! [M: num] :
( ( unique8689654367752047608divmod @ int @ ( bitM @ M ) @ ( bit0 @ one2 ) )
= ( product_Pair @ int @ int @ ( minus_minus @ int @ ( numeral_numeral @ int @ M ) @ ( one_one @ int ) ) @ ( one_one @ int ) ) ) ).
% divmod_BitM_2_eq
thf(fact_3204_complex__unimodular__polar,axiom,
! [Z2: complex] :
( ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( one_one @ real ) )
=> ~ ! [T4: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
=> ( ( ord_less @ real @ T4 @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) )
=> ( Z2
!= ( complex2 @ ( cos @ real @ T4 ) @ ( sin @ real @ T4 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_3205_of__int__eq__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [W2: int,Z2: int] :
( ( ( ring_1_of_int @ A @ W2 )
= ( ring_1_of_int @ A @ Z2 ) )
= ( W2 = Z2 ) ) ) ).
% of_int_eq_iff
thf(fact_3206_of__nat__id,axiom,
( ( semiring_1_of_nat @ nat )
= ( ^ [N3: nat] : N3 ) ) ).
% of_nat_id
thf(fact_3207_scaleR__zero__right,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real] :
( ( real_V8093663219630862766scaleR @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% scaleR_zero_right
thf(fact_3208_scaleR__cancel__right,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,B2: real] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ B2 @ X ) )
= ( ( A2 = B2 )
| ( X
= ( zero_zero @ A ) ) ) ) ) ).
% scaleR_cancel_right
thf(fact_3209_scaleR__cancel__left,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) )
= ( ( X = Y )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% scaleR_cancel_left
thf(fact_3210_scaleR__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A] :
( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ real ) )
| ( X
= ( zero_zero @ A ) ) ) ) ) ).
% scaleR_eq_0_iff
thf(fact_3211_scaleR__zero__left,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( zero_zero @ real ) @ X )
= ( zero_zero @ A ) ) ) ).
% scaleR_zero_left
thf(fact_3212_of__int__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A @ ( zero_zero @ int ) )
= ( zero_zero @ A ) ) ) ).
% of_int_0
thf(fact_3213_of__int__0__eq__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int] :
( ( ( zero_zero @ A )
= ( ring_1_of_int @ A @ Z2 ) )
= ( Z2
= ( zero_zero @ int ) ) ) ) ).
% of_int_0_eq_iff
thf(fact_3214_of__int__eq__0__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int] :
( ( ( ring_1_of_int @ A @ Z2 )
= ( zero_zero @ A ) )
= ( Z2
= ( zero_zero @ int ) ) ) ) ).
% of_int_eq_0_iff
thf(fact_3215_of__int__eq__numeral__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int,N2: num] :
( ( ( ring_1_of_int @ A @ Z2 )
= ( numeral_numeral @ A @ N2 ) )
= ( Z2
= ( numeral_numeral @ int @ N2 ) ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_3216_of__int__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: num] :
( ( ring_1_of_int @ A @ ( numeral_numeral @ int @ K ) )
= ( numeral_numeral @ A @ K ) ) ) ).
% of_int_numeral
thf(fact_3217_of__int__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [W2: int,Z2: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ W2 ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ W2 @ Z2 ) ) ) ).
% of_int_le_iff
thf(fact_3218_scaleR__eq__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B2: A,U: real,A2: A] :
( ( ( plus_plus @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ U @ A2 ) )
= ( plus_plus @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ U @ B2 ) ) )
= ( ( A2 = B2 )
| ( U
= ( one_one @ real ) ) ) ) ) ).
% scaleR_eq_iff
thf(fact_3219_of__int__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [W2: int,Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ W2 ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ W2 @ Z2 ) ) ) ).
% of_int_less_iff
thf(fact_3220_of__int__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A @ ( one_one @ int ) )
= ( one_one @ A ) ) ) ).
% of_int_1
thf(fact_3221_of__int__eq__1__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Z2: int] :
( ( ( ring_1_of_int @ A @ Z2 )
= ( one_one @ A ) )
= ( Z2
= ( one_one @ int ) ) ) ) ).
% of_int_eq_1_iff
thf(fact_3222_of__int__mult,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W2: int,Z2: int] :
( ( ring_1_of_int @ A @ ( times_times @ int @ W2 @ Z2 ) )
= ( times_times @ A @ ( ring_1_of_int @ A @ W2 ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_mult
thf(fact_3223_of__int__add,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W2: int,Z2: int] :
( ( ring_1_of_int @ A @ ( plus_plus @ int @ W2 @ Z2 ) )
= ( plus_plus @ A @ ( ring_1_of_int @ A @ W2 ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_add
thf(fact_3224_of__int__minus,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int] :
( ( ring_1_of_int @ A @ ( uminus_uminus @ int @ Z2 ) )
= ( uminus_uminus @ A @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_minus
thf(fact_3225_of__int__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W2: int,Z2: int] :
( ( ring_1_of_int @ A @ ( minus_minus @ int @ W2 @ Z2 ) )
= ( minus_minus @ A @ ( ring_1_of_int @ A @ W2 ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_diff
thf(fact_3226_of__int__of__nat__eq,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [N2: nat] :
( ( ring_1_of_int @ A @ ( semiring_1_of_nat @ int @ N2 ) )
= ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% of_int_of_nat_eq
thf(fact_3227_of__int__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int] :
( ( ring_1_of_int @ A @ ( abs_abs @ int @ X ) )
= ( abs_abs @ A @ ( ring_1_of_int @ A @ X ) ) ) ) ).
% of_int_abs
thf(fact_3228_of__int__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: int,B2: int,W2: nat] :
( ( ( ring_1_of_int @ A @ X )
= ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 ) )
= ( X
= ( power_power @ int @ B2 @ W2 ) ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3229_of__int__eq__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [B2: int,W2: nat,X: int] :
( ( ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 )
= ( ring_1_of_int @ A @ X ) )
= ( ( power_power @ int @ B2 @ W2 )
= X ) ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3230_of__int__power,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int,N2: nat] :
( ( ring_1_of_int @ A @ ( power_power @ int @ Z2 @ N2 ) )
= ( power_power @ A @ ( ring_1_of_int @ A @ Z2 ) @ N2 ) ) ) ).
% of_int_power
thf(fact_3231_frac__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int] :
( ( archimedean_frac @ A @ ( ring_1_of_int @ A @ Z2 ) )
= ( zero_zero @ A ) ) ) ).
% frac_of_int
thf(fact_3232_dbl__dec__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_dbl_dec @ A @ ( numeral_numeral @ A @ K ) )
= ( numeral_numeral @ A @ ( bitM @ K ) ) ) ) ).
% dbl_dec_simps(5)
thf(fact_3233_of__int__prod,axiom,
! [A: $tType,B: $tType] :
( ( comm_ring_1 @ A )
=> ! [F2: B > int,A4: set @ B] :
( ( ring_1_of_int @ A @ ( groups7121269368397514597t_prod @ B @ int @ F2 @ A4 ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [X3: B] : ( ring_1_of_int @ A @ ( F2 @ X3 ) )
@ A4 ) ) ) ).
% of_int_prod
thf(fact_3234_scaleR__collapse,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [U: real,A2: A] :
( ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ ( one_one @ real ) @ U ) @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ U @ A2 ) )
= A2 ) ) ).
% scaleR_collapse
thf(fact_3235_of__int__sum,axiom,
! [A: $tType,B: $tType] :
( ( ring_1 @ A )
=> ! [F2: B > int,A4: set @ B] :
( ( ring_1_of_int @ A @ ( groups7311177749621191930dd_sum @ B @ int @ F2 @ A4 ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( ring_1_of_int @ A @ ( F2 @ X3 ) )
@ A4 ) ) ) ).
% of_int_sum
thf(fact_3236_of__int__0__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% of_int_0_le_iff
thf(fact_3237_of__int__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) ) ) ) ).
% of_int_le_0_iff
thf(fact_3238_of__int__0__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% of_int_0_less_iff
thf(fact_3239_of__int__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( zero_zero @ A ) )
= ( ord_less @ int @ Z2 @ ( zero_zero @ int ) ) ) ) ).
% of_int_less_0_iff
thf(fact_3240_of__int__numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,Z2: int] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ N2 ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ ( numeral_numeral @ int @ N2 ) @ Z2 ) ) ) ).
% of_int_numeral_le_iff
thf(fact_3241_of__int__le__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int,N2: num] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less_eq @ int @ Z2 @ ( numeral_numeral @ int @ N2 ) ) ) ) ).
% of_int_le_numeral_iff
thf(fact_3242_of__int__less__numeral__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int,N2: num] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less @ int @ Z2 @ ( numeral_numeral @ int @ N2 ) ) ) ) ).
% of_int_less_numeral_iff
thf(fact_3243_of__int__numeral__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,Z2: int] :
( ( ord_less @ A @ ( numeral_numeral @ A @ N2 ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( numeral_numeral @ int @ N2 ) @ Z2 ) ) ) ).
% of_int_numeral_less_iff
thf(fact_3244_of__int__le__1__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ int @ Z2 @ ( one_one @ int ) ) ) ) ).
% of_int_le_1_iff
thf(fact_3245_of__int__1__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less_eq @ int @ ( one_one @ int ) @ Z2 ) ) ) ).
% of_int_1_le_iff
thf(fact_3246_of__int__less__1__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) )
= ( ord_less @ int @ Z2 @ ( one_one @ int ) ) ) ) ).
% of_int_less_1_iff
thf(fact_3247_of__int__1__less__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ A @ ( one_one @ A ) @ ( ring_1_of_int @ A @ Z2 ) )
= ( ord_less @ int @ ( one_one @ int ) @ Z2 ) ) ) ).
% of_int_1_less_iff
thf(fact_3248_numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: num,N2: nat,Y: int] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 )
= ( ring_1_of_int @ A @ Y ) )
= ( ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 )
= Y ) ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3249_of__int__eq__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Y: int,X: num,N2: nat] :
( ( ( ring_1_of_int @ A @ Y )
= ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) )
= ( Y
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3250_of__int__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,B2: int,W2: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ X ) @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 ) )
= ( ord_less_eq @ int @ X @ ( power_power @ int @ B2 @ W2 ) ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_3251_of__int__le__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: int,W2: nat,X: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less_eq @ int @ ( power_power @ int @ B2 @ W2 ) @ X ) ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_3252_of__int__less__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: int,W2: nat,X: int] :
( ( ord_less @ A @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less @ int @ ( power_power @ int @ B2 @ W2 ) @ X ) ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_3253_of__int__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,B2: int,W2: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ X ) @ ( power_power @ A @ ( ring_1_of_int @ A @ B2 ) @ W2 ) )
= ( ord_less @ int @ X @ ( power_power @ int @ B2 @ W2 ) ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_3254_sin__npi__int,axiom,
! [N2: int] :
( ( sin @ real @ ( times_times @ real @ pi @ ( ring_1_of_int @ real @ N2 ) ) )
= ( zero_zero @ real ) ) ).
% sin_npi_int
thf(fact_3255_scaleR__half__double,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( plus_plus @ A @ A2 @ A2 ) )
= A2 ) ) ).
% scaleR_half_double
thf(fact_3256_of__int__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N2: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_3257_numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N2: nat,A2: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) @ A2 ) ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_3258_numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N2: nat,A2: int] :
( ( ord_less @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) @ A2 ) ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_3259_of__int__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N2: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_3260_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [Y: int,X: num,N2: nat] :
( ( ( ring_1_of_int @ A @ Y )
= ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 ) )
= ( Y
= ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 ) ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_3261_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [X: num,N2: nat,Y: int] :
( ( ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 )
= ( ring_1_of_int @ A @ Y ) )
= ( ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 )
= Y ) ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_3262_sin__int__2pin,axiom,
! [N2: int] :
( ( sin @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ ( ring_1_of_int @ real @ N2 ) ) )
= ( zero_zero @ real ) ) ).
% sin_int_2pin
thf(fact_3263_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N2: nat] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 ) ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_3264_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N2: nat,A2: int] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 ) @ A2 ) ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_3265_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: num,N2: nat,A2: int] :
( ( ord_less @ A @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 ) @ ( ring_1_of_int @ A @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 ) @ A2 ) ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_3266_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: int,X: num,N2: nat] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ A2 ) @ ( power_power @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) ) @ N2 ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ X ) ) @ N2 ) ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_3267_ex__le__of__int,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z: int] : ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ Z ) ) ) ).
% ex_le_of_int
thf(fact_3268_ex__of__int__less,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z: int] : ( ord_less @ A @ ( ring_1_of_int @ A @ Z ) @ X ) ) ).
% ex_of_int_less
thf(fact_3269_ex__less__of__int,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z: int] : ( ord_less @ A @ X @ ( ring_1_of_int @ A @ Z ) ) ) ).
% ex_less_of_int
thf(fact_3270_mult__of__int__commute,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: int,Y: A] :
( ( times_times @ A @ ( ring_1_of_int @ A @ X ) @ Y )
= ( times_times @ A @ Y @ ( ring_1_of_int @ A @ X ) ) ) ) ).
% mult_of_int_commute
thf(fact_3271_scaleR__right__imp__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,A2: real,B2: real] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ B2 @ X ) )
=> ( A2 = B2 ) ) ) ) ).
% scaleR_right_imp_eq
thf(fact_3272_scaleR__right__distrib,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( real_V8093663219630862766scaleR @ A @ A2 @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ).
% scaleR_right_distrib
thf(fact_3273_scaleR__left__imp__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,X: A,Y: A] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( ( real_V8093663219630862766scaleR @ A @ A2 @ X )
= ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) )
=> ( X = Y ) ) ) ) ).
% scaleR_left_imp_eq
thf(fact_3274_of__int__max,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,Y: int] :
( ( ring_1_of_int @ A @ ( ord_max @ int @ X @ Y ) )
= ( ord_max @ A @ ( ring_1_of_int @ A @ X ) @ ( ring_1_of_int @ A @ Y ) ) ) ) ).
% of_int_max
thf(fact_3275_Ints__of__int,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int] : ( member @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( ring_1_Ints @ A ) ) ) ).
% Ints_of_int
thf(fact_3276_Ints__induct,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Q4: A,P: A > $o] :
( ( member @ A @ Q4 @ ( ring_1_Ints @ A ) )
=> ( ! [Z: int] : ( P @ ( ring_1_of_int @ A @ Z ) )
=> ( P @ Q4 ) ) ) ) ).
% Ints_induct
thf(fact_3277_Ints__cases,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Q4: A] :
( ( member @ A @ Q4 @ ( ring_1_Ints @ A ) )
=> ~ ! [Z: int] :
( Q4
!= ( ring_1_of_int @ A @ Z ) ) ) ) ).
% Ints_cases
thf(fact_3278_scale__right__distrib__NO__MATCH,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,A2: real] :
( ( nO_MATCH @ A @ real @ ( divide_divide @ A @ X @ Y ) @ A2 )
=> ( ( real_V8093663219630862766scaleR @ A @ A2 @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ) ).
% scale_right_distrib_NO_MATCH
thf(fact_3279_scaleR__left__distrib,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A2: real,B2: real,X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ A2 @ B2 ) @ X )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ).
% scaleR_left_distrib
thf(fact_3280_scaleR__left_Oadd,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: real,Y: real,Xa2: A] :
( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ X @ Y ) @ Xa2 )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ X @ Xa2 ) @ ( real_V8093663219630862766scaleR @ A @ Y @ Xa2 ) ) ) ) ).
% scaleR_left.add
thf(fact_3281_Complex__eq__numeral,axiom,
! [A2: real,B2: real,W2: num] :
( ( ( complex2 @ A2 @ B2 )
= ( numeral_numeral @ complex @ W2 ) )
= ( ( A2
= ( numeral_numeral @ real @ W2 ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_numeral
thf(fact_3282_Complex__eq__0,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( zero_zero @ complex ) )
= ( ( A2
= ( zero_zero @ real ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_0
thf(fact_3283_zero__complex_Ocode,axiom,
( ( zero_zero @ complex )
= ( complex2 @ ( zero_zero @ real ) @ ( zero_zero @ real ) ) ) ).
% zero_complex.code
thf(fact_3284_scaleR__right__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,X: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ) ).
% scaleR_right_mono
thf(fact_3285_scaleR__right__mono__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [B2: real,A2: real,C2: A] :
( ( ord_less_eq @ real @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ C2 ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ C2 ) ) ) ) ) ).
% scaleR_right_mono_neg
thf(fact_3286_scaleR__le__cancel__left,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% scaleR_le_cancel_left
thf(fact_3287_scaleR__le__cancel__left__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% scaleR_le_cancel_left_neg
thf(fact_3288_scaleR__le__cancel__left__pos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ).
% scaleR_le_cancel_left_pos
thf(fact_3289_scaleR__left__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [X: A,Y: A,A2: real] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ Y ) ) ) ) ) ).
% scaleR_left_mono
thf(fact_3290_scaleR__left__mono__neg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [B2: A,A2: A,C2: real] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ real @ C2 @ ( zero_zero @ real ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ B2 ) ) ) ) ) ).
% scaleR_left_mono_neg
thf(fact_3291_vector__fraction__eq__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [U: real,V2: real,A2: A,X: A] :
( ( ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ U @ V2 ) @ A2 )
= X )
= ( ( ( V2
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ A ) ) )
& ( ( V2
!= ( zero_zero @ real ) )
=> ( ( real_V8093663219630862766scaleR @ A @ U @ A2 )
= ( real_V8093663219630862766scaleR @ A @ V2 @ X ) ) ) ) ) ) ).
% vector_fraction_eq_iff
thf(fact_3292_eq__vector__fraction__iff,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,U: real,V2: real,A2: A] :
( ( X
= ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ U @ V2 ) @ A2 ) )
= ( ( ( V2
= ( zero_zero @ real ) )
=> ( X
= ( zero_zero @ A ) ) )
& ( ( V2
!= ( zero_zero @ real ) )
=> ( ( real_V8093663219630862766scaleR @ A @ V2 @ X )
= ( real_V8093663219630862766scaleR @ A @ U @ A2 ) ) ) ) ) ) ).
% eq_vector_fraction_iff
thf(fact_3293_Real__Vector__Spaces_Ole__add__iff1,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,E2: A,C2: A,B2: real,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ A2 @ B2 ) @ E2 ) @ C2 ) @ D2 ) ) ) ).
% Real_Vector_Spaces.le_add_iff1
thf(fact_3294_Real__Vector__Spaces_Ole__add__iff2,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,E2: A,C2: A,B2: real,D2: A] :
( ( ord_less_eq @ A @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ E2 ) @ C2 ) @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ B2 @ E2 ) @ D2 ) )
= ( ord_less_eq @ A @ C2 @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( minus_minus @ real @ B2 @ A2 ) @ E2 ) @ D2 ) ) ) ) ).
% Real_Vector_Spaces.le_add_iff2
thf(fact_3295_Complex__eq__neg__numeral,axiom,
! [A2: real,B2: real,W2: num] :
( ( ( complex2 @ A2 @ B2 )
= ( uminus_uminus @ complex @ ( numeral_numeral @ complex @ W2 ) ) )
= ( ( A2
= ( uminus_uminus @ real @ ( numeral_numeral @ real @ W2 ) ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_neg_numeral
thf(fact_3296_real__of__int__div4,axiom,
! [N2: int,X: int] : ( ord_less_eq @ real @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N2 @ X ) ) @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N2 ) @ ( ring_1_of_int @ real @ X ) ) ) ).
% real_of_int_div4
thf(fact_3297_of__int__divide__in__Ints,axiom,
! [A: $tType] :
( ( idom_divide @ A )
=> ! [B2: int,A2: int] :
( ( dvd_dvd @ int @ B2 @ A2 )
=> ( member @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ A2 ) @ ( ring_1_of_int @ A @ B2 ) ) @ ( ring_1_Ints @ A ) ) ) ) ).
% of_int_divide_in_Ints
thf(fact_3298_real__of__int__div,axiom,
! [D2: int,N2: int] :
( ( dvd_dvd @ int @ D2 @ N2 )
=> ( ( ring_1_of_int @ real @ ( divide_divide @ int @ N2 @ D2 ) )
= ( divide_divide @ real @ ( ring_1_of_int @ real @ N2 ) @ ( ring_1_of_int @ real @ D2 ) ) ) ) ).
% real_of_int_div
thf(fact_3299_Complex__eq__1,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( one_one @ complex ) )
= ( ( A2
= ( one_one @ real ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_1
thf(fact_3300_one__complex_Ocode,axiom,
( ( one_one @ complex )
= ( complex2 @ ( one_one @ real ) @ ( zero_zero @ real ) ) ) ).
% one_complex.code
thf(fact_3301_eval__nat__numeral_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral @ nat @ ( bit0 @ N2 ) )
= ( suc @ ( numeral_numeral @ nat @ ( bitM @ N2 ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_3302_one__plus__BitM,axiom,
! [N2: num] :
( ( plus_plus @ num @ one2 @ ( bitM @ N2 ) )
= ( bit0 @ N2 ) ) ).
% one_plus_BitM
thf(fact_3303_BitM__plus__one,axiom,
! [N2: num] :
( ( plus_plus @ num @ ( bitM @ N2 ) @ one2 )
= ( bit0 @ N2 ) ) ).
% BitM_plus_one
thf(fact_3304_of__int__nonneg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_nonneg
thf(fact_3305_of__int__leD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: int,X: A] :
( ( ord_less_eq @ A @ ( abs_abs @ A @ ( ring_1_of_int @ A @ N2 ) ) @ X )
=> ( ( N2
= ( zero_zero @ int ) )
| ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% of_int_leD
thf(fact_3306_of__int__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [Z2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_int_pos
thf(fact_3307_scaleR__le__0__iff,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% scaleR_le_0_iff
thf(fact_3308_zero__le__scaleR__iff,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( A2
= ( zero_zero @ real ) ) ) ) ) ).
% zero_le_scaleR_iff
thf(fact_3309_of__int__lessD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: int,X: A] :
( ( ord_less @ A @ ( abs_abs @ A @ ( ring_1_of_int @ A @ N2 ) ) @ X )
=> ( ( N2
= ( zero_zero @ int ) )
| ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% of_int_lessD
thf(fact_3310_scaleR__mono,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,X: A,Y: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ Y ) ) ) ) ) ) ) ).
% scaleR_mono
thf(fact_3311_scaleR__mono_H,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: real,C2: A,D2: A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ D2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C2 )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ C2 ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ D2 ) ) ) ) ) ) ) ).
% scaleR_mono'
thf(fact_3312_split__scaleR__neg__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ).
% split_scaleR_neg_le
thf(fact_3313_split__scaleR__pos__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) ) ) ) ).
% split_scaleR_pos_le
thf(fact_3314_scaleR__nonneg__nonneg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) ) ) ) ) ).
% scaleR_nonneg_nonneg
thf(fact_3315_scaleR__nonneg__nonpos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ) ).
% scaleR_nonneg_nonpos
thf(fact_3316_scaleR__nonpos__nonneg,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,X: A] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( zero_zero @ A ) ) ) ) ) ).
% scaleR_nonpos_nonneg
thf(fact_3317_scaleR__nonpos__nonpos,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [A2: real,B2: A] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ A2 @ B2 ) ) ) ) ) ).
% scaleR_nonpos_nonpos
thf(fact_3318_scaleR__left__le__one__le,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [X: A,A2: real] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ real @ A2 @ ( one_one @ real ) )
=> ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ X ) ) ) ) ).
% scaleR_left_le_one_le
thf(fact_3319_floor__exists,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [Z: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ Z @ ( one_one @ int ) ) ) ) ) ) ).
% floor_exists
thf(fact_3320_floor__exists1,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
? [X4: int] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ X4 ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ X4 @ ( one_one @ int ) ) ) )
& ! [Y3: int] :
( ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Y3 ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ Y3 @ ( one_one @ int ) ) ) ) )
=> ( Y3 = X4 ) ) ) ) ).
% floor_exists1
thf(fact_3321_scaleR__2,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A] :
( ( real_V8093663219630862766scaleR @ A @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ X )
= ( plus_plus @ A @ X @ X ) ) ) ).
% scaleR_2
thf(fact_3322_of__int__neg__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [K: num] :
( ( ring_1_of_int @ A @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) ) ) ).
% of_int_neg_numeral
thf(fact_3323_of__nat__less__of__int__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,X: int] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( ring_1_of_int @ A @ X ) )
= ( ord_less @ int @ ( semiring_1_of_nat @ int @ N2 ) @ X ) ) ) ).
% of_nat_less_of_int_iff
thf(fact_3324_Complex__sum_H,axiom,
! [A: $tType,F2: A > real,S: set @ A] :
( ( groups7311177749621191930dd_sum @ A @ complex
@ ^ [X3: A] : ( complex2 @ ( F2 @ X3 ) @ ( zero_zero @ real ) )
@ S )
= ( complex2 @ ( groups7311177749621191930dd_sum @ A @ real @ F2 @ S ) @ ( zero_zero @ real ) ) ) ).
% Complex_sum'
thf(fact_3325_int__le__real__less,axiom,
( ( ord_less_eq @ int )
= ( ^ [N3: int,M6: int] : ( ord_less @ real @ ( ring_1_of_int @ real @ N3 ) @ ( plus_plus @ real @ ( ring_1_of_int @ real @ M6 ) @ ( one_one @ real ) ) ) ) ) ).
% int_le_real_less
thf(fact_3326_int__less__real__le,axiom,
( ( ord_less @ int )
= ( ^ [N3: int,M6: int] : ( ord_less_eq @ real @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N3 ) @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ M6 ) ) ) ) ).
% int_less_real_le
thf(fact_3327_sin__zero__iff__int2,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I3: int] :
( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I3 ) @ pi ) ) ) ) ).
% sin_zero_iff_int2
thf(fact_3328_scale__left__distrib__NO__MATCH,axiom,
! [C: $tType,A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,Y: A,C2: C,A2: real,B2: real] :
( ( nO_MATCH @ A @ C @ ( divide_divide @ A @ X @ Y ) @ C2 )
=> ( ( real_V8093663219630862766scaleR @ A @ ( plus_plus @ real @ A2 @ B2 ) @ X )
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ B2 @ X ) ) ) ) ) ).
% scale_left_distrib_NO_MATCH
thf(fact_3329_real__of__int__div__aux,axiom,
! [X: int,D2: int] :
( ( divide_divide @ real @ ( ring_1_of_int @ real @ X ) @ ( ring_1_of_int @ real @ D2 ) )
= ( plus_plus @ real @ ( ring_1_of_int @ real @ ( divide_divide @ int @ X @ D2 ) ) @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( modulo_modulo @ int @ X @ D2 ) ) @ ( ring_1_of_int @ real @ D2 ) ) ) ) ).
% real_of_int_div_aux
thf(fact_3330_Complex__eq__neg__1,axiom,
! [A2: real,B2: real] :
( ( ( complex2 @ A2 @ B2 )
= ( uminus_uminus @ complex @ ( one_one @ complex ) ) )
= ( ( A2
= ( uminus_uminus @ real @ ( one_one @ real ) ) )
& ( B2
= ( zero_zero @ real ) ) ) ) ).
% Complex_eq_neg_1
thf(fact_3331_numeral__BitM,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( numeral_numeral @ A @ ( bitM @ N2 ) )
= ( minus_minus @ A @ ( numeral_numeral @ A @ ( bit0 @ N2 ) ) @ ( one_one @ A ) ) ) ) ).
% numeral_BitM
thf(fact_3332_real__of__int__div2,axiom,
! [N2: int,X: int] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( minus_minus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N2 ) @ ( ring_1_of_int @ real @ X ) ) @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N2 @ X ) ) ) ) ).
% real_of_int_div2
thf(fact_3333_real__of__int__div3,axiom,
! [N2: int,X: int] : ( ord_less_eq @ real @ ( minus_minus @ real @ ( divide_divide @ real @ ( ring_1_of_int @ real @ N2 ) @ ( ring_1_of_int @ real @ X ) ) @ ( ring_1_of_int @ real @ ( divide_divide @ int @ N2 @ X ) ) ) @ ( one_one @ real ) ) ).
% real_of_int_div3
thf(fact_3334_cos__zero__iff__int,axiom,
! [X: real] :
( ( ( cos @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I3: int] :
( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ I3 )
& ( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% cos_zero_iff_int
thf(fact_3335_sin__zero__iff__int,axiom,
! [X: real] :
( ( ( sin @ real @ X )
= ( zero_zero @ real ) )
= ( ? [I3: int] :
( ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ I3 )
& ( X
= ( times_times @ real @ ( ring_1_of_int @ real @ I3 ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% sin_zero_iff_int
thf(fact_3336_cos__x__cos__y,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( sums @ A
@ ^ [P5: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] :
( if @ A
@ ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ P5 )
& ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) )
@ ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( divide_divide @ real @ ( ring_1_of_int @ real @ ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( divide_divide @ nat @ P5 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( semiring_1_of_nat @ int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ P5 @ N3 ) ) )
@ ( zero_zero @ A ) )
@ ( set_ord_atMost @ nat @ P5 ) )
@ ( times_times @ A @ ( cos @ A @ X ) @ ( cos @ A @ Y ) ) ) ) ).
% cos_x_cos_y
thf(fact_3337_of__int__code__if,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( ^ [K3: int] :
( if @ A
@ ( K3
= ( zero_zero @ int ) )
@ ( zero_zero @ A )
@ ( if @ A @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ A @ ( ring_1_of_int @ A @ ( uminus_uminus @ int @ K3 ) ) )
@ ( if @ A
@ ( ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( zero_zero @ int ) )
@ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ring_1_of_int @ A @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ring_1_of_int @ A @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( one_one @ A ) ) ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_3338_round__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: int] :
( ( ord_less @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ Y ) )
=> ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Y ) @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) )
=> ( ( archimedean_round @ A @ X )
= Y ) ) ) ) ).
% round_unique
thf(fact_3339_round__unique_H,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,N2: int] :
( ( ord_less @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X @ ( ring_1_of_int @ A @ N2 ) ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
=> ( ( archimedean_round @ A @ X )
= N2 ) ) ) ).
% round_unique'
thf(fact_3340_of__int__round__abs__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) @ X ) ) @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% of_int_round_abs_le
thf(fact_3341_exp__first__two__terms,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A )
= ( ^ [X3: A] :
( plus_plus @ A @ ( plus_plus @ A @ ( one_one @ A ) @ X3 )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( power_power @ A @ X3 @ ( plus_plus @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% exp_first_two_terms
thf(fact_3342_inverse__eq__iff__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
= ( A2 = B2 ) ) ) ).
% inverse_eq_iff_eq
thf(fact_3343_inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ).
% inverse_inverse_eq
thf(fact_3344_inverse__nonzero__iff__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_3345_inverse__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% inverse_zero
thf(fact_3346_inverse__mult__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( inverse_inverse @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ).
% inverse_mult_distrib
thf(fact_3347_inverse__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% inverse_1
thf(fact_3348_inverse__eq__1__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A] :
( ( ( inverse_inverse @ A @ X )
= ( one_one @ A ) )
= ( X
= ( one_one @ A ) ) ) ) ).
% inverse_eq_1_iff
thf(fact_3349_inverse__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( inverse_inverse @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ B2 @ A2 ) ) ) ).
% inverse_divide
thf(fact_3350_inverse__minus__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( inverse_inverse @ A @ A2 ) ) ) ) ).
% inverse_minus_eq
thf(fact_3351_abs__inverse,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( abs_abs @ A @ A2 ) ) ) ) ).
% abs_inverse
thf(fact_3352_round__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: int] :
( ( archimedean_round @ A @ ( ring_1_of_int @ A @ N2 ) )
= N2 ) ) ).
% round_of_int
thf(fact_3353_inverse__nonpositive__iff__nonpositive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_3354_inverse__nonnegative__iff__nonnegative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_3355_inverse__positive__iff__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_positive_iff_positive
thf(fact_3356_inverse__negative__iff__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_negative_iff_negative
thf(fact_3357_inverse__less__iff__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_3358_inverse__less__iff__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less
thf(fact_3359_round__0,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% round_0
thf(fact_3360_round__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: num] :
( ( archimedean_round @ A @ ( numeral_numeral @ A @ N2 ) )
= ( numeral_numeral @ int @ N2 ) ) ) ).
% round_numeral
thf(fact_3361_round__1,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A @ ( one_one @ A ) )
= ( one_one @ int ) ) ) ).
% round_1
thf(fact_3362_round__of__nat,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: nat] :
( ( archimedean_round @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% round_of_nat
thf(fact_3363_inverse__le__iff__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_3364_inverse__le__iff__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le
thf(fact_3365_right__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ ( inverse_inverse @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ).
% right_inverse
thf(fact_3366_left__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ A2 )
= ( one_one @ A ) ) ) ) ).
% left_inverse
thf(fact_3367_inverse__eq__divide__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W2: num] :
( ( inverse_inverse @ A @ ( numeral_numeral @ A @ W2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ W2 ) ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_3368_inverse__eq__divide__neg__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [W2: num] :
( ( inverse_inverse @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_3369_round__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: num] :
( ( archimedean_round @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) ) ) ).
% round_neg_numeral
thf(fact_3370_nonzero__norm__inverse,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ A2 ) ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_3371_inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( A2 = B2 ) ) ) ).
% inverse_eq_imp_eq
thf(fact_3372_mult__commute__imp__mult__inverse__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Y: A,X: A] :
( ( ( times_times @ A @ Y @ X )
= ( times_times @ A @ X @ Y ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ Y ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ Y ) ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_3373_field__class_Ofield__inverse__zero,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% field_class.field_inverse_zero
thf(fact_3374_inverse__zero__imp__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_zero_imp_zero
thf(fact_3375_nonzero__inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( A2 = B2 ) ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_3376_nonzero__inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_3377_nonzero__imp__inverse__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
!= ( zero_zero @ A ) ) ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_3378_nonzero__inverse__scaleR__distrib,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [A2: real,X: A] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( X
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( real_V8093663219630862766scaleR @ A @ A2 @ X ) )
= ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ A2 ) @ ( inverse_inverse @ A @ X ) ) ) ) ) ) ).
% nonzero_inverse_scaleR_distrib
thf(fact_3379_norm__inverse__le__norm,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [R2: real,X: A] :
( ( ord_less_eq @ real @ R2 @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( inverse_inverse @ A @ X ) ) @ ( inverse_inverse @ real @ R2 ) ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_3380_positive__imp__inverse__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ).
% positive_imp_inverse_positive
thf(fact_3381_negative__imp__inverse__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) ) ) ) ).
% negative_imp_inverse_negative
thf(fact_3382_inverse__positive__imp__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ).
% inverse_positive_imp_positive
thf(fact_3383_inverse__negative__imp__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% inverse_negative_imp_negative
thf(fact_3384_less__imp__inverse__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_3385_inverse__less__imp__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_3386_less__imp__inverse__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less
thf(fact_3387_inverse__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less
thf(fact_3388_nonzero__inverse__mult__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_3389_inverse__numeral__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( numeral_numeral @ A @ one2 ) )
= ( numeral_numeral @ A @ one2 ) ) ) ).
% inverse_numeral_1
thf(fact_3390_nonzero__inverse__minus__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_3391_inverse__unique,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( one_one @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
= B2 ) ) ) ).
% inverse_unique
thf(fact_3392_field__class_Ofield__divide__inverse,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( divide_divide @ A )
= ( ^ [A3: A,B3: A] : ( times_times @ A @ A3 @ ( inverse_inverse @ A @ B3 ) ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_3393_divide__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( divide_divide @ A )
= ( ^ [A3: A,B3: A] : ( times_times @ A @ A3 @ ( inverse_inverse @ A @ B3 ) ) ) ) ) ).
% divide_inverse
thf(fact_3394_divide__inverse__commute,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( divide_divide @ A )
= ( ^ [A3: A,B3: A] : ( times_times @ A @ ( inverse_inverse @ A @ B3 ) @ A3 ) ) ) ) ).
% divide_inverse_commute
thf(fact_3395_inverse__eq__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A )
= ( divide_divide @ A @ ( one_one @ A ) ) ) ) ).
% inverse_eq_divide
thf(fact_3396_power__mult__inverse__distrib,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat] :
( ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( inverse_inverse @ A @ X ) )
= ( times_times @ A @ ( inverse_inverse @ A @ X ) @ ( power_power @ A @ X @ M ) ) ) ) ).
% power_mult_inverse_distrib
thf(fact_3397_power__mult__power__inverse__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat,N2: nat] :
( ( times_times @ A @ ( power_power @ A @ X @ M ) @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ N2 ) )
= ( times_times @ A @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ N2 ) @ ( power_power @ A @ X @ M ) ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_3398_mult__inverse__of__nat__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Xa2: nat,X: A] :
( ( times_times @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ Xa2 ) ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ Xa2 ) ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_3399_nonzero__abs__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( abs_abs @ A @ A2 ) ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_3400_mult__inverse__of__int__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [Xa2: int,X: A] :
( ( times_times @ A @ ( inverse_inverse @ A @ ( ring_1_of_int @ A @ Xa2 ) ) @ X )
= ( times_times @ A @ X @ ( inverse_inverse @ A @ ( ring_1_of_int @ A @ Xa2 ) ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_3401_divide__real__def,axiom,
( ( divide_divide @ real )
= ( ^ [X3: real,Y2: real] : ( times_times @ real @ X3 @ ( inverse_inverse @ real @ Y2 ) ) ) ) ).
% divide_real_def
thf(fact_3402_le__imp__inverse__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_3403_inverse__le__imp__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_3404_le__imp__inverse__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le
thf(fact_3405_inverse__le__imp__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le
thf(fact_3406_inverse__le__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ X ) @ ( one_one @ A ) )
= ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
| ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% inverse_le_1_iff
thf(fact_3407_one__less__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% one_less_inverse
thf(fact_3408_one__less__inverse__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ X ) )
= ( ( ord_less @ A @ ( zero_zero @ A ) @ X )
& ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_less_inverse_iff
thf(fact_3409_division__ring__inverse__add,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( plus_plus @ A @ A2 @ B2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_3410_inverse__add,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% inverse_add
thf(fact_3411_field__class_Ofield__inverse,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ A2 )
= ( one_one @ A ) ) ) ) ).
% field_class.field_inverse
thf(fact_3412_division__ring__inverse__diff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( minus_minus @ A @ B2 @ A2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_3413_nonzero__inverse__eq__divide,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
= ( divide_divide @ A @ ( one_one @ A ) @ A2 ) ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_3414_round__mono,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ int @ ( archimedean_round @ A @ X ) @ ( archimedean_round @ A @ Y ) ) ) ) ).
% round_mono
thf(fact_3415_inverse__le__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) )
& ( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ).
% inverse_le_iff
thf(fact_3416_inverse__less__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
=> ( ord_less @ A @ B2 @ A2 ) )
& ( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ) ).
% inverse_less_iff
thf(fact_3417_one__le__inverse__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ X ) )
= ( ( ord_less @ A @ ( zero_zero @ A ) @ X )
& ( ord_less_eq @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_le_inverse_iff
thf(fact_3418_inverse__less__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ X ) @ ( one_one @ A ) )
= ( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
| ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ) ).
% inverse_less_1_iff
thf(fact_3419_one__le__inverse,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% one_le_inverse
thf(fact_3420_inverse__diff__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( minus_minus @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ A2 ) @ ( minus_minus @ A @ A2 @ B2 ) ) @ ( inverse_inverse @ A @ B2 ) ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_3421_reals__Archimedean,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N: nat] : ( ord_less @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ ( suc @ N ) ) ) @ X ) ) ) ).
% reals_Archimedean
thf(fact_3422_real__vector__eq__affinity,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [M: real,Y: A,X: A,C2: A] :
( ( M
!= ( zero_zero @ real ) )
=> ( ( Y
= ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ M @ X ) @ C2 ) )
= ( ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ Y ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ C2 ) )
= X ) ) ) ) ).
% real_vector_eq_affinity
thf(fact_3423_real__vector__affinity__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [M: real,X: A,C2: A,Y: A] :
( ( M
!= ( zero_zero @ real ) )
=> ( ( ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ M @ X ) @ C2 )
= Y )
= ( X
= ( minus_minus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ Y ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ M ) @ C2 ) ) ) ) ) ) ).
% real_vector_affinity_eq
thf(fact_3424_pos__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less_eq @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_divideR_le_eq
thf(fact_3425_pos__le__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% pos_le_divideR_eq
thf(fact_3426_neg__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% neg_divideR_le_eq
thf(fact_3427_neg__le__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less_eq @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_le_divideR_eq
thf(fact_3428_pos__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_divideR_less_eq
thf(fact_3429_pos__less__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% pos_less_divideR_eq
thf(fact_3430_neg__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) @ A2 )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ B2 ) ) ) ) ).
% neg_divideR_less_eq
thf(fact_3431_neg__less__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ A2 @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) )
= ( ord_less @ A @ B2 @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_less_divideR_eq
thf(fact_3432_forall__pos__mono__1,axiom,
! [P: real > $o,E2: real] :
( ! [D5: real,E: real] :
( ( ord_less @ real @ D5 @ E )
=> ( ( P @ D5 )
=> ( P @ E ) ) )
=> ( ! [N: nat] : ( P @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono_1
thf(fact_3433_forall__pos__mono,axiom,
! [P: real > $o,E2: real] :
( ! [D5: real,E: real] :
( ( ord_less @ real @ D5 @ E )
=> ( ( P @ D5 )
=> ( P @ E ) ) )
=> ( ! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( P @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono
thf(fact_3434_real__arch__inverse,axiom,
! [E2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
= ( ? [N3: nat] :
( ( N3
!= ( zero_zero @ nat ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) )
& ( ord_less @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) @ E2 ) ) ) ) ).
% real_arch_inverse
thf(fact_3435_sqrt__divide__self__eq,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( divide_divide @ real @ ( sqrt @ X ) @ X )
= ( inverse_inverse @ real @ ( sqrt @ X ) ) ) ) ).
% sqrt_divide_self_eq
thf(fact_3436_ln__inverse,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ln_ln @ real @ ( inverse_inverse @ real @ X ) )
= ( uminus_uminus @ real @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_inverse
thf(fact_3437_ex__inverse__of__nat__less,axiom,
! [A: $tType] :
( ( archim462609752435547400_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
& ( ord_less @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ N ) ) @ X ) ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_3438_power__diff__conv__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: nat,N2: nat] :
( ( X
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( power_power @ A @ X @ ( minus_minus @ nat @ N2 @ M ) )
= ( times_times @ A @ ( power_power @ A @ X @ N2 ) @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ M ) ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_3439_pos__le__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_le_minus_divideR_eq
thf(fact_3440_pos__minus__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_minus_divideR_le_eq
thf(fact_3441_neg__le__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_le_minus_divideR_eq
thf(fact_3442_neg__minus__divideR__le__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less_eq @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divideR_le_eq
thf(fact_3443_pos__less__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% pos_less_minus_divideR_eq
thf(fact_3444_pos__minus__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% pos_minus_divideR_less_eq
thf(fact_3445_neg__less__minus__divideR__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,A2: A,B2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ A2 @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ B2 ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) ) ) ) ) ).
% neg_less_minus_divideR_eq
thf(fact_3446_neg__minus__divideR__less__eq,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,B2: A,A2: A] :
( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ A @ ( uminus_uminus @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ C2 ) @ B2 ) ) @ A2 )
= ( ord_less @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ A2 ) @ ( uminus_uminus @ A @ B2 ) ) ) ) ) ).
% neg_minus_divideR_less_eq
thf(fact_3447_round__diff__minimal,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: A,M: int] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ Z2 @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ Z2 ) ) ) ) @ ( abs_abs @ A @ ( minus_minus @ A @ Z2 @ ( ring_1_of_int @ A @ M ) ) ) ) ) ).
% round_diff_minimal
thf(fact_3448_plus__inverse__ge__2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( plus_plus @ real @ X @ ( inverse_inverse @ real @ X ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_3449_real__inv__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( inverse_inverse @ real @ X ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_3450_real__le__x__sinh,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ X @ ( divide_divide @ real @ ( minus_minus @ real @ ( exp @ real @ X ) @ ( inverse_inverse @ real @ ( exp @ real @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% real_le_x_sinh
thf(fact_3451_exp__series__add__commuting,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A,Y: A,N2: nat] :
( ( ( times_times @ A @ X @ Y )
= ( times_times @ A @ Y @ X ) )
=> ( ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ A @ ( plus_plus @ A @ X @ Y ) @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ I3 ) ) @ ( power_power @ A @ X @ I3 ) ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N2 @ I3 ) ) ) @ ( power_power @ A @ Y @ ( minus_minus @ nat @ N2 @ I3 ) ) ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ) ).
% exp_series_add_commuting
thf(fact_3452_exp__first__term,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( exp @ A )
= ( ^ [X3: A] :
( plus_plus @ A @ ( one_one @ A )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( suc @ N3 ) ) ) @ ( power_power @ A @ X3 @ ( suc @ N3 ) ) ) ) ) ) ) ) ).
% exp_first_term
thf(fact_3453_tan__sec,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( plus_plus @ A @ ( one_one @ A ) @ ( power_power @ A @ ( tan @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( power_power @ A @ ( inverse_inverse @ A @ ( cos @ A @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% tan_sec
thf(fact_3454_exp__first__terms,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [K: nat] :
( ( exp @ A )
= ( ^ [X3: A] :
( plus_plus @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X3 @ N3 ) )
@ ( set_ord_lessThan @ nat @ K ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ ( plus_plus @ nat @ N3 @ K ) ) ) @ ( power_power @ A @ X3 @ ( plus_plus @ nat @ N3 @ K ) ) ) ) ) ) ) ) ).
% exp_first_terms
thf(fact_3455_of__int__round__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% of_int_round_le
thf(fact_3456_of__int__round__ge,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) ) ) ).
% of_int_round_ge
thf(fact_3457_of__int__round__gt,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less @ A @ ( minus_minus @ A @ X @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( ring_1_of_int @ A @ ( archimedean_round @ A @ X ) ) ) ) ).
% of_int_round_gt
thf(fact_3458_sinh__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( zero_zero @ A ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( sinh @ A @ X ) ) ) ).
% sinh_converges
thf(fact_3459_cosh__converges,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( sums @ A
@ ^ [N3: nat] : ( if @ A @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( semiring_char_0_fact @ real @ N3 ) ) @ ( power_power @ A @ X @ N3 ) ) @ ( zero_zero @ A ) )
@ ( cosh @ A @ X ) ) ) ).
% cosh_converges
thf(fact_3460_or__int__unfold,axiom,
( ( bit_se1065995026697491101ons_or @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
| ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
@ ( uminus_uminus @ int @ ( one_one @ int ) )
@ ( if @ int
@ ( K3
= ( zero_zero @ int ) )
@ L2
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( plus_plus @ int @ ( ord_max @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% or_int_unfold
thf(fact_3461_concat__bit__Suc,axiom,
! [N2: nat,K: int,L: int] :
( ( bit_concat_bit @ ( suc @ N2 ) @ K @ L )
= ( plus_plus @ int @ ( modulo_modulo @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_concat_bit @ N2 @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ L ) ) ) ) ).
% concat_bit_Suc
thf(fact_3462_sinh__real__zero__iff,axiom,
! [X: real] :
( ( ( sinh @ real @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ).
% sinh_real_zero_iff
thf(fact_3463_sinh__real__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( sinh @ real @ X ) @ ( sinh @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ).
% sinh_real_less_iff
thf(fact_3464_sinh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( sinh @ real @ X ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ X ) ) ).
% sinh_real_pos_iff
thf(fact_3465_sinh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less @ real @ ( sinh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ).
% sinh_real_neg_iff
thf(fact_3466_sinh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sinh @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% sinh_real_nonpos_iff
thf(fact_3467_sinh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sinh @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% sinh_real_nonneg_iff
thf(fact_3468_or_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% or.right_neutral
thf(fact_3469_or_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% or.left_neutral
thf(fact_3470_sinh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sinh @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sinh_0
thf(fact_3471_concat__bit__0,axiom,
! [K: int,L: int] :
( ( bit_concat_bit @ ( zero_zero @ nat ) @ K @ L )
= L ) ).
% concat_bit_0
thf(fact_3472_bit_Odisj__one__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_one_left
thf(fact_3473_bit_Odisj__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_one_right
thf(fact_3474_cosh__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cosh @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% cosh_0
thf(fact_3475_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% or_nonnegative_int_iff
thf(fact_3476_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
| ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% or_negative_int_iff
thf(fact_3477_concat__bit__nonnegative__iff,axiom,
! [N2: nat,K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_concat_bit @ N2 @ K @ L ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ).
% concat_bit_nonnegative_iff
thf(fact_3478_concat__bit__negative__iff,axiom,
! [N2: nat,K: int,L: int] :
( ( ord_less @ int @ ( bit_concat_bit @ N2 @ K @ L ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ).
% concat_bit_negative_iff
thf(fact_3479_or__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% or_numerals(8)
thf(fact_3480_or__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% or_numerals(2)
thf(fact_3481_or__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% or_numerals(5)
thf(fact_3482_or__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% or_numerals(1)
thf(fact_3483_or__numerals_I4_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(4)
thf(fact_3484_or__numerals_I6_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(6)
thf(fact_3485_or__numerals_I7_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% or_numerals(7)
thf(fact_3486_cosh__real__nonzero,axiom,
! [X: real] :
( ( cosh @ real @ X )
!= ( zero_zero @ real ) ) ).
% cosh_real_nonzero
thf(fact_3487_sinh__plus__cosh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( sinh @ A @ X ) @ ( cosh @ A @ X ) )
= ( exp @ A @ X ) ) ) ).
% sinh_plus_cosh
thf(fact_3488_cosh__plus__sinh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ! [X: A] :
( ( plus_plus @ A @ ( cosh @ A @ X ) @ ( sinh @ A @ X ) )
= ( exp @ A @ X ) ) ) ).
% cosh_plus_sinh
thf(fact_3489_or__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% or_eq_0_iff
thf(fact_3490_bit_Odisj__zero__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( zero_zero @ A ) )
= X ) ) ).
% bit.disj_zero_right
thf(fact_3491_sinh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( sinh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( sinh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( cosh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% sinh_add
thf(fact_3492_cosh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( cosh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ A @ ( times_times @ A @ ( cosh @ A @ X ) @ ( cosh @ A @ Y ) ) @ ( times_times @ A @ ( sinh @ A @ X ) @ ( sinh @ A @ Y ) ) ) ) ) ).
% cosh_add
thf(fact_3493_sinh__less__cosh__real,axiom,
! [X: real] : ( ord_less @ real @ ( sinh @ real @ X ) @ ( cosh @ real @ X ) ) ).
% sinh_less_cosh_real
thf(fact_3494_concat__bit__assoc,axiom,
! [N2: nat,K: int,M: nat,L: int,R2: int] :
( ( bit_concat_bit @ N2 @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
= ( bit_concat_bit @ ( plus_plus @ nat @ M @ N2 ) @ ( bit_concat_bit @ N2 @ K @ L ) @ R2 ) ) ).
% concat_bit_assoc
thf(fact_3495_OR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se1065995026697491101ons_or @ int @ X @ Y ) ) ) ) ).
% OR_lower
thf(fact_3496_or__greater__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less_eq @ int @ K @ ( bit_se1065995026697491101ons_or @ int @ K @ L ) ) ) ).
% or_greater_eq
thf(fact_3497_cosh__real__pos,axiom,
! [X: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( cosh @ real @ X ) ) ).
% cosh_real_pos
thf(fact_3498_arcosh__cosh__real,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( arcosh @ real @ ( cosh @ real @ X ) )
= X ) ) ).
% arcosh_cosh_real
thf(fact_3499_cosh__real__nonneg,axiom,
! [X: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( cosh @ real @ X ) ) ).
% cosh_real_nonneg
thf(fact_3500_cosh__real__nonneg__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ).
% cosh_real_nonneg_le_iff
thf(fact_3501_cosh__real__nonpos__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ Y @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less_eq @ real @ Y @ X ) ) ) ) ).
% cosh_real_nonpos_le_iff
thf(fact_3502_cosh__real__nonpos__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ Y @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less @ real @ Y @ X ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_3503_cosh__real__nonneg__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_3504_cosh__real__strict__mono,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( cosh @ real @ X ) @ ( cosh @ real @ Y ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_3505_cosh__square__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( plus_plus @ A @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% cosh_square_eq
thf(fact_3506_sinh__square__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% sinh_square_eq
thf(fact_3507_hyperbolic__pythagoras,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( minus_minus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% hyperbolic_pythagoras
thf(fact_3508_cosh__double,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( cosh @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) )
= ( plus_plus @ A @ ( power_power @ A @ ( cosh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ A @ ( sinh @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cosh_double
thf(fact_3509_OR__upper,axiom,
! [X: int,N2: nat,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ X @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ int @ Y @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ord_less @ int @ ( bit_se1065995026697491101ons_or @ int @ X @ Y ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ).
% OR_upper
thf(fact_3510_tanh__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,Y: A] :
( ( ( cosh @ A @ X )
!= ( zero_zero @ A ) )
=> ( ( ( cosh @ A @ Y )
!= ( zero_zero @ A ) )
=> ( ( tanh @ A @ ( plus_plus @ A @ X @ Y ) )
= ( divide_divide @ A @ ( plus_plus @ A @ ( tanh @ A @ X ) @ ( tanh @ A @ Y ) ) @ ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( tanh @ A @ X ) @ ( tanh @ A @ Y ) ) ) ) ) ) ) ) ).
% tanh_add
thf(fact_3511_cosh__field__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cosh @ A )
= ( ^ [Z5: A] : ( divide_divide @ A @ ( plus_plus @ A @ ( exp @ A @ Z5 ) @ ( exp @ A @ ( uminus_uminus @ A @ Z5 ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% cosh_field_def
thf(fact_3512_cosh__zero__iff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cosh @ A @ X )
= ( zero_zero @ A ) )
= ( ( power_power @ A @ ( exp @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% cosh_zero_iff
thf(fact_3513_cosh__def,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cosh @ A )
= ( ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( inverse_inverse @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( plus_plus @ A @ ( exp @ A @ X3 ) @ ( exp @ A @ ( uminus_uminus @ A @ X3 ) ) ) ) ) ) ) ).
% cosh_def
thf(fact_3514_cosh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( cosh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( plus_plus @ real @ X @ ( inverse_inverse @ real @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% cosh_ln_real
thf(fact_3515_sinh__ln__real,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( sinh @ real @ ( ln_ln @ real @ X ) )
= ( divide_divide @ real @ ( minus_minus @ real @ X @ ( inverse_inverse @ real @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ).
% sinh_ln_real
thf(fact_3516_cot__less__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( divide_divide @ real @ ( uminus_uminus @ real @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ X )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( ord_less @ real @ ( cot @ real @ X ) @ ( zero_zero @ real ) ) ) ) ).
% cot_less_zero
thf(fact_3517_divmod__algorithm__code_I6_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( unique8689654367752047608divmod @ A @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q6: A,R5: A] : ( product_Pair @ A @ A @ Q6 @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ R5 ) @ ( one_one @ A ) ) )
@ ( unique8689654367752047608divmod @ A @ M @ N2 ) ) ) ) ).
% divmod_algorithm_code(6)
thf(fact_3518_vebt__buildup_Opelims,axiom,
! [X: nat,Y: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y )
=> ( ( accp @ nat @ vEBT_v4011308405150292612up_rel @ X )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( zero_zero @ nat ) ) ) )
=> ( ( ( X
= ( suc @ ( zero_zero @ nat ) ) )
=> ( ( Y
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( zero_zero @ nat ) ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
& ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y
= ( vEBT_Node @ ( none @ ( product_prod @ nat @ nat ) ) @ ( suc @ ( suc @ Va ) ) @ ( replicate @ vEBT_VEBT @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide @ nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) )
=> ~ ( accp @ nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_3519_flip__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se8732182000553998342ip_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_3520_log__base__10__eq1,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ X )
= ( times_times @ real @ ( divide_divide @ real @ ( ln_ln @ real @ ( exp @ real @ ( one_one @ real ) ) ) @ ( ln_ln @ real @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) ) ) @ ( ln_ln @ real @ X ) ) ) ) ).
% log_base_10_eq1
thf(fact_3521_of__bool__less__eq__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [P: $o,Q: $o] :
( ( ord_less_eq @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) )
= ( P
=> Q ) ) ) ).
% of_bool_less_eq_iff
thf(fact_3522_of__bool__eq_I1_J,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_neq_one_of_bool @ A @ $false )
= ( zero_zero @ A ) ) ) ).
% of_bool_eq(1)
thf(fact_3523_of__bool__eq__0__iff,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: $o] :
( ( ( zero_neq_one_of_bool @ A @ P )
= ( zero_zero @ A ) )
= ~ P ) ) ).
% of_bool_eq_0_iff
thf(fact_3524_of__bool__less__iff,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [P: $o,Q: $o] :
( ( ord_less @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) )
= ( ~ P
& Q ) ) ) ).
% of_bool_less_iff
thf(fact_3525_of__bool__eq__1__iff,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: $o] :
( ( ( zero_neq_one_of_bool @ A @ P )
= ( one_one @ A ) )
= P ) ) ).
% of_bool_eq_1_iff
thf(fact_3526_of__bool__eq_I2_J,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_neq_one_of_bool @ A @ $true )
= ( one_one @ A ) ) ) ).
% of_bool_eq(2)
thf(fact_3527_of__nat__of__bool,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [P: $o] :
( ( semiring_1_of_nat @ A @ ( zero_neq_one_of_bool @ nat @ P ) )
= ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% of_nat_of_bool
thf(fact_3528_abs__bool__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P: $o] :
( ( abs_abs @ A @ ( zero_neq_one_of_bool @ A @ P ) )
= ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% abs_bool_eq
thf(fact_3529_of__int__of__bool,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [P: $o] :
( ( ring_1_of_int @ A @ ( zero_neq_one_of_bool @ int @ P ) )
= ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% of_int_of_bool
thf(fact_3530_of__bool__or__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o,Q: $o] :
( ( zero_neq_one_of_bool @ A
@ ( P
| Q ) )
= ( ord_max @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) ) ) ) ).
% of_bool_or_iff
thf(fact_3531_cot__zero,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( ( cot @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% cot_zero
thf(fact_3532_zero__less__of__bool__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_neq_one_of_bool @ A @ P ) )
= P ) ) ).
% zero_less_of_bool_iff
thf(fact_3533_of__bool__less__one__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] :
( ( ord_less @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( one_one @ A ) )
= ~ P ) ) ).
% of_bool_less_one_iff
thf(fact_3534_of__bool__not__iff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [P: $o] :
( ( zero_neq_one_of_bool @ A @ ~ P )
= ( minus_minus @ A @ ( one_one @ A ) @ ( zero_neq_one_of_bool @ A @ P ) ) ) ) ).
% of_bool_not_iff
thf(fact_3535_Suc__0__mod__eq,axiom,
! [N2: nat] :
( ( modulo_modulo @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( zero_neq_one_of_bool @ nat
@ ( N2
!= ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_3536_log__one,axiom,
! [A2: real] :
( ( log @ A2 @ ( one_one @ real ) )
= ( zero_zero @ real ) ) ).
% log_one
thf(fact_3537_cot__pi,axiom,
( ( cot @ real @ pi )
= ( zero_zero @ real ) ) ).
% cot_pi
thf(fact_3538_or__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(4)
thf(fact_3539_or__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(2)
thf(fact_3540_zero__less__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( log @ A2 @ X ) )
= ( ord_less @ real @ ( one_one @ real ) @ X ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_3541_log__less__zero__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_3542_one__less__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ ( log @ A2 @ X ) )
= ( ord_less @ real @ A2 @ X ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_3543_log__less__one__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ A2 ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_3544_log__less__cancel__iff,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_3545_log__eq__one,axiom,
! [A2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ A2 )
= ( one_one @ real ) ) ) ) ).
% log_eq_one
thf(fact_3546_Divides_Oadjust__div__eq,axiom,
! [Q4: int,R2: int] :
( ( adjust_div @ ( product_Pair @ int @ int @ Q4 @ R2 ) )
= ( plus_plus @ int @ Q4
@ ( zero_neq_one_of_bool @ int
@ ( R2
!= ( zero_zero @ int ) ) ) ) ) ).
% Divides.adjust_div_eq
thf(fact_3547_or__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(3)
thf(fact_3548_or__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% or_nat_numerals(1)
thf(fact_3549_zero__le__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( log @ A2 @ X ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ X ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_3550_log__le__zero__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_3551_one__le__log__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ ( log @ A2 @ X ) )
= ( ord_less_eq @ real @ A2 @ X ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_3552_log__le__one__cancel__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ A2 ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_3553_log__le__cancel__iff,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_3554_cot__npi,axiom,
! [N2: nat] :
( ( cot @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ pi ) )
= ( zero_zero @ real ) ) ).
% cot_npi
thf(fact_3555_of__bool__half__eq__0,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [B2: $o] :
( ( divide_divide @ A @ ( zero_neq_one_of_bool @ A @ B2 ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( zero_zero @ A ) ) ) ).
% of_bool_half_eq_0
thf(fact_3556_log__pow__cancel,axiom,
! [A2: real,B2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ ( power_power @ real @ A2 @ B2 ) )
= ( semiring_1_of_nat @ real @ B2 ) ) ) ) ).
% log_pow_cancel
thf(fact_3557_divmod__algorithm__code_I5_J,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( unique8689654367752047608divmod @ A @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q6: A,R5: A] : ( product_Pair @ A @ A @ Q6 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ R5 ) )
@ ( unique8689654367752047608divmod @ A @ M @ N2 ) ) ) ) ).
% divmod_algorithm_code(5)
thf(fact_3558_bits__1__div__exp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( zero_neq_one_of_bool @ A
@ ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% bits_1_div_exp
thf(fact_3559_one__div__2__pow__eq,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( zero_neq_one_of_bool @ A
@ ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% one_div_2_pow_eq
thf(fact_3560_one__mod__2__pow__eq,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat] :
( ( modulo_modulo @ A @ ( one_one @ A ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% one_mod_2_pow_eq
thf(fact_3561_of__bool__conj,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [P: $o,Q: $o] :
( ( zero_neq_one_of_bool @ A
@ ( P
& Q ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( zero_neq_one_of_bool @ A @ Q ) ) ) ) ).
% of_bool_conj
thf(fact_3562_of__bool__eq__iff,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P6: $o,Q4: $o] :
( ( ( zero_neq_one_of_bool @ A @ P6 )
= ( zero_neq_one_of_bool @ A @ Q4 ) )
= ( P6 = Q4 ) ) ) ).
% of_bool_eq_iff
thf(fact_3563_split__cong,axiom,
! [C: $tType,B: $tType,A: $tType,Q4: product_prod @ A @ B,F2: A > B > C,G: A > B > C,P6: product_prod @ A @ B] :
( ! [X4: A,Y4: B] :
( ( ( product_Pair @ A @ B @ X4 @ Y4 )
= Q4 )
=> ( ( F2 @ X4 @ Y4 )
= ( G @ X4 @ Y4 ) ) )
=> ( ( P6 = Q4 )
=> ( ( product_case_prod @ A @ B @ C @ F2 @ P6 )
= ( product_case_prod @ A @ B @ C @ G @ Q4 ) ) ) ) ).
% split_cong
thf(fact_3564_zero__less__eq__of__bool,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_neq_one_of_bool @ A @ P ) ) ) ).
% zero_less_eq_of_bool
thf(fact_3565_of__bool__less__eq__one,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [P: $o] : ( ord_less_eq @ A @ ( zero_neq_one_of_bool @ A @ P ) @ ( one_one @ A ) ) ) ).
% of_bool_less_eq_one
thf(fact_3566_of__bool__def,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_neq_one_of_bool @ A )
= ( ^ [P5: $o] : ( if @ A @ P5 @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ) ) ).
% of_bool_def
thf(fact_3567_split__of__bool,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: A > $o,P6: $o] :
( ( P @ ( zero_neq_one_of_bool @ A @ P6 ) )
= ( ( P6
=> ( P @ ( one_one @ A ) ) )
& ( ~ P6
=> ( P @ ( zero_zero @ A ) ) ) ) ) ) ).
% split_of_bool
thf(fact_3568_split__of__bool__asm,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ! [P: A > $o,P6: $o] :
( ( P @ ( zero_neq_one_of_bool @ A @ P6 ) )
= ( ~ ( ( P6
& ~ ( P @ ( one_one @ A ) ) )
| ( ~ P6
& ~ ( P @ ( zero_zero @ A ) ) ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_3569_or__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se1065995026697491101ons_or @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( plus_plus @ nat @ N2 @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% or_Suc_0_eq
thf(fact_3570_Suc__0__or__eq,axiom,
! [N2: nat] :
( ( bit_se1065995026697491101ons_or @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( plus_plus @ nat @ N2 @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% Suc_0_or_eq
thf(fact_3571_or__nat__rec,axiom,
( ( bit_se1065995026697491101ons_or @ nat )
= ( ^ [M6: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M6 )
| ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_3572_log__base__change,axiom,
! [A2: real,B2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ B2 @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ B2 ) ) ) ) ) ).
% log_base_change
thf(fact_3573_less__log__of__power,axiom,
! [B2: real,N2: nat,M: real] :
( ( ord_less @ real @ ( power_power @ real @ B2 @ N2 ) @ M )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ord_less @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ B2 @ M ) ) ) ) ).
% less_log_of_power
thf(fact_3574_log__of__power__eq,axiom,
! [M: nat,B2: real,N2: nat] :
( ( ( semiring_1_of_nat @ real @ M )
= ( power_power @ real @ B2 @ N2 ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( semiring_1_of_nat @ real @ N2 )
= ( log @ B2 @ ( semiring_1_of_nat @ real @ M ) ) ) ) ) ).
% log_of_power_eq
thf(fact_3575_log__mult,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( log @ A2 @ ( times_times @ real @ X @ Y ) )
= ( plus_plus @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) ) ) ) ) ) ) ).
% log_mult
thf(fact_3576_log__divide,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ( log @ A2 @ ( divide_divide @ real @ X @ Y ) )
= ( minus_minus @ real @ ( log @ A2 @ X ) @ ( log @ A2 @ Y ) ) ) ) ) ) ) ).
% log_divide
thf(fact_3577_le__log__of__power,axiom,
! [B2: real,N2: nat,M: real] :
( ( ord_less_eq @ real @ ( power_power @ real @ B2 @ N2 ) @ M )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ B2 @ M ) ) ) ) ).
% le_log_of_power
thf(fact_3578_log__base__pow,axiom,
! [A2: real,N2: nat,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( log @ ( power_power @ real @ A2 @ N2 ) @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ).
% log_base_pow
thf(fact_3579_log__nat__power,axiom,
! [X: real,B2: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ B2 @ ( power_power @ real @ X @ N2 ) )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ B2 @ X ) ) ) ) ).
% log_nat_power
thf(fact_3580_log__inverse,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ A2 @ ( inverse_inverse @ real @ X ) )
= ( uminus_uminus @ real @ ( log @ A2 @ X ) ) ) ) ) ) ).
% log_inverse
thf(fact_3581_log__of__power__less,axiom,
! [M: nat,B2: real,N2: nat] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ M ) @ ( power_power @ real @ B2 @ N2 ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ real @ ( log @ B2 @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% log_of_power_less
thf(fact_3582_bits__induct,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [P: A > $o,A2: A] :
( ! [A5: A] :
( ( ( divide_divide @ A @ A5 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A5 )
=> ( P @ A5 ) )
=> ( ! [A5: A,B5: $o] :
( ( P @ A5 )
=> ( ( ( divide_divide @ A @ ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ B5 ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A5 ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A5 )
=> ( P @ ( plus_plus @ A @ ( zero_neq_one_of_bool @ A @ B5 ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A5 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% bits_induct
thf(fact_3583_log__eq__div__ln__mult__log,axiom,
! [A2: real,B2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ A2 @ X )
= ( times_times @ real @ ( divide_divide @ real @ ( ln_ln @ real @ B2 ) @ ( ln_ln @ real @ A2 ) ) @ ( log @ B2 @ X ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_3584_log__of__power__le,axiom,
! [M: nat,B2: real,N2: nat] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ M ) @ ( power_power @ real @ B2 @ N2 ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less_eq @ real @ ( log @ B2 @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% log_of_power_le
thf(fact_3585_exp__mod__exp,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [M: nat,N2: nat] :
( ( modulo_modulo @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ M @ N2 ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) ) ) ).
% exp_mod_exp
thf(fact_3586_one__or__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ A2 )
= ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% one_or_eq
thf(fact_3587_or__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se1065995026697491101ons_or @ A @ A2 @ ( one_one @ A ) )
= ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% or_one_eq
thf(fact_3588_less__log2__of__power,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ M )
=> ( ord_less @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_3589_le__log2__of__power,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ M )
=> ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_3590_divmod__step__nat__def,axiom,
( ( unique1321980374590559556d_step @ nat )
= ( ^ [L2: num] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [Q6: nat,R5: nat] : ( if @ ( product_prod @ nat @ nat ) @ ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ L2 ) @ R5 ) @ ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Q6 ) @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ R5 @ ( numeral_numeral @ nat @ L2 ) ) ) @ ( product_Pair @ nat @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Q6 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_3591_log2__of__power__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ).
% log2_of_power_less
thf(fact_3592_or__nat__unfold,axiom,
( ( bit_se1065995026697491101ons_or @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( M6
= ( zero_zero @ nat ) )
@ N3
@ ( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ M6
@ ( plus_plus @ nat @ ( ord_max @ nat @ ( modulo_modulo @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se1065995026697491101ons_or @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_3593_exp__div__exp__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat] :
( ( divide_divide @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A
@ ( zero_neq_one_of_bool @ A
@ ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M )
!= ( zero_zero @ A ) )
& ( ord_less_eq @ nat @ N2 @ M ) ) )
@ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ M @ N2 ) ) ) ) ) ).
% exp_div_exp_eq
thf(fact_3594_divmod__step__int__def,axiom,
( ( unique1321980374590559556d_step @ int )
= ( ^ [L2: num] :
( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [Q6: int,R5: int] : ( if @ ( product_prod @ int @ int ) @ ( ord_less_eq @ int @ ( numeral_numeral @ int @ L2 ) @ R5 ) @ ( product_Pair @ int @ int @ ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Q6 ) @ ( one_one @ int ) ) @ ( minus_minus @ int @ R5 @ ( numeral_numeral @ int @ L2 ) ) ) @ ( product_Pair @ int @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Q6 ) @ R5 ) ) ) ) ) ).
% divmod_step_int_def
thf(fact_3595_cot__gt__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( cot @ real @ X ) ) ) ) ).
% cot_gt_zero
thf(fact_3596_log2__of__power__le,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less_eq @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ M ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ).
% log2_of_power_le
thf(fact_3597_log__base__10__eq2,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ X )
= ( times_times @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ ( bit1 @ ( bit0 @ one2 ) ) ) ) @ ( exp @ real @ ( one_one @ real ) ) ) @ ( ln_ln @ real @ X ) ) ) ) ).
% log_base_10_eq2
thf(fact_3598_divmod__step__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique1321980374590559556d_step @ A )
= ( ^ [L2: num] :
( product_case_prod @ A @ A @ ( product_prod @ A @ A )
@ ^ [Q6: A,R5: A] : ( if @ ( product_prod @ A @ A ) @ ( ord_less_eq @ A @ ( numeral_numeral @ A @ L2 ) @ R5 ) @ ( product_Pair @ A @ A @ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q6 ) @ ( one_one @ A ) ) @ ( minus_minus @ A @ R5 @ ( numeral_numeral @ A @ L2 ) ) ) @ ( product_Pair @ A @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Q6 ) @ R5 ) ) ) ) ) ) ).
% divmod_step_def
thf(fact_3599_ceiling__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( archimedean_ceiling @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( one_one @ int ) ) )
= ( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
& ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_3600_ceiling__log__nat__eq__if,axiom,
! [B2: nat,N2: nat,K: nat] :
( ( ord_less @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
=> ( ( ord_less_eq @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( archimedean_ceiling @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( one_one @ int ) ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_3601_ceiling__log2__div2,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( archimedean_ceiling @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( divide_divide @ nat @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) @ ( one_one @ int ) ) ) ) ).
% ceiling_log2_div2
thf(fact_3602_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M6: nat,N3: nat] :
( if @ ( product_prod @ nat @ nat )
@ ( ( N3
= ( zero_zero @ nat ) )
| ( ord_less @ nat @ M6 @ N3 ) )
@ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ M6 )
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [Q6: nat] : ( product_Pair @ nat @ nat @ ( suc @ Q6 ) )
@ ( divmod_nat @ ( minus_minus @ nat @ M6 @ N3 ) @ N3 ) ) ) ) ) ).
% divmod_nat_if
thf(fact_3603_floor__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ( ( archim6421214686448440834_floor @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( semiring_1_of_nat @ int @ N2 ) )
= ( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
& ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_3604_floor__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int] :
( ( archim6421214686448440834_floor @ A @ ( ring_1_of_int @ A @ Z2 ) )
= Z2 ) ) ).
% floor_of_int
thf(fact_3605_of__int__floor__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) )
= X )
= ( ? [N3: int] :
( X
= ( ring_1_of_int @ A @ N3 ) ) ) ) ) ).
% of_int_floor_cancel
thf(fact_3606_ceiling__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int] :
( ( archimedean_ceiling @ A @ ( ring_1_of_int @ A @ Z2 ) )
= Z2 ) ) ).
% ceiling_of_int
thf(fact_3607_of__int__ceiling__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) )
= X )
= ( ? [N3: int] :
( X
= ( ring_1_of_int @ A @ N3 ) ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_3608_floor__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archim6421214686448440834_floor @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% floor_zero
thf(fact_3609_floor__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num] :
( ( archim6421214686448440834_floor @ A @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ int @ V2 ) ) ) ).
% floor_numeral
thf(fact_3610_ceiling__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_ceiling @ A @ ( zero_zero @ A ) )
= ( zero_zero @ int ) ) ) ).
% ceiling_zero
thf(fact_3611_floor__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archim6421214686448440834_floor @ A @ ( one_one @ A ) )
= ( one_one @ int ) ) ) ).
% floor_one
thf(fact_3612_ceiling__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num] :
( ( archimedean_ceiling @ A @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ int @ V2 ) ) ) ).
% ceiling_numeral
thf(fact_3613_ceiling__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_ceiling @ A @ ( one_one @ A ) )
= ( one_one @ int ) ) ) ).
% ceiling_one
thf(fact_3614_floor__of__nat,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: nat] :
( ( archim6421214686448440834_floor @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% floor_of_nat
thf(fact_3615_ceiling__of__nat,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: nat] :
( ( archimedean_ceiling @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% ceiling_of_nat
thf(fact_3616_floor__uminus__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int] :
( ( archim6421214686448440834_floor @ A @ ( uminus_uminus @ A @ ( ring_1_of_int @ A @ Z2 ) ) )
= ( uminus_uminus @ int @ Z2 ) ) ) ).
% floor_uminus_of_int
thf(fact_3617_ceiling__add__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ Z2 ) ) ) ).
% ceiling_add_of_int
thf(fact_3618_floor__diff__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( archim6421214686448440834_floor @ A @ ( minus_minus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) )
= ( minus_minus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 ) ) ) ).
% floor_diff_of_int
thf(fact_3619_ceiling__diff__of__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( archimedean_ceiling @ A @ ( minus_minus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) )
= ( minus_minus @ int @ ( archimedean_ceiling @ A @ X ) @ Z2 ) ) ) ).
% ceiling_diff_of_int
thf(fact_3620_floor__add2,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( member @ A @ X @ ( ring_1_Ints @ A ) )
| ( member @ A @ Y @ ( ring_1_Ints @ A ) ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) ) ) ) ).
% floor_add2
thf(fact_3621_zero__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% zero_le_floor
thf(fact_3622_floor__less__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% floor_less_zero
thf(fact_3623_numeral__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less_eq @ int @ ( numeral_numeral @ int @ V2 ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( numeral_numeral @ A @ V2 ) @ X ) ) ) ).
% numeral_le_floor
thf(fact_3624_zero__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ).
% zero_less_floor
thf(fact_3625_floor__le__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ).
% floor_le_zero
thf(fact_3626_ceiling__le__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% ceiling_le_zero
thf(fact_3627_floor__less__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V2 ) )
= ( ord_less @ A @ X @ ( numeral_numeral @ A @ V2 ) ) ) ) ).
% floor_less_numeral
thf(fact_3628_zero__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% zero_less_ceiling
thf(fact_3629_one__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( one_one @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( one_one @ A ) @ X ) ) ) ).
% one_le_floor
thf(fact_3630_ceiling__le__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V2 ) )
= ( ord_less_eq @ A @ X @ ( numeral_numeral @ A @ V2 ) ) ) ) ).
% ceiling_le_numeral
thf(fact_3631_floor__less__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( ord_less @ A @ X @ ( one_one @ A ) ) ) ) ).
% floor_less_one
thf(fact_3632_ceiling__less__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) )
= ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% ceiling_less_one
thf(fact_3633_numeral__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less @ int @ ( numeral_numeral @ int @ V2 ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( numeral_numeral @ A @ V2 ) @ X ) ) ) ).
% numeral_less_ceiling
thf(fact_3634_one__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( one_one @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% one_le_ceiling
thf(fact_3635_floor__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num] :
( ( archim6421214686448440834_floor @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) ) ) ).
% floor_neg_numeral
thf(fact_3636_ceiling__le__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) )
= ( ord_less_eq @ A @ X @ ( one_one @ A ) ) ) ) ).
% ceiling_le_one
thf(fact_3637_one__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( one_one @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( one_one @ A ) @ X ) ) ) ).
% one_less_ceiling
thf(fact_3638_ceiling__add__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( numeral_numeral @ A @ V2 ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V2 ) ) ) ) ).
% ceiling_add_numeral
thf(fact_3639_floor__diff__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( archim6421214686448440834_floor @ A @ ( minus_minus @ A @ X @ ( numeral_numeral @ A @ V2 ) ) )
= ( minus_minus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V2 ) ) ) ) ).
% floor_diff_numeral
thf(fact_3640_ceiling__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num] :
( ( archimedean_ceiling @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) ) ) ).
% ceiling_neg_numeral
thf(fact_3641_ceiling__add__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) )
= ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) ) ) ) ).
% ceiling_add_one
thf(fact_3642_floor__diff__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archim6421214686448440834_floor @ A @ ( minus_minus @ A @ X @ ( one_one @ A ) ) )
= ( minus_minus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) ) ) ) ).
% floor_diff_one
thf(fact_3643_ceiling__diff__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( archimedean_ceiling @ A @ ( minus_minus @ A @ X @ ( numeral_numeral @ A @ V2 ) ) )
= ( minus_minus @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V2 ) ) ) ) ).
% ceiling_diff_numeral
thf(fact_3644_ceiling__diff__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_ceiling @ A @ ( minus_minus @ A @ X @ ( one_one @ A ) ) )
= ( minus_minus @ int @ ( archimedean_ceiling @ A @ X ) @ ( one_one @ int ) ) ) ) ).
% ceiling_diff_one
thf(fact_3645_floor__numeral__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: num,N2: nat] :
( ( archim6421214686448440834_floor @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) )
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ).
% floor_numeral_power
thf(fact_3646_ceiling__numeral__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: num,N2: nat] :
( ( archimedean_ceiling @ A @ ( power_power @ A @ ( numeral_numeral @ A @ X ) @ N2 ) )
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ).
% ceiling_numeral_power
thf(fact_3647_floor__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( divide_divide @ int @ ( numeral_numeral @ int @ A2 ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_3648_ceiling__less__zero,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_zero
thf(fact_3649_zero__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X ) ) ) ).
% zero_le_ceiling
thf(fact_3650_ceiling__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archimedean_ceiling @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ A2 ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ) ).
% ceiling_divide_eq_div_numeral
thf(fact_3651_numeral__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less @ int @ ( numeral_numeral @ int @ V2 ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( numeral_numeral @ A @ V2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% numeral_less_floor
thf(fact_3652_floor__le__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( numeral_numeral @ int @ V2 ) )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( numeral_numeral @ A @ V2 ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_numeral
thf(fact_3653_one__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ int @ ( one_one @ int ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ X ) ) ) ).
% one_less_floor
thf(fact_3654_floor__le__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( ord_less @ A @ X @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% floor_le_one
thf(fact_3655_ceiling__less__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V2 ) )
= ( ord_less_eq @ A @ X @ ( minus_minus @ A @ ( numeral_numeral @ A @ V2 ) @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_numeral
thf(fact_3656_numeral__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less_eq @ int @ ( numeral_numeral @ int @ V2 ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( numeral_numeral @ A @ V2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% numeral_le_ceiling
thf(fact_3657_neg__numeral__le__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ X ) ) ) ).
% neg_numeral_le_floor
thf(fact_3658_floor__less__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) )
= ( ord_less @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_3659_ceiling__le__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_3660_neg__numeral__less__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ X ) ) ) ).
% neg_numeral_less_ceiling
thf(fact_3661_floor__one__divide__eq__div__numeral,axiom,
! [B2: num] :
( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ B2 ) ) )
= ( divide_divide @ int @ ( one_one @ int ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_3662_floor__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archim6421214686448440834_floor @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( divide_divide @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ A2 ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_minus_divide_eq_div_numeral
thf(fact_3663_ceiling__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] :
( ( archimedean_ceiling @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( numeral_numeral @ real @ A2 ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( numeral_numeral @ int @ A2 ) @ ( numeral_numeral @ int @ B2 ) ) ) ) ).
% ceiling_minus_divide_eq_div_numeral
thf(fact_3664_neg__numeral__less__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( one_one @ A ) ) @ X ) ) ) ).
% neg_numeral_less_floor
thf(fact_3665_floor__le__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_neg_numeral
thf(fact_3666_ceiling__less__neg__numeral,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,V2: num] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) )
= ( ord_less_eq @ A @ X @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_3667_neg__numeral__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [V2: num,X: A] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V2 ) ) @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( one_one @ A ) ) @ X ) ) ) ).
% neg_numeral_le_ceiling
thf(fact_3668_floor__minus__one__divide__eq__div__numeral,axiom,
! [B2: num] :
( ( archim6421214686448440834_floor @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ B2 ) ) ) )
= ( divide_divide @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ B2 ) ) ) ).
% floor_minus_one_divide_eq_div_numeral
thf(fact_3669_ceiling__minus,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archimedean_ceiling @ A @ ( uminus_uminus @ A @ X ) )
= ( uminus_uminus @ int @ ( archim6421214686448440834_floor @ A @ X ) ) ) ) ).
% ceiling_minus
thf(fact_3670_floor__minus,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( archim6421214686448440834_floor @ A @ ( uminus_uminus @ A @ X ) )
= ( uminus_uminus @ int @ ( archimedean_ceiling @ A @ X ) ) ) ) ).
% floor_minus
thf(fact_3671_ceiling__def,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_ceiling @ A )
= ( ^ [X3: A] : ( uminus_uminus @ int @ ( archim6421214686448440834_floor @ A @ ( uminus_uminus @ A @ X3 ) ) ) ) ) ) ).
% ceiling_def
thf(fact_3672_floor__le__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archimedean_ceiling @ A @ X ) ) ) ).
% floor_le_ceiling
thf(fact_3673_ceiling__altdef,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_ceiling @ A )
= ( ^ [X3: A] :
( if @ int
@ ( X3
= ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X3 ) ) )
@ ( archim6421214686448440834_floor @ A @ X3 )
@ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X3 ) @ ( one_one @ int ) ) ) ) ) ) ).
% ceiling_altdef
thf(fact_3674_ceiling__diff__floor__le__1,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ int @ ( minus_minus @ int @ ( archimedean_ceiling @ A @ X ) @ ( archim6421214686448440834_floor @ A @ X ) ) @ ( one_one @ int ) ) ) ).
% ceiling_diff_floor_le_1
thf(fact_3675_floor__mono,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) ) ) ).
% floor_mono
thf(fact_3676_of__int__floor__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) ) @ X ) ) ).
% of_int_floor_le
thf(fact_3677_floor__less__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% floor_less_cancel
thf(fact_3678_ceiling__mono,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ Y ) @ ( archimedean_ceiling @ A @ X ) ) ) ) ).
% ceiling_mono
thf(fact_3679_le__of__int__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) ) ) ) ).
% le_of_int_ceiling
thf(fact_3680_ceiling__less__cancel,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ ( archimedean_ceiling @ A @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ).
% ceiling_less_cancel
thf(fact_3681_floor__le__round,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archimedean_round @ A @ X ) ) ) ).
% floor_le_round
thf(fact_3682_ceiling__ge__round,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] : ( ord_less_eq @ int @ ( archimedean_round @ A @ X ) @ ( archimedean_ceiling @ A @ X ) ) ) ).
% ceiling_ge_round
thf(fact_3683_sum_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I3: nat,J3: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ J3 ) @ N2 ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus @ nat @ K3 @ I3 ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% sum.triangle_reindex_eq
thf(fact_3684_prod_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I3: nat,J3: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ J3 ) @ N2 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus @ nat @ K3 @ I3 ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% prod.triangle_reindex_eq
thf(fact_3685_le__floor__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less_eq @ int @ Z2 @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ X ) ) ) ).
% le_floor_iff
thf(fact_3686_floor__less__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( ord_less @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% floor_less_iff
thf(fact_3687_le__floor__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ int @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) @ ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) ) ) ) ).
% le_floor_add
thf(fact_3688_floor__add__int,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ) ).
% floor_add_int
thf(fact_3689_int__add__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( plus_plus @ int @ Z2 @ ( archim6421214686448440834_floor @ A @ X ) )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ X ) ) ) ) ).
% int_add_floor
thf(fact_3690_floor__divide__of__int__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [K: int,L: int] :
( ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ K ) @ ( ring_1_of_int @ A @ L ) ) )
= ( divide_divide @ int @ K @ L ) ) ) ).
% floor_divide_of_int_eq
thf(fact_3691_floor__power,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,N2: nat] :
( ( X
= ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) ) )
=> ( ( archim6421214686448440834_floor @ A @ ( power_power @ A @ X @ N2 ) )
= ( power_power @ int @ ( archim6421214686448440834_floor @ A @ X ) @ N2 ) ) ) ) ).
% floor_power
thf(fact_3692_ceiling__le__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ Z2 )
= ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% ceiling_le_iff
thf(fact_3693_ceiling__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ A2 ) )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ A2 ) ) ) ).
% ceiling_le
thf(fact_3694_less__ceiling__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ int @ Z2 @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( ring_1_of_int @ A @ Z2 ) @ X ) ) ) ).
% less_ceiling_iff
thf(fact_3695_ceiling__add__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ ( plus_plus @ A @ X @ Y ) ) @ ( plus_plus @ int @ ( archimedean_ceiling @ A @ X ) @ ( archimedean_ceiling @ A @ Y ) ) ) ) ).
% ceiling_add_le
thf(fact_3696_sum_Otriangle__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I3: nat,J3: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ J3 ) @ N2 ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus @ nat @ K3 @ I3 ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% sum.triangle_reindex
thf(fact_3697_prod_Otriangle__reindex,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ ( product_prod @ nat @ nat ) @ A @ ( product_case_prod @ nat @ nat @ A @ G )
@ ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I3: nat,J3: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ J3 ) @ N2 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ I3 @ ( minus_minus @ nat @ K3 @ I3 ) )
@ ( set_ord_atMost @ nat @ K3 ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% prod.triangle_reindex
thf(fact_3698_frac__def,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_frac @ A )
= ( ^ [X3: A] : ( minus_minus @ A @ X3 @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X3 ) ) ) ) ) ) ).
% frac_def
thf(fact_3699_one__add__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) )
= ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% one_add_floor
thf(fact_3700_round__altdef,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A )
= ( ^ [X3: A] : ( if @ int @ ( ord_less_eq @ A @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( archimedean_frac @ A @ X3 ) ) @ ( archimedean_ceiling @ A @ X3 ) @ ( archim6421214686448440834_floor @ A @ X3 ) ) ) ) ) ).
% round_altdef
thf(fact_3701_floor__divide__of__nat__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [M: nat,N2: nat] :
( ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N2 ) ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ M @ N2 ) ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_3702_of__int__ceiling__le__add__one,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] : ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ R2 ) ) @ ( plus_plus @ A @ R2 @ ( one_one @ A ) ) ) ) ).
% of_int_ceiling_le_add_one
thf(fact_3703_of__int__ceiling__diff__one__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ R2 ) ) @ ( one_one @ A ) ) @ R2 ) ) ).
% of_int_ceiling_diff_one_le
thf(fact_3704_floor__eq,axiom,
! [N2: int,X: real] :
( ( ord_less @ real @ ( ring_1_of_int @ real @ N2 ) @ X )
=> ( ( ord_less @ real @ X @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N2 ) @ ( one_one @ real ) ) )
=> ( ( archim6421214686448440834_floor @ real @ X )
= N2 ) ) ) ).
% floor_eq
thf(fact_3705_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less @ real @ R2 @ ( plus_plus @ real @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) @ ( one_one @ real ) ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_3706_real__of__int__floor__add__one__ge,axiom,
! [R2: real] : ( ord_less_eq @ real @ R2 @ ( plus_plus @ real @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) @ ( one_one @ real ) ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_3707_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less @ real @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_3708_real__of__int__floor__ge__diff__one,axiom,
! [R2: real] : ( ord_less_eq @ real @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) @ ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ R2 ) ) ) ).
% real_of_int_floor_ge_diff_one
thf(fact_3709_ceiling__divide__eq__div,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: int,B2: int] :
( ( archimedean_ceiling @ A @ ( divide_divide @ A @ ( ring_1_of_int @ A @ A2 ) @ ( ring_1_of_int @ A @ B2 ) ) )
= ( uminus_uminus @ int @ ( divide_divide @ int @ ( uminus_uminus @ int @ A2 ) @ B2 ) ) ) ) ).
% ceiling_divide_eq_div
thf(fact_3710_prod__encode__def,axiom,
( nat_prod_encode
= ( product_case_prod @ nat @ nat @ nat
@ ^ [M6: nat,N3: nat] : ( plus_plus @ nat @ ( nat_triangle @ ( plus_plus @ nat @ M6 @ N3 ) ) @ M6 ) ) ) ).
% prod_encode_def
thf(fact_3711_Divides_Oadjust__div__def,axiom,
( adjust_div
= ( product_case_prod @ int @ int @ int
@ ^ [Q6: int,R5: int] :
( plus_plus @ int @ Q6
@ ( zero_neq_one_of_bool @ int
@ ( R5
!= ( zero_zero @ int ) ) ) ) ) ) ).
% Divides.adjust_div_def
thf(fact_3712_floor__split,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [P: int > $o,T2: A] :
( ( P @ ( archim6421214686448440834_floor @ A @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ I3 ) @ T2 )
& ( ord_less @ A @ T2 @ ( plus_plus @ A @ ( ring_1_of_int @ A @ I3 ) @ ( one_one @ A ) ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% floor_split
thf(fact_3713_floor__eq__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ( archim6421214686448440834_floor @ A @ X )
= A2 )
= ( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ A2 ) @ X )
& ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ A2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% floor_eq_iff
thf(fact_3714_floor__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ Z2 ) @ X )
=> ( ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) )
=> ( ( archim6421214686448440834_floor @ A @ X )
= Z2 ) ) ) ) ).
% floor_unique
thf(fact_3715_le__mult__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ int @ ( times_times @ int @ ( archim6421214686448440834_floor @ A @ A2 ) @ ( archim6421214686448440834_floor @ A @ B2 ) ) @ ( archim6421214686448440834_floor @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ) ).
% le_mult_floor
thf(fact_3716_less__floor__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ int @ Z2 @ ( archim6421214686448440834_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% less_floor_iff
thf(fact_3717_floor__le__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less_eq @ int @ ( archim6421214686448440834_floor @ A @ X ) @ Z2 )
= ( ord_less @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) ) ) ) ).
% floor_le_iff
thf(fact_3718_floor__correct,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ X ) ) @ X )
& ( ord_less @ A @ X @ ( ring_1_of_int @ A @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( one_one @ int ) ) ) ) ) ) ).
% floor_correct
thf(fact_3719_ceiling__correct,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) ) @ ( one_one @ A ) ) @ X )
& ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ X ) ) ) ) ) ).
% ceiling_correct
thf(fact_3720_ceiling__unique,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ Z2 ) )
=> ( ( archimedean_ceiling @ A @ X )
= Z2 ) ) ) ) ).
% ceiling_unique
thf(fact_3721_ceiling__eq__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,A2: int] :
( ( ( archimedean_ceiling @ A @ X )
= A2 )
= ( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ A2 ) @ ( one_one @ A ) ) @ X )
& ( ord_less_eq @ A @ X @ ( ring_1_of_int @ A @ A2 ) ) ) ) ) ).
% ceiling_eq_iff
thf(fact_3722_ceiling__split,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [P: int > $o,T2: A] :
( ( P @ ( archimedean_ceiling @ A @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ I3 ) @ ( one_one @ A ) ) @ T2 )
& ( ord_less_eq @ A @ T2 @ ( ring_1_of_int @ A @ I3 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% ceiling_split
thf(fact_3723_mult__ceiling__le,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ ( times_times @ A @ A2 @ B2 ) ) @ ( times_times @ int @ ( archimedean_ceiling @ A @ A2 ) @ ( archimedean_ceiling @ A @ B2 ) ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_3724_ceiling__less__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Z2: int] :
( ( ord_less @ int @ ( archimedean_ceiling @ A @ X ) @ Z2 )
= ( ord_less_eq @ A @ X @ ( minus_minus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) ) ) ) ).
% ceiling_less_iff
thf(fact_3725_le__ceiling__iff,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Z2: int,X: A] :
( ( ord_less_eq @ int @ Z2 @ ( archimedean_ceiling @ A @ X ) )
= ( ord_less @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ Z2 ) @ ( one_one @ A ) ) @ X ) ) ) ).
% le_ceiling_iff
thf(fact_3726_floor__eq2,axiom,
! [N2: int,X: real] :
( ( ord_less_eq @ real @ ( ring_1_of_int @ real @ N2 ) @ X )
=> ( ( ord_less @ real @ X @ ( plus_plus @ real @ ( ring_1_of_int @ real @ N2 ) @ ( one_one @ real ) ) )
=> ( ( archim6421214686448440834_floor @ real @ X )
= N2 ) ) ) ).
% floor_eq2
thf(fact_3727_floor__divide__real__eq__div,axiom,
! [B2: int,A2: real] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( archim6421214686448440834_floor @ real @ ( divide_divide @ real @ A2 @ ( ring_1_of_int @ real @ B2 ) ) )
= ( divide_divide @ int @ ( archim6421214686448440834_floor @ real @ A2 ) @ B2 ) ) ) ).
% floor_divide_real_eq_div
thf(fact_3728_floor__divide__lower,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q4: A,P6: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q4 )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ P6 @ Q4 ) ) ) @ Q4 ) @ P6 ) ) ) ).
% floor_divide_lower
thf(fact_3729_le__mult__floor__Ints,axiom,
! [A: $tType,B: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( linordered_idom @ A ) )
=> ! [A2: B,B2: B] :
( ( ord_less_eq @ B @ ( zero_zero @ B ) @ A2 )
=> ( ( member @ B @ A2 @ ( ring_1_Ints @ B ) )
=> ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( times_times @ int @ ( archim6421214686448440834_floor @ B @ A2 ) @ ( archim6421214686448440834_floor @ B @ B2 ) ) ) @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ B @ ( times_times @ B @ A2 @ B2 ) ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_3730_ceiling__divide__upper,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q4: A,P6: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q4 )
=> ( ord_less_eq @ A @ P6 @ ( times_times @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ ( divide_divide @ A @ P6 @ Q4 ) ) ) @ Q4 ) ) ) ) ).
% ceiling_divide_upper
thf(fact_3731_floor__add,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [X: A,Y: A] :
( ( ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( plus_plus @ A @ ( archimedean_frac @ A @ X ) @ ( archimedean_frac @ A @ Y ) ) @ ( one_one @ A ) )
=> ( ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X @ Y ) )
= ( plus_plus @ int @ ( plus_plus @ int @ ( archim6421214686448440834_floor @ A @ X ) @ ( archim6421214686448440834_floor @ A @ Y ) ) @ ( one_one @ int ) ) ) ) ) ) ).
% floor_add
thf(fact_3732_mult__ceiling__le__Ints,axiom,
! [A: $tType,B: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( linordered_idom @ A ) )
=> ! [A2: B,B2: B] :
( ( ord_less_eq @ B @ ( zero_zero @ B ) @ A2 )
=> ( ( member @ B @ A2 @ ( ring_1_Ints @ B ) )
=> ( ord_less_eq @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ B @ ( times_times @ B @ A2 @ B2 ) ) ) @ ( ring_1_of_int @ A @ ( times_times @ int @ ( archimedean_ceiling @ B @ A2 ) @ ( archimedean_ceiling @ B @ B2 ) ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_3733_floor__divide__upper,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q4: A,P6: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q4 )
=> ( ord_less @ A @ P6 @ ( times_times @ A @ ( plus_plus @ A @ ( ring_1_of_int @ A @ ( archim6421214686448440834_floor @ A @ ( divide_divide @ A @ P6 @ Q4 ) ) ) @ ( one_one @ A ) ) @ Q4 ) ) ) ) ).
% floor_divide_upper
thf(fact_3734_round__def,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ( ( archimedean_round @ A )
= ( ^ [X3: A] : ( archim6421214686448440834_floor @ A @ ( plus_plus @ A @ X3 @ ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% round_def
thf(fact_3735_ceiling__divide__lower,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [Q4: A,P6: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ Q4 )
=> ( ord_less @ A @ ( times_times @ A @ ( minus_minus @ A @ ( ring_1_of_int @ A @ ( archimedean_ceiling @ A @ ( divide_divide @ A @ P6 @ Q4 ) ) ) @ ( one_one @ A ) ) @ Q4 ) @ P6 ) ) ) ).
% ceiling_divide_lower
thf(fact_3736_ceiling__eq,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [N2: int,X: A] :
( ( ord_less @ A @ ( ring_1_of_int @ A @ N2 ) @ X )
=> ( ( ord_less_eq @ A @ X @ ( plus_plus @ A @ ( ring_1_of_int @ A @ N2 ) @ ( one_one @ A ) ) )
=> ( ( archimedean_ceiling @ A @ X )
= ( plus_plus @ int @ N2 @ ( one_one @ int ) ) ) ) ) ) ).
% ceiling_eq
thf(fact_3737_divmod__nat__def,axiom,
( divmod_nat
= ( ^ [M6: nat,N3: nat] : ( product_Pair @ nat @ nat @ ( divide_divide @ nat @ M6 @ N3 ) @ ( modulo_modulo @ nat @ M6 @ N3 ) ) ) ) ).
% divmod_nat_def
thf(fact_3738_floor__log2__div2,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( archim6421214686448440834_floor @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) )
= ( plus_plus @ int @ ( archim6421214686448440834_floor @ real @ ( log @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( one_one @ int ) ) ) ) ).
% floor_log2_div2
thf(fact_3739_floor__log__nat__eq__if,axiom,
! [B2: nat,N2: nat,K: nat] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ N2 ) @ K )
=> ( ( ord_less @ nat @ K @ ( power_power @ nat @ B2 @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) ) )
=> ( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ B2 )
=> ( ( archim6421214686448440834_floor @ real @ ( log @ ( semiring_1_of_nat @ real @ B2 ) @ ( semiring_1_of_nat @ real @ K ) ) )
= ( semiring_1_of_nat @ int @ N2 ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_3740_of__nat__code__if,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ A )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [M6: nat,Q6: nat] :
( if @ A
@ ( Q6
= ( zero_zero @ nat ) )
@ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M6 ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( semiring_1_of_nat @ A @ M6 ) ) @ ( one_one @ A ) ) )
@ ( divmod_nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% of_nat_code_if
thf(fact_3741_ceiling__log__eq__powr__iff,axiom,
! [X: real,B2: real,K: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ( archimedean_ceiling @ real @ ( log @ B2 @ X ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ K ) @ ( one_one @ int ) ) )
= ( ( ord_less @ real @ ( powr @ real @ B2 @ ( semiring_1_of_nat @ real @ K ) ) @ X )
& ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ K @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_3742_list__decode_Opinduct,axiom,
! [A0: nat,P: nat > $o] :
( ( accp @ nat @ nat_list_decode_rel @ A0 )
=> ( ( ( accp @ nat @ nat_list_decode_rel @ ( zero_zero @ nat ) )
=> ( P @ ( zero_zero @ nat ) ) )
=> ( ! [N: nat] :
( ( accp @ nat @ nat_list_decode_rel @ ( suc @ N ) )
=> ( ! [X2: nat,Y3: nat] :
( ( ( product_Pair @ nat @ nat @ X2 @ Y3 )
= ( nat_prod_decode @ N ) )
=> ( P @ Y3 ) )
=> ( P @ ( suc @ N ) ) ) )
=> ( P @ A0 ) ) ) ) ).
% list_decode.pinduct
thf(fact_3743_int__ge__less__than__def,axiom,
( int_ge_less_than
= ( ^ [D6: int] :
( collect @ ( product_prod @ int @ int )
@ ( product_case_prod @ int @ int @ $o
@ ^ [Z6: int,Z5: int] :
( ( ord_less_eq @ int @ D6 @ Z6 )
& ( ord_less @ int @ Z6 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than_def
thf(fact_3744_powr__eq__0__iff,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [W2: A,Z2: A] :
( ( ( powr @ A @ W2 @ Z2 )
= ( zero_zero @ A ) )
= ( W2
= ( zero_zero @ A ) ) ) ) ).
% powr_eq_0_iff
thf(fact_3745_powr__0,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [Z2: A] :
( ( powr @ A @ ( zero_zero @ A ) @ Z2 )
= ( zero_zero @ A ) ) ) ).
% powr_0
thf(fact_3746_powr__one__eq__one,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [A2: A] :
( ( powr @ A @ ( one_one @ A ) @ A2 )
= ( one_one @ A ) ) ) ).
% powr_one_eq_one
thf(fact_3747_powr__zero__eq__one,axiom,
! [A: $tType] :
( ( ln @ A )
=> ! [X: A] :
( ( ( X
= ( zero_zero @ A ) )
=> ( ( powr @ A @ X @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) )
& ( ( X
!= ( zero_zero @ A ) )
=> ( ( powr @ A @ X @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ) ) ).
% powr_zero_eq_one
thf(fact_3748_powr__gt__zero,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( powr @ real @ X @ A2 ) )
= ( X
!= ( zero_zero @ real ) ) ) ).
% powr_gt_zero
thf(fact_3749_powr__nonneg__iff,axiom,
! [A2: real,X: real] :
( ( ord_less_eq @ real @ ( powr @ real @ A2 @ X ) @ ( zero_zero @ real ) )
= ( A2
= ( zero_zero @ real ) ) ) ).
% powr_nonneg_iff
thf(fact_3750_powr__less__cancel__iff,axiom,
! [X: real,A2: real,B2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ X @ B2 ) )
= ( ord_less @ real @ A2 @ B2 ) ) ) ).
% powr_less_cancel_iff
thf(fact_3751_powr__eq__one__iff,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( ( ( powr @ real @ A2 @ X )
= ( one_one @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% powr_eq_one_iff
thf(fact_3752_powr__one__gt__zero__iff,axiom,
! [X: real] :
( ( ( powr @ real @ X @ ( one_one @ real ) )
= X )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% powr_one_gt_zero_iff
thf(fact_3753_powr__one,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( one_one @ real ) )
= X ) ) ).
% powr_one
thf(fact_3754_powr__le__cancel__iff,axiom,
! [X: real,A2: real,B2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ X @ B2 ) )
= ( ord_less_eq @ real @ A2 @ B2 ) ) ) ).
% powr_le_cancel_iff
thf(fact_3755_powr__log__cancel,axiom,
! [A2: real,X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ A2 @ ( log @ A2 @ X ) )
= X ) ) ) ) ).
% powr_log_cancel
thf(fact_3756_log__powr__cancel,axiom,
! [A2: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( log @ A2 @ ( powr @ real @ A2 @ Y ) )
= Y ) ) ) ).
% log_powr_cancel
thf(fact_3757_powr__numeral,axiom,
! [X: real,N2: num] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( numeral_numeral @ real @ N2 ) )
= ( power_power @ real @ X @ ( numeral_numeral @ nat @ N2 ) ) ) ) ).
% powr_numeral
thf(fact_3758_powr__non__neg,axiom,
! [A2: real,X: real] :
~ ( ord_less @ real @ ( powr @ real @ A2 @ X ) @ ( zero_zero @ real ) ) ).
% powr_non_neg
thf(fact_3759_powr__less__mono2__neg,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( powr @ real @ Y @ A2 ) @ ( powr @ real @ X @ A2 ) ) ) ) ) ).
% powr_less_mono2_neg
thf(fact_3760_powr__ge__pzero,axiom,
! [X: real,Y: real] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( powr @ real @ X @ Y ) ) ).
% powr_ge_pzero
thf(fact_3761_powr__mono2,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_mono2
thf(fact_3762_powr__less__cancel,axiom,
! [X: real,A2: real,B2: real] :
( ( ord_less @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ X @ B2 ) )
=> ( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ A2 @ B2 ) ) ) ).
% powr_less_cancel
thf(fact_3763_powr__less__mono,axiom,
! [A2: real,B2: real,X: real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ X @ B2 ) ) ) ) ).
% powr_less_mono
thf(fact_3764_powr__mono2_H,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ A2 @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ Y @ A2 ) @ ( powr @ real @ X @ A2 ) ) ) ) ) ).
% powr_mono2'
thf(fact_3765_powr__less__mono2,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_less_mono2
thf(fact_3766_gr__one__powr,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ Y )
=> ( ord_less @ real @ ( one_one @ real ) @ ( powr @ real @ X @ Y ) ) ) ) ).
% gr_one_powr
thf(fact_3767_powr__inj,axiom,
! [A2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ( powr @ real @ A2 @ X )
= ( powr @ real @ A2 @ Y ) )
= ( X = Y ) ) ) ) ).
% powr_inj
thf(fact_3768_powr__le1,axiom,
! [A2: real,X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( one_one @ real ) ) ) ) ) ).
% powr_le1
thf(fact_3769_powr__mono__both,axiom,
! [A2: real,B2: real,X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ B2 ) ) ) ) ) ) ).
% powr_mono_both
thf(fact_3770_ge__one__powr__ge__zero,axiom,
! [X: real,A2: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( one_one @ real ) @ ( powr @ real @ X @ A2 ) ) ) ) ).
% ge_one_powr_ge_zero
thf(fact_3771_powr__divide,axiom,
! [X: real,Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( divide_divide @ real @ X @ Y ) @ A2 )
= ( divide_divide @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_divide
thf(fact_3772_powr__mult,axiom,
! [X: real,Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( times_times @ real @ X @ Y ) @ A2 )
= ( times_times @ real @ ( powr @ real @ X @ A2 ) @ ( powr @ real @ Y @ A2 ) ) ) ) ) ).
% powr_mult
thf(fact_3773_inverse__powr,axiom,
! [Y: real,A2: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( powr @ real @ ( inverse_inverse @ real @ Y ) @ A2 )
= ( inverse_inverse @ real @ ( powr @ real @ Y @ A2 ) ) ) ) ).
% inverse_powr
thf(fact_3774_log__base__powr,axiom,
! [A2: real,B2: real,X: real] :
( ( A2
!= ( zero_zero @ real ) )
=> ( ( log @ ( powr @ real @ A2 @ B2 ) @ X )
= ( divide_divide @ real @ ( log @ A2 @ X ) @ B2 ) ) ) ).
% log_base_powr
thf(fact_3775_ln__powr,axiom,
! [X: real,Y: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ln_ln @ real @ ( powr @ real @ X @ Y ) )
= ( times_times @ real @ Y @ ( ln_ln @ real @ X ) ) ) ) ).
% ln_powr
thf(fact_3776_log__powr,axiom,
! [X: real,B2: real,Y: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( log @ B2 @ ( powr @ real @ X @ Y ) )
= ( times_times @ real @ Y @ ( log @ B2 @ X ) ) ) ) ).
% log_powr
thf(fact_3777_powr__add,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ! [X: A,A2: A,B2: A] :
( ( powr @ A @ X @ ( plus_plus @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( powr @ A @ X @ A2 ) @ ( powr @ A @ X @ B2 ) ) ) ) ).
% powr_add
thf(fact_3778_powr__realpow,axiom,
! [X: real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( semiring_1_of_nat @ real @ N2 ) )
= ( power_power @ real @ X @ N2 ) ) ) ).
% powr_realpow
thf(fact_3779_powr__less__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( powr @ real @ B2 @ Y ) @ X )
= ( ord_less @ real @ Y @ ( log @ B2 @ X ) ) ) ) ) ).
% powr_less_iff
thf(fact_3780_less__powr__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( powr @ real @ B2 @ Y ) )
= ( ord_less @ real @ ( log @ B2 @ X ) @ Y ) ) ) ) ).
% less_powr_iff
thf(fact_3781_log__less__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( log @ B2 @ X ) @ Y )
= ( ord_less @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ).
% log_less_iff
thf(fact_3782_less__log__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ Y @ ( log @ B2 @ X ) )
= ( ord_less @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ).
% less_log_iff
thf(fact_3783_powr__minus__divide,axiom,
! [A: $tType] :
( ( ( real_V3459762299906320749_field @ A )
& ( ln @ A ) )
=> ! [X: A,A2: A] :
( ( powr @ A @ X @ ( uminus_uminus @ A @ A2 ) )
= ( divide_divide @ A @ ( one_one @ A ) @ ( powr @ A @ X @ A2 ) ) ) ) ).
% powr_minus_divide
thf(fact_3784_powr__neg__one,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( uminus_uminus @ real @ ( one_one @ real ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ X ) ) ) ).
% powr_neg_one
thf(fact_3785_powr__mult__base,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( times_times @ real @ X @ ( powr @ real @ X @ Y ) )
= ( powr @ real @ X @ ( plus_plus @ real @ ( one_one @ real ) @ Y ) ) ) ) ).
% powr_mult_base
thf(fact_3786_powr__le__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( powr @ real @ B2 @ Y ) @ X )
= ( ord_less_eq @ real @ Y @ ( log @ B2 @ X ) ) ) ) ) ).
% powr_le_iff
thf(fact_3787_le__powr__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ Y ) )
= ( ord_less_eq @ real @ ( log @ B2 @ X ) @ Y ) ) ) ) ).
% le_powr_iff
thf(fact_3788_log__le__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ ( log @ B2 @ X ) @ Y )
= ( ord_less_eq @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ).
% log_le_iff
thf(fact_3789_le__log__iff,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ Y @ ( log @ B2 @ X ) )
= ( ord_less_eq @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ).
% le_log_iff
thf(fact_3790_ln__powr__bound,axiom,
! [X: real,A2: real] :
( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( ln_ln @ real @ X ) @ ( divide_divide @ real @ ( powr @ real @ X @ A2 ) @ A2 ) ) ) ) ).
% ln_powr_bound
thf(fact_3791_ln__powr__bound2,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ord_less_eq @ real @ ( powr @ real @ ( ln_ln @ real @ X ) @ A2 ) @ ( times_times @ real @ ( powr @ real @ A2 @ A2 ) @ X ) ) ) ) ).
% ln_powr_bound2
thf(fact_3792_add__log__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( plus_plus @ real @ Y @ ( log @ B2 @ X ) )
= ( log @ B2 @ ( times_times @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_3793_log__add__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( plus_plus @ real @ ( log @ B2 @ X ) @ Y )
= ( log @ B2 @ ( times_times @ real @ X @ ( powr @ real @ B2 @ Y ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_3794_minus__log__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( minus_minus @ real @ Y @ ( log @ B2 @ X ) )
= ( log @ B2 @ ( divide_divide @ real @ ( powr @ real @ B2 @ Y ) @ X ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_3795_powr__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( powr @ A )
= ( ^ [X3: A,A3: A] :
( if @ A
@ ( X3
= ( zero_zero @ A ) )
@ ( zero_zero @ A )
@ ( exp @ A @ ( times_times @ A @ A3 @ ( ln_ln @ A @ X3 ) ) ) ) ) ) ) ).
% powr_def
thf(fact_3796_log__minus__eq__powr,axiom,
! [B2: real,X: real,Y: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( B2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( minus_minus @ real @ ( log @ B2 @ X ) @ Y )
= ( log @ B2 @ ( times_times @ real @ X @ ( powr @ real @ B2 @ ( uminus_uminus @ real @ Y ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_3797_powr__half__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
= ( sqrt @ X ) ) ) ).
% powr_half_sqrt
thf(fact_3798_powr__neg__numeral,axiom,
! [X: real,N2: num] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( powr @ real @ X @ ( uminus_uminus @ real @ ( numeral_numeral @ real @ N2 ) ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ N2 ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_3799_floor__log__eq__powr__iff,axiom,
! [X: real,B2: real,K: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( ( ( archim6421214686448440834_floor @ real @ ( log @ B2 @ X ) )
= K )
= ( ( ord_less_eq @ real @ ( powr @ real @ B2 @ ( ring_1_of_int @ real @ K ) ) @ X )
& ( ord_less @ real @ X @ ( powr @ real @ B2 @ ( ring_1_of_int @ real @ ( plus_plus @ int @ K @ ( one_one @ int ) ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_3800_int__ge__less__than2__def,axiom,
( int_ge_less_than2
= ( ^ [D6: int] :
( collect @ ( product_prod @ int @ int )
@ ( product_case_prod @ int @ int @ $o
@ ^ [Z6: int,Z5: int] :
( ( ord_less_eq @ int @ D6 @ Z5 )
& ( ord_less @ int @ Z6 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than2_def
thf(fact_3801_arcosh__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arcosh @ A )
= ( ^ [X3: A] : ( ln_ln @ A @ ( plus_plus @ A @ X3 @ ( powr @ A @ ( minus_minus @ A @ ( power_power @ A @ X3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) @ ( real_Vector_of_real @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% arcosh_def
thf(fact_3802_arsinh__def,axiom,
! [A: $tType] :
( ( ln @ A )
=> ( ( arsinh @ A )
= ( ^ [X3: A] : ( ln_ln @ A @ ( plus_plus @ A @ X3 @ ( powr @ A @ ( plus_plus @ A @ ( power_power @ A @ X3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) @ ( real_Vector_of_real @ A @ ( divide_divide @ real @ ( one_one @ real ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% arsinh_def
thf(fact_3803_arctan__def,axiom,
( arctan
= ( ^ [Y2: real] :
( the @ real
@ ^ [X3: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ X3 )
& ( ord_less @ real @ X3 @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
& ( ( tan @ real @ X3 )
= Y2 ) ) ) ) ) ).
% arctan_def
thf(fact_3804_of__real__0,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( ( real_Vector_of_real @ A @ ( zero_zero @ real ) )
= ( zero_zero @ A ) ) ) ).
% of_real_0
thf(fact_3805_of__real__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real] :
( ( ( real_Vector_of_real @ A @ X )
= ( zero_zero @ A ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% of_real_eq_0_iff
thf(fact_3806_of__real__1,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( ( real_Vector_of_real @ A @ ( one_one @ real ) )
= ( one_one @ A ) ) ) ).
% of_real_1
thf(fact_3807_of__real__eq__1__iff,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real] :
( ( ( real_Vector_of_real @ A @ X )
= ( one_one @ A ) )
= ( X
= ( one_one @ real ) ) ) ) ).
% of_real_eq_1_iff
thf(fact_3808_of__real__add,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [X: real,Y: real] :
( ( real_Vector_of_real @ A @ ( plus_plus @ real @ X @ Y ) )
= ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ).
% of_real_add
thf(fact_3809_sin__of__real__pi,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( real_Vector_of_real @ A @ pi ) )
= ( zero_zero @ A ) ) ) ).
% sin_of_real_pi
thf(fact_3810_cos__of__real__pi,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A @ ( real_Vector_of_real @ A @ pi ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% cos_of_real_pi
thf(fact_3811_norm__of__real__add1,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: real] :
( ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( one_one @ A ) ) )
= ( abs_abs @ real @ ( plus_plus @ real @ X @ ( one_one @ real ) ) ) ) ) ).
% norm_of_real_add1
thf(fact_3812_norm__of__real__addn,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: real,B2: num] :
( ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ X ) @ ( numeral_numeral @ A @ B2 ) ) )
= ( abs_abs @ real @ ( plus_plus @ real @ X @ ( numeral_numeral @ real @ B2 ) ) ) ) ) ).
% norm_of_real_addn
thf(fact_3813_cos__of__real__pi__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V7773925162809079976_field @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( cos @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ A ) ) ) ).
% cos_of_real_pi_half
thf(fact_3814_sin__of__real__pi__half,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V7773925162809079976_field @ A )
& ( real_V2822296259951069270ebra_1 @ A ) )
=> ( ( sin @ A @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) )
= ( one_one @ A ) ) ) ).
% sin_of_real_pi_half
thf(fact_3815_of__real__def,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( ( real_Vector_of_real @ A )
= ( ^ [R5: real] : ( real_V8093663219630862766scaleR @ A @ R5 @ ( one_one @ A ) ) ) ) ) ).
% of_real_def
thf(fact_3816_complex__eq__cancel__iff2,axiom,
! [X: real,Y: real,Xa2: real] :
( ( ( complex2 @ X @ Y )
= ( real_Vector_of_real @ complex @ Xa2 ) )
= ( ( X = Xa2 )
& ( Y
= ( zero_zero @ real ) ) ) ) ).
% complex_eq_cancel_iff2
thf(fact_3817_complex__of__real__code,axiom,
( ( real_Vector_of_real @ complex )
= ( ^ [X3: real] : ( complex2 @ X3 @ ( zero_zero @ real ) ) ) ) ).
% complex_of_real_code
thf(fact_3818_complex__of__real__def,axiom,
( ( real_Vector_of_real @ complex )
= ( ^ [R5: real] : ( complex2 @ R5 @ ( zero_zero @ real ) ) ) ) ).
% complex_of_real_def
thf(fact_3819_nonzero__of__real__divide,axiom,
! [A: $tType] :
( ( real_V7773925162809079976_field @ A )
=> ! [Y: real,X: real] :
( ( Y
!= ( zero_zero @ real ) )
=> ( ( real_Vector_of_real @ A @ ( divide_divide @ real @ X @ Y ) )
= ( divide_divide @ A @ ( real_Vector_of_real @ A @ X ) @ ( real_Vector_of_real @ A @ Y ) ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_3820_nonzero__of__real__inverse,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( real_Vector_of_real @ A @ ( inverse_inverse @ real @ X ) )
= ( inverse_inverse @ A @ ( real_Vector_of_real @ A @ X ) ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_3821_ln__neg__is__const,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ln_ln @ real @ X )
= ( the @ real
@ ^ [X3: real] : $false ) ) ) ).
% ln_neg_is_const
thf(fact_3822_norm__less__p1,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( real_Vector_of_real @ A @ ( real_V7770717601297561774m_norm @ A @ X ) ) @ ( one_one @ A ) ) ) ) ) ).
% norm_less_p1
thf(fact_3823_minus__sin__cos__eq,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( uminus_uminus @ A @ ( sin @ A @ X ) )
= ( cos @ A @ ( plus_plus @ A @ X @ ( divide_divide @ A @ ( real_Vector_of_real @ A @ pi ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_3824_pi__half,axiom,
( ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
= ( the @ real
@ ^ [X3: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X3 )
& ( ord_less_eq @ real @ X3 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X3 )
= ( zero_zero @ real ) ) ) ) ) ).
% pi_half
thf(fact_3825_pi__def,axiom,
( pi
= ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) )
@ ( the @ real
@ ^ [X3: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X3 )
& ( ord_less_eq @ real @ X3 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) )
& ( ( cos @ real @ X3 )
= ( zero_zero @ real ) ) ) ) ) ) ).
% pi_def
thf(fact_3826_modulo__int__unfold,axiom,
! [L: int,K: int,N2: nat,M: nat] :
( ( ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N2
= ( zero_zero @ nat ) ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N2
= ( zero_zero @ nat ) ) )
=> ( ( ( ( sgn_sgn @ int @ K )
= ( sgn_sgn @ int @ L ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ M @ N2 ) ) ) ) )
& ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( modulo_modulo @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( times_times @ int @ ( sgn_sgn @ int @ L )
@ ( minus_minus @ int
@ ( semiring_1_of_nat @ int
@ ( times_times @ nat @ N2
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ N2 @ M ) ) ) )
@ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ M @ N2 ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_3827_powr__int,axiom,
! [X: real,I: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ I ) )
= ( power_power @ real @ X @ ( nat2 @ I ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ I )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ I ) )
= ( divide_divide @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( nat2 @ ( uminus_uminus @ int @ I ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_3828_num_Osize__gen_I3_J,axiom,
! [X32: num] :
( ( size_num @ ( bit1 @ X32 ) )
= ( plus_plus @ nat @ ( size_num @ X32 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size_gen(3)
thf(fact_3829_take__bit__rec,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A3: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ A )
@ ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_3830_sgn__sgn,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( sgn_sgn @ A @ A2 ) )
= ( sgn_sgn @ A @ A2 ) ) ) ).
% sgn_sgn
thf(fact_3831_take__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% take_bit_of_0
thf(fact_3832_sgn__0,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( sgn_sgn @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sgn_0
thf(fact_3833_sgn__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( sgn_sgn @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% sgn_zero
thf(fact_3834_sgn__1,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( sgn_sgn @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% sgn_1
thf(fact_3835_sgn__one,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ( ( sgn_sgn @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% sgn_one
thf(fact_3836_sgn__divide,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( sgn_sgn @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% sgn_divide
thf(fact_3837_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( uminus_uminus @ A @ A2 ) )
= ( uminus_uminus @ A @ ( sgn_sgn @ A @ A2 ) ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_3838_sgn__inverse,axiom,
! [A: $tType] :
( ( field_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( inverse_inverse @ A @ A2 ) )
= ( inverse_inverse @ A @ ( sgn_sgn @ A @ A2 ) ) ) ) ).
% sgn_inverse
thf(fact_3839_inverse__sgn,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( sgn_sgn @ A @ A2 ) )
= ( sgn_sgn @ A @ A2 ) ) ) ).
% inverse_sgn
thf(fact_3840_nat__int,axiom,
! [N2: nat] :
( ( nat2 @ ( semiring_1_of_nat @ int @ N2 ) )
= N2 ) ).
% nat_int
thf(fact_3841_concat__bit__of__zero__2,axiom,
! [N2: nat,K: int] :
( ( bit_concat_bit @ N2 @ K @ ( zero_zero @ int ) )
= ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ).
% concat_bit_of_zero_2
thf(fact_3842_sgn__greater,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( sgn_sgn @ A @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% sgn_greater
thf(fact_3843_sgn__less,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( sgn_sgn @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% sgn_less
thf(fact_3844_take__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( zero_zero @ nat ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% take_bit_0
thf(fact_3845_take__bit__Suc__1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% take_bit_Suc_1
thf(fact_3846_divide__sgn,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( divide_divide @ A @ A2 @ ( sgn_sgn @ A @ B2 ) )
= ( times_times @ A @ A2 @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% divide_sgn
thf(fact_3847_take__bit__numeral__1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% take_bit_numeral_1
thf(fact_3848_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral @ int @ K ) )
= ( numeral_numeral @ nat @ K ) ) ).
% nat_numeral
thf(fact_3849_nat__of__bool,axiom,
! [P: $o] :
( ( nat2 @ ( zero_neq_one_of_bool @ int @ P ) )
= ( zero_neq_one_of_bool @ nat @ P ) ) ).
% nat_of_bool
thf(fact_3850_sgn__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( sgn_sgn @ A @ A2 )
= ( one_one @ A ) ) ) ) ).
% sgn_pos
thf(fact_3851_take__bit__of__1__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( one_one @ A ) )
= ( zero_zero @ A ) )
= ( N2
= ( zero_zero @ nat ) ) ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_3852_abs__sgn__eq__1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ).
% abs_sgn_eq_1
thf(fact_3853_nat__1,axiom,
( ( nat2 @ ( one_one @ int ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% nat_1
thf(fact_3854_sgn__mult__self__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% sgn_mult_self_eq
thf(fact_3855_nat__le__0,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) )
=> ( ( nat2 @ Z2 )
= ( zero_zero @ nat ) ) ) ).
% nat_le_0
thf(fact_3856_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ int @ I @ ( zero_zero @ int ) ) ) ).
% nat_0_iff
thf(fact_3857_zless__nat__conj,axiom,
! [W2: int,Z2: int] :
( ( ord_less @ nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
& ( ord_less @ int @ W2 @ Z2 ) ) ) ).
% zless_nat_conj
thf(fact_3858_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) )
= ( zero_zero @ nat ) ) ).
% nat_neg_numeral
thf(fact_3859_sgn__abs,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% sgn_abs
thf(fact_3860_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( sgn_sgn @ A @ ( abs_abs @ A @ A2 ) )
= ( zero_neq_one_of_bool @ A
@ ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_3861_nat__zminus__int,axiom,
! [N2: nat] :
( ( nat2 @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( zero_zero @ nat ) ) ).
% nat_zminus_int
thf(fact_3862_int__nat__eq,axiom,
! [Z2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= Z2 ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= ( zero_zero @ int ) ) ) ) ).
% int_nat_eq
thf(fact_3863_take__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_neq_one_of_bool @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% take_bit_of_Suc_0
thf(fact_3864_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R2: int] :
( ( dvd_dvd @ int @ L @ ( times_times @ int @ K @ ( sgn_sgn @ int @ R2 ) ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( R2
= ( zero_zero @ int ) ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_3865_dvd__sgn__mult__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd @ int @ L @ ( times_times @ int @ ( sgn_sgn @ int @ R2 ) @ K ) )
= ( ( dvd_dvd @ int @ L @ K )
| ( R2
= ( zero_zero @ int ) ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_3866_mult__sgn__dvd__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ L @ ( sgn_sgn @ int @ R2 ) ) @ K )
= ( ( dvd_dvd @ int @ L @ K )
& ( ( R2
= ( zero_zero @ int ) )
=> ( K
= ( zero_zero @ int ) ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_3867_sgn__mult__dvd__iff,axiom,
! [R2: int,L: int,K: int] :
( ( dvd_dvd @ int @ ( times_times @ int @ ( sgn_sgn @ int @ R2 ) @ L ) @ K )
= ( ( dvd_dvd @ int @ L @ K )
& ( ( R2
= ( zero_zero @ int ) )
=> ( K
= ( zero_zero @ int ) ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_3868_sgn__neg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ).
% sgn_neg
thf(fact_3869_zero__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ Z2 ) ) ).
% zero_less_nat_eq
thf(fact_3870_take__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( one_one @ A ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% take_bit_of_1
thf(fact_3871_of__nat__nat,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ A @ ( nat2 @ Z2 ) )
= ( ring_1_of_int @ A @ Z2 ) ) ) ) ).
% of_nat_nat
thf(fact_3872_sgn__of__nat,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat] :
( ( sgn_sgn @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% sgn_of_nat
thf(fact_3873_diff__nat__numeral,axiom,
! [V2: num,V4: num] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ V2 ) @ ( numeral_numeral @ nat @ V4 ) )
= ( nat2 @ ( minus_minus @ int @ ( numeral_numeral @ int @ V2 ) @ ( numeral_numeral @ int @ V4 ) ) ) ) ).
% diff_nat_numeral
thf(fact_3874_numeral__power__eq__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: int] :
( ( ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 )
= ( nat2 @ Y ) )
= ( ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_3875_nat__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X: num,N2: nat] :
( ( ( nat2 @ Y )
= ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 ) )
= ( Y
= ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_3876_nat__abs__dvd__iff,axiom,
! [K: int,N2: nat] :
( ( dvd_dvd @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ N2 )
= ( dvd_dvd @ int @ K @ ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% nat_abs_dvd_iff
thf(fact_3877_dvd__nat__abs__iff,axiom,
! [N2: nat,K: int] :
( ( dvd_dvd @ nat @ N2 @ ( nat2 @ ( abs_abs @ int @ K ) ) )
= ( dvd_dvd @ int @ ( semiring_1_of_nat @ int @ N2 ) @ K ) ) ).
% dvd_nat_abs_iff
thf(fact_3878_nat__ceiling__le__eq,axiom,
! [X: real,A2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) @ A2 )
= ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ A2 ) ) ) ).
% nat_ceiling_le_eq
thf(fact_3879_even__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) )
= ( ( N2
= ( zero_zero @ nat ) )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_take_bit_eq
thf(fact_3880_one__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( one_one @ int ) @ Z2 ) ) ).
% one_less_nat_eq
thf(fact_3881_take__bit__Suc__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ ( zero_zero @ nat ) ) @ A2 )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_Suc_0
thf(fact_3882_nat__numeral__diff__1,axiom,
! [V2: num] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ V2 ) @ ( one_one @ nat ) )
= ( nat2 @ ( minus_minus @ int @ ( numeral_numeral @ int @ V2 ) @ ( one_one @ int ) ) ) ) ).
% nat_numeral_diff_1
thf(fact_3883_nat__less__numeral__power__cancel__iff,axiom,
! [A2: int,X: num,N2: nat] :
( ( ord_less @ nat @ ( nat2 @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 ) )
= ( ord_less @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_3884_numeral__power__less__nat__cancel__iff,axiom,
! [X: num,N2: nat,A2: int] :
( ( ord_less @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 ) @ ( nat2 @ A2 ) )
= ( ord_less @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) @ A2 ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_3885_numeral__power__le__nat__cancel__iff,axiom,
! [X: num,N2: nat,A2: int] :
( ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 ) @ ( nat2 @ A2 ) )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) @ A2 ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_3886_nat__le__numeral__power__cancel__iff,axiom,
! [A2: int,X: num,N2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ A2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ X ) @ N2 ) )
= ( ord_less_eq @ int @ A2 @ ( power_power @ int @ ( numeral_numeral @ int @ X ) @ N2 ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_3887_take__bit__of__exp,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less @ nat @ N2 @ M ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% take_bit_of_exp
thf(fact_3888_take__bit__of__2,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= ( times_times @ A @ ( zero_neq_one_of_bool @ A @ ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_of_2
thf(fact_3889_take__bit__add,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( plus_plus @ A @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ B2 ) ) )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( plus_plus @ A @ A2 @ B2 ) ) ) ) ).
% take_bit_add
thf(fact_3890_same__sgn__sgn__add,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
= ( sgn_sgn @ A @ A2 ) )
=> ( ( sgn_sgn @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( sgn_sgn @ A @ A2 ) ) ) ) ).
% same_sgn_sgn_add
thf(fact_3891_sgn__mult,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A,B2: A] :
( ( sgn_sgn @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( sgn_sgn @ A @ B2 ) ) ) ) ).
% sgn_mult
thf(fact_3892_sgn__eq__0__iff,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% sgn_eq_0_iff
thf(fact_3893_sgn__0__0,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% sgn_0_0
thf(fact_3894_sgn__zero__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( sgn_sgn @ A @ X )
= ( zero_zero @ A ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% sgn_zero_iff
thf(fact_3895_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ M @ Q4 ) @ ( bit_se2584673776208193580ke_bit @ nat @ N2 @ Q4 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_3896_take__bit__nat__less__eq__self,axiom,
! [N2: nat,M: nat] : ( ord_less_eq @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N2 @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_3897_take__bit__tightened,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A,B2: A,M: nat] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ B2 ) )
=> ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ M @ B2 ) ) ) ) ) ).
% take_bit_tightened
thf(fact_3898_nat__take__bit__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( nat2 @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) )
= ( bit_se2584673776208193580ke_bit @ nat @ N2 @ ( nat2 @ K ) ) ) ) ).
% nat_take_bit_eq
thf(fact_3899_take__bit__nat__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( bit_se2584673776208193580ke_bit @ nat @ N2 @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ) ) ).
% take_bit_nat_eq
thf(fact_3900_sgn__not__eq__imp,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
!= ( sgn_sgn @ A @ A2 ) )
=> ( ( ( sgn_sgn @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( ( ( sgn_sgn @ A @ B2 )
!= ( zero_zero @ A ) )
=> ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( sgn_sgn @ A @ B2 ) ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_3901_sgn__minus__1,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ( ( sgn_sgn @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% sgn_minus_1
thf(fact_3902_nat__zero__as__int,axiom,
( ( zero_zero @ nat )
= ( nat2 @ ( zero_zero @ int ) ) ) ).
% nat_zero_as_int
thf(fact_3903_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N2: nat,K: int] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ M @ K ) @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_3904_nat__numeral__as__int,axiom,
( ( numeral_numeral @ nat )
= ( ^ [I3: num] : ( nat2 @ ( numeral_numeral @ int @ I3 ) ) ) ) ).
% nat_numeral_as_int
thf(fact_3905_signed__take__bit__eq__iff__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( ( bit_ri4674362597316999326ke_bit @ A @ N2 @ A2 )
= ( bit_ri4674362597316999326ke_bit @ A @ N2 @ B2 ) )
= ( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ A2 )
= ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ B2 ) ) ) ) ).
% signed_take_bit_eq_iff_take_bit_eq
thf(fact_3906_take__bit__int__less__eq__self__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ K )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% take_bit_int_less_eq_self_iff
thf(fact_3907_take__bit__nonnegative,axiom,
! [N2: nat,K: int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ).
% take_bit_nonnegative
thf(fact_3908_take__bit__int__greater__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less @ int @ K @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% take_bit_int_greater_self_iff
thf(fact_3909_not__take__bit__negative,axiom,
! [N2: nat,K: int] :
~ ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) ) ).
% not_take_bit_negative
thf(fact_3910_linordered__idom__class_Oabs__sgn,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( abs_abs @ A )
= ( ^ [K3: A] : ( times_times @ A @ K3 @ ( sgn_sgn @ A @ K3 ) ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_3911_abs__mult__sgn,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( abs_abs @ A @ A2 ) @ ( sgn_sgn @ A @ A2 ) )
= A2 ) ) ).
% abs_mult_sgn
thf(fact_3912_sgn__mult__abs,axiom,
! [A: $tType] :
( ( idom_abs_sgn @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ A2 ) @ ( abs_abs @ A @ A2 ) )
= A2 ) ) ).
% sgn_mult_abs
thf(fact_3913_mult__sgn__abs,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A] :
( ( times_times @ A @ ( sgn_sgn @ A @ X ) @ ( abs_abs @ A @ X ) )
= X ) ) ).
% mult_sgn_abs
thf(fact_3914_nat__mono,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ X @ Y )
=> ( ord_less_eq @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).
% nat_mono
thf(fact_3915_signed__take__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( bit_ri4674362597316999326ke_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) )
= ( if @ ( A > A ) @ ( ord_less_eq @ nat @ N2 @ M ) @ ( bit_se2584673776208193580ke_bit @ A @ N2 ) @ ( bit_ri4674362597316999326ke_bit @ A @ M ) @ A2 ) ) ) ).
% signed_take_bit_take_bit
thf(fact_3916_int__sgnE,axiom,
! [K: int] :
~ ! [N: nat,L4: int] :
( K
!= ( times_times @ int @ ( sgn_sgn @ int @ L4 ) @ ( semiring_1_of_nat @ int @ N ) ) ) ).
% int_sgnE
thf(fact_3917_same__sgn__abs__add,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [B2: A,A2: A] :
( ( ( sgn_sgn @ A @ B2 )
= ( sgn_sgn @ A @ A2 ) )
=> ( ( abs_abs @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( abs_abs @ A @ A2 ) @ ( abs_abs @ A @ B2 ) ) ) ) ) ).
% same_sgn_abs_add
thf(fact_3918_eq__nat__nat__iff,axiom,
! [Z2: int,Z7: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z7 )
=> ( ( ( nat2 @ Z2 )
= ( nat2 @ Z7 ) )
= ( Z2 = Z7 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_3919_all__nat,axiom,
( ( ^ [P2: nat > $o] :
! [X5: nat] : ( P2 @ X5 ) )
= ( ^ [P3: nat > $o] :
! [X3: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X3 )
=> ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).
% all_nat
thf(fact_3920_ex__nat,axiom,
( ( ^ [P2: nat > $o] :
? [X5: nat] : ( P2 @ X5 ) )
= ( ^ [P3: nat > $o] :
? [X3: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X3 )
& ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).
% ex_nat
thf(fact_3921_nat__one__as__int,axiom,
( ( one_one @ nat )
= ( nat2 @ ( one_one @ int ) ) ) ).
% nat_one_as_int
thf(fact_3922_take__bit__unset__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se2638667681897837118et_bit @ A @ M @ A2 ) )
= ( bit_se2638667681897837118et_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_3923_take__bit__set__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se5668285175392031749et_bit @ A @ M @ A2 ) )
= ( bit_se5668285175392031749et_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_3924_div__eq__sgn__abs,axiom,
! [K: int,L: int] :
( ( ( sgn_sgn @ int @ K )
= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ K @ L )
= ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) ) ) ).
% div_eq_sgn_abs
thf(fact_3925_take__bit__flip__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,M: nat,A2: A] :
( ( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ N2 @ M )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( bit_se8732182000553998342ip_bit @ A @ M @ A2 ) )
= ( bit_se8732182000553998342ip_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_3926_sgn__1__pos,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( one_one @ A ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% sgn_1_pos
thf(fact_3927_take__bit__signed__take__bit,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_ri4674362597316999326ke_bit @ A @ N2 @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ M @ A2 ) ) ) ) ).
% take_bit_signed_take_bit
thf(fact_3928_abs__sgn__eq,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( A2
= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( zero_zero @ A ) ) )
& ( ( A2
!= ( zero_zero @ A ) )
=> ( ( abs_abs @ A @ ( sgn_sgn @ A @ A2 ) )
= ( one_one @ A ) ) ) ) ) ).
% abs_sgn_eq
thf(fact_3929_nat__mono__iff,axiom,
! [Z2: int,W2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less @ nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ W2 @ Z2 ) ) ) ).
% nat_mono_iff
thf(fact_3930_of__nat__ceiling,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] : ( ord_less_eq @ A @ R2 @ ( semiring_1_of_nat @ A @ ( nat2 @ ( archimedean_ceiling @ A @ R2 ) ) ) ) ) ).
% of_nat_ceiling
thf(fact_3931_take__bit__decr__eq,axiom,
! [N2: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ K )
!= ( zero_zero @ int ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ ( minus_minus @ int @ K @ ( one_one @ int ) ) )
= ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ ( one_one @ int ) ) ) ) ).
% take_bit_decr_eq
thf(fact_3932_zless__nat__eq__int__zless,axiom,
! [M: nat,Z2: int] :
( ( ord_less @ nat @ M @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ ( semiring_1_of_nat @ int @ M ) @ Z2 ) ) ).
% zless_nat_eq_int_zless
thf(fact_3933_nat__le__iff,axiom,
! [X: int,N2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ X ) @ N2 )
= ( ord_less_eq @ int @ X @ ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% nat_le_iff
thf(fact_3934_int__eq__iff,axiom,
! [M: nat,Z2: int] :
( ( ( semiring_1_of_nat @ int @ M )
= Z2 )
= ( ( M
= ( nat2 @ Z2 ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) ) ) ).
% int_eq_iff
thf(fact_3935_nat__0__le,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z2 ) )
= Z2 ) ) ).
% nat_0_le
thf(fact_3936_nat__int__add,axiom,
! [A2: nat,B2: nat] :
( ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) )
= ( plus_plus @ nat @ A2 @ B2 ) ) ).
% nat_int_add
thf(fact_3937_sgn__mod,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ~ ( dvd_dvd @ int @ L @ K )
=> ( ( sgn_sgn @ int @ ( modulo_modulo @ int @ K @ L ) )
= ( sgn_sgn @ int @ L ) ) ) ) ).
% sgn_mod
thf(fact_3938_int__minus,axiom,
! [N2: nat,M: nat] :
( ( semiring_1_of_nat @ int @ ( minus_minus @ nat @ N2 @ M ) )
= ( semiring_1_of_nat @ int @ ( nat2 @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( semiring_1_of_nat @ int @ M ) ) ) ) ) ).
% int_minus
thf(fact_3939_nat__abs__mult__distrib,axiom,
! [W2: int,Z2: int] :
( ( nat2 @ ( abs_abs @ int @ ( times_times @ int @ W2 @ Z2 ) ) )
= ( times_times @ nat @ ( nat2 @ ( abs_abs @ int @ W2 ) ) @ ( nat2 @ ( abs_abs @ int @ Z2 ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_3940_nat__plus__as__int,axiom,
( ( plus_plus @ nat )
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_3941_nat__times__as__int,axiom,
( ( times_times @ nat )
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( times_times @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_3942_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_3943_nat__minus__as__int,axiom,
( ( minus_minus @ nat )
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_3944_nat__div__as__int,axiom,
( ( divide_divide @ nat )
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( divide_divide @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_3945_nat__mod__as__int,axiom,
( ( modulo_modulo @ nat )
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( modulo_modulo @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_3946_sgn__if,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( sgn_sgn @ A )
= ( ^ [X3: A] :
( if @ A
@ ( X3
= ( zero_zero @ A ) )
@ ( zero_zero @ A )
@ ( if @ A @ ( ord_less @ A @ ( zero_zero @ A ) @ X3 ) @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ) ).
% sgn_if
thf(fact_3947_sgn__1__neg,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A] :
( ( ( sgn_sgn @ A @ A2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% sgn_1_neg
thf(fact_3948_of__nat__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [R2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ R2 )
=> ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ ( nat2 @ ( archim6421214686448440834_floor @ A @ R2 ) ) ) @ R2 ) ) ) ).
% of_nat_floor
thf(fact_3949_zsgn__def,axiom,
( ( sgn_sgn @ int )
= ( ^ [I3: int] :
( if @ int
@ ( I3
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( if @ int @ ( ord_less @ int @ ( zero_zero @ int ) @ I3 ) @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ) ).
% zsgn_def
thf(fact_3950_nat__less__eq__zless,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( ( ord_less @ nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less @ int @ W2 @ Z2 ) ) ) ).
% nat_less_eq_zless
thf(fact_3951_nat__le__eq__zle,axiom,
! [W2: int,Z2: int] :
( ( ( ord_less @ int @ ( zero_zero @ int ) @ W2 )
| ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 ) )
=> ( ( ord_less_eq @ nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_eq @ int @ W2 @ Z2 ) ) ) ).
% nat_le_eq_zle
thf(fact_3952_norm__sgn,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( ( X
= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( sgn_sgn @ A @ X ) )
= ( zero_zero @ real ) ) )
& ( ( X
!= ( zero_zero @ A ) )
=> ( ( real_V7770717601297561774m_norm @ A @ ( sgn_sgn @ A @ X ) )
= ( one_one @ real ) ) ) ) ) ).
% norm_sgn
thf(fact_3953_nat__eq__iff,axiom,
! [W2: int,M: nat] :
( ( ( nat2 @ W2 )
= M )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( W2
= ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff
thf(fact_3954_nat__eq__iff2,axiom,
! [M: nat,W2: int] :
( ( M
= ( nat2 @ W2 ) )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( W2
= ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff2
thf(fact_3955_le__mult__nat__floor,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ nat @ ( times_times @ nat @ ( nat2 @ ( archim6421214686448440834_floor @ A @ A2 ) ) @ ( nat2 @ ( archim6421214686448440834_floor @ A @ B2 ) ) ) @ ( nat2 @ ( archim6421214686448440834_floor @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% le_mult_nat_floor
thf(fact_3956_split__nat,axiom,
! [P: nat > $o,I: int] :
( ( P @ ( nat2 @ I ) )
= ( ! [N3: nat] :
( ( I
= ( semiring_1_of_nat @ int @ N3 ) )
=> ( P @ N3 ) )
& ( ( ord_less @ int @ I @ ( zero_zero @ int ) )
=> ( P @ ( zero_zero @ nat ) ) ) ) ) ).
% split_nat
thf(fact_3957_le__nat__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ nat @ N2 @ ( nat2 @ K ) )
= ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N2 ) @ K ) ) ) ).
% le_nat_iff
thf(fact_3958_nat__add__distrib,axiom,
! [Z2: int,Z7: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z7 )
=> ( ( nat2 @ ( plus_plus @ int @ Z2 @ Z7 ) )
= ( plus_plus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z7 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_3959_div__sgn__abs__cancel,axiom,
! [V2: int,K: int,L: int] :
( ( V2
!= ( zero_zero @ int ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ V2 ) @ ( abs_abs @ int @ K ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ V2 ) @ ( abs_abs @ int @ L ) ) )
= ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) ) ) ).
% div_sgn_abs_cancel
thf(fact_3960_nat__mult__distrib,axiom,
! [Z2: int,Z7: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( nat2 @ ( times_times @ int @ Z2 @ Z7 ) )
= ( times_times @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z7 ) ) ) ) ).
% nat_mult_distrib
thf(fact_3961_Suc__as__int,axiom,
( suc
= ( ^ [A3: nat] : ( nat2 @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A3 ) @ ( one_one @ int ) ) ) ) ) ).
% Suc_as_int
thf(fact_3962_nat__diff__distrib_H,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( minus_minus @ int @ X @ Y ) )
= ( minus_minus @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_3963_nat__diff__distrib,axiom,
! [Z7: int,Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z7 )
=> ( ( ord_less_eq @ int @ Z7 @ Z2 )
=> ( ( nat2 @ ( minus_minus @ int @ Z2 @ Z7 ) )
= ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z7 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_3964_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : ( ord_less_eq @ nat @ ( nat2 @ ( abs_abs @ int @ ( plus_plus @ int @ K @ L ) ) ) @ ( plus_plus @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_3965_nat__div__distrib_H,axiom,
! [Y: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( divide_divide @ int @ X @ Y ) )
= ( divide_divide @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).
% nat_div_distrib'
thf(fact_3966_nat__div__distrib,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( nat2 @ ( divide_divide @ int @ X @ Y ) )
= ( divide_divide @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).
% nat_div_distrib
thf(fact_3967_div__dvd__sgn__abs,axiom,
! [L: int,K: int] :
( ( dvd_dvd @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( times_times @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( sgn_sgn @ int @ L ) ) @ ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) ) ) ) ).
% div_dvd_sgn_abs
thf(fact_3968_nat__power__eq,axiom,
! [Z2: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( nat2 @ ( power_power @ int @ Z2 @ N2 ) )
= ( power_power @ nat @ ( nat2 @ Z2 ) @ N2 ) ) ) ).
% nat_power_eq
thf(fact_3969_nat__floor__neg,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= ( zero_zero @ nat ) ) ) ).
% nat_floor_neg
thf(fact_3970_nat__mod__distrib,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( nat2 @ ( modulo_modulo @ int @ X @ Y ) )
= ( modulo_modulo @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_mod_distrib
thf(fact_3971_div__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ) ).
% div_abs_eq_div_nat
thf(fact_3972_floor__eq3,axiom,
! [N2: nat,X: real] :
( ( ord_less @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X )
=> ( ( ord_less @ real @ X @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= N2 ) ) ) ).
% floor_eq3
thf(fact_3973_le__nat__floor,axiom,
! [X: nat,A2: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ X ) @ A2 )
=> ( ord_less_eq @ nat @ X @ ( nat2 @ ( archim6421214686448440834_floor @ real @ A2 ) ) ) ) ).
% le_nat_floor
thf(fact_3974_mod__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( modulo_modulo @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) )
= ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ ( nat2 @ ( abs_abs @ int @ L ) ) ) ) ) ).
% mod_abs_eq_div_nat
thf(fact_3975_divide__int__def,axiom,
( ( divide_divide @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( if @ int
@ ( ( sgn_sgn @ int @ K3 )
= ( sgn_sgn @ int @ L2 ) )
@ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) )
@ ( uminus_uminus @ int
@ ( semiring_1_of_nat @ int
@ ( plus_plus @ nat @ ( divide_divide @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ int @ L2 @ K3 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_3976_take__bit__Suc__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% take_bit_Suc_bit0
thf(fact_3977_modulo__int__def,axiom,
( ( modulo_modulo @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( if @ int
@ ( ( sgn_sgn @ int @ K3 )
= ( sgn_sgn @ int @ L2 ) )
@ ( times_times @ int @ ( sgn_sgn @ int @ L2 ) @ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) ) )
@ ( times_times @ int @ ( sgn_sgn @ int @ L2 )
@ ( minus_minus @ int
@ ( times_times @ int @ ( abs_abs @ int @ L2 )
@ ( zero_neq_one_of_bool @ int
@ ~ ( dvd_dvd @ int @ L2 @ K3 ) ) )
@ ( semiring_1_of_nat @ int @ ( modulo_modulo @ nat @ ( nat2 @ ( abs_abs @ int @ K3 ) ) @ ( nat2 @ ( abs_abs @ int @ L2 ) ) ) ) ) ) ) ) ) ) ).
% modulo_int_def
thf(fact_3978_take__bit__nat__eq__self,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( bit_se2584673776208193580ke_bit @ nat @ N2 @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_3979_take__bit__nat__less__exp,axiom,
! [N2: nat,M: nat] : ( ord_less @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N2 @ M ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% take_bit_nat_less_exp
thf(fact_3980_take__bit__nat__eq__self__iff,axiom,
! [N2: nat,M: nat] :
( ( ( bit_se2584673776208193580ke_bit @ nat @ N2 @ M )
= M )
= ( ord_less @ nat @ M @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_3981_nat__2,axiom,
( ( nat2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% nat_2
thf(fact_3982_take__bit__int__less__exp,axiom,
! [N2: nat,K: int] : ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% take_bit_int_less_exp
thf(fact_3983_Suc__nat__eq__nat__zadd1,axiom,
! [Z2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( ( suc @ ( nat2 @ Z2 ) )
= ( nat2 @ ( plus_plus @ int @ ( one_one @ int ) @ Z2 ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_3984_nat__less__iff,axiom,
! [W2: int,M: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W2 )
=> ( ( ord_less @ nat @ ( nat2 @ W2 ) @ M )
= ( ord_less @ int @ W2 @ ( semiring_1_of_nat @ int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_3985_nat__mult__distrib__neg,axiom,
! [Z2: int,Z7: int] :
( ( ord_less_eq @ int @ Z2 @ ( zero_zero @ int ) )
=> ( ( nat2 @ ( times_times @ int @ Z2 @ Z7 ) )
= ( times_times @ nat @ ( nat2 @ ( uminus_uminus @ int @ Z2 ) ) @ ( nat2 @ ( uminus_uminus @ int @ Z7 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_3986_nat__abs__int__diff,axiom,
! [A2: nat,B2: nat] :
( ( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( nat2 @ ( abs_abs @ int @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) )
= ( minus_minus @ nat @ B2 @ A2 ) ) )
& ( ~ ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( nat2 @ ( abs_abs @ int @ ( minus_minus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) )
= ( minus_minus @ nat @ A2 @ B2 ) ) ) ) ).
% nat_abs_int_diff
thf(fact_3987_floor__eq4,axiom,
! [N2: nat,X: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X )
=> ( ( ord_less @ real @ X @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) )
=> ( ( nat2 @ ( archim6421214686448440834_floor @ real @ X ) )
= N2 ) ) ) ).
% floor_eq4
thf(fact_3988_num_Osize__gen_I1_J,axiom,
( ( size_num @ one2 )
= ( zero_zero @ nat ) ) ).
% num.size_gen(1)
thf(fact_3989_diff__nat__eq__if,axiom,
! [Z7: int,Z2: int] :
( ( ( ord_less @ int @ Z7 @ ( zero_zero @ int ) )
=> ( ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z7 ) )
= ( nat2 @ Z2 ) ) )
& ( ~ ( ord_less @ int @ Z7 @ ( zero_zero @ int ) )
=> ( ( minus_minus @ nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z7 ) )
= ( if @ nat @ ( ord_less @ int @ ( minus_minus @ int @ Z2 @ Z7 ) @ ( zero_zero @ int ) ) @ ( zero_zero @ nat ) @ ( nat2 @ ( minus_minus @ int @ Z2 @ Z7 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_3990_take__bit__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 )
= ( zero_zero @ A ) )
= ( dvd_dvd @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ A2 ) ) ) ).
% take_bit_eq_0_iff
thf(fact_3991_take__bit__nat__less__self__iff,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( bit_se2584673776208193580ke_bit @ nat @ N2 @ M ) @ M )
= ( ord_less_eq @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_3992_take__bit__Suc__minus__bit0,axiom,
! [N2: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ).
% take_bit_Suc_minus_bit0
thf(fact_3993_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ K @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) )
= ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_3994_take__bit__int__less__self__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ K )
= ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_3995_of__int__of__nat,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( ^ [K3: int] : ( if @ A @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ A @ ( semiring_1_of_nat @ A @ ( nat2 @ ( uminus_uminus @ int @ K3 ) ) ) ) @ ( semiring_1_of_nat @ A @ ( nat2 @ K3 ) ) ) ) ) ) ).
% of_int_of_nat
thf(fact_3996_nat__dvd__iff,axiom,
! [Z2: int,M: nat] :
( ( dvd_dvd @ nat @ ( nat2 @ Z2 ) @ M )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( dvd_dvd @ int @ Z2 @ ( semiring_1_of_nat @ int @ M ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z2 )
=> ( M
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_dvd_iff
thf(fact_3997_eucl__rel__int__remainderI,axiom,
! [R2: int,L: int,K: int,Q4: int] :
( ( ( sgn_sgn @ int @ R2 )
= ( sgn_sgn @ int @ L ) )
=> ( ( ord_less @ int @ ( abs_abs @ int @ R2 ) @ ( abs_abs @ int @ L ) )
=> ( ( K
= ( plus_plus @ int @ ( times_times @ int @ Q4 @ L ) @ R2 ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair @ int @ int @ Q4 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_3998_take__bit__int__eq__self__iff,axiom,
! [N2: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ K )
= K )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_3999_take__bit__int__eq__self,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_4000_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A1: int,A22: int,A32: product_prod @ int @ int] :
( ? [K3: int] :
( ( A1 = K3 )
& ( A22
= ( zero_zero @ int ) )
& ( A32
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ K3 ) ) )
| ? [L2: int,K3: int,Q6: int] :
( ( A1 = K3 )
& ( A22 = L2 )
& ( A32
= ( product_Pair @ int @ int @ Q6 @ ( zero_zero @ int ) ) )
& ( L2
!= ( zero_zero @ int ) )
& ( K3
= ( times_times @ int @ Q6 @ L2 ) ) )
| ? [R5: int,L2: int,K3: int,Q6: int] :
( ( A1 = K3 )
& ( A22 = L2 )
& ( A32
= ( product_Pair @ int @ int @ Q6 @ R5 ) )
& ( ( sgn_sgn @ int @ R5 )
= ( sgn_sgn @ int @ L2 ) )
& ( ord_less @ int @ ( abs_abs @ int @ R5 ) @ ( abs_abs @ int @ L2 ) )
& ( K3
= ( plus_plus @ int @ ( times_times @ int @ Q6 @ L2 ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_4001_eucl__rel__int_Ocases,axiom,
! [A12: int,A23: int,A33: product_prod @ int @ int] :
( ( eucl_rel_int @ A12 @ A23 @ A33 )
=> ( ( ( A23
= ( zero_zero @ int ) )
=> ( A33
!= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ A12 ) ) )
=> ( ! [Q2: int] :
( ( A33
= ( product_Pair @ int @ int @ Q2 @ ( zero_zero @ int ) ) )
=> ( ( A23
!= ( zero_zero @ int ) )
=> ( A12
!= ( times_times @ int @ Q2 @ A23 ) ) ) )
=> ~ ! [R3: int,Q2: int] :
( ( A33
= ( product_Pair @ int @ int @ Q2 @ R3 ) )
=> ( ( ( sgn_sgn @ int @ R3 )
= ( sgn_sgn @ int @ A23 ) )
=> ( ( ord_less @ int @ ( abs_abs @ int @ R3 ) @ ( abs_abs @ int @ A23 ) )
=> ( A12
!= ( plus_plus @ int @ ( times_times @ int @ Q2 @ A23 ) @ R3 ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_4002_div__noneq__sgn__abs,axiom,
! [L: int,K: int] :
( ( L
!= ( zero_zero @ int ) )
=> ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ K @ L )
= ( minus_minus @ int @ ( uminus_uminus @ int @ ( divide_divide @ int @ ( abs_abs @ int @ K ) @ ( abs_abs @ int @ L ) ) )
@ ( zero_neq_one_of_bool @ int
@ ~ ( dvd_dvd @ int @ L @ K ) ) ) ) ) ) ).
% div_noneq_sgn_abs
thf(fact_4003_take__bit__Suc__minus__1__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( suc @ N2 ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_Suc_minus_1_eq
thf(fact_4004_take__bit__Suc__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_Suc_bit1
thf(fact_4005_take__bit__numeral__minus__1__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ K ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ K ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_numeral_minus_1_eq
thf(fact_4006_take__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N2 ) @ A2 )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% take_bit_Suc
thf(fact_4007_take__bit__int__less__eq,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ K )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ord_less_eq @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) @ ( minus_minus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_4008_take__bit__int__greater__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less @ int @ K @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( plus_plus @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_4009_even__nat__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( nat2 @ K ) )
= ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K ) ) ) ).
% even_nat_iff
thf(fact_4010_signed__take__bit__eq__take__bit__shift,axiom,
( ( bit_ri4674362597316999326ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N3 ) @ ( plus_plus @ int @ K3 @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N3 ) ) ) ) ).
% signed_take_bit_eq_take_bit_shift
thf(fact_4011_stable__imp__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N2: nat] :
( ( ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) )
= A2 )
=> ( ( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 )
= ( zero_zero @ A ) ) )
& ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ A ) ) ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_4012_take__bit__minus__small__eq,axiom,
! [K: int,N2: nat] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ int @ K @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ ( uminus_uminus @ int @ K ) )
= ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_4013_powr__real__of__int,axiom,
! [X: real,N2: int] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N2 ) )
= ( power_power @ real @ X @ ( nat2 @ N2 ) ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N2 ) )
= ( inverse_inverse @ real @ ( power_power @ real @ X @ ( nat2 @ ( uminus_uminus @ int @ N2 ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_4014_num_Osize__gen_I2_J,axiom,
! [X22: num] :
( ( size_num @ ( bit0 @ X22 ) )
= ( plus_plus @ nat @ ( size_num @ X22 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% num.size_gen(2)
thf(fact_4015_divide__int__unfold,axiom,
! [L: int,K: int,N2: nat,M: nat] :
( ( ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N2
= ( zero_zero @ nat ) ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( zero_zero @ int ) ) )
& ( ~ ( ( ( sgn_sgn @ int @ L )
= ( zero_zero @ int ) )
| ( ( sgn_sgn @ int @ K )
= ( zero_zero @ int ) )
| ( N2
= ( zero_zero @ nat ) ) )
=> ( ( ( ( sgn_sgn @ int @ K )
= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ M @ N2 ) ) ) )
& ( ( ( sgn_sgn @ int @ K )
!= ( sgn_sgn @ int @ L ) )
=> ( ( divide_divide @ int @ ( times_times @ int @ ( sgn_sgn @ int @ K ) @ ( semiring_1_of_nat @ int @ M ) ) @ ( times_times @ int @ ( sgn_sgn @ int @ L ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( uminus_uminus @ int
@ ( semiring_1_of_nat @ int
@ ( plus_plus @ nat @ ( divide_divide @ nat @ M @ N2 )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ N2 @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_4016_take__bit__Suc__minus__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( plus_plus @ int @ ( times_times @ int @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( one_one @ int ) ) ) ).
% take_bit_Suc_minus_bit1
thf(fact_4017_and__int__unfold,axiom,
( ( bit_se5824344872417868541ns_and @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( K3
= ( zero_zero @ int ) )
| ( L2
= ( zero_zero @ int ) ) )
@ ( zero_zero @ int )
@ ( if @ int
@ ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ L2
@ ( if @ int
@ ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ K3
@ ( plus_plus @ int @ ( times_times @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% and_int_unfold
thf(fact_4018_arctan__inverse,axiom,
! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( arctan @ ( divide_divide @ real @ ( one_one @ real ) @ X ) )
= ( minus_minus @ real @ ( divide_divide @ real @ ( times_times @ real @ ( sgn_sgn @ real @ X ) @ pi ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( arctan @ X ) ) ) ) ).
% arctan_inverse
thf(fact_4019_take__bit__numeral__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [L: num,K: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ L ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( plus_plus @ A @ ( times_times @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( pred_numeral @ L ) @ ( numeral_numeral @ A @ K ) ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( one_one @ A ) ) ) ) ).
% take_bit_numeral_bit1
thf(fact_4020_bit_Oconj__zero__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% bit.conj_zero_right
thf(fact_4021_bit_Oconj__zero__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( zero_zero @ A ) @ X )
= ( zero_zero @ A ) ) ) ).
% bit.conj_zero_left
thf(fact_4022_zero__and__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% zero_and_eq
thf(fact_4023_and__zero__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% and_zero_eq
thf(fact_4024_and_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ A2 )
= A2 ) ) ).
% and.left_neutral
thf(fact_4025_and_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= A2 ) ) ).
% and.right_neutral
thf(fact_4026_bit_Oconj__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= X ) ) ).
% bit.conj_one_right
thf(fact_4027_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one2 )
= ( zero_zero @ nat ) ) ).
% pred_numeral_simps(1)
thf(fact_4028_eq__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ( numeral_numeral @ nat @ K )
= ( suc @ N2 ) )
= ( ( pred_numeral @ K )
= N2 ) ) ).
% eq_numeral_Suc
thf(fact_4029_Suc__eq__numeral,axiom,
! [N2: nat,K: num] :
( ( ( suc @ N2 )
= ( numeral_numeral @ nat @ K ) )
= ( N2
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_4030_and__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
| ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% and_nonnegative_int_iff
thf(fact_4031_and__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
& ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% and_negative_int_iff
thf(fact_4032_zero__le__sgn__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( sgn_sgn @ real @ X ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ X ) ) ).
% zero_le_sgn_iff
thf(fact_4033_sgn__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( sgn_sgn @ real @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ).
% sgn_le_0_iff
thf(fact_4034_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral @ nat @ K ) ) ).
% pred_numeral_inc
thf(fact_4035_and__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( one_one @ A ) ) ) ).
% and_numerals(2)
thf(fact_4036_and__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% and_numerals(8)
thf(fact_4037_less__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_less @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( ord_less @ nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_4038_less__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_less @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( ord_less @ nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% less_numeral_Suc
thf(fact_4039_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral @ nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_4040_le__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( ord_less_eq @ nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_4041_le__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( ord_less_eq @ nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% le_numeral_Suc
thf(fact_4042_diff__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( minus_minus @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( minus_minus @ nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_4043_diff__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( minus_minus @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( minus_minus @ nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% diff_numeral_Suc
thf(fact_4044_max__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_max @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( suc @ ( ord_max @ nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_4045_max__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_max @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( suc @ ( ord_max @ nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).
% max_numeral_Suc
thf(fact_4046_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral @ nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_4047_and__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% and_numerals(5)
thf(fact_4048_and__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( zero_zero @ A ) ) ) ).
% and_numerals(1)
thf(fact_4049_add__neg__numeral__special_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ N2 ) ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_4050_add__neg__numeral__special_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ M ) ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_4051_diff__numeral__special_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ N2 ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( inc @ N2 ) ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_4052_diff__numeral__special_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( numeral_numeral @ A @ ( inc @ M ) ) ) ) ).
% diff_numeral_special(6)
thf(fact_4053_and__minus__numerals_I5_J,axiom,
! [N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N2 ) ) ) @ ( one_one @ int ) )
= ( zero_zero @ int ) ) ).
% and_minus_numerals(5)
thf(fact_4054_and__minus__numerals_I1_J,axiom,
! [N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N2 ) ) ) )
= ( zero_zero @ int ) ) ).
% and_minus_numerals(1)
thf(fact_4055_and__numerals_I7_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% and_numerals(7)
thf(fact_4056_num__induct,axiom,
! [P: num > $o,X: num] :
( ( P @ one2 )
=> ( ! [X4: num] :
( ( P @ X4 )
=> ( P @ ( inc @ X4 ) ) )
=> ( P @ X ) ) ) ).
% num_induct
thf(fact_4057_add__inc,axiom,
! [X: num,Y: num] :
( ( plus_plus @ num @ X @ ( inc @ Y ) )
= ( inc @ ( plus_plus @ num @ X @ Y ) ) ) ).
% add_inc
thf(fact_4058_and__eq__minus__1__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ B2 )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( ( A2
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
& ( B2
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ) ) ).
% and_eq_minus_1_iff
thf(fact_4059_AND__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) ) ) ).
% AND_lower
thf(fact_4060_AND__upper1,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ X ) ) ).
% AND_upper1
thf(fact_4061_AND__upper2,axiom,
! [Y: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Y ) ) ).
% AND_upper2
thf(fact_4062_AND__upper1_H,axiom,
! [Y: int,Z2: int,Ya: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less_eq @ int @ Y @ Z2 )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ Y @ Ya ) @ Z2 ) ) ) ).
% AND_upper1'
thf(fact_4063_AND__upper2_H,axiom,
! [Y: int,Z2: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less_eq @ int @ Y @ Z2 )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Z2 ) ) ) ).
% AND_upper2'
thf(fact_4064_numeral__eq__Suc,axiom,
( ( numeral_numeral @ nat )
= ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_4065_inc_Osimps_I1_J,axiom,
( ( inc @ one2 )
= ( bit0 @ one2 ) ) ).
% inc.simps(1)
thf(fact_4066_inc_Osimps_I3_J,axiom,
! [X: num] :
( ( inc @ ( bit1 @ X ) )
= ( bit0 @ ( inc @ X ) ) ) ).
% inc.simps(3)
thf(fact_4067_inc_Osimps_I2_J,axiom,
! [X: num] :
( ( inc @ ( bit0 @ X ) )
= ( bit1 @ X ) ) ).
% inc.simps(2)
thf(fact_4068_add__One,axiom,
! [X: num] :
( ( plus_plus @ num @ X @ one2 )
= ( inc @ X ) ) ).
% add_One
thf(fact_4069_and__less__eq,axiom,
! [L: int,K: int] :
( ( ord_less @ int @ L @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( bit_se5824344872417868541ns_and @ int @ K @ L ) @ K ) ) ).
% and_less_eq
thf(fact_4070_AND__upper1_H_H,axiom,
! [Y: int,Z2: int,Ya: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less @ int @ Y @ Z2 )
=> ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ Y @ Ya ) @ Z2 ) ) ) ).
% AND_upper1''
thf(fact_4071_AND__upper2_H_H,axiom,
! [Y: int,Z2: int,X: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less @ int @ Y @ Z2 )
=> ( ord_less @ int @ ( bit_se5824344872417868541ns_and @ int @ X @ Y ) @ Z2 ) ) ) ).
% AND_upper2''
thf(fact_4072_inc__BitM__eq,axiom,
! [N2: num] :
( ( inc @ ( bitM @ N2 ) )
= ( bit0 @ N2 ) ) ).
% inc_BitM_eq
thf(fact_4073_BitM__inc__eq,axiom,
! [N2: num] :
( ( bitM @ ( inc @ N2 ) )
= ( bit1 @ N2 ) ) ).
% BitM_inc_eq
thf(fact_4074_mult__inc,axiom,
! [X: num,Y: num] :
( ( times_times @ num @ X @ ( inc @ Y ) )
= ( plus_plus @ num @ ( times_times @ num @ X @ Y ) @ X ) ) ).
% mult_inc
thf(fact_4075_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K3: num] : ( minus_minus @ nat @ ( numeral_numeral @ nat @ K3 ) @ ( one_one @ nat ) ) ) ) ).
% pred_numeral_def
thf(fact_4076_bit_Ocomplement__unique,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,X: A,Y: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ X )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ Y )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ A2 @ Y )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( X = Y ) ) ) ) ) ) ).
% bit.complement_unique
thf(fact_4077_sgn__real__def,axiom,
( ( sgn_sgn @ real )
= ( ^ [A3: real] :
( if @ real
@ ( A3
= ( zero_zero @ real ) )
@ ( zero_zero @ real )
@ ( if @ real @ ( ord_less @ real @ ( zero_zero @ real ) @ A3 ) @ ( one_one @ real ) @ ( uminus_uminus @ real @ ( one_one @ real ) ) ) ) ) ) ).
% sgn_real_def
thf(fact_4078_numeral__inc,axiom,
! [A: $tType] :
( ( numeral @ A )
=> ! [X: num] :
( ( numeral_numeral @ A @ ( inc @ X ) )
= ( plus_plus @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) ) ) ) ).
% numeral_inc
thf(fact_4079_and__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( one_one @ A ) )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% and_one_eq
thf(fact_4080_one__and__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( one_one @ A ) @ A2 )
= ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% one_and_eq
thf(fact_4081_sgn__power__injE,axiom,
! [A2: real,N2: nat,X: real,B2: real] :
( ( ( times_times @ real @ ( sgn_sgn @ real @ A2 ) @ ( power_power @ real @ ( abs_abs @ real @ A2 ) @ N2 ) )
= X )
=> ( ( X
= ( times_times @ real @ ( sgn_sgn @ real @ B2 ) @ ( power_power @ real @ ( abs_abs @ real @ B2 ) @ N2 ) ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( A2 = B2 ) ) ) ) ).
% sgn_power_injE
thf(fact_4082_and__int_Osimps,axiom,
( ( bit_se5824344872417868541ns_and @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( ( member @ int @ K3 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
@ ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) ) )
@ ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K3 )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_4083_and__int_Oelims,axiom,
! [X: int,Xa2: int,Y: int] :
( ( ( bit_se5824344872417868541ns_and @ int @ X @ Xa2 )
= Y )
=> ( ( ( ( member @ int @ X @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member @ int @ X @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ X @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ Xa2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_4084_signed__take__bit__eq__take__bit__minus,axiom,
( ( bit_ri4674362597316999326ke_bit @ int )
= ( ^ [N3: nat,K3: int] : ( minus_minus @ int @ ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N3 ) @ K3 ) @ ( times_times @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( suc @ N3 ) ) @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K3 @ N3 ) ) ) ) ) ) ).
% signed_take_bit_eq_take_bit_minus
thf(fact_4085_mask__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: num] :
( ( bit_se2239418461657761734s_mask @ A @ ( numeral_numeral @ nat @ N2 ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ ( pred_numeral @ N2 ) ) ) ) ) ) ).
% mask_numeral
thf(fact_4086_mask__nat__positive__iff,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( bit_se2239418461657761734s_mask @ nat @ N2 ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ).
% mask_nat_positive_iff
thf(fact_4087_bit__0__eq,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( zero_zero @ A ) )
= ( bot_bot @ ( nat > $o ) ) ) ) ).
% bit_0_eq
thf(fact_4088_atLeastAtMost__singleton__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( insert2 @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( A2 = B2 )
& ( B2 = C2 ) ) ) ) ).
% atLeastAtMost_singleton_iff
thf(fact_4089_atLeastAtMost__singleton,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
( ( set_or1337092689740270186AtMost @ A @ A2 @ A2 )
= ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastAtMost_singleton
thf(fact_4090_mask__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( ( bit_se2239418461657761734s_mask @ A @ N2 )
= ( zero_zero @ A ) )
= ( N2
= ( zero_zero @ nat ) ) ) ) ).
% mask_eq_0_iff
thf(fact_4091_mask__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% mask_0
thf(fact_4092_and__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% and_nat_numerals(3)
thf(fact_4093_and__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( zero_zero @ nat ) ) ).
% and_nat_numerals(1)
thf(fact_4094_sum_Oinsert,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ~ ( member @ B @ X @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert2 @ B @ X @ A4 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) ) ) ) ) ) ).
% sum.insert
thf(fact_4095_bit__numeral__Bit0__Suc__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit0 @ M ) ) @ ( suc @ N2 ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ M ) @ N2 ) ) ) ).
% bit_numeral_Bit0_Suc_iff
thf(fact_4096_bit__numeral__Bit1__Suc__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit1 @ M ) ) @ ( suc @ N2 ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ M ) @ N2 ) ) ) ).
% bit_numeral_Bit1_Suc_iff
thf(fact_4097_single__Diff__lessThan,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A] :
( ( minus_minus @ ( set @ A ) @ ( insert2 @ A @ K @ ( bot_bot @ ( set @ A ) ) ) @ ( set_ord_lessThan @ A @ K ) )
= ( insert2 @ A @ K @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% single_Diff_lessThan
thf(fact_4098_mask__Suc__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ A ) ) ) ).
% mask_Suc_0
thf(fact_4099_take__bit__minus__one__eq__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_se2584673776208193580ke_bit @ A @ N2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_se2239418461657761734s_mask @ A @ N2 ) ) ) ).
% take_bit_minus_one_eq_mask
thf(fact_4100_signed__take__bit__nonnegative__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) ) ).
% signed_take_bit_nonnegative_iff
thf(fact_4101_signed__take__bit__negative__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_ri4674362597316999326ke_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) ).
% signed_take_bit_negative_iff
thf(fact_4102_and__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( one_one @ nat ) ) ).
% and_nat_numerals(4)
thf(fact_4103_and__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( one_one @ nat ) ) ).
% and_nat_numerals(2)
thf(fact_4104_set__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N2 @ X ) )
= ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_replicate
thf(fact_4105_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W2: num,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ W2 ) ) ) @ ( suc @ N2 ) )
= ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ W2 ) ) @ N2 ) ) ).
% bit_minus_numeral_Bit0_Suc_iff
thf(fact_4106_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W2: num,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ W2 ) ) ) @ ( suc @ N2 ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ ( numeral_numeral @ int @ W2 ) @ N2 ) ) ) ).
% bit_minus_numeral_Bit1_Suc_iff
thf(fact_4107_bit__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( zero_zero @ nat ) )
= ( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% bit_0
thf(fact_4108_Suc__0__and__eq,axiom,
! [N2: nat] :
( ( bit_se5824344872417868541ns_and @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Suc_0_and_eq
thf(fact_4109_and__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se5824344872417868541ns_and @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( modulo_modulo @ nat @ N2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% and_Suc_0_eq
thf(fact_4110_bit__mod__2__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( modulo_modulo @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N2 )
= ( ( N2
= ( zero_zero @ nat ) )
& ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% bit_mod_2_iff
thf(fact_4111_less__eq__mask,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ N2 @ ( bit_se2239418461657761734s_mask @ nat @ N2 ) ) ).
% less_eq_mask
thf(fact_4112_bit__disjunctive__add__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ! [N: nat] :
( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
| ~ ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ A2 @ B2 ) @ N2 )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
| ( bit_se5641148757651400278ts_bit @ A @ B2 @ N2 ) ) ) ) ) ).
% bit_disjunctive_add_iff
thf(fact_4113_not__bit__1__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
~ ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ ( suc @ N2 ) ) ) ).
% not_bit_1_Suc
thf(fact_4114_bit__1__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ N2 )
= ( N2
= ( zero_zero @ nat ) ) ) ) ).
% bit_1_iff
thf(fact_4115_bit__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: num] :
~ ( bit_se5641148757651400278ts_bit @ A @ ( one_one @ A ) @ ( numeral_numeral @ nat @ N2 ) ) ) ).
% bit_numeral_simps(1)
thf(fact_4116_disjunctive__add,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A] :
( ! [N: nat] :
( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N )
| ~ ( bit_se5641148757651400278ts_bit @ A @ B2 @ N ) )
=> ( ( plus_plus @ A @ A2 @ B2 )
= ( bit_se1065995026697491101ons_or @ A @ A2 @ B2 ) ) ) ) ).
% disjunctive_add
thf(fact_4117_bit__take__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2584673776208193580ke_bit @ A @ M @ A2 ) @ N2 )
= ( ( ord_less @ nat @ N2 @ M )
& ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 ) ) ) ) ).
% bit_take_bit_iff
thf(fact_4118_bit__of__bool__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [B2: $o,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( zero_neq_one_of_bool @ A @ B2 ) @ N2 )
= ( B2
& ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% bit_of_bool_iff
thf(fact_4119_atLeastAtMost__singleton_H,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% atLeastAtMost_singleton'
thf(fact_4120_mask__nonnegative__int,axiom,
! [N2: nat] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se2239418461657761734s_mask @ int @ N2 ) ) ).
% mask_nonnegative_int
thf(fact_4121_not__mask__negative__int,axiom,
! [N2: nat] :
~ ( ord_less @ int @ ( bit_se2239418461657761734s_mask @ int @ N2 ) @ ( zero_zero @ int ) ) ).
% not_mask_negative_int
thf(fact_4122_finite__ranking__induct,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [S3: set @ B,P: ( set @ B ) > $o,F2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( P @ ( bot_bot @ ( set @ B ) ) )
=> ( ! [X4: B,S5: set @ B] :
( ( finite_finite @ B @ S5 )
=> ( ! [Y3: B] :
( ( member @ B @ Y3 @ S5 )
=> ( ord_less_eq @ A @ ( F2 @ Y3 ) @ ( F2 @ X4 ) ) )
=> ( ( P @ S5 )
=> ( P @ ( insert2 @ B @ X4 @ S5 ) ) ) ) )
=> ( P @ S3 ) ) ) ) ) ).
% finite_ranking_induct
thf(fact_4123_finite__linorder__min__induct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A4 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [B5: A,A7: set @ A] :
( ( finite_finite @ A @ A7 )
=> ( ! [X2: A] :
( ( member @ A @ X2 @ A7 )
=> ( ord_less @ A @ B5 @ X2 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert2 @ A @ B5 @ A7 ) ) ) ) )
=> ( P @ A4 ) ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_4124_finite__linorder__max__induct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ A4 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [B5: A,A7: set @ A] :
( ( finite_finite @ A @ A7 )
=> ( ! [X2: A] :
( ( member @ A @ X2 @ A7 )
=> ( ord_less @ A @ X2 @ B5 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert2 @ A @ B5 @ A7 ) ) ) ) )
=> ( P @ A4 ) ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_4125_sum_Oinsert__if,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( ( member @ B @ X @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert2 @ B @ X @ A4 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) ) )
& ( ~ ( member @ B @ X @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert2 @ B @ X @ A4 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) ) ) ) ) ) ) ).
% sum.insert_if
thf(fact_4126_set__update__subset__insert,axiom,
! [A: $tType,Xs2: list @ A,I: nat,X: A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( list_update @ A @ Xs2 @ I @ X ) ) @ ( insert2 @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_update_subset_insert
thf(fact_4127_less__mask,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
=> ( ord_less @ nat @ N2 @ ( bit_se2239418461657761734s_mask @ nat @ N2 ) ) ) ).
% less_mask
thf(fact_4128_bit__imp__take__bit__positive,axiom,
! [N2: nat,M: nat,K: int] :
( ( ord_less @ nat @ N2 @ M )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ N2 )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( bit_se2584673776208193580ke_bit @ int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_4129_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L: int,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_concat_bit @ M @ K @ L ) @ N2 )
= ( ( ( ord_less @ nat @ N2 @ M )
& ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) )
| ( ( ord_less_eq @ nat @ M @ N2 )
& ( bit_se5641148757651400278ts_bit @ int @ L @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ).
% bit_concat_bit_iff
thf(fact_4130_finite__induct__select,axiom,
! [A: $tType,S3: set @ A,P: ( set @ A ) > $o] :
( ( finite_finite @ A @ S3 )
=> ( ( P @ ( bot_bot @ ( set @ A ) ) )
=> ( ! [T7: set @ A] :
( ( ord_less @ ( set @ A ) @ T7 @ S3 )
=> ( ( P @ T7 )
=> ? [X2: A] :
( ( member @ A @ X2 @ ( minus_minus @ ( set @ A ) @ S3 @ T7 ) )
& ( P @ ( insert2 @ A @ X2 @ T7 ) ) ) ) )
=> ( P @ S3 ) ) ) ) ).
% finite_induct_select
thf(fact_4131_psubset__insert__iff,axiom,
! [A: $tType,A4: set @ A,X: A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ B4 ) )
= ( ( ( member @ A @ X @ B4 )
=> ( ord_less @ ( set @ A ) @ A4 @ B4 ) )
& ( ~ ( member @ A @ X @ B4 )
=> ( ( ( member @ A @ X @ A4 )
=> ( ord_less @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ B4 ) )
& ( ~ ( member @ A @ X @ A4 )
=> ( ord_less_eq @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_4132_set__replicate__Suc,axiom,
! [A: $tType,N2: nat,X: A] :
( ( set2 @ A @ ( replicate @ A @ ( suc @ N2 ) @ X ) )
= ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ).
% set_replicate_Suc
thf(fact_4133_set__replicate__conv__if,axiom,
! [A: $tType,N2: nat,X: A] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N2 @ X ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( set2 @ A @ ( replicate @ A @ N2 @ X ) )
= ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% set_replicate_conv_if
thf(fact_4134_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N2: int] :
( ( ord_less_eq @ int @ M @ ( plus_plus @ int @ ( one_one @ int ) @ N2 ) )
=> ( ( set_or1337092689740270186AtMost @ int @ M @ ( plus_plus @ int @ ( one_one @ int ) @ N2 ) )
= ( insert2 @ int @ ( plus_plus @ int @ ( one_one @ int ) @ N2 ) @ ( set_or1337092689740270186AtMost @ int @ M @ N2 ) ) ) ) ).
% atLeastAtMostPlus1_int_conv
thf(fact_4135_simp__from__to,axiom,
( ( set_or1337092689740270186AtMost @ int )
= ( ^ [I3: int,J3: int] : ( if @ ( set @ int ) @ ( ord_less @ int @ J3 @ I3 ) @ ( bot_bot @ ( set @ int ) ) @ ( insert2 @ int @ I3 @ ( set_or1337092689740270186AtMost @ int @ ( plus_plus @ int @ I3 @ ( one_one @ int ) ) @ J3 ) ) ) ) ) ).
% simp_from_to
thf(fact_4136_exp__eq__0__imp__not__bit,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat,A2: A] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
= ( zero_zero @ A ) )
=> ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 ) ) ) ).
% exp_eq_0_imp_not_bit
thf(fact_4137_bit__Suc,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( suc @ N2 ) )
= ( bit_se5641148757651400278ts_bit @ A @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N2 ) ) ) ).
% bit_Suc
thf(fact_4138_take__bit__eq__mask__iff,axiom,
! [N2: nat,K: int] :
( ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ K )
= ( bit_se2239418461657761734s_mask @ int @ N2 ) )
= ( ( bit_se2584673776208193580ke_bit @ int @ N2 @ ( plus_plus @ int @ K @ ( one_one @ int ) ) )
= ( zero_zero @ int ) ) ) ).
% take_bit_eq_mask_iff
thf(fact_4139_int__bit__bound,axiom,
! [K: int] :
~ ! [N: nat] :
( ! [M2: nat] :
( ( ord_less_eq @ nat @ N @ M2 )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ M2 )
= ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) )
=> ~ ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( bit_se5641148757651400278ts_bit @ int @ K @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ int @ K @ N ) ) ) ) ) ).
% int_bit_bound
thf(fact_4140_sum_Oinsert__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A,X: B] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( insert2 @ B @ X @ A4 ) )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A4 @ ( insert2 @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ).
% sum.insert_remove
thf(fact_4141_sum_Oremove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,X: B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( member @ B @ X @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( plus_plus @ A @ ( G @ X ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A4 @ ( insert2 @ B @ X @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% sum.remove
thf(fact_4142_sum_Odelta__remove,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,A2: B,B2: B > A,C2: B > A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( plus_plus @ A @ ( B2 @ A2 ) @ ( groups7311177749621191930dd_sum @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert2 @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ ( C2 @ K3 ) )
@ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ C2 @ ( minus_minus @ ( set @ B ) @ S3 @ ( insert2 @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) ) ) ) ) ) ) ).
% sum.delta_remove
thf(fact_4143_and__exp__eq__0__iff__not__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N2: nat] :
( ( ( bit_se5824344872417868541ns_and @ A @ A2 @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( zero_zero @ A ) )
= ( ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 ) ) ) ) ).
% and_exp_eq_0_iff_not_bit
thf(fact_4144_Suc__mask__eq__exp,axiom,
! [N2: nat] :
( ( suc @ ( bit_se2239418461657761734s_mask @ nat @ N2 ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% Suc_mask_eq_exp
thf(fact_4145_mask__nat__less__exp,axiom,
! [N2: nat] : ( ord_less @ nat @ ( bit_se2239418461657761734s_mask @ nat @ N2 ) @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% mask_nat_less_exp
thf(fact_4146_member__le__sum,axiom,
! [B: $tType,C: $tType] :
( ( ( ordere6911136660526730532id_add @ B )
& ( semiring_1 @ B ) )
=> ! [I: C,A4: set @ C,F2: C > B] :
( ( member @ C @ I @ A4 )
=> ( ! [X4: C] :
( ( member @ C @ X4 @ ( minus_minus @ ( set @ C ) @ A4 @ ( insert2 @ C @ I @ ( bot_bot @ ( set @ C ) ) ) ) )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( F2 @ X4 ) ) )
=> ( ( finite_finite @ C @ A4 )
=> ( ord_less_eq @ B @ ( F2 @ I ) @ ( groups7311177749621191930dd_sum @ C @ B @ F2 @ A4 ) ) ) ) ) ) ).
% member_le_sum
thf(fact_4147_prod__diff1,axiom,
! [A: $tType,B: $tType] :
( ( semidom_divide @ A )
=> ! [A4: set @ B,F2: B > A,A2: B] :
( ( finite_finite @ B @ A4 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ A ) )
=> ( ( ( member @ B @ A2 @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A4 @ ( insert2 @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( divide_divide @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( F2 @ A2 ) ) ) )
& ( ~ ( member @ B @ A2 @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( minus_minus @ ( set @ B ) @ A4 @ ( insert2 @ B @ A2 @ ( bot_bot @ ( set @ B ) ) ) ) )
= ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) ) ) ) ) ) ) ).
% prod_diff1
thf(fact_4148_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ N2 ) )
= ( N2
= ( zero_zero @ nat ) ) ) ) ).
% semiring_bit_operations_class.even_mask_iff
thf(fact_4149_sinh__zero__iff,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sinh @ A @ X )
= ( zero_zero @ A ) )
= ( member @ A @ ( exp @ A @ X ) @ ( insert2 @ A @ ( one_one @ A ) @ ( insert2 @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% sinh_zero_iff
thf(fact_4150_even__bit__succ__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ ( one_one @ A ) @ A2 ) @ N2 )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ) ).
% even_bit_succ_iff
thf(fact_4151_odd__bit__iff__bit__pred,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 )
=> ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 )
= ( ( bit_se5641148757651400278ts_bit @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ N2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ) ).
% odd_bit_iff_bit_pred
thf(fact_4152_mask__nat__def,axiom,
( ( bit_se2239418461657761734s_mask @ nat )
= ( ^ [N3: nat] : ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) ) ).
% mask_nat_def
thf(fact_4153_mask__half__int,axiom,
! [N2: nat] :
( ( divide_divide @ int @ ( bit_se2239418461657761734s_mask @ int @ N2 ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( bit_se2239418461657761734s_mask @ int @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ).
% mask_half_int
thf(fact_4154_bit__sum__mult__2__cases,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ! [J2: nat] :
~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( suc @ J2 ) )
=> ( ( bit_se5641148757651400278ts_bit @ A @ ( plus_plus @ A @ A2 @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) ) @ N2 )
= ( ( ( N2
= ( zero_zero @ nat ) )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( bit_se5641148757651400278ts_bit @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ B2 ) @ N2 ) ) ) ) ) ) ).
% bit_sum_mult_2_cases
thf(fact_4155_bit__rec,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A3: A,N3: nat] :
( ( ( N3
= ( zero_zero @ nat ) )
=> ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A3 ) )
& ( ( N3
!= ( zero_zero @ nat ) )
=> ( bit_se5641148757651400278ts_bit @ A @ ( divide_divide @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% bit_rec
thf(fact_4156_mask__eq__exp__minus__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se2239418461657761734s_mask @ A )
= ( ^ [N3: nat] : ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ A ) ) ) ) ) ).
% mask_eq_exp_minus_1
thf(fact_4157_and__nat__unfold,axiom,
( ( bit_se5824344872417868541ns_and @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( ( M6
= ( zero_zero @ nat ) )
| ( N3
= ( zero_zero @ nat ) ) )
@ ( zero_zero @ nat )
@ ( plus_plus @ nat @ ( times_times @ nat @ ( modulo_modulo @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_4158_mask__Suc__exp,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se2239418461657761734s_mask @ A @ ( suc @ N2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ ( bit_se2239418461657761734s_mask @ A @ N2 ) ) ) ) ).
% mask_Suc_exp
thf(fact_4159_and__nat__rec,axiom,
( ( bit_se5824344872417868541ns_and @ nat )
= ( ^ [M6: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M6 )
& ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_4160_mask__Suc__double,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se2239418461657761734s_mask @ A @ ( suc @ N2 ) )
= ( bit_se1065995026697491101ons_or @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se2239418461657761734s_mask @ A @ N2 ) ) ) ) ) ).
% mask_Suc_double
thf(fact_4161_take__bit__Suc__from__most,axiom,
! [N2: nat,K: int] :
( ( bit_se2584673776208193580ke_bit @ int @ ( suc @ N2 ) @ K )
= ( plus_plus @ int @ ( times_times @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) @ ( zero_neq_one_of_bool @ int @ ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) ) @ ( bit_se2584673776208193580ke_bit @ int @ N2 @ K ) ) ) ).
% take_bit_Suc_from_most
thf(fact_4162_and__int_Opsimps,axiom,
! [K: int,L: int] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ K @ L ) )
=> ( ( ( ( member @ int @ K @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( ( bit_se5824344872417868541ns_and @ int @ K @ L )
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L ) ) ) ) ) )
& ( ~ ( ( member @ int @ K @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( ( bit_se5824344872417868541ns_and @ int @ K @ L )
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ K )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ L ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ K @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_4163_and__int_Opelims,axiom,
! [X: int,Xa2: int,Y: int] :
( ( ( bit_se5824344872417868541ns_and @ int @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) )
=> ~ ( ( ( ( ( member @ int @ X @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( uminus_uminus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) ) ) ) )
& ( ~ ( ( member @ int @ X @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ Xa2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( Y
= ( plus_plus @ int
@ ( zero_neq_one_of_bool @ int
@ ( ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ X )
& ~ ( dvd_dvd @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Xa2 ) ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344872417868541ns_and @ int @ ( divide_divide @ int @ X @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ Xa2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ X @ Xa2 ) ) ) ) ) ).
% and_int.pelims
thf(fact_4164_arcsin__lt__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) @ ( arcsin @ Y ) )
& ( ord_less @ real @ ( arcsin @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_4165_rat__inverse__code,axiom,
! [P6: rat] :
( ( quotient_of @ ( inverse_inverse @ rat @ P6 ) )
= ( product_case_prod @ int @ int @ ( product_prod @ int @ int )
@ ^ [A3: int,B3: int] :
( if @ ( product_prod @ int @ int )
@ ( A3
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( times_times @ int @ ( sgn_sgn @ int @ A3 ) @ B3 ) @ ( abs_abs @ int @ A3 ) ) )
@ ( quotient_of @ P6 ) ) ) ).
% rat_inverse_code
thf(fact_4166_arcsin__0,axiom,
( ( arcsin @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% arcsin_0
thf(fact_4167_atMost__0,axiom,
( ( set_ord_atMost @ nat @ ( zero_zero @ nat ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ).
% atMost_0
thf(fact_4168_rat__zero__code,axiom,
( ( quotient_of @ ( zero_zero @ rat ) )
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% rat_zero_code
thf(fact_4169_set__encode__insert,axiom,
! [A4: set @ nat,N2: nat] :
( ( finite_finite @ nat @ A4 )
=> ( ~ ( member @ nat @ N2 @ A4 )
=> ( ( nat_set_encode @ ( insert2 @ nat @ N2 @ A4 ) )
= ( plus_plus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ ( nat_set_encode @ A4 ) ) ) ) ) ).
% set_encode_insert
thf(fact_4170_not__bit__Suc__0__Suc,axiom,
! [N2: nat] :
~ ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( suc @ N2 ) ) ).
% not_bit_Suc_0_Suc
thf(fact_4171_bit__Suc__0__iff,axiom,
! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% bit_Suc_0_iff
thf(fact_4172_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ K ) )
= ( insert2 @ nat @ K @ ( set_ord_lessThan @ nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_4173_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost @ nat @ ( suc @ K ) )
= ( insert2 @ nat @ ( suc @ K ) @ ( set_ord_atMost @ nat @ K ) ) ) ).
% atMost_Suc
thf(fact_4174_not__bit__Suc__0__numeral,axiom,
! [N2: num] :
~ ( bit_se5641148757651400278ts_bit @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ N2 ) ) ).
% not_bit_Suc_0_numeral
thf(fact_4175_atLeast0__atMost__Suc,axiom,
! [N2: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( suc @ N2 ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_4176_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( set_or1337092689740270186AtMost @ nat @ M @ N2 )
= ( insert2 @ nat @ M @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N2 ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_4177_atLeastAtMostSuc__conv,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N2 ) )
=> ( ( set_or1337092689740270186AtMost @ nat @ M @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( suc @ N2 ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_4178_atLeastAtMost__insertL,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( insert2 @ nat @ M @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ N2 ) )
= ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ).
% atLeastAtMost_insertL
thf(fact_4179_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan @ nat @ ( numeral_numeral @ nat @ K ) )
= ( insert2 @ nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan @ nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_4180_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost @ nat @ ( numeral_numeral @ nat @ K ) )
= ( insert2 @ nat @ ( numeral_numeral @ nat @ K ) @ ( set_ord_atMost @ nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_4181_quotient__of__denom__pos,axiom,
! [R2: rat,P6: int,Q4: int] :
( ( ( quotient_of @ R2 )
= ( product_Pair @ int @ int @ P6 @ Q4 ) )
=> ( ord_less @ int @ ( zero_zero @ int ) @ Q4 ) ) ).
% quotient_of_denom_pos
thf(fact_4182_bit__nat__iff,axiom,
! [K: int,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( nat2 @ K ) @ N2 )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( bit_se5641148757651400278ts_bit @ int @ K @ N2 ) ) ) ).
% bit_nat_iff
thf(fact_4183_rat__less__code,axiom,
( ( ord_less @ rat )
= ( ^ [P5: rat,Q6: rat] :
( product_case_prod @ int @ int @ $o
@ ^ [A3: int,C3: int] :
( product_case_prod @ int @ int @ $o
@ ^ [B3: int,D6: int] : ( ord_less @ int @ ( times_times @ int @ A3 @ D6 ) @ ( times_times @ int @ C3 @ B3 ) )
@ ( quotient_of @ Q6 ) )
@ ( quotient_of @ P5 ) ) ) ) ).
% rat_less_code
thf(fact_4184_arcsin__less__arcsin,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less @ real @ ( arcsin @ X ) @ ( arcsin @ Y ) ) ) ) ) ).
% arcsin_less_arcsin
thf(fact_4185_arcsin__less__mono,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( abs_abs @ real @ Y ) @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( arcsin @ X ) @ ( arcsin @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ) ).
% arcsin_less_mono
thf(fact_4186_atLeast1__atMost__eq__remove0,axiom,
! [N2: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_atMost @ nat @ N2 ) @ ( insert2 @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_4187_cos__arcsin__nonzero,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ( cos @ real @ ( arcsin @ X ) )
!= ( zero_zero @ real ) ) ) ) ).
% cos_arcsin_nonzero
thf(fact_4188_set__decode__plus__power__2,axiom,
! [N2: nat,Z2: nat] :
( ~ ( member @ nat @ N2 @ ( nat_set_decode @ Z2 ) )
=> ( ( nat_set_decode @ ( plus_plus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ Z2 ) )
= ( insert2 @ nat @ N2 @ ( nat_set_decode @ Z2 ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_4189_and__int_Opinduct,axiom,
! [A0: int,A12: int,P: int > int > $o] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ A0 @ A12 ) )
=> ( ! [K2: int,L4: int] :
( ( accp @ ( product_prod @ int @ int ) @ bit_and_int_rel @ ( product_Pair @ int @ int @ K2 @ L4 ) )
=> ( ( ~ ( ( member @ int @ K2 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) )
& ( member @ int @ L4 @ ( insert2 @ int @ ( zero_zero @ int ) @ ( insert2 @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( bot_bot @ ( set @ int ) ) ) ) ) )
=> ( P @ ( divide_divide @ int @ K2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L4 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
=> ( P @ K2 @ L4 ) ) )
=> ( P @ A0 @ A12 ) ) ) ).
% and_int.pinduct
thf(fact_4190_arccos__le__pi2,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( arccos @ Y ) @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% arccos_le_pi2
thf(fact_4191_normalize__negative,axiom,
! [Q4: int,P6: int] :
( ( ord_less @ int @ Q4 @ ( zero_zero @ int ) )
=> ( ( normalize @ ( product_Pair @ int @ int @ P6 @ Q4 ) )
= ( normalize @ ( product_Pair @ int @ int @ ( uminus_uminus @ int @ P6 ) @ ( uminus_uminus @ int @ Q4 ) ) ) ) ) ).
% normalize_negative
thf(fact_4192_xor__Suc__0__eq,axiom,
! [N2: nat] :
( ( bit_se5824344971392196577ns_xor @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ N2 @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_4193_Suc__0__xor__eq,axiom,
! [N2: nat] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( minus_minus @ nat @ ( plus_plus @ nat @ N2 @ ( zero_neq_one_of_bool @ nat @ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
@ ( zero_neq_one_of_bool @ nat
@ ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_4194_xor_Oright__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% xor.right_neutral
thf(fact_4195_xor_Oleft__neutral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% xor.left_neutral
thf(fact_4196_xor__self__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ A2 )
= ( zero_zero @ A ) ) ) ).
% xor_self_eq
thf(fact_4197_bit_Oxor__self,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ X )
= ( zero_zero @ A ) ) ) ).
% bit.xor_self
thf(fact_4198_arccos__1,axiom,
( ( arccos @ ( one_one @ real ) )
= ( zero_zero @ real ) ) ).
% arccos_1
thf(fact_4199_normalize__denom__zero,axiom,
! [P6: int] :
( ( normalize @ ( product_Pair @ int @ int @ P6 @ ( zero_zero @ int ) ) )
= ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% normalize_denom_zero
thf(fact_4200_xor__numerals_I1_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit1 @ Y ) ) ) ) ).
% xor_numerals(1)
thf(fact_4201_xor__numerals_I2_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ A @ ( bit0 @ Y ) ) ) ) ).
% xor_numerals(2)
thf(fact_4202_xor__numerals_I5_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit1 @ X ) ) ) ) ).
% xor_numerals(5)
thf(fact_4203_xor__numerals_I8_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( one_one @ A ) )
= ( numeral_numeral @ A @ ( bit0 @ X ) ) ) ) ).
% xor_numerals(8)
thf(fact_4204_xor__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( numeral_numeral @ nat @ ( bit1 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ X ) ) ) ).
% xor_nat_numerals(4)
thf(fact_4205_xor__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( numeral_numeral @ nat @ ( bit0 @ X ) ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ X ) ) ) ).
% xor_nat_numerals(3)
thf(fact_4206_xor__nat__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit0 @ Y ) ) ) ).
% xor_nat_numerals(2)
thf(fact_4207_xor__nat__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se5824344971392196577ns_xor @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral @ nat @ ( bit1 @ Y ) ) ) ).
% xor_nat_numerals(1)
thf(fact_4208_arccos__0,axiom,
( ( arccos @ ( zero_zero @ real ) )
= ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ).
% arccos_0
thf(fact_4209_xor__numerals_I6_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit1 @ X ) ) @ ( numeral_numeral @ A @ ( bit0 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_4210_xor__numerals_I4_J,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [X: num,Y: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ ( bit0 @ X ) ) @ ( numeral_numeral @ A @ ( bit1 @ Y ) ) )
= ( plus_plus @ A @ ( one_one @ A ) @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ X ) @ ( numeral_numeral @ A @ Y ) ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_4211_sgn__rat__def,axiom,
( ( sgn_sgn @ rat )
= ( ^ [A3: rat] :
( if @ rat
@ ( A3
= ( zero_zero @ rat ) )
@ ( zero_zero @ rat )
@ ( if @ rat @ ( ord_less @ rat @ ( zero_zero @ rat ) @ A3 ) @ ( one_one @ rat ) @ ( uminus_uminus @ rat @ ( one_one @ rat ) ) ) ) ) ) ).
% sgn_rat_def
thf(fact_4212_less__eq__rat__def,axiom,
( ( ord_less_eq @ rat )
= ( ^ [X3: rat,Y2: rat] :
( ( ord_less @ rat @ X3 @ Y2 )
| ( X3 = Y2 ) ) ) ) ).
% less_eq_rat_def
thf(fact_4213_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R2 )
=> ~ ! [S2: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ S2 )
=> ! [T4: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ T4 )
=> ( R2
!= ( plus_plus @ rat @ S2 @ T4 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_4214_abs__rat__def,axiom,
( ( abs_abs @ rat )
= ( ^ [A3: rat] : ( if @ rat @ ( ord_less @ rat @ A3 @ ( zero_zero @ rat ) ) @ ( uminus_uminus @ rat @ A3 ) @ A3 ) ) ) ).
% abs_rat_def
thf(fact_4215_arccos__lbound,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) ) ) ) ).
% arccos_lbound
thf(fact_4216_arccos__less__arccos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ord_less @ real @ ( arccos @ Y ) @ ( arccos @ X ) ) ) ) ) ).
% arccos_less_arccos
thf(fact_4217_arccos__less__mono,axiom,
! [X: real,Y: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( abs_abs @ real @ Y ) @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( arccos @ X ) @ ( arccos @ Y ) )
= ( ord_less @ real @ Y @ X ) ) ) ) ).
% arccos_less_mono
thf(fact_4218_arccos__cos,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( arccos @ ( cos @ real @ X ) )
= X ) ) ) ).
% arccos_cos
thf(fact_4219_normalize__denom__pos,axiom,
! [R2: product_prod @ int @ int,P6: int,Q4: int] :
( ( ( normalize @ R2 )
= ( product_Pair @ int @ int @ P6 @ Q4 ) )
=> ( ord_less @ int @ ( zero_zero @ int ) @ Q4 ) ) ).
% normalize_denom_pos
thf(fact_4220_normalize__crossproduct,axiom,
! [Q4: int,S: int,P6: int,R2: int] :
( ( Q4
!= ( zero_zero @ int ) )
=> ( ( S
!= ( zero_zero @ int ) )
=> ( ( ( normalize @ ( product_Pair @ int @ int @ P6 @ Q4 ) )
= ( normalize @ ( product_Pair @ int @ int @ R2 @ S ) ) )
=> ( ( times_times @ int @ P6 @ S )
= ( times_times @ int @ R2 @ Q4 ) ) ) ) ) ).
% normalize_crossproduct
thf(fact_4221_arccos__lt__bounded,axiom,
! [Y: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less @ real @ ( arccos @ Y ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_4222_arccos__bounded,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less_eq @ real @ ( arccos @ Y ) @ pi ) ) ) ) ).
% arccos_bounded
thf(fact_4223_sin__arccos__nonzero,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ( sin @ real @ ( arccos @ X ) )
!= ( zero_zero @ real ) ) ) ) ).
% sin_arccos_nonzero
thf(fact_4224_arccos__cos2,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( uminus_uminus @ real @ pi ) @ X )
=> ( ( arccos @ ( cos @ real @ X ) )
= ( uminus_uminus @ real @ X ) ) ) ) ).
% arccos_cos2
thf(fact_4225_arccos__def,axiom,
( arccos
= ( ^ [Y2: real] :
( the @ real
@ ^ [X3: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X3 )
& ( ord_less_eq @ real @ X3 @ pi )
& ( ( cos @ real @ X3 )
= Y2 ) ) ) ) ) ).
% arccos_def
thf(fact_4226_arccos,axiom,
! [Y: real] :
( ( ord_less_eq @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ Y )
=> ( ( ord_less_eq @ real @ Y @ ( one_one @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( arccos @ Y ) )
& ( ord_less_eq @ real @ ( arccos @ Y ) @ pi )
& ( ( cos @ real @ ( arccos @ Y ) )
= Y ) ) ) ) ).
% arccos
thf(fact_4227_xor__nat__unfold,axiom,
( ( bit_se5824344971392196577ns_xor @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( M6
= ( zero_zero @ nat ) )
@ N3
@ ( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ M6
@ ( plus_plus @ nat @ ( modulo_modulo @ nat @ ( plus_plus @ nat @ ( modulo_modulo @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_4228_xor__nat__rec,axiom,
( ( bit_se5824344971392196577ns_xor @ nat )
= ( ^ [M6: nat,N3: nat] :
( plus_plus @ nat
@ ( zero_neq_one_of_bool @ nat
@ ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ M6 ) )
!= ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) ) )
@ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ nat @ ( divide_divide @ nat @ M6 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_4229_xor__one__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ A2 @ ( one_one @ A ) )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) )
@ ( zero_neq_one_of_bool @ A
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% xor_one_eq
thf(fact_4230_one__xor__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( one_one @ A ) @ A2 )
= ( minus_minus @ A @ ( plus_plus @ A @ A2 @ ( zero_neq_one_of_bool @ A @ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) )
@ ( zero_neq_one_of_bool @ A
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ) ).
% one_xor_eq
thf(fact_4231_horner__sum__of__bool__2__less,axiom,
! [Bs: list @ $o] : ( ord_less @ int @ ( groups4207007520872428315er_sum @ $o @ int @ ( zero_neq_one_of_bool @ int ) @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ Bs ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( size_size @ ( list @ $o ) @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_4232_push__bit__numeral__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( numeral_numeral @ nat @ N2 ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( uminus_uminus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ N2 ) ) ) ) ) ).
% push_bit_numeral_minus_1
thf(fact_4233_bit__horner__sum__bit__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [Bs: list @ $o,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ Bs ) @ N2 )
= ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ $o ) @ Bs ) )
& ( nth @ $o @ Bs @ N2 ) ) ) ) ).
% bit_horner_sum_bit_iff
thf(fact_4234_sum__diff1_H__aux,axiom,
! [B: $tType,A: $tType] :
( ( ab_group_add @ B )
=> ! [F4: set @ A,I5: set @ A,F2: A > B,I: A] :
( ( finite_finite @ A @ F4 )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [I3: A] :
( ( member @ A @ I3 @ I5 )
& ( ( F2 @ I3 )
!= ( zero_zero @ B ) ) ) )
@ F4 )
=> ( ( ( member @ A @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I5 @ ( insert2 @ A @ I @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ B @ ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I5 ) @ ( F2 @ I ) ) ) )
& ( ~ ( member @ A @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I5 @ ( insert2 @ A @ I @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I5 ) ) ) ) ) ) ) ).
% sum_diff1'_aux
thf(fact_4235_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_4236_push__bit__nonnegative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se4730199178511100633sh_bit @ int @ N2 @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_4237_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less @ int @ ( bit_se5824344971392196577ns_xor @ int @ K @ L ) @ ( zero_zero @ int ) )
= ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
!= ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ).
% xor_negative_int_iff
thf(fact_4238_push__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se4730199178511100633sh_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% push_bit_negative_int_iff
thf(fact_4239_push__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% push_bit_of_0
thf(fact_4240_push__bit__eq__0__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,A2: A] :
( ( ( bit_se4730199178511100633sh_bit @ A @ N2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% push_bit_eq_0_iff
thf(fact_4241_push__bit__push__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ A2 ) )
= ( bit_se4730199178511100633sh_bit @ A @ ( plus_plus @ nat @ M @ N2 ) @ A2 ) ) ) ).
% push_bit_push_bit
thf(fact_4242_concat__bit__of__zero__1,axiom,
! [N2: nat,L: int] :
( ( bit_concat_bit @ N2 @ ( zero_zero @ int ) @ L )
= ( bit_se4730199178511100633sh_bit @ int @ N2 @ L ) ) ).
% concat_bit_of_zero_1
thf(fact_4243_sum_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [P6: B > A] :
( ( groups1027152243600224163dd_sum @ B @ A @ P6 @ ( bot_bot @ ( set @ B ) ) )
= ( zero_zero @ A ) ) ) ).
% sum.empty'
thf(fact_4244_push__bit__Suc__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N2 ) @ ( numeral_numeral @ A @ K ) )
= ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_Suc_numeral
thf(fact_4245_push__bit__Suc__minus__numeral,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ K ) ) )
= ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ) ) ).
% push_bit_Suc_minus_numeral
thf(fact_4246_sum_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I5: set @ B,P6: B > A,I: B] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( P6 @ X3 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( ( member @ B @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ P6 @ ( insert2 @ B @ I @ I5 ) )
= ( groups1027152243600224163dd_sum @ B @ A @ P6 @ I5 ) ) )
& ( ~ ( member @ B @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ P6 @ ( insert2 @ B @ I @ I5 ) )
= ( plus_plus @ A @ ( P6 @ I ) @ ( groups1027152243600224163dd_sum @ B @ A @ P6 @ I5 ) ) ) ) ) ) ) ).
% sum.insert'
thf(fact_4247_push__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se4730199178511100633sh_bit @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) ).
% push_bit_of_Suc_0
thf(fact_4248_push__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N2 ) @ A2 )
= ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( times_times @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% push_bit_Suc
thf(fact_4249_push__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( one_one @ A ) )
= ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) ) ) ).
% push_bit_of_1
thf(fact_4250_even__push__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ A2 ) )
= ( ( N2
!= ( zero_zero @ nat ) )
| ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) ) ) ) ).
% even_push_bit_iff
thf(fact_4251_push__bit__add,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A,B2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( plus_plus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ A2 ) @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ B2 ) ) ) ) ).
% push_bit_add
thf(fact_4252_sum_Onon__neutral_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,I5: set @ B] :
( ( groups1027152243600224163dd_sum @ B @ A @ G
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( G @ X3 )
!= ( zero_zero @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ I5 ) ) ) ).
% sum.non_neutral'
thf(fact_4253_XOR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se5824344971392196577ns_xor @ int @ X @ Y ) ) ) ) ).
% XOR_lower
thf(fact_4254_push__bit__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) )
= ( bit_se2584673776208193580ke_bit @ A @ ( plus_plus @ nat @ M @ N2 ) @ ( bit_se4730199178511100633sh_bit @ A @ M @ A2 ) ) ) ) ).
% push_bit_take_bit
thf(fact_4255_set__bit__nat__def,axiom,
( ( bit_se5668285175392031749et_bit @ nat )
= ( ^ [M6: nat,N3: nat] : ( bit_se1065995026697491101ons_or @ nat @ N3 @ ( bit_se4730199178511100633sh_bit @ nat @ M6 @ ( one_one @ nat ) ) ) ) ) ).
% set_bit_nat_def
thf(fact_4256_flip__bit__nat__def,axiom,
( ( bit_se8732182000553998342ip_bit @ nat )
= ( ^ [M6: nat,N3: nat] : ( bit_se5824344971392196577ns_xor @ nat @ N3 @ ( bit_se4730199178511100633sh_bit @ nat @ M6 @ ( one_one @ nat ) ) ) ) ) ).
% flip_bit_nat_def
thf(fact_4257_sum_Odistrib__triv_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I5: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B @ I5 )
=> ( ( groups1027152243600224163dd_sum @ B @ A
@ ^ [I3: B] : ( plus_plus @ A @ ( G @ I3 ) @ ( H @ I3 ) )
@ I5 )
= ( plus_plus @ A @ ( groups1027152243600224163dd_sum @ B @ A @ G @ I5 ) @ ( groups1027152243600224163dd_sum @ B @ A @ H @ I5 ) ) ) ) ) ).
% sum.distrib_triv'
thf(fact_4258_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ int @ ( bit_se4730199178511100633sh_bit @ int @ M @ K ) @ N2 )
= ( ( ord_less_eq @ nat @ M @ N2 )
& ( bit_se5641148757651400278ts_bit @ int @ K @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_4259_bit__push__bit__iff__nat,axiom,
! [M: nat,Q4: nat,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ nat @ ( bit_se4730199178511100633sh_bit @ nat @ M @ Q4 ) @ N2 )
= ( ( ord_less_eq @ nat @ M @ N2 )
& ( bit_se5641148757651400278ts_bit @ nat @ Q4 @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_4260_set__bit__eq__or,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5668285175392031749et_bit @ A )
= ( ^ [N3: nat,A3: A] : ( bit_se1065995026697491101ons_or @ A @ A3 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ).
% set_bit_eq_or
thf(fact_4261_flip__bit__eq__xor,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se8732182000553998342ip_bit @ A )
= ( ^ [N3: nat,A3: A] : ( bit_se5824344971392196577ns_xor @ A @ A3 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ).
% flip_bit_eq_xor
thf(fact_4262_sum_Omono__neutral__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ T6 ) ) ) ) ) ).
% sum.mono_neutral_left'
thf(fact_4263_sum_Omono__neutral__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ T6 )
= ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 ) ) ) ) ) ).
% sum.mono_neutral_right'
thf(fact_4264_sum_Omono__neutral__cong__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T6: set @ B,H: B > A,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ S3 )
= ( groups1027152243600224163dd_sum @ B @ A @ H @ T6 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left'
thf(fact_4265_sum_Omono__neutral__cong__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A,H: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A @ G @ T6 )
= ( groups1027152243600224163dd_sum @ B @ A @ H @ S3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right'
thf(fact_4266_sum_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [I5: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( G @ X3 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( H @ X3 )
!= ( zero_zero @ A ) ) ) ) )
=> ( ( groups1027152243600224163dd_sum @ B @ A
@ ^ [I3: B] : ( plus_plus @ A @ ( G @ I3 ) @ ( H @ I3 ) )
@ I5 )
= ( plus_plus @ A @ ( groups1027152243600224163dd_sum @ B @ A @ G @ I5 ) @ ( groups1027152243600224163dd_sum @ B @ A @ H @ I5 ) ) ) ) ) ) ).
% sum.distrib'
thf(fact_4267_sum_OG__def,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ( ( groups1027152243600224163dd_sum @ B @ A )
= ( ^ [P5: B > A,I7: set @ B] :
( if @ A
@ ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I7 )
& ( ( P5 @ X3 )
!= ( zero_zero @ A ) ) ) ) )
@ ( groups7311177749621191930dd_sum @ B @ A @ P5
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I7 )
& ( ( P5 @ X3 )
!= ( zero_zero @ A ) ) ) ) )
@ ( zero_zero @ A ) ) ) ) ) ).
% sum.G_def
thf(fact_4268_bit__iff__and__push__bit__not__eq__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A3: A,N3: nat] :
( ( bit_se5824344872417868541ns_and @ A @ A3 @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) )
!= ( zero_zero @ A ) ) ) ) ) ).
% bit_iff_and_push_bit_not_eq_0
thf(fact_4269_XOR__upper,axiom,
! [X: int,N2: nat,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less @ int @ X @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ( ord_less @ int @ Y @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) )
=> ( ord_less @ int @ ( bit_se5824344971392196577ns_xor @ int @ X @ Y ) @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ N2 ) ) ) ) ) ).
% XOR_upper
thf(fact_4270_sum__diff1_H,axiom,
! [B: $tType,A: $tType] :
( ( ab_group_add @ B )
=> ! [I5: set @ A,F2: A > B,I: A] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [I3: A] :
( ( member @ A @ I3 @ I5 )
& ( ( F2 @ I3 )
!= ( zero_zero @ B ) ) ) ) )
=> ( ( ( member @ A @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I5 @ ( insert2 @ A @ I @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ B @ ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I5 ) @ ( F2 @ I ) ) ) )
& ( ~ ( member @ A @ I @ I5 )
=> ( ( groups1027152243600224163dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ I5 @ ( insert2 @ A @ I @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( groups1027152243600224163dd_sum @ A @ B @ F2 @ I5 ) ) ) ) ) ) ).
% sum_diff1'
thf(fact_4271_signed__take__bit__code,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4674362597316999326ke_bit @ A )
= ( ^ [N3: nat,A3: A] : ( if @ A @ ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A3 ) @ N3 ) @ ( plus_plus @ A @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A3 ) @ ( bit_se4730199178511100633sh_bit @ A @ ( suc @ N3 ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) @ ( bit_se2584673776208193580ke_bit @ A @ ( suc @ N3 ) @ A3 ) ) ) ) ) ).
% signed_take_bit_code
thf(fact_4272_xor__int__unfold,axiom,
( ( bit_se5824344971392196577ns_xor @ int )
= ( ^ [K3: int,L2: int] :
( if @ int
@ ( K3
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ ( bit_ri4277139882892585799ns_not @ int @ L2 )
@ ( if @ int
@ ( L2
= ( uminus_uminus @ int @ ( one_one @ int ) ) )
@ ( bit_ri4277139882892585799ns_not @ int @ K3 )
@ ( if @ int
@ ( K3
= ( zero_zero @ int ) )
@ L2
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( plus_plus @ int @ ( abs_abs @ int @ ( minus_minus @ int @ ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( modulo_modulo @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( bit_se5824344971392196577ns_xor @ int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) @ ( divide_divide @ int @ L2 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
thf(fact_4273_Sum__Ico__nat,axiom,
! [M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( divide_divide @ nat @ ( minus_minus @ nat @ ( times_times @ nat @ N2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) @ ( times_times @ nat @ M @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% Sum_Ico_nat
thf(fact_4274_Cauchy__iff2,axiom,
( ( topolo3814608138187158403Cauchy @ real )
= ( ^ [X7: nat > real] :
! [J3: nat] :
? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ M9 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_4275_sum__power2,axiom,
! [K: nat] :
( ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) )
= ( minus_minus @ nat @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K ) @ ( one_one @ nat ) ) ) ).
% sum_power2
thf(fact_4276_finite__atLeastLessThan,axiom,
! [L: nat,U: nat] : ( finite_finite @ nat @ ( set_or7035219750837199246ssThan @ nat @ L @ U ) ) ).
% finite_atLeastLessThan
thf(fact_4277_atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,L: A,U: A] :
( ( member @ A @ I @ ( set_or7035219750837199246ssThan @ A @ L @ U ) )
= ( ( ord_less_eq @ A @ L @ I )
& ( ord_less @ A @ I @ U ) ) ) ) ).
% atLeastLessThan_iff
thf(fact_4278_atLeastLessThan__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atLeastLessThan_empty
thf(fact_4279_ivl__subset,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [I: A,J: A,M: A,N2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ I @ J ) @ ( set_or7035219750837199246ssThan @ A @ M @ N2 ) )
= ( ( ord_less_eq @ A @ J @ I )
| ( ( ord_less_eq @ A @ M @ I )
& ( ord_less_eq @ A @ J @ N2 ) ) ) ) ) ).
% ivl_subset
thf(fact_4280_atLeastLessThan__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) )
= ( ~ ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% atLeastLessThan_empty_iff2
thf(fact_4281_atLeastLessThan__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% atLeastLessThan_empty_iff
thf(fact_4282_infinite__Ico__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ico_iff
thf(fact_4283_ivl__diff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [I: A,N2: A,M: A] :
( ( ord_less_eq @ A @ I @ N2 )
=> ( ( minus_minus @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ I @ M ) @ ( set_or7035219750837199246ssThan @ A @ I @ N2 ) )
= ( set_or7035219750837199246ssThan @ A @ N2 @ M ) ) ) ) ).
% ivl_diff
thf(fact_4284_bit_Oconj__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( zero_zero @ A ) ) ) ).
% bit.conj_cancel_left
thf(fact_4285_bit_Oconj__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344872417868541ns_and @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( zero_zero @ A ) ) ) ).
% bit.conj_cancel_right
thf(fact_4286_lessThan__minus__lessThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [N2: A,M: A] :
( ( minus_minus @ ( set @ A ) @ ( set_ord_lessThan @ A @ N2 ) @ ( set_ord_lessThan @ A @ M ) )
= ( set_or7035219750837199246ssThan @ A @ M @ N2 ) ) ) ).
% lessThan_minus_lessThan
thf(fact_4287_bit_Ocompl__zero,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( zero_zero @ A ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.compl_zero
thf(fact_4288_bit_Ocompl__one,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% bit.compl_one
thf(fact_4289_bit_Odisj__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_cancel_left
thf(fact_4290_bit_Odisj__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se1065995026697491101ons_or @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.disj_cancel_right
thf(fact_4291_bit_Oxor__cancel__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( bit_ri4277139882892585799ns_not @ A @ X ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.xor_cancel_right
thf(fact_4292_bit_Oxor__cancel__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( bit_ri4277139882892585799ns_not @ A @ X ) @ X )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.xor_cancel_left
thf(fact_4293_bit_Oxor__one__right,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ X @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ X ) ) ) ).
% bit.xor_one_right
thf(fact_4294_bit_Oxor__one__left,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A] :
( ( bit_se5824344971392196577ns_xor @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ X )
= ( bit_ri4277139882892585799ns_not @ A @ X ) ) ) ).
% bit.xor_one_left
thf(fact_4295_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ K ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% not_nonnegative_int_iff
thf(fact_4296_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less @ int @ ( bit_ri4277139882892585799ns_not @ int @ K ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% not_negative_int_iff
thf(fact_4297_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ M ) )
= ( insert2 @ nat @ M @ ( bot_bot @ ( set @ nat ) ) ) ) ).
% atLeastLessThan_singleton
thf(fact_4298_push__bit__minus__one__eq__not__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N2 ) ) ) ) ).
% push_bit_minus_one_eq_not_mask
thf(fact_4299_not__one__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ).
% not_one_eq
thf(fact_4300_sum_Oop__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N2 @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( G @ N2 ) ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_4301_prod_Oop__ivl__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N2 @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( G @ N2 ) ) ) ) ) ) ).
% prod.op_ivl_Suc
thf(fact_4302_atLeastLessThan__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( A2 = C2 )
& ( B2 = D2 ) ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_4303_atLeastLessThan__inj_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( A2 = C2 ) ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_4304_atLeastLessThan__inj_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( set_or7035219750837199246ssThan @ A @ A2 @ B2 )
= ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ C2 @ D2 )
=> ( B2 = D2 ) ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_4305_atLeastLessThan__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
| ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastLessThan_subset_iff
thf(fact_4306_infinite__Ico,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ico
thf(fact_4307_all__nat__less__eq,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [M6: nat] :
( ( ord_less @ nat @ M6 @ N2 )
=> ( P @ M6 ) ) )
= ( ! [X3: nat] :
( ( member @ nat @ X3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ( P @ X3 ) ) ) ) ).
% all_nat_less_eq
thf(fact_4308_ex__nat__less__eq,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [M6: nat] :
( ( ord_less @ nat @ M6 @ N2 )
& ( P @ M6 ) ) )
= ( ? [X3: nat] :
( ( member @ nat @ X3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) )
& ( P @ X3 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_4309_not__diff__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( minus_minus @ A @ A2 @ B2 ) )
= ( plus_plus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ B2 ) ) ) ).
% not_diff_distrib
thf(fact_4310_not__add__distrib,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,B2: A] :
( ( bit_ri4277139882892585799ns_not @ A @ ( plus_plus @ A @ A2 @ B2 ) )
= ( minus_minus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ B2 ) ) ) ).
% not_add_distrib
thf(fact_4311_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or7035219750837199246ssThan @ nat @ L @ ( suc @ U ) )
= ( set_or1337092689740270186AtMost @ nat @ L @ U ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_4312_lessThan__atLeast0,axiom,
( ( set_ord_lessThan @ nat )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) ) ) ).
% lessThan_atLeast0
thf(fact_4313_atLeastLessThan0,axiom,
! [M: nat] :
( ( set_or7035219750837199246ssThan @ nat @ M @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% atLeastLessThan0
thf(fact_4314_sum_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.shift_bounds_Suc_ivl
thf(fact_4315_sum_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.shift_bounds_nat_ivl
thf(fact_4316_prod_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.shift_bounds_Suc_ivl
thf(fact_4317_prod_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.shift_bounds_nat_ivl
thf(fact_4318_sum_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( comm_monoid_add @ A ) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: B > A,H: B > A] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X4: B] :
( ( ord_less_eq @ B @ C2 @ X4 )
=> ( ( ord_less @ B @ X4 @ D2 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ A2 @ B2 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ ( set_or7035219750837199246ssThan @ B @ C2 @ D2 ) ) ) ) ) ) ) ).
% sum.ivl_cong
thf(fact_4319_prod_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( comm_monoid_mult @ A ) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: B > A,H: B > A] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X4: B] :
( ( ord_less_eq @ B @ C2 @ X4 )
=> ( ( ord_less @ B @ X4 @ D2 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ A2 @ B2 ) )
= ( groups7121269368397514597t_prod @ B @ A @ H @ ( set_or7035219750837199246ssThan @ B @ C2 @ D2 ) ) ) ) ) ) ) ).
% prod.ivl_cong
thf(fact_4320_minus__eq__not__plus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( uminus_uminus @ A )
= ( ^ [A3: A] : ( plus_plus @ A @ ( bit_ri4277139882892585799ns_not @ A @ A3 ) @ ( one_one @ A ) ) ) ) ) ).
% minus_eq_not_plus_1
thf(fact_4321_minus__eq__not__minus__1,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( uminus_uminus @ A )
= ( ^ [A3: A] : ( bit_ri4277139882892585799ns_not @ A @ ( minus_minus @ A @ A3 @ ( one_one @ A ) ) ) ) ) ) ).
% minus_eq_not_minus_1
thf(fact_4322_not__eq__complement,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_ri4277139882892585799ns_not @ A )
= ( ^ [A3: A] : ( minus_minus @ A @ ( uminus_uminus @ A @ A3 ) @ ( one_one @ A ) ) ) ) ) ).
% not_eq_complement
thf(fact_4323_sum_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,P6: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ P6 )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ P6 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ P6 ) ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_4324_sum__diff__nat__ivl,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N2: nat,P6: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ P6 )
=> ( ( minus_minus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ M @ P6 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ N2 @ P6 ) ) ) ) ) ) ).
% sum_diff_nat_ivl
thf(fact_4325_prod_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,P6: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ P6 )
=> ( ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ P6 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ P6 ) ) ) ) ) ) ).
% prod.atLeastLessThan_concat
thf(fact_4326_and__not__numerals_I1_J,axiom,
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( zero_zero @ int ) ) ).
% and_not_numerals(1)
thf(fact_4327_or__not__numerals_I1_J,axiom,
( ( bit_se1065995026697491101ons_or @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( zero_zero @ int ) ) ) ).
% or_not_numerals(1)
thf(fact_4328_atLeast0__lessThan__Suc,axiom,
! [N2: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) )
= ( insert2 @ nat @ N2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_4329_subset__eq__atLeast0__lessThan__finite,axiom,
! [N7: set @ nat,N2: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N7 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ( finite_finite @ nat @ N7 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_4330_atLeastLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastLessThan_subseteq_atLeastAtMost_iff
thf(fact_4331_atLeastAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less @ A @ B2 @ D2 ) ) ) ) ) ).
% atLeastAtMost_subseteq_atLeastLessThan_iff
thf(fact_4332_sum__shift__lb__Suc0__0__upt,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: nat > A,K: nat] :
( ( ( F2 @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ K ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_4333_sum_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( G @ N2 ) ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_4334_sum_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ N2 ) ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_4335_sum_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat,B2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ ( suc @ B2 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ B2 ) ) @ ( G @ B2 ) ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_4336_prod_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( G @ N2 ) ) ) ) ).
% prod.atLeast0_lessThan_Suc
thf(fact_4337_atLeastLessThan__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( set_or7035219750837199246ssThan @ A )
= ( ^ [A3: A,B3: A] : ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A3 @ B3 ) @ ( insert2 @ A @ B3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% atLeastLessThan_eq_atLeastAtMost_diff
thf(fact_4338_prod_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ N2 ) ) ) ) ) ) ).
% prod.atLeast_Suc_lessThan
thf(fact_4339_prod_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat,B2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ A2 @ B2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ ( suc @ B2 ) ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ A2 @ B2 ) ) @ ( G @ B2 ) ) ) ) ) ).
% prod.atLeastLessThan_Suc
thf(fact_4340_sum_Olast__plus,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( G @ N2 ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ) ) ).
% sum.last_plus
thf(fact_4341_prod_Olast__plus,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( times_times @ A @ ( G @ N2 ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ) ) ).
% prod.last_plus
thf(fact_4342_take__bit__not__mask__eq__0,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N2 ) ) )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_not_mask_eq_0
thf(fact_4343_sum__Suc__diff_H,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [M: nat,N2: nat,F2: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ I3 ) ) @ ( F2 @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( minus_minus @ A @ ( F2 @ N2 ) @ ( F2 @ M ) ) ) ) ) ).
% sum_Suc_diff'
thf(fact_4344_push__bit__mask__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se4730199178511100633sh_bit @ A @ M @ ( bit_se2239418461657761734s_mask @ A @ N2 ) )
= ( bit_se5824344872417868541ns_and @ A @ ( bit_se2239418461657761734s_mask @ A @ ( plus_plus @ nat @ N2 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ M ) ) ) ) ) ).
% push_bit_mask_eq
thf(fact_4345_atLeastLessThanSuc,axiom,
! [M: nat,N2: nat] :
( ( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) )
= ( insert2 @ nat @ N2 @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ N2 )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( suc @ N2 ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeastLessThanSuc
thf(fact_4346_unset__bit__eq__and__not,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( ( bit_se2638667681897837118et_bit @ A )
= ( ^ [N3: nat,A3: A] : ( bit_se5824344872417868541ns_and @ A @ A3 @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se4730199178511100633sh_bit @ A @ N3 @ ( one_one @ A ) ) ) ) ) ) ) ).
% unset_bit_eq_and_not
thf(fact_4347_sum_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ ( suc @ I3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) ) ) ) ).
% sum.atLeastLessThan_rev
thf(fact_4348_sum_Onested__swap,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: nat > nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ ( A2 @ I3 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [J3: nat] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( A2 @ I3 @ J3 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% sum.nested_swap
thf(fact_4349_prod_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ ( suc @ I3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) ) ) ) ).
% prod.atLeastLessThan_rev
thf(fact_4350_prod_Onested__swap,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: nat > nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( groups7121269368397514597t_prod @ nat @ A @ ( A2 @ I3 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [J3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( A2 @ I3 @ J3 )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ J3 ) @ N2 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% prod.nested_swap
thf(fact_4351_sum_Onat__group,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [M6: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ M6 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ M6 @ K ) @ K ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( times_times @ nat @ N2 @ K ) ) ) ) ) ).
% sum.nat_group
thf(fact_4352_prod_Onat__group,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,K: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ^ [M6: nat] : ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ M6 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ M6 @ K ) @ K ) ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_ord_lessThan @ nat @ ( times_times @ nat @ N2 @ K ) ) ) ) ) ).
% prod.nat_group
thf(fact_4353_prod__Suc__fact,axiom,
! [N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) )
= ( semiring_char_0_fact @ nat @ N2 ) ) ).
% prod_Suc_fact
thf(fact_4354_prod__Suc__Suc__fact,axiom,
! [N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) )
= ( semiring_char_0_fact @ nat @ N2 ) ) ).
% prod_Suc_Suc_fact
thf(fact_4355_sum_Ohead__if,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N2 @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( zero_zero @ A ) ) )
& ( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( G @ N2 ) ) ) ) ) ) ).
% sum.head_if
thf(fact_4356_and__not__numerals_I3_J,axiom,
! [N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( one_one @ int ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ ( bit1 @ N2 ) ) ) )
= ( zero_zero @ int ) ) ).
% and_not_numerals(3)
thf(fact_4357_or__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se1065995026697491101ons_or @ int @ ( numeral_numeral @ int @ ( bit1 @ M ) ) @ ( bit_ri4277139882892585799ns_not @ int @ ( one_one @ int ) ) )
= ( bit_ri4277139882892585799ns_not @ int @ ( zero_zero @ int ) ) ) ).
% or_not_numerals(7)
thf(fact_4358_prod_Ohead__if,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [N2: nat,M: nat,G: nat > A] :
( ( ( ord_less @ nat @ N2 @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( one_one @ A ) ) )
& ( ~ ( ord_less @ nat @ N2 @ M )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) @ ( G @ N2 ) ) ) ) ) ) ).
% prod.head_if
thf(fact_4359_bit_Ocompl__unique,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [X: A,Y: A] :
( ( ( bit_se5824344872417868541ns_and @ A @ X @ Y )
= ( zero_zero @ A ) )
=> ( ( ( bit_se1065995026697491101ons_or @ A @ X @ Y )
= ( uminus_uminus @ A @ ( one_one @ A ) ) )
=> ( ( bit_ri4277139882892585799ns_not @ A @ X )
= Y ) ) ) ) ).
% bit.compl_unique
thf(fact_4360_fact__prod__Suc,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ) ).
% fact_prod_Suc
thf(fact_4361_sum_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) )
= ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N2 ) @ M ) ) ) ) ).
% sum.atLeastLessThan_rev_at_least_Suc_atMost
thf(fact_4362_prod_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat,M: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ N2 @ M ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( G @ ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N2 ) @ I3 ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ N2 ) @ M ) ) ) ) ).
% prod.atLeastLessThan_rev_at_least_Suc_atMost
thf(fact_4363_pochhammer__prod,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( comm_s3205402744901411588hammer @ A )
= ( ^ [A3: A,N3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( plus_plus @ A @ A3 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ).
% pochhammer_prod
thf(fact_4364_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq @ nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( numeral_numeral @ nat @ K ) )
= ( insert2 @ nat @ ( pred_numeral @ K ) @ ( set_or7035219750837199246ssThan @ nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or7035219750837199246ssThan @ nat @ M @ ( numeral_numeral @ nat @ K ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_4365_fact__prod__rev,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiring_char_0_fact @ A )
= ( ^ [N3: nat] : ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ ( minus_minus @ nat @ N3 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ) ).
% fact_prod_rev
thf(fact_4366_bit__not__iff__eq,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_ri4277139882892585799ns_not @ A @ A2 ) @ N2 )
= ( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
!= ( zero_zero @ A ) )
& ~ ( bit_se5641148757651400278ts_bit @ A @ A2 @ N2 ) ) ) ) ).
% bit_not_iff_eq
thf(fact_4367_summable__Cauchy,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ( ( summable @ A )
= ( ^ [F3: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [N6: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ N6 @ M6 )
=> ! [N3: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F3 @ ( set_or7035219750837199246ssThan @ nat @ M6 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ).
% summable_Cauchy
thf(fact_4368_Cauchy__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X7: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ M9 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_iff
thf(fact_4369_CauchyI,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M5: nat] :
( ( ord_less_eq @ nat @ M10 @ M5 )
=> ! [N: nat] :
( ( ord_less_eq @ nat @ M10 @ N )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X6 @ M5 ) @ ( X6 @ N ) ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X6 ) ) ) ).
% CauchyI
thf(fact_4370_CauchyD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A,E2: real] :
( ( topolo3814608138187158403Cauchy @ A @ X6 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq @ nat @ M8 @ M2 )
=> ! [N5: nat] :
( ( ord_less_eq @ nat @ M8 @ N5 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X6 @ M2 ) @ ( X6 @ N5 ) ) ) @ E2 ) ) ) ) ) ) ).
% CauchyD
thf(fact_4371_sums__group,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [F2: nat > A,S: A,K: nat] :
( ( sums @ A @ F2 @ S )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( sums @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( times_times @ nat @ N3 @ K ) @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ K ) @ K ) ) )
@ S ) ) ) ) ).
% sums_group
thf(fact_4372_take__bit__sum,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ( ( bit_se2584673776208193580ke_bit @ A )
= ( ^ [N3: nat,A3: A] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( bit_se4730199178511100633sh_bit @ A @ K3 @ ( zero_neq_one_of_bool @ A @ ( bit_se5641148757651400278ts_bit @ A @ A3 @ K3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) ) ) ) ).
% take_bit_sum
thf(fact_4373_atLeast1__lessThan__eq__remove0,axiom,
! [N2: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_lessThan @ nat @ N2 ) @ ( insert2 @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_4374_fact__split,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( semiring_char_0_fact @ A @ N2 )
= ( times_times @ A @ ( semiring_1_of_nat @ A @ ( groups7121269368397514597t_prod @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( minus_minus @ nat @ N2 @ K ) @ N2 ) ) ) @ ( semiring_char_0_fact @ A @ ( minus_minus @ nat @ N2 @ K ) ) ) ) ) ) ).
% fact_split
thf(fact_4375_binomial__altdef__of__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,N2: nat] :
( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( semiring_1_of_nat @ A @ ( binomial @ N2 @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ N2 @ I3 ) ) @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ K @ I3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ) ).
% binomial_altdef_of_nat
thf(fact_4376_gbinomial__altdef__of__nat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] :
( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( divide_divide @ A @ ( minus_minus @ A @ A3 @ ( semiring_1_of_nat @ A @ I3 ) ) @ ( semiring_1_of_nat @ A @ ( minus_minus @ nat @ K3 @ I3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K3 ) ) ) ) ) ).
% gbinomial_altdef_of_nat
thf(fact_4377_gbinomial__mult__fact_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,K: nat] :
( ( times_times @ A @ ( gbinomial @ A @ A2 @ K ) @ ( semiring_char_0_fact @ A @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ).
% gbinomial_mult_fact'
thf(fact_4378_gbinomial__mult__fact,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [K: nat,A2: A] :
( ( times_times @ A @ ( semiring_char_0_fact @ A @ K ) @ ( gbinomial @ A @ A2 @ K ) )
= ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ A2 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K ) ) ) ) ).
% gbinomial_mult_fact
thf(fact_4379_gbinomial__prod__rev,axiom,
! [A: $tType] :
( ( ( semiring_char_0 @ A )
& ( semidom_divide @ A ) )
=> ( ( gbinomial @ A )
= ( ^ [A3: A,K3: nat] :
( divide_divide @ A
@ ( groups7121269368397514597t_prod @ nat @ A
@ ^ [I3: nat] : ( minus_minus @ A @ A3 @ ( semiring_1_of_nat @ A @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ K3 ) )
@ ( semiring_char_0_fact @ A @ K3 ) ) ) ) ) ).
% gbinomial_prod_rev
thf(fact_4380_horner__sum__eq__sum,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F3: B > A,A3: A,Xs: list @ B] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F3 @ ( nth @ B @ Xs @ N3 ) ) @ ( power_power @ A @ A3 @ N3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% horner_sum_eq_sum
thf(fact_4381_Chebyshev__sum__upper,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: nat,A2: nat > A,B2: nat > A] :
( ! [I2: nat,J2: nat] :
( ( ord_less_eq @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ N2 )
=> ( ord_less_eq @ A @ ( A2 @ I2 ) @ ( A2 @ J2 ) ) ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ N2 )
=> ( ord_less_eq @ A @ ( B2 @ J2 ) @ ( B2 @ I2 ) ) ) )
=> ( ord_less_eq @ A
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 )
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [K3: nat] : ( times_times @ A @ ( A2 @ K3 ) @ ( B2 @ K3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) )
@ ( times_times @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ A2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ B2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ) ) ).
% Chebyshev_sum_upper
thf(fact_4382_Chebyshev__sum__upper__nat,axiom,
! [N2: nat,A2: nat > nat,B2: nat > nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_eq @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ N2 )
=> ( ord_less_eq @ nat @ ( A2 @ I2 ) @ ( A2 @ J2 ) ) ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ N2 )
=> ( ord_less_eq @ nat @ ( B2 @ J2 ) @ ( B2 @ I2 ) ) ) )
=> ( ord_less_eq @ nat
@ ( times_times @ nat @ N2
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [I3: nat] : ( times_times @ nat @ ( A2 @ I3 ) @ ( B2 @ I3 ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) )
@ ( times_times @ nat @ ( groups7311177749621191930dd_sum @ nat @ nat @ A2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) @ ( groups7311177749621191930dd_sum @ nat @ nat @ B2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_4383_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( boolea3799213064322606851m_diff @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( bit_se1065995026697491101ons_or @ A ) @ ( bit_ri4277139882892585799ns_not @ A ) @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( bit_se5824344971392196577ns_xor @ A ) ) ) ).
% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_4384_finite__atLeastLessThan__int,axiom,
! [L: int,U: int] : ( finite_finite @ int @ ( set_or7035219750837199246ssThan @ int @ L @ U ) ) ).
% finite_atLeastLessThan_int
thf(fact_4385_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : ( finite_finite @ int @ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U ) ) ).
% finite_atLeastZeroLessThan_int
thf(fact_4386_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
! [L: int,U: int] :
( ( set_or7035219750837199246ssThan @ int @ L @ ( plus_plus @ int @ U @ ( one_one @ int ) ) )
= ( set_or1337092689740270186AtMost @ int @ L @ U ) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_4387_VEBT_Osize__gen_I1_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_list @ vEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% VEBT.size_gen(1)
thf(fact_4388_VEBT_Osize_I3_J,axiom,
! [X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size @ vEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_list @ vEBT_VEBT @ ( size_size @ vEBT_VEBT ) @ X13 ) @ ( size_size @ vEBT_VEBT @ X14 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% VEBT.size(3)
thf(fact_4389_case__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: nat > A,V2: num,N2: nat] :
( ( case_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V2 ) @ N2 ) )
= ( F2 @ ( plus_plus @ nat @ ( pred_numeral @ V2 ) @ N2 ) ) ) ).
% case_nat_add_eq_if
thf(fact_4390_rec__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: nat > A > A,V2: num,N2: nat] :
( ( rec_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( numeral_numeral @ nat @ V2 ) @ N2 ) )
= ( F2 @ ( plus_plus @ nat @ ( pred_numeral @ V2 ) @ N2 ) @ ( rec_nat @ A @ A2 @ F2 @ ( plus_plus @ nat @ ( pred_numeral @ V2 ) @ N2 ) ) ) ) ).
% rec_nat_add_eq_if
thf(fact_4391_old_Onat_Osimps_I7_J,axiom,
! [T: $tType,F1: T,F22: nat > T > T,Nat: nat] :
( ( rec_nat @ T @ F1 @ F22 @ ( suc @ Nat ) )
= ( F22 @ Nat @ ( rec_nat @ T @ F1 @ F22 @ Nat ) ) ) ).
% old.nat.simps(7)
thf(fact_4392_old_Onat_Osimps_I6_J,axiom,
! [T: $tType,F1: T,F22: nat > T > T] :
( ( rec_nat @ T @ F1 @ F22 @ ( zero_zero @ nat ) )
= F1 ) ).
% old.nat.simps(6)
thf(fact_4393_case__nat__numeral,axiom,
! [A: $tType,A2: A,F2: nat > A,V2: num] :
( ( case_nat @ A @ A2 @ F2 @ ( numeral_numeral @ nat @ V2 ) )
= ( F2 @ ( pred_numeral @ V2 ) ) ) ).
% case_nat_numeral
thf(fact_4394_rec__nat__numeral,axiom,
! [A: $tType,A2: A,F2: nat > A > A,V2: num] :
( ( rec_nat @ A @ A2 @ F2 @ ( numeral_numeral @ nat @ V2 ) )
= ( F2 @ ( pred_numeral @ V2 ) @ ( rec_nat @ A @ A2 @ F2 @ ( pred_numeral @ V2 ) ) ) ) ).
% rec_nat_numeral
thf(fact_4395_nat_Ocase__distrib,axiom,
! [B: $tType,A: $tType,H: A > B,F1: A,F22: nat > A,Nat: nat] :
( ( H @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( case_nat @ B @ ( H @ F1 )
@ ^ [X3: nat] : ( H @ ( F22 @ X3 ) )
@ Nat ) ) ).
% nat.case_distrib
thf(fact_4396_old_Onat_Osimps_I5_J,axiom,
! [A: $tType,F1: A,F22: nat > A,X22: nat] :
( ( case_nat @ A @ F1 @ F22 @ ( suc @ X22 ) )
= ( F22 @ X22 ) ) ).
% old.nat.simps(5)
thf(fact_4397_old_Onat_Osimps_I4_J,axiom,
! [A: $tType,F1: A,F22: nat > A] :
( ( case_nat @ A @ F1 @ F22 @ ( zero_zero @ nat ) )
= F1 ) ).
% old.nat.simps(4)
thf(fact_4398_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat
!= ( zero_zero @ nat ) )
= ( case_nat @ $o @ $false
@ ^ [Uu3: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_4399_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat
= ( zero_zero @ nat ) )
= ( case_nat @ $o @ $true
@ ^ [Uu3: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_4400_size__list__estimation,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: nat,F2: A > nat] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less @ nat @ Y @ ( F2 @ X ) )
=> ( ord_less @ nat @ Y @ ( size_list @ A @ F2 @ Xs2 ) ) ) ) ).
% size_list_estimation
thf(fact_4401_size__list__estimation_H,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: nat,F2: A > nat] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ Y @ ( F2 @ X ) )
=> ( ord_less_eq @ nat @ Y @ ( size_list @ A @ F2 @ Xs2 ) ) ) ) ).
% size_list_estimation'
thf(fact_4402_size__list__pointwise,axiom,
! [A: $tType,Xs2: list @ A,F2: A > nat,G: A > nat] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ nat @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ nat @ ( size_list @ A @ F2 @ Xs2 ) @ ( size_list @ A @ G @ Xs2 ) ) ) ).
% size_list_pointwise
thf(fact_4403_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N2 )
= ( case_nat @ $o @ $false @ ( ord_less_eq @ nat @ M ) @ N2 ) ) ).
% less_eq_nat.simps(2)
thf(fact_4404_max__Suc2,axiom,
! [M: nat,N2: nat] :
( ( ord_max @ nat @ M @ ( suc @ N2 ) )
= ( case_nat @ nat @ ( suc @ N2 )
@ ^ [M3: nat] : ( suc @ ( ord_max @ nat @ M3 @ N2 ) )
@ M ) ) ).
% max_Suc2
thf(fact_4405_max__Suc1,axiom,
! [N2: nat,M: nat] :
( ( ord_max @ nat @ ( suc @ N2 ) @ M )
= ( case_nat @ nat @ ( suc @ N2 )
@ ^ [M3: nat] : ( suc @ ( ord_max @ nat @ N2 @ M3 ) )
@ M ) ) ).
% max_Suc1
thf(fact_4406_diff__Suc,axiom,
! [M: nat,N2: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N2 ) )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [K3: nat] : K3
@ ( minus_minus @ nat @ M @ N2 ) ) ) ).
% diff_Suc
thf(fact_4407_Nitpick_Ocase__nat__unfold,axiom,
! [A: $tType] :
( ( case_nat @ A )
= ( ^ [X3: A,F3: nat > A,N3: nat] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ X3
@ ( F3 @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) ) ) ) ) ).
% Nitpick.case_nat_unfold
thf(fact_4408_old_Orec__nat__def,axiom,
! [T: $tType] :
( ( rec_nat @ T )
= ( ^ [F12: T,F23: nat > T > T,X3: nat] : ( the @ T @ ( rec_set_nat @ T @ F12 @ F23 @ X3 ) ) ) ) ).
% old.rec_nat_def
thf(fact_4409_rec__nat__0__imp,axiom,
! [A: $tType,F2: nat > A,F1: A,F22: nat > A > A] :
( ( F2
= ( rec_nat @ A @ F1 @ F22 ) )
=> ( ( F2 @ ( zero_zero @ nat ) )
= F1 ) ) ).
% rec_nat_0_imp
thf(fact_4410_rec__nat__Suc__imp,axiom,
! [A: $tType,F2: nat > A,F1: A,F22: nat > A > A,N2: nat] :
( ( F2
= ( rec_nat @ A @ F1 @ F22 ) )
=> ( ( F2 @ ( suc @ N2 ) )
= ( F22 @ N2 @ ( F2 @ N2 ) ) ) ) ).
% rec_nat_Suc_imp
thf(fact_4411_nat_Osplit__sels_I2_J,axiom,
! [A: $tType,P: A > $o,F1: A,F22: nat > A,Nat: nat] :
( ( P @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( ~ ( ( ( Nat
= ( zero_zero @ nat ) )
& ~ ( P @ F1 ) )
| ( ( Nat
= ( suc @ ( pred @ Nat ) ) )
& ~ ( P @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ) ).
% nat.split_sels(2)
thf(fact_4412_pred__def,axiom,
( pred
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [X24: nat] : X24 ) ) ).
% pred_def
thf(fact_4413_floor__rat__def,axiom,
( ( archim6421214686448440834_floor @ rat )
= ( ^ [X3: rat] :
( the @ int
@ ^ [Z5: int] :
( ( ord_less_eq @ rat @ ( ring_1_of_int @ rat @ Z5 ) @ X3 )
& ( ord_less @ rat @ X3 @ ( ring_1_of_int @ rat @ ( plus_plus @ int @ Z5 @ ( one_one @ int ) ) ) ) ) ) ) ) ).
% floor_rat_def
thf(fact_4414_floor__real__def,axiom,
( ( archim6421214686448440834_floor @ real )
= ( ^ [X3: real] :
( the @ int
@ ^ [Z5: int] :
( ( ord_less_eq @ real @ ( ring_1_of_int @ real @ Z5 ) @ X3 )
& ( ord_less @ real @ X3 @ ( ring_1_of_int @ real @ ( plus_plus @ int @ Z5 @ ( one_one @ int ) ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_4415_nat_Osplit__sels_I1_J,axiom,
! [A: $tType,P: A > $o,F1: A,F22: nat > A,Nat: nat] :
( ( P @ ( case_nat @ A @ F1 @ F22 @ Nat ) )
= ( ( ( Nat
= ( zero_zero @ nat ) )
=> ( P @ F1 ) )
& ( ( Nat
= ( suc @ ( pred @ Nat ) ) )
=> ( P @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ).
% nat.split_sels(1)
thf(fact_4416_wmax__insertI,axiom,
! [Y: product_prod @ nat @ nat,YS: set @ ( product_prod @ nat @ nat ),X: product_prod @ nat @ nat,XS: set @ ( product_prod @ nat @ nat )] :
( ( member @ ( product_prod @ nat @ nat ) @ Y @ YS )
=> ( ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ X @ Y ) @ fun_pair_leq )
=> ( ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ XS @ YS ) @ fun_max_weak )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( insert2 @ ( product_prod @ nat @ nat ) @ X @ XS ) @ YS ) @ fun_max_weak ) ) ) ) ).
% wmax_insertI
thf(fact_4417_wmin__insertI,axiom,
! [X: product_prod @ nat @ nat,XS: set @ ( product_prod @ nat @ nat ),Y: product_prod @ nat @ nat,YS: set @ ( product_prod @ nat @ nat )] :
( ( member @ ( product_prod @ nat @ nat ) @ X @ XS )
=> ( ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ X @ Y ) @ fun_pair_leq )
=> ( ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ XS @ YS ) @ fun_min_weak )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ XS @ ( insert2 @ ( product_prod @ nat @ nat ) @ Y @ YS ) ) @ fun_min_weak ) ) ) ) ).
% wmin_insertI
thf(fact_4418_bezw__0,axiom,
! [X: nat] :
( ( bezw @ X @ ( zero_zero @ nat ) )
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) ).
% bezw_0
thf(fact_4419_Suc__0__mod__numeral,axiom,
! [K: num] :
( ( modulo_modulo @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ K ) )
= ( product_snd @ nat @ nat @ ( unique8689654367752047608divmod @ nat @ one2 @ K ) ) ) ).
% Suc_0_mod_numeral
thf(fact_4420_numeral__mod__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [K: num,L: num] :
( ( modulo_modulo @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ A @ L ) )
= ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ K @ L ) ) ) ) ).
% numeral_mod_numeral
thf(fact_4421_snd__divmod__nat,axiom,
! [M: nat,N2: nat] :
( ( product_snd @ nat @ nat @ ( divmod_nat @ M @ N2 ) )
= ( modulo_modulo @ nat @ M @ N2 ) ) ).
% snd_divmod_nat
thf(fact_4422_one__mod__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num] :
( ( modulo_modulo @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) )
= ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ one2 @ N2 ) ) ) ) ).
% one_mod_numeral
thf(fact_4423_wmin__emptyI,axiom,
! [X6: set @ ( product_prod @ nat @ nat )] : ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ X6 @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ fun_min_weak ) ).
% wmin_emptyI
thf(fact_4424_wmax__emptyI,axiom,
! [X6: set @ ( product_prod @ nat @ nat )] :
( ( finite_finite @ ( product_prod @ nat @ nat ) @ X6 )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) @ X6 ) @ fun_max_weak ) ) ).
% wmax_emptyI
thf(fact_4425_divides__aux__def,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ( ( unique5940410009612947441es_aux @ A )
= ( ^ [Qr: product_prod @ A @ A] :
( ( product_snd @ A @ A @ Qr )
= ( zero_zero @ A ) ) ) ) ) ).
% divides_aux_def
thf(fact_4426_snd__divmod,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( product_snd @ A @ A @ ( unique8689654367752047608divmod @ A @ M @ N2 ) )
= ( modulo_modulo @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% snd_divmod
thf(fact_4427_smin__insertI,axiom,
! [X: product_prod @ nat @ nat,XS: set @ ( product_prod @ nat @ nat ),Y: product_prod @ nat @ nat,YS: set @ ( product_prod @ nat @ nat )] :
( ( member @ ( product_prod @ nat @ nat ) @ X @ XS )
=> ( ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ X @ Y ) @ fun_pair_less )
=> ( ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ XS @ YS ) @ fun_min_strict )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ XS @ ( insert2 @ ( product_prod @ nat @ nat ) @ Y @ YS ) ) @ fun_min_strict ) ) ) ) ).
% smin_insertI
thf(fact_4428_smax__insertI,axiom,
! [Y: product_prod @ nat @ nat,Y6: set @ ( product_prod @ nat @ nat ),X: product_prod @ nat @ nat,X6: set @ ( product_prod @ nat @ nat )] :
( ( member @ ( product_prod @ nat @ nat ) @ Y @ Y6 )
=> ( ( member @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ X @ Y ) @ fun_pair_less )
=> ( ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ X6 @ Y6 ) @ fun_max_strict )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( insert2 @ ( product_prod @ nat @ nat ) @ X @ X6 ) @ Y6 ) @ fun_max_strict ) ) ) ) ).
% smax_insertI
thf(fact_4429_Suc__0__div__numeral,axiom,
! [K: num] :
( ( divide_divide @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( numeral_numeral @ nat @ K ) )
= ( product_fst @ nat @ nat @ ( unique8689654367752047608divmod @ nat @ one2 @ K ) ) ) ).
% Suc_0_div_numeral
thf(fact_4430_nth__rotate1,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rotate1 @ A @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( modulo_modulo @ nat @ ( suc @ N2 ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% nth_rotate1
thf(fact_4431_set__rotate1,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( rotate1 @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rotate1
thf(fact_4432_numeral__div__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [K: num,L: num] :
( ( divide_divide @ A @ ( numeral_numeral @ A @ K ) @ ( numeral_numeral @ A @ L ) )
= ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ K @ L ) ) ) ) ).
% numeral_div_numeral
thf(fact_4433_rotate1__length01,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( ( rotate1 @ A @ Xs2 )
= Xs2 ) ) ).
% rotate1_length01
thf(fact_4434_fst__divmod__nat,axiom,
! [M: nat,N2: nat] :
( ( product_fst @ nat @ nat @ ( divmod_nat @ M @ N2 ) )
= ( divide_divide @ nat @ M @ N2 ) ) ).
% fst_divmod_nat
thf(fact_4435_one__div__numeral,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [N2: num] :
( ( divide_divide @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) )
= ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ one2 @ N2 ) ) ) ) ).
% one_div_numeral
thf(fact_4436_less__by__empty,axiom,
! [A: $tType,A4: set @ ( product_prod @ A @ A ),B4: set @ ( product_prod @ A @ A )] :
( ( A4
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ A4 @ B4 ) ) ).
% less_by_empty
thf(fact_4437_fst__divmod,axiom,
! [A: $tType] :
( ( unique1627219031080169319umeral @ A )
=> ! [M: num,N2: num] :
( ( product_fst @ A @ A @ ( unique8689654367752047608divmod @ A @ M @ N2 ) )
= ( divide_divide @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% fst_divmod
thf(fact_4438_quotient__of__denom__pos_H,axiom,
! [R2: rat] : ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ ( quotient_of @ R2 ) ) ) ).
% quotient_of_denom_pos'
thf(fact_4439_smax__emptyI,axiom,
! [Y6: set @ ( product_prod @ nat @ nat )] :
( ( finite_finite @ ( product_prod @ nat @ nat ) @ Y6 )
=> ( ( Y6
!= ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) @ Y6 ) @ fun_max_strict ) ) ) ).
% smax_emptyI
thf(fact_4440_smin__emptyI,axiom,
! [X6: set @ ( product_prod @ nat @ nat )] :
( ( X6
!= ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) )
=> ( member @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ X6 @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ fun_min_strict ) ) ).
% smin_emptyI
thf(fact_4441_minus__one__mod__numeral,axiom,
! [N2: num] :
( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( adjust_mod @ ( numeral_numeral @ int @ N2 ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ one2 @ N2 ) ) ) ) ).
% minus_one_mod_numeral
thf(fact_4442_one__mod__minus__numeral,axiom,
! [N2: num] :
( ( modulo_modulo @ int @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( uminus_uminus @ int @ ( adjust_mod @ ( numeral_numeral @ int @ N2 ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ one2 @ N2 ) ) ) ) ) ).
% one_mod_minus_numeral
thf(fact_4443_numeral__mod__minus__numeral,axiom,
! [M: num,N2: num] :
( ( modulo_modulo @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( uminus_uminus @ int @ ( adjust_mod @ ( numeral_numeral @ int @ N2 ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ M @ N2 ) ) ) ) ) ).
% numeral_mod_minus_numeral
thf(fact_4444_minus__numeral__mod__numeral,axiom,
! [M: num,N2: num] :
( ( modulo_modulo @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( adjust_mod @ ( numeral_numeral @ int @ N2 ) @ ( product_snd @ int @ int @ ( unique8689654367752047608divmod @ int @ M @ N2 ) ) ) ) ).
% minus_numeral_mod_numeral
thf(fact_4445_Divides_Oadjust__mod__def,axiom,
( adjust_mod
= ( ^ [L2: int,R5: int] :
( if @ int
@ ( R5
= ( zero_zero @ int ) )
@ ( zero_zero @ int )
@ ( minus_minus @ int @ L2 @ R5 ) ) ) ) ).
% Divides.adjust_mod_def
thf(fact_4446_bezw__non__0,axiom,
! [Y: nat,X: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ Y )
=> ( ( bezw @ X @ Y )
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Y ) ) ) ) ) ) ) ).
% bezw_non_0
thf(fact_4447_bezw_Osimps,axiom,
( bezw
= ( ^ [X3: nat,Y2: nat] :
( if @ ( product_prod @ int @ int )
@ ( Y2
= ( zero_zero @ nat ) )
@ ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Y2 @ ( modulo_modulo @ nat @ X3 @ Y2 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Y2 @ ( modulo_modulo @ nat @ X3 @ Y2 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Y2 @ ( modulo_modulo @ nat @ X3 @ Y2 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X3 @ Y2 ) ) ) ) ) ) ) ) ).
% bezw.simps
thf(fact_4448_bezw_Oelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ int @ int] :
( ( ( bezw @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Xa2 ) ) ) ) ) ) ) ) ) ).
% bezw.elims
thf(fact_4449_size__prod__simp,axiom,
! [B: $tType,A: $tType] :
( ( basic_BNF_size_prod @ A @ B )
= ( ^ [F3: A > nat,G2: B > nat,P5: product_prod @ A @ B] : ( plus_plus @ nat @ ( plus_plus @ nat @ ( F3 @ ( product_fst @ A @ B @ P5 ) ) @ ( G2 @ ( product_snd @ A @ B @ P5 ) ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ).
% size_prod_simp
thf(fact_4450_in__set__enumerate__eq,axiom,
! [A: $tType,P6: product_prod @ nat @ A,N2: nat,Xs2: list @ A] :
( ( member @ ( product_prod @ nat @ A ) @ P6 @ ( set2 @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N2 @ Xs2 ) ) )
= ( ( ord_less_eq @ nat @ N2 @ ( product_fst @ nat @ A @ P6 ) )
& ( ord_less @ nat @ ( product_fst @ nat @ A @ P6 ) @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 ) )
& ( ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( product_fst @ nat @ A @ P6 ) @ N2 ) )
= ( product_snd @ nat @ A @ P6 ) ) ) ) ).
% in_set_enumerate_eq
thf(fact_4451_bezw_Opelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ int @ int] :
( ( ( bezw @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ bezw_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( one_one @ int ) @ ( zero_zero @ int ) ) ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( product_Pair @ int @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( minus_minus @ int @ ( product_fst @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) @ ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ X @ Xa2 ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ bezw_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% bezw.pelims
thf(fact_4452_normalize__def,axiom,
( normalize
= ( ^ [P5: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int ) @ ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ P5 ) ) @ ( product_Pair @ int @ int @ ( divide_divide @ int @ ( product_fst @ int @ int @ P5 ) @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) @ ( divide_divide @ int @ ( product_snd @ int @ int @ P5 ) @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) )
@ ( if @ ( product_prod @ int @ int )
@ ( ( product_snd @ int @ int @ P5 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( divide_divide @ int @ ( product_fst @ int @ int @ P5 ) @ ( uminus_uminus @ int @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) ) @ ( divide_divide @ int @ ( product_snd @ int @ int @ P5 ) @ ( uminus_uminus @ int @ ( gcd_gcd @ int @ ( product_fst @ int @ int @ P5 ) @ ( product_snd @ int @ int @ P5 ) ) ) ) ) ) ) ) ) ).
% normalize_def
thf(fact_4453_gcd__right__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ B2 )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd_right_idem
thf(fact_4454_gcd__left__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ A2 @ ( gcd_gcd @ A @ A2 @ B2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd_left_idem
thf(fact_4455_gcd__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( ( gcd_gcd @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% gcd_eq_0_iff
thf(fact_4456_gcd__add1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N2: A] :
( ( gcd_gcd @ A @ ( plus_plus @ A @ M @ N2 ) @ N2 )
= ( gcd_gcd @ A @ M @ N2 ) ) ) ).
% gcd_add1
thf(fact_4457_gcd__add2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N2: A] :
( ( gcd_gcd @ A @ M @ ( plus_plus @ A @ M @ N2 ) )
= ( gcd_gcd @ A @ M @ N2 ) ) ) ).
% gcd_add2
thf(fact_4458_gcd_Obottom__left__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_gcd @ A @ ( one_one @ A ) @ A2 )
= ( one_one @ A ) ) ) ).
% gcd.bottom_left_bottom
thf(fact_4459_gcd_Obottom__right__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_gcd @ A @ A2 @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% gcd.bottom_right_bottom
thf(fact_4460_gcd__neg2,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd_neg2
thf(fact_4461_gcd__neg1,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd_neg1
thf(fact_4462_gcd__exp,axiom,
! [A: $tType] :
( ( semiri6843258321239162965malize @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( gcd_gcd @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) )
= ( power_power @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ N2 ) ) ) ).
% gcd_exp
thf(fact_4463_gcd__dvd1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ A2 ) ) ).
% gcd_dvd1
thf(fact_4464_gcd__dvd2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ B2 ) ) ).
% gcd_dvd2
thf(fact_4465_gcd__greatest__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( gcd_gcd @ A @ B2 @ C2 ) )
= ( ( dvd_dvd @ A @ A2 @ B2 )
& ( dvd_dvd @ A @ A2 @ C2 ) ) ) ) ).
% gcd_greatest_iff
thf(fact_4466_gcd__1__int,axiom,
! [M: int] :
( ( gcd_gcd @ int @ M @ ( one_one @ int ) )
= ( one_one @ int ) ) ).
% gcd_1_int
thf(fact_4467_gcd__neg1__int,axiom,
! [X: int,Y: int] :
( ( gcd_gcd @ int @ ( uminus_uminus @ int @ X ) @ Y )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_neg1_int
thf(fact_4468_gcd__neg2__int,axiom,
! [X: int,Y: int] :
( ( gcd_gcd @ int @ X @ ( uminus_uminus @ int @ Y ) )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_neg2_int
thf(fact_4469_gcd__abs2__int,axiom,
! [X: int,Y: int] :
( ( gcd_gcd @ int @ X @ ( abs_abs @ int @ Y ) )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_abs2_int
thf(fact_4470_gcd__abs1__int,axiom,
! [X: int,Y: int] :
( ( gcd_gcd @ int @ ( abs_abs @ int @ X ) @ Y )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_abs1_int
thf(fact_4471_abs__gcd__int,axiom,
! [X: int,Y: int] :
( ( abs_abs @ int @ ( gcd_gcd @ int @ X @ Y ) )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% abs_gcd_int
thf(fact_4472_gcd__neg__numeral__1,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [N2: num,A2: A] :
( ( gcd_gcd @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) @ A2 )
= ( gcd_gcd @ A @ ( numeral_numeral @ A @ N2 ) @ A2 ) ) ) ).
% gcd_neg_numeral_1
thf(fact_4473_gcd__neg__numeral__2,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,N2: num] :
( ( gcd_gcd @ A @ A2 @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( gcd_gcd @ A @ A2 @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% gcd_neg_numeral_2
thf(fact_4474_is__unit__gcd__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( one_one @ A ) )
= ( ( gcd_gcd @ A @ A2 @ B2 )
= ( one_one @ A ) ) ) ) ).
% is_unit_gcd_iff
thf(fact_4475_gcd__pos__int,axiom,
! [M: int,N2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ ( gcd_gcd @ int @ M @ N2 ) )
= ( ( M
!= ( zero_zero @ int ) )
| ( N2
!= ( zero_zero @ int ) ) ) ) ).
% gcd_pos_int
thf(fact_4476_gcd__neg__numeral__2__int,axiom,
! [X: int,N2: num] :
( ( gcd_gcd @ int @ X @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( gcd_gcd @ int @ X @ ( numeral_numeral @ int @ N2 ) ) ) ).
% gcd_neg_numeral_2_int
thf(fact_4477_gcd__neg__numeral__1__int,axiom,
! [N2: num,X: int] :
( ( gcd_gcd @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) @ X )
= ( gcd_gcd @ int @ ( numeral_numeral @ int @ N2 ) @ X ) ) ).
% gcd_neg_numeral_1_int
thf(fact_4478_gcd__0__int,axiom,
! [X: int] :
( ( gcd_gcd @ int @ X @ ( zero_zero @ int ) )
= ( abs_abs @ int @ X ) ) ).
% gcd_0_int
thf(fact_4479_gcd__0__left__int,axiom,
! [X: int] :
( ( gcd_gcd @ int @ ( zero_zero @ int ) @ X )
= ( abs_abs @ int @ X ) ) ).
% gcd_0_left_int
thf(fact_4480_gcd__proj2__if__dvd__int,axiom,
! [Y: int,X: int] :
( ( dvd_dvd @ int @ Y @ X )
=> ( ( gcd_gcd @ int @ X @ Y )
= ( abs_abs @ int @ Y ) ) ) ).
% gcd_proj2_if_dvd_int
thf(fact_4481_gcd__proj1__if__dvd__int,axiom,
! [X: int,Y: int] :
( ( dvd_dvd @ int @ X @ Y )
=> ( ( gcd_gcd @ int @ X @ Y )
= ( abs_abs @ int @ X ) ) ) ).
% gcd_proj1_if_dvd_int
thf(fact_4482_gcd__diff2,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [N2: A,M: A] :
( ( gcd_gcd @ A @ ( minus_minus @ A @ N2 @ M ) @ N2 )
= ( gcd_gcd @ A @ M @ N2 ) ) ) ).
% gcd_diff2
thf(fact_4483_gcd__diff1,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [M: A,N2: A] :
( ( gcd_gcd @ A @ ( minus_minus @ A @ M @ N2 ) @ N2 )
= ( gcd_gcd @ A @ M @ N2 ) ) ) ).
% gcd_diff1
thf(fact_4484_gcd__red__int,axiom,
( ( gcd_gcd @ int )
= ( ^ [X3: int,Y2: int] : ( gcd_gcd @ int @ Y2 @ ( modulo_modulo @ int @ X3 @ Y2 ) ) ) ) ).
% gcd_red_int
thf(fact_4485_gcd__mono,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ B2 @ D2 )
=> ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( gcd_gcd @ A @ C2 @ D2 ) ) ) ) ) ).
% gcd_mono
thf(fact_4486_dvd__gcdD1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( gcd_gcd @ A @ B2 @ C2 ) )
=> ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_gcdD1
thf(fact_4487_dvd__gcdD2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( gcd_gcd @ A @ B2 @ C2 ) )
=> ( dvd_dvd @ A @ A2 @ C2 ) ) ) ).
% dvd_gcdD2
thf(fact_4488_gcd__dvdI1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% gcd_dvdI1
thf(fact_4489_gcd__dvdI2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ C2 )
=> ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% gcd_dvdI2
thf(fact_4490_gcd__greatest,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( dvd_dvd @ A @ C2 @ ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ) ).
% gcd_greatest
thf(fact_4491_gcd__dvd__antisym,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( gcd_gcd @ A @ C2 @ D2 ) )
=> ( ( dvd_dvd @ A @ ( gcd_gcd @ A @ C2 @ D2 ) @ ( gcd_gcd @ A @ A2 @ B2 ) )
=> ( ( gcd_gcd @ A @ A2 @ B2 )
= ( gcd_gcd @ A @ C2 @ D2 ) ) ) ) ) ).
% gcd_dvd_antisym
thf(fact_4492_gcd_Oleft__commute,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( gcd_gcd @ A @ B2 @ ( gcd_gcd @ A @ A2 @ C2 ) )
= ( gcd_gcd @ A @ A2 @ ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd.left_commute
thf(fact_4493_gcd_Ocommute,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( gcd_gcd @ A )
= ( ^ [A3: A,B3: A] : ( gcd_gcd @ A @ B3 @ A3 ) ) ) ) ).
% gcd.commute
thf(fact_4494_gcd_Oassoc,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( gcd_gcd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ C2 )
= ( gcd_gcd @ A @ A2 @ ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd.assoc
thf(fact_4495_gcd__idem__int,axiom,
! [X: int] :
( ( gcd_gcd @ int @ X @ X )
= ( abs_abs @ int @ X ) ) ).
% gcd_idem_int
thf(fact_4496_gcd__add__mult,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,K: A,N2: A] :
( ( gcd_gcd @ A @ M @ ( plus_plus @ A @ ( times_times @ A @ K @ M ) @ N2 ) )
= ( gcd_gcd @ A @ M @ N2 ) ) ) ).
% gcd_add_mult
thf(fact_4497_gcd__dvd__prod,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,K: A] : ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( times_times @ A @ K @ B2 ) ) ) ).
% gcd_dvd_prod
thf(fact_4498_gcd__ge__0__int,axiom,
! [X: int,Y: int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( gcd_gcd @ int @ X @ Y ) ) ).
% gcd_ge_0_int
thf(fact_4499_bezout__int,axiom,
! [X: int,Y: int] :
? [U3: int,V3: int] :
( ( plus_plus @ int @ ( times_times @ int @ U3 @ X ) @ ( times_times @ int @ V3 @ Y ) )
= ( gcd_gcd @ int @ X @ Y ) ) ).
% bezout_int
thf(fact_4500_gcd__mult__distrib__int,axiom,
! [K: int,M: int,N2: int] :
( ( times_times @ int @ ( abs_abs @ int @ K ) @ ( gcd_gcd @ int @ M @ N2 ) )
= ( gcd_gcd @ int @ ( times_times @ int @ K @ M ) @ ( times_times @ int @ K @ N2 ) ) ) ).
% gcd_mult_distrib_int
thf(fact_4501_gcd__mult__unit2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ B2 @ ( times_times @ A @ C2 @ A2 ) )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_mult_unit2
thf(fact_4502_gcd__mult__unit1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ ( times_times @ A @ B2 @ A2 ) @ C2 )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_mult_unit1
thf(fact_4503_gcd__div__unit2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ B2 @ ( divide_divide @ A @ C2 @ A2 ) )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_div_unit2
thf(fact_4504_gcd__div__unit1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( gcd_gcd @ A @ ( divide_divide @ A @ B2 @ A2 ) @ C2 )
= ( gcd_gcd @ A @ B2 @ C2 ) ) ) ) ).
% gcd_div_unit1
thf(fact_4505_gcd__le1__int,axiom,
! [A2: int,B2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ A2 )
=> ( ord_less_eq @ int @ ( gcd_gcd @ int @ A2 @ B2 ) @ A2 ) ) ).
% gcd_le1_int
thf(fact_4506_gcd__le2__int,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( gcd_gcd @ int @ A2 @ B2 ) @ B2 ) ) ).
% gcd_le2_int
thf(fact_4507_gcd__cases__int,axiom,
! [X: int,Y: int,P: int > $o] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( P @ ( gcd_gcd @ int @ X @ Y ) ) ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ Y @ ( zero_zero @ int ) )
=> ( P @ ( gcd_gcd @ int @ X @ ( uminus_uminus @ int @ Y ) ) ) ) )
=> ( ( ( ord_less_eq @ int @ X @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( P @ ( gcd_gcd @ int @ ( uminus_uminus @ int @ X ) @ Y ) ) ) )
=> ( ( ( ord_less_eq @ int @ X @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ Y @ ( zero_zero @ int ) )
=> ( P @ ( gcd_gcd @ int @ ( uminus_uminus @ int @ X ) @ ( uminus_uminus @ int @ Y ) ) ) ) )
=> ( P @ ( gcd_gcd @ int @ X @ Y ) ) ) ) ) ) ).
% gcd_cases_int
thf(fact_4508_gcd__unique__int,axiom,
! [D2: int,A2: int,B2: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ D2 )
& ( dvd_dvd @ int @ D2 @ A2 )
& ( dvd_dvd @ int @ D2 @ B2 )
& ! [E3: int] :
( ( ( dvd_dvd @ int @ E3 @ A2 )
& ( dvd_dvd @ int @ E3 @ B2 ) )
=> ( dvd_dvd @ int @ E3 @ D2 ) ) )
= ( D2
= ( gcd_gcd @ int @ A2 @ B2 ) ) ) ).
% gcd_unique_int
thf(fact_4509_gcd__non__0__int,axiom,
! [Y: int,X: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Y )
=> ( ( gcd_gcd @ int @ X @ Y )
= ( gcd_gcd @ int @ Y @ ( modulo_modulo @ int @ X @ Y ) ) ) ) ).
% gcd_non_0_int
thf(fact_4510_gcd__code__int,axiom,
( ( gcd_gcd @ int )
= ( ^ [K3: int,L2: int] :
( abs_abs @ int
@ ( if @ int
@ ( L2
= ( zero_zero @ int ) )
@ K3
@ ( gcd_gcd @ int @ L2 @ ( modulo_modulo @ int @ ( abs_abs @ int @ K3 ) @ ( abs_abs @ int @ L2 ) ) ) ) ) ) ) ).
% gcd_code_int
thf(fact_4511_nth__enumerate__eq,axiom,
! [A: $tType,M: nat,Xs2: list @ A,N2: nat] :
( ( ord_less @ nat @ M @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N2 @ Xs2 ) @ M )
= ( product_Pair @ nat @ A @ ( plus_plus @ nat @ N2 @ M ) @ ( nth @ A @ Xs2 @ M ) ) ) ) ).
% nth_enumerate_eq
thf(fact_4512_prod__decode__aux_Opelims,axiom,
! [X: nat,Xa2: nat,Y: product_prod @ nat @ nat] :
( ( ( nat_prod_decode_aux @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ nat_pr5047031295181774490ux_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( product_Pair @ nat @ nat @ Xa2 @ ( minus_minus @ nat @ X @ Xa2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ Xa2 @ X )
=> ( Y
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus @ nat @ Xa2 @ ( suc @ X ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ nat_pr5047031295181774490ux_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% prod_decode_aux.pelims
thf(fact_4513_set__update__distinct,axiom,
! [A: $tType,Xs2: list @ A,N2: nat,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( set2 @ A @ ( list_update @ A @ Xs2 @ N2 @ X ) )
= ( insert2 @ A @ X @ ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert2 @ A @ ( nth @ A @ Xs2 @ N2 ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% set_update_distinct
thf(fact_4514_drop__bit__rec,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4197421643247451524op_bit @ A )
= ( ^ [N3: nat,A3: A] :
( if @ A
@ ( N3
= ( zero_zero @ nat ) )
@ A3
@ ( bit_se4197421643247451524op_bit @ A @ ( minus_minus @ nat @ N3 @ ( one_one @ nat ) ) @ ( divide_divide @ A @ A3 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_4515_root__powr__inverse,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( root @ N2 @ X )
= ( powr @ real @ X @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_4516_gcd__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( gcd_gcd @ nat @ A2 @ B2 )
= ( zero_zero @ nat ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.eq_neutr_iff
thf(fact_4517_gcd__nat_Oleft__neutral,axiom,
! [A2: nat] :
( ( gcd_gcd @ nat @ ( zero_zero @ nat ) @ A2 )
= A2 ) ).
% gcd_nat.left_neutral
thf(fact_4518_gcd__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( zero_zero @ nat )
= ( gcd_gcd @ nat @ A2 @ B2 ) )
= ( ( A2
= ( zero_zero @ nat ) )
& ( B2
= ( zero_zero @ nat ) ) ) ) ).
% gcd_nat.neutr_eq_iff
thf(fact_4519_gcd__nat_Oright__neutral,axiom,
! [A2: nat] :
( ( gcd_gcd @ nat @ A2 @ ( zero_zero @ nat ) )
= A2 ) ).
% gcd_nat.right_neutral
thf(fact_4520_gcd__0__nat,axiom,
! [X: nat] :
( ( gcd_gcd @ nat @ X @ ( zero_zero @ nat ) )
= X ) ).
% gcd_0_nat
thf(fact_4521_gcd__0__left__nat,axiom,
! [X: nat] :
( ( gcd_gcd @ nat @ ( zero_zero @ nat ) @ X )
= X ) ).
% gcd_0_left_nat
thf(fact_4522_gcd__1__nat,axiom,
! [M: nat] :
( ( gcd_gcd @ nat @ M @ ( one_one @ nat ) )
= ( one_one @ nat ) ) ).
% gcd_1_nat
thf(fact_4523_gcd__nat_Oabsorb1,axiom,
! [A2: nat,B2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( gcd_gcd @ nat @ A2 @ B2 )
= A2 ) ) ).
% gcd_nat.absorb1
thf(fact_4524_gcd__nat_Oabsorb2,axiom,
! [B2: nat,A2: nat] :
( ( dvd_dvd @ nat @ B2 @ A2 )
=> ( ( gcd_gcd @ nat @ A2 @ B2 )
= B2 ) ) ).
% gcd_nat.absorb2
thf(fact_4525_gcd__nat_Obounded__iff,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( dvd_dvd @ nat @ A2 @ ( gcd_gcd @ nat @ B2 @ C2 ) )
= ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( dvd_dvd @ nat @ A2 @ C2 ) ) ) ).
% gcd_nat.bounded_iff
thf(fact_4526_gcd__proj1__if__dvd__nat,axiom,
! [X: nat,Y: nat] :
( ( dvd_dvd @ nat @ X @ Y )
=> ( ( gcd_gcd @ nat @ X @ Y )
= X ) ) ).
% gcd_proj1_if_dvd_nat
thf(fact_4527_gcd__proj2__if__dvd__nat,axiom,
! [Y: nat,X: nat] :
( ( dvd_dvd @ nat @ Y @ X )
=> ( ( gcd_gcd @ nat @ X @ Y )
= Y ) ) ).
% gcd_proj2_if_dvd_nat
thf(fact_4528_gcd__Suc__0,axiom,
! [M: nat] :
( ( gcd_gcd @ nat @ M @ ( suc @ ( zero_zero @ nat ) ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% gcd_Suc_0
thf(fact_4529_gcd__pos__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( gcd_gcd @ nat @ M @ N2 ) )
= ( ( M
!= ( zero_zero @ nat ) )
| ( N2
!= ( zero_zero @ nat ) ) ) ) ).
% gcd_pos_nat
thf(fact_4530_drop__bit__nonnegative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( bit_se4197421643247451524op_bit @ int @ N2 @ K ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ K ) ) ).
% drop_bit_nonnegative_int_iff
thf(fact_4531_drop__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less @ int @ ( bit_se4197421643247451524op_bit @ int @ N2 @ K ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ K @ ( zero_zero @ int ) ) ) ).
% drop_bit_negative_int_iff
thf(fact_4532_drop__bit__of__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se4197421643247451524op_bit @ A @ N2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% drop_bit_of_0
thf(fact_4533_real__root__zero,axiom,
! [N2: nat] :
( ( root @ N2 @ ( zero_zero @ real ) )
= ( zero_zero @ real ) ) ).
% real_root_zero
thf(fact_4534_drop__bit__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) )
= ( bit_se4197421643247451524op_bit @ A @ ( plus_plus @ nat @ M @ N2 ) @ A2 ) ) ) ).
% drop_bit_drop_bit
thf(fact_4535_gcd__int__int__eq,axiom,
! [M: nat,N2: nat] :
( ( gcd_gcd @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) )
= ( semiring_1_of_nat @ int @ ( gcd_gcd @ nat @ M @ N2 ) ) ) ).
% gcd_int_int_eq
thf(fact_4536_real__root__Suc__0,axiom,
! [X: real] :
( ( root @ ( suc @ ( zero_zero @ nat ) ) @ X )
= X ) ).
% real_root_Suc_0
thf(fact_4537_real__root__eq__iff,axiom,
! [N2: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( root @ N2 @ X )
= ( root @ N2 @ Y ) )
= ( X = Y ) ) ) ).
% real_root_eq_iff
thf(fact_4538_root__0,axiom,
! [X: real] :
( ( root @ ( zero_zero @ nat ) @ X )
= ( zero_zero @ real ) ) ).
% root_0
thf(fact_4539_drop__bit__of__bool,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,B2: $o] :
( ( bit_se4197421643247451524op_bit @ A @ N2 @ ( zero_neq_one_of_bool @ A @ B2 ) )
= ( zero_neq_one_of_bool @ A
@ ( ( N2
= ( zero_zero @ nat ) )
& B2 ) ) ) ) ).
% drop_bit_of_bool
thf(fact_4540_drop__bit__of__Suc__0,axiom,
! [N2: nat] :
( ( bit_se4197421643247451524op_bit @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) )
= ( zero_neq_one_of_bool @ nat
@ ( N2
= ( zero_zero @ nat ) ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_4541_drop__bit__Suc__minus__bit0,axiom,
! [N2: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ N2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ K ) ) ) ) ).
% drop_bit_Suc_minus_bit0
thf(fact_4542_drop__bit__Suc__bit0,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N2 ) @ ( numeral_numeral @ A @ ( bit0 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N2 @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_Suc_bit0
thf(fact_4543_drop__bit__Suc__bit1,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N2 ) @ ( numeral_numeral @ A @ ( bit1 @ K ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N2 @ ( numeral_numeral @ A @ K ) ) ) ) ).
% drop_bit_Suc_bit1
thf(fact_4544_real__root__eq__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( root @ N2 @ X )
= ( zero_zero @ real ) )
= ( X
= ( zero_zero @ real ) ) ) ) ).
% real_root_eq_0_iff
thf(fact_4545_real__root__less__iff,axiom,
! [N2: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) )
= ( ord_less @ real @ X @ Y ) ) ) ).
% real_root_less_iff
thf(fact_4546_real__root__le__iff,axiom,
! [N2: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) )
= ( ord_less_eq @ real @ X @ Y ) ) ) ).
% real_root_le_iff
thf(fact_4547_real__root__one,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( root @ N2 @ ( one_one @ real ) )
= ( one_one @ real ) ) ) ).
% real_root_one
thf(fact_4548_real__root__eq__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( root @ N2 @ X )
= ( one_one @ real ) )
= ( X
= ( one_one @ real ) ) ) ) ).
% real_root_eq_1_iff
thf(fact_4549_drop__bit__of__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat] :
( ( bit_se4197421643247451524op_bit @ A @ N2 @ ( one_one @ A ) )
= ( zero_neq_one_of_bool @ A
@ ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% drop_bit_of_1
thf(fact_4550_gcd__nat__abs__right__eq,axiom,
! [N2: nat,K: int] :
( ( gcd_gcd @ nat @ N2 @ ( nat2 @ ( abs_abs @ int @ K ) ) )
= ( nat2 @ ( gcd_gcd @ int @ ( semiring_1_of_nat @ int @ N2 ) @ K ) ) ) ).
% gcd_nat_abs_right_eq
thf(fact_4551_gcd__nat__abs__left__eq,axiom,
! [K: int,N2: nat] :
( ( gcd_gcd @ nat @ ( nat2 @ ( abs_abs @ int @ K ) ) @ N2 )
= ( nat2 @ ( gcd_gcd @ int @ K @ ( semiring_1_of_nat @ int @ N2 ) ) ) ) ).
% gcd_nat_abs_left_eq
thf(fact_4552_real__root__lt__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( root @ N2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ X @ ( zero_zero @ real ) ) ) ) ).
% real_root_lt_0_iff
thf(fact_4553_real__root__gt__0__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( root @ N2 @ Y ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ Y ) ) ) ).
% real_root_gt_0_iff
thf(fact_4554_real__root__le__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( root @ N2 @ X ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ X @ ( zero_zero @ real ) ) ) ) ).
% real_root_le_0_iff
thf(fact_4555_real__root__ge__0__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N2 @ Y ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y ) ) ) ).
% real_root_ge_0_iff
thf(fact_4556_real__root__gt__1__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( one_one @ real ) @ ( root @ N2 @ Y ) )
= ( ord_less @ real @ ( one_one @ real ) @ Y ) ) ) ).
% real_root_gt_1_iff
thf(fact_4557_real__root__lt__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( root @ N2 @ X ) @ ( one_one @ real ) )
= ( ord_less @ real @ X @ ( one_one @ real ) ) ) ) ).
% real_root_lt_1_iff
thf(fact_4558_real__root__ge__1__iff,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ ( root @ N2 @ Y ) )
= ( ord_less_eq @ real @ ( one_one @ real ) @ Y ) ) ) ).
% real_root_ge_1_iff
thf(fact_4559_real__root__le__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( root @ N2 @ X ) @ ( one_one @ real ) )
= ( ord_less_eq @ real @ X @ ( one_one @ real ) ) ) ) ).
% real_root_le_1_iff
thf(fact_4560_distinct__swap,axiom,
! [A: $tType,I: nat,Xs2: list @ A,J: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( distinct @ A @ ( list_update @ A @ ( list_update @ A @ Xs2 @ I @ ( nth @ A @ Xs2 @ J ) ) @ J @ ( nth @ A @ Xs2 @ I ) ) )
= ( distinct @ A @ Xs2 ) ) ) ) ).
% distinct_swap
thf(fact_4561_drop__bit__Suc__minus__bit1,axiom,
! [N2: nat,K: num] :
( ( bit_se4197421643247451524op_bit @ int @ ( suc @ N2 ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ K ) ) ) )
= ( bit_se4197421643247451524op_bit @ int @ N2 @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_Suc_minus_bit1
thf(fact_4562_real__root__pow__pos2,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( root @ N2 @ X ) @ N2 )
= X ) ) ) ).
% real_root_pow_pos2
thf(fact_4563_finite__lists__distinct__length__eq,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( finite_finite @ A @ A4 )
=> ( finite_finite @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= N2 )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 ) ) ) ) ) ).
% finite_lists_distinct_length_eq
thf(fact_4564_gcd__nat_Omono,axiom,
! [A2: nat,C2: nat,B2: nat,D2: nat] :
( ( dvd_dvd @ nat @ A2 @ C2 )
=> ( ( dvd_dvd @ nat @ B2 @ D2 )
=> ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ ( gcd_gcd @ nat @ C2 @ D2 ) ) ) ) ).
% gcd_nat.mono
thf(fact_4565_gcd__nat_OorderE,axiom,
! [A2: nat,B2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( A2
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ).
% gcd_nat.orderE
thf(fact_4566_gcd__nat_OorderI,axiom,
! [A2: nat,B2: nat] :
( ( A2
= ( gcd_gcd @ nat @ A2 @ B2 ) )
=> ( dvd_dvd @ nat @ A2 @ B2 ) ) ).
% gcd_nat.orderI
thf(fact_4567_gcd__nat_Oabsorb3,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ( ( gcd_gcd @ nat @ A2 @ B2 )
= A2 ) ) ).
% gcd_nat.absorb3
thf(fact_4568_gcd__nat_Oabsorb4,axiom,
! [B2: nat,A2: nat] :
( ( ( dvd_dvd @ nat @ B2 @ A2 )
& ( B2 != A2 ) )
=> ( ( gcd_gcd @ nat @ A2 @ B2 )
= B2 ) ) ).
% gcd_nat.absorb4
thf(fact_4569_gcd__nat_OboundedE,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( dvd_dvd @ nat @ A2 @ ( gcd_gcd @ nat @ B2 @ C2 ) )
=> ~ ( ( dvd_dvd @ nat @ A2 @ B2 )
=> ~ ( dvd_dvd @ nat @ A2 @ C2 ) ) ) ).
% gcd_nat.boundedE
thf(fact_4570_gcd__nat_OboundedI,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( dvd_dvd @ nat @ A2 @ B2 )
=> ( ( dvd_dvd @ nat @ A2 @ C2 )
=> ( dvd_dvd @ nat @ A2 @ ( gcd_gcd @ nat @ B2 @ C2 ) ) ) ) ).
% gcd_nat.boundedI
thf(fact_4571_gcd__nat_Oorder__iff,axiom,
( ( dvd_dvd @ nat )
= ( ^ [A3: nat,B3: nat] :
( A3
= ( gcd_gcd @ nat @ A3 @ B3 ) ) ) ) ).
% gcd_nat.order_iff
thf(fact_4572_gcd__nat_Ocobounded1,axiom,
! [A2: nat,B2: nat] : ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ A2 ) ).
% gcd_nat.cobounded1
thf(fact_4573_gcd__nat_Ocobounded2,axiom,
! [A2: nat,B2: nat] : ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ B2 ) ).
% gcd_nat.cobounded2
thf(fact_4574_gcd__nat_Oabsorb__iff1,axiom,
( ( dvd_dvd @ nat )
= ( ^ [A3: nat,B3: nat] :
( ( gcd_gcd @ nat @ A3 @ B3 )
= A3 ) ) ) ).
% gcd_nat.absorb_iff1
thf(fact_4575_gcd__nat_Oabsorb__iff2,axiom,
( ( dvd_dvd @ nat )
= ( ^ [B3: nat,A3: nat] :
( ( gcd_gcd @ nat @ A3 @ B3 )
= B3 ) ) ) ).
% gcd_nat.absorb_iff2
thf(fact_4576_gcd__nat_OcoboundedI1,axiom,
! [A2: nat,C2: nat,B2: nat] :
( ( dvd_dvd @ nat @ A2 @ C2 )
=> ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ C2 ) ) ).
% gcd_nat.coboundedI1
thf(fact_4577_gcd__nat_OcoboundedI2,axiom,
! [B2: nat,C2: nat,A2: nat] :
( ( dvd_dvd @ nat @ B2 @ C2 )
=> ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ C2 ) ) ).
% gcd_nat.coboundedI2
thf(fact_4578_gcd__nat_Ostrict__boundedE,axiom,
! [A2: nat,B2: nat,C2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ ( gcd_gcd @ nat @ B2 @ C2 ) )
& ( A2
!= ( gcd_gcd @ nat @ B2 @ C2 ) ) )
=> ~ ( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
=> ~ ( ( dvd_dvd @ nat @ A2 @ C2 )
& ( A2 != C2 ) ) ) ) ).
% gcd_nat.strict_boundedE
thf(fact_4579_gcd__nat_Ostrict__order__iff,axiom,
! [A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ B2 )
& ( A2 != B2 ) )
= ( ( A2
= ( gcd_gcd @ nat @ A2 @ B2 ) )
& ( A2 != B2 ) ) ) ).
% gcd_nat.strict_order_iff
thf(fact_4580_gcd__nat_Ostrict__coboundedI1,axiom,
! [A2: nat,C2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ A2 @ C2 )
& ( A2 != C2 ) )
=> ( ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ C2 )
& ( ( gcd_gcd @ nat @ A2 @ B2 )
!= C2 ) ) ) ).
% gcd_nat.strict_coboundedI1
thf(fact_4581_gcd__nat_Ostrict__coboundedI2,axiom,
! [B2: nat,C2: nat,A2: nat] :
( ( ( dvd_dvd @ nat @ B2 @ C2 )
& ( B2 != C2 ) )
=> ( ( dvd_dvd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ C2 )
& ( ( gcd_gcd @ nat @ A2 @ B2 )
!= C2 ) ) ) ).
% gcd_nat.strict_coboundedI2
thf(fact_4582_gcd__unique__nat,axiom,
! [D2: nat,A2: nat,B2: nat] :
( ( ( dvd_dvd @ nat @ D2 @ A2 )
& ( dvd_dvd @ nat @ D2 @ B2 )
& ! [E3: nat] :
( ( ( dvd_dvd @ nat @ E3 @ A2 )
& ( dvd_dvd @ nat @ E3 @ B2 ) )
=> ( dvd_dvd @ nat @ E3 @ D2 ) ) )
= ( D2
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ).
% gcd_unique_nat
thf(fact_4583_gcd__mult__distrib__nat,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times @ nat @ K @ ( gcd_gcd @ nat @ M @ N2 ) )
= ( gcd_gcd @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N2 ) ) ) ).
% gcd_mult_distrib_nat
thf(fact_4584_gcd__red__nat,axiom,
( ( gcd_gcd @ nat )
= ( ^ [X3: nat,Y2: nat] : ( gcd_gcd @ nat @ Y2 @ ( modulo_modulo @ nat @ X3 @ Y2 ) ) ) ) ).
% gcd_red_nat
thf(fact_4585_real__root__pos__pos__le,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N2 @ X ) ) ) ).
% real_root_pos_pos_le
thf(fact_4586_finite__distinct__list,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ? [Xs3: list @ A] :
( ( ( set2 @ A @ Xs3 )
= A4 )
& ( distinct @ A @ Xs3 ) ) ) ).
% finite_distinct_list
thf(fact_4587_gcd__le2__nat,axiom,
! [B2: nat,A2: nat] :
( ( B2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ B2 ) ) ).
% gcd_le2_nat
thf(fact_4588_gcd__le1__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ( ord_less_eq @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ A2 ) ) ).
% gcd_le1_nat
thf(fact_4589_gcd__diff1__nat,axiom,
! [N2: nat,M: nat] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( gcd_gcd @ nat @ ( minus_minus @ nat @ M @ N2 ) @ N2 )
= ( gcd_gcd @ nat @ M @ N2 ) ) ) ).
% gcd_diff1_nat
thf(fact_4590_gcd__diff2__nat,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( gcd_gcd @ nat @ ( minus_minus @ nat @ N2 @ M ) @ N2 )
= ( gcd_gcd @ nat @ M @ N2 ) ) ) ).
% gcd_diff2_nat
thf(fact_4591_gcd__nat_Oelims,axiom,
! [X: nat,Xa2: nat,Y: nat] :
( ( ( gcd_gcd @ nat @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y = X ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( gcd_gcd @ nat @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) ) ) ) ).
% gcd_nat.elims
thf(fact_4592_gcd__nat_Osimps,axiom,
( ( gcd_gcd @ nat )
= ( ^ [X3: nat,Y2: nat] :
( if @ nat
@ ( Y2
= ( zero_zero @ nat ) )
@ X3
@ ( gcd_gcd @ nat @ Y2 @ ( modulo_modulo @ nat @ X3 @ Y2 ) ) ) ) ) ).
% gcd_nat.simps
thf(fact_4593_gcd__non__0__nat,axiom,
! [Y: nat,X: nat] :
( ( Y
!= ( zero_zero @ nat ) )
=> ( ( gcd_gcd @ nat @ X @ Y )
= ( gcd_gcd @ nat @ Y @ ( modulo_modulo @ nat @ X @ Y ) ) ) ) ).
% gcd_non_0_nat
thf(fact_4594_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 )
= A2 )
= ( ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_4595_take__bit__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat,A2: A] :
( ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) )
= ( bit_se4197421643247451524op_bit @ A @ N2 @ ( bit_se2584673776208193580ke_bit @ A @ ( plus_plus @ nat @ M @ N2 ) @ A2 ) ) ) ) ).
% take_bit_drop_bit
thf(fact_4596_real__root__less__mono,axiom,
! [N2: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ X @ Y )
=> ( ord_less @ real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ) ).
% real_root_less_mono
thf(fact_4597_real__root__le__mono,axiom,
! [N2: nat,X: real,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ X @ Y )
=> ( ord_less_eq @ real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ) ).
% real_root_le_mono
thf(fact_4598_real__root__power,axiom,
! [N2: nat,X: real,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( root @ N2 @ ( power_power @ real @ X @ K ) )
= ( power_power @ real @ ( root @ N2 @ X ) @ K ) ) ) ).
% real_root_power
thf(fact_4599_real__root__abs,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( root @ N2 @ ( abs_abs @ real @ X ) )
= ( abs_abs @ real @ ( root @ N2 @ X ) ) ) ) ).
% real_root_abs
thf(fact_4600_distinct__conv__nth,axiom,
! [A: $tType] :
( ( distinct @ A )
= ( ^ [Xs: list @ A] :
! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ! [J3: nat] :
( ( ord_less @ nat @ J3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( I3 != J3 )
=> ( ( nth @ A @ Xs @ I3 )
!= ( nth @ A @ Xs @ J3 ) ) ) ) ) ) ) ).
% distinct_conv_nth
thf(fact_4601_nth__eq__iff__index__eq,axiom,
! [A: $tType,Xs2: list @ A,I: nat,J: nat] :
( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ Xs2 @ I )
= ( nth @ A @ Xs2 @ J ) )
= ( I = J ) ) ) ) ) ).
% nth_eq_iff_index_eq
thf(fact_4602_bezout__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
=> ? [X4: nat,Y4: nat] :
( ( times_times @ nat @ A2 @ X4 )
= ( plus_plus @ nat @ ( times_times @ nat @ B2 @ Y4 ) @ ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ) ).
% bezout_nat
thf(fact_4603_bezout__gcd__nat_H,axiom,
! [B2: nat,A2: nat] :
? [X4: nat,Y4: nat] :
( ( ( ord_less_eq @ nat @ ( times_times @ nat @ B2 @ Y4 ) @ ( times_times @ nat @ A2 @ X4 ) )
& ( ( minus_minus @ nat @ ( times_times @ nat @ A2 @ X4 ) @ ( times_times @ nat @ B2 @ Y4 ) )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) )
| ( ( ord_less_eq @ nat @ ( times_times @ nat @ A2 @ Y4 ) @ ( times_times @ nat @ B2 @ X4 ) )
& ( ( minus_minus @ nat @ ( times_times @ nat @ B2 @ X4 ) @ ( times_times @ nat @ A2 @ Y4 ) )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ) ) ).
% bezout_gcd_nat'
thf(fact_4604_sgn__root,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( sgn_sgn @ real @ ( root @ N2 @ X ) )
= ( sgn_sgn @ real @ X ) ) ) ).
% sgn_root
thf(fact_4605_div__push__bit__of__1__eq__drop__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N2: nat] :
( ( divide_divide @ A @ A2 @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( one_one @ A ) ) )
= ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) ) ) ).
% div_push_bit_of_1_eq_drop_bit
thf(fact_4606_bit__iff__and__drop__bit__eq__1,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se5641148757651400278ts_bit @ A )
= ( ^ [A3: A,N3: nat] :
( ( bit_se5824344872417868541ns_and @ A @ ( bit_se4197421643247451524op_bit @ A @ N3 @ A3 ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ) ) ).
% bit_iff_and_drop_bit_eq_1
thf(fact_4607_bits__ident,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( plus_plus @ A @ ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) ) @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) )
= A2 ) ) ).
% bits_ident
thf(fact_4608_real__root__gt__zero,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( root @ N2 @ X ) ) ) ) ).
% real_root_gt_zero
thf(fact_4609_real__root__strict__decreasing,axiom,
! [N2: nat,N7: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ N2 @ N7 )
=> ( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( ord_less @ real @ ( root @ N7 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_4610_distinct__Ex1,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [X4: nat] :
( ( ord_less @ nat @ X4 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ X4 )
= X )
& ! [Y3: nat] :
( ( ( ord_less @ nat @ Y3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ( nth @ A @ Xs2 @ Y3 )
= X ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% distinct_Ex1
thf(fact_4611_root__abs__power,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( abs_abs @ real @ ( root @ N2 @ ( power_power @ real @ Y @ N2 ) ) )
= ( abs_abs @ real @ Y ) ) ) ).
% root_abs_power
thf(fact_4612_gcd__int__def,axiom,
( ( gcd_gcd @ int )
= ( ^ [X3: int,Y2: int] : ( semiring_1_of_nat @ int @ ( gcd_gcd @ nat @ ( nat2 @ ( abs_abs @ int @ X3 ) ) @ ( nat2 @ ( abs_abs @ int @ Y2 ) ) ) ) ) ) ).
% gcd_int_def
thf(fact_4613_real__root__pos__pos,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( root @ N2 @ X ) ) ) ) ).
% real_root_pos_pos
thf(fact_4614_real__root__strict__increasing,axiom,
! [N2: nat,N7: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ nat @ N2 @ N7 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( ord_less @ real @ ( root @ N2 @ X ) @ ( root @ N7 @ X ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_4615_real__root__decreasing,axiom,
! [N2: nat,N7: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ N7 )
=> ( ( ord_less_eq @ real @ ( one_one @ real ) @ X )
=> ( ord_less_eq @ real @ ( root @ N7 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).
% real_root_decreasing
thf(fact_4616_real__root__pow__pos,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( ( power_power @ real @ ( root @ N2 @ X ) @ N2 )
= X ) ) ) ).
% real_root_pow_pos
thf(fact_4617_real__root__pos__unique,axiom,
! [N2: nat,Y: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y )
=> ( ( ( power_power @ real @ Y @ N2 )
= X )
=> ( ( root @ N2 @ X )
= Y ) ) ) ) ).
% real_root_pos_unique
thf(fact_4618_real__root__power__cancel,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( root @ N2 @ ( power_power @ real @ X @ N2 ) )
= X ) ) ) ).
% real_root_power_cancel
thf(fact_4619_drop__bit__Suc,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se4197421643247451524op_bit @ A @ ( suc @ N2 ) @ A2 )
= ( bit_se4197421643247451524op_bit @ A @ N2 @ ( divide_divide @ A @ A2 @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) ) ) ) ).
% drop_bit_Suc
thf(fact_4620_real__root__increasing,axiom,
! [N2: nat,N7: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ N7 )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( ord_less_eq @ real @ ( root @ N2 @ X ) @ ( root @ N7 @ X ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_4621_distinct__list__update,axiom,
! [A: $tType,Xs2: list @ A,A2: A,I: nat] :
( ( distinct @ A @ Xs2 )
=> ( ~ ( member @ A @ A2 @ ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert2 @ A @ ( nth @ A @ Xs2 @ I ) @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( distinct @ A @ ( list_update @ A @ Xs2 @ I @ A2 ) ) ) ) ).
% distinct_list_update
thf(fact_4622_root__sgn__power,axiom,
! [N2: nat,Y: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( root @ N2 @ ( times_times @ real @ ( sgn_sgn @ real @ Y ) @ ( power_power @ real @ ( abs_abs @ real @ Y ) @ N2 ) ) )
= Y ) ) ).
% root_sgn_power
thf(fact_4623_sgn__power__root,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( times_times @ real @ ( sgn_sgn @ real @ ( root @ N2 @ X ) ) @ ( power_power @ real @ ( abs_abs @ real @ ( root @ N2 @ X ) ) @ N2 ) )
= X ) ) ).
% sgn_power_root
thf(fact_4624_bezw__aux,axiom,
! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ int @ ( gcd_gcd @ nat @ X @ Y ) )
= ( plus_plus @ int @ ( times_times @ int @ ( product_fst @ int @ int @ ( bezw @ X @ Y ) ) @ ( semiring_1_of_nat @ int @ X ) ) @ ( times_times @ int @ ( product_snd @ int @ int @ ( bezw @ X @ Y ) ) @ ( semiring_1_of_nat @ int @ Y ) ) ) ) ).
% bezw_aux
thf(fact_4625_ln__root,axiom,
! [N2: nat,B2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( ln_ln @ real @ ( root @ N2 @ B2 ) )
= ( divide_divide @ real @ ( ln_ln @ real @ B2 ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% ln_root
thf(fact_4626_log__root,axiom,
! [N2: nat,A2: real,B2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( log @ B2 @ ( root @ N2 @ A2 ) )
= ( divide_divide @ real @ ( log @ B2 @ A2 ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) ) ).
% log_root
thf(fact_4627_log__base__root,axiom,
! [N2: nat,B2: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( ( log @ ( root @ N2 @ B2 ) @ X )
= ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( log @ B2 @ X ) ) ) ) ) ).
% log_base_root
thf(fact_4628_split__root,axiom,
! [P: real > $o,N2: nat,X: real] :
( ( P @ ( root @ N2 @ X ) )
= ( ( ( N2
= ( zero_zero @ nat ) )
=> ( P @ ( zero_zero @ real ) ) )
& ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ! [Y2: real] :
( ( ( times_times @ real @ ( sgn_sgn @ real @ Y2 ) @ ( power_power @ real @ ( abs_abs @ real @ Y2 ) @ N2 ) )
= X )
=> ( P @ Y2 ) ) ) ) ) ).
% split_root
thf(fact_4629_slice__eq__mask,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat,M: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit @ A @ N2 @ ( bit_se2584673776208193580ke_bit @ A @ M @ ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) ) )
= ( bit_se5824344872417868541ns_and @ A @ A2 @ ( bit_se5824344872417868541ns_and @ A @ ( bit_se2239418461657761734s_mask @ A @ ( plus_plus @ nat @ M @ N2 ) ) @ ( bit_ri4277139882892585799ns_not @ A @ ( bit_se2239418461657761734s_mask @ A @ N2 ) ) ) ) ) ) ).
% slice_eq_mask
thf(fact_4630_gcd__nat_Opelims,axiom,
! [X: nat,Xa2: nat,Y: nat] :
( ( ( gcd_gcd @ nat @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ nat @ nat ) @ gcd_nat_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) )
=> ~ ( ( ( ( Xa2
= ( zero_zero @ nat ) )
=> ( Y = X ) )
& ( ( Xa2
!= ( zero_zero @ nat ) )
=> ( Y
= ( gcd_gcd @ nat @ Xa2 @ ( modulo_modulo @ nat @ X @ Xa2 ) ) ) ) )
=> ~ ( accp @ ( product_prod @ nat @ nat ) @ gcd_nat_rel @ ( product_Pair @ nat @ nat @ X @ Xa2 ) ) ) ) ) ).
% gcd_nat.pelims
thf(fact_4631_set__remove1__eq,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( set2 @ A @ ( remove1 @ A @ X @ Xs2 ) )
= ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% set_remove1_eq
thf(fact_4632_horner__sum__eq__sum__funpow,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F3: B > A,A3: A,Xs: list @ B] :
( groups7311177749621191930dd_sum @ nat @ A
@ ^ [N3: nat] : ( compow @ ( A > A ) @ N3 @ ( times_times @ A @ A3 ) @ ( F3 @ ( nth @ B @ Xs @ N3 ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% horner_sum_eq_sum_funpow
thf(fact_4633_sub__num__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [L: num] :
( ( neg_numeral_sub @ A @ one2 @ ( bit0 @ L ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bitM @ L ) ) ) ) ) ).
% sub_num_simps(2)
thf(fact_4634_gcd__idem__nat,axiom,
! [X: nat] :
( ( gcd_gcd @ nat @ X @ X )
= X ) ).
% gcd_idem_nat
thf(fact_4635_gcd__nat_Oright__idem,axiom,
! [A2: nat,B2: nat] :
( ( gcd_gcd @ nat @ ( gcd_gcd @ nat @ A2 @ B2 ) @ B2 )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ).
% gcd_nat.right_idem
thf(fact_4636_gcd__nat_Oleft__idem,axiom,
! [A2: nat,B2: nat] :
( ( gcd_gcd @ nat @ A2 @ ( gcd_gcd @ nat @ A2 @ B2 ) )
= ( gcd_gcd @ nat @ A2 @ B2 ) ) ).
% gcd_nat.left_idem
thf(fact_4637_gcd__nat_Oidem,axiom,
! [A2: nat] :
( ( gcd_gcd @ nat @ A2 @ A2 )
= A2 ) ).
% gcd_nat.idem
thf(fact_4638_Suc__funpow,axiom,
! [N2: nat] :
( ( compow @ ( nat > nat ) @ N2 @ suc )
= ( plus_plus @ nat @ N2 ) ) ).
% Suc_funpow
thf(fact_4639_funpow__0,axiom,
! [A: $tType,F2: A > A,X: A] :
( ( compow @ ( A > A ) @ ( zero_zero @ nat ) @ F2 @ X )
= X ) ).
% funpow_0
thf(fact_4640_in__set__remove1,axiom,
! [A: $tType,A2: A,B2: A,Xs2: list @ A] :
( ( A2 != B2 )
=> ( ( member @ A @ A2 @ ( set2 @ A @ ( remove1 @ A @ B2 @ Xs2 ) ) )
= ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) ) ) ) ).
% in_set_remove1
thf(fact_4641_sub__num__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_sub @ A @ one2 @ one2 )
= ( zero_zero @ A ) ) ) ).
% sub_num_simps(1)
thf(fact_4642_diff__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( neg_numeral_sub @ A @ M @ N2 ) ) ) ).
% diff_numeral_simps(1)
thf(fact_4643_sub__num__simps_I6_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ ( bit0 @ L ) )
= ( neg_numeral_dbl @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(6)
thf(fact_4644_sub__num__simps_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ ( bit1 @ L ) )
= ( neg_numeral_dbl @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(9)
thf(fact_4645_add__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( neg_numeral_sub @ A @ M @ N2 ) ) ) ).
% add_neg_numeral_simps(1)
thf(fact_4646_add__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( numeral_numeral @ A @ N2 ) )
= ( neg_numeral_sub @ A @ N2 @ M ) ) ) ).
% add_neg_numeral_simps(2)
thf(fact_4647_semiring__norm_I166_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V2: num,W2: num,Y: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ V2 ) @ ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) @ Y ) )
= ( plus_plus @ A @ ( neg_numeral_sub @ A @ V2 @ W2 ) @ Y ) ) ) ).
% semiring_norm(166)
thf(fact_4648_semiring__norm_I167_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [V2: num,W2: num,Y: A] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) @ ( plus_plus @ A @ ( numeral_numeral @ A @ W2 ) @ Y ) )
= ( plus_plus @ A @ ( neg_numeral_sub @ A @ W2 @ V2 ) @ Y ) ) ) ).
% semiring_norm(167)
thf(fact_4649_diff__numeral__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num,N2: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( neg_numeral_sub @ A @ N2 @ M ) ) ) ).
% diff_numeral_simps(4)
thf(fact_4650_sub__num__simps_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ ( bit1 @ L ) )
= ( neg_numeral_dbl_dec @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(7)
thf(fact_4651_sub__num__simps_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num,L: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ ( bit0 @ L ) )
= ( neg_numeral_dbl_inc @ A @ ( neg_numeral_sub @ A @ K @ L ) ) ) ) ).
% sub_num_simps(8)
thf(fact_4652_diff__numeral__special_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( minus_minus @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ N2 ) )
= ( neg_numeral_sub @ A @ one2 @ N2 ) ) ) ).
% diff_numeral_special(1)
thf(fact_4653_diff__numeral__special_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( numeral_numeral @ A @ M ) @ ( one_one @ A ) )
= ( neg_numeral_sub @ A @ M @ one2 ) ) ) ).
% diff_numeral_special(2)
thf(fact_4654_sub__num__simps_I5_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_sub @ A @ ( bit1 @ K ) @ one2 )
= ( numeral_numeral @ A @ ( bit0 @ K ) ) ) ) ).
% sub_num_simps(5)
thf(fact_4655_sub__num__simps_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [K: num] :
( ( neg_numeral_sub @ A @ ( bit0 @ K ) @ one2 )
= ( numeral_numeral @ A @ ( bitM @ K ) ) ) ) ).
% sub_num_simps(4)
thf(fact_4656_add__neg__numeral__special_I4_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( numeral_numeral @ A @ N2 ) )
= ( neg_numeral_sub @ A @ N2 @ one2 ) ) ) ).
% add_neg_numeral_special(4)
thf(fact_4657_add__neg__numeral__special_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( neg_numeral_sub @ A @ M @ one2 ) ) ) ).
% add_neg_numeral_special(3)
thf(fact_4658_add__neg__numeral__special_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( one_one @ A ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% add_neg_numeral_special(2)
thf(fact_4659_add__neg__numeral__special_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( plus_plus @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% add_neg_numeral_special(1)
thf(fact_4660_diff__numeral__special_I8_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( neg_numeral_sub @ A @ one2 @ M ) ) ) ).
% diff_numeral_special(8)
thf(fact_4661_diff__numeral__special_I7_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( neg_numeral_sub @ A @ N2 @ one2 ) ) ) ).
% diff_numeral_special(7)
thf(fact_4662_minus__sub__one__diff__one,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [M: num] :
( ( minus_minus @ A @ ( uminus_uminus @ A @ ( neg_numeral_sub @ A @ M @ one2 ) ) @ ( one_one @ A ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ M ) ) ) ) ).
% minus_sub_one_diff_one
thf(fact_4663_sub__num__simps_I3_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [L: num] :
( ( neg_numeral_sub @ A @ one2 @ ( bit1 @ L ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ L ) ) ) ) ) ).
% sub_num_simps(3)
thf(fact_4664_funpow__mult,axiom,
! [A: $tType,N2: nat,M: nat,F2: A > A] :
( ( compow @ ( A > A ) @ N2 @ ( compow @ ( A > A ) @ M @ F2 ) )
= ( compow @ ( A > A ) @ ( times_times @ nat @ M @ N2 ) @ F2 ) ) ).
% funpow_mult
thf(fact_4665_funpow__swap1,axiom,
! [A: $tType,F2: A > A,N2: nat,X: A] :
( ( F2 @ ( compow @ ( A > A ) @ N2 @ F2 @ X ) )
= ( compow @ ( A > A ) @ N2 @ F2 @ ( F2 @ X ) ) ) ).
% funpow_swap1
thf(fact_4666_remove1__idem,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ Xs2 )
= Xs2 ) ) ).
% remove1_idem
thf(fact_4667_notin__set__remove1,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ A @ X @ ( set2 @ A @ ( remove1 @ A @ Y @ Xs2 ) ) ) ) ).
% notin_set_remove1
thf(fact_4668_neg__numeral__class_Osub__def,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_sub @ A )
= ( ^ [K3: num,L2: num] : ( minus_minus @ A @ ( numeral_numeral @ A @ K3 ) @ ( numeral_numeral @ A @ L2 ) ) ) ) ) ).
% neg_numeral_class.sub_def
thf(fact_4669_set__remove1__subset,axiom,
! [A: $tType,X: A,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( remove1 @ A @ X @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_remove1_subset
thf(fact_4670_sub__non__negative,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,M: num] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( neg_numeral_sub @ A @ N2 @ M ) )
= ( ord_less_eq @ num @ M @ N2 ) ) ) ).
% sub_non_negative
thf(fact_4671_sub__non__positive,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,M: num] :
( ( ord_less_eq @ A @ ( neg_numeral_sub @ A @ N2 @ M ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ num @ N2 @ M ) ) ) ).
% sub_non_positive
thf(fact_4672_numeral__add__unfold__funpow,axiom,
! [A: $tType] :
( ( semiring_numeral @ A )
=> ! [K: num,A2: A] :
( ( plus_plus @ A @ ( numeral_numeral @ A @ K ) @ A2 )
= ( compow @ ( A > A ) @ ( numeral_numeral @ nat @ K ) @ ( plus_plus @ A @ ( one_one @ A ) ) @ A2 ) ) ) ).
% numeral_add_unfold_funpow
thf(fact_4673_sub__negative,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,M: num] :
( ( ord_less @ A @ ( neg_numeral_sub @ A @ N2 @ M ) @ ( zero_zero @ A ) )
= ( ord_less @ num @ N2 @ M ) ) ) ).
% sub_negative
thf(fact_4674_sub__positive,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [N2: num,M: num] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( neg_numeral_sub @ A @ N2 @ M ) )
= ( ord_less @ num @ M @ N2 ) ) ) ).
% sub_positive
thf(fact_4675_of__nat__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A )
= ( ^ [N3: nat] : ( compow @ ( A > A ) @ N3 @ ( plus_plus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ) ) ).
% of_nat_def
thf(fact_4676_sub__inc__One__eq,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [N2: num] :
( ( neg_numeral_sub @ A @ ( inc @ N2 ) @ one2 )
= ( numeral_numeral @ A @ N2 ) ) ) ).
% sub_inc_One_eq
thf(fact_4677_numeral__unfold__funpow,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( numeral_numeral @ A )
= ( ^ [K3: num] : ( compow @ ( A > A ) @ ( numeral_numeral @ nat @ K3 ) @ ( plus_plus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ) ) ).
% numeral_unfold_funpow
thf(fact_4678_length__remove1,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( remove1 @ A @ X @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( remove1 @ A @ X @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% length_remove1
thf(fact_4679_sub__BitM__One__eq,axiom,
! [N2: num] :
( ( neg_numeral_sub @ int @ ( bitM @ N2 ) @ one2 )
= ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( neg_numeral_sub @ int @ N2 @ one2 ) ) ) ).
% sub_BitM_One_eq
thf(fact_4680_relpowp__fun__conv,axiom,
! [A: $tType] :
( ( compow @ ( A > A > $o ) )
= ( ^ [N3: nat,P3: A > A > $o,X3: A,Y2: A] :
? [F3: nat > A] :
( ( ( F3 @ ( zero_zero @ nat ) )
= X3 )
& ( ( F3 @ N3 )
= Y2 )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N3 )
=> ( P3 @ ( F3 @ I3 ) @ ( F3 @ ( suc @ I3 ) ) ) ) ) ) ) ).
% relpowp_fun_conv
thf(fact_4681_relpowp__1,axiom,
! [A: $tType,P: A > A > $o] :
( ( compow @ ( A > A > $o ) @ ( one_one @ nat ) @ P )
= P ) ).
% relpowp_1
thf(fact_4682_Nat_Ofunpow__code__def,axiom,
! [A: $tType] :
( ( funpow @ A )
= ( compow @ ( A > A ) ) ) ).
% Nat.funpow_code_def
thf(fact_4683_relpowp__Suc__E,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N2 ) @ P @ X @ Z2 )
=> ~ ! [Y4: A] :
( ( compow @ ( A > A > $o ) @ N2 @ P @ X @ Y4 )
=> ~ ( P @ Y4 @ Z2 ) ) ) ).
% relpowp_Suc_E
thf(fact_4684_relpowp__Suc__I,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Y: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N2 @ P @ X @ Y )
=> ( ( P @ Y @ Z2 )
=> ( compow @ ( A > A > $o ) @ ( suc @ N2 ) @ P @ X @ Z2 ) ) ) ).
% relpowp_Suc_I
thf(fact_4685_relpowp__Suc__D2,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N2 ) @ P @ X @ Z2 )
=> ? [Y4: A] :
( ( P @ X @ Y4 )
& ( compow @ ( A > A > $o ) @ N2 @ P @ Y4 @ Z2 ) ) ) ).
% relpowp_Suc_D2
thf(fact_4686_relpowp__Suc__E2,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ ( suc @ N2 ) @ P @ X @ Z2 )
=> ~ ! [Y4: A] :
( ( P @ X @ Y4 )
=> ~ ( compow @ ( A > A > $o ) @ N2 @ P @ Y4 @ Z2 ) ) ) ).
% relpowp_Suc_E2
thf(fact_4687_relpowp__Suc__I2,axiom,
! [A: $tType,P: A > A > $o,X: A,Y: A,N2: nat,Z2: A] :
( ( P @ X @ Y )
=> ( ( compow @ ( A > A > $o ) @ N2 @ P @ Y @ Z2 )
=> ( compow @ ( A > A > $o ) @ ( suc @ N2 ) @ P @ X @ Z2 ) ) ) ).
% relpowp_Suc_I2
thf(fact_4688_relpowp__0__I,axiom,
! [A: $tType,P: A > A > $o,X: A] : ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ P @ X @ X ) ).
% relpowp_0_I
thf(fact_4689_relpowp__0__E,axiom,
! [A: $tType,P: A > A > $o,X: A,Y: A] :
( ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ P @ X @ Y )
=> ( X = Y ) ) ).
% relpowp_0_E
thf(fact_4690_relpowp_Osimps_I1_J,axiom,
! [A: $tType,R: A > A > $o] :
( ( compow @ ( A > A > $o ) @ ( zero_zero @ nat ) @ R )
= ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) ) ) ).
% relpowp.simps(1)
thf(fact_4691_relpowp__E,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N2 @ P @ X @ Z2 )
=> ( ( ( N2
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y4: A,M5: nat] :
( ( N2
= ( suc @ M5 ) )
=> ( ( compow @ ( A > A > $o ) @ M5 @ P @ X @ Y4 )
=> ~ ( P @ Y4 @ Z2 ) ) ) ) ) ).
% relpowp_E
thf(fact_4692_relpowp__E2,axiom,
! [A: $tType,N2: nat,P: A > A > $o,X: A,Z2: A] :
( ( compow @ ( A > A > $o ) @ N2 @ P @ X @ Z2 )
=> ( ( ( N2
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y4: A,M5: nat] :
( ( N2
= ( suc @ M5 ) )
=> ( ( P @ X @ Y4 )
=> ~ ( compow @ ( A > A > $o ) @ M5 @ P @ Y4 @ Z2 ) ) ) ) ) ).
% relpowp_E2
thf(fact_4693_relpowp__bot,axiom,
! [A: $tType,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( compow @ ( A > A > $o ) @ N2 @ ( bot_bot @ ( A > A > $o ) ) )
= ( bot_bot @ ( A > A > $o ) ) ) ) ).
% relpowp_bot
thf(fact_4694_polyfun__rootbound,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N2: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z5 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) )
& ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z5 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) )
@ N2 ) ) ) ) ) ).
% polyfun_rootbound
thf(fact_4695_max__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1105856199041335345_order @ nat @ ( ord_max @ nat ) @ ( zero_zero @ nat )
@ ^ [X3: nat,Y2: nat] : ( ord_less_eq @ nat @ Y2 @ X3 )
@ ^ [X3: nat,Y2: nat] : ( ord_less @ nat @ Y2 @ X3 ) ) ).
% max_nat.semilattice_neutr_order_axioms
thf(fact_4696_set__removeAll,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( set2 @ A @ ( removeAll @ A @ X @ Xs2 ) )
= ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_removeAll
thf(fact_4697_card__lessThan,axiom,
! [U: nat] :
( ( finite_card @ nat @ ( set_ord_lessThan @ nat @ U ) )
= U ) ).
% card_lessThan
thf(fact_4698_card__Collect__less__nat,axiom,
! [N2: nat] :
( ( finite_card @ nat
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N2 ) ) )
= N2 ) ).
% card_Collect_less_nat
thf(fact_4699_card__atMost,axiom,
! [U: nat] :
( ( finite_card @ nat @ ( set_ord_atMost @ nat @ U ) )
= ( suc @ U ) ) ).
% card_atMost
thf(fact_4700_card__atLeastLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or7035219750837199246ssThan @ nat @ L @ U ) )
= ( minus_minus @ nat @ U @ L ) ) ).
% card_atLeastLessThan
thf(fact_4701_removeAll__id,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( removeAll @ A @ X @ Xs2 )
= Xs2 ) ) ).
% removeAll_id
thf(fact_4702_card__Collect__le__nat,axiom,
! [N2: nat] :
( ( finite_card @ nat
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less_eq @ nat @ I3 @ N2 ) ) )
= ( suc @ N2 ) ) ).
% card_Collect_le_nat
thf(fact_4703_card_Oempty,axiom,
! [A: $tType] :
( ( finite_card @ A @ ( bot_bot @ ( set @ A ) ) )
= ( zero_zero @ nat ) ) ).
% card.empty
thf(fact_4704_card_Oinfinite,axiom,
! [A: $tType,A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( finite_card @ A @ A4 )
= ( zero_zero @ nat ) ) ) ).
% card.infinite
thf(fact_4705_card__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or1337092689740270186AtMost @ nat @ L @ U ) )
= ( minus_minus @ nat @ ( suc @ U ) @ L ) ) ).
% card_atLeastAtMost
thf(fact_4706_card__atLeastLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card @ int @ ( set_or7035219750837199246ssThan @ int @ L @ U ) )
= ( nat2 @ ( minus_minus @ int @ U @ L ) ) ) ).
% card_atLeastLessThan_int
thf(fact_4707_card__0__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( finite_card @ A @ A4 )
= ( zero_zero @ nat ) )
= ( A4
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% card_0_eq
thf(fact_4708_card__insert__disjoint,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( insert2 @ A @ X @ A4 ) )
= ( suc @ ( finite_card @ A @ A4 ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_4709_card__Diff__insert,axiom,
! [A: $tType,A2: A,A4: set @ A,B4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( ~ ( member @ A @ A2 @ B4 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ B4 ) ) )
= ( minus_minus @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ B4 ) ) @ ( one_one @ nat ) ) ) ) ) ).
% card_Diff_insert
thf(fact_4710_card__atLeastAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card @ int @ ( set_or1337092689740270186AtMost @ int @ L @ U ) )
= ( nat2 @ ( plus_plus @ int @ ( minus_minus @ int @ U @ L ) @ ( one_one @ int ) ) ) ) ).
% card_atLeastAtMost_int
thf(fact_4711_bot2E,axiom,
! [A: $tType,B: $tType,X: A,Y: B] :
~ ( bot_bot @ ( A > B > $o ) @ X @ Y ) ).
% bot2E
thf(fact_4712_card__le__if__inj__on__rel,axiom,
! [B: $tType,A: $tType,B4: set @ A,A4: set @ B,R2: B > A > $o] :
( ( finite_finite @ A @ B4 )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ A4 )
=> ? [B11: A] :
( ( member @ A @ B11 @ B4 )
& ( R2 @ A5 @ B11 ) ) )
=> ( ! [A13: B,A24: B,B5: A] :
( ( member @ B @ A13 @ A4 )
=> ( ( member @ B @ A24 @ A4 )
=> ( ( member @ A @ B5 @ B4 )
=> ( ( R2 @ A13 @ B5 )
=> ( ( R2 @ A24 @ B5 )
=> ( A13 = A24 ) ) ) ) ) )
=> ( ord_less_eq @ nat @ ( finite_card @ B @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_4713_card__insert__le,axiom,
! [A: $tType,A4: set @ A,X: A] : ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ ( insert2 @ A @ X @ A4 ) ) ) ).
% card_insert_le
thf(fact_4714_card__lists__length__eq,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N2 ) ) ) )
= ( power_power @ nat @ ( finite_card @ A @ A4 ) @ N2 ) ) ) ).
% card_lists_length_eq
thf(fact_4715_card__eq__sum,axiom,
! [A: $tType] :
( ( finite_card @ A )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( one_one @ nat ) ) ) ).
% card_eq_sum
thf(fact_4716_length__removeAll__less__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( removeAll @ A @ X @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_removeAll_less_eq
thf(fact_4717_card__2__iff_H,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ? [Y2: A] :
( ( member @ A @ Y2 @ S3 )
& ( X3 != Y2 )
& ! [Z5: A] :
( ( member @ A @ Z5 @ S3 )
=> ( ( Z5 = X3 )
| ( Z5 = Y2 ) ) ) ) ) ) ) ).
% card_2_iff'
thf(fact_4718_card__eq__0__iff,axiom,
! [A: $tType,A4: set @ A] :
( ( ( finite_card @ A @ A4 )
= ( zero_zero @ nat ) )
= ( ( A4
= ( bot_bot @ ( set @ A ) ) )
| ~ ( finite_finite @ A @ A4 ) ) ) ).
% card_eq_0_iff
thf(fact_4719_card__ge__0__finite,axiom,
! [A: $tType,A4: set @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ A4 ) )
=> ( finite_finite @ A @ A4 ) ) ).
% card_ge_0_finite
thf(fact_4720_card__insert__if,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( insert2 @ A @ X @ A4 ) )
= ( finite_card @ A @ A4 ) ) )
& ( ~ ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( insert2 @ A @ X @ A4 ) )
= ( suc @ ( finite_card @ A @ A4 ) ) ) ) ) ) ).
% card_insert_if
thf(fact_4721_card__Suc__eq__finite,axiom,
! [A: $tType,A4: set @ A,K: nat] :
( ( ( finite_card @ A @ A4 )
= ( suc @ K ) )
= ( ? [B3: A,B8: set @ A] :
( ( A4
= ( insert2 @ A @ B3 @ B8 ) )
& ~ ( member @ A @ B3 @ B8 )
& ( ( finite_card @ A @ B8 )
= K )
& ( finite_finite @ A @ B8 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_4722_finite__if__finite__subsets__card__bdd,axiom,
! [A: $tType,F4: set @ A,C5: nat] :
( ! [G3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ G3 @ F4 )
=> ( ( finite_finite @ A @ G3 )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ G3 ) @ C5 ) ) )
=> ( ( finite_finite @ A @ F4 )
& ( ord_less_eq @ nat @ ( finite_card @ A @ F4 ) @ C5 ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_4723_card__seteq,axiom,
! [A: $tType,B4: set @ A,A4: set @ A] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ B4 ) @ ( finite_card @ A @ A4 ) )
=> ( A4 = B4 ) ) ) ) ).
% card_seteq
thf(fact_4724_card__mono,axiom,
! [A: $tType,B4: set @ A,A4: set @ A] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ) ).
% card_mono
thf(fact_4725_obtain__subset__with__card__n,axiom,
! [A: $tType,N2: nat,S3: set @ A] :
( ( ord_less_eq @ nat @ N2 @ ( finite_card @ A @ S3 ) )
=> ~ ! [T7: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ T7 @ S3 )
=> ( ( ( finite_card @ A @ T7 )
= N2 )
=> ~ ( finite_finite @ A @ T7 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_4726_card__less__sym__Diff,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( ord_less @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ B4 ) ) @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_4727_card__le__sym__Diff,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ B4 ) ) @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) ) ) ) ) ) ).
% card_le_sym_Diff
thf(fact_4728_card__length,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( set2 @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% card_length
thf(fact_4729_card__1__singletonE,axiom,
! [A: $tType,A4: set @ A] :
( ( ( finite_card @ A @ A4 )
= ( one_one @ nat ) )
=> ~ ! [X4: A] :
( A4
!= ( insert2 @ A @ X4 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% card_1_singletonE
thf(fact_4730_psubset__card__mono,axiom,
! [A: $tType,B4: set @ A,A4: set @ A] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ) ).
% psubset_card_mono
thf(fact_4731_distinct__card,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( finite_card @ A @ ( set2 @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% distinct_card
thf(fact_4732_card__distinct,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( finite_card @ A @ ( set2 @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Xs2 ) ) ).
% card_distinct
thf(fact_4733_card__less__Suc2,axiom,
! [M7: set @ nat,I: nat] :
( ~ ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ ( suc @ K3 ) @ M7 )
& ( ord_less @ nat @ K3 @ I ) ) ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc2
thf(fact_4734_card__less__Suc,axiom,
! [M7: set @ nat,I: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( suc
@ ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ ( suc @ K3 ) @ M7 )
& ( ord_less @ nat @ K3 @ I ) ) ) ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc
thf(fact_4735_card__less,axiom,
! [M7: set @ nat,I: nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( finite_card @ nat
@ ( collect @ nat
@ ^ [K3: nat] :
( ( member @ nat @ K3 @ M7 )
& ( ord_less @ nat @ K3 @ ( suc @ I ) ) ) ) )
!= ( zero_zero @ nat ) ) ) ).
% card_less
thf(fact_4736_card__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( finite_card @ int @ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U ) )
= ( nat2 @ U ) ) ).
% card_atLeastZeroLessThan_int
thf(fact_4737_sum__Suc,axiom,
! [A: $tType,F2: A > nat,A4: set @ A] :
( ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( suc @ ( F2 @ X3 ) )
@ A4 )
= ( plus_plus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 ) @ ( finite_card @ A @ A4 ) ) ) ).
% sum_Suc
thf(fact_4738_subset__card__intvl__is__intvl,axiom,
! [A4: set @ nat,K: nat] :
( ( ord_less_eq @ ( set @ nat ) @ A4 @ ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ K @ ( finite_card @ nat @ A4 ) ) ) )
=> ( A4
= ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ K @ ( finite_card @ nat @ A4 ) ) ) ) ) ).
% subset_card_intvl_is_intvl
thf(fact_4739_real__of__card,axiom,
! [A: $tType,A4: set @ A] :
( ( semiring_1_of_nat @ real @ ( finite_card @ A @ A4 ) )
= ( groups7311177749621191930dd_sum @ A @ real
@ ^ [X3: A] : ( one_one @ real )
@ A4 ) ) ).
% real_of_card
thf(fact_4740_sum__bounded__below,axiom,
! [A: $tType,B: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A4: set @ B,K5: A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ K5 @ ( F2 @ I2 ) ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A4 ) ) @ K5 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) ) ) ) ).
% sum_bounded_below
thf(fact_4741_sum__bounded__above,axiom,
! [B: $tType,A: $tType] :
( ( ( ordere6911136660526730532id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A4: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ K5 ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A4 ) ) @ K5 ) ) ) ) ).
% sum_bounded_above
thf(fact_4742_card__gt__0__iff,axiom,
! [A: $tType,A4: set @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ A4 ) )
= ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
& ( finite_finite @ A @ A4 ) ) ) ).
% card_gt_0_iff
thf(fact_4743_card__le__Suc0__iff__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( suc @ ( zero_zero @ nat ) ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ! [Y2: A] :
( ( member @ A @ Y2 @ A4 )
=> ( X3 = Y2 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_4744_card__Suc__eq,axiom,
! [A: $tType,A4: set @ A,K: nat] :
( ( ( finite_card @ A @ A4 )
= ( suc @ K ) )
= ( ? [B3: A,B8: set @ A] :
( ( A4
= ( insert2 @ A @ B3 @ B8 ) )
& ~ ( member @ A @ B3 @ B8 )
& ( ( finite_card @ A @ B8 )
= K )
& ( ( K
= ( zero_zero @ nat ) )
=> ( B8
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% card_Suc_eq
thf(fact_4745_card__eq__SucD,axiom,
! [A: $tType,A4: set @ A,K: nat] :
( ( ( finite_card @ A @ A4 )
= ( suc @ K ) )
=> ? [B5: A,B10: set @ A] :
( ( A4
= ( insert2 @ A @ B5 @ B10 ) )
& ~ ( member @ A @ B5 @ B10 )
& ( ( finite_card @ A @ B10 )
= K )
& ( ( K
= ( zero_zero @ nat ) )
=> ( B10
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% card_eq_SucD
thf(fact_4746_card__1__singleton__iff,axiom,
! [A: $tType,A4: set @ A] :
( ( ( finite_card @ A @ A4 )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ? [X3: A] :
( A4
= ( insert2 @ A @ X3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% card_1_singleton_iff
thf(fact_4747_card__le__Suc__iff,axiom,
! [A: $tType,N2: nat,A4: set @ A] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( finite_card @ A @ A4 ) )
= ( ? [A3: A,B8: set @ A] :
( ( A4
= ( insert2 @ A @ A3 @ B8 ) )
& ~ ( member @ A @ A3 @ B8 )
& ( ord_less_eq @ nat @ N2 @ ( finite_card @ A @ B8 ) )
& ( finite_finite @ A @ B8 ) ) ) ) ).
% card_le_Suc_iff
thf(fact_4748_card__Diff1__le,axiom,
! [A: $tType,A4: set @ A,X: A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A4 ) ) ).
% card_Diff1_le
thf(fact_4749_card__psubset,axiom,
! [A: $tType,B4: set @ A,A4: set @ A] :
( ( finite_finite @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( ord_less @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) )
=> ( ord_less @ ( set @ A ) @ A4 @ B4 ) ) ) ) ).
% card_psubset
thf(fact_4750_diff__card__le__card__Diff,axiom,
! [A: $tType,B4: set @ A,A4: set @ A] :
( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ B4 ) ) ) ) ).
% diff_card_le_card_Diff
thf(fact_4751_card__lists__length__le,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ N2 ) ) ) )
= ( groups7311177749621191930dd_sum @ nat @ nat @ ( power_power @ nat @ ( finite_card @ A @ A4 ) ) @ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% card_lists_length_le
thf(fact_4752_length__removeAll__less,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( removeAll @ A @ X @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_removeAll_less
thf(fact_4753_card__roots__unity,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [N2: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ N2 )
=> ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( power_power @ A @ Z5 @ N2 )
= ( one_one @ A ) ) ) )
@ N2 ) ) ) ).
% card_roots_unity
thf(fact_4754_subset__eq__atLeast0__lessThan__card,axiom,
! [N7: set @ nat,N2: nat] :
( ( ord_less_eq @ ( set @ nat ) @ N7 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) )
=> ( ord_less_eq @ nat @ ( finite_card @ nat @ N7 ) @ N2 ) ) ).
% subset_eq_atLeast0_lessThan_card
thf(fact_4755_card__sum__le__nat__sum,axiom,
! [S3: set @ nat] :
( ord_less_eq @ nat
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ nat @ S3 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ S3 ) ) ).
% card_sum_le_nat_sum
thf(fact_4756_card__nth__roots,axiom,
! [C2: complex,N2: nat] :
( ( C2
!= ( zero_zero @ complex ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( finite_card @ complex
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= C2 ) ) )
= N2 ) ) ) ).
% card_nth_roots
thf(fact_4757_card__roots__unity__eq,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( finite_card @ complex
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= ( one_one @ complex ) ) ) )
= N2 ) ) ).
% card_roots_unity_eq
thf(fact_4758_card__2__iff,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= ( ? [X3: A,Y2: A] :
( ( S3
= ( insert2 @ A @ X3 @ ( insert2 @ A @ Y2 @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( X3 != Y2 ) ) ) ) ).
% card_2_iff
thf(fact_4759_card__3__iff,axiom,
! [A: $tType,S3: set @ A] :
( ( ( finite_card @ A @ S3 )
= ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
= ( ? [X3: A,Y2: A,Z5: A] :
( ( S3
= ( insert2 @ A @ X3 @ ( insert2 @ A @ Y2 @ ( insert2 @ A @ Z5 @ ( bot_bot @ ( set @ A ) ) ) ) ) )
& ( X3 != Y2 )
& ( Y2 != Z5 )
& ( X3 != Z5 ) ) ) ) ).
% card_3_iff
thf(fact_4760_card__Suc__Diff1,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) )
= ( finite_card @ A @ A4 ) ) ) ) ).
% card_Suc_Diff1
thf(fact_4761_card_Oinsert__remove,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_card @ A @ ( insert2 @ A @ X @ A4 ) )
= ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% card.insert_remove
thf(fact_4762_card_Oremove,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ A4 )
= ( suc @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% card.remove
thf(fact_4763_card__Diff1__less__iff,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A4 ) )
= ( ( finite_finite @ A @ A4 )
& ( member @ A @ X @ A4 ) ) ) ).
% card_Diff1_less_iff
thf(fact_4764_card__Diff2__less,axiom,
! [A: $tType,A4: set @ A,X: A,Y: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( member @ A @ Y @ A4 )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) @ ( insert2 @ A @ Y @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A4 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_4765_card__Diff1__less,axiom,
! [A: $tType,A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less @ nat @ ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) @ ( finite_card @ A @ A4 ) ) ) ) ).
% card_Diff1_less
thf(fact_4766_card__Diff__singleton,axiom,
! [A: $tType,X: A,A4: set @ A] :
( ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ nat @ ( finite_card @ A @ A4 ) @ ( one_one @ nat ) ) ) ) ).
% card_Diff_singleton
thf(fact_4767_card__Diff__singleton__if,axiom,
! [A: $tType,X: A,A4: set @ A] :
( ( ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( minus_minus @ nat @ ( finite_card @ A @ A4 ) @ ( one_one @ nat ) ) ) )
& ( ~ ( member @ A @ X @ A4 )
=> ( ( finite_card @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( finite_card @ A @ A4 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_4768_card__lists__distinct__length__eq_H,axiom,
! [A: $tType,K: nat,A4: set @ A] :
( ( ord_less @ nat @ K @ ( finite_card @ A @ A4 ) )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ ( minus_minus @ nat @ ( finite_card @ A @ A4 ) @ K ) @ ( one_one @ nat ) ) @ ( finite_card @ A @ A4 ) ) ) ) ) ).
% card_lists_distinct_length_eq'
thf(fact_4769_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1105856199041335345_order @ nat @ ( gcd_gcd @ nat ) @ ( zero_zero @ nat ) @ ( dvd_dvd @ nat )
@ ^ [M6: nat,N3: nat] :
( ( dvd_dvd @ nat @ M6 @ N3 )
& ( M6 != N3 ) ) ) ).
% gcd_nat.semilattice_neutr_order_axioms
thf(fact_4770_card__lists__distinct__length__eq,axiom,
! [A: $tType,A4: set @ A,K: nat] :
( ( finite_finite @ A @ A4 )
=> ( ( ord_less_eq @ nat @ K @ ( finite_card @ A @ A4 ) )
=> ( ( finite_card @ ( list @ A )
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= K )
& ( distinct @ A @ Xs )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 ) ) ) )
= ( groups7121269368397514597t_prod @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ ( minus_minus @ nat @ ( finite_card @ A @ A4 ) @ K ) @ ( one_one @ nat ) ) @ ( finite_card @ A @ A4 ) ) ) ) ) ) ).
% card_lists_distinct_length_eq
thf(fact_4771_prod__le__power,axiom,
! [B: $tType,A: $tType] :
( ( linordered_semidom @ A )
=> ! [A4: set @ B,F2: B > A,N2: A,K: nat] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F2 @ I2 ) )
& ( ord_less_eq @ A @ ( F2 @ I2 ) @ N2 ) ) )
=> ( ( ord_less_eq @ nat @ ( finite_card @ B @ A4 ) @ K )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ N2 )
=> ( ord_less_eq @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( power_power @ A @ N2 @ K ) ) ) ) ) ) ).
% prod_le_power
thf(fact_4772_sum__bounded__above__strict,axiom,
! [B: $tType,A: $tType] :
( ( ( ordere8940638589300402666id_add @ A )
& ( semiring_1 @ A ) )
=> ! [A4: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less @ A @ ( F2 @ I2 ) @ K5 ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ B @ A4 ) )
=> ( ord_less @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A4 ) ) @ K5 ) ) ) ) ) ).
% sum_bounded_above_strict
thf(fact_4773_sum__bounded__above__divide,axiom,
! [B: $tType,A: $tType] :
( ( linordered_field @ A )
=> ! [A4: set @ B,F2: B > A,K5: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( divide_divide @ A @ K5 @ ( semiring_1_of_nat @ A @ ( finite_card @ B @ A4 ) ) ) ) )
=> ( ( finite_finite @ B @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less_eq @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ K5 ) ) ) ) ) ).
% sum_bounded_above_divide
thf(fact_4774_card__insert__le__m1,axiom,
! [A: $tType,N2: nat,Y: set @ A,X: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ Y ) @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ ( insert2 @ A @ X @ Y ) ) @ N2 ) ) ) ).
% card_insert_le_m1
thf(fact_4775_polyfun__roots__card,axiom,
! [A: $tType] :
( ( ( real_V8999393235501362500lgebra @ A )
& ( idom @ A ) )
=> ! [C2: nat > A,K: nat,N2: nat] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( ord_less_eq @ nat
@ ( finite_card @ A
@ ( collect @ A
@ ^ [Z5: A] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z5 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) )
= ( zero_zero @ A ) ) ) )
@ N2 ) ) ) ) ).
% polyfun_roots_card
thf(fact_4776_prod__gen__delta,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,A2: B,B2: B > A,C2: A] :
( ( finite_finite @ B @ S3 )
=> ( ( ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ C2 )
@ S3 )
= ( times_times @ A @ ( B2 @ A2 ) @ ( power_power @ A @ C2 @ ( minus_minus @ nat @ ( finite_card @ B @ S3 ) @ ( one_one @ nat ) ) ) ) ) )
& ( ~ ( member @ B @ A2 @ S3 )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [K3: B] : ( if @ A @ ( K3 = A2 ) @ ( B2 @ K3 ) @ C2 )
@ S3 )
= ( power_power @ A @ C2 @ ( finite_card @ B @ S3 ) ) ) ) ) ) ) ).
% prod_gen_delta
thf(fact_4777_bit_Oabstract__boolean__algebra__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( boolea2506097494486148201lgebra @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( bit_se1065995026697491101ons_or @ A ) @ ( bit_ri4277139882892585799ns_not @ A ) @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% bit.abstract_boolean_algebra_axioms
thf(fact_4778_max__rpair__set,axiom,
fun_reduction_pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ fun_max_strict @ fun_max_weak ) ).
% max_rpair_set
thf(fact_4779_min__rpair__set,axiom,
fun_reduction_pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( product_Pair @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ fun_min_strict @ fun_min_weak ) ).
% min_rpair_set
thf(fact_4780_finite__enumerate,axiom,
! [S3: set @ nat] :
( ( finite_finite @ nat @ S3 )
=> ? [R3: nat > nat] :
( ( strict_mono_on @ nat @ nat @ R3 @ ( set_ord_lessThan @ nat @ ( finite_card @ nat @ S3 ) ) )
& ! [N5: nat] :
( ( ord_less @ nat @ N5 @ ( finite_card @ nat @ S3 ) )
=> ( member @ nat @ ( R3 @ N5 ) @ S3 ) ) ) ) ).
% finite_enumerate
thf(fact_4781_card__greaterThanLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card @ int @ ( set_or5935395276787703475ssThan @ int @ L @ U ) )
= ( nat2 @ ( minus_minus @ int @ U @ ( plus_plus @ int @ L @ ( one_one @ int ) ) ) ) ) ).
% card_greaterThanLessThan_int
thf(fact_4782_Gcd__remove0__nat,axiom,
! [M7: set @ nat] :
( ( finite_finite @ nat @ M7 )
=> ( ( gcd_Gcd @ nat @ M7 )
= ( gcd_Gcd @ nat @ ( minus_minus @ ( set @ nat ) @ M7 @ ( insert2 @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ) ) ).
% Gcd_remove0_nat
thf(fact_4783_greaterThanLessThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,L: A,U: A] :
( ( member @ A @ I @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( ( ord_less @ A @ L @ I )
& ( ord_less @ A @ I @ U ) ) ) ) ).
% greaterThanLessThan_iff
thf(fact_4784_finite__greaterThanLessThan__int,axiom,
! [L: int,U: int] : ( finite_finite @ int @ ( set_or5935395276787703475ssThan @ int @ L @ U ) ) ).
% finite_greaterThanLessThan_int
thf(fact_4785_greaterThanLessThan__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,K: A] :
( ( ord_less_eq @ A @ L @ K )
=> ( ( set_or5935395276787703475ssThan @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% greaterThanLessThan_empty
thf(fact_4786_greaterThanLessThan__empty__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ( set_or5935395276787703475ssThan @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% greaterThanLessThan_empty_iff
thf(fact_4787_greaterThanLessThan__empty__iff2,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% greaterThanLessThan_empty_iff2
thf(fact_4788_infinite__Ioo__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ioo_iff
thf(fact_4789_Gcd__empty,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Gcd @ A @ ( bot_bot @ ( set @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% Gcd_empty
thf(fact_4790_Gcd__insert,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( gcd_Gcd @ A @ ( insert2 @ A @ A2 @ A4 ) )
= ( gcd_gcd @ A @ A2 @ ( gcd_Gcd @ A @ A4 ) ) ) ) ).
% Gcd_insert
thf(fact_4791_Gcd__2,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_Gcd @ A @ ( insert2 @ A @ A2 @ ( insert2 @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% Gcd_2
thf(fact_4792_Gcd__0__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( ( gcd_Gcd @ A @ A4 )
= ( zero_zero @ A ) )
= ( ord_less_eq @ ( set @ A ) @ A4 @ ( insert2 @ A @ ( zero_zero @ A ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Gcd_0_iff
thf(fact_4793_Gcd__dvd,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( dvd_dvd @ A @ ( gcd_Gcd @ A @ A4 ) @ A2 ) ) ) ).
% Gcd_dvd
thf(fact_4794_dvd__GcdD,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [X: A,A4: set @ A,Y: A] :
( ( dvd_dvd @ A @ X @ ( gcd_Gcd @ A @ A4 ) )
=> ( ( member @ A @ Y @ A4 )
=> ( dvd_dvd @ A @ X @ Y ) ) ) ) ).
% dvd_GcdD
thf(fact_4795_dvd__Gcd__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [X: A,A4: set @ A] :
( ( dvd_dvd @ A @ X @ ( gcd_Gcd @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( dvd_dvd @ A @ X @ X3 ) ) ) ) ) ).
% dvd_Gcd_iff
thf(fact_4796_Gcd__greatest,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,A2: A] :
( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( dvd_dvd @ A @ A2 @ B5 ) )
=> ( dvd_dvd @ A @ A2 @ ( gcd_Gcd @ A @ A4 ) ) ) ) ).
% Gcd_greatest
thf(fact_4797_Gcd__dvd__nat,axiom,
! [A2: nat,A4: set @ nat] :
( ( member @ nat @ A2 @ A4 )
=> ( dvd_dvd @ nat @ ( gcd_Gcd @ nat @ A4 ) @ A2 ) ) ).
% Gcd_dvd_nat
thf(fact_4798_Gcd__greatest__nat,axiom,
! [A4: set @ nat,A2: nat] :
( ! [B5: nat] :
( ( member @ nat @ B5 @ A4 )
=> ( dvd_dvd @ nat @ A2 @ B5 ) )
=> ( dvd_dvd @ nat @ A2 @ ( gcd_Gcd @ nat @ A4 ) ) ) ).
% Gcd_greatest_nat
thf(fact_4799_Gcd__1,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( member @ A @ ( one_one @ A ) @ A4 )
=> ( ( gcd_Gcd @ A @ A4 )
= ( one_one @ A ) ) ) ) ).
% Gcd_1
thf(fact_4800_Gcd__nat__eq__one,axiom,
! [N7: set @ nat] :
( ( member @ nat @ ( one_one @ nat ) @ N7 )
=> ( ( gcd_Gcd @ nat @ N7 )
= ( one_one @ nat ) ) ) ).
% Gcd_nat_eq_one
thf(fact_4801_infinite__Ioo,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ioo
thf(fact_4802_Gcd__eq__1__I,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( gcd_Gcd @ A @ A4 )
= ( one_one @ A ) ) ) ) ) ).
% Gcd_eq_1_I
thf(fact_4803_Gcd__in,axiom,
! [A4: set @ nat] :
( ! [A5: nat,B5: nat] :
( ( member @ nat @ A5 @ A4 )
=> ( ( member @ nat @ B5 @ A4 )
=> ( member @ nat @ ( gcd_gcd @ nat @ A5 @ B5 ) @ A4 ) ) )
=> ( ( A4
!= ( bot_bot @ ( set @ nat ) ) )
=> ( member @ nat @ ( gcd_Gcd @ nat @ A4 ) @ A4 ) ) ) ).
% Gcd_in
thf(fact_4804_greaterThanLessThan__subseteq__greaterThanLessThan,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or5935395276787703475ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanLessThan
thf(fact_4805_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
! [L: int,U: int] :
( ( set_or7035219750837199246ssThan @ int @ ( plus_plus @ int @ L @ ( one_one @ int ) ) @ U )
= ( set_or5935395276787703475ssThan @ int @ L @ U ) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_4806_greaterThanLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastAtMost_iff
thf(fact_4807_greaterThanLessThan__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastLessThan_iff
thf(fact_4808_atLeastAtMost__diff__ends,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( insert2 @ A @ A2 @ ( insert2 @ A @ B2 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) ) ) ).
% atLeastAtMost_diff_ends
thf(fact_4809_strict__mono__onD,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ! [F2: A > B,A4: set @ A,R2: A,S: A] :
( ( strict_mono_on @ A @ B @ F2 @ A4 )
=> ( ( member @ A @ R2 @ A4 )
=> ( ( member @ A @ S @ A4 )
=> ( ( ord_less @ A @ R2 @ S )
=> ( ord_less @ B @ ( F2 @ R2 ) @ ( F2 @ S ) ) ) ) ) ) ) ).
% strict_mono_onD
thf(fact_4810_strict__mono__onI,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ! [A4: set @ A,F2: A > B] :
( ! [R3: A,S2: A] :
( ( member @ A @ R3 @ A4 )
=> ( ( member @ A @ S2 @ A4 )
=> ( ( ord_less @ A @ R3 @ S2 )
=> ( ord_less @ B @ ( F2 @ R3 ) @ ( F2 @ S2 ) ) ) ) )
=> ( strict_mono_on @ A @ B @ F2 @ A4 ) ) ) ).
% strict_mono_onI
thf(fact_4811_strict__mono__on__def,axiom,
! [B: $tType,A: $tType] :
( ( ( ord @ A )
& ( ord @ B ) )
=> ( ( strict_mono_on @ A @ B )
= ( ^ [F3: A > B,A8: set @ A] :
! [R5: A,S6: A] :
( ( ( member @ A @ R5 @ A8 )
& ( member @ A @ S6 @ A8 )
& ( ord_less @ A @ R5 @ S6 ) )
=> ( ord_less @ B @ ( F3 @ R5 ) @ ( F3 @ S6 ) ) ) ) ) ) ).
% strict_mono_on_def
thf(fact_4812_abs__Gcd__eq,axiom,
! [K5: set @ int] :
( ( abs_abs @ int @ ( gcd_Gcd @ int @ K5 ) )
= ( gcd_Gcd @ int @ K5 ) ) ).
% abs_Gcd_eq
thf(fact_4813_finite__greaterThanLessThan,axiom,
! [L: nat,U: nat] : ( finite_finite @ nat @ ( set_or5935395276787703475ssThan @ nat @ L @ U ) ) ).
% finite_greaterThanLessThan
thf(fact_4814_card__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or5935395276787703475ssThan @ nat @ L @ U ) )
= ( minus_minus @ nat @ U @ ( suc @ L ) ) ) ).
% card_greaterThanLessThan
thf(fact_4815_Gcd__dvd__int,axiom,
! [A2: int,A4: set @ int] :
( ( member @ int @ A2 @ A4 )
=> ( dvd_dvd @ int @ ( gcd_Gcd @ int @ A4 ) @ A2 ) ) ).
% Gcd_dvd_int
thf(fact_4816_Gcd__greatest__int,axiom,
! [A4: set @ int,A2: int] :
( ! [B5: int] :
( ( member @ int @ B5 @ A4 )
=> ( dvd_dvd @ int @ A2 @ B5 ) )
=> ( dvd_dvd @ int @ A2 @ ( gcd_Gcd @ int @ A4 ) ) ) ).
% Gcd_greatest_int
thf(fact_4817_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( suc @ L ) @ U )
= ( set_or5935395276787703475ssThan @ nat @ L @ U ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_4818_Gcd__int__greater__eq__0,axiom,
! [K5: set @ int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( gcd_Gcd @ int @ K5 ) ) ).
% Gcd_int_greater_eq_0
thf(fact_4819_strict__mono__on__leD,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( preorder @ B ) )
=> ! [F2: A > B,A4: set @ A,X: A,Y: A] :
( ( strict_mono_on @ A @ B @ F2 @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( member @ A @ Y @ A4 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ) ) ).
% strict_mono_on_leD
thf(fact_4820_semiring__char__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiri4206861660011772517g_char @ A )
= ( ^ [Uu4: itself @ A] :
( gcd_Gcd @ nat
@ ( collect @ nat
@ ^ [N3: nat] :
( ( semiring_1_of_nat @ A @ N3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% semiring_char_def
thf(fact_4821_times__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( times_times @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ U2 ) @ ( times_times @ nat @ Y2 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ V5 ) @ ( times_times @ nat @ Y2 @ U2 ) ) ) )
@ Xa2
@ X ) ) ) ).
% times_int.abs_eq
thf(fact_4822_length__mul__elem,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),N2: nat] :
( ! [X4: list @ A] :
( ( member @ ( list @ A ) @ X4 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ X4 )
= N2 ) )
=> ( ( size_size @ ( list @ A ) @ ( concat @ A @ Xs2 ) )
= ( times_times @ nat @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) @ N2 ) ) ) ).
% length_mul_elem
thf(fact_4823_eq__Abs__Integ,axiom,
! [Z2: int] :
~ ! [X4: nat,Y4: nat] :
( Z2
!= ( abs_Integ @ ( product_Pair @ nat @ nat @ X4 @ Y4 ) ) ) ).
% eq_Abs_Integ
thf(fact_4824_int_Oabs__induct,axiom,
! [P: int > $o,X: int] :
( ! [Y4: product_prod @ nat @ nat] : ( P @ ( abs_Integ @ Y4 ) )
=> ( P @ X ) ) ).
% int.abs_induct
thf(fact_4825_zero__int__def,axiom,
( ( zero_zero @ int )
= ( abs_Integ @ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ ( zero_zero @ nat ) ) ) ) ).
% zero_int_def
thf(fact_4826_int__def,axiom,
( ( semiring_1_of_nat @ int )
= ( ^ [N3: nat] : ( abs_Integ @ ( product_Pair @ nat @ nat @ N3 @ ( zero_zero @ nat ) ) ) ) ) ).
% int_def
thf(fact_4827_nat_Oabs__eq,axiom,
! [X: product_prod @ nat @ nat] :
( ( nat2 @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) @ X ) ) ).
% nat.abs_eq
thf(fact_4828_uminus__int_Oabs__eq,axiom,
! [X: product_prod @ nat @ nat] :
( ( uminus_uminus @ int @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [X3: nat,Y2: nat] : ( product_Pair @ nat @ nat @ Y2 @ X3 )
@ X ) ) ) ).
% uminus_int.abs_eq
thf(fact_4829_one__int__def,axiom,
( ( one_one @ int )
= ( abs_Integ @ ( product_Pair @ nat @ nat @ ( one_one @ nat ) @ ( zero_zero @ nat ) ) ) ) ).
% one_int_def
thf(fact_4830_of__int_Oabs__eq,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: product_prod @ nat @ nat] :
( ( ring_1_of_int @ A @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) )
@ X ) ) ) ).
% of_int.abs_eq
thf(fact_4831_less__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( ord_less @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) )
@ Xa2
@ X ) ) ).
% less_int.abs_eq
thf(fact_4832_less__eq__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( ord_less_eq @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) )
@ Xa2
@ X ) ) ).
% less_eq_int.abs_eq
thf(fact_4833_plus__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( plus_plus @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ U2 ) @ ( plus_plus @ nat @ Y2 @ V5 ) ) )
@ Xa2
@ X ) ) ) ).
% plus_int.abs_eq
thf(fact_4834_minus__int_Oabs__eq,axiom,
! [Xa2: product_prod @ nat @ nat,X: product_prod @ nat @ nat] :
( ( minus_minus @ int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ Y2 @ U2 ) ) )
@ Xa2
@ X ) ) ) ).
% minus_int.abs_eq
thf(fact_4835_set__n__lists,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( set2 @ ( list @ A ) @ ( n_lists @ A @ N2 @ Xs2 ) )
= ( collect @ ( list @ A )
@ ^ [Ys2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Ys2 )
= N2 )
& ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Ys2 ) @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% set_n_lists
thf(fact_4836_eq__numeral__iff__iszero_I8_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( one_one @ A )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ one2 @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(8)
thf(fact_4837_eq__numeral__iff__iszero_I7_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( one_one @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ one2 ) ) ) ) ) ).
% eq_numeral_iff_iszero(7)
thf(fact_4838_iszero__neg__numeral,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [W2: num] :
( ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ W2 ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ W2 ) ) ) ) ).
% iszero_neg_numeral
thf(fact_4839_not__iszero__numeral,axiom,
! [A: $tType] :
( ( ring_char_0 @ A )
=> ! [W2: num] :
~ ( ring_1_iszero @ A @ ( numeral_numeral @ A @ W2 ) ) ) ).
% not_iszero_numeral
thf(fact_4840_not__iszero__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( one_one @ A ) ) ) ).
% not_iszero_1
thf(fact_4841_eq__iff__iszero__diff,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 ) )
= ( ^ [X3: A,Y2: A] : ( ring_1_iszero @ A @ ( minus_minus @ A @ X3 @ Y2 ) ) ) ) ) ).
% eq_iff_iszero_diff
thf(fact_4842_iszero__0,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ring_1_iszero @ A @ ( zero_zero @ A ) ) ) ).
% iszero_0
thf(fact_4843_iszero__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_iszero @ A )
= ( ^ [Z5: A] :
( Z5
= ( zero_zero @ A ) ) ) ) ) ).
% iszero_def
thf(fact_4844_eq__numeral__iff__iszero_I10_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( zero_zero @ A )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(10)
thf(fact_4845_eq__numeral__iff__iszero_I9_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( numeral_numeral @ A @ X )
= ( zero_zero @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ X ) ) ) ) ).
% eq_numeral_iff_iszero(9)
thf(fact_4846_not__iszero__Numeral1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( numeral_numeral @ A @ one2 ) ) ) ).
% not_iszero_Numeral1
thf(fact_4847_not__iszero__neg__1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% not_iszero_neg_1
thf(fact_4848_eq__numeral__iff__iszero_I1_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( numeral_numeral @ A @ X )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ X @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(1)
thf(fact_4849_eq__numeral__iff__iszero_I11_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( zero_zero @ A ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ X ) ) ) ) ).
% eq_numeral_iff_iszero(11)
thf(fact_4850_eq__numeral__iff__iszero_I12_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( zero_zero @ A )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(12)
thf(fact_4851_not__iszero__neg__Numeral1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ~ ( ring_1_iszero @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ one2 ) ) ) ) ).
% not_iszero_neg_Numeral1
thf(fact_4852_eq__numeral__iff__iszero_I3_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(3)
thf(fact_4853_eq__numeral__iff__iszero_I2_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( numeral_numeral @ A @ X )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( numeral_numeral @ A @ ( plus_plus @ num @ X @ Y ) ) ) ) ) ).
% eq_numeral_iff_iszero(2)
thf(fact_4854_eq__numeral__iff__iszero_I4_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num,Y: num] :
( ( ( uminus_uminus @ A @ ( numeral_numeral @ A @ X ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ Y ) ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ Y @ X ) ) ) ) ).
% eq_numeral_iff_iszero(4)
thf(fact_4855_eq__numeral__iff__iszero_I6_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [Y: num] :
( ( ( one_one @ A )
= ( numeral_numeral @ A @ Y ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ one2 @ Y ) ) ) ) ).
% eq_numeral_iff_iszero(6)
thf(fact_4856_eq__numeral__iff__iszero_I5_J,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ! [X: num] :
( ( ( numeral_numeral @ A @ X )
= ( one_one @ A ) )
= ( ring_1_iszero @ A @ ( neg_numeral_sub @ A @ X @ one2 ) ) ) ) ).
% eq_numeral_iff_iszero(5)
thf(fact_4857_less__eq__int_Orep__eq,axiom,
( ( ord_less_eq @ int )
= ( ^ [X3: int,Xa4: int] :
( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [Y2: nat,Z5: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ Y2 @ V5 ) @ ( plus_plus @ nat @ U2 @ Z5 ) ) )
@ ( rep_Integ @ X3 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_eq_int.rep_eq
thf(fact_4858_less__int_Orep__eq,axiom,
( ( ord_less @ int )
= ( ^ [X3: int,Xa4: int] :
( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [Y2: nat,Z5: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ Y2 @ V5 ) @ ( plus_plus @ nat @ U2 @ Z5 ) ) )
@ ( rep_Integ @ X3 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_int.rep_eq
thf(fact_4859_num__of__nat_Osimps_I2_J,axiom,
! [N2: nat] :
( ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( num_of_nat @ ( suc @ N2 ) )
= ( inc @ ( num_of_nat @ N2 ) ) ) )
& ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( num_of_nat @ ( suc @ N2 ) )
= one2 ) ) ) ).
% num_of_nat.simps(2)
thf(fact_4860_num__of__nat__numeral__eq,axiom,
! [Q4: num] :
( ( num_of_nat @ ( numeral_numeral @ nat @ Q4 ) )
= Q4 ) ).
% num_of_nat_numeral_eq
thf(fact_4861_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ ( zero_zero @ nat ) )
= one2 ) ).
% num_of_nat.simps(1)
thf(fact_4862_numeral__num__of__nat,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( numeral_numeral @ nat @ ( num_of_nat @ N2 ) )
= N2 ) ) ).
% numeral_num_of_nat
thf(fact_4863_num__of__nat__One,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ N2 @ ( one_one @ nat ) )
=> ( ( num_of_nat @ N2 )
= one2 ) ) ).
% num_of_nat_One
thf(fact_4864_nat_Orep__eq,axiom,
( nat2
= ( ^ [X3: int] : ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) @ ( rep_Integ @ X3 ) ) ) ) ).
% nat.rep_eq
thf(fact_4865_numeral__num__of__nat__unfold,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( numeral_numeral @ A @ ( num_of_nat @ N2 ) )
= ( one_one @ A ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( numeral_numeral @ A @ ( num_of_nat @ N2 ) )
= ( semiring_1_of_nat @ A @ N2 ) ) ) ) ) ).
% numeral_num_of_nat_unfold
thf(fact_4866_num__of__nat__double,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( num_of_nat @ ( plus_plus @ nat @ N2 @ N2 ) )
= ( bit0 @ ( num_of_nat @ N2 ) ) ) ) ).
% num_of_nat_double
thf(fact_4867_num__of__nat__plus__distrib,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( num_of_nat @ ( plus_plus @ nat @ M @ N2 ) )
= ( plus_plus @ num @ ( num_of_nat @ M ) @ ( num_of_nat @ N2 ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_4868_of__int_Orep__eq,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( ^ [X3: int] :
( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) )
@ ( rep_Integ @ X3 ) ) ) ) ) ).
% of_int.rep_eq
thf(fact_4869_uminus__int__def,axiom,
( ( uminus_uminus @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ int @ rep_Integ @ abs_Integ
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [X3: nat,Y2: nat] : ( product_Pair @ nat @ nat @ Y2 @ X3 ) ) ) ) ).
% uminus_int_def
thf(fact_4870_prod_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I5: set @ B,P6: B > A,I: B] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( P6 @ X3 )
!= ( one_one @ A ) ) ) ) )
=> ( ( ( member @ B @ I @ I5 )
=> ( ( groups1962203154675924110t_prod @ B @ A @ P6 @ ( insert2 @ B @ I @ I5 ) )
= ( groups1962203154675924110t_prod @ B @ A @ P6 @ I5 ) ) )
& ( ~ ( member @ B @ I @ I5 )
=> ( ( groups1962203154675924110t_prod @ B @ A @ P6 @ ( insert2 @ B @ I @ I5 ) )
= ( times_times @ A @ ( P6 @ I ) @ ( groups1962203154675924110t_prod @ B @ A @ P6 @ I5 ) ) ) ) ) ) ) ).
% prod.insert'
thf(fact_4871_rat__floor__lemma,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ rat @ ( ring_1_of_int @ rat @ ( divide_divide @ int @ A2 @ B2 ) ) @ ( fract @ A2 @ B2 ) )
& ( ord_less @ rat @ ( fract @ A2 @ B2 ) @ ( ring_1_of_int @ rat @ ( plus_plus @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( one_one @ int ) ) ) ) ) ).
% rat_floor_lemma
thf(fact_4872_prod_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [P6: B > A] :
( ( groups1962203154675924110t_prod @ B @ A @ P6 @ ( bot_bot @ ( set @ B ) ) )
= ( one_one @ A ) ) ) ).
% prod.empty'
thf(fact_4873_diff__rat,axiom,
! [B2: int,D2: int,A2: int,C2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( D2
!= ( zero_zero @ int ) )
=> ( ( minus_minus @ rat @ ( fract @ A2 @ B2 ) @ ( fract @ C2 @ D2 ) )
= ( fract @ ( minus_minus @ int @ ( times_times @ int @ A2 @ D2 ) @ ( times_times @ int @ C2 @ B2 ) ) @ ( times_times @ int @ B2 @ D2 ) ) ) ) ) ).
% diff_rat
thf(fact_4874_less__rat,axiom,
! [B2: int,D2: int,A2: int,C2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( D2
!= ( zero_zero @ int ) )
=> ( ( ord_less @ rat @ ( fract @ A2 @ B2 ) @ ( fract @ C2 @ D2 ) )
= ( ord_less @ int @ ( times_times @ int @ ( times_times @ int @ A2 @ D2 ) @ ( times_times @ int @ B2 @ D2 ) ) @ ( times_times @ int @ ( times_times @ int @ C2 @ B2 ) @ ( times_times @ int @ B2 @ D2 ) ) ) ) ) ) ).
% less_rat
thf(fact_4875_add__rat,axiom,
! [B2: int,D2: int,A2: int,C2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( D2
!= ( zero_zero @ int ) )
=> ( ( plus_plus @ rat @ ( fract @ A2 @ B2 ) @ ( fract @ C2 @ D2 ) )
= ( fract @ ( plus_plus @ int @ ( times_times @ int @ A2 @ D2 ) @ ( times_times @ int @ C2 @ B2 ) ) @ ( times_times @ int @ B2 @ D2 ) ) ) ) ) ).
% add_rat
thf(fact_4876_le__rat,axiom,
! [B2: int,D2: int,A2: int,C2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( D2
!= ( zero_zero @ int ) )
=> ( ( ord_less_eq @ rat @ ( fract @ A2 @ B2 ) @ ( fract @ C2 @ D2 ) )
= ( ord_less_eq @ int @ ( times_times @ int @ ( times_times @ int @ A2 @ D2 ) @ ( times_times @ int @ B2 @ D2 ) ) @ ( times_times @ int @ ( times_times @ int @ C2 @ B2 ) @ ( times_times @ int @ B2 @ D2 ) ) ) ) ) ) ).
% le_rat
thf(fact_4877_eq__rat_I3_J,axiom,
! [A2: int,C2: int] :
( ( fract @ ( zero_zero @ int ) @ A2 )
= ( fract @ ( zero_zero @ int ) @ C2 ) ) ).
% eq_rat(3)
thf(fact_4878_prod_Onon__neutral_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A,I5: set @ B] :
( ( groups1962203154675924110t_prod @ B @ A @ G
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( G @ X3 )
!= ( one_one @ A ) ) ) ) )
= ( groups1962203154675924110t_prod @ B @ A @ G @ I5 ) ) ) ).
% prod.non_neutral'
thf(fact_4879_eq__rat_I2_J,axiom,
! [A2: int] :
( ( fract @ A2 @ ( zero_zero @ int ) )
= ( fract @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% eq_rat(2)
thf(fact_4880_Rat__induct__pos,axiom,
! [P: rat > $o,Q4: rat] :
( ! [A5: int,B5: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( P @ ( fract @ A5 @ B5 ) ) )
=> ( P @ Q4 ) ) ).
% Rat_induct_pos
thf(fact_4881_eq__rat_I1_J,axiom,
! [B2: int,D2: int,A2: int,C2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( D2
!= ( zero_zero @ int ) )
=> ( ( ( fract @ A2 @ B2 )
= ( fract @ C2 @ D2 ) )
= ( ( times_times @ int @ A2 @ D2 )
= ( times_times @ int @ C2 @ B2 ) ) ) ) ) ).
% eq_rat(1)
thf(fact_4882_mult__rat__cancel,axiom,
! [C2: int,A2: int,B2: int] :
( ( C2
!= ( zero_zero @ int ) )
=> ( ( fract @ ( times_times @ int @ C2 @ A2 ) @ ( times_times @ int @ C2 @ B2 ) )
= ( fract @ A2 @ B2 ) ) ) ).
% mult_rat_cancel
thf(fact_4883_rat__number__collapse_I6_J,axiom,
! [K: int] :
( ( fract @ K @ ( zero_zero @ int ) )
= ( zero_zero @ rat ) ) ).
% rat_number_collapse(6)
thf(fact_4884_rat__number__collapse_I1_J,axiom,
! [K: int] :
( ( fract @ ( zero_zero @ int ) @ K )
= ( zero_zero @ rat ) ) ).
% rat_number_collapse(1)
thf(fact_4885_Zero__rat__def,axiom,
( ( zero_zero @ rat )
= ( fract @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ).
% Zero_rat_def
thf(fact_4886_prod_Omono__neutral__cong__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A,H: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A @ G @ T6 )
= ( groups1962203154675924110t_prod @ B @ A @ H @ S3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right'
thf(fact_4887_prod_Omono__neutral__cong__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,T6: set @ B,H: B > A,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ I2 )
= ( one_one @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ S3 )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A @ G @ S3 )
= ( groups1962203154675924110t_prod @ B @ A @ H @ T6 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left'
thf(fact_4888_prod_Omono__neutral__right_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A @ G @ T6 )
= ( groups1962203154675924110t_prod @ B @ A @ G @ S3 ) ) ) ) ) ).
% prod.mono_neutral_right'
thf(fact_4889_prod_Omono__neutral__left_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S3: set @ B,T6: set @ B,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ S3 @ T6 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A @ G @ S3 )
= ( groups1962203154675924110t_prod @ B @ A @ G @ T6 ) ) ) ) ) ).
% prod.mono_neutral_left'
thf(fact_4890_zero__less__Fract__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ rat @ ( zero_zero @ rat ) @ ( fract @ A2 @ B2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% zero_less_Fract_iff
thf(fact_4891_Fract__less__zero__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ rat @ ( fract @ A2 @ B2 ) @ ( zero_zero @ rat ) )
= ( ord_less @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% Fract_less_zero_iff
thf(fact_4892_prod_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [I5: set @ B,G: B > A,H: B > A] :
( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( G @ X3 )
!= ( one_one @ A ) ) ) ) )
=> ( ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I5 )
& ( ( H @ X3 )
!= ( one_one @ A ) ) ) ) )
=> ( ( groups1962203154675924110t_prod @ B @ A
@ ^ [I3: B] : ( times_times @ A @ ( G @ I3 ) @ ( H @ I3 ) )
@ I5 )
= ( times_times @ A @ ( groups1962203154675924110t_prod @ B @ A @ G @ I5 ) @ ( groups1962203154675924110t_prod @ B @ A @ H @ I5 ) ) ) ) ) ) ).
% prod.distrib'
thf(fact_4893_Fract__less__one__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ rat @ ( fract @ A2 @ B2 ) @ ( one_one @ rat ) )
= ( ord_less @ int @ A2 @ B2 ) ) ) ).
% Fract_less_one_iff
thf(fact_4894_one__less__Fract__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ rat @ ( one_one @ rat ) @ ( fract @ A2 @ B2 ) )
= ( ord_less @ int @ B2 @ A2 ) ) ) ).
% one_less_Fract_iff
thf(fact_4895_prod_OG__def,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ( ( groups1962203154675924110t_prod @ B @ A )
= ( ^ [P5: B > A,I7: set @ B] :
( if @ A
@ ( finite_finite @ B
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I7 )
& ( ( P5 @ X3 )
!= ( one_one @ A ) ) ) ) )
@ ( groups7121269368397514597t_prod @ B @ A @ P5
@ ( collect @ B
@ ^ [X3: B] :
( ( member @ B @ X3 @ I7 )
& ( ( P5 @ X3 )
!= ( one_one @ A ) ) ) ) )
@ ( one_one @ A ) ) ) ) ) ).
% prod.G_def
thf(fact_4896_Fract__add__one,axiom,
! [N2: int,M: int] :
( ( N2
!= ( zero_zero @ int ) )
=> ( ( fract @ ( plus_plus @ int @ M @ N2 ) @ N2 )
= ( plus_plus @ rat @ ( fract @ M @ N2 ) @ ( one_one @ rat ) ) ) ) ).
% Fract_add_one
thf(fact_4897_zero__le__Fract__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ rat @ ( zero_zero @ rat ) @ ( fract @ A2 @ B2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% zero_le_Fract_iff
thf(fact_4898_Fract__le__zero__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ rat @ ( fract @ A2 @ B2 ) @ ( zero_zero @ rat ) )
= ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% Fract_le_zero_iff
thf(fact_4899_Fract__le__one__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ rat @ ( fract @ A2 @ B2 ) @ ( one_one @ rat ) )
= ( ord_less_eq @ int @ A2 @ B2 ) ) ) ).
% Fract_le_one_iff
thf(fact_4900_one__le__Fract__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ rat @ ( one_one @ rat ) @ ( fract @ A2 @ B2 ) )
= ( ord_less_eq @ int @ B2 @ A2 ) ) ) ).
% one_le_Fract_iff
thf(fact_4901_times__int__def,axiom,
( ( times_times @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ rep_Integ @ ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ int @ rep_Integ @ abs_Integ )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ U2 ) @ ( times_times @ nat @ Y2 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ V5 ) @ ( times_times @ nat @ Y2 @ U2 ) ) ) ) ) ) ) ).
% times_int_def
thf(fact_4902_minus__int__def,axiom,
( ( minus_minus @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ rep_Integ @ ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ int @ rep_Integ @ abs_Integ )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ Y2 @ U2 ) ) ) ) ) ) ).
% minus_int_def
thf(fact_4903_plus__int__def,axiom,
( ( plus_plus @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ rep_Integ @ ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ int @ rep_Integ @ abs_Integ )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ U2 ) @ ( plus_plus @ nat @ Y2 @ V5 ) ) ) ) ) ) ).
% plus_int_def
thf(fact_4904_image__minus__const__atLeastLessThan__nat,axiom,
! [C2: nat,Y: nat,X: nat] :
( ( ( ord_less @ nat @ C2 @ Y )
=> ( ( image @ nat @ nat
@ ^ [I3: nat] : ( minus_minus @ nat @ I3 @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( set_or7035219750837199246ssThan @ nat @ ( minus_minus @ nat @ X @ C2 ) @ ( minus_minus @ nat @ Y @ C2 ) ) ) )
& ( ~ ( ord_less @ nat @ C2 @ Y )
=> ( ( ( ord_less @ nat @ X @ Y )
=> ( ( image @ nat @ nat
@ ^ [I3: nat] : ( minus_minus @ nat @ I3 @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( bot_bot @ ( set @ nat ) ) ) ) )
& ( ~ ( ord_less @ nat @ X @ Y )
=> ( ( image @ nat @ nat
@ ^ [I3: nat] : ( minus_minus @ nat @ I3 @ C2 )
@ ( set_or7035219750837199246ssThan @ nat @ X @ Y ) )
= ( bot_bot @ ( set @ nat ) ) ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_4905_ring__1__class_Oof__int__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_of_int @ A )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ A @ A @ rep_Integ @ ( id @ A )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) ) ) ) ) ) ).
% ring_1_class.of_int_def
thf(fact_4906_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N2: num] :
( ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int )
@ ^ [Q6: num] : ( bit_se2584673776208193580ke_bit @ int @ ( numeral_numeral @ nat @ M ) @ ( minus_minus @ int @ ( power_power @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( numeral_numeral @ nat @ M ) ) @ ( numeral_numeral @ int @ Q6 ) ) )
@ ( bit_take_bit_num @ ( numeral_numeral @ nat @ M ) @ N2 ) ) ) ).
% take_bit_numeral_minus_numeral_int
thf(fact_4907_of__nat__eq__id,axiom,
( ( semiring_1_of_nat @ nat )
= ( id @ nat ) ) ).
% of_nat_eq_id
thf(fact_4908_id__funpow,axiom,
! [A: $tType,N2: nat] :
( ( compow @ ( A > A ) @ N2 @ ( id @ A ) )
= ( id @ A ) ) ).
% id_funpow
thf(fact_4909_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ ( zero_zero @ nat ) @ M )
= ( none @ num ) ) ).
% take_bit_num_simps(1)
thf(fact_4910_image__add__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [S3: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ ( zero_zero @ A ) ) @ S3 )
= S3 ) ) ).
% image_add_0
thf(fact_4911_image__add__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I: A,J: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_or1337092689740270186AtMost @ A @ I @ J ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastAtMost
thf(fact_4912_image__diff__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( image @ A @ A @ ( minus_minus @ A @ D2 ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ D2 @ B2 ) @ ( minus_minus @ A @ D2 @ A2 ) ) ) ) ).
% image_diff_atLeastAtMost
thf(fact_4913_image__uminus__atLeastAtMost,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_atLeastAtMost
thf(fact_4914_image__add__atLeastLessThan,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I: A,J: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_or7035219750837199246ssThan @ A @ I @ J ) )
= ( set_or7035219750837199246ssThan @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastLessThan
thf(fact_4915_image__add__atMost,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [C2: A,A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ C2 ) @ ( set_ord_atMost @ A @ A2 ) )
= ( set_ord_atMost @ A @ ( plus_plus @ A @ C2 @ A2 ) ) ) ) ).
% image_add_atMost
thf(fact_4916_image__uminus__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_or5935395276787703475ssThan @ A @ X @ Y ) )
= ( set_or5935395276787703475ssThan @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_greaterThanLessThan
thf(fact_4917_push__bit__0__id,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4730199178511100633sh_bit @ A @ ( zero_zero @ nat ) )
= ( id @ A ) ) ) ).
% push_bit_0_id
thf(fact_4918_drop__bit__0,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( ( bit_se4197421643247451524op_bit @ A @ ( zero_zero @ nat ) )
= ( id @ A ) ) ) ).
% drop_bit_0
thf(fact_4919_take__bit__num__simps_I2_J,axiom,
! [N2: nat] :
( ( bit_take_bit_num @ ( suc @ N2 ) @ one2 )
= ( some @ num @ one2 ) ) ).
% take_bit_num_simps(2)
thf(fact_4920_image__Suc__atLeastAtMost,axiom,
! [I: nat,J: nat] :
( ( image @ nat @ nat @ suc @ ( set_or1337092689740270186AtMost @ nat @ I @ J ) )
= ( set_or1337092689740270186AtMost @ nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_4921_image__Suc__atLeastLessThan,axiom,
! [I: nat,J: nat] :
( ( image @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ I @ J ) )
= ( set_or7035219750837199246ssThan @ nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_4922_image__add__atLeastAtMost_H,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I: A,J: A] :
( ( image @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K )
@ ( set_or1337092689740270186AtMost @ A @ I @ J ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastAtMost'
thf(fact_4923_image__minus__const__atLeastAtMost_H,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( image @ A @ A
@ ^ [T3: A] : ( minus_minus @ A @ T3 @ D2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ A2 @ D2 ) @ ( minus_minus @ A @ B2 @ D2 ) ) ) ) ).
% image_minus_const_atLeastAtMost'
thf(fact_4924_image__add__atLeastLessThan_H,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I: A,J: A] :
( ( image @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K )
@ ( set_or7035219750837199246ssThan @ A @ I @ J ) )
= ( set_or7035219750837199246ssThan @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ K ) ) ) ) ).
% image_add_atLeastLessThan'
thf(fact_4925_image__mult__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ( ( image @ A @ A @ ( times_times @ A @ D2 ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ D2 @ A2 ) @ ( times_times @ A @ D2 @ B2 ) ) ) ) ) ).
% image_mult_atLeastAtMost
thf(fact_4926_image__divide__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ( ( image @ A @ A
@ ^ [C3: A] : ( divide_divide @ A @ C3 @ D2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( divide_divide @ A @ A2 @ D2 ) @ ( divide_divide @ A @ B2 @ D2 ) ) ) ) ) ).
% image_divide_atLeastAtMost
thf(fact_4927_take__bit__numeral__numeral,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: num,N2: num] :
( ( bit_se2584673776208193580ke_bit @ A @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_take_bit_num @ ( numeral_numeral @ nat @ M ) @ N2 ) ) ) ) ).
% take_bit_numeral_numeral
thf(fact_4928_zero__notin__Suc__image,axiom,
! [A4: set @ nat] :
~ ( member @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ A4 ) ) ).
% zero_notin_Suc_image
thf(fact_4929_translation__diff,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,S: set @ A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( minus_minus @ ( set @ A ) @ S @ T2 ) )
= ( minus_minus @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ S ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_diff
thf(fact_4930_funpow__simps__right_I1_J,axiom,
! [A: $tType,F2: A > A] :
( ( compow @ ( A > A ) @ ( zero_zero @ nat ) @ F2 )
= ( id @ A ) ) ).
% funpow_simps_right(1)
thf(fact_4931_translation__Compl,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( uminus_uminus @ ( set @ A ) @ T2 ) )
= ( uminus_uminus @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_Compl
thf(fact_4932_less__int__def,axiom,
( ( ord_less @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > $o ) @ ( int > $o ) @ rep_Integ @ ( map_fun @ int @ ( product_prod @ nat @ nat ) @ $o @ $o @ rep_Integ @ ( id @ $o ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) ) ) ) ).
% less_int_def
thf(fact_4933_less__eq__int__def,axiom,
( ( ord_less_eq @ int )
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > $o ) @ ( int > $o ) @ rep_Integ @ ( map_fun @ int @ ( product_prod @ nat @ nat ) @ $o @ $o @ rep_Integ @ ( id @ $o ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) ) ) ) ).
% less_eq_int_def
thf(fact_4934_finite__conv__nat__seg__image,axiom,
! [A: $tType] :
( ( finite_finite @ A )
= ( ^ [A8: set @ A] :
? [N3: nat,F3: nat > A] :
( A8
= ( image @ nat @ A @ F3
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N3 ) ) ) ) ) ) ).
% finite_conv_nat_seg_image
thf(fact_4935_nat__seg__image__imp__finite,axiom,
! [A: $tType,A4: set @ A,F2: nat > A,N2: nat] :
( ( A4
= ( image @ nat @ A @ F2
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N2 ) ) ) )
=> ( finite_finite @ A @ A4 ) ) ).
% nat_seg_image_imp_finite
thf(fact_4936_Gcd__mono,axiom,
! [A: $tType,B: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ B,F2: B > A,G: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( dvd_dvd @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( dvd_dvd @ A @ ( gcd_Gcd @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( gcd_Gcd @ A @ ( image @ B @ A @ G @ A4 ) ) ) ) ) ).
% Gcd_mono
thf(fact_4937_nat__def,axiom,
( nat2
= ( map_fun @ int @ ( product_prod @ nat @ nat ) @ nat @ nat @ rep_Integ @ ( id @ nat ) @ ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) ) ) ) ).
% nat_def
thf(fact_4938_card__image__le,axiom,
! [B: $tType,A: $tType,A4: set @ A,F2: A > B] :
( ( finite_finite @ A @ A4 )
=> ( ord_less_eq @ nat @ ( finite_card @ B @ ( image @ A @ B @ F2 @ A4 ) ) @ ( finite_card @ A @ A4 ) ) ) ).
% card_image_le
thf(fact_4939_surj__card__le,axiom,
! [B: $tType,A: $tType,A4: set @ A,B4: set @ B,F2: A > B] :
( ( finite_finite @ A @ A4 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ ( image @ A @ B @ F2 @ A4 ) )
=> ( ord_less_eq @ nat @ ( finite_card @ B @ B4 ) @ ( finite_card @ A @ A4 ) ) ) ) ).
% surj_card_le
thf(fact_4940_scaleR__image__atLeastAtMost,axiom,
! [A: $tType] :
( ( real_V5355595471888546746vector @ A )
=> ! [C2: real,X: A,Y: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( image @ A @ A @ ( real_V8093663219630862766scaleR @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( real_V8093663219630862766scaleR @ A @ C2 @ X ) @ ( real_V8093663219630862766scaleR @ A @ C2 @ Y ) ) ) ) ) ).
% scaleR_image_atLeastAtMost
thf(fact_4941_take__bit__num__eq__None__imp,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: num] :
( ( ( bit_take_bit_num @ M @ N2 )
= ( none @ num ) )
=> ( ( bit_se2584673776208193580ke_bit @ A @ M @ ( numeral_numeral @ A @ N2 ) )
= ( zero_zero @ A ) ) ) ) ).
% take_bit_num_eq_None_imp
thf(fact_4942_image__Suc__lessThan,axiom,
! [N2: nat] :
( ( image @ nat @ nat @ suc @ ( set_ord_lessThan @ nat @ N2 ) )
= ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N2 ) ) ).
% image_Suc_lessThan
thf(fact_4943_image__Suc__atMost,axiom,
! [N2: nat] :
( ( image @ nat @ nat @ suc @ ( set_ord_atMost @ nat @ N2 ) )
= ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ ( suc @ N2 ) ) ) ).
% image_Suc_atMost
thf(fact_4944_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_4945_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_4946_lessThan__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_ord_lessThan @ nat @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_ord_lessThan @ nat @ N2 ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_4947_atMost__Suc__eq__insert__0,axiom,
! [N2: nat] :
( ( set_ord_atMost @ nat @ ( suc @ N2 ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( set_ord_atMost @ nat @ N2 ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_4948_image__mult__atLeastAtMost__if,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [C2: A,X: A,Y: A] :
( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ C2 @ X ) @ ( times_times @ A @ C2 @ Y ) ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ C2 @ Y ) @ ( times_times @ A @ C2 @ X ) ) ) )
& ( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A @ ( times_times @ A @ C2 ) @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% image_mult_atLeastAtMost_if
thf(fact_4949_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N3: nat,M6: num] :
( if @ ( option @ num )
@ ( ( bit_se2584673776208193580ke_bit @ nat @ N3 @ ( numeral_numeral @ nat @ M6 ) )
= ( zero_zero @ nat ) )
@ ( none @ num )
@ ( some @ num @ ( num_of_nat @ ( bit_se2584673776208193580ke_bit @ nat @ N3 @ ( numeral_numeral @ nat @ M6 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_4950_image__mult__atLeastAtMost__if_H,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,C2: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( times_times @ A @ X3 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ X @ C2 ) @ ( times_times @ A @ Y @ C2 ) ) ) )
& ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( times_times @ A @ X3 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( set_or1337092689740270186AtMost @ A @ ( times_times @ A @ Y @ C2 ) @ ( times_times @ A @ X @ C2 ) ) ) ) ) )
& ( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( times_times @ A @ X3 @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% image_mult_atLeastAtMost_if'
thf(fact_4951_image__affinity__atLeastAtMost,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) @ ( plus_plus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost
thf(fact_4952_image__affinity__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) @ ( minus_minus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( times_times @ A @ M @ X3 ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( times_times @ A @ M @ B2 ) @ C2 ) @ ( minus_minus @ A @ ( times_times @ A @ M @ A2 ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_diff
thf(fact_4953_image__affinity__atLeastAtMost__div,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) @ ( plus_plus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( plus_plus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) @ ( plus_plus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div
thf(fact_4954_image__affinity__atLeastAtMost__div__diff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( bot_bot @ ( set @ A ) ) ) )
& ( ( ( set_or1337092689740270186AtMost @ A @ A2 @ B2 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) @ ( minus_minus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ M )
=> ( ( image @ A @ A
@ ^ [X3: A] : ( minus_minus @ A @ ( divide_divide @ A @ X3 @ M ) @ C2 )
@ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( minus_minus @ A @ ( divide_divide @ A @ B2 @ M ) @ C2 ) @ ( minus_minus @ A @ ( divide_divide @ A @ A2 @ M ) @ C2 ) ) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div_diff
thf(fact_4955_and__minus__numerals_I7_J,axiom,
! [N2: num,M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N2 ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).
% and_minus_numerals(7)
thf(fact_4956_and__minus__numerals_I3_J,axiom,
! [M: num,N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit0 @ N2 ) ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).
% and_minus_numerals(3)
thf(fact_4957_and__minus__numerals_I8_J,axiom,
! [N2: num,M: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N2 ) ) ) @ ( numeral_numeral @ int @ M ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).
% and_minus_numerals(8)
thf(fact_4958_Gcd__abs__eq,axiom,
! [K5: set @ int] :
( ( gcd_Gcd @ int @ ( image @ int @ int @ ( abs_abs @ int ) @ K5 ) )
= ( gcd_Gcd @ int @ K5 ) ) ).
% Gcd_abs_eq
thf(fact_4959_Gcd__int__eq,axiom,
! [N7: set @ nat] :
( ( gcd_Gcd @ int @ ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ N7 ) )
= ( semiring_1_of_nat @ int @ ( gcd_Gcd @ nat @ N7 ) ) ) ).
% Gcd_int_eq
thf(fact_4960_Gcd__nat__abs__eq,axiom,
! [K5: set @ int] :
( ( gcd_Gcd @ nat
@ ( image @ int @ nat
@ ^ [K3: int] : ( nat2 @ ( abs_abs @ int @ K3 ) )
@ K5 ) )
= ( nat2 @ ( gcd_Gcd @ int @ K5 ) ) ) ).
% Gcd_nat_abs_eq
thf(fact_4961_take__bit__num__simps_I4_J,axiom,
! [N2: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit1 @ M ) )
= ( some @ num @ ( case_option @ num @ num @ one2 @ bit1 @ ( bit_take_bit_num @ N2 @ M ) ) ) ) ).
% take_bit_num_simps(4)
thf(fact_4962_take__bit__num__simps_I3_J,axiom,
! [N2: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit0 @ M ) )
= ( case_option @ ( option @ num ) @ num @ ( none @ num )
@ ^ [Q6: num] : ( some @ num @ ( bit0 @ Q6 ) )
@ ( bit_take_bit_num @ N2 @ M ) ) ) ).
% take_bit_num_simps(3)
thf(fact_4963_and__minus__numerals_I4_J,axiom,
! [M: num,N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ ( bit1 @ N2 ) ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).
% and_minus_numerals(4)
thf(fact_4964_image__int__atLeastAtMost,axiom,
! [A2: nat,B2: nat] :
( ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_or1337092689740270186AtMost @ nat @ A2 @ B2 ) )
= ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% image_int_atLeastAtMost
thf(fact_4965_image__int__atLeastLessThan,axiom,
! [A2: nat,B2: nat] :
( ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_or7035219750837199246ssThan @ nat @ A2 @ B2 ) )
= ( set_or7035219750837199246ssThan @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% image_int_atLeastLessThan
thf(fact_4966_image__add__int__atLeastLessThan,axiom,
! [L: int,U: int] :
( ( image @ int @ int
@ ^ [X3: int] : ( plus_plus @ int @ X3 @ L )
@ ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ ( minus_minus @ int @ U @ L ) ) )
= ( set_or7035219750837199246ssThan @ int @ L @ U ) ) ).
% image_add_int_atLeastLessThan
thf(fact_4967_and__not__num__eq__None__iff,axiom,
! [M: num,N2: num] :
( ( ( bit_and_not_num @ M @ N2 )
= ( none @ num ) )
= ( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( zero_zero @ int ) ) ) ).
% and_not_num_eq_None_iff
thf(fact_4968_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ U )
=> ( ( set_or7035219750837199246ssThan @ int @ ( zero_zero @ int ) @ U )
= ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ ( set_ord_lessThan @ nat @ ( nat2 @ U ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_4969_int__numeral__not__and__num,axiom,
! [M: num,N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ N2 @ M ) ) ) ).
% int_numeral_not_and_num
thf(fact_4970_int__numeral__and__not__num,axiom,
! [M: num,N2: num] :
( ( bit_se5824344872417868541ns_and @ int @ ( numeral_numeral @ int @ M ) @ ( bit_ri4277139882892585799ns_not @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( case_option @ int @ num @ ( zero_zero @ int ) @ ( numeral_numeral @ int ) @ ( bit_and_not_num @ M @ N2 ) ) ) ).
% int_numeral_and_not_num
thf(fact_4971_positive__rat,axiom,
! [A2: int,B2: int] :
( ( positive @ ( fract @ A2 @ B2 ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ A2 @ B2 ) ) ) ).
% positive_rat
thf(fact_4972_nth__image,axiom,
! [A: $tType,L: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ L @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( image @ nat @ A @ ( nth @ A @ Xs2 ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ L ) )
= ( set2 @ A @ ( take @ A @ L @ Xs2 ) ) ) ) ).
% nth_image
thf(fact_4973_dual__min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( min @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 ) )
= ( ord_max @ A ) ) ) ).
% dual_min
thf(fact_4974_take__all,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 )
=> ( ( take @ A @ N2 @ Xs2 )
= Xs2 ) ) ).
% take_all
thf(fact_4975_take__all__iff,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( take @ A @ N2 @ Xs2 )
= Xs2 )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 ) ) ).
% take_all_iff
thf(fact_4976_nth__take,axiom,
! [A: $tType,I: nat,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I @ N2 )
=> ( ( nth @ A @ ( take @ A @ N2 @ Xs2 ) @ I )
= ( nth @ A @ Xs2 @ I ) ) ) ).
% nth_take
thf(fact_4977_take__update__cancel,axiom,
! [A: $tType,N2: nat,M: nat,Xs2: list @ A,Y: A] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ( take @ A @ N2 @ ( list_update @ A @ Xs2 @ M @ Y ) )
= ( take @ A @ N2 @ Xs2 ) ) ) ).
% take_update_cancel
thf(fact_4978_in__set__takeD,axiom,
! [A: $tType,X: A,N2: nat,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( take @ A @ N2 @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_takeD
thf(fact_4979_ord_Omin__def,axiom,
! [A: $tType] :
( ( min @ A )
= ( ^ [Less_eq: A > A > $o,A3: A,B3: A] : ( if @ A @ ( Less_eq @ A3 @ B3 ) @ A3 @ B3 ) ) ) ).
% ord.min_def
thf(fact_4980_ord_Omin_Ocong,axiom,
! [A: $tType] :
( ( min @ A )
= ( min @ A ) ) ).
% ord.min.cong
thf(fact_4981_set__take__subset,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ N2 @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_take_subset
thf(fact_4982_Rat_Opositive__zero,axiom,
~ ( positive @ ( zero_zero @ rat ) ) ).
% Rat.positive_zero
thf(fact_4983_set__take__subset__set__take,axiom,
! [A: $tType,M: nat,N2: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ M @ Xs2 ) ) @ ( set2 @ A @ ( take @ A @ N2 @ Xs2 ) ) ) ) ).
% set_take_subset_set_take
thf(fact_4984_nth__take__lemma,axiom,
! [A: $tType,K: nat,Xs2: list @ A,Ys3: list @ A] :
( ( ord_less_eq @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ K @ ( size_size @ ( list @ A ) @ Ys3 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ K )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( nth @ A @ Ys3 @ I2 ) ) )
=> ( ( take @ A @ K @ Xs2 )
= ( take @ A @ K @ Ys3 ) ) ) ) ) ).
% nth_take_lemma
thf(fact_4985_Rat_Opositive__minus,axiom,
! [X: rat] :
( ~ ( positive @ X )
=> ( ( X
!= ( zero_zero @ rat ) )
=> ( positive @ ( uminus_uminus @ rat @ X ) ) ) ) ).
% Rat.positive_minus
thf(fact_4986_less__rat__def,axiom,
( ( ord_less @ rat )
= ( ^ [X3: rat,Y2: rat] : ( positive @ ( minus_minus @ rat @ Y2 @ X3 ) ) ) ) ).
% less_rat_def
thf(fact_4987_Rat_Opositive_Orep__eq,axiom,
( positive
= ( ^ [X3: rat] : ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ ( rep_Rat @ X3 ) ) @ ( product_snd @ int @ int @ ( rep_Rat @ X3 ) ) ) ) ) ) ).
% Rat.positive.rep_eq
thf(fact_4988_Gcd__int__def,axiom,
( ( gcd_Gcd @ int )
= ( ^ [K6: set @ int] : ( semiring_1_of_nat @ int @ ( gcd_Gcd @ nat @ ( image @ int @ nat @ ( comp @ int @ nat @ int @ nat2 @ ( abs_abs @ int ) ) @ K6 ) ) ) ) ) ).
% Gcd_int_def
thf(fact_4989_lex__take__index,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys3 ) @ ( lex @ A @ R2 ) )
=> ~ ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Ys3 ) )
=> ( ( ( take @ A @ I2 @ Xs2 )
= ( take @ A @ I2 @ Ys3 ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ Xs2 @ I2 ) @ ( nth @ A @ Ys3 @ I2 ) ) @ R2 ) ) ) ) ) ).
% lex_take_index
thf(fact_4990_comp__funpow,axiom,
! [B: $tType,A: $tType,N2: nat,F2: A > A] :
( ( compow @ ( ( B > A ) > B > A ) @ N2 @ ( comp @ A @ A @ B @ F2 ) )
= ( comp @ A @ A @ B @ ( compow @ ( A > A ) @ N2 @ F2 ) ) ) ).
% comp_funpow
thf(fact_4991_comp__cong,axiom,
! [C: $tType,B: $tType,D: $tType,A: $tType,E4: $tType,F2: B > A,G: C > B,X: C,F6: D > A,G4: E4 > D,X8: E4] :
( ( ( F2 @ ( G @ X ) )
= ( F6 @ ( G4 @ X8 ) ) )
=> ( ( comp @ B @ A @ C @ F2 @ G @ X )
= ( comp @ D @ A @ E4 @ F6 @ G4 @ X8 ) ) ) ).
% comp_cong
thf(fact_4992_funpow_Osimps_I2_J,axiom,
! [A: $tType,N2: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( suc @ N2 ) @ F2 )
= ( comp @ A @ A @ A @ F2 @ ( compow @ ( A > A ) @ N2 @ F2 ) ) ) ).
% funpow.simps(2)
thf(fact_4993_funpow__Suc__right,axiom,
! [A: $tType,N2: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( suc @ N2 ) @ F2 )
= ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ F2 ) ) ).
% funpow_Suc_right
thf(fact_4994_funpow__add,axiom,
! [A: $tType,M: nat,N2: nat,F2: A > A] :
( ( compow @ ( A > A ) @ ( plus_plus @ nat @ M @ N2 ) @ F2 )
= ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ M @ F2 ) @ ( compow @ ( A > A ) @ N2 @ F2 ) ) ) ).
% funpow_add
thf(fact_4995_sum__comp__morphism,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( ( comm_monoid_add @ B )
& ( comm_monoid_add @ A ) )
=> ! [H: B > A,G: C > B,A4: set @ C] :
( ( ( H @ ( zero_zero @ B ) )
= ( zero_zero @ A ) )
=> ( ! [X4: B,Y4: B] :
( ( H @ ( plus_plus @ B @ X4 @ Y4 ) )
= ( plus_plus @ A @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( groups7311177749621191930dd_sum @ C @ A @ ( comp @ B @ A @ C @ H @ G ) @ A4 )
= ( H @ ( groups7311177749621191930dd_sum @ C @ B @ G @ A4 ) ) ) ) ) ) ).
% sum_comp_morphism
thf(fact_4996_sum_Oreindex__nontrivial,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,H: B > C,G: C > A] :
( ( finite_finite @ B @ A4 )
=> ( ! [X4: B,Y4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ( member @ B @ Y4 @ A4 )
=> ( ( X4 != Y4 )
=> ( ( ( H @ X4 )
= ( H @ Y4 ) )
=> ( ( G @ ( H @ X4 ) )
= ( zero_zero @ A ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ C @ A @ G @ ( image @ B @ C @ H @ A4 ) )
= ( groups7311177749621191930dd_sum @ B @ A @ ( comp @ C @ A @ B @ G @ H ) @ A4 ) ) ) ) ) ).
% sum.reindex_nontrivial
thf(fact_4997_prod_Oreindex__nontrivial,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,H: B > C,G: C > A] :
( ( finite_finite @ B @ A4 )
=> ( ! [X4: B,Y4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ( member @ B @ Y4 @ A4 )
=> ( ( X4 != Y4 )
=> ( ( ( H @ X4 )
= ( H @ Y4 ) )
=> ( ( G @ ( H @ X4 ) )
= ( one_one @ A ) ) ) ) ) )
=> ( ( groups7121269368397514597t_prod @ C @ A @ G @ ( image @ B @ C @ H @ A4 ) )
= ( groups7121269368397514597t_prod @ B @ A @ ( comp @ C @ A @ B @ G @ H ) @ A4 ) ) ) ) ) ).
% prod.reindex_nontrivial
thf(fact_4998_sum__image__le,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( ordere6911136660526730532id_add @ B )
=> ! [I5: set @ C,G: A > B,F2: C > A] :
( ( finite_finite @ C @ I5 )
=> ( ! [I2: C] :
( ( member @ C @ I2 @ I5 )
=> ( ord_less_eq @ B @ ( zero_zero @ B ) @ ( G @ ( F2 @ I2 ) ) ) )
=> ( ord_less_eq @ B @ ( groups7311177749621191930dd_sum @ A @ B @ G @ ( image @ C @ A @ F2 @ I5 ) ) @ ( groups7311177749621191930dd_sum @ C @ B @ ( comp @ A @ B @ C @ G @ F2 ) @ I5 ) ) ) ) ) ).
% sum_image_le
thf(fact_4999_Rat_Opositive__def,axiom,
( positive
= ( map_fun @ rat @ ( product_prod @ int @ int ) @ $o @ $o @ rep_Rat @ ( id @ $o )
@ ^ [X3: product_prod @ int @ int] : ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ X3 ) ) ) ) ) ).
% Rat.positive_def
thf(fact_5000_measure__function__int,axiom,
fun_is_measure @ int @ ( comp @ int @ nat @ int @ nat2 @ ( abs_abs @ int ) ) ).
% measure_function_int
thf(fact_5001_listrel1__iff__update,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys3 ) @ ( listrel1 @ A @ R2 ) )
= ( ? [Y2: A,N3: nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ Xs2 @ N3 ) @ Y2 ) @ R2 )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( Ys3
= ( list_update @ A @ Xs2 @ N3 @ Y2 ) ) ) ) ) ).
% listrel1_iff_update
thf(fact_5002_card_Ocomp__fun__commute__on,axiom,
( ( comp @ nat @ nat @ nat @ suc @ suc )
= ( comp @ nat @ nat @ nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_5003_measure__snd,axiom,
! [A: $tType,B: $tType,F2: A > nat] :
( ( fun_is_measure @ A @ F2 )
=> ( fun_is_measure @ ( product_prod @ B @ A )
@ ^ [P5: product_prod @ B @ A] : ( F2 @ ( product_snd @ B @ A @ P5 ) ) ) ) ).
% measure_snd
thf(fact_5004_measure__fst,axiom,
! [B: $tType,A: $tType,F2: A > nat] :
( ( fun_is_measure @ A @ F2 )
=> ( fun_is_measure @ ( product_prod @ A @ B )
@ ^ [P5: product_prod @ A @ B] : ( F2 @ ( product_fst @ A @ B @ P5 ) ) ) ) ).
% measure_fst
thf(fact_5005_is__measure_Osimps,axiom,
! [A: $tType] :
( ( fun_is_measure @ A )
= ( ^ [A3: A > nat] :
? [X7: A > nat] :
( ^ [Y5: A > nat,Z3: A > nat] : ( Y5 = Z3 )
@ A3
@ X7 ) ) ) ).
% is_measure.simps
thf(fact_5006_is__measure__trivial,axiom,
! [A: $tType,F2: A > nat] : ( fun_is_measure @ A @ F2 ) ).
% is_measure_trivial
thf(fact_5007_measure__size,axiom,
! [A: $tType] :
( ( size @ A )
=> ( fun_is_measure @ A @ ( size_size @ A ) ) ) ).
% measure_size
thf(fact_5008_sum_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_Suc_atMost_Suc_shift
thf(fact_5009_sum_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_Suc_lessThan_Suc_shift
thf(fact_5010_sum_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeastAtMost_shift_bounds
thf(fact_5011_sum_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeastLessThan_shift_bounds
thf(fact_5012_prod_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_Suc_atMost_Suc_shift
thf(fact_5013_prod_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_Suc_lessThan_Suc_shift
thf(fact_5014_prod_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeastAtMost_shift_bounds
thf(fact_5015_prod_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,K: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N2 @ K ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ K ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeastLessThan_shift_bounds
thf(fact_5016_bit__drop__bit__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [N2: nat,A2: A] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se4197421643247451524op_bit @ A @ N2 @ A2 ) )
= ( comp @ nat @ $o @ nat @ ( bit_se5641148757651400278ts_bit @ A @ A2 ) @ ( plus_plus @ nat @ N2 ) ) ) ) ).
% bit_drop_bit_eq
thf(fact_5017_sum_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ).
% sum.atLeast0_atMost_Suc_shift
thf(fact_5018_sum_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( plus_plus @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ).
% sum.atLeast0_lessThan_Suc_shift
thf(fact_5019_prod_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ).
% prod.atLeast0_atMost_Suc_shift
thf(fact_5020_prod_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( times_times @ A @ ( G @ ( zero_zero @ nat ) ) @ ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ suc ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ).
% prod.atLeast0_lessThan_Suc_shift
thf(fact_5021_sum_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ).
% sum.atLeastLessThan_shift_0
thf(fact_5022_prod_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ).
% prod.atLeastLessThan_shift_0
thf(fact_5023_sum_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_atMost_pred_shift
thf(fact_5024_sum_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_lessThan_pred_shift
thf(fact_5025_prod_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or1337092689740270186AtMost @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_atMost_pred_shift
thf(fact_5026_prod_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: nat > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ nat @ A
@ ( comp @ nat @ A @ nat @ G
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( set_or7035219750837199246ssThan @ nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_lessThan_pred_shift
thf(fact_5027_sum_OatLeast__int__atMost__int__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: int > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ int @ A @ G @ ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ int @ A @ nat @ G @ ( semiring_1_of_nat @ int ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_int_atMost_int_shift
thf(fact_5028_prod_OatLeast__int__atMost__int__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: int > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ int @ A @ G @ ( set_or1337092689740270186AtMost @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ int @ A @ nat @ G @ ( semiring_1_of_nat @ int ) ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_int_atMost_int_shift
thf(fact_5029_sum_OatLeast__int__lessThan__int__shift,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: int > A,M: nat,N2: nat] :
( ( groups7311177749621191930dd_sum @ int @ A @ G @ ( set_or7035219750837199246ssThan @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ int @ A @ nat @ G @ ( semiring_1_of_nat @ int ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum.atLeast_int_lessThan_int_shift
thf(fact_5030_sum_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ).
% sum.atLeastAtMost_shift_0
thf(fact_5031_prod_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ nat @ A @ nat @ G @ ( plus_plus @ nat @ M ) ) @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ) ).
% prod.atLeastAtMost_shift_0
thf(fact_5032_prod_OatLeast__int__lessThan__int__shift,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: int > A,M: nat,N2: nat] :
( ( groups7121269368397514597t_prod @ int @ A @ G @ ( set_or7035219750837199246ssThan @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ int @ A @ nat @ G @ ( semiring_1_of_nat @ int ) ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% prod.atLeast_int_lessThan_int_shift
thf(fact_5033_lenlex__conv,axiom,
! [A: $tType] :
( ( lenlex @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ ( list @ A ) @ ( list @ A ) )
@ ( product_case_prod @ ( list @ A ) @ ( list @ A ) @ $o
@ ^ [Xs: list @ A,Ys2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ ( size_size @ ( list @ A ) @ Ys2 ) )
| ( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys2 ) )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs @ Ys2 ) @ ( lex @ A @ R5 ) ) ) ) ) ) ) ) ).
% lenlex_conv
thf(fact_5034_rp__inv__image__rp,axiom,
! [A: $tType,B: $tType,P: product_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ),F2: B > A] :
( ( fun_reduction_pair @ A @ P )
=> ( fun_reduction_pair @ B @ ( fun_rp_inv_image @ A @ B @ P @ F2 ) ) ) ).
% rp_inv_image_rp
thf(fact_5035_card__Min__le__sum,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ ( finite_card @ A @ A4 ) @ ( lattic643756798350308766er_Min @ nat @ ( image @ A @ nat @ F2 @ A4 ) ) ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 ) ) ) ).
% card_Min_le_sum
thf(fact_5036_Min__singleton,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] :
( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Min_singleton
thf(fact_5037_Min_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X @ X3 ) ) ) ) ) ) ) ).
% Min.bounded_iff
thf(fact_5038_Min__gr__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less @ A @ X @ X3 ) ) ) ) ) ) ) ).
% Min_gr_iff
thf(fact_5039_Min__const,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ B,C2: A] :
( ( finite_finite @ B @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798350308766er_Min @ A
@ ( image @ B @ A
@ ^ [Uu3: B] : C2
@ A4 ) )
= C2 ) ) ) ) ).
% Min_const
thf(fact_5040_Min__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ X ) ) ) ) ).
% Min_le
thf(fact_5041_Min__eqI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ! [Y4: A] :
( ( member @ A @ Y4 @ A4 )
=> ( ord_less_eq @ A @ X @ Y4 ) )
=> ( ( member @ A @ X @ A4 )
=> ( ( lattic643756798350308766er_Min @ A @ A4 )
= X ) ) ) ) ) ).
% Min_eqI
thf(fact_5042_Min_OcoboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ A2 ) ) ) ) ).
% Min.coboundedI
thf(fact_5043_Min__in,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ A4 ) ) ) ) ).
% Min_in
thf(fact_5044_Min__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,M: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( lattic643756798350308766er_Min @ A @ A4 )
= M )
= ( ( member @ A @ M @ A4 )
& ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ M @ X3 ) ) ) ) ) ) ) ).
% Min_eq_iff
thf(fact_5045_Min__le__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ X )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less_eq @ A @ X3 @ X ) ) ) ) ) ) ) ).
% Min_le_iff
thf(fact_5046_eq__Min__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,M: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( M
= ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( ( member @ A @ M @ A4 )
& ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ M @ X3 ) ) ) ) ) ) ) ).
% eq_Min_iff
thf(fact_5047_Min_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) )
=> ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( ord_less_eq @ A @ X @ A9 ) ) ) ) ) ) ).
% Min.boundedE
thf(fact_5048_Min_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ord_less_eq @ A @ X @ A5 ) )
=> ( ord_less_eq @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ) ).
% Min.boundedI
thf(fact_5049_Min__less__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ X )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less @ A @ X3 @ X ) ) ) ) ) ) ) ).
% Min_less_iff
thf(fact_5050_Min__insert2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( ord_less_eq @ A @ A2 @ B5 ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ A2 @ A4 ) )
= A2 ) ) ) ) ).
% Min_insert2
thf(fact_5051_Min_Oinfinite,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( lattic643756798350308766er_Min @ A @ A4 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Min.infinite
thf(fact_5052_Min__antimono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M7: set @ A,N7: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ M7 @ N7 )
=> ( ( M7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ N7 ) @ ( lattic643756798350308766er_Min @ A @ M7 ) ) ) ) ) ) ).
% Min_antimono
thf(fact_5053_Min_Osubset__imp,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ A @ ( lattic643756798350308766er_Min @ A @ B4 ) @ ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ) ).
% Min.subset_imp
thf(fact_5054_Min__add__commute,axiom,
! [B: $tType,A: $tType] :
( ( linord4140545234300271783up_add @ A )
=> ! [S3: set @ B,F2: B > A,K: A] :
( ( finite_finite @ B @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798350308766er_Min @ A
@ ( image @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ ( F2 @ X3 ) @ K )
@ S3 ) )
= ( plus_plus @ A @ ( lattic643756798350308766er_Min @ A @ ( image @ B @ A @ F2 @ S3 ) ) @ K ) ) ) ) ) ).
% Min_add_commute
thf(fact_5055_lenlex__length,axiom,
! [A: $tType,Ms: list @ A,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ms @ Ns ) @ ( lenlex @ A @ R2 ) )
=> ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Ms ) @ ( size_size @ ( list @ A ) @ Ns ) ) ) ).
% lenlex_length
thf(fact_5056_dual__Max,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattices_Max @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 ) )
= ( lattic643756798350308766er_Min @ A ) ) ) ).
% dual_Max
thf(fact_5057_rp__inv__image__def,axiom,
! [B: $tType,A: $tType] :
( ( fun_rp_inv_image @ A @ B )
= ( product_case_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ ( ( B > A ) > ( product_prod @ ( set @ ( product_prod @ B @ B ) ) @ ( set @ ( product_prod @ B @ B ) ) ) )
@ ^ [R6: set @ ( product_prod @ A @ A ),S7: set @ ( product_prod @ A @ A ),F3: B > A] : ( product_Pair @ ( set @ ( product_prod @ B @ B ) ) @ ( set @ ( product_prod @ B @ B ) ) @ ( inv_image @ A @ B @ R6 @ F3 ) @ ( inv_image @ A @ B @ S7 @ F3 ) ) ) ) ).
% rp_inv_image_def
thf(fact_5058_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N2: nat,J: nat,I: nat] :
( ( ord_less @ nat @ N2 @ ( minus_minus @ nat @ J @ ( suc @ I ) ) )
=> ( ( nth @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ I @ J ) ) @ N2 )
= ( suc @ ( plus_plus @ nat @ I @ N2 ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_5059_sorted__list__of__set_Oset__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( set2 @ A @ ( linord4507533701916653071of_set @ A @ A4 ) )
= A4 ) ) ) ).
% sorted_list_of_set.set_sorted_key_list_of_set
thf(fact_5060_linorder_OMax_Ocong,axiom,
! [A: $tType] :
( ( lattices_Max @ A )
= ( lattices_Max @ A ) ) ).
% linorder.Max.cong
thf(fact_5061_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N2: nat,J: nat,I: nat] :
( ( ord_less @ nat @ N2 @ ( minus_minus @ nat @ J @ I ) )
=> ( ( nth @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ I @ J ) ) @ N2 )
= ( suc @ ( plus_plus @ nat @ I @ N2 ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_5062_min__strict__def,axiom,
( fun_min_strict
= ( min_ext @ ( product_prod @ nat @ nat ) @ fun_pair_less ) ) ).
% min_strict_def
thf(fact_5063_minus__Min__eq__Max,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( uminus_uminus @ A @ ( lattic643756798350308766er_Min @ A @ S3 ) )
= ( lattic643756798349783984er_Max @ A @ ( image @ A @ A @ ( uminus_uminus @ A ) @ S3 ) ) ) ) ) ) ).
% minus_Min_eq_Max
thf(fact_5064_Max__divisors__self__nat,axiom,
! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [D6: nat] : ( dvd_dvd @ nat @ D6 @ N2 ) ) )
= N2 ) ) ).
% Max_divisors_self_nat
thf(fact_5065_finite__greaterThanAtMost,axiom,
! [L: nat,U: nat] : ( finite_finite @ nat @ ( set_or3652927894154168847AtMost @ nat @ L @ U ) ) ).
% finite_greaterThanAtMost
thf(fact_5066_greaterThanAtMost__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,L: A,U: A] :
( ( member @ A @ I @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( ( ord_less @ A @ L @ I )
& ( ord_less_eq @ A @ I @ U ) ) ) ) ).
% greaterThanAtMost_iff
thf(fact_5067_greaterThanAtMost__empty,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,K: A] :
( ( ord_less_eq @ A @ L @ K )
=> ( ( set_or3652927894154168847AtMost @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% greaterThanAtMost_empty
thf(fact_5068_greaterThanAtMost__empty__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A,L: A] :
( ( ( set_or3652927894154168847AtMost @ A @ K @ L )
= ( bot_bot @ ( set @ A ) ) )
= ( ~ ( ord_less @ A @ K @ L ) ) ) ) ).
% greaterThanAtMost_empty_iff
thf(fact_5069_greaterThanAtMost__empty__iff2,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [K: A,L: A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set_or3652927894154168847AtMost @ A @ K @ L ) )
= ( ~ ( ord_less @ A @ K @ L ) ) ) ) ).
% greaterThanAtMost_empty_iff2
thf(fact_5070_infinite__Ioc__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ~ ( finite_finite @ A @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) ) )
= ( ord_less @ A @ A2 @ B2 ) ) ) ).
% infinite_Ioc_iff
thf(fact_5071_image__add__greaterThanAtMost,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ C2 ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) )
= ( set_or3652927894154168847AtMost @ A @ ( plus_plus @ A @ C2 @ A2 ) @ ( plus_plus @ A @ C2 @ B2 ) ) ) ) ).
% image_add_greaterThanAtMost
thf(fact_5072_Max__singleton,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] :
( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Max_singleton
thf(fact_5073_Max__divisors__self__int,axiom,
! [N2: int] :
( ( N2
!= ( zero_zero @ int ) )
=> ( ( lattic643756798349783984er_Max @ int
@ ( collect @ int
@ ^ [D6: int] : ( dvd_dvd @ int @ D6 @ N2 ) ) )
= ( abs_abs @ int @ N2 ) ) ) ).
% Max_divisors_self_int
thf(fact_5074_card__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card @ nat @ ( set_or3652927894154168847AtMost @ nat @ L @ U ) )
= ( minus_minus @ nat @ U @ L ) ) ).
% card_greaterThanAtMost
thf(fact_5075_Max_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ X )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ X ) ) ) ) ) ) ) ).
% Max.bounded_iff
thf(fact_5076_Max__less__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ X )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less @ A @ X3 @ X ) ) ) ) ) ) ) ).
% Max_less_iff
thf(fact_5077_image__diff__atLeastLessThan,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( image @ A @ A @ ( minus_minus @ A @ C2 ) @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) )
= ( set_or3652927894154168847AtMost @ A @ ( minus_minus @ A @ C2 @ B2 ) @ ( minus_minus @ A @ C2 @ A2 ) ) ) ) ).
% image_diff_atLeastLessThan
thf(fact_5078_image__minus__const__greaterThanAtMost,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( image @ A @ A @ ( minus_minus @ A @ C2 ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) )
= ( set_or7035219750837199246ssThan @ A @ ( minus_minus @ A @ C2 @ B2 ) @ ( minus_minus @ A @ C2 @ A2 ) ) ) ) ).
% image_minus_const_greaterThanAtMost
thf(fact_5079_image__uminus__greaterThanAtMost,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_or3652927894154168847AtMost @ A @ X @ Y ) )
= ( set_or7035219750837199246ssThan @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_greaterThanAtMost
thf(fact_5080_image__uminus__atLeastLessThan,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_or7035219750837199246ssThan @ A @ X @ Y ) )
= ( set_or3652927894154168847AtMost @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_atLeastLessThan
thf(fact_5081_Max__const,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ B,C2: A] :
( ( finite_finite @ B @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798349783984er_Max @ A
@ ( image @ B @ A
@ ^ [Uu3: B] : C2
@ A4 ) )
= C2 ) ) ) ) ).
% Max_const
thf(fact_5082_Max__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ) ).
% Max_insert
thf(fact_5083_minus__Max__eq__Min,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( uminus_uminus @ A @ ( lattic643756798349783984er_Max @ A @ S3 ) )
= ( lattic643756798350308766er_Min @ A @ ( image @ A @ A @ ( uminus_uminus @ A ) @ S3 ) ) ) ) ) ) ).
% minus_Max_eq_Min
thf(fact_5084_Ioc__inj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( set_or3652927894154168847AtMost @ A @ A2 @ B2 )
= ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( ( ( ord_less_eq @ A @ B2 @ A2 )
& ( ord_less_eq @ A @ D2 @ C2 ) )
| ( ( A2 = C2 )
& ( B2 = D2 ) ) ) ) ) ).
% Ioc_inj
thf(fact_5085_Max__ge,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ).
% Max_ge
thf(fact_5086_Max__eqI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ! [Y4: A] :
( ( member @ A @ Y4 @ A4 )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ( member @ A @ X @ A4 )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= X ) ) ) ) ) ).
% Max_eqI
thf(fact_5087_Max__eq__if,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ? [Xa: A] :
( ( member @ A @ Xa @ B4 )
& ( ord_less_eq @ A @ X4 @ Xa ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ B4 )
=> ? [Xa: A] :
( ( member @ A @ Xa @ A4 )
& ( ord_less_eq @ A @ X4 @ Xa ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= ( lattic643756798349783984er_Max @ A @ B4 ) ) ) ) ) ) ) ).
% Max_eq_if
thf(fact_5088_Max_OcoboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ord_less_eq @ A @ A2 @ ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ).
% Max.coboundedI
thf(fact_5089_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or1337092689740270186AtMost @ nat @ ( suc @ L ) @ U )
= ( set_or3652927894154168847AtMost @ nat @ L @ U ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_5090_Ioc__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less_eq @ A @ B2 @ A2 )
| ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% Ioc_subset_iff
thf(fact_5091_infinite__Ioc,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( finite_finite @ A @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) ) ) ) ).
% infinite_Ioc
thf(fact_5092_Max__in,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ A4 ) ) ) ) ).
% Max_in
thf(fact_5093_Max_Oin__idem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ).
% Max.in_idem
thf(fact_5094_Max__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,M: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( lattic643756798349783984er_Max @ A @ A4 )
= M )
= ( ( member @ A @ M @ A4 )
& ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ M ) ) ) ) ) ) ) ).
% Max_eq_iff
thf(fact_5095_Max__ge__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less_eq @ A @ X @ X3 ) ) ) ) ) ) ) ).
% Max_ge_iff
thf(fact_5096_eq__Max__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,M: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( M
= ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( ( member @ A @ M @ A4 )
& ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ M ) ) ) ) ) ) ) ).
% eq_Max_iff
thf(fact_5097_Max_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ X )
=> ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( ord_less_eq @ A @ A9 @ X ) ) ) ) ) ) ).
% Max.boundedE
thf(fact_5098_Max_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ord_less_eq @ A @ A5 @ X ) )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ X ) ) ) ) ) ).
% Max.boundedI
thf(fact_5099_Max__gr__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less @ A @ X @ X3 ) ) ) ) ) ) ) ).
% Max_gr_iff
thf(fact_5100_Max__insert2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( ord_less_eq @ A @ B5 @ A2 ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ A2 @ A4 ) )
= A2 ) ) ) ) ).
% Max_insert2
thf(fact_5101_Max_Oinfinite,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Max.infinite
thf(fact_5102_gcd__is__Max__divisors__int,axiom,
! [N2: int,M: int] :
( ( N2
!= ( zero_zero @ int ) )
=> ( ( gcd_gcd @ int @ M @ N2 )
= ( lattic643756798349783984er_Max @ int
@ ( collect @ int
@ ^ [D6: int] :
( ( dvd_dvd @ int @ D6 @ M )
& ( dvd_dvd @ int @ D6 @ N2 ) ) ) ) ) ) ).
% gcd_is_Max_divisors_int
thf(fact_5103_sum_Ohead,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( plus_plus @ A @ ( G @ M ) @ ( groups7311177749621191930dd_sum @ nat @ A @ G @ ( set_or3652927894154168847AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% sum.head
thf(fact_5104_Max__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [M7: set @ A,N7: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ M7 @ N7 )
=> ( ( M7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ M7 ) @ ( lattic643756798349783984er_Max @ A @ N7 ) ) ) ) ) ) ).
% Max_mono
thf(fact_5105_Max_Osubset__imp,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ ( lattic643756798349783984er_Max @ A @ B4 ) ) ) ) ) ) ).
% Max.subset_imp
thf(fact_5106_prod_Ohead,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [M: nat,N2: nat,G: nat > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) )
= ( times_times @ A @ ( G @ M ) @ ( groups7121269368397514597t_prod @ nat @ A @ G @ ( set_or3652927894154168847AtMost @ nat @ M @ N2 ) ) ) ) ) ) ).
% prod.head
thf(fact_5107_greaterThanAtMost__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastAtMost_iff
thf(fact_5108_greaterThanAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastLessThan_iff
thf(fact_5109_hom__Max__commute,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [H: A > A,N7: set @ A] :
( ! [X4: A,Y4: A] :
( ( H @ ( ord_max @ A @ X4 @ Y4 ) )
= ( ord_max @ A @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ( N7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H @ ( lattic643756798349783984er_Max @ A @ N7 ) )
= ( lattic643756798349783984er_Max @ A @ ( image @ A @ A @ H @ N7 ) ) ) ) ) ) ) ).
% hom_Max_commute
thf(fact_5110_Max_Osubset,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( ord_max @ A @ ( lattic643756798349783984er_Max @ A @ B4 ) @ ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ) ).
% Max.subset
thf(fact_5111_Max_Oclosed,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A,Y4: A] : ( member @ A @ ( ord_max @ A @ X4 @ Y4 ) @ ( insert2 @ A @ X4 @ ( insert2 @ A @ Y4 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ A4 ) ) ) ) ) ).
% Max.closed
thf(fact_5112_Max_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ A4 ) ) ) ) ) ) ) ).
% Max.insert_not_elem
thf(fact_5113_greaterThanLessThan__subseteq__greaterThanAtMost__iff,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
& ( ord_less_eq @ A @ B2 @ D2 ) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanAtMost_iff
thf(fact_5114_greaterThanAtMost__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( set_or3652927894154168847AtMost @ A )
= ( ^ [A3: A,B3: A] : ( minus_minus @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A3 @ B3 ) @ ( insert2 @ A @ A3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ).
% greaterThanAtMost_eq_atLeastAtMost_diff
thf(fact_5115_card__le__Suc__Max,axiom,
! [S3: set @ nat] :
( ( finite_finite @ nat @ S3 )
=> ( ord_less_eq @ nat @ ( finite_card @ nat @ S3 ) @ ( suc @ ( lattic643756798349783984er_Max @ nat @ S3 ) ) ) ) ).
% card_le_Suc_Max
thf(fact_5116_divide__nat__def,axiom,
( ( divide_divide @ nat )
= ( ^ [M6: nat,N3: nat] :
( if @ nat
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ nat )
@ ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [K3: nat] : ( ord_less_eq @ nat @ ( times_times @ nat @ K3 @ N3 ) @ M6 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_5117_Max__add__commute,axiom,
! [B: $tType,A: $tType] :
( ( linord4140545234300271783up_add @ A )
=> ! [S3: set @ B,F2: B > A,K: A] :
( ( finite_finite @ B @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( lattic643756798349783984er_Max @ A
@ ( image @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ ( F2 @ X3 ) @ K )
@ S3 ) )
= ( plus_plus @ A @ ( lattic643756798349783984er_Max @ A @ ( image @ B @ A @ F2 @ S3 ) ) @ K ) ) ) ) ) ).
% Max_add_commute
thf(fact_5118_gcd__is__Max__divisors__nat,axiom,
! [N2: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( gcd_gcd @ nat @ M @ N2 )
= ( lattic643756798349783984er_Max @ nat
@ ( collect @ nat
@ ^ [D6: nat] :
( ( dvd_dvd @ nat @ D6 @ M )
& ( dvd_dvd @ nat @ D6 @ N2 ) ) ) ) ) ) ).
% gcd_is_Max_divisors_nat
thf(fact_5119_Max_Oremove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Max.remove
thf(fact_5120_Max_Oinsert__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ A4 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_max @ A @ X @ ( lattic643756798349783984er_Max @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Max.insert_remove
thf(fact_5121_sum__le__card__Max,axiom,
! [A: $tType,A4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ord_less_eq @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 ) @ ( times_times @ nat @ ( finite_card @ A @ A4 ) @ ( lattic643756798349783984er_Max @ nat @ ( image @ A @ nat @ F2 @ A4 ) ) ) ) ) ).
% sum_le_card_Max
thf(fact_5122_min__weak__def,axiom,
( fun_min_weak
= ( sup_sup @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( min_ext @ ( product_prod @ nat @ nat ) @ fun_pair_leq ) @ ( insert2 @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) ) ) ) ) ).
% min_weak_def
thf(fact_5123_dual__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattices_Min @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 ) )
= ( lattic643756798349783984er_Max @ A ) ) ) ).
% dual_Min
thf(fact_5124_Max_Oeq__fold_H,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798349783984er_Max @ A )
= ( ^ [A8: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X3: A,Y2: option @ A] : ( some @ A @ ( case_option @ A @ A @ X3 @ ( ord_max @ A @ X3 ) @ Y2 ) )
@ ( none @ A )
@ A8 ) ) ) ) ) ).
% Max.eq_fold'
thf(fact_5125_finite__greaterThanAtMost__int,axiom,
! [L: int,U: int] : ( finite_finite @ int @ ( set_or3652927894154168847AtMost @ int @ L @ U ) ) ).
% finite_greaterThanAtMost_int
thf(fact_5126_le__sup__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ X @ Y ) @ Z2 )
= ( ( ord_less_eq @ A @ X @ Z2 )
& ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% le_sup_iff
thf(fact_5127_sup_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ B2 @ C2 ) @ A2 )
= ( ( ord_less_eq @ A @ B2 @ A2 )
& ( ord_less_eq @ A @ C2 @ A2 ) ) ) ) ).
% sup.bounded_iff
thf(fact_5128_card__greaterThanAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card @ int @ ( set_or3652927894154168847AtMost @ int @ L @ U ) )
= ( nat2 @ ( minus_minus @ int @ U @ L ) ) ) ).
% card_greaterThanAtMost_int
thf(fact_5129_linorder_OMin_Ocong,axiom,
! [A: $tType] :
( ( lattices_Min @ A )
= ( lattices_Min @ A ) ) ).
% linorder.Min.cong
thf(fact_5130_sup_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less @ A @ C2 @ B2 )
=> ( ord_less @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.strict_coboundedI2
thf(fact_5131_sup_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less @ A @ C2 @ A2 )
=> ( ord_less @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.strict_coboundedI1
thf(fact_5132_sup_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less @ A )
= ( ^ [B3: A,A3: A] :
( ( A3
= ( sup_sup @ A @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ) ).
% sup.strict_order_iff
thf(fact_5133_sup_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ ( sup_sup @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ C2 @ A2 ) ) ) ) ).
% sup.strict_boundedE
thf(fact_5134_sup_Oabsorb4,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= B2 ) ) ) ).
% sup.absorb4
thf(fact_5135_sup_Oabsorb3,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= A2 ) ) ) ).
% sup.absorb3
thf(fact_5136_less__supI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,B2: A,A2: A] :
( ( ord_less @ A @ X @ B2 )
=> ( ord_less @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% less_supI2
thf(fact_5137_less__supI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less @ A @ X @ A2 )
=> ( ord_less @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% less_supI1
thf(fact_5138_inf__sup__ord_I4_J,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [Y: A,X: A] : ( ord_less_eq @ A @ Y @ ( sup_sup @ A @ X @ Y ) ) ) ).
% inf_sup_ord(4)
thf(fact_5139_inf__sup__ord_I3_J,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ X @ ( sup_sup @ A @ X @ Y ) ) ) ).
% inf_sup_ord(3)
thf(fact_5140_le__supE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A,X: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ A2 @ B2 ) @ X )
=> ~ ( ( ord_less_eq @ A @ A2 @ X )
=> ~ ( ord_less_eq @ A @ B2 @ X ) ) ) ) ).
% le_supE
thf(fact_5141_le__supI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ X )
=> ( ( ord_less_eq @ A @ B2 @ X )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ A2 @ B2 ) @ X ) ) ) ) ).
% le_supI
thf(fact_5142_sup__ge1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ X @ ( sup_sup @ A @ X @ Y ) ) ) ).
% sup_ge1
thf(fact_5143_sup__ge2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [Y: A,X: A] : ( ord_less_eq @ A @ Y @ ( sup_sup @ A @ X @ Y ) ) ) ).
% sup_ge2
thf(fact_5144_le__supI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ X @ A2 )
=> ( ord_less_eq @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% le_supI1
thf(fact_5145_le__supI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,B2: A,A2: A] :
( ( ord_less_eq @ A @ X @ B2 )
=> ( ord_less_eq @ A @ X @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% le_supI2
thf(fact_5146_sup_Omono,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,A2: A,D2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ( ord_less_eq @ A @ D2 @ B2 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ C2 @ D2 ) @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ) ).
% sup.mono
thf(fact_5147_sup__mono,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ( ord_less_eq @ A @ B2 @ D2 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ A2 @ B2 ) @ ( sup_sup @ A @ C2 @ D2 ) ) ) ) ) ).
% sup_mono
thf(fact_5148_sup__least,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [Y: A,X: A,Z2: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ Z2 @ X )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ Y @ Z2 ) @ X ) ) ) ) ).
% sup_least
thf(fact_5149_le__iff__sup,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X3: A,Y2: A] :
( ( sup_sup @ A @ X3 @ Y2 )
= Y2 ) ) ) ) ).
% le_iff_sup
thf(fact_5150_sup_OorderE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( A2
= ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.orderE
thf(fact_5151_sup_OorderI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( sup_sup @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% sup.orderI
thf(fact_5152_sup__unique,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [F2: A > A > A,X: A,Y: A] :
( ! [X4: A,Y4: A] : ( ord_less_eq @ A @ X4 @ ( F2 @ X4 @ Y4 ) )
=> ( ! [X4: A,Y4: A] : ( ord_less_eq @ A @ Y4 @ ( F2 @ X4 @ Y4 ) )
=> ( ! [X4: A,Y4: A,Z: A] :
( ( ord_less_eq @ A @ Y4 @ X4 )
=> ( ( ord_less_eq @ A @ Z @ X4 )
=> ( ord_less_eq @ A @ ( F2 @ Y4 @ Z ) @ X4 ) ) )
=> ( ( sup_sup @ A @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ) ).
% sup_unique
thf(fact_5153_sup_Oabsorb1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= A2 ) ) ) ).
% sup.absorb1
thf(fact_5154_sup_Oabsorb2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( sup_sup @ A @ A2 @ B2 )
= B2 ) ) ) ).
% sup.absorb2
thf(fact_5155_sup__absorb1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( sup_sup @ A @ X @ Y )
= X ) ) ) ).
% sup_absorb1
thf(fact_5156_sup__absorb2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( sup_sup @ A @ X @ Y )
= Y ) ) ) ).
% sup_absorb2
thf(fact_5157_sup_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ B2 @ C2 ) @ A2 )
=> ~ ( ( ord_less_eq @ A @ B2 @ A2 )
=> ~ ( ord_less_eq @ A @ C2 @ A2 ) ) ) ) ).
% sup.boundedE
thf(fact_5158_sup_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ B2 @ C2 ) @ A2 ) ) ) ) ).
% sup.boundedI
thf(fact_5159_sup_Oorder__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( A3
= ( sup_sup @ A @ A3 @ B3 ) ) ) ) ) ).
% sup.order_iff
thf(fact_5160_sup_Ocobounded1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ A2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ).
% sup.cobounded1
thf(fact_5161_sup_Ocobounded2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [B2: A,A2: A] : ( ord_less_eq @ A @ B2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ).
% sup.cobounded2
thf(fact_5162_sup_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( ( sup_sup @ A @ A3 @ B3 )
= A3 ) ) ) ) ).
% sup.absorb_iff1
thf(fact_5163_sup_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( ( sup_sup @ A @ A3 @ B3 )
= B3 ) ) ) ) ).
% sup.absorb_iff2
thf(fact_5164_sup_OcoboundedI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ C2 @ A2 )
=> ( ord_less_eq @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.coboundedI1
thf(fact_5165_sup_OcoboundedI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [C2: A,B2: A,A2: A] :
( ( ord_less_eq @ A @ C2 @ B2 )
=> ( ord_less_eq @ A @ C2 @ ( sup_sup @ A @ A2 @ B2 ) ) ) ) ).
% sup.coboundedI2
thf(fact_5166_ivl__disj__un__two__touch_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(4)
thf(fact_5167_ivl__disj__un__two_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(3)
thf(fact_5168_ivl__disj__un__two_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(6)
thf(fact_5169_sum_Oeq__fold,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ( ( groups7311177749621191930dd_sum @ B @ A )
= ( ^ [G2: B > A] : ( finite_fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( plus_plus @ A ) @ G2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% sum.eq_fold
thf(fact_5170_prod_Oeq__fold,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ( ( groups7121269368397514597t_prod @ B @ A )
= ( ^ [G2: B > A] : ( finite_fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( times_times @ A ) @ G2 ) @ ( one_one @ A ) ) ) ) ) ).
% prod.eq_fold
thf(fact_5171_ivl__disj__un__two_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(7)
thf(fact_5172_ivl__disj__un__one_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) )
= ( set_ord_lessThan @ A @ U ) ) ) ) ).
% ivl_disj_un_one(2)
thf(fact_5173_card__Un__le,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) ) @ ( plus_plus @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ).
% card_Un_le
thf(fact_5174_ivl__disj__un__two_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(8)
thf(fact_5175_ivl__disj__un__one_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( set_ord_atMost @ A @ U ) ) ) ) ).
% ivl_disj_un_one(3)
thf(fact_5176_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
! [L: int,U: int] :
( ( set_or1337092689740270186AtMost @ int @ ( plus_plus @ int @ L @ ( one_one @ int ) ) @ U )
= ( set_or3652927894154168847AtMost @ int @ L @ U ) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_5177_ivl__disj__un__two__touch_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(2)
thf(fact_5178_ivl__disj__un__two__touch_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(3)
thf(fact_5179_ivl__disj__un__two_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(1)
thf(fact_5180_ivl__disj__un__one_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) )
= ( set_ord_atMost @ A @ U ) ) ) ) ).
% ivl_disj_un_one(4)
thf(fact_5181_ivl__disj__un__singleton_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [U: A] :
( ( sup_sup @ ( set @ A ) @ ( set_ord_lessThan @ A @ U ) @ ( insert2 @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_ord_atMost @ A @ U ) ) ) ).
% ivl_disj_un_singleton(2)
thf(fact_5182_ivl__disj__un__two_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(2)
thf(fact_5183_Max_Ounion,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( ord_max @ A @ ( lattic643756798349783984er_Max @ A @ A4 ) @ ( lattic643756798349783984er_Max @ A @ B4 ) ) ) ) ) ) ) ) ).
% Max.union
thf(fact_5184_ivl__disj__un__one_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( set_ord_lessThan @ A @ U ) ) ) ) ).
% ivl_disj_un_one(1)
thf(fact_5185_Max_Oeq__fold,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( lattic643756798349783984er_Max @ A @ ( insert2 @ A @ X @ A4 ) )
= ( finite_fold @ A @ A @ ( ord_max @ A ) @ X @ A4 ) ) ) ) ).
% Max.eq_fold
thf(fact_5186_ivl__disj__un__two__touch_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( set_or5935395276787703475ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two_touch(1)
thf(fact_5187_sup__bot_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( ( bounde4967611905675639751up_bot @ A )
=> ( semila1105856199041335345_order @ A @ ( sup_sup @ A ) @ ( bot_bot @ A )
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 )
@ ^ [X3: A,Y2: A] : ( ord_less @ A @ Y2 @ X3 ) ) ) ).
% sup_bot.semilattice_neutr_order_axioms
thf(fact_5188_ivl__disj__un__singleton_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) @ ( insert2 @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(6)
thf(fact_5189_ivl__disj__un__singleton_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( insert2 @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( set_or1337092689740270186AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(5)
thf(fact_5190_ivl__disj__un__two_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less_eq @ A @ L @ M )
=> ( ( ord_less @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(4)
thf(fact_5191_ivl__disj__un__singleton_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( insert2 @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( set_or7035219750837199246ssThan @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(3)
thf(fact_5192_ivl__disj__un__two_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,M: A,U: A] :
( ( ord_less @ A @ L @ M )
=> ( ( ord_less_eq @ A @ M @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ) ).
% ivl_disj_un_two(5)
thf(fact_5193_ivl__disj__un__singleton_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( insert2 @ A @ U @ ( bot_bot @ ( set @ A ) ) ) )
= ( set_or3652927894154168847AtMost @ A @ L @ U ) ) ) ) ).
% ivl_disj_un_singleton(4)
thf(fact_5194_max__weak__def,axiom,
( fun_max_weak
= ( sup_sup @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( max_ext @ ( product_prod @ nat @ nat ) @ fun_pair_leq ) @ ( insert2 @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( product_Pair @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ nat @ nat ) ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ ( product_prod @ nat @ nat ) ) @ ( set @ ( product_prod @ nat @ nat ) ) ) ) ) ) ) ) ).
% max_weak_def
thf(fact_5195_set__union,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( set2 @ A @ ( union @ A @ Xs2 @ Ys3 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) ) ) ).
% set_union
thf(fact_5196_Sup__fin_Oeq__fold_H,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( lattic5882676163264333800up_fin @ A )
= ( ^ [A8: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X3: A,Y2: option @ A] : ( some @ A @ ( case_option @ A @ A @ X3 @ ( sup_sup @ A @ X3 ) @ Y2 ) )
@ ( none @ A )
@ A8 ) ) ) ) ) ).
% Sup_fin.eq_fold'
thf(fact_5197_Sup__fin_Osingleton,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A] :
( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Sup_fin.singleton
thf(fact_5198_Sup__fin_Oinsert,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_5199_Sup__fin__Max,axiom,
! [A: $tType] :
( ( ( semilattice_sup @ A )
& ( linorder @ A ) )
=> ( ( lattic5882676163264333800up_fin @ A )
= ( lattic643756798349783984er_Max @ A ) ) ) ).
% Sup_fin_Max
thf(fact_5200_sup__nat__def,axiom,
( ( sup_sup @ nat )
= ( ord_max @ nat ) ) ).
% sup_nat_def
thf(fact_5201_sup__int__def,axiom,
( ( sup_sup @ int )
= ( ord_max @ int ) ) ).
% sup_int_def
thf(fact_5202_Sup__fin_OcoboundedI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ord_less_eq @ A @ A2 @ ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_5203_Sup__fin_Oin__idem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A4 ) )
= ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ).
% Sup_fin.in_idem
thf(fact_5204_atLeastLessThan__add__Un,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( set_or7035219750837199246ssThan @ nat @ I @ ( plus_plus @ nat @ J @ K ) )
= ( sup_sup @ ( set @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ I @ J ) @ ( set_or7035219750837199246ssThan @ nat @ J @ ( plus_plus @ nat @ J @ K ) ) ) ) ) ).
% atLeastLessThan_add_Un
thf(fact_5205_Sup__fin_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ X )
=> ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( ord_less_eq @ A @ A9 @ X ) ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_5206_Sup__fin_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ord_less_eq @ A @ A5 @ X ) )
=> ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ X ) ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_5207_Sup__fin_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ X )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ X ) ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_5208_card_Oeq__fold,axiom,
! [A: $tType] :
( ( finite_card @ A )
= ( finite_fold @ A @ nat
@ ^ [Uu3: A] : suc
@ ( zero_zero @ nat ) ) ) ).
% card.eq_fold
thf(fact_5209_Sup__fin_Oinfinite,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( lattic5882676163264333800up_fin @ A @ A4 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Sup_fin.infinite
thf(fact_5210_Sup__fin_Osubset__imp,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ ( lattic5882676163264333800up_fin @ A @ B4 ) ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_5211_Sup__fin_Ohom__commute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [H: A > A,N7: set @ A] :
( ! [X4: A,Y4: A] :
( ( H @ ( sup_sup @ A @ X4 @ Y4 ) )
= ( sup_sup @ A @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ( N7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H @ ( lattic5882676163264333800up_fin @ A @ N7 ) )
= ( lattic5882676163264333800up_fin @ A @ ( image @ A @ A @ H @ N7 ) ) ) ) ) ) ) ).
% Sup_fin.hom_commute
thf(fact_5212_Sup__fin_Osubset,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( sup_sup @ A @ ( lattic5882676163264333800up_fin @ A @ B4 ) @ ( lattic5882676163264333800up_fin @ A @ A4 ) )
= ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_5213_Sup__fin_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ) ) ).
% Sup_fin.insert_not_elem
thf(fact_5214_Sup__fin_Oclosed,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A,Y4: A] : ( member @ A @ ( sup_sup @ A @ X4 @ Y4 ) @ ( insert2 @ A @ X4 @ ( insert2 @ A @ Y4 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ A4 ) ) ) ) ) ).
% Sup_fin.closed
thf(fact_5215_max__strict__def,axiom,
( fun_max_strict
= ( max_ext @ ( product_prod @ nat @ nat ) @ fun_pair_less ) ) ).
% max_strict_def
thf(fact_5216_Sup__fin_Ounion,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( sup_sup @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ ( lattic5882676163264333800up_fin @ A @ B4 ) ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_5217_Sup__fin_Oeq__fold,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( finite_fold @ A @ A @ ( sup_sup @ A ) @ X @ A4 ) ) ) ) ).
% Sup_fin.eq_fold
thf(fact_5218_Sup__fin_Oinsert__remove,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Sup_fin.insert_remove
thf(fact_5219_Sup__fin_Oremove,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A4 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A4 )
= ( sup_sup @ A @ X @ ( lattic5882676163264333800up_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Sup_fin.remove
thf(fact_5220_Gcd__eq__Max,axiom,
! [M7: set @ nat] :
( ( finite_finite @ nat @ M7 )
=> ( ( M7
!= ( bot_bot @ ( set @ nat ) ) )
=> ( ~ ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ( gcd_Gcd @ nat @ M7 )
= ( lattic643756798349783984er_Max @ nat
@ ( complete_Inf_Inf @ ( set @ nat )
@ ( image @ nat @ ( set @ nat )
@ ^ [M6: nat] :
( collect @ nat
@ ^ [D6: nat] : ( dvd_dvd @ nat @ D6 @ M6 ) )
@ M7 ) ) ) ) ) ) ) ).
% Gcd_eq_Max
thf(fact_5221_Min_Oeq__fold_H,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798350308766er_Min @ A )
= ( ^ [A8: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X3: A,Y2: option @ A] : ( some @ A @ ( case_option @ A @ A @ X3 @ ( ord_min @ A @ X3 ) @ Y2 ) )
@ ( none @ A )
@ A8 ) ) ) ) ) ).
% Min.eq_fold'
thf(fact_5222_mask__mod__exp,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat,M: nat] :
( ( modulo_modulo @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ A ) ) @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) )
= ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( ord_min @ nat @ M @ N2 ) ) @ ( one_one @ A ) ) ) ) ).
% mask_mod_exp
thf(fact_5223_min__enat__simps_I3_J,axiom,
! [Q4: extended_enat] :
( ( ord_min @ extended_enat @ ( zero_zero @ extended_enat ) @ Q4 )
= ( zero_zero @ extended_enat ) ) ).
% min_enat_simps(3)
thf(fact_5224_min__enat__simps_I2_J,axiom,
! [Q4: extended_enat] :
( ( ord_min @ extended_enat @ Q4 @ ( zero_zero @ extended_enat ) )
= ( zero_zero @ extended_enat ) ) ).
% min_enat_simps(2)
thf(fact_5225_min_Obounded__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( ord_min @ A @ B2 @ C2 ) )
= ( ( ord_less_eq @ A @ A2 @ B2 )
& ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% min.bounded_iff
thf(fact_5226_min_Oabsorb2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= B2 ) ) ) ).
% min.absorb2
thf(fact_5227_min_Oabsorb1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= A2 ) ) ) ).
% min.absorb1
thf(fact_5228_min_Oabsorb3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= A2 ) ) ) ).
% min.absorb3
thf(fact_5229_min_Oabsorb4,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_min @ A @ A2 @ B2 )
= B2 ) ) ) ).
% min.absorb4
thf(fact_5230_min__less__iff__conj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ ( ord_min @ A @ X @ Y ) )
= ( ( ord_less @ A @ Z2 @ X )
& ( ord_less @ A @ Z2 @ Y ) ) ) ) ).
% min_less_iff_conj
thf(fact_5231_min__bot2,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_min @ A @ X @ ( bot_bot @ A ) )
= ( bot_bot @ A ) ) ) ).
% min_bot2
thf(fact_5232_min__bot,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ord_min @ A @ ( bot_bot @ A ) @ X )
= ( bot_bot @ A ) ) ) ).
% min_bot
thf(fact_5233_max__min__same_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_max @ A @ X @ ( ord_min @ A @ X @ Y ) )
= X ) ) ).
% max_min_same(1)
thf(fact_5234_max__min__same_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_max @ A @ ( ord_min @ A @ X @ Y ) @ X )
= X ) ) ).
% max_min_same(2)
thf(fact_5235_max__min__same_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_max @ A @ ( ord_min @ A @ X @ Y ) @ Y )
= Y ) ) ).
% max_min_same(3)
thf(fact_5236_max__min__same_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ( ord_max @ A @ Y @ ( ord_min @ A @ X @ Y ) )
= Y ) ) ).
% max_min_same(4)
thf(fact_5237_min__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( ord_min @ nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( suc @ ( ord_min @ nat @ M @ N2 ) ) ) ).
% min_Suc_Suc
thf(fact_5238_min__0L,axiom,
! [N2: nat] :
( ( ord_min @ nat @ ( zero_zero @ nat ) @ N2 )
= ( zero_zero @ nat ) ) ).
% min_0L
thf(fact_5239_min__0R,axiom,
! [N2: nat] :
( ( ord_min @ nat @ N2 @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% min_0R
thf(fact_5240_min__number__of_I1_J,axiom,
! [A: $tType] :
( ( ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ U ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% min_number_of(1)
thf(fact_5241_min__0__1_I4_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( numeral_numeral @ A @ X ) @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(4)
thf(fact_5242_min__0__1_I3_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ X ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(3)
thf(fact_5243_min__0__1_I1_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_min @ A @ ( zero_zero @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(1)
thf(fact_5244_min__0__1_I2_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ( ( ord_min @ A @ ( one_one @ A ) @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% min_0_1(2)
thf(fact_5245_Inf__atLeastAtMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_atLeastAtMost
thf(fact_5246_cInf__atLeastAtMost,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or1337092689740270186AtMost @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_atLeastAtMost
thf(fact_5247_min__0__1_I6_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( numeral_numeral @ A @ X ) @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% min_0_1(6)
thf(fact_5248_min__0__1_I5_J,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: num] :
( ( ord_min @ A @ ( one_one @ A ) @ ( numeral_numeral @ A @ X ) )
= ( one_one @ A ) ) ) ).
% min_0_1(5)
thf(fact_5249_cInf__atLeastLessThan,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or7035219750837199246ssThan @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_atLeastLessThan
thf(fact_5250_Inf__atLeastLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or7035219750837199246ssThan @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_atLeastLessThan
thf(fact_5251_Inf__atMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( complete_Inf_Inf @ A @ ( set_ord_atMost @ A @ X ) )
= ( bot_bot @ A ) ) ) ).
% Inf_atMost
thf(fact_5252_cInf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or5935395276787703475ssThan @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_greaterThanLessThan
thf(fact_5253_Inf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or5935395276787703475ssThan @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_greaterThanLessThan
thf(fact_5254_cInf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_or3652927894154168847AtMost @ A @ Y @ X ) )
= Y ) ) ) ).
% cInf_greaterThanAtMost
thf(fact_5255_Inf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Inf_Inf @ A @ ( set_or3652927894154168847AtMost @ A @ X @ Y ) )
= X ) ) ) ).
% Inf_greaterThanAtMost
thf(fact_5256_min__number__of_I2_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( numeral_numeral @ A @ U ) ) )
& ( ~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_min @ A @ ( numeral_numeral @ A @ U ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ) ).
% min_number_of(2)
thf(fact_5257_min__number__of_I3_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( numeral_numeral @ A @ V2 ) )
= ( numeral_numeral @ A @ V2 ) ) ) ) ) ).
% min_number_of(3)
thf(fact_5258_min__number__of_I4_J,axiom,
! [A: $tType] :
( ( ( uminus @ A )
& ( numeral @ A )
& ( ord @ A ) )
=> ! [U: num,V2: num] :
( ( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
=> ( ( ord_min @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ U ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) )
= ( uminus_uminus @ A @ ( numeral_numeral @ A @ V2 ) ) ) ) ) ) ).
% min_number_of(4)
thf(fact_5259_min__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_min @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( suc @ ( ord_min @ nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).
% min_numeral_Suc
thf(fact_5260_min__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_min @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( suc @ ( ord_min @ nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).
% min_Suc_numeral
thf(fact_5261_Min__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ) ).
% Min_insert
thf(fact_5262_min__diff__distrib__left,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( minus_minus @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ord_min @ A @ ( minus_minus @ A @ X @ Z2 ) @ ( minus_minus @ A @ Y @ Z2 ) ) ) ) ).
% min_diff_distrib_left
thf(fact_5263_min__diff,axiom,
! [M: nat,I: nat,N2: nat] :
( ( ord_min @ nat @ ( minus_minus @ nat @ M @ I ) @ ( minus_minus @ nat @ N2 @ I ) )
= ( minus_minus @ nat @ ( ord_min @ nat @ M @ N2 ) @ I ) ) ).
% min_diff
thf(fact_5264_min__add__distrib__right,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ X @ ( ord_min @ A @ Y @ Z2 ) )
= ( ord_min @ A @ ( plus_plus @ A @ X @ Y ) @ ( plus_plus @ A @ X @ Z2 ) ) ) ) ).
% min_add_distrib_right
thf(fact_5265_min__add__distrib__left,axiom,
! [A: $tType] :
( ( ordere2412721322843649153imp_le @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( plus_plus @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ord_min @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( plus_plus @ A @ Y @ Z2 ) ) ) ) ).
% min_add_distrib_left
thf(fact_5266_of__nat__min,axiom,
! [A: $tType] :
( ( linord181362715937106298miring @ A )
=> ! [X: nat,Y: nat] :
( ( semiring_1_of_nat @ A @ ( ord_min @ nat @ X @ Y ) )
= ( ord_min @ A @ ( semiring_1_of_nat @ A @ X ) @ ( semiring_1_of_nat @ A @ Y ) ) ) ) ).
% of_nat_min
thf(fact_5267_nat__mult__min__left,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( times_times @ nat @ ( ord_min @ nat @ M @ N2 ) @ Q4 )
= ( ord_min @ nat @ ( times_times @ nat @ M @ Q4 ) @ ( times_times @ nat @ N2 @ Q4 ) ) ) ).
% nat_mult_min_left
thf(fact_5268_nat__mult__min__right,axiom,
! [M: nat,N2: nat,Q4: nat] :
( ( times_times @ nat @ M @ ( ord_min @ nat @ N2 @ Q4 ) )
= ( ord_min @ nat @ ( times_times @ nat @ M @ N2 ) @ ( times_times @ nat @ M @ Q4 ) ) ) ).
% nat_mult_min_right
thf(fact_5269_min_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.strict_coboundedI2
thf(fact_5270_min_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ C2 )
=> ( ord_less @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.strict_coboundedI1
thf(fact_5271_min_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B3: A] :
( ( A3
= ( ord_min @ A @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ) ).
% min.strict_order_iff
thf(fact_5272_min_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( ord_min @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% min.strict_boundedE
thf(fact_5273_min__less__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ( ord_less @ A @ X @ Z2 )
| ( ord_less @ A @ Y @ Z2 ) ) ) ) ).
% min_less_iff_disj
thf(fact_5274_of__int__min,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: int,Y: int] :
( ( ring_1_of_int @ A @ ( ord_min @ int @ X @ Y ) )
= ( ord_min @ A @ ( ring_1_of_int @ A @ X ) @ ( ring_1_of_int @ A @ Y ) ) ) ) ).
% of_int_min
thf(fact_5275_min_Omono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ( ord_less_eq @ A @ B2 @ D2 )
=> ( ord_less_eq @ A @ ( ord_min @ A @ A2 @ B2 ) @ ( ord_min @ A @ C2 @ D2 ) ) ) ) ) ).
% min.mono
thf(fact_5276_min_OorderE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2
= ( ord_min @ A @ A2 @ B2 ) ) ) ) ).
% min.orderE
thf(fact_5277_min_OorderI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( ord_min @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% min.orderI
thf(fact_5278_min_OboundedE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( ord_min @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less_eq @ A @ A2 @ B2 )
=> ~ ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% min.boundedE
thf(fact_5279_min_OboundedI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( ord_min @ A @ B2 @ C2 ) ) ) ) ) ).
% min.boundedI
thf(fact_5280_min_Oorder__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( A3
= ( ord_min @ A @ A3 @ B3 ) ) ) ) ) ).
% min.order_iff
thf(fact_5281_min_Ocobounded1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( ord_min @ A @ A2 @ B2 ) @ A2 ) ) ).
% min.cobounded1
thf(fact_5282_min_Ocobounded2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( ord_min @ A @ A2 @ B2 ) @ B2 ) ) ).
% min.cobounded2
thf(fact_5283_min_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( ( ord_min @ A @ A3 @ B3 )
= A3 ) ) ) ) ).
% min.absorb_iff1
thf(fact_5284_min_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( ( ord_min @ A @ A3 @ B3 )
= B3 ) ) ) ) ).
% min.absorb_iff2
thf(fact_5285_min_OcoboundedI1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ord_less_eq @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.coboundedI1
thf(fact_5286_min_OcoboundedI2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ ( ord_min @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% min.coboundedI2
thf(fact_5287_min__le__iff__disj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ ( ord_min @ A @ X @ Y ) @ Z2 )
= ( ( ord_less_eq @ A @ X @ Z2 )
| ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% min_le_iff_disj
thf(fact_5288_min__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_min @ A )
= ( ^ [A3: A,B3: A] : ( if @ A @ ( ord_less_eq @ A @ A3 @ B3 ) @ A3 @ B3 ) ) ) ) ).
% min_def
thf(fact_5289_min__absorb1,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_min @ A @ X @ Y )
= X ) ) ) ).
% min_absorb1
thf(fact_5290_min__absorb2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_min @ A @ X @ Y )
= Y ) ) ) ).
% min_absorb2
thf(fact_5291_cInf__eq__minimum,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Z2: A,X6: set @ A] :
( ( member @ A @ Z2 @ X6 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ Z2 @ X4 ) )
=> ( ( complete_Inf_Inf @ A @ X6 )
= Z2 ) ) ) ) ).
% cInf_eq_minimum
thf(fact_5292_cInf__eq,axiom,
! [A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( no_top @ A ) )
=> ! [X6: set @ A,A2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ A2 @ X4 ) )
=> ( ! [Y4: A] :
( ! [X2: A] :
( ( member @ A @ X2 @ X6 )
=> ( ord_less_eq @ A @ Y4 @ X2 ) )
=> ( ord_less_eq @ A @ Y4 @ A2 ) )
=> ( ( complete_Inf_Inf @ A @ X6 )
= A2 ) ) ) ) ).
% cInf_eq
thf(fact_5293_min__def__raw,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_min @ A )
= ( ^ [A3: A,B3: A] : ( if @ A @ ( ord_less_eq @ A @ A3 @ B3 ) @ A3 @ B3 ) ) ) ) ).
% min_def_raw
thf(fact_5294_cInf__greatest,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,Z2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ Z2 @ X4 ) )
=> ( ord_less_eq @ A @ Z2 @ ( complete_Inf_Inf @ A @ X6 ) ) ) ) ) ).
% cInf_greatest
thf(fact_5295_cInf__eq__non__empty,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,A2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ A2 @ X4 ) )
=> ( ! [Y4: A] :
( ! [X2: A] :
( ( member @ A @ X2 @ X6 )
=> ( ord_less_eq @ A @ Y4 @ X2 ) )
=> ( ord_less_eq @ A @ Y4 @ A2 ) )
=> ( ( complete_Inf_Inf @ A @ X6 )
= A2 ) ) ) ) ) ).
% cInf_eq_non_empty
thf(fact_5296_cInf__le__finite,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,X: A] :
( ( finite_finite @ A @ X6 )
=> ( ( member @ A @ X @ X6 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ X6 ) @ X ) ) ) ) ).
% cInf_le_finite
thf(fact_5297_cInf__lessD,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,Z2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ X6 ) @ Z2 )
=> ? [X4: A] :
( ( member @ A @ X4 @ X6 )
& ( ord_less @ A @ X4 @ Z2 ) ) ) ) ) ).
% cInf_lessD
thf(fact_5298_finite__imp__less__Inf,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,X: A,A2: A] :
( ( finite_finite @ A @ X6 )
=> ( ( member @ A @ X @ X6 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less @ A @ A2 @ X4 ) )
=> ( ord_less @ A @ A2 @ ( complete_Inf_Inf @ A @ X6 ) ) ) ) ) ) ).
% finite_imp_less_Inf
thf(fact_5299_minus__max__eq__min,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [X: A,Y: A] :
( ( uminus_uminus @ A @ ( ord_max @ A @ X @ Y ) )
= ( ord_min @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% minus_max_eq_min
thf(fact_5300_minus__min__eq__max,axiom,
! [A: $tType] :
( ( linord5086331880401160121up_add @ A )
=> ! [X: A,Y: A] :
( ( uminus_uminus @ A @ ( ord_min @ A @ X @ Y ) )
= ( ord_max @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% minus_min_eq_max
thf(fact_5301_sup__Inf,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A2: A,B4: set @ A] :
( ( sup_sup @ A @ A2 @ ( complete_Inf_Inf @ A @ B4 ) )
= ( complete_Inf_Inf @ A @ ( image @ A @ A @ ( sup_sup @ A @ A2 ) @ B4 ) ) ) ) ).
% sup_Inf
thf(fact_5302_Min_Oin__idem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ).
% Min.in_idem
thf(fact_5303_INF__sup,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [F2: B > A,B4: set @ B,A2: A] :
( ( sup_sup @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ B4 ) ) @ A2 )
= ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [B3: B] : ( sup_sup @ A @ ( F2 @ B3 ) @ A2 )
@ B4 ) ) ) ) ).
% INF_sup
thf(fact_5304_Inf__sup,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [B4: set @ A,A2: A] :
( ( sup_sup @ A @ ( complete_Inf_Inf @ A @ B4 ) @ A2 )
= ( complete_Inf_Inf @ A
@ ( image @ A @ A
@ ^ [B3: A] : ( sup_sup @ A @ B3 @ A2 )
@ B4 ) ) ) ) ).
% Inf_sup
thf(fact_5305_sup__INF,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A2: A,F2: B > A,B4: set @ B] :
( ( sup_sup @ A @ A2 @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ B4 ) ) )
= ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [B3: B] : ( sup_sup @ A @ A2 @ ( F2 @ B3 ) )
@ B4 ) ) ) ) ).
% sup_INF
thf(fact_5306_INF__sup__distrib2,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [F2: B > A,A4: set @ B,G: C > A,B4: set @ C] :
( ( sup_sup @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ G @ B4 ) ) )
= ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [A3: B] :
( complete_Inf_Inf @ A
@ ( image @ C @ A
@ ^ [B3: C] : ( sup_sup @ A @ ( F2 @ A3 ) @ ( G @ B3 ) )
@ B4 ) )
@ A4 ) ) ) ) ).
% INF_sup_distrib2
thf(fact_5307_cINF__greatest,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,M: A,F2: B > A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ M @ ( F2 @ X4 ) ) )
=> ( ord_less_eq @ A @ M @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ).
% cINF_greatest
thf(fact_5308_finite__less__Inf__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,A2: A] :
( ( finite_finite @ A @ X6 )
=> ( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ A2 @ ( complete_Inf_Inf @ A @ X6 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ X6 )
=> ( ord_less @ A @ A2 @ X3 ) ) ) ) ) ) ) ).
% finite_less_Inf_iff
thf(fact_5309_cInf__abs__ge,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X4 ) @ A2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( complete_Inf_Inf @ A @ S3 ) ) @ A2 ) ) ) ) ).
% cInf_abs_ge
thf(fact_5310_Min__Inf,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A4 )
= ( complete_Inf_Inf @ A @ A4 ) ) ) ) ) ).
% Min_Inf
thf(fact_5311_max__mult__distrib__left,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ P6 @ ( ord_max @ A @ X @ Y ) )
= ( ord_max @ A @ ( times_times @ A @ P6 @ X ) @ ( times_times @ A @ P6 @ Y ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ P6 @ ( ord_max @ A @ X @ Y ) )
= ( ord_min @ A @ ( times_times @ A @ P6 @ X ) @ ( times_times @ A @ P6 @ Y ) ) ) ) ) ) ).
% max_mult_distrib_left
thf(fact_5312_min__mult__distrib__left,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ P6 @ ( ord_min @ A @ X @ Y ) )
= ( ord_min @ A @ ( times_times @ A @ P6 @ X ) @ ( times_times @ A @ P6 @ Y ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ P6 @ ( ord_min @ A @ X @ Y ) )
= ( ord_max @ A @ ( times_times @ A @ P6 @ X ) @ ( times_times @ A @ P6 @ Y ) ) ) ) ) ) ).
% min_mult_distrib_left
thf(fact_5313_max__mult__distrib__right,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ ( ord_max @ A @ X @ Y ) @ P6 )
= ( ord_max @ A @ ( times_times @ A @ X @ P6 ) @ ( times_times @ A @ Y @ P6 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ ( ord_max @ A @ X @ Y ) @ P6 )
= ( ord_min @ A @ ( times_times @ A @ X @ P6 ) @ ( times_times @ A @ Y @ P6 ) ) ) ) ) ) ).
% max_mult_distrib_right
thf(fact_5314_min__mult__distrib__right,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ ( ord_min @ A @ X @ Y ) @ P6 )
= ( ord_min @ A @ ( times_times @ A @ X @ P6 ) @ ( times_times @ A @ Y @ P6 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( times_times @ A @ ( ord_min @ A @ X @ Y ) @ P6 )
= ( ord_max @ A @ ( times_times @ A @ X @ P6 ) @ ( times_times @ A @ Y @ P6 ) ) ) ) ) ) ).
% min_mult_distrib_right
thf(fact_5315_max__divide__distrib__right,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( divide_divide @ A @ ( ord_max @ A @ X @ Y ) @ P6 )
= ( ord_max @ A @ ( divide_divide @ A @ X @ P6 ) @ ( divide_divide @ A @ Y @ P6 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( divide_divide @ A @ ( ord_max @ A @ X @ Y ) @ P6 )
= ( ord_min @ A @ ( divide_divide @ A @ X @ P6 ) @ ( divide_divide @ A @ Y @ P6 ) ) ) ) ) ) ).
% max_divide_distrib_right
thf(fact_5316_min__divide__distrib__right,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [P6: A,X: A,Y: A] :
( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( divide_divide @ A @ ( ord_min @ A @ X @ Y ) @ P6 )
= ( ord_min @ A @ ( divide_divide @ A @ X @ P6 ) @ ( divide_divide @ A @ Y @ P6 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ P6 )
=> ( ( divide_divide @ A @ ( ord_min @ A @ X @ Y ) @ P6 )
= ( ord_max @ A @ ( divide_divide @ A @ X @ P6 ) @ ( divide_divide @ A @ Y @ P6 ) ) ) ) ) ) ).
% min_divide_distrib_right
thf(fact_5317_min__Suc2,axiom,
! [M: nat,N2: nat] :
( ( ord_min @ nat @ M @ ( suc @ N2 ) )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [M3: nat] : ( suc @ ( ord_min @ nat @ M3 @ N2 ) )
@ M ) ) ).
% min_Suc2
thf(fact_5318_min__Suc1,axiom,
! [N2: nat,M: nat] :
( ( ord_min @ nat @ ( suc @ N2 ) @ M )
= ( case_nat @ nat @ ( zero_zero @ nat )
@ ^ [M3: nat] : ( suc @ ( ord_min @ nat @ N2 @ M3 ) )
@ M ) ) ).
% min_Suc1
thf(fact_5319_hom__Min__commute,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [H: A > A,N7: set @ A] :
( ! [X4: A,Y4: A] :
( ( H @ ( ord_min @ A @ X4 @ Y4 ) )
= ( ord_min @ A @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ( N7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H @ ( lattic643756798350308766er_Min @ A @ N7 ) )
= ( lattic643756798350308766er_Min @ A @ ( image @ A @ A @ H @ N7 ) ) ) ) ) ) ) ).
% hom_Min_commute
thf(fact_5320_Min_Osubset,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( ord_min @ A @ ( lattic643756798350308766er_Min @ A @ B4 ) @ ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ) ).
% Min.subset
thf(fact_5321_cInf__asclose,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,L: A,E2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X4 @ L ) ) @ E2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( complete_Inf_Inf @ A @ S3 ) @ L ) ) @ E2 ) ) ) ) ).
% cInf_asclose
thf(fact_5322_Min_Oclosed,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A,Y4: A] : ( member @ A @ ( ord_min @ A @ X4 @ Y4 ) @ ( insert2 @ A @ X4 @ ( insert2 @ A @ Y4 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ A4 ) ) ) ) ) ).
% Min.closed
thf(fact_5323_Min_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ A4 ) ) ) ) ) ) ) ).
% Min.insert_not_elem
thf(fact_5324_Min_Ounion,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( ord_min @ A @ ( lattic643756798350308766er_Min @ A @ A4 ) @ ( lattic643756798350308766er_Min @ A @ B4 ) ) ) ) ) ) ) ) ).
% Min.union
thf(fact_5325_Min_Oeq__fold,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ A4 ) )
= ( finite_fold @ A @ A @ ( ord_min @ A ) @ X @ A4 ) ) ) ) ).
% Min.eq_fold
thf(fact_5326_Min_Oremove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A4 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ A4 )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Min.remove
thf(fact_5327_Min_Oinsert__remove,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ A4 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798350308766er_Min @ A @ ( insert2 @ A @ X @ A4 ) )
= ( ord_min @ A @ X @ ( lattic643756798350308766er_Min @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Min.insert_remove
thf(fact_5328_INF__eq__bot__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A4: set @ B] :
( ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) )
= ( bot_bot @ A ) )
= ( ! [X3: A] :
( ( ord_less @ A @ ( bot_bot @ A ) @ X3 )
=> ? [Y2: B] :
( ( member @ B @ Y2 @ A4 )
& ( ord_less @ A @ ( F2 @ Y2 ) @ X3 ) ) ) ) ) ) ).
% INF_eq_bot_iff
thf(fact_5329_Inf__eq__bot__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A4: set @ A] :
( ( ( complete_Inf_Inf @ A @ A4 )
= ( bot_bot @ A ) )
= ( ! [X3: A] :
( ( ord_less @ A @ ( bot_bot @ A ) @ X3 )
=> ? [Y2: A] :
( ( member @ A @ Y2 @ A4 )
& ( ord_less @ A @ Y2 @ X3 ) ) ) ) ) ) ).
% Inf_eq_bot_iff
thf(fact_5330_INF__superset__mono,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B4: set @ B,A4: set @ B,F2: B > A,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ B4 @ A4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ B4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ).
% INF_superset_mono
thf(fact_5331_Inf__eqI,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,X: A] :
( ! [I2: A] :
( ( member @ A @ I2 @ A4 )
=> ( ord_less_eq @ A @ X @ I2 ) )
=> ( ! [Y4: A] :
( ! [I4: A] :
( ( member @ A @ I4 @ A4 )
=> ( ord_less_eq @ A @ Y4 @ I4 ) )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ( complete_Inf_Inf @ A @ A4 )
= X ) ) ) ) ).
% Inf_eqI
thf(fact_5332_Inf__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ! [B5: A] :
( ( member @ A @ B5 @ B4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ( ord_less_eq @ A @ X2 @ B5 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) ) ) ).
% Inf_mono
thf(fact_5333_Inf__lower,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,A4: set @ A] :
( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ X ) ) ) ).
% Inf_lower
thf(fact_5334_Inf__lower2,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [U: A,A4: set @ A,V2: A] :
( ( member @ A @ U @ A4 )
=> ( ( ord_less_eq @ A @ U @ V2 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ V2 ) ) ) ) ).
% Inf_lower2
thf(fact_5335_le__Inf__iff,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B2: A,A4: set @ A] :
( ( ord_less_eq @ A @ B2 @ ( complete_Inf_Inf @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ B2 @ X3 ) ) ) ) ) ).
% le_Inf_iff
thf(fact_5336_Inf__greatest,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,Z2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ Z2 @ X4 ) )
=> ( ord_less_eq @ A @ Z2 @ ( complete_Inf_Inf @ A @ A4 ) ) ) ) ).
% Inf_greatest
thf(fact_5337_Inf__less__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [S3: set @ A,A2: A] :
( ( ord_less @ A @ ( complete_Inf_Inf @ A @ S3 ) @ A2 )
= ( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ord_less @ A @ X3 @ A2 ) ) ) ) ) ).
% Inf_less_iff
thf(fact_5338_Inf__le__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A4: set @ A,X: A] :
( ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ X )
= ( ! [Y2: A] :
( ( ord_less @ A @ X @ Y2 )
=> ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less @ A @ X3 @ Y2 ) ) ) ) ) ) ).
% Inf_le_iff
thf(fact_5339_INF__eq,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,B4: set @ C,G: C > A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ B4 )
& ( ord_less_eq @ A @ ( G @ X2 ) @ ( F2 @ I2 ) ) ) )
=> ( ! [J2: C] :
( ( member @ C @ J2 @ B4 )
=> ? [X2: B] :
( ( member @ B @ X2 @ A4 )
& ( ord_less_eq @ A @ ( F2 @ X2 ) @ ( G @ J2 ) ) ) )
=> ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) )
= ( complete_Inf_Inf @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ) ).
% INF_eq
thf(fact_5340_Inf__less__eq,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,U: A] :
( ! [V3: A] :
( ( member @ A @ V3 @ A4 )
=> ( ord_less_eq @ A @ V3 @ U ) )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ U ) ) ) ) ).
% Inf_less_eq
thf(fact_5341_Inf__superset__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) ) ) ).
% Inf_superset_mono
thf(fact_5342_INF__greatest,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,U: A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ U @ ( F2 @ I2 ) ) )
=> ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ).
% INF_greatest
thf(fact_5343_le__INF__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [U: A,F2: B > A,A4: set @ B] :
( ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ U @ ( F2 @ X3 ) ) ) ) ) ) ).
% le_INF_iff
thf(fact_5344_INF__lower2,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I: B,A4: set @ B,F2: B > A,U: A] :
( ( member @ B @ I @ A4 )
=> ( ( ord_less_eq @ A @ ( F2 @ I ) @ U )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U ) ) ) ) ).
% INF_lower2
thf(fact_5345_INF__mono_H,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,G: B > A,A4: set @ B] :
( ! [X4: B] : ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ A4 ) ) ) ) ) ).
% INF_mono'
thf(fact_5346_INF__lower,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I: B,A4: set @ B,F2: B > A] :
( ( member @ B @ I @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( F2 @ I ) ) ) ) ).
% INF_lower
thf(fact_5347_INF__mono,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [B4: set @ B,A4: set @ C,F2: C > A,G: B > A] :
( ! [M5: B] :
( ( member @ B @ M5 @ B4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ A4 )
& ( ord_less_eq @ A @ ( F2 @ X2 ) @ ( G @ M5 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ).
% INF_mono
thf(fact_5348_INF__eqI,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,X: A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ X @ ( F2 @ I2 ) ) )
=> ( ! [Y4: A] :
( ! [I4: B] :
( ( member @ B @ I4 @ A4 )
=> ( ord_less_eq @ A @ Y4 @ ( F2 @ I4 ) ) )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) )
= X ) ) ) ) ).
% INF_eqI
thf(fact_5349_INF__less__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A4: set @ B,A2: A] :
( ( ord_less @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ A2 )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ ( F2 @ X3 ) @ A2 ) ) ) ) ) ).
% INF_less_iff
thf(fact_5350_less__INF__D,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [Y: A,F2: B > A,A4: set @ B,I: B] :
( ( ord_less @ A @ Y @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less @ A @ Y @ ( F2 @ I ) ) ) ) ) ).
% less_INF_D
thf(fact_5351_INF__le__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A4: set @ B,X: A] :
( ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ X )
= ( ! [Y2: A] :
( ( ord_less @ A @ X @ Y2 )
=> ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ ( F2 @ X3 ) @ Y2 ) ) ) ) ) ) ).
% INF_le_iff
thf(fact_5352_INF__eq__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I5: set @ B,F2: B > A,C2: A] :
( ( I5
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ C2 ) )
=> ( ( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ I5 ) )
= C2 )
= ( ! [X3: B] :
( ( member @ B @ X3 @ I5 )
=> ( ( F2 @ X3 )
= C2 ) ) ) ) ) ) ) ).
% INF_eq_iff
thf(fact_5353_card__UNION,axiom,
! [A: $tType,A4: set @ ( set @ A )] :
( ( finite_finite @ ( set @ A ) @ A4 )
=> ( ! [X4: set @ A] :
( ( member @ ( set @ A ) @ X4 @ A4 )
=> ( finite_finite @ A @ X4 ) )
=> ( ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ A4 ) )
= ( nat2
@ ( groups7311177749621191930dd_sum @ ( set @ ( set @ A ) ) @ int
@ ^ [I7: set @ ( set @ A )] : ( times_times @ int @ ( power_power @ int @ ( uminus_uminus @ int @ ( one_one @ int ) ) @ ( plus_plus @ nat @ ( finite_card @ ( set @ A ) @ I7 ) @ ( one_one @ nat ) ) ) @ ( semiring_1_of_nat @ int @ ( finite_card @ A @ ( complete_Inf_Inf @ ( set @ A ) @ I7 ) ) ) )
@ ( collect @ ( set @ ( set @ A ) )
@ ^ [I7: set @ ( set @ A )] :
( ( ord_less_eq @ ( set @ ( set @ A ) ) @ I7 @ A4 )
& ( I7
!= ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% card_UNION
thf(fact_5354_lexord__take__index__conv,axiom,
! [A: $tType,X: list @ A,Y: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ X @ Y ) @ ( lexord @ A @ R2 ) )
= ( ( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ X ) @ ( size_size @ ( list @ A ) @ Y ) )
& ( ( take @ A @ ( size_size @ ( list @ A ) @ X ) @ Y )
= X ) )
| ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( ord_min @ nat @ ( size_size @ ( list @ A ) @ X ) @ ( size_size @ ( list @ A ) @ Y ) ) )
& ( ( take @ A @ I3 @ X )
= ( take @ A @ I3 @ Y ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( nth @ A @ X @ I3 ) @ ( nth @ A @ Y @ I3 ) ) @ R2 ) ) ) ) ).
% lexord_take_index_conv
thf(fact_5355_UN__le__eq__Un0,axiom,
! [A: $tType,M7: nat > ( set @ A ),N2: nat] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_ord_atMost @ nat @ N2 ) ) )
= ( sup_sup @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ N2 ) ) ) @ ( M7 @ ( zero_zero @ nat ) ) ) ) ).
% UN_le_eq_Un0
thf(fact_5356_Sup__lessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A] :
( ( complete_Sup_Sup @ A @ ( set_ord_lessThan @ A @ Y ) )
= Y ) ) ).
% Sup_lessThan
thf(fact_5357_Sup__atMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [Y: A] :
( ( complete_Sup_Sup @ A @ ( set_ord_atMost @ A @ Y ) )
= Y ) ) ).
% Sup_atMost
thf(fact_5358_Sup__atLeastAtMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or1337092689740270186AtMost @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_atLeastAtMost
thf(fact_5359_cSup__atLeastAtMost,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or1337092689740270186AtMost @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_atLeastAtMost
thf(fact_5360_cSup__atLeastLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or7035219750837199246ssThan @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_atLeastLessThan
thf(fact_5361_Sup__atLeastLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or7035219750837199246ssThan @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_atLeastLessThan
thf(fact_5362_cSup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( dense_linorder @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or5935395276787703475ssThan @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_greaterThanLessThan
thf(fact_5363_Sup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or5935395276787703475ssThan @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_greaterThanLessThan
thf(fact_5364_cSup__greaterThanAtMost,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( complete_Sup_Sup @ A @ ( set_or3652927894154168847AtMost @ A @ Y @ X ) )
= X ) ) ) ).
% cSup_greaterThanAtMost
thf(fact_5365_Sup__greaterThanAtMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( complete_Sup_Sup @ A @ ( set_or3652927894154168847AtMost @ A @ X @ Y ) )
= Y ) ) ) ).
% Sup_greaterThanAtMost
thf(fact_5366_set__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( set2 @ A @ ( concat @ A @ Xs2 ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ Xs2 ) ) ) ) ).
% set_concat
thf(fact_5367_le__Sup__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [X: A,A4: set @ A] :
( ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ A4 ) )
= ( ! [Y2: A] :
( ( ord_less @ A @ Y2 @ X )
=> ? [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( ord_less @ A @ Y2 @ X3 ) ) ) ) ) ) ).
% le_Sup_iff
thf(fact_5368_Sup__eqI,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,X: A] :
( ! [Y4: A] :
( ( member @ A @ Y4 @ A4 )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ! [Y4: A] :
( ! [Z4: A] :
( ( member @ A @ Z4 @ A4 )
=> ( ord_less_eq @ A @ Z4 @ Y4 ) )
=> ( ord_less_eq @ A @ X @ Y4 ) )
=> ( ( complete_Sup_Sup @ A @ A4 )
= X ) ) ) ) ).
% Sup_eqI
thf(fact_5369_Sup__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ B4 )
& ( ord_less_eq @ A @ A5 @ X2 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ).
% Sup_mono
thf(fact_5370_Sup__least,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,Z2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ Z2 ) ) ) ).
% Sup_least
thf(fact_5371_Sup__upper,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A,A4: set @ A] :
( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ).
% Sup_upper
thf(fact_5372_Sup__le__iff,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,B2: A] :
( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ B2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ B2 ) ) ) ) ) ).
% Sup_le_iff
thf(fact_5373_Sup__upper2,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [U: A,A4: set @ A,V2: A] :
( ( member @ A @ U @ A4 )
=> ( ( ord_less_eq @ A @ V2 @ U )
=> ( ord_less_eq @ A @ V2 @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% Sup_upper2
thf(fact_5374_less__Sup__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A2: A,S3: set @ A] :
( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ S3 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ord_less @ A @ A2 @ X3 ) ) ) ) ) ).
% less_Sup_iff
thf(fact_5375_cSup__eq__maximum,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [Z2: A,X6: set @ A] :
( ( member @ A @ Z2 @ X6 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ( complete_Sup_Sup @ A @ X6 )
= Z2 ) ) ) ) ).
% cSup_eq_maximum
thf(fact_5376_cSup__eq,axiom,
! [A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( no_bot @ A ) )
=> ! [X6: set @ A,A2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ X4 @ A2 ) )
=> ( ! [Y4: A] :
( ! [X2: A] :
( ( member @ A @ X2 @ X6 )
=> ( ord_less_eq @ A @ X2 @ Y4 ) )
=> ( ord_less_eq @ A @ A2 @ Y4 ) )
=> ( ( complete_Sup_Sup @ A @ X6 )
= A2 ) ) ) ) ).
% cSup_eq
thf(fact_5377_SUP__eq,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,B4: set @ C,F2: B > A,G: C > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ B4 )
& ( ord_less_eq @ A @ ( F2 @ I2 ) @ ( G @ X2 ) ) ) )
=> ( ! [J2: C] :
( ( member @ C @ J2 @ B4 )
=> ? [X2: B] :
( ( member @ B @ X2 @ A4 )
& ( ord_less_eq @ A @ ( G @ J2 ) @ ( F2 @ X2 ) ) ) )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) )
= ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ) ).
% SUP_eq
thf(fact_5378_cSup__least,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,Z2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ X6 ) @ Z2 ) ) ) ) ).
% cSup_least
thf(fact_5379_cSup__eq__non__empty,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,A2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less_eq @ A @ X4 @ A2 ) )
=> ( ! [Y4: A] :
( ! [X2: A] :
( ( member @ A @ X2 @ X6 )
=> ( ord_less_eq @ A @ X2 @ Y4 ) )
=> ( ord_less_eq @ A @ A2 @ Y4 ) )
=> ( ( complete_Sup_Sup @ A @ X6 )
= A2 ) ) ) ) ) ).
% cSup_eq_non_empty
thf(fact_5380_less__eq__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,U: A] :
( ! [V3: A] :
( ( member @ A @ V3 @ A4 )
=> ( ord_less_eq @ A @ U @ V3 ) )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ U @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% less_eq_Sup
thf(fact_5381_le__cSup__finite,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X6: set @ A,X: A] :
( ( finite_finite @ A @ X6 )
=> ( ( member @ A @ X @ X6 )
=> ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ X6 ) ) ) ) ) ).
% le_cSup_finite
thf(fact_5382_Sup__subset__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ).
% Sup_subset_mono
thf(fact_5383_less__cSupD,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,Z2: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ Z2 @ ( complete_Sup_Sup @ A @ X6 ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ X6 )
& ( ord_less @ A @ Z2 @ X4 ) ) ) ) ) ).
% less_cSupD
thf(fact_5384_less__cSupE,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [Y: A,X6: set @ A] :
( ( ord_less @ A @ Y @ ( complete_Sup_Sup @ A @ X6 ) )
=> ( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ~ ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ~ ( ord_less @ A @ Y @ X4 ) ) ) ) ) ).
% less_cSupE
thf(fact_5385_finite__imp__Sup__less,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,X: A,A2: A] :
( ( finite_finite @ A @ X6 )
=> ( ( member @ A @ X @ X6 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less @ A @ X4 @ A2 ) )
=> ( ord_less @ A @ ( complete_Sup_Sup @ A @ X6 ) @ A2 ) ) ) ) ) ).
% finite_imp_Sup_less
thf(fact_5386_finite__subset__Union,axiom,
! [A: $tType,A4: set @ A,B12: set @ ( set @ A )] :
( ( finite_finite @ A @ A4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ ( complete_Sup_Sup @ ( set @ A ) @ B12 ) )
=> ~ ! [F7: set @ ( set @ A )] :
( ( finite_finite @ ( set @ A ) @ F7 )
=> ( ( ord_less_eq @ ( set @ ( set @ A ) ) @ F7 @ B12 )
=> ~ ( ord_less_eq @ ( set @ A ) @ A4 @ ( complete_Sup_Sup @ ( set @ A ) @ F7 ) ) ) ) ) ) ).
% finite_subset_Union
thf(fact_5387_card__Union__le__sum__card,axiom,
! [A: $tType,U4: set @ ( set @ A )] : ( ord_less_eq @ nat @ ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ U4 ) ) @ ( groups7311177749621191930dd_sum @ ( set @ A ) @ nat @ ( finite_card @ A ) @ U4 ) ) ).
% card_Union_le_sum_card
thf(fact_5388_SUP__upper2,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I: B,A4: set @ B,U: A,F2: B > A] :
( ( member @ B @ I @ A4 )
=> ( ( ord_less_eq @ A @ U @ ( F2 @ I ) )
=> ( ord_less_eq @ A @ U @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ).
% SUP_upper2
thf(fact_5389_SUP__le__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,A4: set @ B,U: A] :
( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ U ) ) ) ) ) ).
% SUP_le_iff
thf(fact_5390_SUP__upper,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I: B,A4: set @ B,F2: B > A] :
( ( member @ B @ I @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ).
% SUP_upper
thf(fact_5391_SUP__mono_H,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,G: B > A,A4: set @ B] :
( ! [X4: B] : ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ A4 ) ) ) ) ) ).
% SUP_mono'
thf(fact_5392_SUP__least,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,F2: B > A,U: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ U ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U ) ) ) ).
% SUP_least
thf(fact_5393_SUP__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,B4: set @ C,F2: B > A,G: C > A] :
( ! [N: B] :
( ( member @ B @ N @ A4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ B4 )
& ( ord_less_eq @ A @ ( F2 @ N ) @ ( G @ X2 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ).
% SUP_mono
thf(fact_5394_SUP__eqI,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,F2: B > A,X: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ X ) )
=> ( ! [Y4: A] :
( ! [I4: B] :
( ( member @ B @ I4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I4 ) @ Y4 ) )
=> ( ord_less_eq @ A @ X @ Y4 ) )
=> ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) )
= X ) ) ) ) ).
% SUP_eqI
thf(fact_5395_less__SUP__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A2: A,F2: B > A,A4: set @ B] :
( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ A2 @ ( F2 @ X3 ) ) ) ) ) ) ).
% less_SUP_iff
thf(fact_5396_SUP__lessD,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,A4: set @ B,Y: A,I: B] :
( ( ord_less @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ Y )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less @ A @ ( F2 @ I ) @ Y ) ) ) ) ).
% SUP_lessD
thf(fact_5397_le__SUP__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [X: A,F2: B > A,A4: set @ B] :
( ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ! [Y2: A] :
( ( ord_less @ A @ Y2 @ X )
=> ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ Y2 @ ( F2 @ X3 ) ) ) ) ) ) ) ).
% le_SUP_iff
thf(fact_5398_cSUP__least,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,F2: B > A,M7: A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ M7 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ M7 ) ) ) ) ).
% cSUP_least
thf(fact_5399_SUP__eq__iff,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [I5: set @ B,C2: A,F2: B > A] :
( ( I5
!= ( bot_bot @ ( set @ B ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( ord_less_eq @ A @ C2 @ ( F2 @ I2 ) ) )
=> ( ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ I5 ) )
= C2 )
= ( ! [X3: B] :
( ( member @ B @ X3 @ I5 )
=> ( ( F2 @ X3 )
= C2 ) ) ) ) ) ) ) ).
% SUP_eq_iff
thf(fact_5400_finite__Sup__less__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,A2: A] :
( ( finite_finite @ A @ X6 )
=> ( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less @ A @ ( complete_Sup_Sup @ A @ X6 ) @ A2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ X6 )
=> ( ord_less @ A @ X3 @ A2 ) ) ) ) ) ) ) ).
% finite_Sup_less_iff
thf(fact_5401_Inf__le__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ).
% Inf_le_Sup
thf(fact_5402_cSup__abs__le,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ X4 ) @ A2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( complete_Sup_Sup @ A @ S3 ) ) @ A2 ) ) ) ) ).
% cSup_abs_le
thf(fact_5403_sum_OUnion__comp,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: set @ ( set @ B ),G: B > A] :
( ! [X4: set @ B] :
( ( member @ ( set @ B ) @ X4 @ B4 )
=> ( finite_finite @ B @ X4 ) )
=> ( ! [A14: set @ B] :
( ( member @ ( set @ B ) @ A14 @ B4 )
=> ! [A25: set @ B] :
( ( member @ ( set @ B ) @ A25 @ B4 )
=> ( ( A14 != A25 )
=> ! [X4: B] :
( ( member @ B @ X4 @ A14 )
=> ( ( member @ B @ X4 @ A25 )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) ) ) ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( complete_Sup_Sup @ ( set @ B ) @ B4 ) )
= ( comp @ ( ( set @ B ) > A ) @ ( ( set @ ( set @ B ) ) > A ) @ ( B > A ) @ ( groups7311177749621191930dd_sum @ ( set @ B ) @ A ) @ ( groups7311177749621191930dd_sum @ B @ A ) @ G @ B4 ) ) ) ) ) ).
% sum.Union_comp
thf(fact_5404_prod_OUnion__comp,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [B4: set @ ( set @ B ),G: B > A] :
( ! [X4: set @ B] :
( ( member @ ( set @ B ) @ X4 @ B4 )
=> ( finite_finite @ B @ X4 ) )
=> ( ! [A14: set @ B] :
( ( member @ ( set @ B ) @ A14 @ B4 )
=> ! [A25: set @ B] :
( ( member @ ( set @ B ) @ A25 @ B4 )
=> ( ( A14 != A25 )
=> ! [X4: B] :
( ( member @ B @ X4 @ A14 )
=> ( ( member @ B @ X4 @ A25 )
=> ( ( G @ X4 )
= ( one_one @ A ) ) ) ) ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( complete_Sup_Sup @ ( set @ B ) @ B4 ) )
= ( comp @ ( ( set @ B ) > A ) @ ( ( set @ ( set @ B ) ) > A ) @ ( B > A ) @ ( groups7121269368397514597t_prod @ ( set @ B ) @ A ) @ ( groups7121269368397514597t_prod @ B @ A ) @ G @ B4 ) ) ) ) ) ).
% prod.Union_comp
thf(fact_5405_Max__Sup,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic643756798349783984er_Max @ A @ A4 )
= ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% Max_Sup
thf(fact_5406_card__Union__le__sum__card__weak,axiom,
! [A: $tType,U4: set @ ( set @ A )] :
( ! [X4: set @ A] :
( ( member @ ( set @ A ) @ X4 @ U4 )
=> ( finite_finite @ A @ X4 ) )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ U4 ) ) @ ( groups7311177749621191930dd_sum @ ( set @ A ) @ nat @ ( finite_card @ A ) @ U4 ) ) ) ).
% card_Union_le_sum_card_weak
thf(fact_5407_Sup__fin__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic5882676163264333800up_fin @ A @ A4 )
= ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% Sup_fin_Sup
thf(fact_5408_SUP__subset__mono,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,B4: set @ B,F2: B > A,G: B > A] :
( ( ord_less_eq @ ( set @ B ) @ A4 @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ).
% SUP_subset_mono
thf(fact_5409_lexord__partial__trans,axiom,
! [A: $tType,Xs2: list @ A,R2: set @ ( product_prod @ A @ A ),Ys3: list @ A,Zs: list @ A] :
( ! [X4: A,Y4: A,Z: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X4 @ Y4 ) @ R2 )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z ) @ R2 )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X4 @ Z ) @ R2 ) ) ) )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys3 ) @ ( lexord @ A @ R2 ) )
=> ( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys3 @ Zs ) @ ( lexord @ A @ R2 ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Zs ) @ ( lexord @ A @ R2 ) ) ) ) ) ).
% lexord_partial_trans
thf(fact_5410_cSup__asclose,axiom,
! [A: $tType] :
( ( ( condit6923001295902523014norder @ A )
& ( linordered_idom @ A ) )
=> ! [S3: set @ A,L: A,E2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ X4 @ L ) ) @ E2 ) )
=> ( ord_less_eq @ A @ ( abs_abs @ A @ ( minus_minus @ A @ ( complete_Sup_Sup @ A @ S3 ) @ L ) ) @ E2 ) ) ) ) ).
% cSup_asclose
thf(fact_5411_INF__le__SUP,axiom,
! [A: $tType,B: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ B,F2: B > A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ).
% INF_le_SUP
thf(fact_5412_UN__le__add__shift__strict,axiom,
! [A: $tType,M7: nat > ( set @ A ),K: nat,N2: nat] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [I3: nat] : ( M7 @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_ord_lessThan @ nat @ N2 ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or7035219750837199246ssThan @ nat @ K @ ( plus_plus @ nat @ N2 @ K ) ) ) ) ) ).
% UN_le_add_shift_strict
thf(fact_5413_UN__le__add__shift,axiom,
! [A: $tType,M7: nat > ( set @ A ),K: nat,N2: nat] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [I3: nat] : ( M7 @ ( plus_plus @ nat @ I3 @ K ) )
@ ( set_ord_atMost @ nat @ N2 ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ M7 @ ( set_or1337092689740270186AtMost @ nat @ K @ ( plus_plus @ nat @ N2 @ K ) ) ) ) ) ).
% UN_le_add_shift
thf(fact_5414_card__UN__le,axiom,
! [B: $tType,A: $tType,I5: set @ A,A4: A > ( set @ B )] :
( ( finite_finite @ A @ I5 )
=> ( ord_less_eq @ nat @ ( finite_card @ B @ ( complete_Sup_Sup @ ( set @ B ) @ ( image @ A @ ( set @ B ) @ A4 @ I5 ) ) )
@ ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [I3: A] : ( finite_card @ B @ ( A4 @ I3 ) )
@ I5 ) ) ) ).
% card_UN_le
thf(fact_5415_SUP__nat__binary,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: A,B4: A] :
( ( sup_sup @ A @ A4
@ ( complete_Sup_Sup @ A
@ ( image @ nat @ A
@ ^ [X3: nat] : B4
@ ( collect @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) ) ) ) ) )
= ( sup_sup @ A @ A4 @ B4 ) ) ) ).
% SUP_nat_binary
thf(fact_5416_finite__mono__strict__prefix__implies__finite__fixpoint,axiom,
! [A: $tType,F2: nat > ( set @ A ),S3: set @ A] :
( ! [I2: nat] : ( ord_less_eq @ ( set @ A ) @ ( F2 @ I2 ) @ S3 )
=> ( ( finite_finite @ A @ S3 )
=> ( ? [N8: nat] :
( ! [N: nat] :
( ( ord_less_eq @ nat @ N @ N8 )
=> ! [M5: nat] :
( ( ord_less_eq @ nat @ M5 @ N8 )
=> ( ( ord_less @ nat @ M5 @ N )
=> ( ord_less @ ( set @ A ) @ ( F2 @ M5 ) @ ( F2 @ N ) ) ) ) )
& ! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ( F2 @ N8 )
= ( F2 @ N ) ) ) )
=> ( ( F2 @ ( finite_card @ A @ S3 ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ F2 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ) ).
% finite_mono_strict_prefix_implies_finite_fixpoint
thf(fact_5417_length__remdups__concat,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( size_size @ ( list @ A ) @ ( remdups @ A @ ( concat @ A @ Xss ) ) )
= ( finite_card @ A @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ Xss ) ) ) ) ) ).
% length_remdups_concat
thf(fact_5418_top__apply,axiom,
! [C: $tType,D: $tType] :
( ( top @ C )
=> ( ( top_top @ ( D > C ) )
= ( ^ [X3: D] : ( top_top @ C ) ) ) ) ).
% top_apply
thf(fact_5419_atMost__UNIV__triv,axiom,
! [A: $tType] :
( ( set_ord_atMost @ ( set @ A ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ ( set @ A ) ) ) ) ).
% atMost_UNIV_triv
thf(fact_5420_max__top,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [X: A] :
( ( ord_max @ A @ ( top_top @ A ) @ X )
= ( top_top @ A ) ) ) ).
% max_top
thf(fact_5421_max__top2,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [X: A] :
( ( ord_max @ A @ X @ ( top_top @ A ) )
= ( top_top @ A ) ) ) ).
% max_top2
thf(fact_5422_min__top2,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [X: A] :
( ( ord_min @ A @ X @ ( top_top @ A ) )
= X ) ) ).
% min_top2
thf(fact_5423_min__top,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [X: A] :
( ( ord_min @ A @ ( top_top @ A ) @ X )
= X ) ) ).
% min_top
thf(fact_5424_set__remdups,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( remdups @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_remdups
thf(fact_5425_Sup__nat__empty,axiom,
( ( complete_Sup_Sup @ nat @ ( bot_bot @ ( set @ nat ) ) )
= ( zero_zero @ nat ) ) ).
% Sup_nat_empty
thf(fact_5426_surj__plus,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% surj_plus
thf(fact_5427_range__add,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% range_add
thf(fact_5428_Sup__eq__top__iff,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [A4: set @ A] :
( ( ( complete_Sup_Sup @ A @ A4 )
= ( top_top @ A ) )
= ( ! [X3: A] :
( ( ord_less @ A @ X3 @ ( top_top @ A ) )
=> ? [Y2: A] :
( ( member @ A @ Y2 @ A4 )
& ( ord_less @ A @ X3 @ Y2 ) ) ) ) ) ) ).
% Sup_eq_top_iff
thf(fact_5429_surj__fn,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( ( image @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ( image @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% surj_fn
thf(fact_5430_Gcd__UNIV,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Gcd @ A @ ( top_top @ ( set @ A ) ) )
= ( one_one @ A ) ) ) ).
% Gcd_UNIV
thf(fact_5431_length__remdups__leq,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( remdups @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_remdups_leq
thf(fact_5432_SUP__eq__top__iff,axiom,
! [B: $tType,A: $tType] :
( ( comple5582772986160207858norder @ A )
=> ! [F2: B > A,A4: set @ B] :
( ( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) )
= ( top_top @ A ) )
= ( ! [X3: A] :
( ( ord_less @ A @ X3 @ ( top_top @ A ) )
=> ? [Y2: B] :
( ( member @ B @ Y2 @ A4 )
& ( ord_less @ A @ X3 @ ( F2 @ Y2 ) ) ) ) ) ) ) ).
% SUP_eq_top_iff
thf(fact_5433_Inf__atMostLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( top_top @ A ) @ X )
=> ( ( complete_Inf_Inf @ A @ ( set_ord_lessThan @ A @ X ) )
= ( bot_bot @ A ) ) ) ) ).
% Inf_atMostLessThan
thf(fact_5434_INF__SUP,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [P: C > B > A] :
( ( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [Y2: B] :
( complete_Sup_Sup @ A
@ ( image @ C @ A
@ ^ [X3: C] : ( P @ X3 @ Y2 )
@ ( top_top @ ( set @ C ) ) ) )
@ ( top_top @ ( set @ B ) ) ) )
= ( complete_Sup_Sup @ A
@ ( image @ ( B > C ) @ A
@ ^ [F3: B > C] :
( complete_Inf_Inf @ A
@ ( image @ B @ A
@ ^ [X3: B] : ( P @ ( F3 @ X3 ) @ X3 )
@ ( top_top @ ( set @ B ) ) ) )
@ ( top_top @ ( set @ ( B > C ) ) ) ) ) ) ) ).
% INF_SUP
thf(fact_5435_SUP__INF,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [P: C > B > A] :
( ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [Y2: B] :
( complete_Inf_Inf @ A
@ ( image @ C @ A
@ ^ [X3: C] : ( P @ X3 @ Y2 )
@ ( top_top @ ( set @ C ) ) ) )
@ ( top_top @ ( set @ B ) ) ) )
= ( complete_Inf_Inf @ A
@ ( image @ ( B > C ) @ A
@ ^ [X3: B > C] :
( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [Y2: B] : ( P @ ( X3 @ Y2 ) @ Y2 )
@ ( top_top @ ( set @ B ) ) ) )
@ ( top_top @ ( set @ ( B > C ) ) ) ) ) ) ) ).
% SUP_INF
thf(fact_5436_Inf__real__def,axiom,
( ( complete_Inf_Inf @ real )
= ( ^ [X7: set @ real] : ( uminus_uminus @ real @ ( complete_Sup_Sup @ real @ ( image @ real @ real @ ( uminus_uminus @ real ) @ X7 ) ) ) ) ) ).
% Inf_real_def
thf(fact_5437_top__greatest,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ ( top_top @ A ) ) ) ).
% top_greatest
thf(fact_5438_top_Oextremum__unique,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( top_top @ A ) @ A2 )
= ( A2
= ( top_top @ A ) ) ) ) ).
% top.extremum_unique
thf(fact_5439_top_Oextremum__uniqueI,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( top_top @ A ) @ A2 )
=> ( A2
= ( top_top @ A ) ) ) ) ).
% top.extremum_uniqueI
thf(fact_5440_atLeastAtMost__eq__UNIV__iff,axiom,
! [A: $tType] :
( ( bounded_lattice @ A )
=> ! [X: A,Y: A] :
( ( ( set_or1337092689740270186AtMost @ A @ X @ Y )
= ( top_top @ ( set @ A ) ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( top_top @ A ) ) ) ) ) ).
% atLeastAtMost_eq_UNIV_iff
thf(fact_5441_top_Oextremum__strict,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ ( top_top @ A ) @ A2 ) ) ).
% top.extremum_strict
thf(fact_5442_top_Onot__eq__extremum,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [A2: A] :
( ( A2
!= ( top_top @ A ) )
= ( ord_less @ A @ A2 @ ( top_top @ A ) ) ) ) ).
% top.not_eq_extremum
thf(fact_5443_not__UNIV__eq__Iic,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [H3: A] :
( ( top_top @ ( set @ A ) )
!= ( set_ord_atMost @ A @ H3 ) ) ) ).
% not_UNIV_eq_Iic
thf(fact_5444_not__UNIV__eq__Icc,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [L3: A,H3: A] :
( ( top_top @ ( set @ A ) )
!= ( set_or1337092689740270186AtMost @ A @ L3 @ H3 ) ) ) ).
% not_UNIV_eq_Icc
thf(fact_5445_atMost__eq__UNIV__iff,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [X: A] :
( ( ( set_ord_atMost @ A @ X )
= ( top_top @ ( set @ A ) ) )
= ( X
= ( top_top @ A ) ) ) ) ).
% atMost_eq_UNIV_iff
thf(fact_5446_finite__fun__UNIVD1,axiom,
! [B: $tType,A: $tType] :
( ( finite_finite @ ( A > B ) @ ( top_top @ ( set @ ( A > B ) ) ) )
=> ( ( ( finite_card @ B @ ( top_top @ ( set @ B ) ) )
!= ( suc @ ( zero_zero @ nat ) ) )
=> ( finite_finite @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% finite_fun_UNIVD1
thf(fact_5447_Inf__sup__eq__top__iff,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [B4: set @ A,A2: A] :
( ( ( sup_sup @ A @ ( complete_Inf_Inf @ A @ B4 ) @ A2 )
= ( top_top @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ B4 )
=> ( ( sup_sup @ A @ X3 @ A2 )
= ( top_top @ A ) ) ) ) ) ) ).
% Inf_sup_eq_top_iff
thf(fact_5448_not__UNIV__le__Icc,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [L: A,H: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( top_top @ ( set @ A ) ) @ ( set_or1337092689740270186AtMost @ A @ L @ H ) ) ) ).
% not_UNIV_le_Icc
thf(fact_5449_not__UNIV__le__Iic,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [H: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( top_top @ ( set @ A ) ) @ ( set_ord_atMost @ A @ H ) ) ) ).
% not_UNIV_le_Iic
thf(fact_5450_sup__shunt,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( sup_sup @ A @ X @ Y )
= ( top_top @ A ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% sup_shunt
thf(fact_5451_UN__lessThan__UNIV,axiom,
( ( complete_Sup_Sup @ ( set @ nat ) @ ( image @ nat @ ( set @ nat ) @ ( set_ord_lessThan @ nat ) @ ( top_top @ ( set @ nat ) ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% UN_lessThan_UNIV
thf(fact_5452_UN__atMost__UNIV,axiom,
( ( complete_Sup_Sup @ ( set @ nat ) @ ( image @ nat @ ( set @ nat ) @ ( set_ord_atMost @ nat ) @ ( top_top @ ( set @ nat ) ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% UN_atMost_UNIV
thf(fact_5453_suminf__eq__SUP__real,axiom,
! [X6: nat > real] :
( ( summable @ real @ X6 )
=> ( ! [I2: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( X6 @ I2 ) )
=> ( ( suminf @ real @ X6 )
= ( complete_Sup_Sup @ real
@ ( image @ nat @ real
@ ^ [I3: nat] : ( groups7311177749621191930dd_sum @ nat @ real @ X6 @ ( set_ord_lessThan @ nat @ I3 ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) ) ).
% suminf_eq_SUP_real
thf(fact_5454_length__remdups__card__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( remdups @ A @ Xs2 ) )
= ( finite_card @ A @ ( set2 @ A @ Xs2 ) ) ) ).
% length_remdups_card_conv
thf(fact_5455_Sup__nat__def,axiom,
( ( complete_Sup_Sup @ nat )
= ( ^ [X7: set @ nat] :
( if @ nat
@ ( X7
= ( bot_bot @ ( set @ nat ) ) )
@ ( zero_zero @ nat )
@ ( lattic643756798349783984er_Max @ nat @ X7 ) ) ) ) ).
% Sup_nat_def
thf(fact_5456_finite__UNIV__card__ge__0,axiom,
! [A: $tType] :
( ( finite_finite @ A @ ( top_top @ ( set @ A ) ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% finite_UNIV_card_ge_0
thf(fact_5457_UN__UN__finite__eq,axiom,
! [A: $tType,A4: nat > ( set @ A )] :
( ( complete_Sup_Sup @ ( set @ A )
@ ( image @ nat @ ( set @ A )
@ ^ [N3: nat] : ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) )
@ ( top_top @ ( set @ nat ) ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% UN_UN_finite_eq
thf(fact_5458_card__range__greater__zero,axiom,
! [A: $tType,B: $tType,F2: B > A] :
( ( finite_finite @ A @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ).
% card_range_greater_zero
thf(fact_5459_UN__finite__subset,axiom,
! [A: $tType,A4: nat > ( set @ A ),C5: set @ A] :
( ! [N: nat] : ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) @ C5 )
=> ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( top_top @ ( set @ nat ) ) ) ) @ C5 ) ) ).
% UN_finite_subset
thf(fact_5460_UN__finite2__eq,axiom,
! [A: $tType,A4: nat > ( set @ A ),B4: nat > ( set @ A ),K: nat] :
( ! [N: nat] :
( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ N @ K ) ) ) ) )
=> ( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( top_top @ ( set @ nat ) ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B4 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% UN_finite2_eq
thf(fact_5461_range__mod,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( image @ nat @ nat
@ ^ [M6: nat] : ( modulo_modulo @ nat @ M6 @ N2 )
@ ( top_top @ ( set @ nat ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% range_mod
thf(fact_5462_UN__finite2__subset,axiom,
! [A: $tType,A4: nat > ( set @ A ),B4: nat > ( set @ A ),K: nat] :
( ! [N: nat] : ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N ) ) ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B4 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ N @ K ) ) ) ) )
=> ( ord_less_eq @ ( set @ A ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ A4 @ ( top_top @ ( set @ nat ) ) ) ) @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ B4 @ ( top_top @ ( set @ nat ) ) ) ) ) ) ).
% UN_finite2_subset
thf(fact_5463_UNIV__nat__eq,axiom,
( ( top_top @ ( set @ nat ) )
= ( insert2 @ nat @ ( zero_zero @ nat ) @ ( image @ nat @ nat @ suc @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% UNIV_nat_eq
thf(fact_5464_subset__subseqs,axiom,
! [A: $tType,X6: set @ A,Xs2: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ X6 @ ( set2 @ A @ Xs2 ) )
=> ( member @ ( set @ A ) @ X6 @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ) ) ).
% subset_subseqs
thf(fact_5465_set__list__bind,axiom,
! [A: $tType,B: $tType,Xs2: list @ B,F2: B > ( list @ A )] :
( ( set2 @ A @ ( bind @ B @ A @ Xs2 @ F2 ) )
= ( complete_Sup_Sup @ ( set @ A )
@ ( image @ B @ ( set @ A )
@ ^ [X3: B] : ( set2 @ A @ ( F2 @ X3 ) )
@ ( set2 @ B @ Xs2 ) ) ) ) ).
% set_list_bind
thf(fact_5466_card__UNIV__unit,axiom,
( ( finite_card @ product_unit @ ( top_top @ ( set @ product_unit ) ) )
= ( one_one @ nat ) ) ).
% card_UNIV_unit
thf(fact_5467_range__mult,axiom,
! [A2: real] :
( ( ( A2
= ( zero_zero @ real ) )
=> ( ( image @ real @ real @ ( times_times @ real @ A2 ) @ ( top_top @ ( set @ real ) ) )
= ( insert2 @ real @ ( zero_zero @ real ) @ ( bot_bot @ ( set @ real ) ) ) ) )
& ( ( A2
!= ( zero_zero @ real ) )
=> ( ( image @ real @ real @ ( times_times @ real @ A2 ) @ ( top_top @ ( set @ real ) ) )
= ( top_top @ ( set @ real ) ) ) ) ) ).
% range_mult
thf(fact_5468_infinite__UNIV__int,axiom,
~ ( finite_finite @ int @ ( top_top @ ( set @ int ) ) ) ).
% infinite_UNIV_int
thf(fact_5469_list__bind__cong,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ A,F2: A > ( list @ B ),G: A > ( list @ B )] :
( ( Xs2 = Ys3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) )
=> ( ( bind @ A @ B @ Xs2 @ F2 )
= ( bind @ A @ B @ Ys3 @ G ) ) ) ) ).
% list_bind_cong
thf(fact_5470_surj__prod__decode,axiom,
( ( image @ nat @ ( product_prod @ nat @ nat ) @ nat_prod_decode @ ( top_top @ ( set @ nat ) ) )
= ( top_top @ ( set @ ( product_prod @ nat @ nat ) ) ) ) ).
% surj_prod_decode
thf(fact_5471_surj__prod__encode,axiom,
( ( image @ ( product_prod @ nat @ nat ) @ nat @ nat_prod_encode @ ( top_top @ ( set @ ( product_prod @ nat @ nat ) ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% surj_prod_encode
thf(fact_5472_Ints__def,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( ring_1_Ints @ A )
= ( image @ int @ A @ ( ring_1_of_int @ A ) @ ( top_top @ ( set @ int ) ) ) ) ) ).
% Ints_def
thf(fact_5473_int__in__range__abs,axiom,
! [N2: nat] : ( member @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( image @ int @ int @ ( abs_abs @ int ) @ ( top_top @ ( set @ int ) ) ) ) ).
% int_in_range_abs
thf(fact_5474_root__def,axiom,
( root
= ( ^ [N3: nat,X3: real] :
( if @ real
@ ( N3
= ( zero_zero @ nat ) )
@ ( zero_zero @ real )
@ ( the_inv_into @ real @ real @ ( top_top @ ( set @ real ) )
@ ^ [Y2: real] : ( times_times @ real @ ( sgn_sgn @ real @ Y2 ) @ ( power_power @ real @ ( abs_abs @ real @ Y2 ) @ N3 ) )
@ X3 ) ) ) ) ).
% root_def
thf(fact_5475_DERIV__real__root__generic,axiom,
! [N2: nat,X: real,D4: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( D4
= ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( D4
= ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( D4
= ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) )
=> ( has_field_derivative @ real @ ( root @ N2 ) @ D4 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_5476_DERIV__even__real__root,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( has_field_derivative @ real @ ( root @ N2 ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( uminus_uminus @ real @ ( semiring_1_of_nat @ real @ N2 ) ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_5477_MVT2,axiom,
! [A2: real,B2: real,F2: real > real,F6: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( F6 @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z: real] :
( ( ord_less @ real @ A2 @ Z )
& ( ord_less @ real @ Z @ B2 )
& ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
= ( times_times @ real @ ( minus_minus @ real @ B2 @ A2 ) @ ( F6 @ Z ) ) ) ) ) ) ).
% MVT2
thf(fact_5478_DERIV__nonpos__imp__nonincreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less_eq @ real @ Y3 @ ( zero_zero @ real ) ) ) ) )
=> ( ord_less_eq @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ).
% DERIV_nonpos_imp_nonincreasing
thf(fact_5479_DERIV__nonneg__imp__nondecreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ Y3 ) ) ) )
=> ( ord_less_eq @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ).
% DERIV_nonneg_imp_nondecreasing
thf(fact_5480_deriv__nonneg__imp__mono,axiom,
! [A2: real,B2: real,G: real > real,G4: real > real] :
( ! [X4: real] :
( ( member @ real @ X4 @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) )
=> ( has_field_derivative @ real @ G @ ( G4 @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ! [X4: real] :
( ( member @ real @ X4 @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( G4 @ X4 ) ) )
=> ( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ord_less_eq @ real @ ( G @ A2 ) @ ( G @ B2 ) ) ) ) ) ).
% deriv_nonneg_imp_mono
thf(fact_5481_DERIV__neg__imp__decreasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y3 @ ( zero_zero @ real ) ) ) ) )
=> ( ord_less @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_5482_DERIV__pos__imp__increasing,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
=> ( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y3 ) ) ) )
=> ( ord_less @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_5483_DERIV__at__within__shift,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,Z2: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ Z2 @ X ) @ ( image @ A @ A @ ( plus_plus @ A @ Z2 ) @ S3 ) ) )
= ( has_field_derivative @ A
@ ^ [X3: A] : ( F2 @ ( plus_plus @ A @ Z2 @ X3 ) )
@ Y
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% DERIV_at_within_shift
thf(fact_5484_DERIV__at__within__shift__lemma,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,Z2: A,X: A,S3: set @ A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ Z2 @ X ) @ ( image @ A @ A @ ( plus_plus @ A @ Z2 ) @ S3 ) ) )
=> ( has_field_derivative @ A @ ( comp @ A @ A @ A @ F2 @ ( plus_plus @ A @ Z2 ) ) @ Y @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% DERIV_at_within_shift_lemma
thf(fact_5485_DERIV__ln,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( ln_ln @ real ) @ ( inverse_inverse @ real @ X ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_ln
thf(fact_5486_DERIV__isconst__all,axiom,
! [F2: real > real,X: real,Y: real] :
( ! [X4: real] : ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( F2 @ X )
= ( F2 @ Y ) ) ) ).
% DERIV_isconst_all
thf(fact_5487_DERIV__neg__dec__right,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ ( plus_plus @ real @ X @ H4 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_5488_DERIV__pos__inc__right,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( plus_plus @ real @ X @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_5489_DERIV__shift,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Y: A,X: A,Z2: A] :
( ( has_field_derivative @ A @ F2 @ Y @ ( topolo174197925503356063within @ A @ ( plus_plus @ A @ X @ Z2 ) @ ( top_top @ ( set @ A ) ) ) )
= ( has_field_derivative @ A
@ ^ [X3: A] : ( F2 @ ( plus_plus @ A @ X3 @ Z2 ) )
@ Y
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_shift
thf(fact_5490_DERIV__isconst3,axiom,
! [A2: real,B2: real,X: real,Y: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( member @ real @ X @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ( member @ real @ Y @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( ! [X4: real] :
( ( member @ real @ X4 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( F2 @ X )
= ( F2 @ Y ) ) ) ) ) ) ).
% DERIV_isconst3
thf(fact_5491_DERIV__local__const,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y4: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y4 ) ) @ D2 )
=> ( ( F2 @ X )
= ( F2 @ Y4 ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_const
thf(fact_5492_DERIV__pos__inc__left,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ ( minus_minus @ real @ X @ H4 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_5493_DERIV__neg__dec__left,axiom,
! [F2: real > real,L: real,X: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( minus_minus @ real @ X @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_5494_has__real__derivative__neg__dec__right,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( member @ real @ ( plus_plus @ real @ X @ H4 ) @ S3 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ ( plus_plus @ real @ X @ H4 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_5495_has__real__derivative__pos__inc__right,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( member @ real @ ( plus_plus @ real @ X @ H4 ) @ S3 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( plus_plus @ real @ X @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_5496_DERIV__mult,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Da: A,X: A,S: set @ A,G: A > A,Db: A] :
( ( has_field_derivative @ A @ F2 @ Da @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ Db @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ ( times_times @ A @ Da @ ( G @ X ) ) @ ( times_times @ A @ Db @ ( F2 @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_mult
thf(fact_5497_DERIV__mult_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( F2 @ X ) @ E5 ) @ ( times_times @ A @ D4 @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_mult'
thf(fact_5498_DERIV__add,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( plus_plus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ D4 @ E5 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_add
thf(fact_5499_DERIV__ident,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F4: filter @ A] :
( has_field_derivative @ A
@ ^ [X3: A] : X3
@ ( one_one @ A )
@ F4 ) ) ).
% DERIV_ident
thf(fact_5500_field__differentiable__add,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,F6: A,F4: filter @ A,G: A > A,G4: A] :
( ( has_field_derivative @ A @ F2 @ F6 @ F4 )
=> ( ( has_field_derivative @ A @ G @ G4 @ F4 )
=> ( has_field_derivative @ A
@ ^ [Z5: A] : ( plus_plus @ A @ ( F2 @ Z5 ) @ ( G @ Z5 ) )
@ ( plus_plus @ A @ F6 @ G4 )
@ F4 ) ) ) ) ).
% field_differentiable_add
thf(fact_5501_DERIV__const,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [K: A,F4: filter @ A] :
( has_field_derivative @ A
@ ^ [X3: A] : K
@ ( zero_zero @ A )
@ F4 ) ) ).
% DERIV_const
thf(fact_5502_has__real__derivative__pos__inc__left,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( member @ real @ ( minus_minus @ real @ X @ H4 ) @ S3 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ ( minus_minus @ real @ X @ H4 ) ) @ ( F2 @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_5503_has__real__derivative__neg__dec__left,axiom,
! [F2: real > real,L: real,X: real,S3: set @ real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ S3 ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [D5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D5 )
& ! [H4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H4 )
=> ( ( member @ real @ ( minus_minus @ real @ X @ H4 ) @ S3 )
=> ( ( ord_less @ real @ H4 @ D5 )
=> ( ord_less @ real @ ( F2 @ X ) @ ( F2 @ ( minus_minus @ real @ X @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_5504_DERIV__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A,G: A > A,E5: A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E5 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ D4 @ ( G @ X ) ) @ ( times_times @ A @ ( F2 @ X ) @ E5 ) ) @ ( times_times @ A @ ( G @ X ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% DERIV_divide
thf(fact_5505_DERIV__inverse_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( inverse_inverse @ A @ ( F2 @ X3 ) )
@ ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( F2 @ X ) ) @ D4 ) @ ( inverse_inverse @ A @ ( F2 @ X ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_inverse'
thf(fact_5506_DERIV__local__max,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y4: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y4 ) ) @ D2 )
=> ( ord_less_eq @ real @ ( F2 @ Y4 ) @ ( F2 @ X ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_max
thf(fact_5507_DERIV__local__min,axiom,
! [F2: real > real,L: real,X: real,D2: real] :
( ( has_field_derivative @ real @ F2 @ L @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Y4: real] :
( ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ X @ Y4 ) ) @ D2 )
=> ( ord_less_eq @ real @ ( F2 @ X ) @ ( F2 @ Y4 ) ) )
=> ( L
= ( zero_zero @ real ) ) ) ) ) ).
% DERIV_local_min
thf(fact_5508_DERIV__ln__divide,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( ln_ln @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ X ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_ln_divide
thf(fact_5509_DERIV__cos__add,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K: A,Xa2: A] :
( has_field_derivative @ A
@ ^ [X3: A] : ( cos @ A @ ( plus_plus @ A @ X3 @ K ) )
@ ( uminus_uminus @ A @ ( sin @ A @ ( plus_plus @ A @ Xa2 @ K ) ) )
@ ( topolo174197925503356063within @ A @ Xa2 @ ( top_top @ ( set @ A ) ) ) ) ) ).
% DERIV_cos_add
thf(fact_5510_DERIV__fun__pow,axiom,
! [G: real > real,M: real,X: real,N2: nat] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( has_field_derivative @ real
@ ^ [X3: real] : ( power_power @ real @ ( G @ X3 ) @ N2 )
@ ( times_times @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( G @ X ) @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) @ M )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_fun_pow
thf(fact_5511_DERIV__power__Suc,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A,N2: nat] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( power_power @ A @ ( F2 @ X3 ) @ ( suc @ N2 ) )
@ ( times_times @ A @ ( plus_plus @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N2 ) ) @ ( times_times @ A @ D4 @ ( power_power @ A @ ( F2 @ X ) @ N2 ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_power_Suc
thf(fact_5512_DERIV__inverse,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [X: A,S: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( inverse_inverse @ A ) @ ( uminus_uminus @ A @ ( power_power @ A @ ( inverse_inverse @ A @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_inverse
thf(fact_5513_DERIV__power,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A,S: set @ A,N2: nat] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( power_power @ A @ ( F2 @ X3 ) @ N2 )
@ ( times_times @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( times_times @ A @ D4 @ ( power_power @ A @ ( F2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ).
% DERIV_power
thf(fact_5514_DERIV__pow,axiom,
! [N2: nat,X: real,S: set @ real] :
( has_field_derivative @ real
@ ^ [X3: real] : ( power_power @ real @ X3 @ N2 )
@ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ X @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ S ) ) ).
% DERIV_pow
thf(fact_5515_at__within__Icc__at,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less @ A @ A2 @ X )
=> ( ( ord_less @ A @ X @ B2 )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% at_within_Icc_at
thf(fact_5516_has__real__derivative__powr,axiom,
! [Z2: real,R2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ Z2 )
=> ( has_field_derivative @ real
@ ^ [Z5: real] : ( powr @ real @ Z5 @ R2 )
@ ( times_times @ real @ R2 @ ( powr @ real @ Z2 @ ( minus_minus @ real @ R2 @ ( one_one @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ Z2 @ ( top_top @ ( set @ real ) ) ) ) ) ).
% has_real_derivative_powr
thf(fact_5517_at__within__Icc__at__left,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( topolo174197925503356063within @ A @ B2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ).
% at_within_Icc_at_left
thf(fact_5518_DERIV__quotient,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A,G: A > A,E2: A] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( has_field_derivative @ A @ G @ E2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [Y2: A] : ( divide_divide @ A @ ( F2 @ Y2 ) @ ( G @ Y2 ) )
@ ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ D2 @ ( G @ X ) ) @ ( times_times @ A @ E2 @ ( F2 @ X ) ) ) @ ( power_power @ A @ ( G @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% DERIV_quotient
thf(fact_5519_DERIV__inverse__fun,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( inverse_inverse @ A @ ( F2 @ X3 ) )
@ ( uminus_uminus @ A @ ( times_times @ A @ D2 @ ( inverse_inverse @ A @ ( power_power @ A @ ( F2 @ X ) @ ( suc @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_inverse_fun
thf(fact_5520_termdiffs__sums__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K5: real,C2: nat > A,F2: A > A,F6: A,Z2: A] :
( ! [Z: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z ) @ K5 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z @ N3 ) )
@ ( F2 @ Z ) ) )
=> ( ( has_field_derivative @ A @ F2 @ F6 @ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) )
@ F6 ) ) ) ) ) ).
% termdiffs_sums_strong
thf(fact_5521_DERIV__log,axiom,
! [X: real,B2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( log @ B2 ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( times_times @ real @ ( ln_ln @ real @ B2 ) @ X ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_log
thf(fact_5522_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X: real,R2: real] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( has_field_derivative @ real
@ ^ [X3: real] : ( powr @ real @ ( G @ X3 ) @ R2 )
@ ( times_times @ real @ ( times_times @ real @ R2 @ ( powr @ real @ ( G @ X ) @ ( minus_minus @ real @ R2 @ ( semiring_1_of_nat @ real @ ( one_one @ nat ) ) ) ) ) @ M )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_fun_powr
thf(fact_5523_DERIV__powr,axiom,
! [G: real > real,M: real,X: real,F2: real > real,R2: real] :
( ( has_field_derivative @ real @ G @ M @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_field_derivative @ real @ F2 @ R2 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( has_field_derivative @ real
@ ^ [X3: real] : ( powr @ real @ ( G @ X3 ) @ ( F2 @ X3 ) )
@ ( times_times @ real @ ( powr @ real @ ( G @ X ) @ ( F2 @ X ) ) @ ( plus_plus @ real @ ( times_times @ real @ R2 @ ( ln_ln @ real @ ( G @ X ) ) ) @ ( divide_divide @ real @ ( times_times @ real @ M @ ( F2 @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_powr
thf(fact_5524_DERIV__real__sqrt,axiom,
! [X: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ sqrt @ ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_real_sqrt
thf(fact_5525_termdiffs,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ ( diffs @ A @ C2 ) @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X3 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% termdiffs
thf(fact_5526_termdiffs__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X3 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ X @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_strong
thf(fact_5527_termdiffs__strong_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [K5: real,C2: nat > A,Z2: A] :
( ! [Z: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z ) @ K5 )
=> ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z @ N3 ) ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ Z2 ) @ K5 )
=> ( has_field_derivative @ A
@ ^ [Z5: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ Z5 @ N3 ) ) )
@ ( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ C2 @ N3 ) @ ( power_power @ A @ Z2 @ N3 ) ) )
@ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_strong'
thf(fact_5528_DERIV__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( tan @ A ) @ ( inverse_inverse @ A @ ( power_power @ A @ ( cos @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_tan
thf(fact_5529_DERIV__real__sqrt__generic,axiom,
! [X: real,D4: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( D4
= ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( ( ( ord_less @ real @ X @ ( zero_zero @ real ) )
=> ( D4
= ( divide_divide @ real @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( sqrt @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) )
=> ( has_field_derivative @ real @ sqrt @ D4 @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_5530_DERIV__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A @ ( cot @ A ) @ ( uminus_uminus @ A @ ( inverse_inverse @ A @ ( power_power @ A @ ( sin @ A @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_cot
thf(fact_5531_DERIV__power__series_H,axiom,
! [R: real,F2: nat > real,X0: real] :
( ! [X4: real] :
( ( member @ real @ X4 @ ( set_or5935395276787703475ssThan @ real @ ( uminus_uminus @ real @ R ) @ R ) )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( F2 @ N3 ) @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) @ ( power_power @ real @ X4 @ N3 ) ) ) )
=> ( ( member @ real @ X0 @ ( set_or5935395276787703475ssThan @ real @ ( uminus_uminus @ real @ R ) @ R ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ( has_field_derivative @ real
@ ^ [X3: real] :
( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( F2 @ N3 ) @ ( power_power @ real @ X3 @ ( suc @ N3 ) ) ) )
@ ( suminf @ real
@ ^ [N3: nat] : ( times_times @ real @ ( times_times @ real @ ( F2 @ N3 ) @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) @ ( power_power @ real @ X0 @ N3 ) ) )
@ ( topolo174197925503356063within @ real @ X0 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_5532_has__field__derivative__tanh,axiom,
! [A10: $tType] :
( ( ( real_Vector_banach @ A10 )
& ( real_V3459762299906320749_field @ A10 ) )
=> ! [G: A10 > A10,X: A10,Db: A10,S: set @ A10] :
( ( ( cosh @ A10 @ ( G @ X ) )
!= ( zero_zero @ A10 ) )
=> ( ( has_field_derivative @ A10 @ G @ Db @ ( topolo174197925503356063within @ A10 @ X @ S ) )
=> ( has_field_derivative @ A10
@ ^ [X3: A10] : ( tanh @ A10 @ ( G @ X3 ) )
@ ( times_times @ A10 @ ( minus_minus @ A10 @ ( one_one @ A10 ) @ ( power_power @ A10 @ ( tanh @ A10 @ ( G @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) @ Db )
@ ( topolo174197925503356063within @ A10 @ X @ S ) ) ) ) ) ).
% has_field_derivative_tanh
thf(fact_5533_arcosh__real__has__field__derivative,axiom,
! [X: real,A4: set @ real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( has_field_derivative @ real @ ( arcosh @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( sqrt @ ( minus_minus @ real @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ real ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ A4 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_5534_artanh__real__has__field__derivative,axiom,
! [X: real,A4: set @ real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ ( artanh @ real ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ A4 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_5535_DERIV__real__root,axiom,
! [N2: nat,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ X )
=> ( has_field_derivative @ real @ ( root @ N2 ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_real_root
thf(fact_5536_DERIV__arccos,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ arccos @ ( inverse_inverse @ real @ ( uminus_uminus @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_arccos
thf(fact_5537_DERIV__arcsin,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( has_field_derivative @ real @ arcsin @ ( inverse_inverse @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_arcsin
thf(fact_5538_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F2: real > real,X: real,N2: nat] :
( ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
& ! [M5: nat,X4: real] : ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_5539_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F2: real > real,X: real,N2: nat] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,X4: real] : ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_5540_DERIV__odd__real__root,axiom,
! [N2: nat,X: real] :
( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( has_field_derivative @ real @ ( root @ N2 ) @ ( inverse_inverse @ real @ ( times_times @ real @ ( semiring_1_of_nat @ real @ N2 ) @ ( power_power @ real @ ( root @ N2 @ X ) @ ( minus_minus @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_5541_Maclaurin,axiom,
! [H: real,N2: nat,Diff: nat > real > real,F2: real > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ H ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less @ real @ T4 @ H )
& ( ( F2 @ H )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ H @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ H @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_5542_Maclaurin2,axiom,
! [H: real,Diff: nat > real > real,F2: real > real,N2: nat] :
( ( ord_less @ real @ ( zero_zero @ real ) @ H )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ H ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ H )
& ( ( F2 @ H )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ H @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ H @ N2 ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_5543_Maclaurin__minus,axiom,
! [H: real,N2: nat,Diff: nat > real > real,F2: real > real] :
( ( ord_less @ real @ H @ ( zero_zero @ real ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ H @ T4 )
& ( ord_less_eq @ real @ T4 @ ( zero_zero @ real ) ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T4: real] :
( ( ord_less @ real @ H @ T4 )
& ( ord_less @ real @ T4 @ ( zero_zero @ real ) )
& ( ( F2 @ H )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ H @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ H @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_5544_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F2: real > real,N2: nat,X: real] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( ! [M5: nat,X4: real] : ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
=> ? [T4: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( abs_abs @ real @ T4 ) )
& ( ord_less @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_5545_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F2: real > real,N2: nat,X: real] :
( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [T4: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ T4 ) @ ( abs_abs @ real @ X ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ X @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ X @ N2 ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_5546_Taylor,axiom,
! [N2: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real,X: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ A2 @ T4 )
& ( ord_less_eq @ real @ T4 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ C2 )
=> ( ( ord_less_eq @ real @ C2 @ B2 )
=> ( ( ord_less_eq @ real @ A2 @ X )
=> ( ( ord_less_eq @ real @ X @ B2 )
=> ( ( X != C2 )
=> ? [T4: real] :
( ( ( ord_less @ real @ X @ C2 )
=> ( ( ord_less @ real @ X @ T4 )
& ( ord_less @ real @ T4 @ C2 ) ) )
& ( ~ ( ord_less @ real @ X @ C2 )
=> ( ( ord_less @ real @ C2 @ T4 )
& ( ord_less @ real @ T4 @ X ) ) )
& ( ( F2 @ X )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ C2 ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ C2 ) @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ ( minus_minus @ real @ X @ C2 ) @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_5547_Taylor__up,axiom,
! [N2: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ A2 @ T4 )
& ( ord_less_eq @ real @ T4 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ C2 )
=> ( ( ord_less @ real @ C2 @ B2 )
=> ? [T4: real] :
( ( ord_less @ real @ C2 @ T4 )
& ( ord_less @ real @ T4 @ B2 )
& ( ( F2 @ B2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ C2 ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ ( minus_minus @ real @ B2 @ C2 ) @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ ( minus_minus @ real @ B2 @ C2 ) @ N2 ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_5548_Taylor__down,axiom,
! [N2: nat,Diff: nat > real > real,F2: real > real,A2: real,B2: real,C2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( ( Diff @ ( zero_zero @ nat ) )
= F2 )
=> ( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ A2 @ T4 )
& ( ord_less_eq @ real @ T4 @ B2 ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( ord_less @ real @ A2 @ C2 )
=> ( ( ord_less_eq @ real @ C2 @ B2 )
=> ? [T4: real] :
( ( ord_less @ real @ A2 @ T4 )
& ( ord_less @ real @ T4 @ C2 )
& ( ( F2 @ A2 )
= ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [M6: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ M6 @ C2 ) @ ( semiring_char_0_fact @ real @ M6 ) ) @ ( power_power @ real @ ( minus_minus @ real @ A2 @ C2 ) @ M6 ) )
@ ( set_ord_lessThan @ nat @ N2 ) )
@ ( times_times @ real @ ( divide_divide @ real @ ( Diff @ N2 @ T4 ) @ ( semiring_char_0_fact @ real @ N2 ) ) @ ( power_power @ real @ ( minus_minus @ real @ A2 @ C2 ) @ N2 ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_5549_Maclaurin__lemma2,axiom,
! [N2: nat,H: real,Diff: nat > real > real,K: nat,B4: real] :
( ! [M5: nat,T4: real] :
( ( ( ord_less @ nat @ M5 @ N2 )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T4 )
& ( ord_less_eq @ real @ T4 @ H ) )
=> ( has_field_derivative @ real @ ( Diff @ M5 ) @ ( Diff @ ( suc @ M5 ) @ T4 ) @ ( topolo174197925503356063within @ real @ T4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ( N2
= ( suc @ K ) )
=> ! [M2: nat,T8: real] :
( ( ( ord_less @ nat @ M2 @ N2 )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ T8 )
& ( ord_less_eq @ real @ T8 @ H ) )
=> ( has_field_derivative @ real
@ ^ [U2: real] :
( minus_minus @ real @ ( Diff @ M2 @ U2 )
@ ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [P5: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ ( plus_plus @ nat @ M2 @ P5 ) @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ real @ U2 @ P5 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N2 @ M2 ) ) )
@ ( times_times @ real @ B4 @ ( divide_divide @ real @ ( power_power @ real @ U2 @ ( minus_minus @ nat @ N2 @ M2 ) ) @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N2 @ M2 ) ) ) ) ) )
@ ( minus_minus @ real @ ( Diff @ ( suc @ M2 ) @ T8 )
@ ( plus_plus @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [P5: nat] : ( times_times @ real @ ( divide_divide @ real @ ( Diff @ ( plus_plus @ nat @ ( suc @ M2 ) @ P5 ) @ ( zero_zero @ real ) ) @ ( semiring_char_0_fact @ real @ P5 ) ) @ ( power_power @ real @ T8 @ P5 ) )
@ ( set_ord_lessThan @ nat @ ( minus_minus @ nat @ N2 @ ( suc @ M2 ) ) ) )
@ ( times_times @ real @ B4 @ ( divide_divide @ real @ ( power_power @ real @ T8 @ ( minus_minus @ nat @ N2 @ ( suc @ M2 ) ) ) @ ( semiring_char_0_fact @ real @ ( minus_minus @ nat @ N2 @ ( suc @ M2 ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ real @ T8 @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_5550_DERIV__arctan__series,axiom,
! [X: real] :
( ( ord_less @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( has_field_derivative @ real
@ ^ [X9: real] :
( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X9 @ ( plus_plus @ nat @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) ) )
@ ( suminf @ real
@ ^ [K3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ K3 ) @ ( power_power @ real @ X @ ( times_times @ nat @ K3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ).
% DERIV_arctan_series
thf(fact_5551_has__derivative__arcsin,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( G @ X ) )
=> ( ( ord_less @ real @ ( G @ X ) @ ( one_one @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( arcsin @ ( G @ X3 ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( inverse_inverse @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( G @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_arcsin
thf(fact_5552_has__derivative__arccos,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ ( G @ X ) )
=> ( ( ord_less @ real @ ( G @ X ) @ ( one_one @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( arccos @ ( G @ X3 ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( inverse_inverse @ real @ ( uminus_uminus @ real @ ( sqrt @ ( minus_minus @ real @ ( one_one @ real ) @ ( power_power @ real @ ( G @ X ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_arccos
thf(fact_5553_has__derivative__tan,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ( cos @ real @ ( G @ X ) )
!= ( zero_zero @ real ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( tan @ real @ ( G @ X3 ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( inverse_inverse @ real @ ( power_power @ real @ ( cos @ real @ ( G @ X ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_tan
thf(fact_5554_has__derivative__scaleR,axiom,
! [C: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ D )
& ( real_V822414075346904944vector @ C ) )
=> ! [F2: D > real,F6: D > real,X: D,S: set @ D,G: D > C,G4: D > C] :
( ( has_derivative @ D @ real @ F2 @ F6 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( ( has_derivative @ D @ C @ G @ G4 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( has_derivative @ D @ C
@ ^ [X3: D] : ( real_V8093663219630862766scaleR @ C @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [H2: D] : ( plus_plus @ C @ ( real_V8093663219630862766scaleR @ C @ ( F2 @ X ) @ ( G4 @ H2 ) ) @ ( real_V8093663219630862766scaleR @ C @ ( F6 @ H2 ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ D @ X @ S ) ) ) ) ) ).
% has_derivative_scaleR
thf(fact_5555_has__derivative__const,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [C2: B,F4: filter @ A] :
( has_derivative @ A @ B
@ ^ [X3: A] : C2
@ ^ [X3: A] : ( zero_zero @ B )
@ F4 ) ) ).
% has_derivative_const
thf(fact_5556_has__derivative__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,F4: filter @ A,G: A > B,G4: A > B] :
( ( has_derivative @ A @ B @ F2 @ F6 @ F4 )
=> ( ( has_derivative @ A @ B @ G @ G4 @ F4 )
=> ( has_derivative @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [X3: A] : ( plus_plus @ B @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ F4 ) ) ) ) ).
% has_derivative_add
thf(fact_5557_has__derivative__mult,axiom,
! [A: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ D )
& ( real_V4412858255891104859lgebra @ A ) )
=> ! [F2: D > A,F6: D > A,X: D,S: set @ D,G: D > A,G4: D > A] :
( ( has_derivative @ D @ A @ F2 @ F6 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( ( has_derivative @ D @ A @ G @ G4 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( has_derivative @ D @ A
@ ^ [X3: D] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [H2: D] : ( plus_plus @ A @ ( times_times @ A @ ( F2 @ X ) @ ( G4 @ H2 ) ) @ ( times_times @ A @ ( F6 @ H2 ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ D @ X @ S ) ) ) ) ) ).
% has_derivative_mult
thf(fact_5558_has__derivative__zero__unique,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F4: A > B,X: A] :
( ( has_derivative @ A @ B
@ ^ [X3: A] : ( zero_zero @ B )
@ F4
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( F4
= ( ^ [H2: A] : ( zero_zero @ B ) ) ) ) ) ).
% has_derivative_zero_unique
thf(fact_5559_has__derivative__divide_H,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,F6: C > A,X: C,S3: set @ C,G: C > A,G4: C > A] :
( ( has_derivative @ C @ A @ F2 @ F6 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( has_derivative @ C @ A @ G @ G4 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_derivative @ C @ A
@ ^ [X3: C] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [H2: C] : ( divide_divide @ A @ ( minus_minus @ A @ ( times_times @ A @ ( F6 @ H2 ) @ ( G @ X ) ) @ ( times_times @ A @ ( F2 @ X ) @ ( G4 @ H2 ) ) ) @ ( times_times @ A @ ( G @ X ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ) ).
% has_derivative_divide'
thf(fact_5560_has__derivative__inverse_H,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A,S3: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_derivative @ A @ A @ ( inverse_inverse @ A )
@ ^ [H2: A] : ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ X ) @ H2 ) @ ( inverse_inverse @ A @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_inverse'
thf(fact_5561_has__derivative__inverse,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: C > A,X: C,F6: C > A,S3: set @ C] :
( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( ( has_derivative @ C @ A @ F2 @ F6 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( has_derivative @ C @ A
@ ^ [X3: C] : ( inverse_inverse @ A @ ( F2 @ X3 ) )
@ ^ [H2: C] : ( uminus_uminus @ A @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( F2 @ X ) ) @ ( F6 @ H2 ) ) @ ( inverse_inverse @ A @ ( F2 @ X ) ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ).
% has_derivative_inverse
thf(fact_5562_has__derivative__power,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,F6: A > B,X: A,S3: set @ A,N2: nat] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( has_derivative @ A @ B
@ ^ [X3: A] : ( power_power @ B @ ( F2 @ X3 ) @ N2 )
@ ^ [Y2: A] : ( times_times @ B @ ( times_times @ B @ ( semiring_1_of_nat @ B @ N2 ) @ ( F6 @ Y2 ) ) @ ( power_power @ B @ ( F2 @ X ) @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_power
thf(fact_5563_has__derivative__ln,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( ln_ln @ real @ ( G @ X3 ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( inverse_inverse @ real @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_ln
thf(fact_5564_has__derivative__divide,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [F2: C > A,F6: C > A,X: C,S3: set @ C,G: C > A,G4: C > A] :
( ( has_derivative @ C @ A @ F2 @ F6 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( has_derivative @ C @ A @ G @ G4 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( ( ( G @ X )
!= ( zero_zero @ A ) )
=> ( has_derivative @ C @ A
@ ^ [X3: C] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [H2: C] : ( plus_plus @ A @ ( times_times @ A @ ( uminus_uminus @ A @ ( F2 @ X ) ) @ ( times_times @ A @ ( times_times @ A @ ( inverse_inverse @ A @ ( G @ X ) ) @ ( G4 @ H2 ) ) @ ( inverse_inverse @ A @ ( G @ X ) ) ) ) @ ( divide_divide @ A @ ( F6 @ H2 ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ) ).
% has_derivative_divide
thf(fact_5565_has__derivative__powr,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,G4: A > real,X: A,X6: set @ A,F2: A > real,F6: A > real] :
( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ X6 ) )
=> ( ( has_derivative @ A @ real @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ X6 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( member @ A @ X @ X6 )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( G @ X3 ) @ ( F2 @ X3 ) )
@ ^ [H2: A] : ( times_times @ real @ ( powr @ real @ ( G @ X ) @ ( F2 @ X ) ) @ ( plus_plus @ real @ ( times_times @ real @ ( F6 @ H2 ) @ ( ln_ln @ real @ ( G @ X ) ) ) @ ( divide_divide @ real @ ( times_times @ real @ ( G4 @ H2 ) @ ( F2 @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ X6 ) ) ) ) ) ) ) ).
% has_derivative_powr
thf(fact_5566_has__derivative__real__sqrt,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: A > real,X: A,G4: A > real,S: set @ A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( sqrt @ ( G @ X3 ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( divide_divide @ real @ ( inverse_inverse @ real @ ( sqrt @ ( G @ X ) ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_real_sqrt
thf(fact_5567_has__derivative__floor,axiom,
! [Aa: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( archim2362893244070406136eiling @ Aa )
& ( topolo2564578578187576103pology @ Aa ) )
=> ! [G: A > real,X: A,F2: real > Aa,G4: A > real,S: set @ A] :
( ( topolo3448309680560233919inuous @ real @ Aa @ ( topolo174197925503356063within @ real @ ( G @ X ) @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ~ ( member @ Aa @ ( F2 @ ( G @ X ) ) @ ( ring_1_Ints @ Aa ) )
=> ( ( has_derivative @ A @ real @ G @ G4 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ real
@ ^ [X3: A] : ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ Aa @ ( F2 @ ( G @ X3 ) ) ) )
@ ^ [X3: A] : ( times_times @ real @ ( G4 @ X3 ) @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% has_derivative_floor
thf(fact_5568_termdiffs__aux,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( diffs @ A @ ( diffs @ A @ C2 ) @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( filterlim @ A @ A
@ ^ [H2: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( minus_minus @ A @ ( divide_divide @ A @ ( minus_minus @ A @ ( power_power @ A @ ( plus_plus @ A @ X @ H2 ) @ N3 ) @ ( power_power @ A @ X @ N3 ) ) @ H2 ) @ ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% termdiffs_aux
thf(fact_5569_surj__int__encode,axiom,
( ( image @ int @ nat @ nat_int_encode @ ( top_top @ ( set @ int ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% surj_int_encode
thf(fact_5570_tendsto__mult__left__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: B > A,L: A,F4: filter @ B] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A
@ ^ [X3: B] : ( times_times @ A @ C2 @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ C2 @ L ) )
@ F4 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 ) ) ) ) ).
% tendsto_mult_left_iff
thf(fact_5571_tendsto__mult__right__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: B > A,L: A,F4: filter @ B] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A
@ ^ [X3: B] : ( times_times @ A @ ( F2 @ X3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ L @ C2 ) )
@ F4 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 ) ) ) ) ).
% tendsto_mult_right_iff
thf(fact_5572_power__tendsto__0__iff,axiom,
! [A: $tType,N2: nat,F2: A > real,F4: filter @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( filterlim @ A @ real
@ ^ [X3: A] : ( power_power @ real @ ( F2 @ X3 ) @ N2 )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 ) ) ) ).
% power_tendsto_0_iff
thf(fact_5573_real__LIM__sandwich__zero,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: A > real,A2: A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ! [X4: A] :
( ( X4 != A2 )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( G @ X4 ) ) )
=> ( ! [X4: A] :
( ( X4 != A2 )
=> ( ord_less_eq @ real @ ( G @ X4 ) @ ( F2 @ X4 ) ) )
=> ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% real_LIM_sandwich_zero
thf(fact_5574_LIM__offset__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A,L5: B] :
( ( filterlim @ A @ B
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ A2 @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ B @ L5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset_zero_cancel
thf(fact_5575_LIM__offset__zero,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L5: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ A2 @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ B @ L5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset_zero
thf(fact_5576_LIM__isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ A2 @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_isCont_iff
thf(fact_5577_isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [X: A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ F2 )
= ( filterlim @ A @ B
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ X @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ X ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% isCont_iff
thf(fact_5578_LIM__not__zero,axiom,
! [Aa: $tType,A: $tType] :
( ( ( topolo8386298272705272623_space @ A )
& ( zero @ Aa )
& ( topological_t2_space @ Aa ) )
=> ! [K: Aa,A2: A] :
( ( K
!= ( zero_zero @ Aa ) )
=> ~ ( filterlim @ A @ Aa
@ ^ [X3: A] : K
@ ( topolo7230453075368039082e_nhds @ Aa @ ( zero_zero @ Aa ) )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_not_zero
thf(fact_5579_isCont__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [A2: A,F2: A > B,G: B > C,L: C] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ L ) @ ( topolo174197925503356063within @ B @ ( F2 @ A2 ) @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X4 @ A2 ) ) @ D3 ) )
=> ( ( F2 @ X4 )
!= ( F2 @ A2 ) ) ) )
=> ( filterlim @ A @ C
@ ^ [X3: A] : ( G @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ L )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% isCont_LIM_compose2
thf(fact_5580_LIM__offset,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L5: B,A2: A,K: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( F2 @ ( plus_plus @ A @ X3 @ K ) )
@ ( topolo7230453075368039082e_nhds @ B @ L5 )
@ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ K ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_offset
thf(fact_5581_tendsto__null__power,axiom,
! [B: $tType,A: $tType] :
( ( real_V2822296259951069270ebra_1 @ B )
=> ! [F2: A > B,F4: filter @ A,N2: nat] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( power_power @ B @ ( F2 @ X3 ) @ N2 )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 ) ) ) ) ).
% tendsto_null_power
thf(fact_5582_tendsto__arcosh,axiom,
! [B: $tType,F2: B > real,A2: real,F4: filter @ B] :
( ( filterlim @ B @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( ord_less @ real @ ( one_one @ real ) @ A2 )
=> ( filterlim @ B @ real
@ ^ [X3: B] : ( arcosh @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( arcosh @ real @ A2 ) )
@ F4 ) ) ) ).
% tendsto_arcosh
thf(fact_5583_tendsto__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: A > A,A2: A,F4: filter @ A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( ( sin @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X3: A] : ( cot @ A @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( cot @ A @ A2 ) )
@ F4 ) ) ) ) ).
% tendsto_cot
thf(fact_5584_tendsto__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,A2: A,F4: filter @ C] :
( ( filterlim @ C @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( ( cosh @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ C @ A
@ ^ [X3: C] : ( tanh @ A @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( tanh @ A @ A2 ) )
@ F4 ) ) ) ) ).
% tendsto_tanh
thf(fact_5585_tendsto__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: A > A,A2: A,F4: filter @ A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( ( cos @ A @ A2 )
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X3: A] : ( tan @ A @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( tan @ A @ A2 ) )
@ F4 ) ) ) ) ).
% tendsto_tan
thf(fact_5586_int__encode__eq,axiom,
! [X: int,Y: int] :
( ( ( nat_int_encode @ X )
= ( nat_int_encode @ Y ) )
= ( X = Y ) ) ).
% int_encode_eq
thf(fact_5587_tendsto__sgn,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,L: A,F4: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 )
=> ( ( L
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( sgn_sgn @ A @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( sgn_sgn @ A @ L ) )
@ F4 ) ) ) ) ).
% tendsto_sgn
thf(fact_5588_tendsto__add__zero,axiom,
! [B: $tType,D: $tType] :
( ( topolo6943815403480290642id_add @ B )
=> ! [F2: D > B,F4: filter @ D,G: D > B] :
( ( filterlim @ D @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( ( filterlim @ D @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( filterlim @ D @ B
@ ^ [X3: D] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 ) ) ) ) ).
% tendsto_add_zero
thf(fact_5589_tendsto__rabs__zero,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( abs_abs @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ).
% tendsto_rabs_zero
thf(fact_5590_tendsto__rabs__zero__iff,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X3: A] : ( abs_abs @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 ) ) ).
% tendsto_rabs_zero_iff
thf(fact_5591_tendsto__rabs__zero__cancel,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X3: A] : ( abs_abs @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 )
=> ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 ) ) ).
% tendsto_rabs_zero_cancel
thf(fact_5592_continuous__add,axiom,
! [B: $tType,D: $tType] :
( ( ( topological_t2_space @ D )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [F4: filter @ D,F2: D > B,G: D > B] :
( ( topolo3448309680560233919inuous @ D @ B @ F4 @ F2 )
=> ( ( topolo3448309680560233919inuous @ D @ B @ F4 @ G )
=> ( topolo3448309680560233919inuous @ D @ B @ F4
@ ^ [X3: D] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ).
% continuous_add
thf(fact_5593_tendsto__mult__one,axiom,
! [B: $tType,D: $tType] :
( ( topolo1898628316856586783d_mult @ B )
=> ! [F2: D > B,F4: filter @ D,G: D > B] :
( ( filterlim @ D @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) ) @ F4 )
=> ( ( filterlim @ D @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) ) @ F4 )
=> ( filterlim @ D @ B
@ ^ [X3: D] : ( times_times @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( one_one @ B ) )
@ F4 ) ) ) ) ).
% tendsto_mult_one
thf(fact_5594_tendsto__add,axiom,
! [A: $tType,B: $tType] :
( ( topolo6943815403480290642id_add @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B,G: B > A,B2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F4 )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ A2 @ B2 ) )
@ F4 ) ) ) ) ).
% tendsto_add
thf(fact_5595_tendsto__add__const__iff,axiom,
! [A: $tType,B: $tType] :
( ( topolo1633459387980952147up_add @ A )
=> ! [C2: A,F2: B > A,D2: A,F4: filter @ B] :
( ( filterlim @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ C2 @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ C2 @ D2 ) )
@ F4 )
= ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ D2 ) @ F4 ) ) ) ).
% tendsto_add_const_iff
thf(fact_5596_tendsto__mult__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F4: filter @ D,G: D > A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( ( filterlim @ D @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ D @ A
@ ^ [X3: D] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ) ).
% tendsto_mult_zero
thf(fact_5597_tendsto__mult__left__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F4: filter @ D,C2: A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ D @ A
@ ^ [X3: D] : ( times_times @ A @ ( F2 @ X3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ).
% tendsto_mult_left_zero
thf(fact_5598_tendsto__mult__right__zero,axiom,
! [A: $tType,D: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: D > A,F4: filter @ D,C2: A] :
( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ D @ A
@ ^ [X3: D] : ( times_times @ A @ C2 @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ).
% tendsto_mult_right_zero
thf(fact_5599_tendsto__divide__zero,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,F4: filter @ B,C2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( divide_divide @ A @ ( F2 @ X3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ).
% tendsto_divide_zero
thf(fact_5600_tendsto__divide,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B,G: B > A,B2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ B2 ) @ F4 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( divide_divide @ A @ A2 @ B2 ) )
@ F4 ) ) ) ) ) ).
% tendsto_divide
thf(fact_5601_tendsto__ln,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( A2
!= ( zero_zero @ real ) )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( ln_ln @ real @ A2 ) )
@ F4 ) ) ) ).
% tendsto_ln
thf(fact_5602_tendsto__norm__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X3: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 ) ) ) ).
% tendsto_norm_zero_cancel
thf(fact_5603_tendsto__norm__zero__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ real
@ ^ [X3: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 )
= ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 ) ) ) ).
% tendsto_norm_zero_iff
thf(fact_5604_tendsto__norm__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ) ).
% tendsto_norm_zero
thf(fact_5605_tendsto__powr,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F4 )
=> ( ( A2
!= ( zero_zero @ real ) )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F4 ) ) ) ) ).
% tendsto_powr
thf(fact_5606_tendsto__inverse,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( inverse_inverse @ A @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( inverse_inverse @ A @ A2 ) )
@ F4 ) ) ) ) ).
% tendsto_inverse
thf(fact_5607_Lim__transform__eq,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,G: B > A,F4: filter @ B,A2: A] :
( ( filterlim @ B @ A
@ ^ [X3: B] : ( minus_minus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
= ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 ) ) ) ) ).
% Lim_transform_eq
thf(fact_5608_LIM__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X3: A] : ( minus_minus @ B @ ( F2 @ X3 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 ) ) ) ).
% LIM_zero_cancel
thf(fact_5609_Lim__transform2,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B,G: B > A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( filterlim @ B @ A
@ ^ [X3: B] : ( minus_minus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 )
=> ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 ) ) ) ) ).
% Lim_transform2
thf(fact_5610_Lim__transform,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: B > A,A2: A,F4: filter @ B,F2: B > A] :
( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( filterlim @ B @ A
@ ^ [X3: B] : ( minus_minus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 ) ) ) ) ).
% Lim_transform
thf(fact_5611_LIM__zero__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X3: A] : ( minus_minus @ B @ ( F2 @ X3 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 )
= ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 ) ) ) ).
% LIM_zero_iff
thf(fact_5612_LIM__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( minus_minus @ B @ ( F2 @ X3 ) @ L )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 ) ) ) ).
% LIM_zero
thf(fact_5613_tendsto__one__prod_H,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( topolo4987421752381908075d_mult @ C )
=> ! [I5: set @ B,F2: A > B > C,F4: filter @ A] :
( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( filterlim @ A @ C
@ ^ [X3: A] : ( F2 @ X3 @ I2 )
@ ( topolo7230453075368039082e_nhds @ C @ ( one_one @ C ) )
@ F4 ) )
=> ( filterlim @ A @ C
@ ^ [I3: A] : ( groups7121269368397514597t_prod @ B @ C @ ( F2 @ I3 ) @ I5 )
@ ( topolo7230453075368039082e_nhds @ C @ ( one_one @ C ) )
@ F4 ) ) ) ).
% tendsto_one_prod'
thf(fact_5614_tendsto__null__sum,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( topolo5987344860129210374id_add @ C )
=> ! [I5: set @ B,F2: A > B > C,F4: filter @ A] :
( ! [I2: B] :
( ( member @ B @ I2 @ I5 )
=> ( filterlim @ A @ C
@ ^ [X3: A] : ( F2 @ X3 @ I2 )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F4 ) )
=> ( filterlim @ A @ C
@ ^ [I3: A] : ( groups7311177749621191930dd_sum @ B @ C @ ( F2 @ I3 ) @ I5 )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F4 ) ) ) ).
% tendsto_null_sum
thf(fact_5615_tendsto__log,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( A2
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( log @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( log @ A2 @ B2 ) )
@ F4 ) ) ) ) ) ) ).
% tendsto_log
thf(fact_5616_tendsto__artanh,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ A2 )
=> ( ( ord_less @ real @ A2 @ ( one_one @ real ) )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( artanh @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( artanh @ real @ A2 ) )
@ F4 ) ) ) ) ).
% tendsto_artanh
thf(fact_5617_LIM__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ D )
& ( zero @ C ) )
=> ! [A2: A,F2: A > D,L5: D] :
( ( nO_MATCH @ C @ A @ ( zero_zero @ C ) @ A2 )
=> ( ( filterlim @ A @ D @ F2 @ ( topolo7230453075368039082e_nhds @ D @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ D
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ A2 @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ D @ L5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% LIM_offset_zero_iff
thf(fact_5618_IVT2,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo1944317154257567458pology @ B )
& ( topolo8458572112393995274pology @ A ) )
=> ! [F2: A > B,B2: A,Y: B,A2: A] :
( ( ord_less_eq @ B @ ( F2 @ B2 ) @ Y )
=> ( ( ord_less_eq @ B @ Y @ ( F2 @ A2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ! [X4: A] :
( ( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ X4 @ ( top_top @ ( set @ A ) ) ) @ F2 ) )
=> ? [X4: A] :
( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 )
& ( ( F2 @ X4 )
= Y ) ) ) ) ) ) ) ).
% IVT2
thf(fact_5619_IVT,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo1944317154257567458pology @ B )
& ( topolo8458572112393995274pology @ A ) )
=> ! [F2: A > B,A2: A,Y: B,B2: A] :
( ( ord_less_eq @ B @ ( F2 @ A2 ) @ Y )
=> ( ( ord_less_eq @ B @ Y @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ! [X4: A] :
( ( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ X4 @ ( top_top @ ( set @ A ) ) ) @ F2 ) )
=> ? [X4: A] :
( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 )
& ( ( F2 @ X4 )
= Y ) ) ) ) ) ) ) ).
% IVT
thf(fact_5620_LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,L5: B,A2: A,R2: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [S2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S2 )
& ! [X2: A] :
( ( ( X2 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X2 @ A2 ) ) @ S2 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X2 ) @ L5 ) ) @ R2 ) ) ) ) ) ) ).
% LIM_D
thf(fact_5621_LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,F2: A > B,L5: B] :
( ! [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ? [S8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S8 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X4 @ A2 ) ) @ S8 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X4 ) @ L5 ) ) @ R3 ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% LIM_I
thf(fact_5622_LIM__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,L5: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [S6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S6 )
& ! [X3: A] :
( ( ( X3 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X3 @ A2 ) ) @ S6 ) )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( F2 @ X3 ) @ L5 ) ) @ R5 ) ) ) ) ) ) ) ).
% LIM_eq
thf(fact_5623_LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [R: real,A2: A,F2: A > B,G: A > B,L: B] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ( ! [X4: A] :
( ( X4 != A2 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X4 @ A2 ) ) @ R )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) ) )
=> ( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% LIM_equal2
thf(fact_5624_DERIV__LIM__iff,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( real_V822414075346904944vector @ A ) )
=> ! [F2: A > A,A2: A,D4: A] :
( ( filterlim @ A @ A
@ ^ [H2: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ A2 @ H2 ) ) @ ( F2 @ A2 ) ) @ H2 )
@ ( topolo7230453075368039082e_nhds @ A @ D4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [X3: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ X3 ) @ ( F2 @ A2 ) ) @ ( minus_minus @ A @ X3 @ A2 ) )
@ ( topolo7230453075368039082e_nhds @ A @ D4 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_LIM_iff
thf(fact_5625_LIM__fun__gt__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ L )
=> ? [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
& ! [X2: real] :
( ( ( X2 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X2 ) ) @ R3 ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X2 ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_5626_LIM__fun__not__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( L
!= ( zero_zero @ real ) )
=> ? [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
& ! [X2: real] :
( ( ( X2 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X2 ) ) @ R3 ) )
=> ( ( F2 @ X2 )
!= ( zero_zero @ real ) ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_5627_LIM__fun__less__zero,axiom,
! [F2: real > real,L: real,C2: real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( topolo174197925503356063within @ real @ C2 @ ( top_top @ ( set @ real ) ) ) )
=> ( ( ord_less @ real @ L @ ( zero_zero @ real ) )
=> ? [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
& ! [X2: real] :
( ( ( X2 != C2 )
& ( ord_less @ real @ ( abs_abs @ real @ ( minus_minus @ real @ C2 @ X2 ) ) @ R3 ) )
=> ( ord_less @ real @ ( F2 @ X2 ) @ ( zero_zero @ real ) ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_5628_LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [F2: A > B,B2: B,A2: A,G: B > C,C2: C] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ B2 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ C2 ) @ ( topolo174197925503356063within @ B @ B2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ X4 @ A2 ) ) @ D3 ) )
=> ( ( F2 @ X4 )
!= B2 ) ) )
=> ( filterlim @ A @ C
@ ^ [X3: A] : ( G @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ C2 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% LIM_compose2
thf(fact_5629_continuous__at__within__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ G )
=> ( ( ( G @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X3: A] : ( divide_divide @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_at_within_divide
thf(fact_5630_isCont__add,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [A2: A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ).
% isCont_add
thf(fact_5631_continuous__at__within__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X3: A] : ( inverse_inverse @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_at_within_inverse
thf(fact_5632_continuous__at__within__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X3: A] : ( sgn_sgn @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_at_within_sgn
thf(fact_5633_DERIV__def,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [H2: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H2 ) ) @ ( F2 @ X ) ) @ H2 )
@ ( topolo7230453075368039082e_nhds @ A @ D4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_def
thf(fact_5634_DERIV__D,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A] :
( ( has_field_derivative @ A @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ A
@ ^ [H2: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H2 ) ) @ ( F2 @ X ) ) @ H2 )
@ ( topolo7230453075368039082e_nhds @ A @ D4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% DERIV_D
thf(fact_5635_lim__exp__minus__1,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ( filterlim @ A @ A
@ ^ [Z5: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( exp @ A @ Z5 ) @ ( one_one @ A ) ) @ Z5 )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% lim_exp_minus_1
thf(fact_5636_lemma__termdiff4,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [K: real,F2: A > B,K5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K )
=> ( ! [H5: A] :
( ( H5
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ H5 ) @ K )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ H5 ) ) @ ( times_times @ real @ K5 @ ( real_V7770717601297561774m_norm @ A @ H5 ) ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% lemma_termdiff4
thf(fact_5637_isCont__eq__Lb,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: real,B2: real,F2: real > A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ? [M8: A] :
( ! [X2: real] :
( ( ( ord_less_eq @ real @ A2 @ X2 )
& ( ord_less_eq @ real @ X2 @ B2 ) )
=> ( ord_less_eq @ A @ M8 @ ( F2 @ X2 ) ) )
& ? [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 )
& ( ( F2 @ X4 )
= M8 ) ) ) ) ) ) ).
% isCont_eq_Lb
thf(fact_5638_isCont__eq__Ub,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: real,B2: real,F2: real > A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ? [M8: A] :
( ! [X2: real] :
( ( ( ord_less_eq @ real @ A2 @ X2 )
& ( ord_less_eq @ real @ X2 @ B2 ) )
=> ( ord_less_eq @ A @ ( F2 @ X2 ) @ M8 ) )
& ? [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 )
& ( ( F2 @ X4 )
= M8 ) ) ) ) ) ) ).
% isCont_eq_Ub
thf(fact_5639_isCont__bounded,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: real,B2: real,F2: real > A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ? [M8: A] :
! [X2: real] :
( ( ( ord_less_eq @ real @ A2 @ X2 )
& ( ord_less_eq @ real @ X2 @ B2 ) )
=> ( ord_less_eq @ A @ ( F2 @ X2 ) @ M8 ) ) ) ) ) ).
% isCont_bounded
thf(fact_5640_isCont__inverse__function2,axiom,
! [A2: real,X: real,B2: real,G: real > real,F2: real > real] :
( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ A2 @ Z )
=> ( ( ord_less_eq @ real @ Z @ B2 )
=> ( ( G @ ( F2 @ Z ) )
= Z ) ) )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ A2 @ Z )
=> ( ( ord_less_eq @ real @ Z @ B2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) @ F2 ) ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ ( F2 @ X ) @ ( top_top @ ( set @ real ) ) ) @ G ) ) ) ) ) ).
% isCont_inverse_function2
thf(fact_5641_field__has__derivative__at,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D4: A,X: A] :
( ( has_derivative @ A @ A @ F2 @ ( times_times @ A @ D4 ) @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ A
@ ^ [H2: A] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ X @ H2 ) ) @ ( F2 @ X ) ) @ H2 )
@ ( topolo7230453075368039082e_nhds @ A @ D4 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% field_has_derivative_at
thf(fact_5642_isCont__ln,axiom,
! [X: real] :
( ( X
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ ( ln_ln @ real ) ) ) ).
% isCont_ln
thf(fact_5643_isCont__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [A2: A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( ( ( G @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( divide_divide @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% isCont_divide
thf(fact_5644_isCont__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [A2: A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( sgn_sgn @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% isCont_sgn
thf(fact_5645_filterlim__at__to__0,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,F4: filter @ B,A2: A] :
( ( filterlim @ A @ B @ F2 @ F4 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B
@ ^ [X3: A] : ( F2 @ ( plus_plus @ A @ X3 @ A2 ) )
@ F4
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_at_to_0
thf(fact_5646_continuous__within__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,S: set @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( cos @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X3: A] : ( tan @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_within_tan
thf(fact_5647_continuous__within__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A,S: set @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( sin @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X3: A] : ( cot @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_within_cot
thf(fact_5648_continuous__at__within__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topological_t2_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: C,A4: set @ C,F2: C > A] :
( ( topolo3448309680560233919inuous @ C @ A @ ( topolo174197925503356063within @ C @ X @ A4 ) @ F2 )
=> ( ( ( cosh @ A @ ( F2 @ X ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ C @ A @ ( topolo174197925503356063within @ C @ X @ A4 )
@ ^ [X3: C] : ( tanh @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_at_within_tanh
thf(fact_5649_isCont__has__Ub,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: real,B2: real,F2: real > A] :
( ( ord_less_eq @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ? [M8: A] :
( ! [X2: real] :
( ( ( ord_less_eq @ real @ A2 @ X2 )
& ( ord_less_eq @ real @ X2 @ B2 ) )
=> ( ord_less_eq @ A @ ( F2 @ X2 ) @ M8 ) )
& ! [N8: A] :
( ( ord_less @ A @ N8 @ M8 )
=> ? [X4: real] :
( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 )
& ( ord_less @ A @ N8 @ ( F2 @ X4 ) ) ) ) ) ) ) ) ).
% isCont_has_Ub
thf(fact_5650_isCont__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cos @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( tan @ A ) ) ) ) ).
% isCont_tan
thf(fact_5651_filterlim__shift,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,F4: filter @ B,A2: A,D2: A] :
( ( filterlim @ A @ B @ F2 @ F4 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ B @ ( comp @ A @ B @ A @ F2 @ ( plus_plus @ A @ D2 ) ) @ F4 @ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ D2 ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_shift
thf(fact_5652_filterlim__shift__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: A > B,D2: A,F4: filter @ B,A2: A] :
( ( filterlim @ A @ B @ ( comp @ A @ B @ A @ F2 @ ( plus_plus @ A @ D2 ) ) @ F4 @ ( topolo174197925503356063within @ A @ ( minus_minus @ A @ A2 @ D2 ) @ ( top_top @ ( set @ A ) ) ) )
= ( filterlim @ A @ B @ F2 @ F4 @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% filterlim_shift_iff
thf(fact_5653_isCont__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( sin @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( cot @ A ) ) ) ) ).
% isCont_cot
thf(fact_5654_isCont__tanh,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ( cosh @ A @ X )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ ( tanh @ A ) ) ) ) ).
% isCont_tanh
thf(fact_5655_powser__limit__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: real,A2: nat > A,F2: A > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S )
=> ( ! [X4: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X4 ) @ S )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ X4 @ N3 ) )
@ ( F2 @ X4 ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( A2 @ ( zero_zero @ nat ) ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% powser_limit_0
thf(fact_5656_powser__limit__0__strong,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: real,A2: nat > A,F2: A > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S )
=> ( ! [X4: A] :
( ( X4
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X4 ) @ S )
=> ( sums @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ ( power_power @ A @ X4 @ N3 ) )
@ ( F2 @ X4 ) ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( A2 @ ( zero_zero @ nat ) ) ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% powser_limit_0_strong
thf(fact_5657_lemma__termdiff5,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_Vector_banach @ B ) )
=> ! [K: real,F2: nat > real,G: A > nat > B] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K )
=> ( ( summable @ real @ F2 )
=> ( ! [H5: A,N: nat] :
( ( H5
!= ( zero_zero @ A ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ H5 ) @ K )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( G @ H5 @ N ) ) @ ( times_times @ real @ ( F2 @ N ) @ ( real_V7770717601297561774m_norm @ A @ H5 ) ) ) ) )
=> ( filterlim @ A @ B
@ ^ [H2: A] : ( suminf @ B @ ( G @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% lemma_termdiff5
thf(fact_5658_isCont__tan_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A2: A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( cos @ A @ ( F2 @ A2 ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( tan @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% isCont_tan'
thf(fact_5659_isCont__arcosh,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ ( arcosh @ real ) ) ) ).
% isCont_arcosh
thf(fact_5660_LIM__cos__div__sin,axiom,
( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( cos @ real @ X3 ) @ ( sin @ real @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( divide_divide @ real @ pi @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) @ ( top_top @ ( set @ real ) ) ) ) ).
% LIM_cos_div_sin
thf(fact_5661_isCont__cot_H,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A2: A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( sin @ A @ ( F2 @ A2 ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( cot @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% isCont_cot'
thf(fact_5662_DERIV__inverse__function,axiom,
! [F2: real > real,D4: real,G: real > real,X: real,A2: real,B2: real] :
( ( has_field_derivative @ real @ F2 @ D4 @ ( topolo174197925503356063within @ real @ ( G @ X ) @ ( top_top @ ( set @ real ) ) ) )
=> ( ( D4
!= ( zero_zero @ real ) )
=> ( ( ord_less @ real @ A2 @ X )
=> ( ( ord_less @ real @ X @ B2 )
=> ( ! [Y4: real] :
( ( ord_less @ real @ A2 @ Y4 )
=> ( ( ord_less @ real @ Y4 @ B2 )
=> ( ( F2 @ ( G @ Y4 ) )
= Y4 ) ) )
=> ( ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ G )
=> ( has_field_derivative @ real @ G @ ( inverse_inverse @ real @ D4 ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ) ).
% DERIV_inverse_function
thf(fact_5663_isCont__arccos,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ arccos ) ) ) ).
% isCont_arccos
thf(fact_5664_isCont__arcsin,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ arcsin ) ) ) ).
% isCont_arcsin
thf(fact_5665_LIM__less__bound,axiom,
! [B2: real,X: real,F2: real > real] :
( ( ord_less @ real @ B2 @ X )
=> ( ! [X4: real] :
( ( member @ real @ X4 @ ( set_or5935395276787703475ssThan @ real @ B2 @ X ) )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) ) )
=> ( ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X ) ) ) ) ) ).
% LIM_less_bound
thf(fact_5666_isCont__artanh,axiom,
! [X: real] :
( ( ord_less @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ ( artanh @ real ) ) ) ) ).
% isCont_artanh
thf(fact_5667_isCont__inverse__function,axiom,
! [D2: real,X: real,G: real > real,F2: real > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ Z @ X ) ) @ D2 )
=> ( ( G @ ( F2 @ Z ) )
= Z ) )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ ( minus_minus @ real @ Z @ X ) ) @ D2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ ( F2 @ X ) @ ( top_top @ ( set @ real ) ) ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_5668_GMVT_H,axiom,
! [A2: real,B2: real,F2: real > real,G: real > real,G4: real > real,F6: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ A2 @ Z )
=> ( ( ord_less_eq @ real @ Z @ B2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) @ F2 ) ) )
=> ( ! [Z: real] :
( ( ord_less_eq @ real @ A2 @ Z )
=> ( ( ord_less_eq @ real @ Z @ B2 )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) @ G ) ) )
=> ( ! [Z: real] :
( ( ord_less @ real @ A2 @ Z )
=> ( ( ord_less @ real @ Z @ B2 )
=> ( has_field_derivative @ real @ G @ ( G4 @ Z ) @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ! [Z: real] :
( ( ord_less @ real @ A2 @ Z )
=> ( ( ord_less @ real @ Z @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( F6 @ Z ) @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [C4: real] :
( ( ord_less @ real @ A2 @ C4 )
& ( ord_less @ real @ C4 @ B2 )
& ( ( times_times @ real @ ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) @ ( G4 @ C4 ) )
= ( times_times @ real @ ( minus_minus @ real @ ( G @ B2 ) @ ( G @ A2 ) ) @ ( F6 @ C4 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_5669_floor__has__real__derivative,axiom,
! [A: $tType] :
( ( ( archim2362893244070406136eiling @ A )
& ( topolo2564578578187576103pology @ A ) )
=> ! [X: real,F2: real > A] :
( ( topolo3448309680560233919inuous @ real @ A @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) @ F2 )
=> ( ~ ( member @ A @ ( F2 @ X ) @ ( ring_1_Ints @ A ) )
=> ( has_field_derivative @ real
@ ^ [X3: real] : ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ A @ ( F2 @ X3 ) ) )
@ ( zero_zero @ real )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ).
% floor_has_real_derivative
thf(fact_5670_isCont__powser,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: nat > A,K5: A,X: A] :
( ( summable @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( real_V7770717601297561774m_norm @ A @ K5 ) )
=> ( topolo3448309680560233919inuous @ A @ A @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] :
( suminf @ A
@ ^ [N3: nat] : ( times_times @ A @ ( C2 @ N3 ) @ ( power_power @ A @ X3 @ N3 ) ) ) ) ) ) ) ).
% isCont_powser
thf(fact_5671_isCont__powser_H,axiom,
! [Aa: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_Vector_banach @ Aa )
& ( real_V3459762299906320749_field @ Aa ) )
=> ! [A2: A,F2: A > Aa,C2: nat > Aa,K5: Aa] :
( ( topolo3448309680560233919inuous @ A @ Aa @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( summable @ Aa
@ ^ [N3: nat] : ( times_times @ Aa @ ( C2 @ N3 ) @ ( power_power @ Aa @ K5 @ N3 ) ) )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ Aa @ ( F2 @ A2 ) ) @ ( real_V7770717601297561774m_norm @ Aa @ K5 ) )
=> ( topolo3448309680560233919inuous @ A @ Aa @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] :
( suminf @ Aa
@ ^ [N3: nat] : ( times_times @ Aa @ ( C2 @ N3 ) @ ( power_power @ Aa @ ( F2 @ X3 ) @ N3 ) ) ) ) ) ) ) ) ).
% isCont_powser'
thf(fact_5672_summable__Leibniz_I3_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( ( ord_less @ real @ ( A2 @ ( zero_zero @ nat ) ) @ ( zero_zero @ real ) )
=> ! [N5: nat] :
( member @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) )
@ ( set_or1337092689740270186AtMost @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) @ ( one_one @ nat ) ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_5673_summable__Leibniz_I2_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( A2 @ ( zero_zero @ nat ) ) )
=> ! [N5: nat] :
( member @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) )
@ ( set_or1337092689740270186AtMost @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_5674_summable__Leibniz_H_I5_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) ) )
@ ( at_top @ nat ) ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_5675_tendsto__zero__mult__left__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( A2 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_mult_left_iff
thf(fact_5676_tendsto__zero__mult__right__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( A2 @ N3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_mult_right_iff
thf(fact_5677_tendsto__zero__divide__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,A2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( A2 @ N3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ) ).
% tendsto_zero_divide_iff
thf(fact_5678_approx__from__below__dense__linorder,axiom,
! [A: $tType] :
( ( ( dense_linorder @ A )
& ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ? [U3: nat > A] :
( ! [N5: nat] : ( ord_less @ A @ ( U3 @ N5 ) @ X )
& ( filterlim @ nat @ A @ U3 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) ) ) ) ) ).
% approx_from_below_dense_linorder
thf(fact_5679_approx__from__above__dense__linorder,axiom,
! [A: $tType] :
( ( ( dense_linorder @ A )
& ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [U3: nat > A] :
( ! [N5: nat] : ( ord_less @ A @ X @ ( U3 @ N5 ) )
& ( filterlim @ nat @ A @ U3 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) ) ) ) ) ).
% approx_from_above_dense_linorder
thf(fact_5680_LIMSEQ__imp__Suc,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,L: A] :
( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( at_top @ nat ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_imp_Suc
thf(fact_5681_LIMSEQ__Suc,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,L: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_Suc
thf(fact_5682_LIMSEQ__ignore__initial__segment,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,A2: A,K: nat] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_ignore_initial_segment
thf(fact_5683_LIMSEQ__offset,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,K: nat,A2: A] :
( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_offset
thf(fact_5684_LIMSEQ__le__const2,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X6: nat > A,X: A,A2: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ A @ ( X6 @ N ) @ A2 ) )
=> ( ord_less_eq @ A @ X @ A2 ) ) ) ) ).
% LIMSEQ_le_const2
thf(fact_5685_LIMSEQ__le__const,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X6: nat > A,X: A,A2: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ A @ A2 @ ( X6 @ N ) ) )
=> ( ord_less_eq @ A @ A2 @ X ) ) ) ) ).
% LIMSEQ_le_const
thf(fact_5686_Lim__bounded2,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: nat > A,L: A,N7: nat,C5: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ N7 @ N )
=> ( ord_less_eq @ A @ C5 @ ( F2 @ N ) ) )
=> ( ord_less_eq @ A @ C5 @ L ) ) ) ) ).
% Lim_bounded2
thf(fact_5687_Lim__bounded,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: nat > A,L: A,M7: nat,C5: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_top @ nat ) )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ M7 @ N )
=> ( ord_less_eq @ A @ ( F2 @ N ) @ C5 ) )
=> ( ord_less_eq @ A @ L @ C5 ) ) ) ) ).
% Lim_bounded
thf(fact_5688_LIMSEQ__le,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X6: nat > A,X: A,Y6: nat > A,Y: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ A @ Y6 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ ( at_top @ nat ) )
=> ( ? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less_eq @ A @ ( X6 @ N ) @ ( Y6 @ N ) ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ).
% LIMSEQ_le
thf(fact_5689_lim__mono,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [N7: nat,X6: nat > A,Y6: nat > A,X: A,Y: A] :
( ! [N: nat] :
( ( ord_less_eq @ nat @ N7 @ N )
=> ( ord_less_eq @ A @ ( X6 @ N ) @ ( Y6 @ N ) ) )
=> ( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ A @ Y6 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ ( at_top @ nat ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ).
% lim_mono
thf(fact_5690_Sup__lim,axiom,
! [A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: nat > A,S: set @ A,A2: A] :
( ! [N: nat] : ( member @ A @ ( B2 @ N ) @ S )
=> ( ( filterlim @ nat @ A @ B2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( ord_less_eq @ A @ A2 @ ( complete_Sup_Sup @ A @ S ) ) ) ) ) ).
% Sup_lim
thf(fact_5691_Inf__lim,axiom,
! [A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: nat > A,S: set @ A,A2: A] :
( ! [N: nat] : ( member @ A @ ( B2 @ N ) @ S )
=> ( ( filterlim @ nat @ A @ B2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ S ) @ A2 ) ) ) ) ).
% Inf_lim
thf(fact_5692_summable__LIMSEQ__zero,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( summable @ A @ F2 )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% summable_LIMSEQ_zero
thf(fact_5693_continuous__at__within__powr,axiom,
! [C: $tType] :
( ( topological_t2_space @ C )
=> ! [A2: C,S: set @ C,F2: C > real,G: C > real] :
( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S ) @ G )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ S )
@ ^ [X3: C] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_at_within_powr
thf(fact_5694_continuous__within__ln,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,S: set @ A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ S ) @ F2 )
=> ( ( ( F2 @ X )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ S )
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_within_ln
thf(fact_5695_mult__nat__right__at__top,axiom,
! [C2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ C2 )
=> ( filterlim @ nat @ nat
@ ^ [X3: nat] : ( times_times @ nat @ X3 @ C2 )
@ ( at_top @ nat )
@ ( at_top @ nat ) ) ) ).
% mult_nat_right_at_top
thf(fact_5696_mult__nat__left__at__top,axiom,
! [C2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ C2 )
=> ( filterlim @ nat @ nat @ ( times_times @ nat @ C2 ) @ ( at_top @ nat ) @ ( at_top @ nat ) ) ) ).
% mult_nat_left_at_top
thf(fact_5697_isCont__powr,axiom,
! [C: $tType] :
( ( topological_t2_space @ C )
=> ! [A2: C,F2: C > real,G: C > real] :
( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) ) @ G )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ C @ real @ ( topolo174197925503356063within @ C @ A2 @ ( top_top @ ( set @ C ) ) )
@ ^ [X3: C] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% isCont_powr
thf(fact_5698_isCont__ln_H,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [X: A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( ( F2 @ X )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) ) ) ) ) ) ).
% isCont_ln'
thf(fact_5699_monoseq__le,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [A2: nat > A,X: A] :
( ( topological_monoseq @ A @ A2 )
=> ( ( filterlim @ nat @ A @ A2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ( ! [N5: nat] : ( ord_less_eq @ A @ ( A2 @ N5 ) @ X )
& ! [M2: nat,N5: nat] :
( ( ord_less_eq @ nat @ M2 @ N5 )
=> ( ord_less_eq @ A @ ( A2 @ M2 ) @ ( A2 @ N5 ) ) ) )
| ( ! [N5: nat] : ( ord_less_eq @ A @ X @ ( A2 @ N5 ) )
& ! [M2: nat,N5: nat] :
( ( ord_less_eq @ nat @ M2 @ N5 )
=> ( ord_less_eq @ A @ ( A2 @ N5 ) @ ( A2 @ M2 ) ) ) ) ) ) ) ) ).
% monoseq_le
thf(fact_5700_lim__const__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [A2: A] :
( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ A2 @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_const_over_n
thf(fact_5701_lim__inverse__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_inverse_n
thf(fact_5702_LIMSEQ__linear,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [X6: nat > A,X: A,L: nat] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ ( at_top @ nat ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ L )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( X6 @ ( times_times @ nat @ N3 @ L ) )
@ ( topolo7230453075368039082e_nhds @ A @ X )
@ ( at_top @ nat ) ) ) ) ) ).
% LIMSEQ_linear
thf(fact_5703_telescope__summable,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( summable @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) ) ) ) ) ).
% telescope_summable
thf(fact_5704_telescope__summable_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( summable @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) ) ) ) ) ).
% telescope_summable'
thf(fact_5705_nested__sequence__unique,axiom,
! [F2: nat > real,G: nat > real] :
( ! [N: nat] : ( ord_less_eq @ real @ ( F2 @ N ) @ ( F2 @ ( suc @ N ) ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( G @ ( suc @ N ) ) @ ( G @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( F2 @ N ) @ ( G @ N ) )
=> ( ( filterlim @ nat @ real
@ ^ [N3: nat] : ( minus_minus @ real @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) )
=> ? [L4: real] :
( ! [N5: nat] : ( ord_less_eq @ real @ ( F2 @ N5 ) @ L4 )
& ( filterlim @ nat @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L4 ) @ ( at_top @ nat ) )
& ! [N5: nat] : ( ord_less_eq @ real @ L4 @ ( G @ N5 ) )
& ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ L4 ) @ ( at_top @ nat ) ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_5706_LIMSEQ__inverse__zero,axiom,
! [X6: nat > real] :
( ! [R3: real] :
? [N8: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ N8 @ N )
=> ( ord_less @ real @ R3 @ ( X6 @ N ) ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( X6 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_inverse_zero
thf(fact_5707_lim__inverse__n_H,axiom,
( filterlim @ nat @ real
@ ^ [N3: nat] : ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ).
% lim_inverse_n'
thf(fact_5708_LIMSEQ__root__const,axiom,
! [C2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( root @ N3 @ C2 )
@ ( topolo7230453075368039082e_nhds @ real @ ( one_one @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_root_const
thf(fact_5709_LIMSEQ__inverse__real__of__nat,axiom,
( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat
thf(fact_5710_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( plus_plus @ real @ R2 @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add
thf(fact_5711_continuous__at__within__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [A2: A,S: set @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S ) @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ A2 ) )
=> ( ( ( F2 @ A2 )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ A2 ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X3: A] : ( log @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ) ) ).
% continuous_at_within_log
thf(fact_5712_increasing__LIMSEQ,axiom,
! [F2: nat > real,L: real] :
( ! [N: nat] : ( ord_less_eq @ real @ ( F2 @ N ) @ ( F2 @ ( suc @ N ) ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( F2 @ N ) @ L )
=> ( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [N5: nat] : ( ord_less_eq @ real @ L @ ( plus_plus @ real @ ( F2 @ N5 ) @ E ) ) )
=> ( filterlim @ nat @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ L ) @ ( at_top @ nat ) ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_5713_lim__1__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( one_one @ A ) @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ).
% lim_1_over_n
thf(fact_5714_LIMSEQ__n__over__Suc__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_n_over_Suc_n
thf(fact_5715_LIMSEQ__Suc__n__over__n,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ ( suc @ N3 ) ) @ ( semiring_1_of_nat @ A @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( one_one @ A ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_Suc_n_over_n
thf(fact_5716_LIMSEQ__realpow__zero,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ X ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_5717_telescope__sums_H,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( sums @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
@ ( minus_minus @ A @ ( F2 @ ( zero_zero @ nat ) ) @ C2 ) ) ) ) ).
% telescope_sums'
thf(fact_5718_telescope__sums,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ ( at_top @ nat ) )
=> ( sums @ A
@ ^ [N3: nat] : ( minus_minus @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
@ ( minus_minus @ A @ C2 @ ( F2 @ ( zero_zero @ nat ) ) ) ) ) ) ).
% telescope_sums
thf(fact_5719_LIMSEQ__divide__realpow__zero,axiom,
! [X: real,A2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( divide_divide @ real @ A2 @ ( power_power @ real @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_5720_LIMSEQ__abs__realpow__zero,axiom,
! [C2: real] :
( ( ord_less @ real @ ( abs_abs @ real @ C2 ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ ( abs_abs @ real @ C2 ) ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_5721_LIMSEQ__abs__realpow__zero2,axiom,
! [C2: real] :
( ( ord_less @ real @ ( abs_abs @ real @ C2 ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real @ ( power_power @ real @ C2 ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_5722_LIMSEQ__inverse__realpow__zero,axiom,
! [X: real] :
( ( ord_less @ real @ ( one_one @ real ) @ X )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( inverse_inverse @ real @ ( power_power @ real @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_5723_sums__def_H,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ( ( sums @ A )
= ( ^ [F3: nat > A,S6: A] :
( filterlim @ nat @ A
@ ^ [N3: nat] : ( groups7311177749621191930dd_sum @ nat @ A @ F3 @ ( set_or1337092689740270186AtMost @ nat @ ( zero_zero @ nat ) @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ S6 )
@ ( at_top @ nat ) ) ) ) ) ).
% sums_def'
thf(fact_5724_root__test__convergence,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,X: real] :
( ( filterlim @ nat @ real
@ ^ [N3: nat] : ( root @ N3 @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( at_top @ nat ) )
=> ( ( ord_less @ real @ X @ ( one_one @ real ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% root_test_convergence
thf(fact_5725_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( plus_plus @ real @ R2 @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_5726_isCont__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [A2: A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ A2 ) )
=> ( ( ( F2 @ A2 )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ A2 ) )
=> ( topolo3448309680560233919inuous @ A @ real @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( log @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ) ) ).
% isCont_log
thf(fact_5727_LIMSEQ__D,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A,L5: A,R2: real] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [No: nat] :
! [N5: nat] :
( ( ord_less_eq @ nat @ No @ N5 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X6 @ N5 ) @ L5 ) ) @ R2 ) ) ) ) ) ).
% LIMSEQ_D
thf(fact_5728_LIMSEQ__I,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A,L5: A] :
( ! [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ? [No2: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ No2 @ N )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X6 @ N ) @ L5 ) ) @ R3 ) ) )
=> ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_I
thf(fact_5729_LIMSEQ__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A,L5: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ No3 @ N3 )
=> ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ ( X6 @ N3 ) @ L5 ) ) @ R5 ) ) ) ) ) ) ).
% LIMSEQ_iff
thf(fact_5730_LIMSEQ__power__zero,axiom,
! [A: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ A @ ( power_power @ A @ X ) @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_power_zero
thf(fact_5731_tendsto__power__zero,axiom,
! [A: $tType,B: $tType] :
( ( real_V2822296259951069270ebra_1 @ A )
=> ! [F2: B > nat,F4: filter @ B,X: A] :
( ( filterlim @ B @ nat @ F2 @ ( at_top @ nat ) @ F4 )
=> ( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ B @ A
@ ^ [Y2: B] : ( power_power @ A @ X @ ( F2 @ Y2 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ) ).
% tendsto_power_zero
thf(fact_5732_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R2: real] :
( filterlim @ nat @ real
@ ^ [N3: nat] : ( times_times @ real @ R2 @ ( plus_plus @ real @ ( one_one @ real ) @ ( uminus_uminus @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ N3 ) ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ R2 )
@ ( at_top @ nat ) ) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_5733_LIMSEQ__norm__0,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ! [N: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( suc @ N ) ) ) )
=> ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) ) ) ) ).
% LIMSEQ_norm_0
thf(fact_5734_summable__Leibniz_I1_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( A2 @ N3 ) ) ) ) ) ).
% summable_Leibniz(1)
thf(fact_5735_field__derivative__lim__unique,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,Df: A,Z2: A,S: nat > A,A2: A] :
( ( has_field_derivative @ A @ F2 @ Df @ ( topolo174197925503356063within @ A @ Z2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ nat @ A @ S @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] :
( ( S @ N )
!= ( zero_zero @ A ) )
=> ( ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( minus_minus @ A @ ( F2 @ ( plus_plus @ A @ Z2 @ ( S @ N3 ) ) ) @ ( F2 @ Z2 ) ) @ ( S @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ A2 )
@ ( at_top @ nat ) )
=> ( Df = A2 ) ) ) ) ) ) ).
% field_derivative_lim_unique
thf(fact_5736_powser__times__n__limit__0,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V8999393235501362500lgebra @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( times_times @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ) ).
% powser_times_n_limit_0
thf(fact_5737_lim__n__over__pown,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [X: A] :
( ( ord_less @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( divide_divide @ A @ ( semiring_1_of_nat @ A @ N3 ) @ ( power_power @ A @ X @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ ( at_top @ nat ) ) ) ) ).
% lim_n_over_pown
thf(fact_5738_summable,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( summable @ real
@ ^ [N3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ N3 ) @ ( A2 @ N3 ) ) ) ) ) ) ).
% summable
thf(fact_5739_cos__limit__1,axiom,
! [Theta: nat > real] :
( ( filterlim @ nat @ real
@ ^ [J3: nat] : ( cos @ real @ ( Theta @ J3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( one_one @ real ) )
@ ( at_top @ nat ) )
=> ? [K2: nat > int] :
( filterlim @ nat @ real
@ ^ [J3: nat] : ( minus_minus @ real @ ( Theta @ J3 ) @ ( times_times @ real @ ( ring_1_of_int @ real @ ( K2 @ J3 ) ) @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% cos_limit_1
thf(fact_5740_summable__Leibniz_I4_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) ) )
@ ( at_top @ nat ) ) ) ) ).
% summable_Leibniz(4)
thf(fact_5741_zeroseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( abs_abs @ real @ X ) @ ( one_one @ real ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] : ( times_times @ real @ ( divide_divide @ real @ ( one_one @ real ) @ ( semiring_1_of_nat @ real @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) ) @ ( power_power @ real @ X @ ( plus_plus @ nat @ ( times_times @ nat @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ nat ) ) ) ).
% zeroseq_arctan_series
thf(fact_5742_summable__Leibniz_H_I3_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) ) )
@ ( at_top @ nat ) ) ) ) ) ).
% summable_Leibniz'(3)
thf(fact_5743_summable__Leibniz_H_I2_J,axiom,
! [A2: nat > real,N2: nat] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( ord_less_eq @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) ) ) ) ) ) ).
% summable_Leibniz'(2)
thf(fact_5744_sums__alternating__upper__lower,axiom,
! [A2: nat > real] :
( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ? [L4: real] :
( ! [N5: nat] :
( ord_less_eq @ real
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) ) )
@ L4 )
& ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ L4 )
@ ( at_top @ nat ) )
& ! [N5: nat] :
( ord_less_eq @ real @ L4
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N5 ) @ ( one_one @ nat ) ) ) ) )
& ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ L4 )
@ ( at_top @ nat ) ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_5745_summable__Leibniz_I5_J,axiom,
! [A2: nat > real] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ( topological_monoseq @ real @ A2 )
=> ( filterlim @ nat @ real
@ ^ [N3: nat] :
( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N3 ) @ ( one_one @ nat ) ) ) )
@ ( topolo7230453075368039082e_nhds @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) ) )
@ ( at_top @ nat ) ) ) ) ).
% summable_Leibniz(5)
thf(fact_5746_summable__Leibniz_H_I4_J,axiom,
! [A2: nat > real,N2: nat] :
( ( filterlim @ nat @ real @ A2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( A2 @ N ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( A2 @ ( suc @ N ) ) @ ( A2 @ N ) )
=> ( ord_less_eq @ real
@ ( suminf @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) ) )
@ ( groups7311177749621191930dd_sum @ nat @ real
@ ^ [I3: nat] : ( times_times @ real @ ( power_power @ real @ ( uminus_uminus @ real @ ( one_one @ real ) ) @ I3 ) @ ( A2 @ I3 ) )
@ ( set_ord_lessThan @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) @ ( one_one @ nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_5747_filterlim__sequentially__Suc,axiom,
! [A: $tType,F2: nat > A,F4: filter @ A] :
( ( filterlim @ nat @ A
@ ^ [X3: nat] : ( F2 @ ( suc @ X3 ) )
@ F4
@ ( at_top @ nat ) )
= ( filterlim @ nat @ A @ F2 @ F4 @ ( at_top @ nat ) ) ) ).
% filterlim_sequentially_Suc
thf(fact_5748_has__derivative__at2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ( filterlim @ A @ B
@ ^ [Y2: A] : ( real_V8093663219630862766scaleR @ B @ ( divide_divide @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y2 @ X ) ) ) @ ( minus_minus @ B @ ( F2 @ Y2 ) @ ( plus_plus @ B @ ( F2 @ X ) @ ( F6 @ ( minus_minus @ A @ Y2 @ X ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% has_derivative_at2
thf(fact_5749_has__derivative__at,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,D4: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ D4 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ D4 )
& ( filterlim @ A @ real
@ ^ [H2: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ ( plus_plus @ A @ X @ H2 ) ) @ ( F2 @ X ) ) @ ( D4 @ H2 ) ) ) @ ( real_V7770717601297561774m_norm @ A @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ).
% has_derivative_at
thf(fact_5750_bounded__linear__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,G: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ( ( real_V3181309239436604168linear @ A @ B @ G )
=> ( real_V3181309239436604168linear @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ).
% bounded_linear_add
thf(fact_5751_bounded__linear__zero,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ( real_V3181309239436604168linear @ A @ B
@ ^ [X3: A] : ( zero_zero @ B ) ) ) ).
% bounded_linear_zero
thf(fact_5752_bounded__linear_Otendsto__zero,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,G: C > A,F4: filter @ C] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ( ( filterlim @ C @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ C @ B
@ ^ [X3: C] : ( F2 @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F4 ) ) ) ) ).
% bounded_linear.tendsto_zero
thf(fact_5753_bounded__linear_Ononneg__bounded,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ? [K8: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ K8 )
& ! [X2: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X2 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X2 ) @ K8 ) ) ) ) ) ).
% bounded_linear.nonneg_bounded
thf(fact_5754_bounded__linear_Opos__bounded,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B] :
( ( real_V3181309239436604168linear @ A @ B @ F2 )
=> ? [K8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K8 )
& ! [X2: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X2 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X2 ) @ K8 ) ) ) ) ) ).
% bounded_linear.pos_bounded
thf(fact_5755_bounded__linear__intro,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,K5: real] :
( ! [X4: A,Y4: A] :
( ( F2 @ ( plus_plus @ A @ X4 @ Y4 ) )
= ( plus_plus @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ! [R3: real,X4: A] :
( ( F2 @ ( real_V8093663219630862766scaleR @ A @ R3 @ X4 ) )
= ( real_V8093663219630862766scaleR @ B @ R3 @ ( F2 @ X4 ) ) )
=> ( ! [X4: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X4 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ X4 ) @ K5 ) )
=> ( real_V3181309239436604168linear @ A @ B @ F2 ) ) ) ) ) ).
% bounded_linear_intro
thf(fact_5756_filterlim__Suc,axiom,
filterlim @ nat @ nat @ suc @ ( at_top @ nat ) @ ( at_top @ nat ) ).
% filterlim_Suc
thf(fact_5757_has__derivative__iff__norm,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ( filterlim @ A @ real
@ ^ [Y2: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y2 ) @ ( F2 @ X ) ) @ ( F6 @ ( minus_minus @ A @ Y2 @ X ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y2 @ X ) ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_iff_norm
thf(fact_5758_has__derivative__at__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ( filterlim @ A @ B
@ ^ [Y2: A] : ( real_V8093663219630862766scaleR @ B @ ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y2 @ X ) ) ) @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y2 ) @ ( F2 @ X ) ) @ ( F6 @ ( minus_minus @ A @ Y2 @ X ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_at_within
thf(fact_5759_has__derivativeI,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F6: A > B,X: A,F2: A > B,S: set @ A] :
( ( real_V3181309239436604168linear @ A @ B @ F6 )
=> ( ( filterlim @ A @ B
@ ^ [Y2: A] : ( real_V8093663219630862766scaleR @ B @ ( inverse_inverse @ real @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y2 @ X ) ) ) @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y2 ) @ ( F2 @ X ) ) @ ( F6 @ ( minus_minus @ A @ Y2 @ X ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivativeI
thf(fact_5760_has__derivative__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ ( top_top @ ( set @ A ) ) ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ? [E3: A > B] :
( ! [H2: A] :
( ( F2 @ ( plus_plus @ A @ X @ H2 ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( F2 @ X ) @ ( F6 @ H2 ) ) @ ( E3 @ H2 ) ) )
& ( filterlim @ A @ real
@ ^ [H2: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( E3 @ H2 ) ) @ ( real_V7770717601297561774m_norm @ A @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% has_derivative_iff_Ex
thf(fact_5761_has__derivative__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A,S: set @ A] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ( filterlim @ A @ B
@ ^ [Y2: A] : ( real_V8093663219630862766scaleR @ B @ ( divide_divide @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y2 @ X ) ) ) @ ( minus_minus @ B @ ( F2 @ Y2 ) @ ( plus_plus @ B @ ( F2 @ X ) @ ( F6 @ ( minus_minus @ A @ Y2 @ X ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% has_derivative_within
thf(fact_5762_has__derivative__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ( ( has_derivative @ A @ B )
= ( ^ [F3: A > B,F8: A > B,F9: filter @ A] :
( ( real_V3181309239436604168linear @ A @ B @ F8 )
& ( filterlim @ A @ B
@ ^ [Y2: A] :
( real_V8093663219630862766scaleR @ B
@ ( inverse_inverse @ real
@ ( real_V7770717601297561774m_norm @ A
@ ( minus_minus @ A @ Y2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X3: A] : X3 ) ) ) )
@ ( minus_minus @ B
@ ( minus_minus @ B @ ( F3 @ Y2 )
@ ( F3
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X3: A] : X3 ) ) )
@ ( F8
@ ( minus_minus @ A @ Y2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F9
@ ^ [X3: A] : X3 ) ) ) ) )
@ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) )
@ F9 ) ) ) ) ) ).
% has_derivative_def
thf(fact_5763_has__derivative__at__within__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [X: A,S3: set @ A,F2: A > B,F6: A > B] :
( ( member @ A @ X @ S3 )
=> ( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
= ( ( real_V3181309239436604168linear @ A @ B @ F6 )
& ? [E3: A > B] :
( ! [H2: A] :
( ( member @ A @ ( plus_plus @ A @ X @ H2 ) @ S3 )
=> ( ( F2 @ ( plus_plus @ A @ X @ H2 ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( F2 @ X ) @ ( F6 @ H2 ) ) @ ( E3 @ H2 ) ) ) )
& ( filterlim @ A @ real
@ ^ [H2: A] : ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( E3 @ H2 ) ) @ ( real_V7770717601297561774m_norm @ A @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ) ).
% has_derivative_at_within_iff_Ex
thf(fact_5764_has__derivativeI__sandwich,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [E2: real,F6: A > B,S: set @ A,X: A,F2: A > B,H6: A > real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( ( real_V3181309239436604168linear @ A @ B @ F6 )
=> ( ! [Y4: A] :
( ( member @ A @ Y4 @ S )
=> ( ( Y4 != X )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y4 @ X ) @ E2 )
=> ( ord_less_eq @ real @ ( divide_divide @ real @ ( real_V7770717601297561774m_norm @ B @ ( minus_minus @ B @ ( minus_minus @ B @ ( F2 @ Y4 ) @ ( F2 @ X ) ) @ ( F6 @ ( minus_minus @ A @ Y4 @ X ) ) ) ) @ ( real_V7770717601297561774m_norm @ A @ ( minus_minus @ A @ Y4 @ X ) ) ) @ ( H6 @ Y4 ) ) ) ) )
=> ( ( filterlim @ A @ real @ H6 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ) ).
% has_derivativeI_sandwich
thf(fact_5765_dist__add__cancel,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( real_V557655796197034286t_dist @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( plus_plus @ A @ A2 @ C2 ) )
= ( real_V557655796197034286t_dist @ A @ B2 @ C2 ) ) ) ).
% dist_add_cancel
thf(fact_5766_dist__add__cancel2,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [B2: A,A2: A,C2: A] :
( ( real_V557655796197034286t_dist @ A @ ( plus_plus @ A @ B2 @ A2 ) @ ( plus_plus @ A @ C2 @ A2 ) )
= ( real_V557655796197034286t_dist @ A @ B2 @ C2 ) ) ) ).
% dist_add_cancel2
thf(fact_5767_dist__eq__0__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ( real_V557655796197034286t_dist @ A @ X @ Y )
= ( zero_zero @ real ) )
= ( X = Y ) ) ) ).
% dist_eq_0_iff
thf(fact_5768_dist__self,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A] :
( ( real_V557655796197034286t_dist @ A @ X @ X )
= ( zero_zero @ real ) ) ) ).
% dist_self
thf(fact_5769_dist__0__norm,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X: A] :
( ( real_V557655796197034286t_dist @ A @ ( zero_zero @ A ) @ X )
= ( real_V7770717601297561774m_norm @ A @ X ) ) ) ).
% dist_0_norm
thf(fact_5770_zero__less__dist__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) )
= ( X != Y ) ) ) ).
% zero_less_dist_iff
thf(fact_5771_dist__le__zero__iff,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ ( zero_zero @ real ) )
= ( X = Y ) ) ) ).
% dist_le_zero_iff
thf(fact_5772_dist__triangle__less__add,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X15: A,Y: A,E1: real,X22: A,E22: real] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ Y ) @ E1 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X22 @ Y ) @ E22 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X22 ) @ ( plus_plus @ real @ E1 @ E22 ) ) ) ) ) ).
% dist_triangle_less_add
thf(fact_5773_dist__triangle__lt,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Z2: A,Y: A,E2: real] :
( ( ord_less @ real @ ( plus_plus @ real @ ( real_V557655796197034286t_dist @ A @ X @ Z2 ) @ ( real_V557655796197034286t_dist @ A @ Y @ Z2 ) ) @ E2 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ E2 ) ) ) ).
% dist_triangle_lt
thf(fact_5774_norm__conv__dist,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ( ( real_V7770717601297561774m_norm @ A )
= ( ^ [X3: A] : ( real_V557655796197034286t_dist @ A @ X3 @ ( zero_zero @ A ) ) ) ) ) ).
% norm_conv_dist
thf(fact_5775_dist__not__less__zero,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
~ ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ ( zero_zero @ real ) ) ) ).
% dist_not_less_zero
thf(fact_5776_dist__pos__lt,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) ) ) ) ).
% dist_pos_lt
thf(fact_5777_open__ball,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,D2: real] :
( topolo1002775350975398744n_open @ A
@ ( collect @ A
@ ^ [Y2: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y2 ) @ D2 ) ) ) ) ).
% open_ball
thf(fact_5778_open__dist,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo1002775350975398744n_open @ A )
= ( ^ [S7: set @ A] :
! [X3: A] :
( ( member @ A @ X3 @ S7 )
=> ? [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
& ! [Y2: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y2 @ X3 ) @ E3 )
=> ( member @ A @ Y2 @ S7 ) ) ) ) ) ) ) ).
% open_dist
thf(fact_5779_dist__commute__lessI,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [Y: A,X: A,E2: real] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y @ X ) @ E2 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X @ Y ) @ E2 ) ) ) ).
% dist_commute_lessI
thf(fact_5780_zero__le__dist,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X @ Y ) ) ) ).
% zero_le_dist
thf(fact_5781_Inf__notin__open,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ! [A4: set @ A,X: A] :
( ( topolo1002775350975398744n_open @ A @ A4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less @ A @ X @ X4 ) )
=> ~ ( member @ A @ ( complete_Inf_Inf @ A @ A4 ) @ A4 ) ) ) ) ).
% Inf_notin_open
thf(fact_5782_Sup__notin__open,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ! [A4: set @ A,X: A] :
( ( topolo1002775350975398744n_open @ A @ A4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less @ A @ X4 @ X ) )
=> ~ ( member @ A @ ( complete_Sup_Sup @ A @ A4 ) @ A4 ) ) ) ) ).
% Sup_notin_open
thf(fact_5783_open__right,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A,X: A,Y: A] :
( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( member @ A @ X @ S3 )
=> ( ( ord_less @ A @ X @ Y )
=> ? [B5: A] :
( ( ord_less @ A @ X @ B5 )
& ( ord_less_eq @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ X @ B5 ) @ S3 ) ) ) ) ) ) ).
% open_right
thf(fact_5784_open__left,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A,X: A,Y: A] :
( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( member @ A @ X @ S3 )
=> ( ( ord_less @ A @ Y @ X )
=> ? [B5: A] :
( ( ord_less @ A @ B5 @ X )
& ( ord_less_eq @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ B5 @ X ) @ S3 ) ) ) ) ) ) ).
% open_left
thf(fact_5785_filterlim__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [G: A > B,G5: filter @ B,X: A,S3: set @ A,F4: filter @ B,D2: real,F2: A > B] :
( ( filterlim @ A @ B @ G @ G5 @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( ( ord_less_eq @ ( filter @ B ) @ G5 @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [X10: A] :
( ( member @ A @ X10 @ S3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X10 @ X ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X10 @ X ) @ D2 )
=> ( ( F2 @ X10 )
= ( G @ X10 ) ) ) ) )
=> ( filterlim @ A @ B @ F2 @ F4 @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ) ) ) ).
% filterlim_transform_within
thf(fact_5786_has__field__derivative__transform__within,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,F6: A,A2: A,S3: set @ A,D2: real,G: A > A] :
( ( has_field_derivative @ A @ F2 @ F6 @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ( member @ A @ A2 @ S3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X4 @ A2 ) @ D2 )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) ) )
=> ( has_field_derivative @ A @ G @ F6 @ ( topolo174197925503356063within @ A @ A2 @ S3 ) ) ) ) ) ) ) ).
% has_field_derivative_transform_within
thf(fact_5787_has__derivative__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F6: A > B,X: A,S: set @ A,D2: real,G: A > B] :
( ( has_derivative @ A @ B @ F2 @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ( member @ A @ X @ S )
=> ( ! [X10: A] :
( ( member @ A @ X10 @ S )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X10 @ X ) @ D2 )
=> ( ( F2 @ X10 )
= ( G @ X10 ) ) ) )
=> ( has_derivative @ A @ B @ G @ F6 @ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ) ).
% has_derivative_transform_within
thf(fact_5788_metric__CauchyI,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M5: nat] :
( ( ord_less_eq @ nat @ M10 @ M5 )
=> ! [N: nat] :
( ( ord_less_eq @ nat @ M10 @ N )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ M5 ) @ ( X6 @ N ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X6 ) ) ) ).
% metric_CauchyI
thf(fact_5789_metric__CauchyD,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,E2: real] :
( ( topolo3814608138187158403Cauchy @ A @ X6 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq @ nat @ M8 @ M2 )
=> ! [N5: nat] :
( ( ord_less_eq @ nat @ M8 @ N5 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ M2 ) @ ( X6 @ N5 ) ) @ E2 ) ) ) ) ) ) ).
% metric_CauchyD
thf(fact_5790_Cauchy__altdef2,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [S6: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( S6 @ N3 ) @ ( S6 @ N6 ) ) @ E3 ) ) ) ) ) ) ).
% Cauchy_altdef2
thf(fact_5791_Cauchy__def,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X7: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ M9 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_def
thf(fact_5792_lim__explicit,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,F0: A] :
( ( filterlim @ nat @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ F0 ) @ ( at_top @ nat ) )
= ( ! [S7: set @ A] :
( ( topolo1002775350975398744n_open @ A @ S7 )
=> ( ( member @ A @ F0 @ S7 )
=> ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ( member @ A @ ( F2 @ N3 ) @ S7 ) ) ) ) ) ) ) ).
% lim_explicit
thf(fact_5793_continuous__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F4: filter @ A,F2: A > B,G: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F4 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ B @ F4 @ G )
=> ( ( ( G
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F4
@ ^ [X3: A] : ( divide_divide @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_divide
thf(fact_5794_continuous__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [F4: filter @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F4 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F4
@ ^ [X3: A] : ( inverse_inverse @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_inverse
thf(fact_5795_continuous__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F4: filter @ A,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ F4 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F4
@ ^ [X3: A] : ( sgn_sgn @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_sgn
thf(fact_5796_dist__triangle__half__r,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [Y: A,X15: A,E2: real,X22: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y @ X15 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y @ X22 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X22 ) @ E2 ) ) ) ) ).
% dist_triangle_half_r
thf(fact_5797_dist__triangle__half__l,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X15: A,Y: A,E2: real,X22: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ Y ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X22 @ Y ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X22 ) @ E2 ) ) ) ) ).
% dist_triangle_half_l
thf(fact_5798_Lim__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,L: B,X: A,S3: set @ A,D2: real,G: A > B] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ X @ S3 ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ D2 )
=> ( ! [X10: A] :
( ( member @ A @ X10 @ S3 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( real_V557655796197034286t_dist @ A @ X10 @ X ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X10 @ X ) @ D2 )
=> ( ( F2 @ X10 )
= ( G @ X10 ) ) ) ) )
=> ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ) ) ).
% Lim_transform_within
thf(fact_5799_dist__triangle__third,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X15: A,X22: A,E2: real,X32: A,X42: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X22 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X22 @ X32 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X32 @ X42 ) @ ( divide_divide @ real @ E2 @ ( numeral_numeral @ real @ ( bit1 @ one2 ) ) ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X15 @ X42 ) @ E2 ) ) ) ) ) ).
% dist_triangle_third
thf(fact_5800_continuous__powr,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F4: filter @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F4 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ F4 @ G )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F4
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_powr
thf(fact_5801_continuous__ln,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F4: filter @ A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F4 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ real ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F4
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_ln
thf(fact_5802_CauchyI_H,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ? [M10: nat] :
! [M5: nat] :
( ( ord_less_eq @ nat @ M10 @ M5 )
=> ! [N: nat] :
( ( ord_less @ nat @ M5 @ N )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ M5 ) @ ( X6 @ N ) ) @ E ) ) ) )
=> ( topolo3814608138187158403Cauchy @ A @ X6 ) ) ) ).
% CauchyI'
thf(fact_5803_Cauchy__altdef,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [F3: nat > A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ M9 @ M6 )
=> ! [N3: nat] :
( ( ord_less @ nat @ M6 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F3 @ M6 ) @ ( F3 @ N3 ) ) @ E3 ) ) ) ) ) ) ) ).
% Cauchy_altdef
thf(fact_5804_tendsto__dist__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ B )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 )
= ( filterlim @ A @ real
@ ^ [X3: A] : ( real_V557655796197034286t_dist @ B @ ( F2 @ X3 ) @ L )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ) ).
% tendsto_dist_iff
thf(fact_5805_LIM__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [F2: A > B,L5: B,A2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [S6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S6 )
& ! [X3: A] :
( ( ( X3 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ A2 ) @ S6 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X3 ) @ L5 ) @ R5 ) ) ) ) ) ) ) ).
% LIM_def
thf(fact_5806_metric__LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [F2: A > B,L5: B,A2: A,R2: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [S2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S2 )
& ! [X2: A] :
( ( ( X2 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X2 @ A2 ) @ S2 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X2 ) @ L5 ) @ R2 ) ) ) ) ) ) ).
% metric_LIM_D
thf(fact_5807_metric__LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [A2: A,F2: A > B,L5: B] :
( ! [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ? [S8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S8 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X4 @ A2 ) @ S8 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X4 ) @ L5 ) @ R3 ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% metric_LIM_I
thf(fact_5808_metric__LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [G: A > B,L: B,A2: A,R: real,F2: A > B] :
( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R )
=> ( ! [X4: A] :
( ( X4 != A2 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X4 @ A2 ) @ R )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) ) )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_LIM_equal2
thf(fact_5809_metric__LIMSEQ__D,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,L5: A,R2: real] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ? [No: nat] :
! [N5: nat] :
( ( ord_less_eq @ nat @ No @ N5 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ N5 ) @ L5 ) @ R2 ) ) ) ) ) ).
% metric_LIMSEQ_D
thf(fact_5810_metric__LIMSEQ__I,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,L5: A] :
( ! [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ? [No2: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ No2 @ N )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ N ) @ L5 ) @ R3 ) ) )
=> ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) ) ) ) ).
% metric_LIMSEQ_I
thf(fact_5811_lim__sequentially,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,L5: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ No3 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ N3 ) @ L5 ) @ R5 ) ) ) ) ) ) ).
% lim_sequentially
thf(fact_5812_metric__Cauchy__iff2,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X7: nat > A] :
! [J3: nat] :
? [M9: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ M9 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ M9 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ ( suc @ J3 ) ) ) ) ) ) ) ) ) ).
% metric_Cauchy_iff2
thf(fact_5813_metric__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [F2: A > B,B2: B,A2: A,G: B > C,C2: C] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ B2 ) @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
=> ( ( filterlim @ B @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ C2 ) @ ( topolo174197925503356063within @ B @ B2 @ ( top_top @ ( set @ B ) ) ) )
=> ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X4 @ A2 ) @ D3 ) )
=> ( ( F2 @ X4 )
!= B2 ) ) )
=> ( filterlim @ A @ C
@ ^ [X3: A] : ( G @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ C2 )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_LIM_compose2
thf(fact_5814_continuous__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F4: filter @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ F4 @ F2 )
=> ( ( ( cos @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ F4
@ ^ [X3: A] : ( tan @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_tan
thf(fact_5815_continuous__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F4: filter @ A,F2: A > A] :
( ( topolo3448309680560233919inuous @ A @ A @ F4 @ F2 )
=> ( ( ( sin @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ A @ A @ F4
@ ^ [X3: A] : ( cot @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_cot
thf(fact_5816_continuous__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topological_t2_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F4: filter @ C,F2: C > A] :
( ( topolo3448309680560233919inuous @ C @ A @ F4 @ F2 )
=> ( ( ( cosh @ A
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ C @ C @ F4
@ ^ [X3: C] : X3 ) ) )
!= ( zero_zero @ A ) )
=> ( topolo3448309680560233919inuous @ C @ A @ F4
@ ^ [X3: C] : ( tanh @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_tanh
thf(fact_5817_continuous__arcosh,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F4: filter @ A,F2: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F4 @ F2 )
=> ( ( ord_less @ real @ ( one_one @ real )
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F4
@ ^ [X3: A] : ( arcosh @ real @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_arcosh
thf(fact_5818_metric__isCont__LIM__compose2,axiom,
! [D: $tType,C: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( topolo4958980785337419405_space @ C )
& ( topolo4958980785337419405_space @ D ) )
=> ! [A2: A,F2: A > C,G: C > D,L: D] :
( ( topolo3448309680560233919inuous @ A @ C @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) @ F2 )
=> ( ( filterlim @ C @ D @ G @ ( topolo7230453075368039082e_nhds @ D @ L ) @ ( topolo174197925503356063within @ C @ ( F2 @ A2 ) @ ( top_top @ ( set @ C ) ) ) )
=> ( ? [D3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D3 )
& ! [X4: A] :
( ( ( X4 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X4 @ A2 ) @ D3 ) )
=> ( ( F2 @ X4 )
!= ( F2 @ A2 ) ) ) )
=> ( filterlim @ A @ D
@ ^ [X3: A] : ( G @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ D @ L )
@ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ).
% metric_isCont_LIM_compose2
thf(fact_5819_tendsto__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( topolo4958980785337419405_space @ D )
& ( zero @ C ) )
=> ! [A2: A,S3: set @ A,F2: A > D,L5: D] :
( ( nO_MATCH @ C @ A @ ( zero_zero @ C ) @ A2 )
=> ( ( member @ A @ A2 @ S3 )
=> ( ( topolo1002775350975398744n_open @ A @ S3 )
=> ( ( filterlim @ A @ D @ F2 @ ( topolo7230453075368039082e_nhds @ D @ L5 ) @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( filterlim @ A @ D
@ ^ [H2: A] : ( F2 @ ( plus_plus @ A @ A2 @ H2 ) )
@ ( topolo7230453075368039082e_nhds @ D @ L5 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% tendsto_offset_zero_iff
thf(fact_5820_continuous__log,axiom,
! [A: $tType] :
( ( topological_t2_space @ A )
=> ! [F4: filter @ A,F2: A > real,G: A > real] :
( ( topolo3448309680560233919inuous @ A @ real @ F4 @ F2 )
=> ( ( topolo3448309680560233919inuous @ A @ real @ F4 @ G )
=> ( ( ord_less @ real @ ( zero_zero @ real )
@ ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) ) )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( one_one @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real )
@ ( G
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) ) )
=> ( topolo3448309680560233919inuous @ A @ real @ F4
@ ^ [X3: A] : ( log @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ) ) ).
% continuous_log
thf(fact_5821_LIMSEQ__iff__nz,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,L5: A] :
( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [No3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ No3 )
& ! [N3: nat] :
( ( ord_less_eq @ nat @ No3 @ N3 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( X6 @ N3 ) @ L5 ) @ R5 ) ) ) ) ) ) ) ).
% LIMSEQ_iff_nz
thf(fact_5822_totally__bounded__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo6688025880775521714ounded @ A )
= ( ^ [S7: set @ A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [K3: set @ A] :
( ( finite_finite @ A @ K3 )
& ( ord_less_eq @ ( set @ A ) @ S7
@ ( complete_Sup_Sup @ ( set @ A )
@ ( image @ A @ ( set @ A )
@ ^ [X3: A] :
( collect @ A
@ ^ [Y2: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ Y2 ) @ E3 ) )
@ K3 ) ) ) ) ) ) ) ) ).
% totally_bounded_metric
thf(fact_5823_tendsto__exp__limit__at__right,axiom,
! [X: real] :
( filterlim @ real @ real
@ ^ [Y2: real] : ( powr @ real @ ( plus_plus @ real @ ( one_one @ real ) @ ( times_times @ real @ X @ Y2 ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ Y2 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( exp @ real @ X ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ).
% tendsto_exp_limit_at_right
thf(fact_5824_lim__zero__infinity,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,L: A] :
( ( filterlim @ A @ A
@ ^ [X3: A] : ( F2 @ ( divide_divide @ A @ ( one_one @ A ) @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) )
=> ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_infinity @ A ) ) ) ) ).
% lim_zero_infinity
thf(fact_5825_greaterThan__eq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ( set_ord_greaterThan @ A @ X )
= ( set_ord_greaterThan @ A @ Y ) )
= ( X = Y ) ) ) ).
% greaterThan_eq_iff
thf(fact_5826_greaterThan__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,K: A] :
( ( member @ A @ I @ ( set_ord_greaterThan @ A @ K ) )
= ( ord_less @ A @ K @ I ) ) ) ).
% greaterThan_iff
thf(fact_5827_Inf__greaterThan,axiom,
! [A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( dense_linorder @ A ) )
=> ! [X: A] :
( ( complete_Inf_Inf @ A @ ( set_ord_greaterThan @ A @ X ) )
= X ) ) ).
% Inf_greaterThan
thf(fact_5828_greaterThan__subset__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_greaterThan @ A @ X ) @ ( set_ord_greaterThan @ A @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% greaterThan_subset_iff
thf(fact_5829_Compl__atMost,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [K: A] :
( ( uminus_uminus @ ( set @ A ) @ ( set_ord_atMost @ A @ K ) )
= ( set_ord_greaterThan @ A @ K ) ) ) ).
% Compl_atMost
thf(fact_5830_Compl__greaterThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [K: A] :
( ( uminus_uminus @ ( set @ A ) @ ( set_ord_greaterThan @ A @ K ) )
= ( set_ord_atMost @ A @ K ) ) ) ).
% Compl_greaterThan
thf(fact_5831_Sup__greaterThanAtLeast,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( ord_less @ A @ X @ ( top_top @ A ) )
=> ( ( complete_Sup_Sup @ A @ ( set_ord_greaterThan @ A @ X ) )
= ( top_top @ A ) ) ) ) ).
% Sup_greaterThanAtLeast
thf(fact_5832_image__uminus__lessThan,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_ord_lessThan @ A @ X ) )
= ( set_ord_greaterThan @ A @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_lessThan
thf(fact_5833_image__uminus__greaterThan,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_ord_greaterThan @ A @ X ) )
= ( set_ord_lessThan @ A @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_greaterThan
thf(fact_5834_infinite__Ioi,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [A2: A] :
~ ( finite_finite @ A @ ( set_ord_greaterThan @ A @ A2 ) ) ) ).
% infinite_Ioi
thf(fact_5835_greaterThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_greaterThan @ A )
= ( ^ [L2: A] : ( collect @ A @ ( ord_less @ A @ L2 ) ) ) ) ) ).
% greaterThan_def
thf(fact_5836_greaterThan__non__empty,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
( ( set_ord_greaterThan @ A @ X )
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% greaterThan_non_empty
thf(fact_5837_less__filter__def,axiom,
! [A: $tType] :
( ( ord_less @ ( filter @ A ) )
= ( ^ [F9: filter @ A,F10: filter @ A] :
( ( ord_less_eq @ ( filter @ A ) @ F9 @ F10 )
& ~ ( ord_less_eq @ ( filter @ A ) @ F10 @ F9 ) ) ) ) ).
% less_filter_def
thf(fact_5838_at__within__Icc__at__right,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( topolo174197925503356063within @ A @ A2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
= ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ).
% at_within_Icc_at_right
thf(fact_5839_ivl__disj__un__one_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( set_ord_greaterThan @ A @ L ) ) ) ) ).
% ivl_disj_un_one(5)
thf(fact_5840_filterlim__at__right__to__0,axiom,
! [A: $tType,F2: real > A,F4: filter @ A,A2: real] :
( ( filterlim @ real @ A @ F2 @ F4 @ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) ) )
= ( filterlim @ real @ A
@ ^ [X3: real] : ( F2 @ ( plus_plus @ real @ X3 @ A2 ) )
@ F4
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% filterlim_at_right_to_0
thf(fact_5841_tendsto__add__filterlim__at__infinity,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,C2: B,F4: filter @ A,G: A > B] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ C2 ) @ F4 )
=> ( ( filterlim @ A @ B @ G @ ( at_infinity @ B ) @ F4 )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_infinity @ B )
@ F4 ) ) ) ) ).
% tendsto_add_filterlim_at_infinity
thf(fact_5842_tendsto__add__filterlim__at__infinity_H,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A,G: A > B,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_infinity @ B ) @ F4 )
=> ( ( filterlim @ A @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ C2 ) @ F4 )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_infinity @ B )
@ F4 ) ) ) ) ).
% tendsto_add_filterlim_at_infinity'
thf(fact_5843_tendsto__inverse__0,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ( filterlim @ A @ A @ ( inverse_inverse @ A ) @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ ( at_infinity @ A ) ) ) ).
% tendsto_inverse_0
thf(fact_5844_filterlim__times__pos,axiom,
! [A: $tType,B: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [F2: B > A,P6: A,F13: filter @ B,C2: A,L: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo174197925503356063within @ A @ P6 @ ( set_ord_greaterThan @ A @ P6 ) ) @ F13 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( L
= ( times_times @ A @ C2 @ P6 ) )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( times_times @ A @ C2 @ ( F2 @ X3 ) )
@ ( topolo174197925503356063within @ A @ L @ ( set_ord_greaterThan @ A @ L ) )
@ F13 ) ) ) ) ) ).
% filterlim_times_pos
thf(fact_5845_tendsto__mult__filterlim__at__infinity,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: B > A,C2: A,F4: filter @ B,G: B > A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F4 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( ( filterlim @ B @ A @ G @ ( at_infinity @ A ) @ F4 )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_infinity @ A )
@ F4 ) ) ) ) ) ).
% tendsto_mult_filterlim_at_infinity
thf(fact_5846_tendsto__divide__0,axiom,
! [A: $tType,C: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: C > A,C2: A,F4: filter @ C,G: C > A] :
( ( filterlim @ C @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F4 )
=> ( ( filterlim @ C @ A @ G @ ( at_infinity @ A ) @ F4 )
=> ( filterlim @ C @ A
@ ^ [X3: C] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) )
@ F4 ) ) ) ) ).
% tendsto_divide_0
thf(fact_5847_filterlim__power__at__infinity,axiom,
! [B: $tType,A: $tType] :
( ( real_V8999393235501362500lgebra @ B )
=> ! [F2: A > B,F4: filter @ A,N2: nat] :
( ( filterlim @ A @ B @ F2 @ ( at_infinity @ B ) @ F4 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( filterlim @ A @ B
@ ^ [X3: A] : ( power_power @ B @ ( F2 @ X3 ) @ N2 )
@ ( at_infinity @ B )
@ F4 ) ) ) ) ).
% filterlim_power_at_infinity
thf(fact_5848_tendsto__arcosh__at__left__1,axiom,
filterlim @ real @ real @ ( arcosh @ real ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( one_one @ real ) @ ( set_ord_greaterThan @ real @ ( one_one @ real ) ) ) ).
% tendsto_arcosh_at_left_1
thf(fact_5849_filterlim__inverse__at__infinity,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ( filterlim @ A @ A @ ( inverse_inverse @ A ) @ ( at_infinity @ A ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% filterlim_inverse_at_infinity
thf(fact_5850_filterlim__inverse__at__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V8999393235501362500lgebra @ B )
=> ! [G: A > B,F4: filter @ A] :
( ( filterlim @ A @ B
@ ^ [X3: A] : ( inverse_inverse @ B @ ( G @ X3 ) )
@ ( topolo174197925503356063within @ B @ ( zero_zero @ B ) @ ( top_top @ ( set @ B ) ) )
@ F4 )
= ( filterlim @ A @ B @ G @ ( at_infinity @ B ) @ F4 ) ) ) ).
% filterlim_inverse_at_iff
thf(fact_5851_isCont__If__ge,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [A2: A,G: A > B,F2: A > B] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) @ G )
=> ( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( G @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
@ ^ [X3: A] : ( if @ B @ ( ord_less_eq @ A @ X3 @ A2 ) @ ( G @ X3 ) @ ( F2 @ X3 ) ) ) ) ) ) ).
% isCont_If_ge
thf(fact_5852_filterlim__divide__at__infinity,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,C2: A,F4: filter @ A,G: A > A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ F4 )
=> ( ( filterlim @ A @ A @ G @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) @ F4 )
=> ( ( C2
!= ( zero_zero @ A ) )
=> ( filterlim @ A @ A
@ ^ [X3: A] : ( divide_divide @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_infinity @ A )
@ F4 ) ) ) ) ) ).
% filterlim_divide_at_infinity
thf(fact_5853_filterlim__realpow__sequentially__gt1,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [X: A] :
( ( ord_less @ real @ ( one_one @ real ) @ ( real_V7770717601297561774m_norm @ A @ X ) )
=> ( filterlim @ nat @ A @ ( power_power @ A @ X ) @ ( at_infinity @ A ) @ ( at_top @ nat ) ) ) ) ).
% filterlim_realpow_sequentially_gt1
thf(fact_5854_lim__at__infinity__0,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,L: A] :
( ( filterlim @ A @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( at_infinity @ A ) )
= ( filterlim @ A @ A @ ( comp @ A @ A @ A @ F2 @ ( inverse_inverse @ A ) ) @ ( topolo7230453075368039082e_nhds @ A @ L ) @ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% lim_at_infinity_0
thf(fact_5855_interval__cases,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [S3: set @ A] :
( ! [A5: A,B5: A,X4: A] :
( ( member @ A @ A5 @ S3 )
=> ( ( member @ A @ B5 @ S3 )
=> ( ( ord_less_eq @ A @ A5 @ X4 )
=> ( ( ord_less_eq @ A @ X4 @ B5 )
=> ( member @ A @ X4 @ S3 ) ) ) ) )
=> ? [A5: A,B5: A] :
( ( S3
= ( bot_bot @ ( set @ A ) ) )
| ( S3
= ( top_top @ ( set @ A ) ) )
| ( S3
= ( set_ord_lessThan @ A @ B5 ) )
| ( S3
= ( set_ord_atMost @ A @ B5 ) )
| ( S3
= ( set_ord_greaterThan @ A @ A5 ) )
| ( S3
= ( set_ord_atLeast @ A @ A5 ) )
| ( S3
= ( set_or5935395276787703475ssThan @ A @ A5 @ B5 ) )
| ( S3
= ( set_or3652927894154168847AtMost @ A @ A5 @ B5 ) )
| ( S3
= ( set_or7035219750837199246ssThan @ A @ A5 @ B5 ) )
| ( S3
= ( set_or1337092689740270186AtMost @ A @ A5 @ B5 ) ) ) ) ) ).
% interval_cases
thf(fact_5856_polyfun__extremal,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [C2: nat > A,K: nat,N2: nat,B4: real] :
( ( ( C2 @ K )
!= ( zero_zero @ A ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ K )
=> ( ( ord_less_eq @ nat @ K @ N2 )
=> ( eventually @ A
@ ^ [Z5: A] :
( ord_less_eq @ real @ B4
@ ( real_V7770717601297561774m_norm @ A
@ ( groups7311177749621191930dd_sum @ nat @ A
@ ^ [I3: nat] : ( times_times @ A @ ( C2 @ I3 ) @ ( power_power @ A @ Z5 @ I3 ) )
@ ( set_ord_atMost @ nat @ N2 ) ) ) )
@ ( at_infinity @ A ) ) ) ) ) ) ).
% polyfun_extremal
thf(fact_5857_filterlim__pow__at__bot__odd,axiom,
! [N2: nat,F2: real > real,F4: filter @ real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( filterlim @ real @ real @ F2 @ ( at_bot @ real ) @ F4 )
=> ( ~ ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( power_power @ real @ ( F2 @ X3 ) @ N2 )
@ ( at_bot @ real )
@ F4 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_5858_atLeast__eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ( set_ord_atLeast @ A @ X )
= ( set_ord_atLeast @ A @ Y ) )
= ( X = Y ) ) ) ).
% atLeast_eq_iff
thf(fact_5859_atLeast__0,axiom,
( ( set_ord_atLeast @ nat @ ( zero_zero @ nat ) )
= ( top_top @ ( set @ nat ) ) ) ).
% atLeast_0
thf(fact_5860_atLeast__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I: A,K: A] :
( ( member @ A @ I @ ( set_ord_atLeast @ A @ K ) )
= ( ord_less_eq @ A @ K @ I ) ) ) ).
% atLeast_iff
thf(fact_5861_Inf__atLeast,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( complete_Inf_Inf @ A @ ( set_ord_atLeast @ A @ X ) )
= X ) ) ).
% Inf_atLeast
thf(fact_5862_eventually__sequentially__Suc,axiom,
! [P: nat > $o] :
( ( eventually @ nat
@ ^ [I3: nat] : ( P @ ( suc @ I3 ) )
@ ( at_top @ nat ) )
= ( eventually @ nat @ P @ ( at_top @ nat ) ) ) ).
% eventually_sequentially_Suc
thf(fact_5863_atLeast__empty__triv,axiom,
! [A: $tType] :
( ( set_ord_atLeast @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) )
= ( top_top @ ( set @ ( set @ A ) ) ) ) ).
% atLeast_empty_triv
thf(fact_5864_eventually__sequentially__seg,axiom,
! [P: nat > $o,K: nat] :
( ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) )
= ( eventually @ nat @ P @ ( at_top @ nat ) ) ) ).
% eventually_sequentially_seg
thf(fact_5865_atLeast__subset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atLeast @ A @ X ) @ ( set_ord_atLeast @ A @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% atLeast_subset_iff
thf(fact_5866_image__add__atLeast,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A,I: A] :
( ( image @ A @ A @ ( plus_plus @ A @ K ) @ ( set_ord_atLeast @ A @ I ) )
= ( set_ord_atLeast @ A @ ( plus_plus @ A @ K @ I ) ) ) ) ).
% image_add_atLeast
thf(fact_5867_Sup__atLeast,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X: A] :
( ( complete_Sup_Sup @ A @ ( set_ord_atLeast @ A @ X ) )
= ( top_top @ A ) ) ) ).
% Sup_atLeast
thf(fact_5868_Compl__atLeast,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [K: A] :
( ( uminus_uminus @ ( set @ A ) @ ( set_ord_atLeast @ A @ K ) )
= ( set_ord_lessThan @ A @ K ) ) ) ).
% Compl_atLeast
thf(fact_5869_Compl__lessThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [K: A] :
( ( uminus_uminus @ ( set @ A ) @ ( set_ord_lessThan @ A @ K ) )
= ( set_ord_atLeast @ A @ K ) ) ) ).
% Compl_lessThan
thf(fact_5870_Icc__subset__Ici__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [L: A,H: A,L3: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ H ) @ ( set_ord_atLeast @ A @ L3 ) )
= ( ~ ( ord_less_eq @ A @ L @ H )
| ( ord_less_eq @ A @ L3 @ L ) ) ) ) ).
% Icc_subset_Ici_iff
thf(fact_5871_image__minus__const__AtMost,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,B2: A] :
( ( image @ A @ A @ ( minus_minus @ A @ C2 ) @ ( set_ord_atMost @ A @ B2 ) )
= ( set_ord_atLeast @ A @ ( minus_minus @ A @ C2 @ B2 ) ) ) ) ).
% image_minus_const_AtMost
thf(fact_5872_image__minus__const__atLeast,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C2: A,A2: A] :
( ( image @ A @ A @ ( minus_minus @ A @ C2 ) @ ( set_ord_atLeast @ A @ A2 ) )
= ( set_ord_atMost @ A @ ( minus_minus @ A @ C2 @ A2 ) ) ) ) ).
% image_minus_const_atLeast
thf(fact_5873_image__uminus__atLeast,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_ord_atLeast @ A @ X ) )
= ( set_ord_atMost @ A @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_atLeast
thf(fact_5874_image__uminus__atMost,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [X: A] :
( ( image @ A @ A @ ( uminus_uminus @ A ) @ ( set_ord_atMost @ A @ X ) )
= ( set_ord_atLeast @ A @ ( uminus_uminus @ A @ X ) ) ) ) ).
% image_uminus_atMost
thf(fact_5875_atLeast__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_atLeast @ A )
= ( ^ [L2: A] : ( collect @ A @ ( ord_less_eq @ A @ L2 ) ) ) ) ) ).
% atLeast_def
thf(fact_5876_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast @ nat @ ( suc @ K ) )
= ( set_ord_greaterThan @ nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_5877_eventually__le__at__bot,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A] :
( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ A @ X3 @ C2 )
@ ( at_bot @ A ) ) ) ).
% eventually_le_at_bot
thf(fact_5878_eventually__at__bot__linorder,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_bot @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less_eq @ A @ N3 @ N6 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_bot_linorder
thf(fact_5879_eventually__sequentially,axiom,
! [P: nat > $o] :
( ( eventually @ nat @ P @ ( at_top @ nat ) )
= ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ( P @ N3 ) ) ) ) ).
% eventually_sequentially
thf(fact_5880_eventually__sequentiallyI,axiom,
! [C2: nat,P: nat > $o] :
( ! [X4: nat] :
( ( ord_less_eq @ nat @ C2 @ X4 )
=> ( P @ X4 ) )
=> ( eventually @ nat @ P @ ( at_top @ nat ) ) ) ).
% eventually_sequentiallyI
thf(fact_5881_eventually__at__top__linorder,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_top @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less_eq @ A @ N6 @ N3 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_top_linorder
thf(fact_5882_eventually__at__top__linorderI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A,P: A > $o] :
( ! [X4: A] :
( ( ord_less_eq @ A @ C2 @ X4 )
=> ( P @ X4 ) )
=> ( eventually @ A @ P @ ( at_top @ A ) ) ) ) ).
% eventually_at_top_linorderI
thf(fact_5883_filterlim__at__infinity__imp__filterlim__at__bot,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_infinity @ real ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( F2 @ X3 ) @ ( zero_zero @ real ) )
@ F4 )
=> ( filterlim @ A @ real @ F2 @ ( at_bot @ real ) @ F4 ) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_bot
thf(fact_5884_filterlim__at__bot__le,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,F4: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F4 )
= ( ! [Z8: B] :
( ( ord_less_eq @ B @ Z8 @ C2 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ ( F2 @ X3 ) @ Z8 )
@ F4 ) ) ) ) ) ).
% filterlim_at_bot_le
thf(fact_5885_filterlim__at__bot,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F4 )
= ( ! [Z8: B] :
( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ ( F2 @ X3 ) @ Z8 )
@ F4 ) ) ) ) ).
% filterlim_at_bot
thf(fact_5886_filterlim__at__bot__lt,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F4: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F4 )
= ( ! [Z8: B] :
( ( ord_less @ B @ Z8 @ C2 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ ( F2 @ X3 ) @ Z8 )
@ F4 ) ) ) ) ) ).
% filterlim_at_bot_lt
thf(fact_5887_filterlim__at__bot__dense,axiom,
! [A: $tType,B: $tType] :
( ( ( dense_linorder @ B )
& ( no_bot @ B ) )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ F4 )
= ( ! [Z8: B] :
( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ ( F2 @ X3 ) @ Z8 )
@ F4 ) ) ) ) ).
% filterlim_at_bot_dense
thf(fact_5888_eventually__at__top__dense,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_top @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less @ A @ N6 @ N3 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_top_dense
thf(fact_5889_eventually__at__bot__dense,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_bot @ A ) )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_bot @ A ) )
= ( ? [N6: A] :
! [N3: A] :
( ( ord_less @ A @ N3 @ N6 )
=> ( P @ N3 ) ) ) ) ) ).
% eventually_at_bot_dense
thf(fact_5890_eventually__gt__at__bot,axiom,
! [A: $tType] :
( ( unboun7993243217541854897norder @ A )
=> ! [C2: A] :
( eventually @ A
@ ^ [X3: A] : ( ord_less @ A @ X3 @ C2 )
@ ( at_bot @ A ) ) ) ).
% eventually_gt_at_bot
thf(fact_5891_not__UNIV__eq__Ici,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [L3: A] :
( ( top_top @ ( set @ A ) )
!= ( set_ord_atLeast @ A @ L3 ) ) ) ).
% not_UNIV_eq_Ici
thf(fact_5892_not__empty__eq__Ici__eq__empty,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [L: A] :
( ( bot_bot @ ( set @ A ) )
!= ( set_ord_atLeast @ A @ L ) ) ) ).
% not_empty_eq_Ici_eq_empty
thf(fact_5893_infinite__Ici,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [A2: A] :
~ ( finite_finite @ A @ ( set_ord_atLeast @ A @ A2 ) ) ) ).
% infinite_Ici
thf(fact_5894_not__Iic__eq__Ici,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [H: A,L3: A] :
( ( set_ord_atMost @ A @ H )
!= ( set_ord_atLeast @ A @ L3 ) ) ) ).
% not_Iic_eq_Ici
thf(fact_5895_not__Ici__eq__Icc,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [L3: A,L: A,H: A] :
( ( set_ord_atLeast @ A @ L3 )
!= ( set_or1337092689740270186AtMost @ A @ L @ H ) ) ) ).
% not_Ici_eq_Icc
thf(fact_5896_atLeast__eq__UNIV__iff,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [X: A] :
( ( ( set_ord_atLeast @ A @ X )
= ( top_top @ ( set @ A ) ) )
= ( X
= ( bot_bot @ A ) ) ) ) ).
% atLeast_eq_UNIV_iff
thf(fact_5897_not__UNIV__le__Ici,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [L: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( top_top @ ( set @ A ) ) @ ( set_ord_atLeast @ A @ L ) ) ) ).
% not_UNIV_le_Ici
thf(fact_5898_eventually__ge__at__top,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [C2: A] : ( eventually @ A @ ( ord_less_eq @ A @ C2 ) @ ( at_top @ A ) ) ) ).
% eventually_ge_at_top
thf(fact_5899_eventually__gt__at__top,axiom,
! [A: $tType] :
( ( ( linorder @ A )
& ( no_top @ A ) )
=> ! [C2: A] : ( eventually @ A @ ( ord_less @ A @ C2 ) @ ( at_top @ A ) ) ) ).
% eventually_gt_at_top
thf(fact_5900_not__Ici__le__Icc,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [L: A,L3: A,H3: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( set_ord_atLeast @ A @ L ) @ ( set_or1337092689740270186AtMost @ A @ L3 @ H3 ) ) ) ).
% not_Ici_le_Icc
thf(fact_5901_le__sequentially,axiom,
! [F4: filter @ nat] :
( ( ord_less_eq @ ( filter @ nat ) @ F4 @ ( at_top @ nat ) )
= ( ! [N6: nat] : ( eventually @ nat @ ( ord_less_eq @ nat @ N6 ) @ F4 ) ) ) ).
% le_sequentially
thf(fact_5902_not__Ici__le__Iic,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [L: A,H3: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( set_ord_atLeast @ A @ L ) @ ( set_ord_atMost @ A @ H3 ) ) ) ).
% not_Ici_le_Iic
thf(fact_5903_not__Iic__le__Ici,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [H: A,L3: A] :
~ ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ H ) @ ( set_ord_atLeast @ A @ L3 ) ) ) ).
% not_Iic_le_Ici
thf(fact_5904_sequentially__offset,axiom,
! [P: nat > $o,K: nat] :
( ( eventually @ nat @ P @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [I3: nat] : ( P @ ( plus_plus @ nat @ I3 @ K ) )
@ ( at_top @ nat ) ) ) ).
% sequentially_offset
thf(fact_5905_Ioi__le__Ico,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A] : ( ord_less_eq @ ( set @ A ) @ ( set_ord_greaterThan @ A @ A2 ) @ ( set_ord_atLeast @ A @ A2 ) ) ) ).
% Ioi_le_Ico
thf(fact_5906_filterlim__inverse__at__bot,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( F2 @ X3 ) @ ( zero_zero @ real ) )
@ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( inverse_inverse @ real @ ( F2 @ X3 ) )
@ ( at_bot @ real )
@ F4 ) ) ) ).
% filterlim_inverse_at_bot
thf(fact_5907_filterlim__at__bot__at__right,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( linorder @ B ) )
=> ! [Q: A > $o,F2: A > B,P: B > $o,G: B > A,A2: A] :
( ! [X4: A,Y4: A] :
( ( Q @ X4 )
=> ( ( Q @ Y4 )
=> ( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( ( F2 @ ( G @ X4 ) )
= X4 ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( Q @ ( G @ X4 ) ) )
=> ( ( eventually @ A @ Q @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) )
=> ( ! [B5: A] :
( ( Q @ B5 )
=> ( ord_less @ A @ A2 @ B5 ) )
=> ( ( eventually @ B @ P @ ( at_bot @ B ) )
=> ( filterlim @ A @ B @ F2 @ ( at_bot @ B ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ) ) ) ) ).
% filterlim_at_bot_at_right
thf(fact_5908_eventually__nhds__top,axiom,
! [A: $tType] :
( ( ( order_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: A,P: A > $o] :
( ( ord_less @ A @ B2 @ ( top_top @ A ) )
=> ( ( eventually @ A @ P @ ( topolo7230453075368039082e_nhds @ A @ ( top_top @ A ) ) )
= ( ? [B3: A] :
( ( ord_less @ A @ B3 @ ( top_top @ A ) )
& ! [Z5: A] :
( ( ord_less @ A @ B3 @ Z5 )
=> ( P @ Z5 ) ) ) ) ) ) ) ).
% eventually_nhds_top
thf(fact_5909_filterlim__at__top__at__top,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [Q: A > $o,F2: A > B,P: B > $o,G: B > A] :
( ! [X4: A,Y4: A] :
( ( Q @ X4 )
=> ( ( Q @ Y4 )
=> ( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( ( F2 @ ( G @ X4 ) )
= X4 ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( Q @ ( G @ X4 ) ) )
=> ( ( eventually @ A @ Q @ ( at_top @ A ) )
=> ( ( eventually @ B @ P @ ( at_top @ B ) )
=> ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ ( at_top @ A ) ) ) ) ) ) ) ) ).
% filterlim_at_top_at_top
thf(fact_5910_eventually__at__left__field,axiom,
! [A: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [P: A > $o,X: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) ) )
= ( ? [B3: A] :
( ( ord_less @ A @ B3 @ X )
& ! [Y2: A] :
( ( ord_less @ A @ B3 @ Y2 )
=> ( ( ord_less @ A @ Y2 @ X )
=> ( P @ Y2 ) ) ) ) ) ) ) ).
% eventually_at_left_field
thf(fact_5911_eventually__at__left,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [Y: A,X: A,P: A > $o] :
( ( ord_less @ A @ Y @ X )
=> ( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) ) )
= ( ? [B3: A] :
( ( ord_less @ A @ B3 @ X )
& ! [Y2: A] :
( ( ord_less @ A @ B3 @ Y2 )
=> ( ( ord_less @ A @ Y2 @ X )
=> ( P @ Y2 ) ) ) ) ) ) ) ) ).
% eventually_at_left
thf(fact_5912_eventually__at__right__field,axiom,
! [A: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [P: A > $o,X: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) )
= ( ? [B3: A] :
( ( ord_less @ A @ X @ B3 )
& ! [Y2: A] :
( ( ord_less @ A @ X @ Y2 )
=> ( ( ord_less @ A @ Y2 @ B3 )
=> ( P @ Y2 ) ) ) ) ) ) ) ).
% eventually_at_right_field
thf(fact_5913_eventually__at__right,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X: A,Y: A,P: A > $o] :
( ( ord_less @ A @ X @ Y )
=> ( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) )
= ( ? [B3: A] :
( ( ord_less @ A @ X @ B3 )
& ! [Y2: A] :
( ( ord_less @ A @ X @ Y2 )
=> ( ( ord_less @ A @ Y2 @ B3 )
=> ( P @ Y2 ) ) ) ) ) ) ) ) ).
% eventually_at_right
thf(fact_5914_tendsto__upperbound,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: B > A,X: A,F4: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F4 )
=> ( ( eventually @ B
@ ^ [I3: B] : ( ord_less_eq @ A @ ( F2 @ I3 ) @ A2 )
@ F4 )
=> ( ( F4
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ord_less_eq @ A @ X @ A2 ) ) ) ) ) ).
% tendsto_upperbound
thf(fact_5915_tendsto__lowerbound,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: B > A,X: A,F4: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F4 )
=> ( ( eventually @ B
@ ^ [I3: B] : ( ord_less_eq @ A @ A2 @ ( F2 @ I3 ) )
@ F4 )
=> ( ( F4
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ord_less_eq @ A @ A2 @ X ) ) ) ) ) ).
% tendsto_lowerbound
thf(fact_5916_tendsto__le,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F4: filter @ B,F2: B > A,X: A,G: B > A,Y: A] :
( ( F4
!= ( bot_bot @ ( filter @ B ) ) )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F4 )
=> ( ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F4 )
=> ( ( eventually @ B
@ ^ [X3: B] : ( ord_less_eq @ A @ ( G @ X3 ) @ ( F2 @ X3 ) )
@ F4 )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ) ) ) ).
% tendsto_le
thf(fact_5917_tendsto__sandwich,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,G: B > A,Net: filter @ B,H: B > A,C2: A] :
( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ ( F2 @ N3 ) @ ( G @ N3 ) )
@ Net )
=> ( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ ( G @ N3 ) @ ( H @ N3 ) )
@ Net )
=> ( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ Net )
=> ( ( filterlim @ B @ A @ H @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ Net )
=> ( filterlim @ B @ A @ G @ ( topolo7230453075368039082e_nhds @ A @ C2 ) @ Net ) ) ) ) ) ) ).
% tendsto_sandwich
thf(fact_5918_order__tendsto__iff,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,X: A,F4: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ X ) @ F4 )
= ( ! [L2: A] :
( ( ord_less @ A @ L2 @ X )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ L2 @ ( F2 @ X3 ) )
@ F4 ) )
& ! [U2: A] :
( ( ord_less @ A @ X @ U2 )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ ( F2 @ X3 ) @ U2 )
@ F4 ) ) ) ) ) ).
% order_tendsto_iff
thf(fact_5919_order__tendstoI,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [Y: A,F2: B > A,F4: filter @ B] :
( ! [A5: A] :
( ( ord_less @ A @ A5 @ Y )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ A5 @ ( F2 @ X3 ) )
@ F4 ) )
=> ( ! [A5: A] :
( ( ord_less @ A @ Y @ A5 )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ ( F2 @ X3 ) @ A5 )
@ F4 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F4 ) ) ) ) ).
% order_tendstoI
thf(fact_5920_order__tendstoD_I1_J,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,Y: A,F4: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F4 )
=> ( ( ord_less @ A @ A2 @ Y )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ A2 @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ).
% order_tendstoD(1)
thf(fact_5921_order__tendstoD_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,Y: A,F4: filter @ B,A2: A] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ Y ) @ F4 )
=> ( ( ord_less @ A @ Y @ A2 )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ A @ ( F2 @ X3 ) @ A2 )
@ F4 ) ) ) ) ).
% order_tendstoD(2)
thf(fact_5922_filterlim__at__top,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F4 )
= ( ! [Z8: B] :
( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ Z8 @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ).
% filterlim_at_top
thf(fact_5923_filterlim__at__top__ge,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,F4: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F4 )
= ( ! [Z8: B] :
( ( ord_less_eq @ B @ C2 @ Z8 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ Z8 @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ) ).
% filterlim_at_top_ge
thf(fact_5924_filterlim__at__top__mono,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,F4: filter @ B,G: B > A] :
( ( filterlim @ B @ A @ F2 @ ( at_top @ A ) @ F4 )
=> ( ( eventually @ B
@ ^ [X3: B] : ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4 )
=> ( filterlim @ B @ A @ G @ ( at_top @ A ) @ F4 ) ) ) ) ).
% filterlim_at_top_mono
thf(fact_5925_filterlim__at__top__dense,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F4 )
= ( ! [Z8: B] :
( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ Z8 @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ).
% filterlim_at_top_dense
thf(fact_5926_eventually__at__right__less,axiom,
! [A: $tType] :
( ( ( no_top @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [X: A] : ( eventually @ A @ ( ord_less @ A @ X ) @ ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) ) ) ) ).
% eventually_at_right_less
thf(fact_5927_ivl__disj__un__one_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( set_ord_atLeast @ A @ L ) ) ) ) ).
% ivl_disj_un_one(8)
thf(fact_5928_Ici__subset__Ioi__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atLeast @ A @ A2 ) @ ( set_ord_greaterThan @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ).
% Ici_subset_Ioi_iff
thf(fact_5929_eventually__at__left__real,axiom,
! [B2: real,A2: real] :
( ( ord_less @ real @ B2 @ A2 )
=> ( eventually @ real
@ ^ [X3: real] : ( member @ real @ X3 @ ( set_or5935395276787703475ssThan @ real @ B2 @ A2 ) )
@ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_lessThan @ real @ A2 ) ) ) ) ).
% eventually_at_left_real
thf(fact_5930_eventually__at,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A,S3: set @ A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X3: A] :
( ( member @ A @ X3 @ S3 )
=> ( ( ( X3 != A2 )
& ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ A2 ) @ D6 ) )
=> ( P @ X3 ) ) ) ) ) ) ) ).
% eventually_at
thf(fact_5931_eventually__nhds__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A] :
( ( eventually @ A @ P @ ( topolo7230453075368039082e_nhds @ A @ A2 ) )
= ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X3: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ A2 ) @ D6 )
=> ( P @ X3 ) ) ) ) ) ) ).
% eventually_nhds_metric
thf(fact_5932_eventually__at__leftI,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
=> ( P @ X4 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ) ).
% eventually_at_leftI
thf(fact_5933_eventually__at__rightI,axiom,
! [A: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [A2: A,B2: A,P: A > $o] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) )
=> ( P @ X4 ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% eventually_at_rightI
thf(fact_5934_eventually__at__to__0,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [P: A > $o,A2: A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) ) )
= ( eventually @ A
@ ^ [X3: A] : ( P @ ( plus_plus @ A @ X3 @ A2 ) )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% eventually_at_to_0
thf(fact_5935_increasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [F2: B > A,L: A,F4: filter @ B] :
( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ ( F2 @ N3 ) @ L )
@ F4 )
=> ( ! [X4: A] :
( ( ord_less @ A @ X4 @ L )
=> ( eventually @ B
@ ^ [N3: B] : ( ord_less @ A @ X4 @ ( F2 @ N3 ) )
@ F4 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 ) ) ) ) ).
% increasing_tendsto
thf(fact_5936_decreasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( ( topolo2564578578187576103pology @ A )
=> ! [L: A,F2: B > A,F4: filter @ B] :
( ( eventually @ B
@ ^ [N3: B] : ( ord_less_eq @ A @ L @ ( F2 @ N3 ) )
@ F4 )
=> ( ! [X4: A] :
( ( ord_less @ A @ L @ X4 )
=> ( eventually @ B
@ ^ [N3: B] : ( ord_less @ A @ ( F2 @ N3 ) @ X4 )
@ F4 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 ) ) ) ) ).
% decreasing_tendsto
thf(fact_5937_filterlim__at__top__gt,axiom,
! [A: $tType,B: $tType] :
( ( unboun7993243217541854897norder @ B )
=> ! [F2: A > B,F4: filter @ A,C2: B] :
( ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ F4 )
= ( ! [Z8: B] :
( ( ord_less @ B @ C2 @ Z8 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ B @ Z8 @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ) ).
% filterlim_at_top_gt
thf(fact_5938_greaterThan__0,axiom,
( ( set_ord_greaterThan @ nat @ ( zero_zero @ nat ) )
= ( image @ nat @ nat @ suc @ ( top_top @ ( set @ nat ) ) ) ) ).
% greaterThan_0
thf(fact_5939_eventually__at__right__to__0,axiom,
! [P: real > $o,A2: real] :
( ( eventually @ real @ P @ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) ) )
= ( eventually @ real
@ ^ [X3: real] : ( P @ ( plus_plus @ real @ X3 @ A2 ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% eventually_at_right_to_0
thf(fact_5940_ivl__disj__un__one_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less_eq @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( set_ord_atLeast @ A @ L ) ) ) ) ).
% ivl_disj_un_one(7)
thf(fact_5941_ivl__disj__un__singleton_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A] :
( ( sup_sup @ ( set @ A ) @ ( insert2 @ A @ L @ ( bot_bot @ ( set @ A ) ) ) @ ( set_ord_greaterThan @ A @ L ) )
= ( set_ord_atLeast @ A @ L ) ) ) ).
% ivl_disj_un_singleton(1)
thf(fact_5942_eventually__at__right__real,axiom,
! [A2: real,B2: real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( eventually @ real
@ ^ [X3: real] : ( member @ real @ X3 @ ( set_or5935395276787703475ssThan @ real @ A2 @ B2 ) )
@ ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) ) ) ) ).
% eventually_at_right_real
thf(fact_5943_ivl__disj__un__one_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: A,U: A] :
( ( ord_less @ A @ L @ U )
=> ( ( sup_sup @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( set_ord_greaterThan @ A @ L ) ) ) ) ).
% ivl_disj_un_one(6)
thf(fact_5944_eventually__at__le,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [P: A > $o,A2: A,S3: set @ A] :
( ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ S3 ) )
= ( ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X3: A] :
( ( member @ A @ X3 @ S3 )
=> ( ( ( X3 != A2 )
& ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ A2 ) @ D6 ) )
=> ( P @ X3 ) ) ) ) ) ) ) ).
% eventually_at_le
thf(fact_5945_exp__at__bot,axiom,
filterlim @ real @ real @ ( exp @ real ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_bot @ real ) ).
% exp_at_bot
thf(fact_5946_eventually__at__infinity__pos,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [P6: A > $o] :
( ( eventually @ A @ P6 @ ( at_infinity @ A ) )
= ( ? [B3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B3 )
& ! [X3: A] :
( ( ord_less_eq @ real @ B3 @ ( real_V7770717601297561774m_norm @ A @ X3 ) )
=> ( P6 @ X3 ) ) ) ) ) ) ).
% eventually_at_infinity_pos
thf(fact_5947_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_ord_greaterThan @ nat @ ( suc @ K ) )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_greaterThan @ nat @ K ) @ ( insert2 @ nat @ ( suc @ K ) @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% greaterThan_Suc
thf(fact_5948_tendsto__imp__filterlim__at__left,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ B )
=> ! [F2: A > B,L5: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ ( F2 @ X3 ) @ L5 )
@ F4 )
=> ( filterlim @ A @ B @ F2 @ ( topolo174197925503356063within @ B @ L5 @ ( set_ord_lessThan @ B @ L5 ) ) @ F4 ) ) ) ) ).
% tendsto_imp_filterlim_at_left
thf(fact_5949_tendsto__imp__filterlim__at__right,axiom,
! [B: $tType,A: $tType] :
( ( topolo2564578578187576103pology @ B )
=> ! [F2: A > B,L5: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L5 ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ L5 @ ( F2 @ X3 ) )
@ F4 )
=> ( filterlim @ A @ B @ F2 @ ( topolo174197925503356063within @ B @ L5 @ ( set_ord_greaterThan @ B @ L5 ) ) @ F4 ) ) ) ) ).
% tendsto_imp_filterlim_at_right
thf(fact_5950_filterlim__inverse__at__bot__neg,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( at_bot @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_lessThan @ real @ ( zero_zero @ real ) ) ) ).
% filterlim_inverse_at_bot_neg
thf(fact_5951_tendstoD,axiom,
! [A: $tType,B: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F4: filter @ B,E2: real] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X3 ) @ L ) @ E2 )
@ F4 ) ) ) ) ).
% tendstoD
thf(fact_5952_tendstoI,axiom,
! [A: $tType,B: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F4: filter @ B] :
( ! [E: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X3 ) @ L ) @ E )
@ F4 ) )
=> ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 ) ) ) ).
% tendstoI
thf(fact_5953_tendsto__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [F2: B > A,L: A,F4: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ L ) @ F4 )
= ( ! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ( eventually @ B
@ ^ [X3: B] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ ( F2 @ X3 ) @ L ) @ E3 )
@ F4 ) ) ) ) ) ).
% tendsto_iff
thf(fact_5954_UN__atLeast__UNIV,axiom,
( ( complete_Sup_Sup @ ( set @ nat ) @ ( image @ nat @ ( set @ nat ) @ ( set_ord_atLeast @ nat ) @ ( top_top @ ( set @ nat ) ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% UN_atLeast_UNIV
thf(fact_5955_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast @ nat @ ( suc @ K ) )
= ( minus_minus @ ( set @ nat ) @ ( set_ord_atLeast @ nat @ K ) @ ( insert2 @ nat @ K @ ( bot_bot @ ( set @ nat ) ) ) ) ) ).
% atLeast_Suc
thf(fact_5956_filterlim__at__top__at__left,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( linorder @ B ) )
=> ! [Q: A > $o,F2: A > B,P: B > $o,G: B > A,A2: A] :
( ! [X4: A,Y4: A] :
( ( Q @ X4 )
=> ( ( Q @ Y4 )
=> ( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( ( F2 @ ( G @ X4 ) )
= X4 ) )
=> ( ! [X4: B] :
( ( P @ X4 )
=> ( Q @ ( G @ X4 ) ) )
=> ( ( eventually @ A @ Q @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) )
=> ( ! [B5: A] :
( ( Q @ B5 )
=> ( ord_less @ A @ B5 @ A2 ) )
=> ( ( eventually @ B @ P @ ( at_top @ B ) )
=> ( filterlim @ A @ B @ F2 @ ( at_top @ B ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) ) ) ) ) ) ) ) ) ).
% filterlim_at_top_at_left
thf(fact_5957_tendsto__0__le,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F4: filter @ A,G: A > C,K5: real] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( G @ X3 ) ) @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ K5 ) )
@ F4 )
=> ( filterlim @ A @ C @ G @ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) ) @ F4 ) ) ) ) ).
% tendsto_0_le
thf(fact_5958_filterlim__tendsto__pos__mult__at__bot,axiom,
! [A: $tType,F2: A > real,C2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_bot @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( times_times @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_bot @ real )
@ F4 ) ) ) ) ).
% filterlim_tendsto_pos_mult_at_bot
thf(fact_5959_filterlim__at__infinity,axiom,
! [C: $tType,A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [C2: real,F2: C > A,F4: filter @ C] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ C @ A @ F2 @ ( at_infinity @ A ) @ F4 )
= ( ! [R5: real] :
( ( ord_less @ real @ C2 @ R5 )
=> ( eventually @ C
@ ^ [X3: C] : ( ord_less_eq @ real @ R5 @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ X3 ) ) )
@ F4 ) ) ) ) ) ) ).
% filterlim_at_infinity
thf(fact_5960_tendsto__zero__powrI,axiom,
! [A: $tType,F2: A > real,F4: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ) ) ) ).
% tendsto_zero_powrI
thf(fact_5961_tendsto__powr2,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F4 ) ) ) ) ) ).
% tendsto_powr2
thf(fact_5962_tendsto__powr_H,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A,G: A > real,B2: real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ B2 ) @ F4 )
=> ( ( ( A2
!= ( zero_zero @ real ) )
| ( ( ord_less @ real @ ( zero_zero @ real ) @ B2 )
& ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 ) ) )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( powr @ real @ A2 @ B2 ) )
@ F4 ) ) ) ) ).
% tendsto_powr'
thf(fact_5963_eventually__floor__less,axiom,
! [B: $tType,A: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( topolo2564578578187576103pology @ B ) )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 )
=> ( ~ ( member @ B @ L @ ( ring_1_Ints @ B ) )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ ( ring_1_of_int @ B @ ( archim6421214686448440834_floor @ B @ L ) ) @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ).
% eventually_floor_less
thf(fact_5964_eventually__less__ceiling,axiom,
! [B: $tType,A: $tType] :
( ( ( archim2362893244070406136eiling @ B )
& ( topolo2564578578187576103pology @ B ) )
=> ! [F2: A > B,L: B,F4: filter @ A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ L ) @ F4 )
=> ( ~ ( member @ B @ L @ ( ring_1_Ints @ B ) )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less @ B @ ( F2 @ X3 ) @ ( ring_1_of_int @ B @ ( archimedean_ceiling @ B @ L ) ) )
@ F4 ) ) ) ) ).
% eventually_less_ceiling
thf(fact_5965_INT__greaterThan__UNIV,axiom,
( ( complete_Inf_Inf @ ( set @ nat ) @ ( image @ nat @ ( set @ nat ) @ ( set_ord_greaterThan @ nat ) @ ( top_top @ ( set @ nat ) ) ) )
= ( bot_bot @ ( set @ nat ) ) ) ).
% INT_greaterThan_UNIV
thf(fact_5966_ln__at__0,axiom,
filterlim @ real @ real @ ( ln_ln @ real ) @ ( at_bot @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ).
% ln_at_0
thf(fact_5967_lhopital,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F6: real > real,F4: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ) ) ).
% lhopital
thf(fact_5968_lhopital__left,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F6: real > real,F4: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_left
thf(fact_5969_lhopital__right,axiom,
! [F2: real > real,X: real,G: real > real,G4: real > real,F6: real > real,F4: filter @ real] :
( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right
thf(fact_5970_lhopital__right__0,axiom,
! [F0: real > real,G0: real > real,G4: real > real,F6: real > real,F4: filter @ real] :
( ( filterlim @ real @ real @ F0 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real @ G0 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G0 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F0 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G0 @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F0 @ X3 ) @ ( G0 @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0
thf(fact_5971_DERIV__pos__imp__increasing__at__bot,axiom,
! [B2: real,F2: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y3 ) ) )
=> ( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ Flim ) @ ( at_bot @ real ) )
=> ( ord_less @ real @ Flim @ ( F2 @ B2 ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_5972_summable__bounded__partials,axiom,
! [A: $tType] :
( ( ( real_V8037385150606011577_space @ A )
& ( real_V822414075346904944vector @ A ) )
=> ! [F2: nat > A,G: nat > real] :
( ( eventually @ nat
@ ^ [X02: nat] :
! [A3: nat] :
( ( ord_less_eq @ nat @ X02 @ A3 )
=> ! [B3: nat] :
( ( ord_less @ nat @ A3 @ B3 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or3652927894154168847AtMost @ nat @ A3 @ B3 ) ) ) @ ( G @ A3 ) ) ) )
@ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_bounded_partials
thf(fact_5973_summable__Cauchy_H,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [F2: nat > A,G: nat > real] :
( ( eventually @ nat
@ ^ [M6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( groups7311177749621191930dd_sum @ nat @ A @ F2 @ ( set_or7035219750837199246ssThan @ nat @ M6 @ N3 ) ) ) @ ( G @ M6 ) ) )
@ ( at_top @ nat ) )
=> ( ( filterlim @ nat @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ ( at_top @ nat ) )
=> ( summable @ A @ F2 ) ) ) ) ).
% summable_Cauchy'
thf(fact_5974_Bfun__metric__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space @ B )
=> ( ( bfun @ A @ B )
= ( ^ [F3: A > B,F9: filter @ A] :
? [Y2: B,K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( real_V557655796197034286t_dist @ B @ ( F3 @ X3 ) @ Y2 ) @ K6 )
@ F9 ) ) ) ) ) ).
% Bfun_metric_def
thf(fact_5975_Bseq__add,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) )
=> ( bfun @ nat @ A
@ ^ [X3: nat] : ( plus_plus @ A @ ( F2 @ X3 ) @ C2 )
@ ( at_top @ nat ) ) ) ) ).
% Bseq_add
thf(fact_5976_Bseq__add__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,C2: A] :
( ( bfun @ nat @ A
@ ^ [X3: nat] : ( plus_plus @ A @ ( F2 @ X3 ) @ C2 )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ).
% Bseq_add_iff
thf(fact_5977_Bseq__Suc__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A] :
( ( bfun @ nat @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ).
% Bseq_Suc_iff
thf(fact_5978_Bseq__offset,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,K: nat] :
( ( bfun @ nat @ A
@ ^ [N3: nat] : ( X6 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) )
=> ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) ) ) ) ).
% Bseq_offset
thf(fact_5979_Bseq__ignore__initial__segment,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ! [X6: nat > A,K: nat] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
=> ( bfun @ nat @ A
@ ^ [N3: nat] : ( X6 @ ( plus_plus @ nat @ N3 @ K ) )
@ ( at_top @ nat ) ) ) ) ).
% Bseq_ignore_initial_segment
thf(fact_5980_eventually__all__ge__at__top,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o] :
( ( eventually @ A @ P @ ( at_top @ A ) )
=> ( eventually @ A
@ ^ [X3: A] :
! [Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
=> ( P @ Y2 ) )
@ ( at_top @ A ) ) ) ) ).
% eventually_all_ge_at_top
thf(fact_5981_Bseq__cmult__iff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,F2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( bfun @ nat @ A
@ ^ [X3: nat] : ( times_times @ A @ C2 @ ( F2 @ X3 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ) ).
% Bseq_cmult_iff
thf(fact_5982_filterlim__at__infinity__imp__filterlim__at__top,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_infinity @ real ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F4 ) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_top
thf(fact_5983_filterlim__pow__at__top,axiom,
! [A: $tType,N2: nat,F2: A > real,F4: filter @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( power_power @ real @ ( F2 @ X3 ) @ N2 )
@ ( at_top @ real )
@ F4 ) ) ) ).
% filterlim_pow_at_top
thf(fact_5984_real__tendsto__divide__at__top,axiom,
! [A: $tType,F2: A > real,C2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F4 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ) ).
% real_tendsto_divide_at_top
thf(fact_5985_tendsto__inverse__0__at__top,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( inverse_inverse @ real @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ).
% tendsto_inverse_0_at_top
thf(fact_5986_eventually__at__right__to__top,axiom,
! [P: real > $o] :
( ( eventually @ real @ P @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
= ( eventually @ real
@ ^ [X3: real] : ( P @ ( inverse_inverse @ real @ X3 ) )
@ ( at_top @ real ) ) ) ).
% eventually_at_right_to_top
thf(fact_5987_eventually__at__top__to__right,axiom,
! [P: real > $o] :
( ( eventually @ real @ P @ ( at_top @ real ) )
= ( eventually @ real
@ ^ [X3: real] : ( P @ ( inverse_inverse @ real @ X3 ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% eventually_at_top_to_right
thf(fact_5988_BseqD,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
=> ? [K8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K8 )
& ! [N5: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N5 ) ) @ K8 ) ) ) ) ).
% BseqD
thf(fact_5989_BseqE,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
=> ~ ! [K8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K8 )
=> ~ ! [N5: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N5 ) ) @ K8 ) ) ) ) ).
% BseqE
thf(fact_5990_BseqI,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [K5: real,X6: nat > A] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K5 )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N ) ) @ K5 )
=> ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) ) ) ) ) ).
% BseqI
thf(fact_5991_Bseq__def,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
= ( ? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N3 ) ) @ K6 ) ) ) ) ) ).
% Bseq_def
thf(fact_5992_Bseq__iff1a,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
= ( ? [N6: nat] :
! [N3: nat] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% Bseq_iff1a
thf(fact_5993_Bseq__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
= ( ? [N6: nat] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( X6 @ N3 ) ) @ ( semiring_1_of_nat @ real @ ( suc @ N6 ) ) ) ) ) ) ).
% Bseq_iff
thf(fact_5994_Bseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( bfun @ nat @ real @ ( power_power @ real @ X ) @ ( at_top @ nat ) ) ) ) ).
% Bseq_realpow
thf(fact_5995_filterlim__tendsto__pos__mult__at__top,axiom,
! [A: $tType,F2: A > real,C2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( times_times @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_top @ real )
@ F4 ) ) ) ) ).
% filterlim_tendsto_pos_mult_at_top
thf(fact_5996_filterlim__at__top__mult__tendsto__pos,axiom,
! [A: $tType,F2: A > real,C2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ C2 )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( times_times @ real @ ( G @ X3 ) @ ( F2 @ X3 ) )
@ ( at_top @ real )
@ F4 ) ) ) ) ).
% filterlim_at_top_mult_tendsto_pos
thf(fact_5997_tendsto__neg__powr,axiom,
! [A: $tType,S: real,F2: A > real,F4: filter @ A] :
( ( ord_less @ real @ S @ ( zero_zero @ real ) )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( powr @ real @ ( F2 @ X3 ) @ S )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ F4 ) ) ) ).
% tendsto_neg_powr
thf(fact_5998_ln__x__over__x__tendsto__0,axiom,
( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( ln_ln @ real @ X3 ) @ X3 )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ real ) ) ).
% ln_x_over_x_tendsto_0
thf(fact_5999_filterlim__at__top__to__right,axiom,
! [A: $tType,F2: real > A,F4: filter @ A] :
( ( filterlim @ real @ A @ F2 @ F4 @ ( at_top @ real ) )
= ( filterlim @ real @ A
@ ^ [X3: real] : ( F2 @ ( inverse_inverse @ real @ X3 ) )
@ F4
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% filterlim_at_top_to_right
thf(fact_6000_filterlim__at__right__to__top,axiom,
! [A: $tType,F2: real > A,F4: filter @ A] :
( ( filterlim @ real @ A @ F2 @ F4 @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
= ( filterlim @ real @ A
@ ^ [X3: real] : ( F2 @ ( inverse_inverse @ real @ X3 ) )
@ F4
@ ( at_top @ real ) ) ) ).
% filterlim_at_right_to_top
thf(fact_6001_filterlim__inverse__at__top__right,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ).
% filterlim_inverse_at_top_right
thf(fact_6002_filterlim__inverse__at__right__top,axiom,
filterlim @ real @ real @ ( inverse_inverse @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) @ ( at_top @ real ) ).
% filterlim_inverse_at_right_top
thf(fact_6003_LIM__at__top__divide,axiom,
! [A: $tType,F2: A > real,A2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ A2 ) @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ( ( filterlim @ A @ real @ G @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X3 ) )
@ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_top @ real )
@ F4 ) ) ) ) ) ).
% LIM_at_top_divide
thf(fact_6004_filterlim__at__top__iff__inverse__0,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( ( filterlim @ A @ real @ F2 @ ( at_top @ real ) @ F4 )
= ( filterlim @ A @ real @ ( comp @ real @ real @ A @ ( inverse_inverse @ real ) @ F2 ) @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 ) ) ) ).
% filterlim_at_top_iff_inverse_0
thf(fact_6005_filterlim__inverse__at__top__iff,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( ( filterlim @ A @ real
@ ^ [X3: A] : ( inverse_inverse @ real @ ( F2 @ X3 ) )
@ ( at_top @ real )
@ F4 )
= ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 ) ) ) ).
% filterlim_inverse_at_top_iff
thf(fact_6006_filterlim__inverse__at__top,axiom,
! [A: $tType,F2: A > real,F4: filter @ A] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) ) @ F4 )
=> ( ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) )
@ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( inverse_inverse @ real @ ( F2 @ X3 ) )
@ ( at_top @ real )
@ F4 ) ) ) ).
% filterlim_inverse_at_top
thf(fact_6007_filterlim__tendsto__neg__mult__at__bot,axiom,
! [A: $tType,F2: A > real,C2: real,F4: filter @ A,G: A > real] :
( ( filterlim @ A @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ C2 ) @ F4 )
=> ( ( ord_less @ real @ C2 @ ( zero_zero @ real ) )
=> ( ( filterlim @ A @ real @ G @ ( at_top @ real ) @ F4 )
=> ( filterlim @ A @ real
@ ^ [X3: A] : ( times_times @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( at_bot @ real )
@ F4 ) ) ) ) ).
% filterlim_tendsto_neg_mult_at_bot
thf(fact_6008_tendsto__power__div__exp__0,axiom,
! [K: nat] :
( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( power_power @ real @ X3 @ K ) @ ( exp @ real @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ ( zero_zero @ real ) )
@ ( at_top @ real ) ) ).
% tendsto_power_div_exp_0
thf(fact_6009_Bseq__iff2,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
= ( ? [K3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K3 )
& ? [X3: A] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( X6 @ N3 ) @ ( uminus_uminus @ A @ X3 ) ) ) @ K3 ) ) ) ) ) ).
% Bseq_iff2
thf(fact_6010_Bseq__iff3,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [X6: nat > A] :
( ( bfun @ nat @ A @ X6 @ ( at_top @ nat ) )
= ( ? [K3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K3 )
& ? [N6: nat] :
! [N3: nat] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( plus_plus @ A @ ( X6 @ N3 ) @ ( uminus_uminus @ A @ ( X6 @ N6 ) ) ) ) @ K3 ) ) ) ) ) ).
% Bseq_iff3
thf(fact_6011_lhopital__left__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F6: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_lessThan @ real @ X ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top
thf(fact_6012_lhospital__at__top__at__top,axiom,
! [G: real > real,G4: real > real,F2: real > real,F6: real > real,X: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( at_top @ real ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( at_top @ real ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( at_top @ real ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( at_top @ real ) ) ) ) ) ) ) ).
% lhospital_at_top_at_top
thf(fact_6013_lhopital__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F6: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% lhopital_at_top
thf(fact_6014_DERIV__neg__imp__decreasing__at__top,axiom,
! [B2: real,F2: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq @ real @ B2 @ X4 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y3 @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real @ F2 @ ( topolo7230453075368039082e_nhds @ real @ Flim ) @ ( at_top @ real ) )
=> ( ord_less @ real @ Flim @ ( F2 @ B2 ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_6015_Bfun__inverse,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( bfun @ B @ A
@ ^ [X3: B] : ( inverse_inverse @ A @ ( F2 @ X3 ) )
@ F4 ) ) ) ) ).
% Bfun_inverse
thf(fact_6016_lhopital__right__at__top,axiom,
! [G: real > real,X: real,G4: real > real,F2: real > real,F6: real > real,Y: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ Y )
@ ( topolo174197925503356063within @ real @ X @ ( set_ord_greaterThan @ real @ X ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top
thf(fact_6017_lhopital__right__0__at__top,axiom,
! [G: real > real,G4: real > real,F2: real > real,F6: real > real,X: real] :
( ( filterlim @ real @ real @ G @ ( at_top @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] :
( ( G4 @ X3 )
!= ( zero_zero @ real ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( eventually @ real
@ ^ [X3: real] : ( has_field_derivative @ real @ G @ ( G4 @ X3 ) @ ( topolo174197925503356063within @ real @ X3 @ ( top_top @ ( set @ real ) ) ) )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F6 @ X3 ) @ ( G4 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( divide_divide @ real @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ real @ X )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0_at_top
thf(fact_6018_filterlim__pow__at__bot__even,axiom,
! [N2: nat,F2: real > real,F4: filter @ real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( filterlim @ real @ real @ F2 @ ( at_bot @ real ) @ F4 )
=> ( ( dvd_dvd @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 )
=> ( filterlim @ real @ real
@ ^ [X3: real] : ( power_power @ real @ ( F2 @ X3 ) @ N2 )
@ ( at_top @ real )
@ F4 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_6019_BfunE,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ( bfun @ A @ B @ F2 @ F4 )
=> ~ ! [B10: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ B10 )
=> ~ ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ B10 )
@ F4 ) ) ) ) ).
% BfunE
thf(fact_6020_Bfun__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ( ( bfun @ A @ B )
= ( ^ [F3: A > B,F9: filter @ A] :
? [K6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K6 )
& ( eventually @ A
@ ^ [X3: A] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ B @ ( F3 @ X3 ) ) @ K6 )
@ F9 ) ) ) ) ) ).
% Bfun_def
thf(fact_6021_Greatest__def,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_Greatest @ A )
= ( ^ [P3: A > $o] :
( the @ A
@ ^ [X3: A] :
( ( P3 @ X3 )
& ! [Y2: A] :
( ( P3 @ Y2 )
=> ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ) ) ).
% Greatest_def
thf(fact_6022_sequentially__imp__eventually__at__right,axiom,
! [A: $tType] :
( ( ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [A2: A,B2: A,P: A > $o] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ! [F5: nat > A] :
( ! [N5: nat] : ( ord_less @ A @ A2 @ ( F5 @ N5 ) )
=> ( ! [N5: nat] : ( ord_less @ A @ ( F5 @ N5 ) @ B2 )
=> ( ( order_antimono @ nat @ A @ F5 )
=> ( ( filterlim @ nat @ A @ F5 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( F5 @ N3 ) )
@ ( at_top @ nat ) ) ) ) ) )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% sequentially_imp_eventually_at_right
thf(fact_6023_antimono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ( ( order_antimono @ A @ B )
= ( ^ [F3: A > B] :
! [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
=> ( ord_less_eq @ B @ ( F3 @ Y2 ) @ ( F3 @ X3 ) ) ) ) ) ) ).
% antimono_def
thf(fact_6024_antimonoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ! [X4: A,Y4: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ Y4 ) @ ( F2 @ X4 ) ) )
=> ( order_antimono @ A @ B @ F2 ) ) ) ).
% antimonoI
thf(fact_6025_antimonoE,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoE
thf(fact_6026_antimonoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoD
thf(fact_6027_decseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_antimono @ nat @ A )
= ( ^ [F3: nat > A] :
! [N3: nat] : ( ord_less_eq @ A @ ( F3 @ ( suc @ N3 ) ) @ ( F3 @ N3 ) ) ) ) ) ).
% decseq_Suc_iff
thf(fact_6028_decseq__SucI,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( X6 @ ( suc @ N ) ) @ ( X6 @ N ) )
=> ( order_antimono @ nat @ A @ X6 ) ) ) ).
% decseq_SucI
thf(fact_6029_decseq__SucD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: nat > A,I: nat] :
( ( order_antimono @ nat @ A @ A4 )
=> ( ord_less_eq @ A @ ( A4 @ ( suc @ I ) ) @ ( A4 @ I ) ) ) ) ).
% decseq_SucD
thf(fact_6030_decseq__def,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_antimono @ nat @ A )
= ( ^ [X7: nat > A] :
! [M6: nat,N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
=> ( ord_less_eq @ A @ ( X7 @ N3 ) @ ( X7 @ M6 ) ) ) ) ) ) ).
% decseq_def
thf(fact_6031_decseqD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,I: nat,J: nat] :
( ( order_antimono @ nat @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ A @ ( F2 @ J ) @ ( F2 @ I ) ) ) ) ) ).
% decseqD
thf(fact_6032_GreatestI__ex__nat,axiom,
! [P: nat > $o,B2: nat] :
( ? [X_12: nat] : ( P @ X_12 )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ( P @ ( order_Greatest @ nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_6033_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ( ord_less_eq @ nat @ K @ ( order_Greatest @ nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_6034_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ( P @ ( order_Greatest @ nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_6035_Greatest__equality,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o,X: A] :
( ( P @ X )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ( order_Greatest @ A @ P )
= X ) ) ) ) ).
% Greatest_equality
thf(fact_6036_GreatestI2__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o,X: A,Q: A > $o] :
( ( P @ X )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ A @ Y3 @ X4 ) )
=> ( Q @ X4 ) ) )
=> ( Q @ ( order_Greatest @ A @ P ) ) ) ) ) ) ).
% GreatestI2_order
thf(fact_6037_decseq__ge,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X6: nat > A,L5: A,N2: nat] :
( ( order_antimono @ nat @ A @ X6 )
=> ( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
=> ( ord_less_eq @ A @ L5 @ ( X6 @ N2 ) ) ) ) ) ).
% decseq_ge
thf(fact_6038_tendsto__at__right__sequentially,axiom,
! [C: $tType,B: $tType] :
( ( ( topolo3112930676232923870pology @ B )
& ( topolo1944317154257567458pology @ B )
& ( topolo4958980785337419405_space @ C ) )
=> ! [A2: B,B2: B,X6: B > C,L5: C] :
( ( ord_less @ B @ A2 @ B2 )
=> ( ! [S5: nat > B] :
( ! [N5: nat] : ( ord_less @ B @ A2 @ ( S5 @ N5 ) )
=> ( ! [N5: nat] : ( ord_less @ B @ ( S5 @ N5 ) @ B2 )
=> ( ( order_antimono @ nat @ B @ S5 )
=> ( ( filterlim @ nat @ B @ S5 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ C
@ ^ [N3: nat] : ( X6 @ ( S5 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ L5 )
@ ( at_top @ nat ) ) ) ) ) )
=> ( filterlim @ B @ C @ X6 @ ( topolo7230453075368039082e_nhds @ C @ L5 ) @ ( topolo174197925503356063within @ B @ A2 @ ( set_ord_greaterThan @ B @ A2 ) ) ) ) ) ) ).
% tendsto_at_right_sequentially
thf(fact_6039_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2
= ( one_one @ nat ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_6040_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa2
!= ( one_one @ nat ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_6041_Ball__def__raw,axiom,
! [A: $tType] :
( ( ball @ A )
= ( ^ [A8: set @ A,P3: A > $o] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( P3 @ X3 ) ) ) ) ).
% Ball_def_raw
thf(fact_6042_open__superdiagonal,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ( topolo1002775350975398744n_open @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ^ [Uu3: product_prod @ A @ A] :
? [X3: A,Y2: A] :
( ( Uu3
= ( product_Pair @ A @ A @ X3 @ Y2 ) )
& ( ord_less @ A @ Y2 @ X3 ) ) ) ) ) ).
% open_superdiagonal
thf(fact_6043_open__subdiagonal,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ( topolo1002775350975398744n_open @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ^ [Uu3: product_prod @ A @ A] :
? [X3: A,Y2: A] :
( ( Uu3
= ( product_Pair @ A @ A @ X3 @ Y2 ) )
& ( ord_less @ A @ X3 @ Y2 ) ) ) ) ) ).
% open_subdiagonal
thf(fact_6044_Sup__eq__Inf,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_Sup_Sup @ A )
= ( ^ [A8: set @ A] :
( complete_Inf_Inf @ A
@ ( collect @ A
@ ^ [B3: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( ord_less_eq @ A @ X3 @ B3 ) ) ) ) ) ) ) ).
% Sup_eq_Inf
thf(fact_6045_Inf__eq__Sup,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_Inf_Inf @ A )
= ( ^ [A8: set @ A] :
( complete_Sup_Sup @ A
@ ( collect @ A
@ ^ [B3: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( ord_less_eq @ A @ B3 @ X3 ) ) ) ) ) ) ) ).
% Inf_eq_Sup
thf(fact_6046_set__conv__nth,axiom,
! [A: $tType] :
( ( set2 @ A )
= ( ^ [Xs: list @ A] :
( collect @ A
@ ^ [Uu3: A] :
? [I3: nat] :
( ( Uu3
= ( nth @ A @ Xs @ I3 ) )
& ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) ) ) ) ) ) ).
% set_conv_nth
thf(fact_6047_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList2 @ Summary ) @ Deg4 )
= ( ( Deg = Deg4 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList2 )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList2 @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList2 ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_6048_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Y
= ( Xa2
!= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ( Y
= ( ~ ( ( Deg2 = Xa2 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_6049_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2
= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) @ Xa2 ) )
=> ( ( Deg2 = Xa2 )
& ! [X4: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X4 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_6050_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa2: nat] :
( ( vEBT_VEBT_valid @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
=> ( Xa2
!= ( one_one @ nat ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) @ Xa2 ) )
=> ~ ( ( Deg2 = Xa2 )
& ! [X2: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X2 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_6051_SUP__INF__set,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [G: B > A,A4: set @ ( set @ B )] :
( ( complete_Sup_Sup @ A
@ ( image @ ( set @ B ) @ A
@ ^ [X3: set @ B] : ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ X3 ) )
@ A4 ) )
= ( complete_Inf_Inf @ A
@ ( image @ ( set @ B ) @ A
@ ^ [X3: set @ B] : ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ X3 ) )
@ ( collect @ ( set @ B )
@ ^ [Uu3: set @ B] :
? [F3: ( set @ B ) > B] :
( ( Uu3
= ( image @ ( set @ B ) @ B @ F3 @ A4 ) )
& ! [X3: set @ B] :
( ( member @ ( set @ B ) @ X3 @ A4 )
=> ( member @ B @ ( F3 @ X3 ) @ X3 ) ) ) ) ) ) ) ) ).
% SUP_INF_set
thf(fact_6052_INF__SUP__set,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [G: B > A,A4: set @ ( set @ B )] :
( ( complete_Inf_Inf @ A
@ ( image @ ( set @ B ) @ A
@ ^ [B8: set @ B] : ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ B8 ) )
@ A4 ) )
= ( complete_Sup_Sup @ A
@ ( image @ ( set @ B ) @ A
@ ^ [B8: set @ B] : ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B8 ) )
@ ( collect @ ( set @ B )
@ ^ [Uu3: set @ B] :
? [F3: ( set @ B ) > B] :
( ( Uu3
= ( image @ ( set @ B ) @ B @ F3 @ A4 ) )
& ! [X3: set @ B] :
( ( member @ ( set @ B ) @ X3 @ A4 )
=> ( member @ B @ ( F3 @ X3 ) @ X3 ) ) ) ) ) ) ) ) ).
% INF_SUP_set
thf(fact_6053_Sup__Inf,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A4: set @ ( set @ A )] :
( ( complete_Sup_Sup @ A @ ( image @ ( set @ A ) @ A @ ( complete_Inf_Inf @ A ) @ A4 ) )
= ( complete_Inf_Inf @ A
@ ( image @ ( set @ A ) @ A @ ( complete_Sup_Sup @ A )
@ ( collect @ ( set @ A )
@ ^ [Uu3: set @ A] :
? [F3: ( set @ A ) > A] :
( ( Uu3
= ( image @ ( set @ A ) @ A @ F3 @ A4 ) )
& ! [X3: set @ A] :
( ( member @ ( set @ A ) @ X3 @ A4 )
=> ( member @ A @ ( F3 @ X3 ) @ X3 ) ) ) ) ) ) ) ) ).
% Sup_Inf
thf(fact_6054_Inf__Sup__le,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A4: set @ ( set @ A )] :
( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ ( set @ A ) @ A @ ( complete_Sup_Sup @ A ) @ A4 ) )
@ ( complete_Sup_Sup @ A
@ ( image @ ( set @ A ) @ A @ ( complete_Inf_Inf @ A )
@ ( collect @ ( set @ A )
@ ^ [Uu3: set @ A] :
? [F3: ( set @ A ) > A] :
( ( Uu3
= ( image @ ( set @ A ) @ A @ F3 @ A4 ) )
& ! [X3: set @ A] :
( ( member @ ( set @ A ) @ X3 @ A4 )
=> ( member @ A @ ( F3 @ X3 ) @ X3 ) ) ) ) ) ) ) ) ).
% Inf_Sup_le
thf(fact_6055_Sup__Inf__le,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ ( set @ A )] :
( ord_less_eq @ A
@ ( complete_Sup_Sup @ A
@ ( image @ ( set @ A ) @ A @ ( complete_Inf_Inf @ A )
@ ( collect @ ( set @ A )
@ ^ [Uu3: set @ A] :
? [F3: ( set @ A ) > A] :
( ( Uu3
= ( image @ ( set @ A ) @ A @ F3 @ A4 ) )
& ! [X3: set @ A] :
( ( member @ ( set @ A ) @ X3 @ A4 )
=> ( member @ A @ ( F3 @ X3 ) @ X3 ) ) ) ) ) )
@ ( complete_Inf_Inf @ A @ ( image @ ( set @ A ) @ A @ ( complete_Sup_Sup @ A ) @ A4 ) ) ) ) ).
% Sup_Inf_le
thf(fact_6056_Union__maximal__sets,axiom,
! [A: $tType,F11: set @ ( set @ A )] :
( ( finite_finite @ ( set @ A ) @ F11 )
=> ( ( complete_Sup_Sup @ ( set @ A )
@ ( collect @ ( set @ A )
@ ^ [T9: set @ A] :
( ( member @ ( set @ A ) @ T9 @ F11 )
& ! [X3: set @ A] :
( ( member @ ( set @ A ) @ X3 @ F11 )
=> ~ ( ord_less @ ( set @ A ) @ T9 @ X3 ) ) ) ) )
= ( complete_Sup_Sup @ ( set @ A ) @ F11 ) ) ) ).
% Union_maximal_sets
thf(fact_6057_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ X @ Xa2 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Y
= ( Xa2
= ( one_one @ nat ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
=> ~ ! [Mima: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( Y
= ( ( Deg2 = Xa2 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
& ( ( size_size @ ( list @ vEBT_VEBT ) @ TreeList )
= ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
& ( case_option @ $o @ ( product_prod @ nat @ nat )
@ ( ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X7 )
& ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq @ nat @ Mi3 @ Ma3 )
& ( ord_less @ nat @ Ma3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ Deg2 @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
=> ( ( ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ ( nth @ vEBT_VEBT @ TreeList @ I3 ) @ X7 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member @ vEBT_VEBT @ X3 @ ( set2 @ vEBT_VEBT @ TreeList ) )
=> ~ ? [X7: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X7 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less @ nat @ X3 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ TreeList @ X3 )
=> ( ( ord_less @ nat @ Mi3 @ X3 )
& ( ord_less_eq @ nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ nat ) @ vEBT_VEBT_valid_rel @ ( product_Pair @ vEBT_VEBT @ nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_6058_finite__Inf__Sup,axiom,
! [A: $tType] :
( ( finite8700451911770168679attice @ A )
=> ! [A4: set @ ( set @ A )] :
( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ ( set @ A ) @ A @ ( complete_Sup_Sup @ A ) @ A4 ) )
@ ( complete_Sup_Sup @ A
@ ( image @ ( set @ A ) @ A @ ( complete_Inf_Inf @ A )
@ ( collect @ ( set @ A )
@ ^ [Uu3: set @ A] :
? [F3: ( set @ A ) > A] :
( ( Uu3
= ( image @ ( set @ A ) @ A @ F3 @ A4 ) )
& ! [X3: set @ A] :
( ( member @ ( set @ A ) @ X3 @ A4 )
=> ( member @ A @ ( F3 @ X3 ) @ X3 ) ) ) ) ) ) ) ) ).
% finite_Inf_Sup
thf(fact_6059_cauchy__filter__metric,axiom,
! [A: $tType] :
( ( ( real_V768167426530841204y_dist @ A )
& ( topolo7287701948861334536_space @ A ) )
=> ( ( topolo6773858410816713723filter @ A )
= ( ^ [F9: filter @ A] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [P3: A > $o] :
( ( eventually @ A @ P3 @ F9 )
& ! [X3: A,Y2: A] :
( ( ( P3 @ X3 )
& ( P3 @ Y2 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ Y2 ) @ E3 ) ) ) ) ) ) ) ).
% cauchy_filter_metric
thf(fact_6060_mlex__eq,axiom,
! [A: $tType] :
( ( mlex_prod @ A )
= ( ^ [F3: A > nat,R6: set @ ( product_prod @ A @ A )] :
( collect @ ( product_prod @ A @ A )
@ ( product_case_prod @ A @ A @ $o
@ ^ [X3: A,Y2: A] :
( ( ord_less @ nat @ ( F3 @ X3 ) @ ( F3 @ Y2 ) )
| ( ( ord_less_eq @ nat @ ( F3 @ X3 ) @ ( F3 @ Y2 ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X3 @ Y2 ) @ R6 ) ) ) ) ) ) ) ).
% mlex_eq
thf(fact_6061_GMVT,axiom,
! [A2: real,B2: real,F2: real > real,G: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ F2 ) )
=> ( ! [X4: real] :
( ( ( ord_less @ real @ A2 @ X4 )
& ( ord_less @ real @ X4 @ B2 ) )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ( ! [X4: real] :
( ( ( ord_less_eq @ real @ A2 @ X4 )
& ( ord_less_eq @ real @ X4 @ B2 ) )
=> ( topolo3448309680560233919inuous @ real @ real @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) @ G ) )
=> ( ! [X4: real] :
( ( ( ord_less @ real @ A2 @ X4 )
& ( ord_less @ real @ X4 @ B2 ) )
=> ( differentiable @ real @ real @ G @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) )
=> ? [G_c: real,F_c: real,C4: real] :
( ( has_field_derivative @ real @ G @ G_c @ ( topolo174197925503356063within @ real @ C4 @ ( top_top @ ( set @ real ) ) ) )
& ( has_field_derivative @ real @ F2 @ F_c @ ( topolo174197925503356063within @ real @ C4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ A2 @ C4 )
& ( ord_less @ real @ C4 @ B2 )
& ( ( times_times @ real @ ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) @ G_c )
= ( times_times @ real @ ( minus_minus @ real @ ( G @ B2 ) @ ( G @ A2 ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_6062_differentiable__cmult__left__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V3459762299906320749_field @ A ) )
=> ! [C2: A,Q4: B > A,T2: B] :
( ( differentiable @ B @ A
@ ^ [T3: B] : ( times_times @ A @ C2 @ ( Q4 @ T3 ) )
@ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( differentiable @ B @ A @ Q4 @ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ) ).
% differentiable_cmult_left_iff
thf(fact_6063_differentiable__cmult__right__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V3459762299906320749_field @ A ) )
=> ! [Q4: B > A,C2: A,T2: B] :
( ( differentiable @ B @ A
@ ^ [T3: B] : ( times_times @ A @ ( Q4 @ T3 ) @ C2 )
@ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) )
= ( ( C2
= ( zero_zero @ A ) )
| ( differentiable @ B @ A @ Q4 @ ( topolo174197925503356063within @ B @ T2 @ ( top_top @ ( set @ B ) ) ) ) ) ) ) ).
% differentiable_cmult_right_iff
thf(fact_6064_differentiable__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [F2: A > B,F4: filter @ A,G: A > B] :
( ( differentiable @ A @ B @ F2 @ F4 )
=> ( ( differentiable @ A @ B @ G @ F4 )
=> ( differentiable @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4 ) ) ) ) ).
% differentiable_add
thf(fact_6065_differentiable__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,G: A > B] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( differentiable @ A @ B @ G @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( G @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X3: A] : ( divide_divide @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ) ).
% differentiable_divide
thf(fact_6066_differentiable__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X3: A] : ( inverse_inverse @ B @ ( F2 @ X3 ) )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% differentiable_inverse
thf(fact_6067_mlex__leq,axiom,
! [A: $tType,F2: A > nat,X: A,Y: A,R: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( mlex_prod @ A @ F2 @ R ) ) ) ) ).
% mlex_leq
thf(fact_6068_mlex__less,axiom,
! [A: $tType,F2: A > nat,X: A,Y: A,R: set @ ( product_prod @ A @ A )] :
( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( mlex_prod @ A @ F2 @ R ) ) ) ).
% mlex_less
thf(fact_6069_mlex__iff,axiom,
! [A: $tType,X: A,Y: A,F2: A > nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( mlex_prod @ A @ F2 @ R ) )
= ( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
| ( ( ( F2 @ X )
= ( F2 @ Y ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R ) ) ) ) ).
% mlex_iff
thf(fact_6070_in__finite__psubset,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( member @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ A4 @ B4 ) @ ( finite_psubset @ A ) )
= ( ( ord_less @ ( set @ A ) @ A4 @ B4 )
& ( finite_finite @ A @ B4 ) ) ) ).
% in_finite_psubset
thf(fact_6071_in__measure,axiom,
! [A: $tType,X: A,Y: A,F2: A > nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measure @ A @ F2 ) )
= ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ).
% in_measure
thf(fact_6072_finite__psubset__def,axiom,
! [A: $tType] :
( ( finite_psubset @ A )
= ( collect @ ( product_prod @ ( set @ A ) @ ( set @ A ) )
@ ( product_case_prod @ ( set @ A ) @ ( set @ A ) @ $o
@ ^ [A8: set @ A,B8: set @ A] :
( ( ord_less @ ( set @ A ) @ A8 @ B8 )
& ( finite_finite @ A @ B8 ) ) ) ) ) ).
% finite_psubset_def
thf(fact_6073_MVT,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [L4: real,Z: real] :
( ( ord_less @ real @ A2 @ Z )
& ( ord_less @ real @ Z @ B2 )
& ( has_field_derivative @ real @ F2 @ L4 @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) )
& ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
= ( times_times @ real @ ( minus_minus @ real @ B2 @ A2 ) @ L4 ) ) ) ) ) ) ).
% MVT
thf(fact_6074_ord_OLeast__def,axiom,
! [A: $tType] :
( ( least @ A )
= ( ^ [Less_eq: A > A > $o,P3: A > $o] :
( the @ A
@ ^ [X3: A] :
( ( P3 @ X3 )
& ! [Y2: A] :
( ( P3 @ Y2 )
=> ( Less_eq @ X3 @ Y2 ) ) ) ) ) ) ).
% ord.Least_def
thf(fact_6075_continuous__on__ln,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( zero_zero @ real ) ) )
=> ( topolo81223032696312382ous_on @ A @ real @ S
@ ^ [X3: A] : ( ln_ln @ real @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_ln
thf(fact_6076_ord_OLeast_Ocong,axiom,
! [A: $tType] :
( ( least @ A )
= ( least @ A ) ) ).
% ord.Least.cong
thf(fact_6077_continuous__on__add,axiom,
! [B: $tType,D: $tType] :
( ( ( topolo4958980785337419405_space @ D )
& ( topolo6943815403480290642id_add @ B ) )
=> ! [S: set @ D,F2: D > B,G: D > B] :
( ( topolo81223032696312382ous_on @ D @ B @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ D @ B @ S @ G )
=> ( topolo81223032696312382ous_on @ D @ B @ S
@ ^ [X3: D] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ).
% continuous_on_add
thf(fact_6078_continuous__on__divide,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [S: set @ A,F2: A > B,G: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ S @ G )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( G @ X4 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X3: A] : ( divide_divide @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_on_divide
thf(fact_6079_continuous__on__inverse,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X3: A] : ( inverse_inverse @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_inverse
thf(fact_6080_continuous__on__sgn,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X3: A] : ( sgn_sgn @ B @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_sgn
thf(fact_6081_IVT2_H,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo1944317154257567458pology @ B )
& ( topolo8458572112393995274pology @ A ) )
=> ! [F2: A > B,B2: A,Y: B,A2: A] :
( ( ord_less_eq @ B @ ( F2 @ B2 ) @ Y )
=> ( ( ord_less_eq @ B @ Y @ ( F2 @ A2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ? [X4: A] :
( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 )
& ( ( F2 @ X4 )
= Y ) ) ) ) ) ) ) ).
% IVT2'
thf(fact_6082_IVT_H,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo1944317154257567458pology @ B )
& ( topolo8458572112393995274pology @ A ) )
=> ! [F2: A > B,A2: A,Y: B,B2: A] :
( ( ord_less_eq @ B @ ( F2 @ A2 ) @ Y )
=> ( ( ord_less_eq @ B @ Y @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ? [X4: A] :
( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less_eq @ A @ X4 @ B2 )
& ( ( F2 @ X4 )
= Y ) ) ) ) ) ) ) ).
% IVT'
thf(fact_6083_continuous__on__powr,axiom,
! [C: $tType] :
( ( topolo4958980785337419405_space @ C )
=> ! [S: set @ C,F2: C > real,G: C > real] :
( ( topolo81223032696312382ous_on @ C @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ C @ real @ S @ G )
=> ( ! [X4: C] :
( ( member @ C @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( zero_zero @ real ) ) )
=> ( topolo81223032696312382ous_on @ C @ real @ S
@ ^ [X3: C] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_on_powr
thf(fact_6084_continuous__onI__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( dense_order @ B )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( topolo1002775350975398744n_open @ B @ ( image @ A @ B @ F2 @ A4 ) )
=> ( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ( member @ A @ Y4 @ A4 )
=> ( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ A4 @ F2 ) ) ) ) ).
% continuous_onI_mono
thf(fact_6085_open__Collect__less,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [F2: A > B,G: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( top_top @ ( set @ A ) ) @ G )
=> ( topolo1002775350975398744n_open @ A
@ ( collect @ A
@ ^ [X3: A] : ( ord_less @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% open_Collect_less
thf(fact_6086_continuous__on__tan,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: set @ A,F2: A > A] :
( ( topolo81223032696312382ous_on @ A @ A @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( cos @ A @ ( F2 @ X4 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ A @ A @ S
@ ^ [X3: A] : ( tan @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_tan
thf(fact_6087_continuous__on__cot,axiom,
! [A: $tType] :
( ( ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [S: set @ A,F2: A > A] :
( ( topolo81223032696312382ous_on @ A @ A @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( sin @ A @ ( F2 @ X4 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ A @ A @ S
@ ^ [X3: A] : ( cot @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_cot
thf(fact_6088_continuous__on__tanh,axiom,
! [A: $tType,C: $tType] :
( ( ( topolo4958980785337419405_space @ C )
& ( real_Vector_banach @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A4: set @ C,F2: C > A] :
( ( topolo81223032696312382ous_on @ C @ A @ A4 @ F2 )
=> ( ! [X4: C] :
( ( member @ C @ X4 @ A4 )
=> ( ( cosh @ A @ ( F2 @ X4 ) )
!= ( zero_zero @ A ) ) )
=> ( topolo81223032696312382ous_on @ C @ A @ A4
@ ^ [X3: C] : ( tanh @ A @ ( F2 @ X3 ) ) ) ) ) ) ).
% continuous_on_tanh
thf(fact_6089_continuous__on__powr_H,axiom,
! [C: $tType] :
( ( topolo4958980785337419405_space @ C )
=> ! [S: set @ C,F2: C > real,G: C > real] :
( ( topolo81223032696312382ous_on @ C @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ C @ real @ S @ G )
=> ( ! [X4: C] :
( ( member @ C @ X4 @ S )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) )
& ( ( ( F2 @ X4 )
= ( zero_zero @ real ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X4 ) ) ) ) )
=> ( topolo81223032696312382ous_on @ C @ real @ S
@ ^ [X3: C] : ( powr @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ).
% continuous_on_powr'
thf(fact_6090_continuous__on__log,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real,G: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ real @ S @ G )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( one_one @ real ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( G @ X4 ) ) )
=> ( topolo81223032696312382ous_on @ A @ real @ S
@ ^ [X3: A] : ( log @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ) ) ).
% continuous_on_log
thf(fact_6091_DERIV__atLeastAtMost__imp__continuous__on,axiom,
! [A: $tType] :
( ( ( ord @ A )
& ( real_V3459762299906320749_field @ A ) )
=> ! [A2: A,B2: A,F2: A > A] :
( ! [X4: A] :
( ( ord_less_eq @ A @ A2 @ X4 )
=> ( ( ord_less_eq @ A @ X4 @ B2 )
=> ? [Y3: A] : ( has_field_derivative @ A @ F2 @ Y3 @ ( topolo174197925503356063within @ A @ X4 @ ( top_top @ ( set @ A ) ) ) ) ) )
=> ( topolo81223032696312382ous_on @ A @ A @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 ) ) ) ).
% DERIV_atLeastAtMost_imp_continuous_on
thf(fact_6092_Rolle__deriv,axiom,
! [A2: real,B2: real,F2: real > real,F6: real > real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( has_derivative @ real @ real @ F2 @ ( F6 @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z: real] :
( ( ord_less @ real @ A2 @ Z )
& ( ord_less @ real @ Z @ B2 )
& ( ( F6 @ Z )
= ( ^ [V5: real] : ( zero_zero @ real ) ) ) ) ) ) ) ) ).
% Rolle_deriv
thf(fact_6093_mvt,axiom,
! [A2: real,B2: real,F2: real > real,F6: real > real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( has_derivative @ real @ real @ F2 @ ( F6 @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ~ ! [Xi: real] :
( ( ord_less @ real @ A2 @ Xi )
=> ( ( ord_less @ real @ Xi @ B2 )
=> ( ( minus_minus @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) )
!= ( F6 @ Xi @ ( minus_minus @ real @ B2 @ A2 ) ) ) ) ) ) ) ) ).
% mvt
thf(fact_6094_continuous__on__Icc__at__leftD,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [A2: A,B2: A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ B2 ) ) @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) ) ) ) ) ).
% continuous_on_Icc_at_leftD
thf(fact_6095_continuous__on__Icc__at__rightD,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [A2: A,B2: A,F2: A > B] :
( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) ) ) ) ) ).
% continuous_on_Icc_at_rightD
thf(fact_6096_DERIV__pos__imp__increasing__open,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ Y3 ) ) ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ord_less @ real @ ( F2 @ A2 ) @ ( F2 @ B2 ) ) ) ) ) ).
% DERIV_pos_imp_increasing_open
thf(fact_6097_DERIV__neg__imp__decreasing__open,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ? [Y3: real] :
( ( has_field_derivative @ real @ F2 @ Y3 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
& ( ord_less @ real @ Y3 @ ( zero_zero @ real ) ) ) ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ord_less @ real @ ( F2 @ B2 ) @ ( F2 @ A2 ) ) ) ) ) ).
% DERIV_neg_imp_decreasing_open
thf(fact_6098_DERIV__isconst__end,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ( F2 @ B2 )
= ( F2 @ A2 ) ) ) ) ) ).
% DERIV_isconst_end
thf(fact_6099_DERIV__isconst2,axiom,
! [A2: real,B2: real,F2: real > real,X: real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ( ( ord_less_eq @ real @ A2 @ X )
=> ( ( ord_less_eq @ real @ X @ B2 )
=> ( ( F2 @ X )
= ( F2 @ A2 ) ) ) ) ) ) ) ).
% DERIV_isconst2
thf(fact_6100_continuous__on__IccI,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo1944317154257567458pology @ A )
& ( topolo4958980785337419405_space @ B ) )
=> ! [F2: A > B,A2: A,B2: A] :
( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ A2 ) ) @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_greaterThan @ A @ A2 ) ) )
=> ( ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ B2 ) ) @ ( topolo174197925503356063within @ A @ B2 @ ( set_ord_lessThan @ A @ B2 ) ) )
=> ( ! [X4: A] :
( ( ord_less @ A @ A2 @ X4 )
=> ( ( ord_less @ A @ X4 @ B2 )
=> ( filterlim @ A @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( F2 @ X4 ) ) @ ( topolo174197925503356063within @ A @ X4 @ ( top_top @ ( set @ A ) ) ) ) ) )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 ) ) ) ) ) ) ).
% continuous_on_IccI
thf(fact_6101_Rolle,axiom,
! [A2: real,B2: real,F2: real > real] :
( ( ord_less @ real @ A2 @ B2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
=> ( ( topolo81223032696312382ous_on @ real @ real @ ( set_or1337092689740270186AtMost @ real @ A2 @ B2 ) @ F2 )
=> ( ! [X4: real] :
( ( ord_less @ real @ A2 @ X4 )
=> ( ( ord_less @ real @ X4 @ B2 )
=> ( differentiable @ real @ real @ F2 @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) ) ) )
=> ? [Z: real] :
( ( ord_less @ real @ A2 @ Z )
& ( ord_less @ real @ Z @ B2 )
& ( has_field_derivative @ real @ F2 @ ( zero_zero @ real ) @ ( topolo174197925503356063within @ real @ Z @ ( top_top @ ( set @ real ) ) ) ) ) ) ) ) ) ).
% Rolle
thf(fact_6102_sequentially__imp__eventually__at__left,axiom,
! [A: $tType] :
( ( ( topolo3112930676232923870pology @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [B2: A,A2: A,P: A > $o] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ! [F5: nat > A] :
( ! [N5: nat] : ( ord_less @ A @ B2 @ ( F5 @ N5 ) )
=> ( ! [N5: nat] : ( ord_less @ A @ ( F5 @ N5 ) @ A2 )
=> ( ( order_mono @ nat @ A @ F5 )
=> ( ( filterlim @ nat @ A @ F5 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( at_top @ nat ) )
=> ( eventually @ nat
@ ^ [N3: nat] : ( P @ ( F5 @ N3 ) )
@ ( at_top @ nat ) ) ) ) ) )
=> ( eventually @ A @ P @ ( topolo174197925503356063within @ A @ A2 @ ( set_ord_lessThan @ A @ A2 ) ) ) ) ) ) ).
% sequentially_imp_eventually_at_left
thf(fact_6103_range__abs__Nats,axiom,
( ( image @ int @ int @ ( abs_abs @ int ) @ ( top_top @ ( set @ int ) ) )
= ( semiring_1_Nats @ int ) ) ).
% range_abs_Nats
thf(fact_6104_mono__invE,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% mono_invE
thf(fact_6105_mono__funpow,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_bot @ A ) )
=> ! [Q: A > A] :
( ( order_mono @ A @ A @ Q )
=> ( order_mono @ nat @ A
@ ^ [I3: nat] : ( compow @ ( A > A ) @ I3 @ Q @ ( bot_bot @ A ) ) ) ) ) ).
% mono_funpow
thf(fact_6106_mono__sup,axiom,
! [B: $tType,A: $tType] :
( ( ( semilattice_sup @ A )
& ( semilattice_sup @ B ) )
=> ! [F2: A > B,A4: A,B4: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( sup_sup @ B @ ( F2 @ A4 ) @ ( F2 @ B4 ) ) @ ( F2 @ ( sup_sup @ A @ A4 @ B4 ) ) ) ) ) ).
% mono_sup
thf(fact_6107_incseq__def,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_mono @ nat @ A )
= ( ^ [X7: nat > A] :
! [M6: nat,N3: nat] :
( ( ord_less_eq @ nat @ M6 @ N3 )
=> ( ord_less_eq @ A @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) ) ) ) ) ).
% incseq_def
thf(fact_6108_incseqD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A,I: nat,J: nat] :
( ( order_mono @ nat @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ A @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ) ).
% incseqD
thf(fact_6109_mono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ( ( order_mono @ A @ B )
= ( ^ [F3: A > B] :
! [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
=> ( ord_less_eq @ B @ ( F3 @ X3 ) @ ( F3 @ Y2 ) ) ) ) ) ) ).
% mono_def
thf(fact_6110_monoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ! [X4: A,Y4: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( order_mono @ A @ B @ F2 ) ) ) ).
% monoI
thf(fact_6111_monoE,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% monoE
thf(fact_6112_monoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% monoD
thf(fact_6113_incseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_mono @ nat @ A )
= ( ^ [F3: nat > A] :
! [N3: nat] : ( ord_less_eq @ A @ ( F3 @ N3 ) @ ( F3 @ ( suc @ N3 ) ) ) ) ) ) ).
% incseq_Suc_iff
thf(fact_6114_incseq__SucI,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X6: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( X6 @ N ) @ ( X6 @ ( suc @ N ) ) )
=> ( order_mono @ nat @ A @ X6 ) ) ) ).
% incseq_SucI
thf(fact_6115_incseq__SucD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A4: nat > A,I: nat] :
( ( order_mono @ nat @ A @ A4 )
=> ( ord_less_eq @ A @ ( A4 @ I ) @ ( A4 @ ( suc @ I ) ) ) ) ) ).
% incseq_SucD
thf(fact_6116_funpow__mono,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: A > A,A4: A,B4: A,N2: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ A4 @ B4 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ N2 @ F2 @ A4 ) @ ( compow @ ( A > A ) @ N2 @ F2 @ B4 ) ) ) ) ) ).
% funpow_mono
thf(fact_6117_Nats__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_0
thf(fact_6118_Nats__numeral,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [W2: num] : ( member @ A @ ( numeral_numeral @ A @ W2 ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_numeral
thf(fact_6119_Nats__mult,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( member @ A @ ( times_times @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ).
% Nats_mult
thf(fact_6120_Nats__add,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ).
% Nats_add
thf(fact_6121_Nats__1,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( member @ A @ ( one_one @ A ) @ ( semiring_1_Nats @ A ) ) ) ).
% Nats_1
thf(fact_6122_mono__add,axiom,
! [A: $tType] :
( ( ordere6658533253407199908up_add @ A )
=> ! [A2: A] : ( order_mono @ A @ A @ ( plus_plus @ A @ A2 ) ) ) ).
% mono_add
thf(fact_6123_mono__Suc,axiom,
order_mono @ nat @ nat @ suc ).
% mono_Suc
thf(fact_6124_of__nat__in__Nats,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] : ( member @ A @ ( semiring_1_of_nat @ A @ N2 ) @ ( semiring_1_Nats @ A ) ) ) ).
% of_nat_in_Nats
thf(fact_6125_Nats__induct,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: A,P: A > $o] :
( ( member @ A @ X @ ( semiring_1_Nats @ A ) )
=> ( ! [N: nat] : ( P @ ( semiring_1_of_nat @ A @ N ) )
=> ( P @ X ) ) ) ) ).
% Nats_induct
thf(fact_6126_Nats__cases,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( semiring_1_Nats @ A ) )
=> ~ ! [N: nat] :
( X
!= ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% Nats_cases
thf(fact_6127_mono__pow,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,N2: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( order_mono @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) ) ) ) ).
% mono_pow
thf(fact_6128_mono__strict__invE,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ord_less @ A @ X @ Y ) ) ) ) ).
% mono_strict_invE
thf(fact_6129_mono__times__nat,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( order_mono @ nat @ nat @ ( times_times @ nat @ N2 ) ) ) ).
% mono_times_nat
thf(fact_6130_mono__mult,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( order_mono @ A @ A @ ( times_times @ A @ A2 ) ) ) ) ).
% mono_mult
thf(fact_6131_mono__image__least,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [F2: A > B,M: A,N2: A,M4: B,N4: B] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ( image @ A @ B @ F2 @ ( set_or7035219750837199246ssThan @ A @ M @ N2 ) )
= ( set_or7035219750837199246ssThan @ B @ M4 @ N4 ) )
=> ( ( ord_less @ A @ M @ N2 )
=> ( ( F2 @ M )
= M4 ) ) ) ) ) ).
% mono_image_least
thf(fact_6132_Kleene__iter__gpfp,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ! [F2: A > A,P6: A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ P6 @ ( F2 @ P6 ) )
=> ( ord_less_eq @ A @ P6 @ ( compow @ ( A > A ) @ K @ F2 @ ( top_top @ A ) ) ) ) ) ) ).
% Kleene_iter_gpfp
thf(fact_6133_Kleene__iter__lpfp,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ! [F2: A > A,P6: A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ P6 ) @ P6 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ K @ F2 @ ( bot_bot @ A ) ) @ P6 ) ) ) ) ).
% Kleene_iter_lpfp
thf(fact_6134_funpow__mono2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: A > A,I: nat,J: nat,X: A,Y: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ ( F2 @ X ) )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ I @ F2 @ X ) @ ( compow @ ( A > A ) @ J @ F2 @ Y ) ) ) ) ) ) ) ).
% funpow_mono2
thf(fact_6135_Nats__diff,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( semiring_1_Nats @ A ) )
=> ( ( member @ A @ B2 @ ( semiring_1_Nats @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( member @ A @ ( minus_minus @ A @ A2 @ B2 ) @ ( semiring_1_Nats @ A ) ) ) ) ) ) ).
% Nats_diff
thf(fact_6136_mono__SUP,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( comple6319245703460814977attice @ B ) )
=> ! [F2: A > B,A4: C > A,I5: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B
@ ( complete_Sup_Sup @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) )
@ ( F2 @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ A4 @ I5 ) ) ) ) ) ) ).
% mono_SUP
thf(fact_6137_mono__Sup,axiom,
! [B: $tType,A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( comple6319245703460814977attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ A4 ) ) @ ( F2 @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% mono_Sup
thf(fact_6138_mono__INF,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( comple6319245703460814977attice @ B ) )
=> ! [F2: A > B,A4: C > A,I5: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ A4 @ I5 ) ) )
@ ( complete_Inf_Inf @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) ) ) ) ) ).
% mono_INF
thf(fact_6139_mono__Inf,axiom,
! [B: $tType,A: $tType] :
( ( ( comple6319245703460814977attice @ A )
& ( comple6319245703460814977attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ A4 ) ) @ ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ).
% mono_Inf
thf(fact_6140_Nats__subset__Ints,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ord_less_eq @ ( set @ A ) @ ( semiring_1_Nats @ A ) @ ( ring_1_Ints @ A ) ) ) ).
% Nats_subset_Ints
thf(fact_6141_antimono__funpow,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_top @ A ) )
=> ! [Q: A > A] :
( ( order_mono @ A @ A @ Q )
=> ( order_antimono @ nat @ A
@ ^ [I3: nat] : ( compow @ ( A > A ) @ I3 @ Q @ ( top_top @ A ) ) ) ) ) ).
% antimono_funpow
thf(fact_6142_incseq__le,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X6: nat > A,L5: A,N2: nat] :
( ( order_mono @ nat @ A @ X6 )
=> ( ( filterlim @ nat @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( at_top @ nat ) )
=> ( ord_less_eq @ A @ ( X6 @ N2 ) @ L5 ) ) ) ) ).
% incseq_le
thf(fact_6143_funpow__increasing,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_top @ A ) )
=> ! [M: nat,N2: nat,F2: A > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ N2 @ F2 @ ( top_top @ A ) ) @ ( compow @ ( A > A ) @ M @ F2 @ ( top_top @ A ) ) ) ) ) ) ).
% funpow_increasing
thf(fact_6144_funpow__decreasing,axiom,
! [A: $tType] :
( ( ( lattice @ A )
& ( order_bot @ A ) )
=> ! [M: nat,N2: nat,F2: A > A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( compow @ ( A > A ) @ M @ F2 @ ( bot_bot @ A ) ) @ ( compow @ ( A > A ) @ N2 @ F2 @ ( bot_bot @ A ) ) ) ) ) ) ).
% funpow_decreasing
thf(fact_6145_mono__Max__commute,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( F2 @ ( lattic643756798349783984er_Max @ A @ A4 ) )
= ( lattic643756798349783984er_Max @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ) ) ).
% mono_Max_commute
thf(fact_6146_mono__Min__commute,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( F2 @ ( lattic643756798350308766er_Min @ A @ A4 ) )
= ( lattic643756798350308766er_Min @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ) ) ).
% mono_Min_commute
thf(fact_6147_Nats__def,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_Nats @ A )
= ( image @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( top_top @ ( set @ nat ) ) ) ) ) ).
% Nats_def
thf(fact_6148_Nats__altdef2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ( ( semiring_1_Nats @ A )
= ( collect @ A
@ ^ [N3: A] :
( ( member @ A @ N3 @ ( ring_1_Ints @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ N3 ) ) ) ) ) ).
% Nats_altdef2
thf(fact_6149_Nats__altdef1,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( ( semiring_1_Nats @ A )
= ( collect @ A
@ ^ [Uu3: A] :
? [N3: int] :
( ( Uu3
= ( ring_1_of_int @ A @ N3 ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ N3 ) ) ) ) ) ).
% Nats_altdef1
thf(fact_6150_mono__ge2__power__minus__self,axiom,
! [K: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ K )
=> ( order_mono @ nat @ nat
@ ^ [M6: nat] : ( minus_minus @ nat @ ( power_power @ nat @ K @ M6 ) @ M6 ) ) ) ).
% mono_ge2_power_minus_self
thf(fact_6151_finite__mono__remains__stable__implies__strict__prefix,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F2: nat > A] :
( ( finite_finite @ A @ ( image @ nat @ A @ F2 @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( order_mono @ nat @ A @ F2 )
=> ( ! [N: nat] :
( ( ( F2 @ N )
= ( F2 @ ( suc @ N ) ) )
=> ( ( F2 @ ( suc @ N ) )
= ( F2 @ ( suc @ ( suc @ N ) ) ) ) )
=> ? [N9: nat] :
( ! [N5: nat] :
( ( ord_less_eq @ nat @ N5 @ N9 )
=> ! [M2: nat] :
( ( ord_less_eq @ nat @ M2 @ N9 )
=> ( ( ord_less @ nat @ M2 @ N5 )
=> ( ord_less @ A @ ( F2 @ M2 ) @ ( F2 @ N5 ) ) ) ) )
& ! [N5: nat] :
( ( ord_less_eq @ nat @ N9 @ N5 )
=> ( ( F2 @ N9 )
= ( F2 @ N5 ) ) ) ) ) ) ) ) ).
% finite_mono_remains_stable_implies_strict_prefix
thf(fact_6152_tendsto__at__left__sequentially,axiom,
! [A: $tType,B: $tType] :
( ( ( topolo3112930676232923870pology @ B )
& ( topolo1944317154257567458pology @ B )
& ( topolo4958980785337419405_space @ A ) )
=> ! [B2: B,A2: B,X6: B > A,L5: A] :
( ( ord_less @ B @ B2 @ A2 )
=> ( ! [S5: nat > B] :
( ! [N5: nat] : ( ord_less @ B @ ( S5 @ N5 ) @ A2 )
=> ( ! [N5: nat] : ( ord_less @ B @ B2 @ ( S5 @ N5 ) )
=> ( ( order_mono @ nat @ B @ S5 )
=> ( ( filterlim @ nat @ B @ S5 @ ( topolo7230453075368039082e_nhds @ B @ A2 ) @ ( at_top @ nat ) )
=> ( filterlim @ nat @ A
@ ^ [N3: nat] : ( X6 @ ( S5 @ N3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ L5 )
@ ( at_top @ nat ) ) ) ) ) )
=> ( filterlim @ B @ A @ X6 @ ( topolo7230453075368039082e_nhds @ A @ L5 ) @ ( topolo174197925503356063within @ B @ A2 @ ( set_ord_lessThan @ B @ A2 ) ) ) ) ) ) ).
% tendsto_at_left_sequentially
thf(fact_6153_remdups__adj__altdef,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( ( remdups_adj @ A @ Xs2 )
= Ys3 )
= ( ? [F3: nat > nat] :
( ( order_mono @ nat @ nat @ F3 )
& ( ( image @ nat @ nat @ F3 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Ys3 ) ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I3 )
= ( nth @ A @ Ys3 @ ( F3 @ I3 ) ) ) )
& ! [I3: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I3 @ ( one_one @ nat ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ Xs2 @ I3 )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ I3 @ ( one_one @ nat ) ) ) )
= ( ( F3 @ I3 )
= ( F3 @ ( plus_plus @ nat @ I3 @ ( one_one @ nat ) ) ) ) ) ) ) ) ) ).
% remdups_adj_altdef
thf(fact_6154_inj__sgn__power,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( inj_on @ real @ real
@ ^ [Y2: real] : ( times_times @ real @ ( sgn_sgn @ real @ Y2 ) @ ( power_power @ real @ ( abs_abs @ real @ Y2 ) @ N2 ) )
@ ( top_top @ ( set @ real ) ) ) ) ).
% inj_sgn_power
thf(fact_6155_remdups__adj__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( remdups_adj @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% remdups_adj_set
thf(fact_6156_inj__mult__left,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [A2: A] :
( ( inj_on @ A @ A @ ( times_times @ A @ A2 ) @ ( top_top @ ( set @ A ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% inj_mult_left
thf(fact_6157_inj__divide__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A] :
( ( inj_on @ A @ A
@ ^ [B3: A] : ( divide_divide @ A @ B3 @ A2 )
@ ( top_top @ ( set @ A ) ) )
= ( A2
!= ( zero_zero @ A ) ) ) ) ).
% inj_divide_right
thf(fact_6158_linorder__injI,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ A )
=> ! [F2: A > B] :
( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ( F2 @ X4 )
!= ( F2 @ Y4 ) ) )
=> ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) ) ) ).
% linorder_injI
thf(fact_6159_inj__on__mult,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A,A4: set @ A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( inj_on @ A @ A @ ( times_times @ A @ A2 ) @ A4 ) ) ) ).
% inj_on_mult
thf(fact_6160_inj__on__add_H,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A4: set @ A] :
( inj_on @ A @ A
@ ^ [B3: A] : ( plus_plus @ A @ B3 @ A2 )
@ A4 ) ) ).
% inj_on_add'
thf(fact_6161_inj__on__add,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A4: set @ A] : ( inj_on @ A @ A @ ( plus_plus @ A @ A2 ) @ A4 ) ) ).
% inj_on_add
thf(fact_6162_inj__add__left,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A] : ( inj_on @ A @ A @ ( plus_plus @ A @ A2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_add_left
thf(fact_6163_inj__fn,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( inj_on @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( inj_on @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% inj_fn
thf(fact_6164_remdups__adj__length,axiom,
! [A: $tType,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% remdups_adj_length
thf(fact_6165_linorder__inj__onI,axiom,
! [B: $tType,A: $tType] :
( ( order @ A )
=> ! [A4: set @ A,F2: A > B] :
( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ( member @ A @ X4 @ A4 )
=> ( ( member @ A @ Y4 @ A4 )
=> ( ( F2 @ X4 )
!= ( F2 @ Y4 ) ) ) ) )
=> ( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ( member @ A @ Y4 @ A4 )
=> ( ( ord_less_eq @ A @ X4 @ Y4 )
| ( ord_less_eq @ A @ Y4 @ X4 ) ) ) )
=> ( inj_on @ A @ B @ F2 @ A4 ) ) ) ) ).
% linorder_inj_onI
thf(fact_6166_subset__image__inj,axiom,
! [A: $tType,B: $tType,S3: set @ A,F2: B > A,T6: set @ B] :
( ( ord_less_eq @ ( set @ A ) @ S3 @ ( image @ B @ A @ F2 @ T6 ) )
= ( ? [U5: set @ B] :
( ( ord_less_eq @ ( set @ B ) @ U5 @ T6 )
& ( inj_on @ B @ A @ F2 @ U5 )
& ( S3
= ( image @ B @ A @ F2 @ U5 ) ) ) ) ) ).
% subset_image_inj
thf(fact_6167_inj__on__strict__subset,axiom,
! [B: $tType,A: $tType,F2: A > B,B4: set @ A,A4: set @ A] :
( ( inj_on @ A @ B @ F2 @ B4 )
=> ( ( ord_less @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less @ ( set @ B ) @ ( image @ A @ B @ F2 @ A4 ) @ ( image @ A @ B @ F2 @ B4 ) ) ) ) ).
% inj_on_strict_subset
thf(fact_6168_inj__on__iff__surj,axiom,
! [A: $tType,B: $tType,A4: set @ A,A11: set @ B] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ? [F3: A > B] :
( ( inj_on @ A @ B @ F3 @ A4 )
& ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F3 @ A4 ) @ A11 ) ) )
= ( ? [G2: B > A] :
( ( image @ B @ A @ G2 @ A11 )
= A4 ) ) ) ) ).
% inj_on_iff_surj
thf(fact_6169_pigeonhole,axiom,
! [A: $tType,B: $tType,F2: B > A,A4: set @ B] :
( ( ord_less @ nat @ ( finite_card @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( finite_card @ B @ A4 ) )
=> ~ ( inj_on @ B @ A @ F2 @ A4 ) ) ).
% pigeonhole
thf(fact_6170_continuous__inj__imp__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo8458572112393995274pology @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [A2: A,X: A,B2: A,F2: A > B] :
( ( ord_less @ A @ A2 @ X )
=> ( ( ord_less @ A @ X @ B2 )
=> ( ( topolo81223032696312382ous_on @ A @ B @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ F2 )
=> ( ( inj_on @ A @ B @ F2 @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) )
=> ( ( ( ord_less @ B @ ( F2 @ A2 ) @ ( F2 @ X ) )
& ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ B2 ) ) )
| ( ( ord_less @ B @ ( F2 @ B2 ) @ ( F2 @ X ) )
& ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ A2 ) ) ) ) ) ) ) ) ) ).
% continuous_inj_imp_mono
thf(fact_6171_injective__scaleR,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [C2: real] :
( ( C2
!= ( zero_zero @ real ) )
=> ( inj_on @ A @ A @ ( real_V8093663219630862766scaleR @ A @ C2 ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% injective_scaleR
thf(fact_6172_remdups__adj__adjacent,axiom,
! [A: $tType,I: nat,Xs2: list @ A] :
( ( ord_less @ nat @ ( suc @ I ) @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) )
=> ( ( nth @ A @ ( remdups_adj @ A @ Xs2 ) @ I )
!= ( nth @ A @ ( remdups_adj @ A @ Xs2 ) @ ( suc @ I ) ) ) ) ).
% remdups_adj_adjacent
thf(fact_6173_card__le__inj,axiom,
! [B: $tType,A: $tType,A4: set @ A,B4: set @ B] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ B @ B4 ) )
=> ? [F5: A > B] :
( ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F5 @ A4 ) @ B4 )
& ( inj_on @ A @ B @ F5 @ A4 ) ) ) ) ) ).
% card_le_inj
thf(fact_6174_card__inj__on__le,axiom,
! [A: $tType,B: $tType,F2: A > B,A4: set @ A,B4: set @ B] :
( ( inj_on @ A @ B @ F2 @ A4 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F2 @ A4 ) @ B4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ B @ B4 ) ) ) ) ) ).
% card_inj_on_le
thf(fact_6175_inj__on__iff__card__le,axiom,
! [A: $tType,B: $tType,A4: set @ A,B4: set @ B] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( ? [F3: A > B] :
( ( inj_on @ A @ B @ F3 @ A4 )
& ( ord_less_eq @ ( set @ B ) @ ( image @ A @ B @ F3 @ A4 ) @ B4 ) ) )
= ( ord_less_eq @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ B @ B4 ) ) ) ) ) ).
% inj_on_iff_card_le
thf(fact_6176_log__inj,axiom,
! [B2: real] :
( ( ord_less @ real @ ( one_one @ real ) @ B2 )
=> ( inj_on @ real @ real @ ( log @ B2 ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ).
% log_inj
thf(fact_6177_funpow__inj__finite,axiom,
! [A: $tType,P6: A > A,X: A] :
( ( inj_on @ A @ A @ P6 @ ( top_top @ ( set @ A ) ) )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [Y2: A] :
? [N3: nat] :
( Y2
= ( compow @ ( A > A ) @ N3 @ P6 @ X ) ) ) )
=> ~ ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( compow @ ( A > A ) @ N @ P6 @ X )
!= X ) ) ) ) ).
% funpow_inj_finite
thf(fact_6178_Rats__eq__int__div__nat,axiom,
( ( field_char_0_Rats @ real )
= ( collect @ real
@ ^ [Uu3: real] :
? [I3: int,N3: nat] :
( ( Uu3
= ( divide_divide @ real @ ( ring_1_of_int @ real @ I3 ) @ ( semiring_1_of_nat @ real @ N3 ) ) )
& ( N3
!= ( zero_zero @ nat ) ) ) ) ) ).
% Rats_eq_int_div_nat
thf(fact_6179_surj__int__decode,axiom,
( ( image @ nat @ int @ nat_int_decode @ ( top_top @ ( set @ nat ) ) )
= ( top_top @ ( set @ int ) ) ) ).
% surj_int_decode
thf(fact_6180_Rats__abs__iff,axiom,
! [X: real] :
( ( member @ real @ ( abs_abs @ real @ X ) @ ( field_char_0_Rats @ real ) )
= ( member @ real @ X @ ( field_char_0_Rats @ real ) ) ) ).
% Rats_abs_iff
thf(fact_6181_int__decode__inverse,axiom,
! [N2: nat] :
( ( nat_int_encode @ ( nat_int_decode @ N2 ) )
= N2 ) ).
% int_decode_inverse
thf(fact_6182_int__encode__inverse,axiom,
! [X: int] :
( ( nat_int_decode @ ( nat_int_encode @ X ) )
= X ) ).
% int_encode_inverse
thf(fact_6183_inj__on__diff__nat,axiom,
! [N7: set @ nat,K: nat] :
( ! [N: nat] :
( ( member @ nat @ N @ N7 )
=> ( ord_less_eq @ nat @ K @ N ) )
=> ( inj_on @ nat @ nat
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ K )
@ N7 ) ) ).
% inj_on_diff_nat
thf(fact_6184_inj__prod__encode,axiom,
! [A4: set @ ( product_prod @ nat @ nat )] : ( inj_on @ ( product_prod @ nat @ nat ) @ nat @ nat_prod_encode @ A4 ) ).
% inj_prod_encode
thf(fact_6185_inj__prod__decode,axiom,
! [A4: set @ nat] : ( inj_on @ nat @ ( product_prod @ nat @ nat ) @ nat_prod_decode @ A4 ) ).
% inj_prod_decode
thf(fact_6186_inj__Suc,axiom,
! [N7: set @ nat] : ( inj_on @ nat @ nat @ suc @ N7 ) ).
% inj_Suc
thf(fact_6187_inj__int__decode,axiom,
! [A4: set @ nat] : ( inj_on @ nat @ int @ nat_int_decode @ A4 ) ).
% inj_int_decode
thf(fact_6188_inj__on__of__nat,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N7: set @ nat] : ( inj_on @ nat @ A @ ( semiring_1_of_nat @ A ) @ N7 ) ) ).
% inj_on_of_nat
thf(fact_6189_inj__of__nat,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( inj_on @ nat @ A @ ( semiring_1_of_nat @ A ) @ ( top_top @ ( set @ nat ) ) ) ) ).
% inj_of_nat
thf(fact_6190_inj__int__encode,axiom,
! [A4: set @ int] : ( inj_on @ int @ nat @ nat_int_encode @ A4 ) ).
% inj_int_encode
thf(fact_6191_Rats__no__top__le,axiom,
! [X: real] :
? [X4: real] :
( ( member @ real @ X4 @ ( field_char_0_Rats @ real ) )
& ( ord_less_eq @ real @ X @ X4 ) ) ).
% Rats_no_top_le
thf(fact_6192_Rats__1,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( member @ A @ ( one_one @ A ) @ ( field_char_0_Rats @ A ) ) ) ).
% Rats_1
thf(fact_6193_Rats__add,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( field_char_0_Rats @ A ) )
=> ( ( member @ A @ B2 @ ( field_char_0_Rats @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( field_char_0_Rats @ A ) ) ) ) ) ).
% Rats_add
thf(fact_6194_int__decode__eq,axiom,
! [X: nat,Y: nat] :
( ( ( nat_int_decode @ X )
= ( nat_int_decode @ Y ) )
= ( X = Y ) ) ).
% int_decode_eq
thf(fact_6195_Rats__0,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( field_char_0_Rats @ A ) ) ) ).
% Rats_0
thf(fact_6196_Rats__no__bot__less,axiom,
! [X: real] :
? [X4: real] :
( ( member @ real @ X4 @ ( field_char_0_Rats @ real ) )
& ( ord_less @ real @ X4 @ X ) ) ).
% Rats_no_bot_less
thf(fact_6197_Rats__dense__in__real,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ? [X4: real] :
( ( member @ real @ X4 @ ( field_char_0_Rats @ real ) )
& ( ord_less @ real @ X @ X4 )
& ( ord_less @ real @ X4 @ Y ) ) ) ).
% Rats_dense_in_real
thf(fact_6198_inj__on__set__encode,axiom,
inj_on @ ( set @ nat ) @ nat @ nat_set_encode @ ( collect @ ( set @ nat ) @ ( finite_finite @ nat ) ) ).
% inj_on_set_encode
thf(fact_6199_finite__imp__nat__seg__image__inj__on,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ? [N: nat,F5: nat > A] :
( ( A4
= ( image @ nat @ A @ F5
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N ) ) ) )
& ( inj_on @ nat @ A @ F5
@ ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N ) ) ) ) ) ).
% finite_imp_nat_seg_image_inj_on
thf(fact_6200_finite__imp__inj__to__nat__seg,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ? [F5: A > nat,N: nat] :
( ( ( image @ A @ nat @ F5 @ A4 )
= ( collect @ nat
@ ^ [I3: nat] : ( ord_less @ nat @ I3 @ N ) ) )
& ( inj_on @ A @ nat @ F5 @ A4 ) ) ) ).
% finite_imp_inj_to_nat_seg
thf(fact_6201_inj__on__nth,axiom,
! [A: $tType,Xs2: list @ A,I5: set @ nat] :
( ( distinct @ A @ Xs2 )
=> ( ! [X4: nat] :
( ( member @ nat @ X4 @ I5 )
=> ( ord_less @ nat @ X4 @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
=> ( inj_on @ nat @ A @ ( nth @ A @ Xs2 ) @ I5 ) ) ) ).
% inj_on_nth
thf(fact_6202_infinite__countable__subset,axiom,
! [A: $tType,S3: set @ A] :
( ~ ( finite_finite @ A @ S3 )
=> ? [F5: nat > A] :
( ( inj_on @ nat @ A @ F5 @ ( top_top @ ( set @ nat ) ) )
& ( ord_less_eq @ ( set @ A ) @ ( image @ nat @ A @ F5 @ ( top_top @ ( set @ nat ) ) ) @ S3 ) ) ) ).
% infinite_countable_subset
thf(fact_6203_infinite__iff__countable__subset,axiom,
! [A: $tType,S3: set @ A] :
( ( ~ ( finite_finite @ A @ S3 ) )
= ( ? [F3: nat > A] :
( ( inj_on @ nat @ A @ F3 @ ( top_top @ ( set @ nat ) ) )
& ( ord_less_eq @ ( set @ A ) @ ( image @ nat @ A @ F3 @ ( top_top @ ( set @ nat ) ) ) @ S3 ) ) ) ) ).
% infinite_iff_countable_subset
thf(fact_6204_summable__reindex,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X4: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) )
=> ( summable @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) ) ) ) ) ).
% summable_reindex
thf(fact_6205_inj__on__funpow__least,axiom,
! [A: $tType,N2: nat,F2: A > A,S: A] :
( ( ( compow @ ( A > A ) @ N2 @ F2 @ S )
= S )
=> ( ! [M5: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M5 )
=> ( ( ord_less @ nat @ M5 @ N2 )
=> ( ( compow @ ( A > A ) @ M5 @ F2 @ S )
!= S ) ) )
=> ( inj_on @ nat @ A
@ ^ [K3: nat] : ( compow @ ( A > A ) @ K3 @ F2 @ S )
@ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% inj_on_funpow_least
thf(fact_6206_suminf__reindex__mono,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X4: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) )
=> ( ord_less_eq @ real @ ( suminf @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) ) @ ( suminf @ real @ F2 ) ) ) ) ) ).
% suminf_reindex_mono
thf(fact_6207_Rats__eq__int__div__int,axiom,
( ( field_char_0_Rats @ real )
= ( collect @ real
@ ^ [Uu3: real] :
? [I3: int,J3: int] :
( ( Uu3
= ( divide_divide @ real @ ( ring_1_of_int @ real @ I3 ) @ ( ring_1_of_int @ real @ J3 ) ) )
& ( J3
!= ( zero_zero @ int ) ) ) ) ) ).
% Rats_eq_int_div_int
thf(fact_6208_suminf__reindex,axiom,
! [F2: nat > real,G: nat > nat] :
( ( summable @ real @ F2 )
=> ( ( inj_on @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) )
=> ( ! [X4: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) )
=> ( ! [X4: nat] :
( ~ ( member @ nat @ X4 @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ X4 )
= ( zero_zero @ real ) ) )
=> ( ( suminf @ real @ ( comp @ nat @ real @ nat @ F2 @ G ) )
= ( suminf @ real @ F2 ) ) ) ) ) ) ).
% suminf_reindex
thf(fact_6209_set__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B] :
( ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) )
= ( collect @ ( product_prod @ A @ B )
@ ^ [Uu3: product_prod @ A @ B] :
? [I3: nat] :
( ( Uu3
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ B @ Ys3 @ I3 ) ) )
& ( ord_less @ nat @ I3 @ ( ord_min @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys3 ) ) ) ) ) ) ).
% set_zip
thf(fact_6210_has__derivative__power__int_H,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [X: A,N2: int,S3: set @ A] :
( ( X
!= ( zero_zero @ A ) )
=> ( has_derivative @ A @ A
@ ^ [X3: A] : ( power_int @ A @ X3 @ N2 )
@ ^ [Y2: A] : ( times_times @ A @ Y2 @ ( times_times @ A @ ( ring_1_of_int @ A @ N2 ) @ ( power_int @ A @ X @ ( minus_minus @ int @ N2 @ ( one_one @ int ) ) ) ) )
@ ( topolo174197925503356063within @ A @ X @ S3 ) ) ) ) ).
% has_derivative_power_int'
thf(fact_6211_power__int__1__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [N2: int] :
( ( power_int @ A @ ( one_one @ A ) @ N2 )
= ( one_one @ A ) ) ) ).
% power_int_1_left
thf(fact_6212_power__int__1__right,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( monoid_mult @ A ) )
=> ! [Y: A] :
( ( power_int @ A @ Y @ ( one_one @ int ) )
= Y ) ) ).
% power_int_1_right
thf(fact_6213_power__int__sgn,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,N2: int] :
( ( sgn_sgn @ A @ ( power_int @ A @ A2 @ N2 ) )
= ( power_int @ A @ ( sgn_sgn @ A @ A2 ) @ N2 ) ) ) ).
% power_int_sgn
thf(fact_6214_power__int__mult__distrib__numeral2,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,W2: num,M: int] :
( ( power_int @ A @ ( times_times @ A @ X @ ( numeral_numeral @ A @ W2 ) ) @ M )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ ( numeral_numeral @ A @ W2 ) @ M ) ) ) ) ).
% power_int_mult_distrib_numeral2
thf(fact_6215_power__int__mult__distrib__numeral1,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [W2: num,Y: A,M: int] :
( ( power_int @ A @ ( times_times @ A @ ( numeral_numeral @ A @ W2 ) @ Y ) @ M )
= ( times_times @ A @ ( power_int @ A @ ( numeral_numeral @ A @ W2 ) @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_mult_distrib_numeral1
thf(fact_6216_power__int__eq__0__iff,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( ( power_int @ A @ X @ N2 )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( N2
!= ( zero_zero @ int ) ) ) ) ) ).
% power_int_eq_0_iff
thf(fact_6217_power__int__0__left,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( M
!= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( zero_zero @ A ) ) ) ) ).
% power_int_0_left
thf(fact_6218_power__int__0__right,axiom,
! [B: $tType] :
( ( ( inverse @ B )
& ( power @ B ) )
=> ! [X: B] :
( ( power_int @ B @ X @ ( zero_zero @ int ) )
= ( one_one @ B ) ) ) ).
% power_int_0_right
thf(fact_6219_abs__power__int__minus,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,N2: int] :
( ( abs_abs @ A @ ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N2 ) )
= ( abs_abs @ A @ ( power_int @ A @ A2 @ N2 ) ) ) ) ).
% abs_power_int_minus
thf(fact_6220_power__int__of__nat,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ! [X: A,N2: nat] :
( ( power_int @ A @ X @ ( semiring_1_of_nat @ int @ N2 ) )
= ( power_power @ A @ X @ N2 ) ) ) ).
% power_int_of_nat
thf(fact_6221_power__int__mult__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N2: num] :
( ( power_int @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( numeral_numeral @ int @ N2 ) )
= ( power_int @ A @ X @ ( numeral_numeral @ int @ ( times_times @ num @ M @ N2 ) ) ) ) ) ).
% power_int_mult_numeral
thf(fact_6222_power__int__minus__one__mult__self,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) )
= ( one_one @ A ) ) ) ).
% power_int_minus_one_mult_self
thf(fact_6223_power__int__minus__one__mult__self_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int,B2: A] :
( ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ M ) @ B2 ) )
= B2 ) ) ).
% power_int_minus_one_mult_self'
thf(fact_6224_power__int__numeral,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ! [X: A,N2: num] :
( ( power_int @ A @ X @ ( numeral_numeral @ int @ N2 ) )
= ( power_power @ A @ X @ ( numeral_numeral @ nat @ N2 ) ) ) ) ).
% power_int_numeral
thf(fact_6225_power__int__minus1__right,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( monoid_mult @ A ) )
=> ! [Y: A] :
( ( power_int @ A @ Y @ ( uminus_uminus @ int @ ( one_one @ int ) ) )
= ( inverse_inverse @ A @ Y ) ) ) ).
% power_int_minus1_right
thf(fact_6226_power__int__add__numeral2,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N2: num,B2: A] :
( ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ N2 ) ) @ B2 ) )
= ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ ( plus_plus @ num @ M @ N2 ) ) ) @ B2 ) ) ) ).
% power_int_add_numeral2
thf(fact_6227_power__int__add__numeral,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: num,N2: num] :
( ( times_times @ A @ ( power_int @ A @ X @ ( numeral_numeral @ int @ M ) ) @ ( power_int @ A @ X @ ( numeral_numeral @ int @ N2 ) ) )
= ( power_int @ A @ X @ ( numeral_numeral @ int @ ( plus_plus @ num @ M @ N2 ) ) ) ) ) ).
% power_int_add_numeral
thf(fact_6228_power__int__mono__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N2: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( ord_less_eq @ A @ ( power_int @ A @ A2 @ N2 ) @ ( power_int @ A @ B2 @ N2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ) ).
% power_int_mono_iff
thf(fact_6229_nth__zip,axiom,
! [A: $tType,B: $tType,I: nat,Xs2: list @ A,Ys3: list @ B] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( nth @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) @ I )
= ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ I ) @ ( nth @ B @ Ys3 @ I ) ) ) ) ) ).
% nth_zip
thf(fact_6230_continuous__on__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [S: set @ A,F2: A > B,N2: int] :
( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S )
=> ( ( F2 @ X4 )
!= ( zero_zero @ B ) ) )
=> ( topolo81223032696312382ous_on @ A @ B @ S
@ ^ [X3: A] : ( power_int @ B @ ( F2 @ X3 ) @ N2 ) ) ) ) ) ).
% continuous_on_power_int
thf(fact_6231_zero__less__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N2: int] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% zero_less_power_int
thf(fact_6232_power__int__mult,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int,N2: int] :
( ( power_int @ A @ X @ ( times_times @ int @ M @ N2 ) )
= ( power_int @ A @ ( power_int @ A @ X @ M ) @ N2 ) ) ) ).
% power_int_mult
thf(fact_6233_power__int__divide__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,M: int] :
( ( power_int @ A @ ( divide_divide @ A @ X @ Y ) @ M )
= ( divide_divide @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_divide_distrib
thf(fact_6234_power__int__commutes,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( times_times @ A @ ( power_int @ A @ X @ N2 ) @ X )
= ( times_times @ A @ X @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% power_int_commutes
thf(fact_6235_power__int__mult__distrib,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,Y: A,M: int] :
( ( power_int @ A @ ( times_times @ A @ X @ Y ) @ M )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ Y @ M ) ) ) ) ).
% power_int_mult_distrib
thf(fact_6236_power__int__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( power_int @ A @ ( inverse_inverse @ A @ X ) @ N2 )
= ( inverse_inverse @ A @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% power_int_inverse
thf(fact_6237_power__int__abs,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,N2: int] :
( ( abs_abs @ A @ ( power_int @ A @ A2 @ N2 ) )
= ( power_int @ A @ ( abs_abs @ A @ A2 ) @ N2 ) ) ) ).
% power_int_abs
thf(fact_6238_power__int__not__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( N2
= ( zero_zero @ int ) ) )
=> ( ( power_int @ A @ X @ N2 )
!= ( zero_zero @ A ) ) ) ) ).
% power_int_not_zero
thf(fact_6239_power__int__one__over,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( power_int @ A @ ( divide_divide @ A @ ( one_one @ A ) @ X ) @ N2 )
= ( divide_divide @ A @ ( one_one @ A ) @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% power_int_one_over
thf(fact_6240_power__int__minus,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,N2: int] :
( ( power_int @ A @ X @ ( uminus_uminus @ int @ N2 ) )
= ( inverse_inverse @ A @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% power_int_minus
thf(fact_6241_zero__le__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N2: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_int @ A @ X @ N2 ) ) ) ) ).
% zero_le_power_int
thf(fact_6242_power__int__0__left__If,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [M: int] :
( ( ( M
= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( one_one @ A ) ) )
& ( ( M
!= ( zero_zero @ int ) )
=> ( ( power_int @ A @ ( zero_zero @ A ) @ M )
= ( zero_zero @ A ) ) ) ) ) ).
% power_int_0_left_If
thf(fact_6243_power__int__increasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N2: int,N7: int,A2: A] :
( ( ord_less_eq @ int @ N2 @ N7 )
=> ( ( ord_less_eq @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_int @ A @ A2 @ N2 ) @ ( power_int @ A @ A2 @ N7 ) ) ) ) ) ).
% power_int_increasing
thf(fact_6244_power__int__strict__increasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N2: int,N7: int,A2: A] :
( ( ord_less @ int @ N2 @ N7 )
=> ( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N2 ) @ ( power_int @ A @ A2 @ N7 ) ) ) ) ) ).
% power_int_strict_increasing
thf(fact_6245_power__int__minus__one__minus,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [N2: int] :
( ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ int @ N2 ) )
= ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) ) ) ).
% power_int_minus_one_minus
thf(fact_6246_power__int__diff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,M: int,N2: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M != N2 ) )
=> ( ( power_int @ A @ X @ ( minus_minus @ int @ M @ N2 ) )
= ( divide_divide @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N2 ) ) ) ) ) ).
% power_int_diff
thf(fact_6247_power__int__minus__one__diff__commute,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: int,B2: int] :
( ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( minus_minus @ int @ A2 @ B2 ) )
= ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( minus_minus @ int @ B2 @ A2 ) ) ) ) ).
% power_int_minus_one_diff_commute
thf(fact_6248_set__zip__rightD,axiom,
! [A: $tType,B: $tType,X: A,Y: B,Xs2: list @ A,Ys3: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
=> ( member @ B @ Y @ ( set2 @ B @ Ys3 ) ) ) ).
% set_zip_rightD
thf(fact_6249_set__zip__leftD,axiom,
! [B: $tType,A: $tType,X: A,Y: B,Xs2: list @ A,Ys3: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_zip_leftD
thf(fact_6250_in__set__zipE,axiom,
! [A: $tType,B: $tType,X: A,Y: B,Xs2: list @ A,Ys3: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
=> ~ ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ B @ Y @ ( set2 @ B @ Ys3 ) ) ) ) ).
% in_set_zipE
thf(fact_6251_zip__same,axiom,
! [A: $tType,A2: A,B2: A,Xs2: list @ A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ ( set2 @ ( product_prod @ A @ A ) @ ( zip @ A @ A @ Xs2 @ Xs2 ) ) )
= ( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
& ( A2 = B2 ) ) ) ).
% zip_same
thf(fact_6252_tendsto__power__int,axiom,
! [A: $tType,B: $tType] :
( ( real_V8999393235501362500lgebra @ A )
=> ! [F2: B > A,A2: A,F4: filter @ B,N2: int] :
( ( filterlim @ B @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ F4 )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( filterlim @ B @ A
@ ^ [X3: B] : ( power_int @ A @ ( F2 @ X3 ) @ N2 )
@ ( topolo7230453075368039082e_nhds @ A @ ( power_int @ A @ A2 @ N2 ) )
@ F4 ) ) ) ) ).
% tendsto_power_int
thf(fact_6253_continuous__at__within__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [A2: A,S: set @ A,F2: A > B,N2: int] :
( ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S ) @ F2 )
=> ( ( ( F2 @ A2 )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ ( topolo174197925503356063within @ A @ A2 @ S )
@ ^ [X3: A] : ( power_int @ B @ ( F2 @ X3 ) @ N2 ) ) ) ) ) ).
% continuous_at_within_power_int
thf(fact_6254_differentiable__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V3459762299906320749_field @ B ) )
=> ! [F2: A > B,X: A,S: set @ A,N2: int] :
( ( differentiable @ A @ B @ F2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ B ) )
=> ( differentiable @ A @ B
@ ^ [X3: A] : ( power_int @ B @ ( F2 @ X3 ) @ N2 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% differentiable_power_int
thf(fact_6255_continuous__power__int,axiom,
! [B: $tType,A: $tType] :
( ( ( topological_t2_space @ A )
& ( real_V8999393235501362500lgebra @ B ) )
=> ! [F4: filter @ A,F2: A > B,N2: int] :
( ( topolo3448309680560233919inuous @ A @ B @ F4 @ F2 )
=> ( ( ( F2
@ ( topolo3827282254853284352ce_Lim @ A @ A @ F4
@ ^ [X3: A] : X3 ) )
!= ( zero_zero @ B ) )
=> ( topolo3448309680560233919inuous @ A @ B @ F4
@ ^ [X3: A] : ( power_int @ B @ ( F2 @ X3 ) @ N2 ) ) ) ) ) ).
% continuous_power_int
thf(fact_6256_power__int__strict__decreasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N2: int,N7: int,A2: A] :
( ( ord_less @ int @ N2 @ N7 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N7 ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_int_strict_decreasing
thf(fact_6257_power__int__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,N2: int] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ord_less_eq @ A @ ( power_int @ A @ X @ N2 ) @ ( power_int @ A @ Y @ N2 ) ) ) ) ) ) ).
% power_int_mono
thf(fact_6258_power__int__strict__antimono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N2: int] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ N2 @ ( zero_zero @ int ) )
=> ( ord_less @ A @ ( power_int @ A @ B2 @ N2 ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_int_strict_antimono
thf(fact_6259_one__le__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N2: int] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( power_int @ A @ X @ N2 ) ) ) ) ) ).
% one_le_power_int
thf(fact_6260_one__less__power__int,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,N2: int] :
( ( ord_less @ A @ ( one_one @ A ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less @ A @ ( one_one @ A ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ).
% one_less_power_int
thf(fact_6261_power__int__add,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int,N2: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( ( plus_plus @ int @ M @ N2 )
!= ( zero_zero @ int ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ N2 ) )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N2 ) ) ) ) ) ).
% power_int_add
thf(fact_6262_in__set__impl__in__set__zip2,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,Y: B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( member @ B @ Y @ ( set2 @ B @ Ys3 ) )
=> ~ ! [X4: A] :
~ ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X4 @ Y ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) ) ) ) ).
% in_set_impl_in_set_zip2
thf(fact_6263_in__set__impl__in__set__zip1,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ! [Y4: B] :
~ ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y4 ) @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) ) ) ) ).
% in_set_impl_in_set_zip1
thf(fact_6264_power__int__minus__left__distrib,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( division_ring @ A )
& ( one @ B )
& ( uminus @ B ) )
=> ! [X: C,A2: A,N2: int] :
( ( nO_MATCH @ B @ C @ ( uminus_uminus @ B @ ( one_one @ B ) ) @ X )
=> ( ( power_int @ A @ ( uminus_uminus @ A @ A2 ) @ N2 )
= ( times_times @ A @ ( power_int @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ).
% power_int_minus_left_distrib
thf(fact_6265_power__int__strict__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N2: int] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less @ A @ ( power_int @ A @ A2 @ N2 ) @ ( power_int @ A @ B2 @ N2 ) ) ) ) ) ) ).
% power_int_strict_mono
thf(fact_6266_power__int__antimono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,N2: int] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ int @ N2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ B2 @ N2 ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ) ).
% power_int_antimono
thf(fact_6267_power__int__le__one,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,N2: int] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ( ord_less_eq @ A @ X @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ X @ N2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% power_int_le_one
thf(fact_6268_power__int__decreasing,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [N2: int,N7: int,A2: A] :
( ( ord_less_eq @ int @ N2 @ N7 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ( ( A2
!= ( zero_zero @ A ) )
| ( N7
!= ( zero_zero @ int ) )
| ( N2
= ( zero_zero @ int ) ) )
=> ( ord_less_eq @ A @ ( power_int @ A @ A2 @ N7 ) @ ( power_int @ A @ A2 @ N2 ) ) ) ) ) ) ) ).
% power_int_decreasing
thf(fact_6269_power__int__le__imp__le__exp,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,M: int,N2: int] :
( ( ord_less @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less_eq @ int @ M @ N2 ) ) ) ) ) ).
% power_int_le_imp_le_exp
thf(fact_6270_power__int__le__imp__less__exp,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,M: int,N2: int] :
( ( ord_less @ A @ ( one_one @ A ) @ X )
=> ( ( ord_less @ A @ ( power_int @ A @ X @ M ) @ ( power_int @ A @ X @ N2 ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ N2 )
=> ( ord_less @ int @ M @ N2 ) ) ) ) ) ).
% power_int_le_imp_less_exp
thf(fact_6271_power__int__minus__mult,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [X: A,N2: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( N2
!= ( zero_zero @ int ) ) )
=> ( ( times_times @ A @ ( power_int @ A @ X @ ( minus_minus @ int @ N2 @ ( one_one @ int ) ) ) @ X )
= ( power_int @ A @ X @ N2 ) ) ) ) ).
% power_int_minus_mult
thf(fact_6272_power__int__add__1_H,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M
!= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ ( one_one @ int ) ) )
= ( times_times @ A @ X @ ( power_int @ A @ X @ M ) ) ) ) ) ).
% power_int_add_1'
thf(fact_6273_power__int__add__1,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [X: A,M: int] :
( ( ( X
!= ( zero_zero @ A ) )
| ( M
!= ( uminus_uminus @ int @ ( one_one @ int ) ) ) )
=> ( ( power_int @ A @ X @ ( plus_plus @ int @ M @ ( one_one @ int ) ) )
= ( times_times @ A @ ( power_int @ A @ X @ M ) @ X ) ) ) ) ).
% power_int_add_1
thf(fact_6274_power__int__def,axiom,
! [A: $tType] :
( ( ( inverse @ A )
& ( power @ A ) )
=> ( ( power_int @ A )
= ( ^ [X3: A,N3: int] : ( if @ A @ ( ord_less_eq @ int @ ( zero_zero @ int ) @ N3 ) @ ( power_power @ A @ X3 @ ( nat2 @ N3 ) ) @ ( power_power @ A @ ( inverse_inverse @ A @ X3 ) @ ( nat2 @ ( uminus_uminus @ int @ N3 ) ) ) ) ) ) ) ).
% power_int_def
thf(fact_6275_in__set__zip,axiom,
! [B: $tType,A: $tType,P6: product_prod @ A @ B,Xs2: list @ A,Ys3: list @ B] :
( ( member @ ( product_prod @ A @ B ) @ P6 @ ( set2 @ ( product_prod @ A @ B ) @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
= ( ? [N3: nat] :
( ( ( nth @ A @ Xs2 @ N3 )
= ( product_fst @ A @ B @ P6 ) )
& ( ( nth @ B @ Ys3 @ N3 )
= ( product_snd @ A @ B @ P6 ) )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( ord_less @ nat @ N3 @ ( size_size @ ( list @ B ) @ Ys3 ) ) ) ) ) ).
% in_set_zip
thf(fact_6276_powr__real__of__int_H,axiom,
! [X: real,N2: int] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ( X
!= ( zero_zero @ real ) )
| ( ord_less @ int @ ( zero_zero @ int ) @ N2 ) )
=> ( ( powr @ real @ X @ ( ring_1_of_int @ real @ N2 ) )
= ( power_int @ real @ X @ N2 ) ) ) ) ).
% powr_real_of_int'
thf(fact_6277_DERIV__power__int,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [F2: A > A,D2: A,X: A,S: set @ A,N2: int] :
( ( has_field_derivative @ A @ F2 @ D2 @ ( topolo174197925503356063within @ A @ X @ S ) )
=> ( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( has_field_derivative @ A
@ ^ [X3: A] : ( power_int @ A @ ( F2 @ X3 ) @ N2 )
@ ( times_times @ A @ ( times_times @ A @ ( ring_1_of_int @ A @ N2 ) @ ( power_int @ A @ ( F2 @ X ) @ ( minus_minus @ int @ N2 @ ( one_one @ int ) ) ) ) @ D2 )
@ ( topolo174197925503356063within @ A @ X @ S ) ) ) ) ) ).
% DERIV_power_int
thf(fact_6278_has__derivative__power__int,axiom,
! [A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V3459762299906320749_field @ A ) )
=> ! [F2: C > A,X: C,F6: C > A,S3: set @ C,N2: int] :
( ( ( F2 @ X )
!= ( zero_zero @ A ) )
=> ( ( has_derivative @ C @ A @ F2 @ F6 @ ( topolo174197925503356063within @ C @ X @ S3 ) )
=> ( has_derivative @ C @ A
@ ^ [X3: C] : ( power_int @ A @ ( F2 @ X3 ) @ N2 )
@ ^ [H2: C] : ( times_times @ A @ ( F6 @ H2 ) @ ( times_times @ A @ ( ring_1_of_int @ A @ N2 ) @ ( power_int @ A @ ( F2 @ X ) @ ( minus_minus @ int @ N2 @ ( one_one @ int ) ) ) ) )
@ ( topolo174197925503356063within @ C @ X @ S3 ) ) ) ) ) ).
% has_derivative_power_int
thf(fact_6279_power__int__numeral__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [M: num,N2: num] :
( ( power_int @ A @ ( numeral_numeral @ A @ M ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ N2 ) ) )
= ( inverse_inverse @ A @ ( numeral_numeral @ A @ ( pow @ M @ N2 ) ) ) ) ) ).
% power_int_numeral_neg_numeral
thf(fact_6280_pred__nat__def,axiom,
( pred_nat
= ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [M6: nat,N3: nat] :
( N3
= ( suc @ M6 ) ) ) ) ) ).
% pred_nat_def
thf(fact_6281_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one2 )
= X ) ).
% pow.simps(1)
thf(fact_6282_pow_Osimps_I3_J,axiom,
! [X: num,Y: num] :
( ( pow @ X @ ( bit1 @ Y ) )
= ( times_times @ num @ ( sqr @ ( pow @ X @ Y ) ) @ X ) ) ).
% pow.simps(3)
thf(fact_6283_set__nths,axiom,
! [A: $tType,Xs2: list @ A,I5: set @ nat] :
( ( set2 @ A @ ( nths @ A @ Xs2 @ I5 ) )
= ( collect @ A
@ ^ [Uu3: A] :
? [I3: nat] :
( ( Uu3
= ( nth @ A @ Xs2 @ I3 ) )
& ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( member @ nat @ I3 @ I5 ) ) ) ) ).
% set_nths
thf(fact_6284_sqr_Osimps_I2_J,axiom,
! [N2: num] :
( ( sqr @ ( bit0 @ N2 ) )
= ( bit0 @ ( bit0 @ ( sqr @ N2 ) ) ) ) ).
% sqr.simps(2)
thf(fact_6285_sqr_Osimps_I1_J,axiom,
( ( sqr @ one2 )
= one2 ) ).
% sqr.simps(1)
thf(fact_6286_in__set__nthsD,axiom,
! [A: $tType,X: A,Xs2: list @ A,I5: set @ nat] :
( ( member @ A @ X @ ( set2 @ A @ ( nths @ A @ Xs2 @ I5 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_nthsD
thf(fact_6287_notin__set__nthsI,axiom,
! [A: $tType,X: A,Xs2: list @ A,I5: set @ nat] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ~ ( member @ A @ X @ ( set2 @ A @ ( nths @ A @ Xs2 @ I5 ) ) ) ) ).
% notin_set_nthsI
thf(fact_6288_sqr__conv__mult,axiom,
( sqr
= ( ^ [X3: num] : ( times_times @ num @ X3 @ X3 ) ) ) ).
% sqr_conv_mult
thf(fact_6289_set__nths__subset,axiom,
! [A: $tType,Xs2: list @ A,I5: set @ nat] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( nths @ A @ Xs2 @ I5 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_nths_subset
thf(fact_6290_nths__all,axiom,
! [A: $tType,Xs2: list @ A,I5: set @ nat] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ nat @ I2 @ I5 ) )
=> ( ( nths @ A @ Xs2 @ I5 )
= Xs2 ) ) ).
% nths_all
thf(fact_6291_length__nths,axiom,
! [A: $tType,Xs2: list @ A,I5: set @ nat] :
( ( size_size @ ( list @ A ) @ ( nths @ A @ Xs2 @ I5 ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( member @ nat @ I3 @ I5 ) ) ) ) ) ).
% length_nths
thf(fact_6292_pow_Osimps_I2_J,axiom,
! [X: num,Y: num] :
( ( pow @ X @ ( bit0 @ Y ) )
= ( sqr @ ( pow @ X @ Y ) ) ) ).
% pow.simps(2)
thf(fact_6293_sqr_Osimps_I3_J,axiom,
! [N2: num] :
( ( sqr @ ( bit1 @ N2 ) )
= ( bit1 @ ( bit0 @ ( plus_plus @ num @ ( sqr @ N2 ) @ N2 ) ) ) ) ).
% sqr.simps(3)
thf(fact_6294_pos__deriv__imp__strict__mono,axiom,
! [F2: real > real,F6: real > real] :
( ! [X4: real] : ( has_field_derivative @ real @ F2 @ ( F6 @ X4 ) @ ( topolo174197925503356063within @ real @ X4 @ ( top_top @ ( set @ real ) ) ) )
=> ( ! [X4: real] : ( ord_less @ real @ ( zero_zero @ real ) @ ( F6 @ X4 ) )
=> ( order_strict_mono @ real @ real @ F2 ) ) ) ).
% pos_deriv_imp_strict_mono
thf(fact_6295_dual__max,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( max @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 ) )
= ( ord_min @ A ) ) ) ).
% dual_max
thf(fact_6296_strict__mono__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( order_mono @ A @ B @ F2 ) ) ) ).
% strict_mono_mono
thf(fact_6297_strict__mono__less__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% strict_mono_less_eq
thf(fact_6298_strict__mono__leD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [R2: A > B,M: A,N2: A] :
( ( order_strict_mono @ A @ B @ R2 )
=> ( ( ord_less_eq @ A @ M @ N2 )
=> ( ord_less_eq @ B @ ( R2 @ M ) @ ( R2 @ N2 ) ) ) ) ) ).
% strict_mono_leD
thf(fact_6299_ord_Omax__def,axiom,
! [A: $tType] :
( ( max @ A )
= ( ^ [Less_eq: A > A > $o,A3: A,B3: A] : ( if @ A @ ( Less_eq @ A3 @ B3 ) @ B3 @ A3 ) ) ) ).
% ord.max_def
thf(fact_6300_ord_Omax_Ocong,axiom,
! [A: $tType] :
( ( max @ A )
= ( max @ A ) ) ).
% ord.max.cong
thf(fact_6301_strict__mono__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ( F2 @ X )
= ( F2 @ Y ) )
= ( X = Y ) ) ) ) ).
% strict_mono_eq
thf(fact_6302_strict__mono__add,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [K: A] :
( order_strict_mono @ A @ A
@ ^ [N3: A] : ( plus_plus @ A @ N3 @ K ) ) ) ).
% strict_mono_add
thf(fact_6303_strict__mono__less,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
= ( ord_less @ A @ X @ Y ) ) ) ) ).
% strict_mono_less
thf(fact_6304_strict__mono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ( ( order_strict_mono @ A @ B )
= ( ^ [F3: A > B] :
! [X3: A,Y2: A] :
( ( ord_less @ A @ X3 @ Y2 )
=> ( ord_less @ B @ ( F3 @ X3 ) @ ( F3 @ Y2 ) ) ) ) ) ) ).
% strict_mono_def
thf(fact_6305_strict__monoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ! [X4: A,Y4: A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( ord_less @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( order_strict_mono @ A @ B @ F2 ) ) ) ).
% strict_monoI
thf(fact_6306_strict__monoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less @ A @ X @ Y )
=> ( ord_less @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% strict_monoD
thf(fact_6307_Arg__bounded,axiom,
! [Z2: complex] :
( ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ ( arg @ Z2 ) )
& ( ord_less_eq @ real @ ( arg @ Z2 ) @ pi ) ) ).
% Arg_bounded
thf(fact_6308_bij__betw__roots__unity,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( bij_betw @ nat @ complex
@ ^ [K3: nat] : ( cis @ ( divide_divide @ real @ ( times_times @ real @ ( times_times @ real @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) @ pi ) @ ( semiring_1_of_nat @ real @ K3 ) ) @ ( semiring_1_of_nat @ real @ N2 ) ) )
@ ( set_ord_lessThan @ nat @ N2 )
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= ( one_one @ complex ) ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_6309_bij__betw__add,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,A4: set @ A,B4: set @ A] :
( ( bij_betw @ A @ A @ ( plus_plus @ A @ A2 ) @ A4 @ B4 )
= ( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ A4 )
= B4 ) ) ) ).
% bij_betw_add
thf(fact_6310_bij__betw__of__nat,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N7: set @ nat,A4: set @ A] :
( ( bij_betw @ nat @ A @ ( semiring_1_of_nat @ A ) @ N7 @ A4 )
= ( ( image @ nat @ A @ ( semiring_1_of_nat @ A ) @ N7 )
= A4 ) ) ) ).
% bij_betw_of_nat
thf(fact_6311_cis__zero,axiom,
( ( cis @ ( zero_zero @ real ) )
= ( one_one @ complex ) ) ).
% cis_zero
thf(fact_6312_strict__mono__imp__increasing,axiom,
! [F2: nat > nat,N2: nat] :
( ( order_strict_mono @ nat @ nat @ F2 )
=> ( ord_less_eq @ nat @ N2 @ ( F2 @ N2 ) ) ) ).
% strict_mono_imp_increasing
thf(fact_6313_bij__betw__funpow,axiom,
! [A: $tType,F2: A > A,S3: set @ A,N2: nat] :
( ( bij_betw @ A @ A @ F2 @ S3 @ S3 )
=> ( bij_betw @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ S3 @ S3 ) ) ).
% bij_betw_funpow
thf(fact_6314_cis__Arg,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( cis @ ( arg @ Z2 ) )
= ( sgn_sgn @ complex @ Z2 ) ) ) ).
% cis_Arg
thf(fact_6315_cis__neq__zero,axiom,
! [A2: real] :
( ( cis @ A2 )
!= ( zero_zero @ complex ) ) ).
% cis_neq_zero
thf(fact_6316_bij__betw__iff__card,axiom,
! [A: $tType,B: $tType,A4: set @ A,B4: set @ B] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( ? [F3: A > B] : ( bij_betw @ A @ B @ F3 @ A4 @ B4 ) )
= ( ( finite_card @ A @ A4 )
= ( finite_card @ B @ B4 ) ) ) ) ) ).
% bij_betw_iff_card
thf(fact_6317_finite__same__card__bij,axiom,
! [A: $tType,B: $tType,A4: set @ A,B4: set @ B] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( ( finite_card @ A @ A4 )
= ( finite_card @ B @ B4 ) )
=> ? [H5: A > B] : ( bij_betw @ A @ B @ H5 @ A4 @ B4 ) ) ) ) ).
% finite_same_card_bij
thf(fact_6318_bij__fn,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( bij_betw @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bij_fn
thf(fact_6319_cis__Arg__unique,axiom,
! [Z2: complex,X: real] :
( ( ( sgn_sgn @ complex @ Z2 )
= ( cis @ X ) )
=> ( ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ X )
=> ( ( ord_less_eq @ real @ X @ pi )
=> ( ( arg @ Z2 )
= X ) ) ) ) ).
% cis_Arg_unique
thf(fact_6320_strict__mono__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( order_strict_mono @ nat @ A )
= ( ^ [F3: nat > A] :
! [N3: nat] : ( ord_less @ A @ ( F3 @ N3 ) @ ( F3 @ ( suc @ N3 ) ) ) ) ) ) ).
% strict_mono_Suc_iff
thf(fact_6321_Arg__correct,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( ( sgn_sgn @ complex @ Z2 )
= ( cis @ ( arg @ Z2 ) ) )
& ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ ( arg @ Z2 ) )
& ( ord_less_eq @ real @ ( arg @ Z2 ) @ pi ) ) ) ).
% Arg_correct
thf(fact_6322_infinite__imp__bij__betw2,axiom,
! [A: $tType,A4: set @ A,A2: A] :
( ~ ( finite_finite @ A @ A4 )
=> ? [H5: A > A] : ( bij_betw @ A @ A @ H5 @ A4 @ ( sup_sup @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% infinite_imp_bij_betw2
thf(fact_6323_infinite__imp__bij__betw,axiom,
! [A: $tType,A4: set @ A,A2: A] :
( ~ ( finite_finite @ A @ A4 )
=> ? [H5: A > A] : ( bij_betw @ A @ A @ H5 @ A4 @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% infinite_imp_bij_betw
thf(fact_6324_Arg__zero,axiom,
( ( arg @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% Arg_zero
thf(fact_6325_mono__bij__Inf,axiom,
! [B: $tType,A: $tType] :
( ( ( comple5582772986160207858norder @ A )
& ( comple5582772986160207858norder @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( F2 @ ( complete_Inf_Inf @ A @ A4 ) )
= ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ) ).
% mono_bij_Inf
thf(fact_6326_ex__bij__betw__nat__finite,axiom,
! [A: $tType,M7: set @ A] :
( ( finite_finite @ A @ M7 )
=> ? [H5: nat > A] : ( bij_betw @ nat @ A @ H5 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ M7 ) ) @ M7 ) ) ).
% ex_bij_betw_nat_finite
thf(fact_6327_ex__bij__betw__nat__finite__1,axiom,
! [A: $tType,M7: set @ A] :
( ( finite_finite @ A @ M7 )
=> ? [H5: nat > A] : ( bij_betw @ nat @ A @ H5 @ ( set_or1337092689740270186AtMost @ nat @ ( one_one @ nat ) @ ( finite_card @ A @ M7 ) ) @ M7 ) ) ).
% ex_bij_betw_nat_finite_1
thf(fact_6328_sum_Oreindex__bij__betw__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_add @ A )
=> ! [S4: set @ B,T5: set @ C,H: B > C,S3: set @ B,T6: set @ C,G: C > A] :
( ( finite_finite @ B @ S4 )
=> ( ( finite_finite @ C @ T5 )
=> ( ( bij_betw @ B @ C @ H @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S4 )
=> ( ( G @ ( H @ A5 ) )
= ( zero_zero @ A ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ T5 )
=> ( ( G @ B5 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( G @ ( H @ X3 ) )
@ S3 )
= ( groups7311177749621191930dd_sum @ C @ A @ G @ T6 ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_betw_not_neutral
thf(fact_6329_prod_Oreindex__bij__betw__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( comm_monoid_mult @ A )
=> ! [S4: set @ B,T5: set @ C,H: B > C,S3: set @ B,T6: set @ C,G: C > A] :
( ( finite_finite @ B @ S4 )
=> ( ( finite_finite @ C @ T5 )
=> ( ( bij_betw @ B @ C @ H @ ( minus_minus @ ( set @ B ) @ S3 @ S4 ) @ ( minus_minus @ ( set @ C ) @ T6 @ T5 ) )
=> ( ! [A5: B] :
( ( member @ B @ A5 @ S4 )
=> ( ( G @ ( H @ A5 ) )
= ( one_one @ A ) ) )
=> ( ! [B5: C] :
( ( member @ C @ B5 @ T5 )
=> ( ( G @ B5 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A
@ ^ [X3: B] : ( G @ ( H @ X3 ) )
@ S3 )
= ( groups7121269368397514597t_prod @ C @ A @ G @ T6 ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_betw_not_neutral
thf(fact_6330_bij__betw__nth,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ nat,B4: set @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( A4
= ( set_ord_lessThan @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
=> ( ( B4
= ( set2 @ A @ Xs2 ) )
=> ( bij_betw @ nat @ A @ ( nth @ A @ Xs2 ) @ A4 @ B4 ) ) ) ) ).
% bij_betw_nth
thf(fact_6331_sum_OatLeastAtMost__reindex,axiom,
! [B: $tType,A: $tType] :
( ( ( comm_monoid_add @ A )
& ( ord @ B ) )
=> ! [H: nat > B,M: nat,N2: nat,G: B > A] :
( ( bij_betw @ nat @ B @ H @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) @ ( set_or1337092689740270186AtMost @ B @ ( H @ M ) @ ( H @ N2 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set_or1337092689740270186AtMost @ B @ ( H @ M ) @ ( H @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ B @ A @ nat @ G @ H ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ).
% sum.atLeastAtMost_reindex
thf(fact_6332_sum_OatLeastLessThan__reindex,axiom,
! [B: $tType,A: $tType] :
( ( ( comm_monoid_add @ A )
& ( ord @ B ) )
=> ! [H: nat > B,M: nat,N2: nat,G: B > A] :
( ( bij_betw @ nat @ B @ H @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) @ ( set_or7035219750837199246ssThan @ B @ ( H @ M ) @ ( H @ N2 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ ( H @ M ) @ ( H @ N2 ) ) )
= ( groups7311177749621191930dd_sum @ nat @ A @ ( comp @ B @ A @ nat @ G @ H ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ) ).
% sum.atLeastLessThan_reindex
thf(fact_6333_prod_OatLeastAtMost__reindex,axiom,
! [B: $tType,A: $tType] :
( ( ( comm_monoid_mult @ A )
& ( ord @ B ) )
=> ! [H: nat > B,M: nat,N2: nat,G: B > A] :
( ( bij_betw @ nat @ B @ H @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) @ ( set_or1337092689740270186AtMost @ B @ ( H @ M ) @ ( H @ N2 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set_or1337092689740270186AtMost @ B @ ( H @ M ) @ ( H @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ B @ A @ nat @ G @ H ) @ ( set_or1337092689740270186AtMost @ nat @ M @ N2 ) ) ) ) ) ).
% prod.atLeastAtMost_reindex
thf(fact_6334_prod_OatLeastLessThan__reindex,axiom,
! [B: $tType,A: $tType] :
( ( ( comm_monoid_mult @ A )
& ( ord @ B ) )
=> ! [H: nat > B,M: nat,N2: nat,G: B > A] :
( ( bij_betw @ nat @ B @ H @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) @ ( set_or7035219750837199246ssThan @ B @ ( H @ M ) @ ( H @ N2 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set_or7035219750837199246ssThan @ B @ ( H @ M ) @ ( H @ N2 ) ) )
= ( groups7121269368397514597t_prod @ nat @ A @ ( comp @ B @ A @ nat @ G @ H ) @ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ) ).
% prod.atLeastLessThan_reindex
thf(fact_6335_summable__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [G: nat > nat,F2: nat > A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( ( summable @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) ) )
= ( summable @ A @ F2 ) ) ) ) ) ).
% summable_mono_reindex
thf(fact_6336_nonneg__incseq__Bseq__subseq__iff,axiom,
! [F2: nat > real,G: nat > nat] :
( ! [X4: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( F2 @ X4 ) )
=> ( ( order_mono @ nat @ real @ F2 )
=> ( ( order_strict_mono @ nat @ nat @ G )
=> ( ( bfun @ nat @ real
@ ^ [X3: nat] : ( F2 @ ( G @ X3 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ real @ F2 @ ( at_top @ nat ) ) ) ) ) ) ).
% nonneg_incseq_Bseq_subseq_iff
thf(fact_6337_sums__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topolo4958980785337419405_space @ A ) )
=> ! [G: nat > nat,F2: nat > A,C2: A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( ( sums @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) )
@ C2 )
= ( sums @ A @ F2 @ C2 ) ) ) ) ) ).
% sums_mono_reindex
thf(fact_6338_suminf__mono__reindex,axiom,
! [A: $tType] :
( ( ( comm_monoid_add @ A )
& ( topological_t2_space @ A ) )
=> ! [G: nat > nat,F2: nat > A] :
( ( order_strict_mono @ nat @ nat @ G )
=> ( ! [N: nat] :
( ~ ( member @ nat @ N @ ( image @ nat @ nat @ G @ ( top_top @ ( set @ nat ) ) ) )
=> ( ( F2 @ N )
= ( zero_zero @ A ) ) )
=> ( ( suminf @ A
@ ^ [N3: nat] : ( F2 @ ( G @ N3 ) ) )
= ( suminf @ A @ F2 ) ) ) ) ) ).
% suminf_mono_reindex
thf(fact_6339_increasing__Bseq__subseq__iff,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: nat > A,G: nat > nat] :
( ! [X4: nat,Y4: nat] :
( ( ord_less_eq @ nat @ X4 @ Y4 )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ X4 ) ) @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ Y4 ) ) ) )
=> ( ( order_strict_mono @ nat @ nat @ G )
=> ( ( bfun @ nat @ A
@ ^ [X3: nat] : ( F2 @ ( G @ X3 ) )
@ ( at_top @ nat ) )
= ( bfun @ nat @ A @ F2 @ ( at_top @ nat ) ) ) ) ) ) ).
% increasing_Bseq_subseq_iff
thf(fact_6340_bij__betw__nth__root__unity,axiom,
! [C2: complex,N2: nat] :
( ( C2
!= ( zero_zero @ complex ) )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( bij_betw @ complex @ complex @ ( times_times @ complex @ ( times_times @ complex @ ( real_Vector_of_real @ complex @ ( root @ N2 @ ( real_V7770717601297561774m_norm @ complex @ C2 ) ) ) @ ( cis @ ( divide_divide @ real @ ( arg @ C2 ) @ ( semiring_1_of_nat @ real @ N2 ) ) ) ) )
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= ( one_one @ complex ) ) )
@ ( collect @ complex
@ ^ [Z5: complex] :
( ( power_power @ complex @ Z5 @ N2 )
= C2 ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_6341_Arg__def,axiom,
( arg
= ( ^ [Z5: complex] :
( if @ real
@ ( Z5
= ( zero_zero @ complex ) )
@ ( zero_zero @ real )
@ ( fChoice @ real
@ ^ [A3: real] :
( ( ( sgn_sgn @ complex @ Z5 )
= ( cis @ A3 ) )
& ( ord_less @ real @ ( uminus_uminus @ real @ pi ) @ A3 )
& ( ord_less_eq @ real @ A3 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_6342_some__equality,axiom,
! [A: $tType,P: A > $o,A2: A] :
( ( P @ A2 )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( X4 = A2 ) )
=> ( ( fChoice @ A @ P )
= A2 ) ) ) ).
% some_equality
thf(fact_6343_some__eq__trivial,axiom,
! [A: $tType,X: A] :
( ( fChoice @ A
@ ^ [Y2: A] : ( Y2 = X ) )
= X ) ).
% some_eq_trivial
thf(fact_6344_some__sym__eq__trivial,axiom,
! [A: $tType,X: A] :
( ( fChoice @ A
@ ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 )
@ X ) )
= X ) ).
% some_sym_eq_trivial
thf(fact_6345_bij__betw__Suc,axiom,
! [M7: set @ nat,N7: set @ nat] :
( ( bij_betw @ nat @ nat @ suc @ M7 @ N7 )
= ( ( image @ nat @ nat @ suc @ M7 )
= N7 ) ) ).
% bij_betw_Suc
thf(fact_6346_exE__some,axiom,
! [A: $tType,P: A > $o,C2: A] :
( ? [X_12: A] : ( P @ X_12 )
=> ( ( C2
= ( fChoice @ A @ P ) )
=> ( P @ C2 ) ) ) ).
% exE_some
thf(fact_6347_some__in__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( member @ A
@ ( fChoice @ A
@ ^ [X3: A] : ( member @ A @ X3 @ A4 ) )
@ A4 )
= ( A4
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% some_in_eq
thf(fact_6348_verit__sko__ex_H,axiom,
! [A: $tType,P: A > $o,A4: $o] :
( ( ( P @ ( fChoice @ A @ P ) )
= A4 )
=> ( ( ? [X7: A] : ( P @ X7 ) )
= A4 ) ) ).
% verit_sko_ex'
thf(fact_6349_verit__sko__forall,axiom,
! [A: $tType] :
( ( ^ [P2: A > $o] :
! [X5: A] : ( P2 @ X5 ) )
= ( ^ [P3: A > $o] :
( P3
@ ( fChoice @ A
@ ^ [X3: A] :
~ ( P3 @ X3 ) ) ) ) ) ).
% verit_sko_forall
thf(fact_6350_someI2,axiom,
! [A: $tType,P: A > $o,A2: A,Q: A > $o] :
( ( P @ A2 )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( Q @ ( fChoice @ A @ P ) ) ) ) ).
% someI2
thf(fact_6351_verit__sko__forall_H,axiom,
! [A: $tType,P: A > $o,A4: $o] :
( ( ( P
@ ( fChoice @ A
@ ^ [X3: A] :
~ ( P @ X3 ) ) )
= A4 )
=> ( ( ! [X7: A] : ( P @ X7 ) )
= A4 ) ) ).
% verit_sko_forall'
thf(fact_6352_verit__sko__forall_H_H,axiom,
! [A: $tType,B4: A,A4: A,P: A > $o] :
( ( B4 = A4 )
=> ( ( ( fChoice @ A @ P )
= A4 )
= ( ( fChoice @ A @ P )
= B4 ) ) ) ).
% verit_sko_forall''
thf(fact_6353_someI__ex,axiom,
! [A: $tType,P: A > $o] :
( ? [X_12: A] : ( P @ X_12 )
=> ( P @ ( fChoice @ A @ P ) ) ) ).
% someI_ex
thf(fact_6354_someI2__ex,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ? [X_12: A] : ( P @ X_12 )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( Q @ ( fChoice @ A @ P ) ) ) ) ).
% someI2_ex
thf(fact_6355_someI2__bex,axiom,
! [A: $tType,A4: set @ A,P: A > $o,Q: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ( P @ X2 ) )
=> ( ! [X4: A] :
( ( ( member @ A @ X4 @ A4 )
& ( P @ X4 ) )
=> ( Q @ X4 ) )
=> ( Q
@ ( fChoice @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ A4 )
& ( P @ X3 ) ) ) ) ) ) ).
% someI2_bex
thf(fact_6356_some__eq__ex,axiom,
! [A: $tType,P: A > $o] :
( ( P @ ( fChoice @ A @ P ) )
= ( ? [X7: A] : ( P @ X7 ) ) ) ).
% some_eq_ex
thf(fact_6357_verit__sko__ex__indirect,axiom,
! [A: $tType,X: A,P: A > $o] :
( ( X
= ( fChoice @ A @ P ) )
=> ( ( ? [X7: A] : ( P @ X7 ) )
= ( P @ X ) ) ) ).
% verit_sko_ex_indirect
thf(fact_6358_verit__sko__ex__indirect2,axiom,
! [A: $tType,X: A,P: A > $o,P4: A > $o] :
( ( X
= ( fChoice @ A @ P ) )
=> ( ! [X4: A] :
( ( P @ X4 )
= ( P4 @ X4 ) )
=> ( ( ? [X7: A] : ( P4 @ X7 ) )
= ( P @ X ) ) ) ) ).
% verit_sko_ex_indirect2
thf(fact_6359_some1__equality,axiom,
! [A: $tType,P: A > $o,A2: A] :
( ? [X2: A] :
( ( P @ X2 )
& ! [Y4: A] :
( ( P @ Y4 )
=> ( Y4 = X2 ) ) )
=> ( ( P @ A2 )
=> ( ( fChoice @ A @ P )
= A2 ) ) ) ).
% some1_equality
thf(fact_6360_verit__sko__forall__indirect,axiom,
! [A: $tType,X: A,P: A > $o] :
( ( X
= ( fChoice @ A
@ ^ [X3: A] :
~ ( P @ X3 ) ) )
=> ( ( ! [X7: A] : ( P @ X7 ) )
= ( P @ X ) ) ) ).
% verit_sko_forall_indirect
thf(fact_6361_verit__sko__forall__indirect2,axiom,
! [A: $tType,X: A,P: A > $o,P4: A > $o] :
( ( X
= ( fChoice @ A
@ ^ [X3: A] :
~ ( P @ X3 ) ) )
=> ( ! [X4: A] :
( ( P @ X4 )
= ( P4 @ X4 ) )
=> ( ( ! [X7: A] : ( P4 @ X7 ) )
= ( P @ X ) ) ) ) ).
% verit_sko_forall_indirect2
thf(fact_6362_someI,axiom,
! [A: $tType,P: A > $o,X: A] :
( ( P @ X )
=> ( P @ ( fChoice @ A @ P ) ) ) ).
% someI
thf(fact_6363_Eps__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X4: A] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( fChoice @ A @ P )
= ( fChoice @ A @ Q ) ) ) ).
% Eps_cong
thf(fact_6364_tfl__some,axiom,
! [A: $tType,P8: A > $o,X2: A] :
( ( P8 @ X2 )
=> ( P8 @ ( fChoice @ A @ P8 ) ) ) ).
% tfl_some
thf(fact_6365_some__eq__imp,axiom,
! [A: $tType,P: A > $o,A2: A,B2: A] :
( ( ( fChoice @ A @ P )
= A2 )
=> ( ( P @ B2 )
=> ( P @ A2 ) ) ) ).
% some_eq_imp
thf(fact_6366_bij__int__decode,axiom,
bij_betw @ nat @ int @ nat_int_decode @ ( top_top @ ( set @ nat ) ) @ ( top_top @ ( set @ int ) ) ).
% bij_int_decode
thf(fact_6367_bij__int__encode,axiom,
bij_betw @ int @ nat @ nat_int_encode @ ( top_top @ ( set @ int ) ) @ ( top_top @ ( set @ nat ) ) ).
% bij_int_encode
thf(fact_6368_ex__bij__betw__finite__nat,axiom,
! [A: $tType,M7: set @ A] :
( ( finite_finite @ A @ M7 )
=> ? [H5: A > nat] : ( bij_betw @ A @ nat @ H5 @ M7 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( finite_card @ A @ M7 ) ) ) ) ).
% ex_bij_betw_finite_nat
thf(fact_6369_bij__prod__decode,axiom,
bij_betw @ nat @ ( product_prod @ nat @ nat ) @ nat_prod_decode @ ( top_top @ ( set @ nat ) ) @ ( top_top @ ( set @ ( product_prod @ nat @ nat ) ) ) ).
% bij_prod_decode
thf(fact_6370_bij__prod__encode,axiom,
bij_betw @ ( product_prod @ nat @ nat ) @ nat @ nat_prod_encode @ ( top_top @ ( set @ ( product_prod @ nat @ nat ) ) ) @ ( top_top @ ( set @ nat ) ) ).
% bij_prod_encode
thf(fact_6371_arg__min__SOME__Min,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( lattic7623131987881927897min_on @ A @ B @ F2 @ S3 )
= ( fChoice @ A
@ ^ [Y2: A] :
( ( member @ A @ Y2 @ S3 )
& ( ( F2 @ Y2 )
= ( lattic643756798350308766er_Min @ B @ ( image @ A @ B @ F2 @ S3 ) ) ) ) ) ) ) ) ).
% arg_min_SOME_Min
thf(fact_6372_nth__rotate,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,M: nat] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rotate @ A @ M @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( modulo_modulo @ nat @ ( plus_plus @ nat @ M @ N2 ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ).
% nth_rotate
thf(fact_6373_quotient__of__def,axiom,
( quotient_of
= ( ^ [X3: rat] :
( the @ ( product_prod @ int @ int )
@ ^ [Pair: product_prod @ int @ int] :
( ( X3
= ( fract @ ( product_fst @ int @ int @ Pair ) @ ( product_snd @ int @ int @ Pair ) ) )
& ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ Pair ) )
& ( algebr8660921524188924756oprime @ int @ ( product_fst @ int @ int @ Pair ) @ ( product_snd @ int @ int @ Pair ) ) ) ) ) ) ).
% quotient_of_def
thf(fact_6374_coprime__mult__right__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ C2 @ ( times_times @ A @ A2 @ B2 ) )
= ( ( algebr8660921524188924756oprime @ A @ C2 @ A2 )
& ( algebr8660921524188924756oprime @ A @ C2 @ B2 ) ) ) ) ).
% coprime_mult_right_iff
thf(fact_6375_coprime__mult__left__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( algebr8660921524188924756oprime @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( ( algebr8660921524188924756oprime @ A @ A2 @ C2 )
& ( algebr8660921524188924756oprime @ A @ B2 @ C2 ) ) ) ) ).
% coprime_mult_left_iff
thf(fact_6376_coprime__minus__left__iff,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% coprime_minus_left_iff
thf(fact_6377_coprime__minus__right__iff,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% coprime_minus_right_iff
thf(fact_6378_rotate0,axiom,
! [A: $tType] :
( ( rotate @ A @ ( zero_zero @ nat ) )
= ( id @ ( list @ A ) ) ) ).
% rotate0
thf(fact_6379_set__rotate,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( set2 @ A @ ( rotate @ A @ N2 @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rotate
thf(fact_6380_Eps__case__prod__eq,axiom,
! [A: $tType,B: $tType,X: A,Y: B] :
( ( fChoice @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ B @ $o
@ ^ [X9: A,Y7: B] :
( ( X = X9 )
& ( Y = Y7 ) ) ) )
= ( product_Pair @ A @ B @ X @ Y ) ) ).
% Eps_case_prod_eq
thf(fact_6381_coprime__self,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ A2 )
= ( dvd_dvd @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% coprime_self
thf(fact_6382_coprime__power__right__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,N2: nat] :
( ( algebr8660921524188924756oprime @ A @ A2 @ ( power_power @ A @ B2 @ N2 ) )
= ( ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% coprime_power_right_iff
thf(fact_6383_coprime__power__left__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( algebr8660921524188924756oprime @ A @ ( power_power @ A @ A2 @ N2 ) @ B2 )
= ( ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
| ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% coprime_power_left_iff
thf(fact_6384_coprime__mod__right__iff,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( algebr8660921524188924756oprime @ A @ A2 @ ( modulo_modulo @ A @ B2 @ A2 ) )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ).
% coprime_mod_right_iff
thf(fact_6385_coprime__mod__left__iff,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( algebr8660921524188924756oprime @ A @ ( modulo_modulo @ A @ A2 @ B2 ) @ B2 )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ).
% coprime_mod_left_iff
thf(fact_6386_coprime__imp__gcd__eq__1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
=> ( ( gcd_gcd @ A @ A2 @ B2 )
= ( one_one @ A ) ) ) ) ).
% coprime_imp_gcd_eq_1
thf(fact_6387_rotate__Suc,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( rotate @ A @ ( suc @ N2 ) @ Xs2 )
= ( rotate1 @ A @ ( rotate @ A @ N2 @ Xs2 ) ) ) ).
% rotate_Suc
thf(fact_6388_coprime__0__left__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( algebr8660921524188924756oprime @ A @ ( zero_zero @ A ) @ A2 )
= ( dvd_dvd @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% coprime_0_left_iff
thf(fact_6389_coprime__0__right__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ ( zero_zero @ A ) )
= ( dvd_dvd @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% coprime_0_right_iff
thf(fact_6390_coprime__mult__self__left__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
& ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ).
% coprime_mult_self_left_iff
thf(fact_6391_coprime__mult__self__right__iff,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
& ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ).
% coprime_mult_self_right_iff
thf(fact_6392_is__unit__gcd,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ ( one_one @ A ) )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% is_unit_gcd
thf(fact_6393_rotate__length01,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( ( rotate @ A @ N2 @ Xs2 )
= Xs2 ) ) ).
% rotate_length01
thf(fact_6394_rotate__id,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( modulo_modulo @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( zero_zero @ nat ) )
=> ( ( rotate @ A @ N2 @ Xs2 )
= Xs2 ) ) ).
% rotate_id
thf(fact_6395_normalize__stable,axiom,
! [Q4: int,P6: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ Q4 )
=> ( ( algebr8660921524188924756oprime @ int @ P6 @ Q4 )
=> ( ( normalize @ ( product_Pair @ int @ int @ P6 @ Q4 ) )
= ( product_Pair @ int @ int @ P6 @ Q4 ) ) ) ) ).
% normalize_stable
thf(fact_6396_rotate__add,axiom,
! [A: $tType,M: nat,N2: nat] :
( ( rotate @ A @ ( plus_plus @ nat @ M @ N2 ) )
= ( comp @ ( list @ A ) @ ( list @ A ) @ ( list @ A ) @ ( rotate @ A @ M ) @ ( rotate @ A @ N2 ) ) ) ).
% rotate_add
thf(fact_6397_gcd__mult__right__right__cancel,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ C2 )
=> ( ( gcd_gcd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ).
% gcd_mult_right_right_cancel
thf(fact_6398_gcd__mult__right__left__cancel,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ C2 )
=> ( ( gcd_gcd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ).
% gcd_mult_right_left_cancel
thf(fact_6399_gcd__mult__left__right__cancel,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( algebr8660921524188924756oprime @ A @ B2 @ C2 )
=> ( ( gcd_gcd @ A @ ( times_times @ A @ A2 @ C2 ) @ B2 )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ).
% gcd_mult_left_right_cancel
thf(fact_6400_gcd__mult__left__left__cancel,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( algebr8660921524188924756oprime @ A @ B2 @ C2 )
=> ( ( gcd_gcd @ A @ ( times_times @ A @ C2 @ A2 ) @ B2 )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ).
% gcd_mult_left_left_cancel
thf(fact_6401_coprime__dvd__mult__right__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ C2 @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% coprime_dvd_mult_right_iff
thf(fact_6402_coprime__dvd__mult__left__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ A2 @ ( times_times @ A @ B2 @ C2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ).
% coprime_dvd_mult_left_iff
thf(fact_6403_divides__mult,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ B2 @ C2 )
=> ( ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
=> ( dvd_dvd @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 ) ) ) ) ) ).
% divides_mult
thf(fact_6404_mult__mod__cancel__right,axiom,
! [A: $tType] :
( ( ( euclid8851590272496341667cancel @ A )
& ( semiring_gcd @ A ) )
=> ! [A2: A,N2: A,M: A,B2: A] :
( ( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ N2 ) @ M )
= ( modulo_modulo @ A @ ( times_times @ A @ B2 @ N2 ) @ M ) )
=> ( ( algebr8660921524188924756oprime @ A @ M @ N2 )
=> ( ( modulo_modulo @ A @ A2 @ M )
= ( modulo_modulo @ A @ B2 @ M ) ) ) ) ) ).
% mult_mod_cancel_right
thf(fact_6405_mult__mod__cancel__left,axiom,
! [A: $tType] :
( ( ( euclid8851590272496341667cancel @ A )
& ( semiring_gcd @ A ) )
=> ! [N2: A,A2: A,M: A,B2: A] :
( ( ( modulo_modulo @ A @ ( times_times @ A @ N2 @ A2 ) @ M )
= ( modulo_modulo @ A @ ( times_times @ A @ N2 @ B2 ) @ M ) )
=> ( ( algebr8660921524188924756oprime @ A @ M @ N2 )
=> ( ( modulo_modulo @ A @ A2 @ M )
= ( modulo_modulo @ A @ B2 @ M ) ) ) ) ) ).
% mult_mod_cancel_left
thf(fact_6406_coprime__crossproduct__int,axiom,
! [A2: int,D2: int,B2: int,C2: int] :
( ( algebr8660921524188924756oprime @ int @ A2 @ D2 )
=> ( ( algebr8660921524188924756oprime @ int @ B2 @ C2 )
=> ( ( ( times_times @ int @ ( abs_abs @ int @ A2 ) @ ( abs_abs @ int @ C2 ) )
= ( times_times @ int @ ( abs_abs @ int @ B2 ) @ ( abs_abs @ int @ D2 ) ) )
= ( ( ( abs_abs @ int @ A2 )
= ( abs_abs @ int @ B2 ) )
& ( ( abs_abs @ int @ C2 )
= ( abs_abs @ int @ D2 ) ) ) ) ) ) ).
% coprime_crossproduct_int
thf(fact_6407_coprime__divisors,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( dvd_dvd @ A @ A2 @ C2 )
=> ( ( dvd_dvd @ A @ B2 @ D2 )
=> ( ( algebr8660921524188924756oprime @ A @ C2 @ D2 )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ) ).
% coprime_divisors
thf(fact_6408_coprime__commute,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ( ( algebr8660921524188924756oprime @ A )
= ( ^ [B3: A,A3: A] : ( algebr8660921524188924756oprime @ A @ A3 @ B3 ) ) ) ) ).
% coprime_commute
thf(fact_6409_coprime__1__left,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ ( one_one @ A ) @ A2 ) ) ).
% coprime_1_left
thf(fact_6410_coprime__1__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ A2 @ ( one_one @ A ) ) ) ).
% coprime_1_right
thf(fact_6411_rotate__rotate,axiom,
! [A: $tType,M: nat,N2: nat,Xs2: list @ A] :
( ( rotate @ A @ M @ ( rotate @ A @ N2 @ Xs2 ) )
= ( rotate @ A @ ( plus_plus @ nat @ M @ N2 ) @ Xs2 ) ) ).
% rotate_rotate
thf(fact_6412_is__unit__right__imp__coprime,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% is_unit_right_imp_coprime
thf(fact_6413_is__unit__left__imp__coprime,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% is_unit_left_imp_coprime
thf(fact_6414_coprime__common__divisor,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( dvd_dvd @ A @ C2 @ ( one_one @ A ) ) ) ) ) ) ).
% coprime_common_divisor
thf(fact_6415_coprime__absorb__right,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [Y: A,X: A] :
( ( dvd_dvd @ A @ Y @ X )
=> ( ( algebr8660921524188924756oprime @ A @ X @ Y )
= ( dvd_dvd @ A @ Y @ ( one_one @ A ) ) ) ) ) ).
% coprime_absorb_right
thf(fact_6416_coprime__imp__coprime,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,D2: A,A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ C2 @ D2 )
=> ( ! [E: A] :
( ~ ( dvd_dvd @ A @ E @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ E @ A2 )
=> ( ( dvd_dvd @ A @ E @ B2 )
=> ( dvd_dvd @ A @ E @ C2 ) ) ) )
=> ( ! [E: A] :
( ~ ( dvd_dvd @ A @ E @ ( one_one @ A ) )
=> ( ( dvd_dvd @ A @ E @ A2 )
=> ( ( dvd_dvd @ A @ E @ B2 )
=> ( dvd_dvd @ A @ E @ D2 ) ) ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ) ).
% coprime_imp_coprime
thf(fact_6417_coprime__absorb__left,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [X: A,Y: A] :
( ( dvd_dvd @ A @ X @ Y )
=> ( ( algebr8660921524188924756oprime @ A @ X @ Y )
= ( dvd_dvd @ A @ X @ ( one_one @ A ) ) ) ) ) ).
% coprime_absorb_left
thf(fact_6418_not__coprimeI,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ~ ( dvd_dvd @ A @ C2 @ ( one_one @ A ) )
=> ~ ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ) ) ).
% not_coprimeI
thf(fact_6419_not__coprimeE,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ~ ( algebr8660921524188924756oprime @ A @ A2 @ B2 )
=> ~ ! [C4: A] :
( ( dvd_dvd @ A @ C4 @ A2 )
=> ( ( dvd_dvd @ A @ C4 @ B2 )
=> ( dvd_dvd @ A @ C4 @ ( one_one @ A ) ) ) ) ) ) ).
% not_coprimeE
thf(fact_6420_coprime__def,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ( ( algebr8660921524188924756oprime @ A )
= ( ^ [A3: A,B3: A] :
! [C3: A] :
( ( dvd_dvd @ A @ C3 @ A3 )
=> ( ( dvd_dvd @ A @ C3 @ B3 )
=> ( dvd_dvd @ A @ C3 @ ( one_one @ A ) ) ) ) ) ) ) ).
% coprime_def
thf(fact_6421_coprimeI,axiom,
! [A: $tType] :
( ( algebraic_semidom @ A )
=> ! [A2: A,B2: A] :
( ! [C4: A] :
( ( dvd_dvd @ A @ C4 @ A2 )
=> ( ( dvd_dvd @ A @ C4 @ B2 )
=> ( dvd_dvd @ A @ C4 @ ( one_one @ A ) ) ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% coprimeI
thf(fact_6422_coprime__diff__one__left,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ A2 ) ) ).
% coprime_diff_one_left
thf(fact_6423_coprime__doff__one__right,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ A2 @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% coprime_doff_one_right
thf(fact_6424_coprime__add__one__left,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) @ A2 ) ) ).
% coprime_add_one_left
thf(fact_6425_coprime__add__one__right,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] : ( algebr8660921524188924756oprime @ A @ A2 @ ( plus_plus @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% coprime_add_one_right
thf(fact_6426_coprime__iff__gcd__eq__1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( algebr8660921524188924756oprime @ A )
= ( ^ [A3: A,B3: A] :
( ( gcd_gcd @ A @ A3 @ B3 )
= ( one_one @ A ) ) ) ) ) ).
% coprime_iff_gcd_eq_1
thf(fact_6427_gcd__eq__1__imp__coprime,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( ( gcd_gcd @ A @ A2 @ B2 )
= ( one_one @ A ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% gcd_eq_1_imp_coprime
thf(fact_6428_prod__coprime__left,axiom,
! [B: $tType,A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ B,F2: B > A,A2: A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( algebr8660921524188924756oprime @ A @ ( F2 @ I2 ) @ A2 ) )
=> ( algebr8660921524188924756oprime @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ A2 ) ) ) ).
% prod_coprime_left
thf(fact_6429_prod__coprime__right,axiom,
! [A: $tType,B: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ B,A2: A,F2: B > A] :
( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( algebr8660921524188924756oprime @ A @ A2 @ ( F2 @ I2 ) ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) ) ) ) ).
% prod_coprime_right
thf(fact_6430_split__paired__Eps,axiom,
! [B: $tType,A: $tType] :
( ( fChoice @ ( product_prod @ A @ B ) )
= ( ^ [P3: ( product_prod @ A @ B ) > $o] :
( fChoice @ ( product_prod @ A @ B )
@ ( product_case_prod @ A @ B @ $o
@ ^ [A3: A,B3: B] : ( P3 @ ( product_Pair @ A @ B @ A3 @ B3 ) ) ) ) ) ) ).
% split_paired_Eps
thf(fact_6431_invertible__coprime,axiom,
! [A: $tType] :
( ( euclid8851590272496341667cancel @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ( modulo_modulo @ A @ ( times_times @ A @ A2 @ B2 ) @ C2 )
= ( one_one @ A ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ C2 ) ) ) ).
% invertible_coprime
thf(fact_6432_gcd__coprime__exists,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( ( gcd_gcd @ A @ A2 @ B2 )
!= ( zero_zero @ A ) )
=> ? [A15: A,B9: A] :
( ( A2
= ( times_times @ A @ A15 @ ( gcd_gcd @ A @ A2 @ B2 ) ) )
& ( B2
= ( times_times @ A @ B9 @ ( gcd_gcd @ A @ A2 @ B2 ) ) )
& ( algebr8660921524188924756oprime @ A @ A15 @ B9 ) ) ) ) ).
% gcd_coprime_exists
thf(fact_6433_gcd__coprime,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,A6: A,B6: A] :
( ( ( gcd_gcd @ A @ A2 @ B2 )
!= ( zero_zero @ A ) )
=> ( ( A2
= ( times_times @ A @ A6 @ ( gcd_gcd @ A @ A2 @ B2 ) ) )
=> ( ( B2
= ( times_times @ A @ B6 @ ( gcd_gcd @ A @ A2 @ B2 ) ) )
=> ( algebr8660921524188924756oprime @ A @ A6 @ B6 ) ) ) ) ) ).
% gcd_coprime
thf(fact_6434_div__gcd__coprime,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( ( A2
!= ( zero_zero @ A ) )
| ( B2
!= ( zero_zero @ A ) ) )
=> ( algebr8660921524188924756oprime @ A @ ( divide_divide @ A @ A2 @ ( gcd_gcd @ A @ A2 @ B2 ) ) @ ( divide_divide @ A @ B2 @ ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ) ).
% div_gcd_coprime
thf(fact_6435_Rat__cases,axiom,
! [Q4: rat] :
~ ! [A5: int,B5: int] :
( ( Q4
= ( fract @ A5 @ B5 ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ~ ( algebr8660921524188924756oprime @ int @ A5 @ B5 ) ) ) ).
% Rat_cases
thf(fact_6436_Rat__induct,axiom,
! [P: rat > $o,Q4: rat] :
( ! [A5: int,B5: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( algebr8660921524188924756oprime @ int @ A5 @ B5 )
=> ( P @ ( fract @ A5 @ B5 ) ) ) )
=> ( P @ Q4 ) ) ).
% Rat_induct
thf(fact_6437_Eps__case__prod,axiom,
! [B: $tType,A: $tType,P: A > B > $o] :
( ( fChoice @ ( product_prod @ A @ B ) @ ( product_case_prod @ A @ B @ $o @ P ) )
= ( fChoice @ ( product_prod @ A @ B )
@ ^ [Xy: product_prod @ A @ B] : ( P @ ( product_fst @ A @ B @ Xy ) @ ( product_snd @ A @ B @ Xy ) ) ) ) ).
% Eps_case_prod
thf(fact_6438_Rat__cases__nonzero,axiom,
! [Q4: rat] :
( ! [A5: int,B5: int] :
( ( Q4
= ( fract @ A5 @ B5 ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( A5
!= ( zero_zero @ int ) )
=> ~ ( algebr8660921524188924756oprime @ int @ A5 @ B5 ) ) ) )
=> ( Q4
= ( zero_zero @ rat ) ) ) ).
% Rat_cases_nonzero
thf(fact_6439_Rats__cases_H,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [X: A] :
( ( member @ A @ X @ ( field_char_0_Rats @ A ) )
=> ~ ! [A5: int,B5: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B5 )
=> ( ( algebr8660921524188924756oprime @ int @ A5 @ B5 )
=> ( X
!= ( divide_divide @ A @ ( ring_1_of_int @ A @ A5 ) @ ( ring_1_of_int @ A @ B5 ) ) ) ) ) ) ) ).
% Rats_cases'
thf(fact_6440_quotient__of__unique,axiom,
! [R2: rat] :
? [X4: product_prod @ int @ int] :
( ( R2
= ( fract @ ( product_fst @ int @ int @ X4 ) @ ( product_snd @ int @ int @ X4 ) ) )
& ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ X4 ) )
& ( algebr8660921524188924756oprime @ int @ ( product_fst @ int @ int @ X4 ) @ ( product_snd @ int @ int @ X4 ) )
& ! [Y3: product_prod @ int @ int] :
( ( ( R2
= ( fract @ ( product_fst @ int @ int @ Y3 ) @ ( product_snd @ int @ int @ Y3 ) ) )
& ( ord_less @ int @ ( zero_zero @ int ) @ ( product_snd @ int @ int @ Y3 ) )
& ( algebr8660921524188924756oprime @ int @ ( product_fst @ int @ int @ Y3 ) @ ( product_snd @ int @ int @ Y3 ) ) )
=> ( Y3 = X4 ) ) ) ).
% quotient_of_unique
thf(fact_6441_find__Some__iff2,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( ( some @ A @ X )
= ( find @ A @ P @ Xs2 ) )
= ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P @ ( nth @ A @ Xs2 @ I3 ) )
& ( X
= ( nth @ A @ Xs2 @ I3 ) )
& ! [J3: nat] :
( ( ord_less @ nat @ J3 @ I3 )
=> ~ ( P @ ( nth @ A @ Xs2 @ J3 ) ) ) ) ) ) ).
% find_Some_iff2
thf(fact_6442_find__Some__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,X: A] :
( ( ( find @ A @ P @ Xs2 )
= ( some @ A @ X ) )
= ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P @ ( nth @ A @ Xs2 @ I3 ) )
& ( X
= ( nth @ A @ Xs2 @ I3 ) )
& ! [J3: nat] :
( ( ord_less @ nat @ J3 @ I3 )
=> ~ ( P @ ( nth @ A @ Xs2 @ J3 ) ) ) ) ) ) ).
% find_Some_iff
thf(fact_6443_coprime__crossproduct__nat,axiom,
! [A2: nat,D2: nat,B2: nat,C2: nat] :
( ( algebr8660921524188924756oprime @ nat @ A2 @ D2 )
=> ( ( algebr8660921524188924756oprime @ nat @ B2 @ C2 )
=> ( ( ( times_times @ nat @ A2 @ C2 )
= ( times_times @ nat @ B2 @ D2 ) )
= ( ( A2 = B2 )
& ( C2 = D2 ) ) ) ) ) ).
% coprime_crossproduct_nat
thf(fact_6444_coprime__Suc__0__left,axiom,
! [N2: nat] : ( algebr8660921524188924756oprime @ nat @ ( suc @ ( zero_zero @ nat ) ) @ N2 ) ).
% coprime_Suc_0_left
thf(fact_6445_coprime__Suc__0__right,axiom,
! [N2: nat] : ( algebr8660921524188924756oprime @ nat @ N2 @ ( suc @ ( zero_zero @ nat ) ) ) ).
% coprime_Suc_0_right
thf(fact_6446_coprime__Suc__right__nat,axiom,
! [N2: nat] : ( algebr8660921524188924756oprime @ nat @ N2 @ ( suc @ N2 ) ) ).
% coprime_Suc_right_nat
thf(fact_6447_coprime__Suc__left__nat,axiom,
! [N2: nat] : ( algebr8660921524188924756oprime @ nat @ ( suc @ N2 ) @ N2 ) ).
% coprime_Suc_left_nat
thf(fact_6448_coprime__common__divisor__nat,axiom,
! [A2: nat,B2: nat,X: nat] :
( ( algebr8660921524188924756oprime @ nat @ A2 @ B2 )
=> ( ( dvd_dvd @ nat @ X @ A2 )
=> ( ( dvd_dvd @ nat @ X @ B2 )
=> ( X
= ( one_one @ nat ) ) ) ) ) ).
% coprime_common_divisor_nat
thf(fact_6449_find__cong,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,P: A > $o,Q: A > $o] :
( ( Xs2 = Ys3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Ys3 ) )
=> ( ( P @ X4 )
= ( Q @ X4 ) ) )
=> ( ( find @ A @ P @ Xs2 )
= ( find @ A @ Q @ Ys3 ) ) ) ) ).
% find_cong
thf(fact_6450_find__None__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( find @ A @ P @ Xs2 )
= ( none @ A ) )
= ( ~ ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) ) ) ).
% find_None_iff
thf(fact_6451_find__None__iff2,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( none @ A )
= ( find @ A @ P @ Xs2 ) )
= ( ~ ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) ) ) ).
% find_None_iff2
thf(fact_6452_coprime__diff__one__left__nat,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( algebr8660921524188924756oprime @ nat @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ N2 ) ) ).
% coprime_diff_one_left_nat
thf(fact_6453_coprime__diff__one__right__nat,axiom,
! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( algebr8660921524188924756oprime @ nat @ N2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ).
% coprime_diff_one_right_nat
thf(fact_6454_Rats__abs__nat__div__natE,axiom,
! [X: real] :
( ( member @ real @ X @ ( field_char_0_Rats @ real ) )
=> ~ ! [M5: nat,N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ( ( abs_abs @ real @ X )
= ( divide_divide @ real @ ( semiring_1_of_nat @ real @ M5 ) @ ( semiring_1_of_nat @ real @ N ) ) )
=> ~ ( algebr8660921524188924756oprime @ nat @ M5 @ N ) ) ) ) ).
% Rats_abs_nat_div_natE
thf(fact_6455_SUP__set__fold,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
= ( fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( sup_sup @ A ) @ F2 ) @ Xs2 @ ( bot_bot @ A ) ) ) ) ).
% SUP_set_fold
thf(fact_6456_sum__list__update,axiom,
! [A: $tType] :
( ( ordere1170586879665033532d_diff @ A )
=> ! [K: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( groups8242544230860333062m_list @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ X ) @ ( nth @ A @ Xs2 @ K ) ) ) ) ) ).
% sum_list_update
thf(fact_6457_sum__list__eq__0__iff,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [Ns: list @ A] :
( ( ( groups8242544230860333062m_list @ A @ Ns )
= ( zero_zero @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ns ) )
=> ( X3
= ( zero_zero @ A ) ) ) ) ) ) ).
% sum_list_eq_0_iff
thf(fact_6458_fold__id,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,F2: A > B > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X4 )
= ( id @ B ) ) )
=> ( ( fold @ A @ B @ F2 @ Xs2 )
= ( id @ B ) ) ) ).
% fold_id
thf(fact_6459_fold__commute__apply,axiom,
! [A: $tType,C: $tType,B: $tType,Xs2: list @ A,H: B > C,G: A > B > B,F2: A > C > C,S: B] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( comp @ B @ C @ B @ H @ ( G @ X4 ) )
= ( comp @ C @ C @ B @ ( F2 @ X4 ) @ H ) ) )
=> ( ( H @ ( fold @ A @ B @ G @ Xs2 @ S ) )
= ( fold @ A @ C @ F2 @ Xs2 @ ( H @ S ) ) ) ) ).
% fold_commute_apply
thf(fact_6460_fold__commute,axiom,
! [A: $tType,C: $tType,B: $tType,Xs2: list @ A,H: B > C,G: A > B > B,F2: A > C > C] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( comp @ B @ C @ B @ H @ ( G @ X4 ) )
= ( comp @ C @ C @ B @ ( F2 @ X4 ) @ H ) ) )
=> ( ( comp @ B @ C @ B @ H @ ( fold @ A @ B @ G @ Xs2 ) )
= ( comp @ C @ C @ B @ ( fold @ A @ C @ F2 @ Xs2 ) @ H ) ) ) ).
% fold_commute
thf(fact_6461_member__le__sum__list,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% member_le_sum_list
thf(fact_6462_List_Ofold__cong,axiom,
! [B: $tType,A: $tType,A2: A,B2: A,Xs2: list @ B,Ys3: list @ B,F2: B > A > A,G: B > A > A] :
( ( A2 = B2 )
=> ( ( Xs2 = Ys3 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( set2 @ B @ Xs2 ) )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) )
=> ( ( fold @ B @ A @ F2 @ Xs2 @ A2 )
= ( fold @ B @ A @ G @ Ys3 @ B2 ) ) ) ) ) ).
% List.fold_cong
thf(fact_6463_fold__invariant,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Q: A > $o,P: B > $o,S: B,F2: A > B > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( Q @ X4 ) )
=> ( ( P @ S )
=> ( ! [X4: A,S2: B] :
( ( Q @ X4 )
=> ( ( P @ S2 )
=> ( P @ ( F2 @ X4 @ S2 ) ) ) )
=> ( P @ ( fold @ A @ B @ F2 @ Xs2 @ S ) ) ) ) ) ).
% fold_invariant
thf(fact_6464_sum__list__nonpos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X4 @ ( zero_zero @ A ) ) )
=> ( ord_less_eq @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ ( zero_zero @ A ) ) ) ) ).
% sum_list_nonpos
thf(fact_6465_sum__list__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ X4 ) )
=> ( ( ( groups8242544230860333062m_list @ A @ Xs2 )
= ( zero_zero @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( X3
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% sum_list_nonneg_eq_0_iff
thf(fact_6466_Groups__List_Osum__list__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add @ A )
=> ! [Xs2: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ X4 ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% Groups_List.sum_list_nonneg
thf(fact_6467_union__set__fold,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ A4 )
= ( fold @ A @ ( set @ A ) @ ( insert2 @ A ) @ Xs2 @ A4 ) ) ).
% union_set_fold
thf(fact_6468_fold__remove1__split,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B > B,X: A] :
( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ A @ Y4 @ ( set2 @ A @ Xs2 ) )
=> ( ( comp @ B @ B @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) )
= ( comp @ B @ B @ B @ ( F2 @ Y4 ) @ ( F2 @ X4 ) ) ) ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( fold @ A @ B @ F2 @ Xs2 )
= ( comp @ B @ B @ B @ ( fold @ A @ B @ F2 @ ( remove1 @ A @ X @ Xs2 ) ) @ ( F2 @ X ) ) ) ) ) ).
% fold_remove1_split
thf(fact_6469_Gcd__nat__set__eq__fold,axiom,
! [Xs2: list @ nat] :
( ( gcd_Gcd @ nat @ ( set2 @ nat @ Xs2 ) )
= ( fold @ nat @ nat @ ( gcd_gcd @ nat ) @ Xs2 @ ( zero_zero @ nat ) ) ) ).
% Gcd_nat_set_eq_fold
thf(fact_6470_distinct__sum__list__conv__Sum,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( groups8242544230860333062m_list @ A @ Xs2 )
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : X3
@ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% distinct_sum_list_conv_Sum
thf(fact_6471_Gcd__int__set__eq__fold,axiom,
! [Xs2: list @ int] :
( ( gcd_Gcd @ int @ ( set2 @ int @ Xs2 ) )
= ( fold @ int @ int @ ( gcd_gcd @ int ) @ Xs2 @ ( zero_zero @ int ) ) ) ).
% Gcd_int_set_eq_fold
thf(fact_6472_elem__le__sum__list,axiom,
! [A: $tType] :
( ( canoni5634975068530333245id_add @ A )
=> ! [K: nat,Ns: list @ A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Ns ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Ns @ K ) @ ( groups8242544230860333062m_list @ A @ Ns ) ) ) ) ).
% elem_le_sum_list
thf(fact_6473_Sup__set__fold,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [Xs2: list @ A] :
( ( complete_Sup_Sup @ A @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ A @ ( sup_sup @ A ) @ Xs2 @ ( bot_bot @ A ) ) ) ) ).
% Sup_set_fold
thf(fact_6474_Gcd__set__eq__fold,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [Xs2: list @ A] :
( ( gcd_Gcd @ A @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ A @ ( gcd_gcd @ A ) @ Xs2 @ ( zero_zero @ A ) ) ) ) ).
% Gcd_set_eq_fold
thf(fact_6475_card__length__sum__list__rec,axiom,
! [M: nat,N7: nat] :
( ( ord_less_eq @ nat @ ( one_one @ nat ) @ M )
=> ( ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N7 ) ) ) )
= ( plus_plus @ nat
@ ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= ( minus_minus @ nat @ M @ ( one_one @ nat ) ) )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N7 ) ) ) )
@ ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ L2 ) @ ( one_one @ nat ) )
= N7 ) ) ) ) ) ) ) ).
% card_length_sum_list_rec
thf(fact_6476_card__length__sum__list,axiom,
! [M: nat,N7: nat] :
( ( finite_card @ ( list @ nat )
@ ( collect @ ( list @ nat )
@ ^ [L2: list @ nat] :
( ( ( size_size @ ( list @ nat ) @ L2 )
= M )
& ( ( groups8242544230860333062m_list @ nat @ L2 )
= N7 ) ) ) )
= ( binomial @ ( minus_minus @ nat @ ( plus_plus @ nat @ N7 @ M ) @ ( one_one @ nat ) ) @ N7 ) ) ).
% card_length_sum_list
thf(fact_6477_sum__list__sum__nth,axiom,
! [B: $tType] :
( ( comm_monoid_add @ B )
=> ( ( groups8242544230860333062m_list @ B )
= ( ^ [Xs: list @ B] : ( groups7311177749621191930dd_sum @ nat @ B @ ( nth @ B @ Xs ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ) ) ).
% sum_list_sum_nth
thf(fact_6478_mult__inj__if__coprime__nat,axiom,
! [B: $tType,A: $tType,F2: A > nat,A4: set @ A,G: B > nat,B4: set @ B] :
( ( inj_on @ A @ nat @ F2 @ A4 )
=> ( ( inj_on @ B @ nat @ G @ B4 )
=> ( ! [A5: A,B5: B] :
( ( member @ A @ A5 @ A4 )
=> ( ( member @ B @ B5 @ B4 )
=> ( algebr8660921524188924756oprime @ nat @ ( F2 @ A5 ) @ ( G @ B5 ) ) ) )
=> ( inj_on @ ( product_prod @ A @ B ) @ nat
@ ( product_case_prod @ A @ B @ nat
@ ^ [A3: A,B3: B] : ( times_times @ nat @ ( F2 @ A3 ) @ ( G @ B3 ) ) )
@ ( product_Sigma @ A @ B @ A4
@ ^ [Uu3: A] : B4 ) ) ) ) ) ).
% mult_inj_if_coprime_nat
thf(fact_6479_comp__fun__idem__on_Ofold__set__fold,axiom,
! [A: $tType,B: $tType,S3: set @ A,F2: A > B > B,Xs2: list @ A,Y: B] :
( ( finite673082921795544331dem_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ S3 )
=> ( ( finite_fold @ A @ B @ F2 @ Y @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ B @ F2 @ Xs2 @ Y ) ) ) ) ).
% comp_fun_idem_on.fold_set_fold
thf(fact_6480_set__product,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B] :
( ( set2 @ ( product_prod @ A @ B ) @ ( product @ A @ B @ Xs2 @ Ys3 ) )
= ( product_Sigma @ A @ B @ ( set2 @ A @ Xs2 )
@ ^ [Uu3: A] : ( set2 @ B @ Ys3 ) ) ) ).
% set_product
thf(fact_6481_pairs__le__eq__Sigma,axiom,
! [M: nat] :
( ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [I3: nat,J3: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ I3 @ J3 ) @ M ) ) )
= ( product_Sigma @ nat @ nat @ ( set_ord_atMost @ nat @ M )
@ ^ [R5: nat] : ( set_ord_atMost @ nat @ ( minus_minus @ nat @ M @ R5 ) ) ) ) ).
% pairs_le_eq_Sigma
thf(fact_6482_Ex__inj__on__UNION__Sigma,axiom,
! [A: $tType,B: $tType,A4: B > ( set @ A ),I5: set @ B] :
? [F5: A > ( product_prod @ B @ A )] :
( ( inj_on @ A @ ( product_prod @ B @ A ) @ F5 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ A4 @ I5 ) ) )
& ( ord_less_eq @ ( set @ ( product_prod @ B @ A ) ) @ ( image @ A @ ( product_prod @ B @ A ) @ F5 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ B @ ( set @ A ) @ A4 @ I5 ) ) ) @ ( product_Sigma @ B @ A @ I5 @ A4 ) ) ) ).
% Ex_inj_on_UNION_Sigma
thf(fact_6483_minus__set__fold,axiom,
! [A: $tType,A4: set @ A,Xs2: list @ A] :
( ( minus_minus @ ( set @ A ) @ A4 @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ ( set @ A ) @ ( remove @ A ) @ Xs2 @ A4 ) ) ).
% minus_set_fold
thf(fact_6484_sum__list__map__eq__sum__count2,axiom,
! [A: $tType,Xs2: list @ A,X6: set @ A,F2: A > nat] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ X6 )
=> ( ( finite_finite @ A @ X6 )
=> ( ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( times_times @ nat @ ( count_list @ A @ Xs2 @ X3 ) @ ( F2 @ X3 ) )
@ X6 ) ) ) ) ).
% sum_list_map_eq_sum_count2
thf(fact_6485_map__eq__conv,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,G: B > A] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ B @ A @ G @ Xs2 ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ ( set2 @ B @ Xs2 ) )
=> ( ( F2 @ X3 )
= ( G @ X3 ) ) ) ) ) ).
% map_eq_conv
thf(fact_6486_list_Oset__map,axiom,
! [B: $tType,A: $tType,F2: A > B,V2: list @ A] :
( ( set2 @ B @ ( map @ A @ B @ F2 @ V2 ) )
= ( image @ A @ B @ F2 @ ( set2 @ A @ V2 ) ) ) ).
% list.set_map
thf(fact_6487_sum__list__0,axiom,
! [B: $tType,A: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X3: B] : ( zero_zero @ A )
@ Xs2 ) )
= ( zero_zero @ A ) ) ) ).
% sum_list_0
thf(fact_6488_nth__map,axiom,
! [B: $tType,A: $tType,N2: nat,Xs2: list @ A,F2: A > B] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ B @ ( map @ A @ B @ F2 @ Xs2 ) @ N2 )
= ( F2 @ ( nth @ A @ Xs2 @ N2 ) ) ) ) ).
% nth_map
thf(fact_6489_sum__list__addf,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [F2: B > A,G: B > A,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X3: B] : ( plus_plus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ Xs2 ) )
= ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ Xs2 ) ) ) ) ) ).
% sum_list_addf
thf(fact_6490_ex__map__conv,axiom,
! [A: $tType,B: $tType,Ys3: list @ B,F2: A > B] :
( ( ? [Xs: list @ A] :
( Ys3
= ( map @ A @ B @ F2 @ Xs ) ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ ( set2 @ B @ Ys3 ) )
=> ? [Y2: A] :
( X3
= ( F2 @ Y2 ) ) ) ) ) ).
% ex_map_conv
thf(fact_6491_map__cong,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ A,F2: A > B,G: A > B] :
( ( Xs2 = Ys3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Ys3 ) )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) )
=> ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ G @ Ys3 ) ) ) ) ).
% map_cong
thf(fact_6492_map__idI,axiom,
! [A: $tType,Xs2: list @ A,F2: A > A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X4 )
= X4 ) )
=> ( ( map @ A @ A @ F2 @ Xs2 )
= Xs2 ) ) ).
% map_idI
thf(fact_6493_map__ext,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B,G: A > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) )
=> ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ G @ Xs2 ) ) ) ).
% map_ext
thf(fact_6494_list_Oinj__map__strong,axiom,
! [B: $tType,A: $tType,X: list @ A,Xa2: list @ A,F2: A > B,Fa: A > B] :
( ! [Z: A,Za: A] :
( ( member @ A @ Z @ ( set2 @ A @ X ) )
=> ( ( member @ A @ Za @ ( set2 @ A @ Xa2 ) )
=> ( ( ( F2 @ Z )
= ( Fa @ Za ) )
=> ( Z = Za ) ) ) )
=> ( ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ Fa @ Xa2 ) )
=> ( X = Xa2 ) ) ) ).
% list.inj_map_strong
thf(fact_6495_list_Omap__cong0,axiom,
! [B: $tType,A: $tType,X: list @ A,F2: A > B,G: A > B] :
( ! [Z: A] :
( ( member @ A @ Z @ ( set2 @ A @ X ) )
=> ( ( F2 @ Z )
= ( G @ Z ) ) )
=> ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ G @ X ) ) ) ).
% list.map_cong0
thf(fact_6496_list_Omap__cong,axiom,
! [B: $tType,A: $tType,X: list @ A,Ya: list @ A,F2: A > B,G: A > B] :
( ( X = Ya )
=> ( ! [Z: A] :
( ( member @ A @ Z @ ( set2 @ A @ Ya ) )
=> ( ( F2 @ Z )
= ( G @ Z ) ) )
=> ( ( map @ A @ B @ F2 @ X )
= ( map @ A @ B @ G @ Ya ) ) ) ) ).
% list.map_cong
thf(fact_6497_image__set,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) )
= ( set2 @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ).
% image_set
thf(fact_6498_inj__on__map__eq__map,axiom,
! [B: $tType,A: $tType,F2: A > B,Xs2: list @ A,Ys3: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) ) )
=> ( ( ( map @ A @ B @ F2 @ Xs2 )
= ( map @ A @ B @ F2 @ Ys3 ) )
= ( Xs2 = Ys3 ) ) ) ).
% inj_on_map_eq_map
thf(fact_6499_map__inj__on,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B,Ys3: list @ B] :
( ( ( map @ B @ A @ F2 @ Xs2 )
= ( map @ B @ A @ F2 @ Ys3 ) )
=> ( ( inj_on @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ ( set2 @ B @ Ys3 ) ) )
=> ( Xs2 = Ys3 ) ) ) ).
% map_inj_on
thf(fact_6500_sum__list__abs,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs @ A )
=> ! [Xs2: list @ A] : ( ord_less_eq @ A @ ( abs_abs @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) @ ( groups8242544230860333062m_list @ A @ ( map @ A @ A @ ( abs_abs @ A ) @ Xs2 ) ) ) ) ).
% sum_list_abs
thf(fact_6501_distinct__map,axiom,
! [A: $tType,B: $tType,F2: B > A,Xs2: list @ B] :
( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( ( distinct @ B @ Xs2 )
& ( inj_on @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) ) ) ).
% distinct_map
thf(fact_6502_sum__list__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( monoid_add @ B )
& ( ordere6658533253407199908up_add @ B ) )
=> ! [Xs2: list @ A,F2: A > B,G: A > B] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ B @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ G @ Xs2 ) ) ) ) ) ).
% sum_list_mono
thf(fact_6503_sum__list__distinct__conv__sum__set,axiom,
! [C: $tType,B: $tType] :
( ( comm_monoid_add @ C )
=> ! [Xs2: list @ B,F2: B > C] :
( ( distinct @ B @ Xs2 )
=> ( ( groups8242544230860333062m_list @ C @ ( map @ B @ C @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ B @ C @ F2 @ ( set2 @ B @ Xs2 ) ) ) ) ) ).
% sum_list_distinct_conv_sum_set
thf(fact_6504_sum_Odistinct__set__conv__list,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [Xs2: list @ B,G: B > A] :
( ( distinct @ B @ Xs2 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ Xs2 ) ) ) ) ) ).
% sum.distinct_set_conv_list
thf(fact_6505_map__removeAll__inj__on,axiom,
! [B: $tType,A: $tType,F2: A > B,X: A,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( insert2 @ A @ X @ ( set2 @ A @ Xs2 ) ) )
=> ( ( map @ A @ B @ F2 @ ( removeAll @ A @ X @ Xs2 ) )
= ( removeAll @ B @ ( F2 @ X ) @ ( map @ A @ B @ F2 @ Xs2 ) ) ) ) ).
% map_removeAll_inj_on
thf(fact_6506_sum__list__map__remove1,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [X: B,Xs2: list @ B,F2: B > A] :
( ( member @ B @ X @ ( set2 @ B @ Xs2 ) )
=> ( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( plus_plus @ A @ ( F2 @ X ) @ ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( remove1 @ B @ X @ Xs2 ) ) ) ) ) ) ) ).
% sum_list_map_remove1
thf(fact_6507_sum__code,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,Xs2: list @ B] :
( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ G @ ( remdups @ B @ Xs2 ) ) ) ) ) ).
% sum_code
thf(fact_6508_inj__on__mapI,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ ( list @ A )] :
( ( inj_on @ A @ B @ F2 @ ( complete_Sup_Sup @ ( set @ A ) @ ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ A4 ) ) )
=> ( inj_on @ ( list @ A ) @ ( list @ B ) @ ( map @ A @ B @ F2 ) @ A4 ) ) ).
% inj_on_mapI
thf(fact_6509_size__list__conv__sum__list,axiom,
! [B: $tType] :
( ( size_list @ B )
= ( ^ [F3: B > nat,Xs: list @ B] : ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ ( map @ B @ nat @ F3 @ Xs ) ) @ ( size_size @ ( list @ B ) @ Xs ) ) ) ) ).
% size_list_conv_sum_list
thf(fact_6510_sum__list__Suc,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ nat
@ ( map @ A @ nat
@ ^ [X3: A] : ( suc @ ( F2 @ X3 ) )
@ Xs2 ) )
= ( plus_plus @ nat @ ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% sum_list_Suc
thf(fact_6511_remove__code_I1_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( remove @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( set2 @ A @ ( removeAll @ A @ X @ Xs2 ) ) ) ).
% remove_code(1)
thf(fact_6512_sum__list__map__eq__sum__count,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) )
= ( groups7311177749621191930dd_sum @ A @ nat
@ ^ [X3: A] : ( times_times @ nat @ ( count_list @ A @ Xs2 @ X3 ) @ ( F2 @ X3 ) )
@ ( set2 @ A @ Xs2 ) ) ) ).
% sum_list_map_eq_sum_count
thf(fact_6513_comp__fun__commute__on_Ofold__set__fold__remdups,axiom,
! [A: $tType,B: $tType,S3: set @ A,F2: A > B > B,Xs2: list @ A,Y: B] :
( ( finite4664212375090638736ute_on @ A @ B @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ S3 )
=> ( ( finite_fold @ A @ B @ F2 @ Y @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ B @ F2 @ ( remdups @ A @ Xs2 ) @ Y ) ) ) ) ).
% comp_fun_commute_on.fold_set_fold_remdups
thf(fact_6514_prod_Oset__conv__list,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [G: B > A,Xs2: list @ B] :
( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups5270119922927024881d_list @ A @ ( map @ B @ A @ G @ ( remdups @ B @ Xs2 ) ) ) ) ) ).
% prod.set_conv_list
thf(fact_6515_prod__list__zero__iff,axiom,
! [A: $tType] :
( ( ( semiring_1 @ A )
& ( semiri3467727345109120633visors @ A ) )
=> ! [Xs2: list @ A] :
( ( ( groups5270119922927024881d_list @ A @ Xs2 )
= ( zero_zero @ A ) )
= ( member @ A @ ( zero_zero @ A ) @ ( set2 @ A @ Xs2 ) ) ) ) ).
% prod_list_zero_iff
thf(fact_6516_distinct__set__subseqs,axiom,
! [A: $tType,Xs2: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( distinct @ ( set @ A ) @ ( map @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( subseqs @ A @ Xs2 ) ) ) ) ).
% distinct_set_subseqs
thf(fact_6517_prod__list__coprime__left,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [Xs2: list @ A,A2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( algebr8660921524188924756oprime @ A @ X4 @ A2 ) )
=> ( algebr8660921524188924756oprime @ A @ ( groups5270119922927024881d_list @ A @ Xs2 ) @ A2 ) ) ) ).
% prod_list_coprime_left
thf(fact_6518_prod__list__coprime__right,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [Xs2: list @ A,A2: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ X4 ) )
=> ( algebr8660921524188924756oprime @ A @ A2 @ ( groups5270119922927024881d_list @ A @ Xs2 ) ) ) ) ).
% prod_list_coprime_right
thf(fact_6519_prod_Odistinct__set__conv__list,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [Xs2: list @ B,G: B > A] :
( ( distinct @ B @ Xs2 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( set2 @ B @ Xs2 ) )
= ( groups5270119922927024881d_list @ A @ ( map @ B @ A @ G @ Xs2 ) ) ) ) ) ).
% prod.distinct_set_conv_list
thf(fact_6520_product__code,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B] :
( ( product_product @ A @ B @ ( set2 @ A @ Xs2 ) @ ( set2 @ B @ Ys3 ) )
= ( set2 @ ( product_prod @ A @ B )
@ ( concat @ ( product_prod @ A @ B )
@ ( map @ A @ ( list @ ( product_prod @ A @ B ) )
@ ^ [X3: A] : ( map @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X3 ) @ Ys3 )
@ Xs2 ) ) ) ) ).
% product_code
thf(fact_6521_horner__sum__bit__eq__take__bit,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [A2: A,N2: nat] :
( ( groups4207007520872428315er_sum @ $o @ A @ ( zero_neq_one_of_bool @ A ) @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( map @ nat @ $o @ ( bit_se5641148757651400278ts_bit @ A @ A2 ) @ ( upt @ ( zero_zero @ nat ) @ N2 ) ) )
= ( bit_se2584673776208193580ke_bit @ A @ N2 @ A2 ) ) ) ).
% horner_sum_bit_eq_take_bit
thf(fact_6522_take__upt,axiom,
! [I: nat,M: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ M ) @ N2 )
=> ( ( take @ nat @ M @ ( upt @ I @ N2 ) )
= ( upt @ I @ ( plus_plus @ nat @ I @ M ) ) ) ) ).
% take_upt
thf(fact_6523_nth__upt,axiom,
! [I: nat,K: nat,J: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ J )
=> ( ( nth @ nat @ ( upt @ I @ J ) @ K )
= ( plus_plus @ nat @ I @ K ) ) ) ).
% nth_upt
thf(fact_6524_map__fst__enumerate,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( map @ ( product_prod @ nat @ A ) @ nat @ ( product_fst @ nat @ A ) @ ( enumerate @ A @ N2 @ Xs2 ) )
= ( upt @ N2 @ ( plus_plus @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% map_fst_enumerate
thf(fact_6525_sum__list__upt,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( groups8242544230860333062m_list @ nat @ ( upt @ M @ N2 ) )
= ( groups7311177749621191930dd_sum @ nat @ nat
@ ^ [X3: nat] : X3
@ ( set_or7035219750837199246ssThan @ nat @ M @ N2 ) ) ) ) ).
% sum_list_upt
thf(fact_6526_map__Suc__upt,axiom,
! [M: nat,N2: nat] :
( ( map @ nat @ nat @ suc @ ( upt @ M @ N2 ) )
= ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).
% map_Suc_upt
thf(fact_6527_map__add__upt,axiom,
! [N2: nat,M: nat] :
( ( map @ nat @ nat
@ ^ [I3: nat] : ( plus_plus @ nat @ I3 @ N2 )
@ ( upt @ ( zero_zero @ nat ) @ M ) )
= ( upt @ N2 @ ( plus_plus @ nat @ M @ N2 ) ) ) ).
% map_add_upt
thf(fact_6528_map__replicate__trivial,axiom,
! [A: $tType,X: A,I: nat] :
( ( map @ nat @ A
@ ^ [I3: nat] : X
@ ( upt @ ( zero_zero @ nat ) @ I ) )
= ( replicate @ A @ I @ X ) ) ).
% map_replicate_trivial
thf(fact_6529_enumerate__eq__zip,axiom,
! [A: $tType] :
( ( enumerate @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( zip @ nat @ A @ ( upt @ N3 @ ( plus_plus @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) ) @ Xs ) ) ) ).
% enumerate_eq_zip
thf(fact_6530_map__decr__upt,axiom,
! [M: nat,N2: nat] :
( ( map @ nat @ nat
@ ^ [N3: nat] : ( minus_minus @ nat @ N3 @ ( suc @ ( zero_zero @ nat ) ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N2 ) ) )
= ( upt @ M @ N2 ) ) ).
% map_decr_upt
thf(fact_6531_map__nth,axiom,
! [A: $tType,Xs2: list @ A] :
( ( map @ nat @ A @ ( nth @ A @ Xs2 ) @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) )
= Xs2 ) ).
% map_nth
thf(fact_6532_atLeastAtMost__upt,axiom,
( ( set_or1337092689740270186AtMost @ nat )
= ( ^ [N3: nat,M6: nat] : ( set2 @ nat @ ( upt @ N3 @ ( suc @ M6 ) ) ) ) ) ).
% atLeastAtMost_upt
thf(fact_6533_atLeast__upt,axiom,
( ( set_ord_lessThan @ nat )
= ( ^ [N3: nat] : ( set2 @ nat @ ( upt @ ( zero_zero @ nat ) @ N3 ) ) ) ) ).
% atLeast_upt
thf(fact_6534_greaterThanAtMost__upt,axiom,
( ( set_or3652927894154168847AtMost @ nat )
= ( ^ [N3: nat,M6: nat] : ( set2 @ nat @ ( upt @ ( suc @ N3 ) @ ( suc @ M6 ) ) ) ) ) ).
% greaterThanAtMost_upt
thf(fact_6535_greaterThanLessThan__upt,axiom,
( ( set_or5935395276787703475ssThan @ nat )
= ( ^ [N3: nat,M6: nat] : ( set2 @ nat @ ( upt @ ( suc @ N3 ) @ M6 ) ) ) ) ).
% greaterThanLessThan_upt
thf(fact_6536_nth__map__upt,axiom,
! [A: $tType,I: nat,N2: nat,M: nat,F2: nat > A] :
( ( ord_less @ nat @ I @ ( minus_minus @ nat @ N2 @ M ) )
=> ( ( nth @ A @ ( map @ nat @ A @ F2 @ ( upt @ M @ N2 ) ) @ I )
= ( F2 @ ( plus_plus @ nat @ M @ I ) ) ) ) ).
% nth_map_upt
thf(fact_6537_atMost__upto,axiom,
( ( set_ord_atMost @ nat )
= ( ^ [N3: nat] : ( set2 @ nat @ ( upt @ ( zero_zero @ nat ) @ ( suc @ N3 ) ) ) ) ) ).
% atMost_upto
thf(fact_6538_enumerate__replicate__eq,axiom,
! [A: $tType,N2: nat,M: nat,A2: A] :
( ( enumerate @ A @ N2 @ ( replicate @ A @ M @ A2 ) )
= ( map @ nat @ ( product_prod @ nat @ A )
@ ^ [Q6: nat] : ( product_Pair @ nat @ A @ Q6 @ A2 )
@ ( upt @ N2 @ ( plus_plus @ nat @ N2 @ M ) ) ) ) ).
% enumerate_replicate_eq
thf(fact_6539_map__upt__eqI,axiom,
! [A: $tType,Xs2: list @ A,N2: nat,M: nat,F2: nat > A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( minus_minus @ nat @ N2 @ M ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I2 )
= ( F2 @ ( plus_plus @ nat @ M @ I2 ) ) ) )
=> ( ( map @ nat @ A @ F2 @ ( upt @ M @ N2 ) )
= Xs2 ) ) ) ).
% map_upt_eqI
thf(fact_6540_sorted__wrt__less__sum__mono__lowerbound,axiom,
! [B: $tType] :
( ( ordere6911136660526730532id_add @ B )
=> ! [F2: nat > B,Ns: list @ nat] :
( ! [X4: nat,Y4: nat] :
( ( ord_less_eq @ nat @ X4 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) )
=> ( ( sorted_wrt @ nat @ ( ord_less @ nat ) @ Ns )
=> ( ord_less_eq @ B @ ( groups7311177749621191930dd_sum @ nat @ B @ F2 @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ nat ) @ Ns ) ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ nat @ B @ F2 @ Ns ) ) ) ) ) ) ).
% sorted_wrt_less_sum_mono_lowerbound
thf(fact_6541_nths__def,axiom,
! [A: $tType] :
( ( nths @ A )
= ( ^ [Xs: list @ A,A8: set @ nat] :
( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( product_snd @ A @ nat @ P5 ) @ A8 )
@ ( zip @ A @ nat @ Xs @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs ) ) ) ) ) ) ) ).
% nths_def
thf(fact_6542_filter__True,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= Xs2 ) ) ).
% filter_True
thf(fact_6543_set__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) )
= ( collect @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) ) ) ).
% set_filter
thf(fact_6544_sorted__filter,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,P: B > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) ) ) ) ).
% sorted_filter
thf(fact_6545_sorted__map__same,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,G: ( list @ B ) > A,Xs2: list @ B] :
( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( map @ B @ A @ F2
@ ( filter2 @ B
@ ^ [X3: B] :
( ( F2 @ X3 )
= ( G @ Xs2 ) )
@ Xs2 ) ) ) ) ).
% sorted_map_same
thf(fact_6546_sorted__map,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
= ( sorted_wrt @ B
@ ^ [X3: B,Y2: B] : ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( F2 @ Y2 ) )
@ Xs2 ) ) ) ).
% sorted_map
thf(fact_6547_sorted__wrt__upt,axiom,
! [M: nat,N2: nat] : ( sorted_wrt @ nat @ ( ord_less @ nat ) @ ( upt @ M @ N2 ) ) ).
% sorted_wrt_upt
thf(fact_6548_sorted__upt,axiom,
! [M: nat,N2: nat] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( upt @ M @ N2 ) ) ).
% sorted_upt
thf(fact_6549_sorted__nths,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I5: set @ nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( nths @ A @ Xs2 @ I5 ) ) ) ) ).
% sorted_nths
thf(fact_6550_sorted__remdups__adj,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remdups_adj @ A @ Xs2 ) ) ) ) ).
% sorted_remdups_adj
thf(fact_6551_strict__sorted__imp__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% strict_sorted_imp_sorted
thf(fact_6552_sorted__remdups,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remdups @ A @ Xs2 ) ) ) ) ).
% sorted_remdups
thf(fact_6553_sorted__same,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [G: ( list @ A ) > A,Xs2: list @ A] :
( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( filter2 @ A
@ ^ [X3: A] :
( X3
= ( G @ Xs2 ) )
@ Xs2 ) ) ) ).
% sorted_same
thf(fact_6554_sorted__replicate,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [N2: nat,X: A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( replicate @ A @ N2 @ X ) ) ) ).
% sorted_replicate
thf(fact_6555_sorted__take,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,N2: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( take @ A @ N2 @ Xs2 ) ) ) ) ).
% sorted_take
thf(fact_6556_sorted__remove1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,A2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( remove1 @ A @ A2 @ Xs2 ) ) ) ) ).
% sorted_remove1
thf(fact_6557_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( linord4507533701916653071of_set @ A @ A4 ) ) ) ).
% sorted_list_of_set.sorted_sorted_key_list_of_set
thf(fact_6558_sorted__list__of__set_Ostrict__sorted__key__list__of__set,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] : ( sorted_wrt @ A @ ( ord_less @ A ) @ ( linord4507533701916653071of_set @ A @ A4 ) ) ) ).
% sorted_list_of_set.strict_sorted_key_list_of_set
thf(fact_6559_sum__length__filter__compl,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) )
@ ( size_size @ ( list @ A )
@ ( filter2 @ A
@ ^ [X3: A] :
~ ( P @ X3 )
@ Xs2 ) ) )
= ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% sum_length_filter_compl
thf(fact_6560_length__filter__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_filter_le
thf(fact_6561_filter__is__subset,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% filter_is_subset
thf(fact_6562_filter__cong,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,P: A > $o,Q: A > $o] :
( ( Xs2 = Ys3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Ys3 ) )
=> ( ( P @ X4 )
= ( Q @ X4 ) ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= ( filter2 @ A @ Q @ Ys3 ) ) ) ) ).
% filter_cong
thf(fact_6563_filter__id__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Xs2 )
= Xs2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) ) ) ) ).
% filter_id_conv
thf(fact_6564_sorted__wrt__mono__rel,axiom,
! [A: $tType,Xs2: list @ A,P: A > A > $o,Q: A > A > $o] :
( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ A @ Y4 @ ( set2 @ A @ Xs2 ) )
=> ( ( P @ X4 @ Y4 )
=> ( Q @ X4 @ Y4 ) ) ) )
=> ( ( sorted_wrt @ A @ P @ Xs2 )
=> ( sorted_wrt @ A @ Q @ Xs2 ) ) ) ).
% sorted_wrt_mono_rel
thf(fact_6565_strict__sorted__equal,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ Xs2 )
=> ( ( sorted_wrt @ A @ ( ord_less @ A ) @ Ys3 )
=> ( ( ( set2 @ A @ Ys3 )
= ( set2 @ A @ Xs2 ) )
=> ( Ys3 = Xs2 ) ) ) ) ) ).
% strict_sorted_equal
thf(fact_6566_length__filter__less,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% length_filter_less
thf(fact_6567_strict__sorted__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [L: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ L )
= ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ L )
& ( distinct @ A @ L ) ) ) ) ).
% strict_sorted_iff
thf(fact_6568_sorted__wrt__nth__less,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A,I: nat,J: nat] :
( ( sorted_wrt @ A @ P @ Xs2 )
=> ( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I ) @ ( nth @ A @ Xs2 @ J ) ) ) ) ) ).
% sorted_wrt_nth_less
thf(fact_6569_sorted__wrt__iff__nth__less,axiom,
! [A: $tType] :
( ( sorted_wrt @ A )
= ( ^ [P3: A > A > $o,Xs: list @ A] :
! [I3: nat,J3: nat] :
( ( ord_less @ nat @ I3 @ J3 )
=> ( ( ord_less @ nat @ J3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( P3 @ ( nth @ A @ Xs @ I3 ) @ ( nth @ A @ Xs @ J3 ) ) ) ) ) ) ).
% sorted_wrt_iff_nth_less
thf(fact_6570_sorted__distinct__set__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( distinct @ A @ Xs2 )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys3 )
=> ( ( distinct @ A @ Ys3 )
=> ( ( ( set2 @ A @ Xs2 )
= ( set2 @ A @ Ys3 ) )
=> ( Xs2 = Ys3 ) ) ) ) ) ) ) ).
% sorted_distinct_set_unique
thf(fact_6571_sorted__wrt01,axiom,
! [A: $tType,Xs2: list @ A,P: A > A > $o] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( sorted_wrt @ A @ P @ Xs2 ) ) ).
% sorted_wrt01
thf(fact_6572_sorted__map__remove1,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,X: B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( remove1 @ B @ X @ Xs2 ) ) ) ) ) ).
% sorted_map_remove1
thf(fact_6573_inj__on__filter__key__eq,axiom,
! [B: $tType,A: $tType,F2: A > B,Y: A,Xs2: list @ A] :
( ( inj_on @ A @ B @ F2 @ ( insert2 @ A @ Y @ ( set2 @ A @ Xs2 ) ) )
=> ( ( filter2 @ A
@ ^ [X3: A] :
( ( F2 @ Y )
= ( F2 @ X3 ) )
@ Xs2 )
= ( filter2 @ A
@ ( ^ [Y5: A,Z3: A] : ( Y5 = Z3 )
@ Y )
@ Xs2 ) ) ) ).
% inj_on_filter_key_eq
thf(fact_6574_sum__list__map__filter_H,axiom,
! [A: $tType,B: $tType] :
( ( monoid_add @ A )
=> ! [F2: B > A,P: B > $o,Xs2: list @ B] :
( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) )
= ( groups8242544230860333062m_list @ A
@ ( map @ B @ A
@ ^ [X3: B] : ( if @ A @ ( P @ X3 ) @ ( F2 @ X3 ) @ ( zero_zero @ A ) )
@ Xs2 ) ) ) ) ).
% sum_list_map_filter'
thf(fact_6575_sum__list__filter__le__nat,axiom,
! [A: $tType,F2: A > nat,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ ( filter2 @ A @ P @ Xs2 ) ) ) @ ( groups8242544230860333062m_list @ nat @ ( map @ A @ nat @ F2 @ Xs2 ) ) ) ).
% sum_list_filter_le_nat
thf(fact_6576_filter__in__nths,axiom,
! [A: $tType,Xs2: list @ A,S: set @ nat] :
( ( distinct @ A @ Xs2 )
=> ( ( filter2 @ A
@ ^ [X3: A] : ( member @ A @ X3 @ ( set2 @ A @ ( nths @ A @ Xs2 @ S ) ) )
@ Xs2 )
= ( nths @ A @ Xs2 @ S ) ) ) ).
% filter_in_nths
thf(fact_6577_sorted__enumerate,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( map @ ( product_prod @ nat @ A ) @ nat @ ( product_fst @ nat @ A ) @ ( enumerate @ A @ N2 @ Xs2 ) ) ) ).
% sorted_enumerate
thf(fact_6578_sorted__iff__nth__mono__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I3: nat,J3: nat] :
( ( ord_less @ nat @ I3 @ J3 )
=> ( ( ord_less @ nat @ J3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ J3 ) ) ) ) ) ) ) ).
% sorted_iff_nth_mono_less
thf(fact_6579_sorted01,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% sorted01
thf(fact_6580_finite__sorted__distinct__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ? [X4: list @ A] :
( ( ( set2 @ A @ X4 )
= A4 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ X4 )
& ( distinct @ A @ X4 )
& ! [Y3: list @ A] :
( ( ( ( set2 @ A @ Y3 )
= A4 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Y3 )
& ( distinct @ A @ Y3 ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% finite_sorted_distinct_unique
thf(fact_6581_sum__list__map__filter,axiom,
! [A: $tType,B: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ B,P: B > $o,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ ( set2 @ B @ Xs2 ) )
=> ( ~ ( P @ X4 )
=> ( ( F2 @ X4 )
= ( zero_zero @ A ) ) ) )
=> ( ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ ( filter2 @ B @ P @ Xs2 ) ) )
= ( groups8242544230860333062m_list @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ) ).
% sum_list_map_filter
thf(fact_6582_sorted__list__of__set_Oidem__if__sorted__distinct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( distinct @ A @ Xs2 )
=> ( ( linord4507533701916653071of_set @ A @ ( set2 @ A @ Xs2 ) )
= Xs2 ) ) ) ) ).
% sorted_list_of_set.idem_if_sorted_distinct
thf(fact_6583_nths__shift__lemma__Suc,axiom,
! [A: $tType,P: nat > $o,Xs2: list @ A,Is: list @ nat] :
( ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( P @ ( suc @ ( product_snd @ A @ nat @ P5 ) ) )
@ ( zip @ A @ nat @ Xs2 @ Is ) ) )
= ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( P @ ( product_snd @ A @ nat @ P5 ) )
@ ( zip @ A @ nat @ Xs2 @ ( map @ nat @ nat @ suc @ Is ) ) ) ) ) ).
% nths_shift_lemma_Suc
thf(fact_6584_set__minus__filter__out,axiom,
! [A: $tType,Xs2: list @ A,Y: A] :
( ( minus_minus @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( insert2 @ A @ Y @ ( bot_bot @ ( set @ A ) ) ) )
= ( set2 @ A
@ ( filter2 @ A
@ ^ [X3: A] : ( X3 != Y )
@ Xs2 ) ) ) ).
% set_minus_filter_out
thf(fact_6585_filter__eq__nths,axiom,
! [A: $tType] :
( ( filter2 @ A )
= ( ^ [P3: A > $o,Xs: list @ A] :
( nths @ A @ Xs
@ ( collect @ nat
@ ^ [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
& ( P3 @ ( nth @ A @ Xs @ I3 ) ) ) ) ) ) ) ).
% filter_eq_nths
thf(fact_6586_length__filter__conv__card,axiom,
! [A: $tType,P6: A > $o,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( filter2 @ A @ P6 @ Xs2 ) )
= ( finite_card @ nat
@ ( collect @ nat
@ ^ [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
& ( P6 @ ( nth @ A @ Xs2 @ I3 ) ) ) ) ) ) ).
% length_filter_conv_card
thf(fact_6587_sorted__iff__nth__Suc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I3: nat] :
( ( ord_less @ nat @ ( suc @ I3 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ ( suc @ I3 ) ) ) ) ) ) ) ).
% sorted_iff_nth_Suc
thf(fact_6588_sorted__iff__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
= ( ! [I3: nat,J3: nat] :
( ( ord_less_eq @ nat @ I3 @ J3 )
=> ( ( ord_less @ nat @ J3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ J3 ) ) ) ) ) ) ) ).
% sorted_iff_nth_mono
thf(fact_6589_sorted__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I: nat,J: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ I ) @ ( nth @ A @ Xs2 @ J ) ) ) ) ) ) ).
% sorted_nth_mono
thf(fact_6590_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ~ ! [L4: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ L4 )
=> ( ( ( set2 @ A @ L4 )
= A4 )
=> ( ( size_size @ ( list @ A ) @ L4 )
!= ( finite_card @ A @ A4 ) ) ) ) ) ) ).
% sorted_list_of_set.finite_set_strict_sorted
thf(fact_6591_sorted__wrt__less__idx,axiom,
! [Ns: list @ nat,I: nat] :
( ( sorted_wrt @ nat @ ( ord_less @ nat ) @ Ns )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ nat ) @ Ns ) )
=> ( ord_less_eq @ nat @ I @ ( nth @ nat @ Ns @ I ) ) ) ) ).
% sorted_wrt_less_idx
thf(fact_6592_sorted__find__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ( ( find @ A @ P @ Xs2 )
= ( some @ A
@ ( lattic643756798350308766er_Min @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) ) ) ) ) ) ) ) ).
% sorted_find_Min
thf(fact_6593_map__sorted__distinct__set__unique,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,Ys3: list @ B] :
( ( inj_on @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ ( set2 @ B @ Ys3 ) ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Ys3 ) )
=> ( ( distinct @ A @ ( map @ B @ A @ F2 @ Ys3 ) )
=> ( ( ( set2 @ B @ Xs2 )
= ( set2 @ B @ Ys3 ) )
=> ( Xs2 = Ys3 ) ) ) ) ) ) ) ) ).
% map_sorted_distinct_set_unique
thf(fact_6594_sorted__list__of__set_Osorted__key__list__of__set__unique,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A,L: list @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( sorted_wrt @ A @ ( ord_less @ A ) @ L )
& ( ( set2 @ A @ L )
= A4 )
& ( ( size_size @ ( list @ A ) @ L )
= ( finite_card @ A @ A4 ) ) )
= ( ( linord4507533701916653071of_set @ A @ A4 )
= L ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_unique
thf(fact_6595_nths__shift__lemma,axiom,
! [A: $tType,A4: set @ nat,Xs2: list @ A,I: nat] :
( ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( product_snd @ A @ nat @ P5 ) @ A4 )
@ ( zip @ A @ nat @ Xs2 @ ( upt @ I @ ( plus_plus @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) )
= ( map @ ( product_prod @ A @ nat ) @ A @ ( product_fst @ A @ nat )
@ ( filter2 @ ( product_prod @ A @ nat )
@ ^ [P5: product_prod @ A @ nat] : ( member @ nat @ ( plus_plus @ nat @ ( product_snd @ A @ nat @ P5 ) @ I ) @ A4 )
@ ( zip @ A @ nat @ Xs2 @ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% nths_shift_lemma
thf(fact_6596_folding__insort__key_Ofinite__set__strict__sorted,axiom,
! [A: $tType,B: $tType,Less_eq2: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A4: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq2 @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ S3 )
=> ( ( finite_finite @ B @ A4 )
=> ~ ! [L4: list @ B] :
( ( sorted_wrt @ A @ Less @ ( map @ B @ A @ F2 @ L4 ) )
=> ( ( ( set2 @ B @ L4 )
= A4 )
=> ( ( size_size @ ( list @ B ) @ L4 )
!= ( finite_card @ B @ A4 ) ) ) ) ) ) ) ).
% folding_insort_key.finite_set_strict_sorted
thf(fact_6597_Id__on__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( id_on @ A @ ( set2 @ A @ Xs2 ) )
= ( set2 @ ( product_prod @ A @ A )
@ ( map @ A @ ( product_prod @ A @ A )
@ ^ [X3: A] : ( product_Pair @ A @ A @ X3 @ X3 )
@ Xs2 ) ) ) ).
% Id_on_set
thf(fact_6598_sorted__list__of__set_Ofolding__insort__key__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( folding_insort_key @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less @ A ) @ ( top_top @ ( set @ A ) )
@ ^ [X3: A] : X3 ) ) ).
% sorted_list_of_set.folding_insort_key_axioms
thf(fact_6599_folding__insort__key_Osorted__key__list__of__set__unique,axiom,
! [A: $tType,B: $tType,Less_eq2: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A4: set @ B,L: list @ B] :
( ( folding_insort_key @ A @ B @ Less_eq2 @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ S3 )
=> ( ( finite_finite @ B @ A4 )
=> ( ( ( sorted_wrt @ A @ Less @ ( map @ B @ A @ F2 @ L ) )
& ( ( set2 @ B @ L )
= A4 )
& ( ( size_size @ ( list @ B ) @ L )
= ( finite_card @ B @ A4 ) ) )
= ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq2 @ F2 @ A4 )
= L ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_unique
thf(fact_6600_folding__insort__key_Oidem__if__sorted__distinct,axiom,
! [A: $tType,B: $tType,Less_eq2: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,Xs2: list @ B] :
( ( folding_insort_key @ A @ B @ Less_eq2 @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ ( set2 @ B @ Xs2 ) @ S3 )
=> ( ( sorted_wrt @ A @ Less_eq2 @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( distinct @ B @ Xs2 )
=> ( ( sorted8670434370408473282of_set @ A @ B @ Less_eq2 @ F2 @ ( set2 @ B @ Xs2 ) )
= Xs2 ) ) ) ) ) ).
% folding_insort_key.idem_if_sorted_distinct
thf(fact_6601_folding__insort__key_Oset__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq2: A > A > $o,Less: A > A > $o,S3: set @ B,F2: B > A,A4: set @ B] :
( ( folding_insort_key @ A @ B @ Less_eq2 @ Less @ S3 @ F2 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ S3 )
=> ( ( finite_finite @ B @ A4 )
=> ( ( set2 @ B @ ( sorted8670434370408473282of_set @ A @ B @ Less_eq2 @ F2 @ A4 ) )
= A4 ) ) ) ) ).
% folding_insort_key.set_sorted_key_list_of_set
thf(fact_6602_nth__transpose,axiom,
! [A: $tType,I: nat,Xs2: list @ ( list @ A )] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) )
=> ( ( nth @ ( list @ A ) @ ( transpose @ A @ Xs2 ) @ I )
= ( map @ ( list @ A ) @ A
@ ^ [Xs: list @ A] : ( nth @ A @ Xs @ I )
@ ( filter2 @ ( list @ A )
@ ^ [Ys2: list @ A] : ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Ys2 ) )
@ Xs2 ) ) ) ) ).
% nth_transpose
thf(fact_6603_nth__Cons__pos,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ).
% nth_Cons_pos
thf(fact_6604_list_Osimps_I15_J,axiom,
! [A: $tType,X21: A,X222: list @ A] :
( ( set2 @ A @ ( cons @ A @ X21 @ X222 ) )
= ( insert2 @ A @ X21 @ ( set2 @ A @ X222 ) ) ) ).
% list.simps(15)
thf(fact_6605_nth__Cons__Suc,axiom,
! [A: $tType,X: A,Xs2: list @ A,N2: nat] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( suc @ N2 ) )
= ( nth @ A @ Xs2 @ N2 ) ) ).
% nth_Cons_Suc
thf(fact_6606_nth__Cons__0,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( zero_zero @ nat ) )
= X ) ).
% nth_Cons_0
thf(fact_6607_take__Suc__Cons,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( take @ A @ ( suc @ N2 ) @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ N2 @ Xs2 ) ) ) ).
% take_Suc_Cons
thf(fact_6608_sum__list_OCons,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [X: A,Xs2: list @ A] :
( ( groups8242544230860333062m_list @ A @ ( cons @ A @ X @ Xs2 ) )
= ( plus_plus @ A @ X @ ( groups8242544230860333062m_list @ A @ Xs2 ) ) ) ) ).
% sum_list.Cons
thf(fact_6609_horner__sum__simps_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ! [F2: B > A,A2: A,X: B,Xs2: list @ B] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( cons @ B @ X @ Xs2 ) )
= ( plus_plus @ A @ ( F2 @ X ) @ ( times_times @ A @ A2 @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Xs2 ) ) ) ) ) ).
% horner_sum_simps(2)
thf(fact_6610_enumerate__simps_I2_J,axiom,
! [B: $tType,N2: nat,X: B,Xs2: list @ B] :
( ( enumerate @ B @ N2 @ ( cons @ B @ X @ Xs2 ) )
= ( cons @ ( product_prod @ nat @ B ) @ ( product_Pair @ nat @ B @ N2 @ X ) @ ( enumerate @ B @ ( suc @ N2 ) @ Xs2 ) ) ) ).
% enumerate_simps(2)
thf(fact_6611_nth__Cons__numeral,axiom,
! [A: $tType,X: A,Xs2: list @ A,V2: num] :
( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ ( numeral_numeral @ nat @ V2 ) )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V2 ) @ ( one_one @ nat ) ) ) ) ).
% nth_Cons_numeral
thf(fact_6612_take__Cons__numeral,axiom,
! [A: $tType,V2: num,X: A,Xs2: list @ A] :
( ( take @ A @ ( numeral_numeral @ nat @ V2 ) @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V2 ) @ ( one_one @ nat ) ) @ Xs2 ) ) ) ).
% take_Cons_numeral
thf(fact_6613_remdups_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remdups @ A @ ( cons @ A @ X @ Xs2 ) )
= ( remdups @ A @ Xs2 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remdups @ A @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( remdups @ A @ Xs2 ) ) ) ) ) ).
% remdups.simps(2)
thf(fact_6614_set__ConsD,axiom,
! [A: $tType,Y: A,X: A,Xs2: list @ A] :
( ( member @ A @ Y @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
=> ( ( Y = X )
| ( member @ A @ Y @ ( set2 @ A @ Xs2 ) ) ) ) ).
% set_ConsD
thf(fact_6615_list_Oset__cases,axiom,
! [A: $tType,E2: A,A2: list @ A] :
( ( member @ A @ E2 @ ( set2 @ A @ A2 ) )
=> ( ! [Z23: list @ A] :
( A2
!= ( cons @ A @ E2 @ Z23 ) )
=> ~ ! [Z12: A,Z23: list @ A] :
( ( A2
= ( cons @ A @ Z12 @ Z23 ) )
=> ~ ( member @ A @ E2 @ ( set2 @ A @ Z23 ) ) ) ) ) ).
% list.set_cases
thf(fact_6616_list_Oset__intros_I1_J,axiom,
! [A: $tType,X21: A,X222: list @ A] : ( member @ A @ X21 @ ( set2 @ A @ ( cons @ A @ X21 @ X222 ) ) ) ).
% list.set_intros(1)
thf(fact_6617_list_Oset__intros_I2_J,axiom,
! [A: $tType,Y: A,X222: list @ A,X21: A] :
( ( member @ A @ Y @ ( set2 @ A @ X222 ) )
=> ( member @ A @ Y @ ( set2 @ A @ ( cons @ A @ X21 @ X222 ) ) ) ) ).
% list.set_intros(2)
thf(fact_6618_set__subset__Cons,axiom,
! [A: $tType,Xs2: list @ A,X: A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) ) ).
% set_subset_Cons
thf(fact_6619_impossible__Cons,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,X: A] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys3 ) )
=> ( Xs2
!= ( cons @ A @ X @ Ys3 ) ) ) ).
% impossible_Cons
thf(fact_6620_length__Cons,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X @ Xs2 ) )
= ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_Cons
thf(fact_6621_length__Suc__conv,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( suc @ N2 ) )
= ( ? [Y2: A,Ys2: list @ A] :
( ( Xs2
= ( cons @ A @ Y2 @ Ys2 ) )
& ( ( size_size @ ( list @ A ) @ Ys2 )
= N2 ) ) ) ) ).
% length_Suc_conv
thf(fact_6622_Suc__length__conv,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( suc @ N2 )
= ( size_size @ ( list @ A ) @ Xs2 ) )
= ( ? [Y2: A,Ys2: list @ A] :
( ( Xs2
= ( cons @ A @ Y2 @ Ys2 ) )
& ( ( size_size @ ( list @ A ) @ Ys2 )
= N2 ) ) ) ) ).
% Suc_length_conv
thf(fact_6623_list__update__code_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,Y: A] :
( ( list_update @ A @ ( cons @ A @ X @ Xs2 ) @ ( zero_zero @ nat ) @ Y )
= ( cons @ A @ Y @ Xs2 ) ) ).
% list_update_code(2)
thf(fact_6624_replicate__Suc,axiom,
! [A: $tType,N2: nat,X: A] :
( ( replicate @ A @ ( suc @ N2 ) @ X )
= ( cons @ A @ X @ ( replicate @ A @ N2 @ X ) ) ) ).
% replicate_Suc
thf(fact_6625_list__update__code_I3_J,axiom,
! [A: $tType,X: A,Xs2: list @ A,I: nat,Y: A] :
( ( list_update @ A @ ( cons @ A @ X @ Xs2 ) @ ( suc @ I ) @ Y )
= ( cons @ A @ X @ ( list_update @ A @ Xs2 @ I @ Y ) ) ) ).
% list_update_code(3)
thf(fact_6626_upt__conv__Cons__Cons,axiom,
! [M: nat,N2: nat,Ns: list @ nat,Q4: nat] :
( ( ( cons @ nat @ M @ ( cons @ nat @ N2 @ Ns ) )
= ( upt @ M @ Q4 ) )
= ( ( cons @ nat @ N2 @ Ns )
= ( upt @ ( suc @ M ) @ Q4 ) ) ) ).
% upt_conv_Cons_Cons
thf(fact_6627_distinct_Osimps_I2_J,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( distinct @ A @ ( cons @ A @ X @ Xs2 ) )
= ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
& ( distinct @ A @ Xs2 ) ) ) ).
% distinct.simps(2)
thf(fact_6628_sorted2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Zs: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ ( cons @ A @ Y @ Zs ) ) )
= ( ( ord_less_eq @ A @ X @ Y )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ Y @ Zs ) ) ) ) ) ).
% sorted2
thf(fact_6629_Suc__le__length__iff,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( ? [X3: A,Ys2: list @ A] :
( ( Xs2
= ( cons @ A @ X3 @ Ys2 ) )
& ( ord_less_eq @ nat @ N2 @ ( size_size @ ( list @ A ) @ Ys2 ) ) ) ) ) ).
% Suc_le_length_iff
thf(fact_6630_sorted__simps_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Ys3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ Ys3 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
=> ( ord_less_eq @ A @ X @ X3 ) )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys3 ) ) ) ) ).
% sorted_simps(2)
thf(fact_6631_strict__sorted__simps_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Ys3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ ( cons @ A @ X @ Ys3 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
=> ( ord_less @ A @ X @ X3 ) )
& ( sorted_wrt @ A @ ( ord_less @ A ) @ Ys3 ) ) ) ) ).
% strict_sorted_simps(2)
thf(fact_6632_sorted__wrt_Osimps_I2_J,axiom,
! [A: $tType,P: A > A > $o,X: A,Ys3: list @ A] :
( ( sorted_wrt @ A @ P @ ( cons @ A @ X @ Ys3 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
=> ( P @ X @ X3 ) )
& ( sorted_wrt @ A @ P @ Ys3 ) ) ) ).
% sorted_wrt.simps(2)
thf(fact_6633_sorted__wrt_Oelims_I3_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ~ ( sorted_wrt @ A @ X @ Xa2 )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ( ! [Xa3: A] :
( ( member @ A @ Xa3 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Xa3 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ).
% sorted_wrt.elims(3)
thf(fact_6634_upt__conv__Cons,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( upt @ I @ J )
= ( cons @ nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).
% upt_conv_Cons
thf(fact_6635_count__list_Osimps_I2_J,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A] :
( ( ( X = Y )
=> ( ( count_list @ A @ ( cons @ A @ X @ Xs2 ) @ Y )
= ( plus_plus @ nat @ ( count_list @ A @ Xs2 @ Y ) @ ( one_one @ nat ) ) ) )
& ( ( X != Y )
=> ( ( count_list @ A @ ( cons @ A @ X @ Xs2 ) @ Y )
= ( count_list @ A @ Xs2 @ Y ) ) ) ) ).
% count_list.simps(2)
thf(fact_6636_list_Osize_I4_J,axiom,
! [A: $tType,X21: A,X222: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X21 @ X222 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ X222 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% list.size(4)
thf(fact_6637_n__lists_Osimps_I2_J,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( n_lists @ A @ ( suc @ N2 ) @ Xs2 )
= ( concat @ ( list @ A )
@ ( map @ ( list @ A ) @ ( list @ ( list @ A ) )
@ ^ [Ys2: list @ A] :
( map @ A @ ( list @ A )
@ ^ [Y2: A] : ( cons @ A @ Y2 @ Ys2 )
@ Xs2 )
@ ( n_lists @ A @ N2 @ Xs2 ) ) ) ) ).
% n_lists.simps(2)
thf(fact_6638_nth__Cons_H,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N2 )
= X ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) ) ) ) ) ).
% nth_Cons'
thf(fact_6639_upt__eq__Cons__conv,axiom,
! [I: nat,J: nat,X: nat,Xs2: list @ nat] :
( ( ( upt @ I @ J )
= ( cons @ nat @ X @ Xs2 ) )
= ( ( ord_less @ nat @ I @ J )
& ( I = X )
& ( ( upt @ ( plus_plus @ nat @ I @ ( one_one @ nat ) ) @ J )
= Xs2 ) ) ) ).
% upt_eq_Cons_conv
thf(fact_6640_Sup__fin_Oset__eq__fold,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ! [X: A,Xs2: list @ A] :
( ( lattic5882676163264333800up_fin @ A @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
= ( fold @ A @ A @ ( sup_sup @ A ) @ Xs2 @ X ) ) ) ).
% Sup_fin.set_eq_fold
thf(fact_6641_Max_Oset__eq__fold,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( lattic643756798349783984er_Max @ A @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
= ( fold @ A @ A @ ( ord_max @ A ) @ Xs2 @ X ) ) ) ).
% Max.set_eq_fold
thf(fact_6642_Min_Oset__eq__fold,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( lattic643756798350308766er_Min @ A @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
= ( fold @ A @ A @ ( ord_min @ A ) @ Xs2 @ X ) ) ) ).
% Min.set_eq_fold
thf(fact_6643_lists__length__Suc__eq,axiom,
! [A: $tType,A4: set @ A,N2: nat] :
( ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ( size_size @ ( list @ A ) @ Xs )
= ( suc @ N2 ) ) ) )
= ( image @ ( product_prod @ ( list @ A ) @ A ) @ ( list @ A )
@ ( product_case_prod @ ( list @ A ) @ A @ ( list @ A )
@ ^ [Xs: list @ A,N3: A] : ( cons @ A @ N3 @ Xs ) )
@ ( product_Sigma @ ( list @ A ) @ A
@ ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A4 )
& ( ( size_size @ ( list @ A ) @ Xs )
= N2 ) ) )
@ ^ [Uu3: list @ A] : A4 ) ) ) ).
% lists_length_Suc_eq
thf(fact_6644_list_Osize__gen_I2_J,axiom,
! [A: $tType,X: A > nat,X21: A,X222: list @ A] :
( ( size_list @ A @ X @ ( cons @ A @ X21 @ X222 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( X @ X21 ) @ ( size_list @ A @ X @ X222 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% list.size_gen(2)
thf(fact_6645_sorted__list__of__set__greaterThanAtMost,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq @ nat @ ( suc @ I ) @ J )
=> ( ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ I @ J ) )
= ( cons @ nat @ ( suc @ I ) @ ( linord4507533701916653071of_set @ nat @ ( set_or3652927894154168847AtMost @ nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_6646_map__upt__Suc,axiom,
! [A: $tType,F2: nat > A,N2: nat] :
( ( map @ nat @ A @ F2 @ ( upt @ ( zero_zero @ nat ) @ ( suc @ N2 ) ) )
= ( cons @ A @ ( F2 @ ( zero_zero @ nat ) )
@ ( map @ nat @ A
@ ^ [I3: nat] : ( F2 @ ( suc @ I3 ) )
@ ( upt @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% map_upt_Suc
thf(fact_6647_sorted__list__of__set__greaterThanLessThan,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ J )
=> ( ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ I @ J ) )
= ( cons @ nat @ ( suc @ I ) @ ( linord4507533701916653071of_set @ nat @ ( set_or5935395276787703475ssThan @ nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_6648_nth__equal__first__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A,N2: nat] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N2 )
= X )
= ( N2
= ( zero_zero @ nat ) ) ) ) ) ).
% nth_equal_first_eq
thf(fact_6649_nth__non__equal__first__eq,axiom,
! [A: $tType,X: A,Y: A,Xs2: list @ A,N2: nat] :
( ( X != Y )
=> ( ( ( nth @ A @ ( cons @ A @ X @ Xs2 ) @ N2 )
= Y )
= ( ( ( nth @ A @ Xs2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) )
= Y )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% nth_non_equal_first_eq
thf(fact_6650_Cons__replicate__eq,axiom,
! [A: $tType,X: A,Xs2: list @ A,N2: nat,Y: A] :
( ( ( cons @ A @ X @ Xs2 )
= ( replicate @ A @ N2 @ Y ) )
= ( ( X = Y )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( Xs2
= ( replicate @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ X ) ) ) ) ).
% Cons_replicate_eq
thf(fact_6651_Cons__lenlex__iff,axiom,
! [A: $tType,M: A,Ms: list @ A,N2: A,Ns: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( cons @ A @ M @ Ms ) @ ( cons @ A @ N2 @ Ns ) ) @ ( lenlex @ A @ R2 ) )
= ( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ms ) @ ( size_size @ ( list @ A ) @ Ns ) )
| ( ( ( size_size @ ( list @ A ) @ Ms )
= ( size_size @ ( list @ A ) @ Ns ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ M @ N2 ) @ R2 ) )
| ( ( M = N2 )
& ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ms @ Ns ) @ ( lenlex @ A @ R2 ) ) ) ) ) ).
% Cons_lenlex_iff
thf(fact_6652_nth__nth__transpose__sorted,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I: nat,J: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) )
=> ( ( ord_less @ nat @ J
@ ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [Ys2: list @ A] : ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Ys2 ) )
@ Xs2 ) ) )
=> ( ( nth @ A @ ( nth @ ( list @ A ) @ ( transpose @ A @ Xs2 ) @ I ) @ J )
= ( nth @ A @ ( nth @ ( list @ A ) @ Xs2 @ J ) @ I ) ) ) ) ) ).
% nth_nth_transpose_sorted
thf(fact_6653_transpose__column,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( map @ ( list @ A ) @ A
@ ^ [Ys2: list @ A] : ( nth @ A @ Ys2 @ I )
@ ( filter2 @ ( list @ A )
@ ^ [Ys2: list @ A] : ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Ys2 ) )
@ ( transpose @ A @ Xs2 ) ) )
= ( nth @ ( list @ A ) @ Xs2 @ I ) ) ) ) ).
% transpose_column
thf(fact_6654_set__rev,axiom,
! [A: $tType,Xs2: list @ A] :
( ( set2 @ A @ ( rev @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% set_rev
thf(fact_6655_fold__rev,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B > B] :
( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ A @ Y4 @ ( set2 @ A @ Xs2 ) )
=> ( ( comp @ B @ B @ B @ ( F2 @ Y4 ) @ ( F2 @ X4 ) )
= ( comp @ B @ B @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( ( fold @ A @ B @ F2 @ ( rev @ A @ Xs2 ) )
= ( fold @ A @ B @ F2 @ Xs2 ) ) ) ).
% fold_rev
thf(fact_6656_fold__plus__sum__list__rev,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ A] :
( ( fold @ A @ A @ ( plus_plus @ A ) @ Xs2 )
= ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ ( rev @ A @ Xs2 ) ) ) ) ) ).
% fold_plus_sum_list_rev
thf(fact_6657_sorted__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] : ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) ) ) ) ).
% sorted_transpose
thf(fact_6658_rev__nth,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( rev @ A @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( suc @ N2 ) ) ) ) ) ).
% rev_nth
thf(fact_6659_rev__update,axiom,
! [A: $tType,K: nat,Xs2: list @ A,Y: A] :
( ( ord_less @ nat @ K @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( rev @ A @ ( list_update @ A @ Xs2 @ K @ Y ) )
= ( list_update @ A @ ( rev @ A @ Xs2 ) @ ( minus_minus @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ K ) @ ( one_one @ nat ) ) @ Y ) ) ) ).
% rev_update
thf(fact_6660_sorted__rev__iff__nth__Suc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
= ( ! [I3: nat] :
( ( ord_less @ nat @ ( suc @ I3 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ ( suc @ I3 ) ) @ ( nth @ A @ Xs2 @ I3 ) ) ) ) ) ) ).
% sorted_rev_iff_nth_Suc
thf(fact_6661_sorted__rev__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,I: nat,J: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ J ) @ ( nth @ A @ Xs2 @ I ) ) ) ) ) ) ).
% sorted_rev_nth_mono
thf(fact_6662_sorted__rev__iff__nth__mono,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
= ( ! [I3: nat,J3: nat] :
( ( ord_less_eq @ nat @ I3 @ J3 )
=> ( ( ord_less @ nat @ J3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ A @ ( nth @ A @ Xs2 @ J3 ) @ ( nth @ A @ Xs2 @ I3 ) ) ) ) ) ) ) ).
% sorted_rev_iff_nth_mono
thf(fact_6663_transpose__column__length,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),I: nat] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [Ys2: list @ A] : ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Ys2 ) )
@ ( transpose @ A @ Xs2 ) ) )
= ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ I ) ) ) ) ) ).
% transpose_column_length
thf(fact_6664_length__transpose__sorted,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( ( Xs2
= ( nil @ ( list @ A ) ) )
=> ( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( zero_zero @ nat ) ) )
& ( ( Xs2
!= ( nil @ ( list @ A ) ) )
=> ( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ ( zero_zero @ nat ) ) ) ) ) ) ) ).
% length_transpose_sorted
thf(fact_6665_transpose__rectangle,axiom,
! [A: $tType,Xs2: list @ ( list @ A ),N2: nat] :
( ( ( Xs2
= ( nil @ ( list @ A ) ) )
=> ( N2
= ( zero_zero @ nat ) ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ ( nth @ ( list @ A ) @ Xs2 @ I2 ) )
= N2 ) )
=> ( ( transpose @ A @ Xs2 )
= ( map @ nat @ ( list @ A )
@ ^ [I3: nat] :
( map @ nat @ A
@ ^ [J3: nat] : ( nth @ A @ ( nth @ ( list @ A ) @ Xs2 @ J3 ) @ I3 )
@ ( upt @ ( zero_zero @ nat ) @ ( size_size @ ( list @ ( list @ A ) ) @ Xs2 ) ) )
@ ( upt @ ( zero_zero @ nat ) @ N2 ) ) ) ) ) ).
% transpose_rectangle
thf(fact_6666_set__empty2,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( bot_bot @ ( set @ A ) )
= ( set2 @ A @ Xs2 ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% set_empty2
thf(fact_6667_set__empty,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( set2 @ A @ Xs2 )
= ( bot_bot @ ( set @ A ) ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% set_empty
thf(fact_6668_length__0__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( zero_zero @ nat ) )
= ( Xs2
= ( nil @ A ) ) ) ).
% length_0_conv
thf(fact_6669_sum__list_ONil,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( ( groups8242544230860333062m_list @ A @ ( nil @ A ) )
= ( zero_zero @ A ) ) ) ).
% sum_list.Nil
thf(fact_6670_take0,axiom,
! [A: $tType] :
( ( take @ A @ ( zero_zero @ nat ) )
= ( ^ [Xs: list @ A] : ( nil @ A ) ) ) ).
% take0
thf(fact_6671_take__eq__Nil,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( take @ A @ N2 @ Xs2 )
= ( nil @ A ) )
= ( ( N2
= ( zero_zero @ nat ) )
| ( Xs2
= ( nil @ A ) ) ) ) ).
% take_eq_Nil
thf(fact_6672_take__eq__Nil2,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( nil @ A )
= ( take @ A @ N2 @ Xs2 ) )
= ( ( N2
= ( zero_zero @ nat ) )
| ( Xs2
= ( nil @ A ) ) ) ) ).
% take_eq_Nil2
thf(fact_6673_filter__False,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X4 ) )
=> ( ( filter2 @ A @ P @ Xs2 )
= ( nil @ A ) ) ) ).
% filter_False
thf(fact_6674_empty__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( ( nil @ A )
= ( replicate @ A @ N2 @ X ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% empty_replicate
thf(fact_6675_replicate__empty,axiom,
! [A: $tType,N2: nat,X: A] :
( ( ( replicate @ A @ N2 @ X )
= ( nil @ A ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% replicate_empty
thf(fact_6676_horner__sum__simps_I1_J,axiom,
! [B: $tType,A: $tType] :
( ( comm_semiring_0 @ A )
=> ! [F2: B > A,A2: A] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( nil @ B ) )
= ( zero_zero @ A ) ) ) ).
% horner_sum_simps(1)
thf(fact_6677_prod__list_ONil,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( groups5270119922927024881d_list @ A @ ( nil @ A ) )
= ( one_one @ A ) ) ) ).
% prod_list.Nil
thf(fact_6678_length__greater__0__conv,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= ( Xs2
!= ( nil @ A ) ) ) ).
% length_greater_0_conv
thf(fact_6679_nths__singleton,axiom,
! [A: $tType,A4: set @ nat,X: A] :
( ( ( member @ nat @ ( zero_zero @ nat ) @ A4 )
=> ( ( nths @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ A4 )
= ( cons @ A @ X @ ( nil @ A ) ) ) )
& ( ~ ( member @ nat @ ( zero_zero @ nat ) @ A4 )
=> ( ( nths @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ A4 )
= ( nil @ A ) ) ) ) ).
% nths_singleton
thf(fact_6680_n__lists__Nil,axiom,
! [A: $tType,N2: nat] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( n_lists @ A @ N2 @ ( nil @ A ) )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( n_lists @ A @ N2 @ ( nil @ A ) )
= ( nil @ ( list @ A ) ) ) ) ) ).
% n_lists_Nil
thf(fact_6681_n__lists_Osimps_I1_J,axiom,
! [A: $tType,Xs2: list @ A] :
( ( n_lists @ A @ ( zero_zero @ nat ) @ Xs2 )
= ( cons @ ( list @ A ) @ ( nil @ A ) @ ( nil @ ( list @ A ) ) ) ) ).
% n_lists.simps(1)
thf(fact_6682_take__0,axiom,
! [A: $tType,Xs2: list @ A] :
( ( take @ A @ ( zero_zero @ nat ) @ Xs2 )
= ( nil @ A ) ) ).
% take_0
thf(fact_6683_empty__set,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
= ( set2 @ A @ ( nil @ A ) ) ) ).
% empty_set
thf(fact_6684_list_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size(3)
thf(fact_6685_list_Osize__gen_I1_J,axiom,
! [A: $tType,X: A > nat] :
( ( size_list @ A @ X @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size_gen(1)
thf(fact_6686_replicate__0,axiom,
! [A: $tType,X: A] :
( ( replicate @ A @ ( zero_zero @ nat ) @ X )
= ( nil @ A ) ) ).
% replicate_0
thf(fact_6687_strict__sorted__simps_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( sorted_wrt @ A @ ( ord_less @ A ) @ ( nil @ A ) ) ) ).
% strict_sorted_simps(1)
thf(fact_6688_sorted0,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( nil @ A ) ) ) ).
% sorted0
thf(fact_6689_filter__empty__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Xs2 )
= ( nil @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X3 ) ) ) ) ).
% filter_empty_conv
thf(fact_6690_empty__filter__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( nil @ A )
= ( filter2 @ A @ P @ Xs2 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ~ ( P @ X3 ) ) ) ) ).
% empty_filter_conv
thf(fact_6691_count__list_Osimps_I1_J,axiom,
! [A: $tType,Y: A] :
( ( count_list @ A @ ( nil @ A ) @ Y )
= ( zero_zero @ nat ) ) ).
% count_list.simps(1)
thf(fact_6692_sorted1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( cons @ A @ X @ ( nil @ A ) ) ) ) ).
% sorted1
thf(fact_6693_lexordp_Omono,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( order_mono @ ( ( list @ A ) > ( list @ A ) > $o ) @ ( ( list @ A ) > ( list @ A ) > $o )
@ ^ [P5: ( list @ A ) > ( list @ A ) > $o,X16: list @ A,X24: list @ A] :
( ? [Y2: A,Ys2: list @ A] :
( ( X16
= ( nil @ A ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( X16
= ( cons @ A @ X3 @ Xs ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) )
& ( ord_less @ A @ X3 @ Y2 ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( X16
= ( cons @ A @ X3 @ Xs ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) )
& ~ ( ord_less @ A @ X3 @ Y2 )
& ~ ( ord_less @ A @ Y2 @ X3 )
& ( P5 @ Xs @ Ys2 ) ) ) ) ) ).
% lexordp.mono
thf(fact_6694_sorted__wrt_Oelims_I1_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A,Y: $o] :
( ( ( sorted_wrt @ A @ X @ Xa2 )
= Y )
=> ( ( ( Xa2
= ( nil @ A ) )
=> ~ Y )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ( Y
= ( ~ ( ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Y2 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ) ) ).
% sorted_wrt.elims(1)
thf(fact_6695_sorted__wrt_Oelims_I2_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ( sorted_wrt @ A @ X @ Xa2 )
=> ( ( Xa2
!= ( nil @ A ) )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ~ ( ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Xa ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ).
% sorted_wrt.elims(2)
thf(fact_6696_sum__list__strict__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( monoid_add @ B )
& ( strict9044650504122735259up_add @ B ) )
=> ! [Xs2: list @ A,F2: A > B,G: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less @ B @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less @ B @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ F2 @ Xs2 ) ) @ ( groups8242544230860333062m_list @ B @ ( map @ A @ B @ G @ Xs2 ) ) ) ) ) ) ).
% sum_list_strict_mono
thf(fact_6697_remdups__adj__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( remdups_adj @ A @ ( replicate @ A @ N2 @ X ) )
= ( nil @ A ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( remdups_adj @ A @ ( replicate @ A @ N2 @ X ) )
= ( cons @ A @ X @ ( nil @ A ) ) ) ) ) ).
% remdups_adj_replicate
thf(fact_6698_remdups__adj__length__ge1,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ord_less_eq @ nat @ ( suc @ ( zero_zero @ nat ) ) @ ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) ) ) ) ).
% remdups_adj_length_ge1
thf(fact_6699_take__Cons_H,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( take @ A @ N2 @ ( cons @ A @ X @ Xs2 ) )
= ( nil @ A ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( take @ A @ N2 @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ ( take @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ Xs2 ) ) ) ) ) ).
% take_Cons'
thf(fact_6700_transpose__max__length,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( foldr @ ( list @ A ) @ nat
@ ^ [Xs: list @ A] : ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs ) )
@ ( transpose @ A @ Xs2 )
@ ( zero_zero @ nat ) )
= ( size_size @ ( list @ ( list @ A ) )
@ ( filter2 @ ( list @ A )
@ ^ [X3: list @ A] :
( X3
!= ( nil @ A ) )
@ Xs2 ) ) ) ).
% transpose_max_length
thf(fact_6701_concat__inth,axiom,
! [A: $tType,Xs2: list @ A,X: A,Ys3: list @ A] :
( ( nth @ A @ ( append @ A @ Xs2 @ ( append @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ Ys3 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
= X ) ).
% concat_inth
thf(fact_6702_upt__conv__Nil,axiom,
! [J: nat,I: nat] :
( ( ord_less_eq @ nat @ J @ I )
=> ( ( upt @ I @ J )
= ( nil @ nat ) ) ) ).
% upt_conv_Nil
thf(fact_6703_length__append,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( size_size @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys3 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys3 ) ) ) ).
% length_append
thf(fact_6704_set__append,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( set2 @ A @ ( append @ A @ Xs2 @ Ys3 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) ) ) ).
% set_append
thf(fact_6705_upt__eq__Nil__conv,axiom,
! [I: nat,J: nat] :
( ( ( upt @ I @ J )
= ( nil @ nat ) )
= ( ( J
= ( zero_zero @ nat ) )
| ( ord_less_eq @ nat @ J @ I ) ) ) ).
% upt_eq_Nil_conv
thf(fact_6706_sum__list__append,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [Xs2: list @ A,Ys3: list @ A] :
( ( groups8242544230860333062m_list @ A @ ( append @ A @ Xs2 @ Ys3 ) )
= ( plus_plus @ A @ ( groups8242544230860333062m_list @ A @ Xs2 ) @ ( groups8242544230860333062m_list @ A @ Ys3 ) ) ) ) ).
% sum_list_append
thf(fact_6707_size__list__append,axiom,
! [A: $tType,F2: A > nat,Xs2: list @ A,Ys3: list @ A] :
( ( size_list @ A @ F2 @ ( append @ A @ Xs2 @ Ys3 ) )
= ( plus_plus @ nat @ ( size_list @ A @ F2 @ Xs2 ) @ ( size_list @ A @ F2 @ Ys3 ) ) ) ).
% size_list_append
thf(fact_6708_nth__append__length__plus,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,N2: nat] :
( ( nth @ A @ ( append @ A @ Xs2 @ Ys3 ) @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 ) )
= ( nth @ A @ Ys3 @ N2 ) ) ).
% nth_append_length_plus
thf(fact_6709_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord4507533701916653071of_set @ nat @ ( set_ord_lessThan @ nat @ ( suc @ K ) ) )
= ( append @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_ord_lessThan @ nat @ K ) ) @ ( cons @ nat @ K @ ( nil @ nat ) ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_6710_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord4507533701916653071of_set @ nat @ ( set_ord_atMost @ nat @ ( suc @ K ) ) )
= ( append @ nat @ ( linord4507533701916653071of_set @ nat @ ( set_ord_atMost @ nat @ K ) ) @ ( cons @ nat @ ( suc @ K ) @ ( nil @ nat ) ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_6711_upt__rec__numeral,axiom,
! [M: num,N2: num] :
( ( ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) )
=> ( ( upt @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) )
= ( cons @ nat @ ( numeral_numeral @ nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral @ nat @ M ) ) @ ( numeral_numeral @ nat @ N2 ) ) ) ) )
& ( ~ ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) )
=> ( ( upt @ ( numeral_numeral @ nat @ M ) @ ( numeral_numeral @ nat @ N2 ) )
= ( nil @ nat ) ) ) ) ).
% upt_rec_numeral
thf(fact_6712_list__encode_Ocases,axiom,
! [X: list @ nat] :
( ( X
!= ( nil @ nat ) )
=> ~ ! [X4: nat,Xs3: list @ nat] :
( X
!= ( cons @ nat @ X4 @ Xs3 ) ) ) ).
% list_encode.cases
thf(fact_6713_upt__Suc,axiom,
! [I: nat,J: nat] :
( ( ( ord_less_eq @ nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append @ nat @ ( upt @ I @ J ) @ ( cons @ nat @ J @ ( nil @ nat ) ) ) ) )
& ( ~ ( ord_less_eq @ nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( nil @ nat ) ) ) ) ).
% upt_Suc
thf(fact_6714_upt__Suc__append,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append @ nat @ ( upt @ I @ J ) @ ( cons @ nat @ J @ ( nil @ nat ) ) ) ) ) ).
% upt_Suc_append
thf(fact_6715_upt__0,axiom,
! [I: nat] :
( ( upt @ I @ ( zero_zero @ nat ) )
= ( nil @ nat ) ) ).
% upt_0
thf(fact_6716_sorted__wrt__append,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A,Ys3: list @ A] :
( ( sorted_wrt @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( ( sorted_wrt @ A @ P @ Xs2 )
& ( sorted_wrt @ A @ P @ Ys3 )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Ys3 ) )
=> ( P @ X3 @ Y2 ) ) ) ) ) ).
% sorted_wrt_append
thf(fact_6717_replicate__add,axiom,
! [A: $tType,N2: nat,M: nat,X: A] :
( ( replicate @ A @ ( plus_plus @ nat @ N2 @ M ) @ X )
= ( append @ A @ ( replicate @ A @ N2 @ X ) @ ( replicate @ A @ M @ X ) ) ) ).
% replicate_add
thf(fact_6718_mono__compose,axiom,
! [D: $tType,C: $tType,B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ C ) )
=> ! [Q: A > B > C,F2: D > B] :
( ( order_mono @ A @ ( B > C ) @ Q )
=> ( order_mono @ A @ ( D > C )
@ ^ [I3: A,X3: D] : ( Q @ I3 @ ( F2 @ X3 ) ) ) ) ) ).
% mono_compose
thf(fact_6719_enumerate__append__eq,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,Ys3: list @ A] :
( ( enumerate @ A @ N2 @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ ( product_prod @ nat @ A ) @ ( enumerate @ A @ N2 @ Xs2 ) @ ( enumerate @ A @ ( plus_plus @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ Ys3 ) ) ) ).
% enumerate_append_eq
thf(fact_6720_remove1__append,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys3: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ ( remove1 @ A @ X @ Xs2 ) @ Ys3 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( remove1 @ A @ X @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ Xs2 @ ( remove1 @ A @ X @ Ys3 ) ) ) ) ) ).
% remove1_append
thf(fact_6721_foldr__cong,axiom,
! [B: $tType,A: $tType,A2: A,B2: A,L: list @ B,K: list @ B,F2: B > A > A,G: B > A > A] :
( ( A2 = B2 )
=> ( ( L = K )
=> ( ! [A5: A,X4: B] :
( ( member @ B @ X4 @ ( set2 @ B @ L ) )
=> ( ( F2 @ X4 @ A5 )
= ( G @ X4 @ A5 ) ) )
=> ( ( foldr @ B @ A @ F2 @ L @ A2 )
= ( foldr @ B @ A @ G @ K @ B2 ) ) ) ) ) ).
% foldr_cong
thf(fact_6722_split__list__first__prop__iff,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) )
= ( ? [Ys2: list @ A,X3: A] :
( ? [Zs2: list @ A] :
( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ X3 @ Zs2 ) ) )
& ( P @ X3 )
& ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Ys2 ) )
=> ~ ( P @ Y2 ) ) ) ) ) ).
% split_list_first_prop_iff
thf(fact_6723_split__list__last__prop__iff,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) )
= ( ? [Ys2: list @ A,X3: A,Zs2: list @ A] :
( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ X3 @ Zs2 ) ) )
& ( P @ X3 )
& ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Zs2 ) )
=> ~ ( P @ Y2 ) ) ) ) ) ).
% split_list_last_prop_iff
thf(fact_6724_in__set__conv__decomp__first,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys2: list @ A,Zs2: list @ A] :
( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ X @ Zs2 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Ys2 ) ) ) ) ) ).
% in_set_conv_decomp_first
thf(fact_6725_in__set__conv__decomp__last,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys2: list @ A,Zs2: list @ A] :
( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ X @ Zs2 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Zs2 ) ) ) ) ) ).
% in_set_conv_decomp_last
thf(fact_6726_split__list__first__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ~ ! [Ys4: list @ A,X4: A] :
( ? [Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
=> ( ( P @ X4 )
=> ~ ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ~ ( P @ Xa ) ) ) ) ) ).
% split_list_first_propE
thf(fact_6727_split__list__last__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ~ ! [Ys4: list @ A,X4: A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
=> ( ( P @ X4 )
=> ~ ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Zs3 ) )
=> ~ ( P @ Xa ) ) ) ) ) ).
% split_list_last_propE
thf(fact_6728_split__list__first__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ? [Ys4: list @ A,X4: A] :
( ? [Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
& ( P @ X4 )
& ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ~ ( P @ Xa ) ) ) ) ).
% split_list_first_prop
thf(fact_6729_split__list__last__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ? [Ys4: list @ A,X4: A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
& ( P @ X4 )
& ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Zs3 ) )
=> ~ ( P @ Xa ) ) ) ) ).
% split_list_last_prop
thf(fact_6730_in__set__conv__decomp,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Ys2: list @ A,Zs2: list @ A] :
( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ X @ Zs2 ) ) ) ) ) ).
% in_set_conv_decomp
thf(fact_6731_append__Cons__eq__iff,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys3: list @ A,Xs4: list @ A,Ys5: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( member @ A @ X @ ( set2 @ A @ Ys3 ) )
=> ( ( ( append @ A @ Xs2 @ ( cons @ A @ X @ Ys3 ) )
= ( append @ A @ Xs4 @ ( cons @ A @ X @ Ys5 ) ) )
= ( ( Xs2 = Xs4 )
& ( Ys3 = Ys5 ) ) ) ) ) ).
% append_Cons_eq_iff
thf(fact_6732_split__list__propE,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ~ ! [Ys4: list @ A,X4: A] :
( ? [Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
=> ~ ( P @ X4 ) ) ) ).
% split_list_propE
thf(fact_6733_split__list__first,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs3 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Ys4 ) ) ) ) ).
% split_list_first
thf(fact_6734_split__list__prop,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
& ( P @ X2 ) )
=> ? [Ys4: list @ A,X4: A] :
( ? [Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X4 @ Zs3 ) ) )
& ( P @ X4 ) ) ) ).
% split_list_prop
thf(fact_6735_split__list__last,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs3: list @ A] :
( ( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs3 ) ) )
& ~ ( member @ A @ X @ ( set2 @ A @ Zs3 ) ) ) ) ).
% split_list_last
thf(fact_6736_split__list,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ? [Ys4: list @ A,Zs3: list @ A] :
( Xs2
= ( append @ A @ Ys4 @ ( cons @ A @ X @ Zs3 ) ) ) ) ).
% split_list
thf(fact_6737_sorted__append,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys3: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( append @ A @ Xs2 @ Ys3 ) )
= ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
& ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Ys3 )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Ys3 ) )
=> ( ord_less_eq @ A @ X3 @ Y2 ) ) ) ) ) ) ).
% sorted_append
thf(fact_6738_not__distinct__conv__prefix,axiom,
! [A: $tType,As: list @ A] :
( ( ~ ( distinct @ A @ As ) )
= ( ? [Xs: list @ A,Y2: A,Ys2: list @ A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Xs ) )
& ( distinct @ A @ Xs )
& ( As
= ( append @ A @ Xs @ ( cons @ A @ Y2 @ Ys2 ) ) ) ) ) ) ).
% not_distinct_conv_prefix
thf(fact_6739_filter__eq__Cons__iff,axiom,
! [A: $tType,P: A > $o,Ys3: list @ A,X: A,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Ys3 )
= ( cons @ A @ X @ Xs2 ) )
= ( ? [Us: list @ A,Vs: list @ A] :
( ( Ys3
= ( append @ A @ Us @ ( cons @ A @ X @ Vs ) ) )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Us ) )
=> ~ ( P @ X3 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs ) ) ) ) ) ).
% filter_eq_Cons_iff
thf(fact_6740_Cons__eq__filter__iff,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( ( cons @ A @ X @ Xs2 )
= ( filter2 @ A @ P @ Ys3 ) )
= ( ? [Us: list @ A,Vs: list @ A] :
( ( Ys3
= ( append @ A @ Us @ ( cons @ A @ X @ Vs ) ) )
& ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Us ) )
=> ~ ( P @ X3 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs ) ) ) ) ) ).
% Cons_eq_filter_iff
thf(fact_6741_filter__eq__ConsD,axiom,
! [A: $tType,P: A > $o,Ys3: list @ A,X: A,Xs2: list @ A] :
( ( ( filter2 @ A @ P @ Ys3 )
= ( cons @ A @ X @ Xs2 ) )
=> ? [Us2: list @ A,Vs2: list @ A] :
( ( Ys3
= ( append @ A @ Us2 @ ( cons @ A @ X @ Vs2 ) ) )
& ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Us2 ) )
=> ~ ( P @ X2 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs2 ) ) ) ) ).
% filter_eq_ConsD
thf(fact_6742_Cons__eq__filterD,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( ( cons @ A @ X @ Xs2 )
= ( filter2 @ A @ P @ Ys3 ) )
=> ? [Us2: list @ A,Vs2: list @ A] :
( ( Ys3
= ( append @ A @ Us2 @ ( cons @ A @ X @ Vs2 ) ) )
& ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Us2 ) )
=> ~ ( P @ X2 ) )
& ( P @ X )
& ( Xs2
= ( filter2 @ A @ P @ Vs2 ) ) ) ) ).
% Cons_eq_filterD
thf(fact_6743_list__update__append1,axiom,
! [A: $tType,I: nat,Xs2: list @ A,Ys3: list @ A,X: A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys3 ) @ I @ X )
= ( append @ A @ ( list_update @ A @ Xs2 @ I @ X ) @ Ys3 ) ) ) ).
% list_update_append1
thf(fact_6744_upt__add__eq__append,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( upt @ I @ ( plus_plus @ nat @ J @ K ) )
= ( append @ nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus @ nat @ J @ K ) ) ) ) ) ).
% upt_add_eq_append
thf(fact_6745_remove1__split,axiom,
! [A: $tType,A2: A,Xs2: list @ A,Ys3: list @ A] :
( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
=> ( ( ( remove1 @ A @ A2 @ Xs2 )
= Ys3 )
= ( ? [Ls: list @ A,Rs: list @ A] :
( ( Xs2
= ( append @ A @ Ls @ ( cons @ A @ A2 @ Rs ) ) )
& ~ ( member @ A @ A2 @ ( set2 @ A @ Ls ) )
& ( Ys3
= ( append @ A @ Ls @ Rs ) ) ) ) ) ) ).
% remove1_split
thf(fact_6746_nths__append,axiom,
! [A: $tType,L: list @ A,L3: list @ A,A4: set @ nat] :
( ( nths @ A @ ( append @ A @ L @ L3 ) @ A4 )
= ( append @ A @ ( nths @ A @ L @ A4 )
@ ( nths @ A @ L3
@ ( collect @ nat
@ ^ [J3: nat] : ( member @ nat @ ( plus_plus @ nat @ J3 @ ( size_size @ ( list @ A ) @ L ) ) @ A4 ) ) ) ) ) ).
% nths_append
thf(fact_6747_length__append__singleton,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( size_size @ ( list @ A ) @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) )
= ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ).
% length_append_singleton
thf(fact_6748_length__Suc__conv__rev,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( suc @ N2 ) )
= ( ? [Y2: A,Ys2: list @ A] :
( ( Xs2
= ( append @ A @ Ys2 @ ( cons @ A @ Y2 @ ( nil @ A ) ) ) )
& ( ( size_size @ ( list @ A ) @ Ys2 )
= N2 ) ) ) ) ).
% length_Suc_conv_rev
thf(fact_6749_sum__list_Oeq__foldr,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( ( groups8242544230860333062m_list @ A )
= ( ^ [Xs: list @ A] : ( foldr @ A @ A @ ( plus_plus @ A ) @ Xs @ ( zero_zero @ A ) ) ) ) ) ).
% sum_list.eq_foldr
thf(fact_6750_nth__append,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,Ys3: list @ A] :
( ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( append @ A @ Xs2 @ Ys3 ) @ N2 )
= ( nth @ A @ Xs2 @ N2 ) ) )
& ( ~ ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( append @ A @ Xs2 @ Ys3 ) @ N2 )
= ( nth @ A @ Ys3 @ ( minus_minus @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% nth_append
thf(fact_6751_list__update__append,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,Ys3: list @ A,X: A] :
( ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys3 ) @ N2 @ X )
= ( append @ A @ ( list_update @ A @ Xs2 @ N2 @ X ) @ Ys3 ) ) )
& ( ~ ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ ( append @ A @ Xs2 @ Ys3 ) @ N2 @ X )
= ( append @ A @ Xs2 @ ( list_update @ A @ Ys3 @ ( minus_minus @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) ) @ X ) ) ) ) ) ).
% list_update_append
thf(fact_6752_foldr__fold,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B > B] :
( ! [X4: A,Y4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ( member @ A @ Y4 @ ( set2 @ A @ Xs2 ) )
=> ( ( comp @ B @ B @ B @ ( F2 @ Y4 ) @ ( F2 @ X4 ) )
= ( comp @ B @ B @ B @ ( F2 @ X4 ) @ ( F2 @ Y4 ) ) ) ) )
=> ( ( foldr @ A @ B @ F2 @ Xs2 )
= ( fold @ A @ B @ F2 @ Xs2 ) ) ) ).
% foldr_fold
thf(fact_6753_comm__append__is__replicate,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( Ys3
!= ( nil @ A ) )
=> ( ( ( append @ A @ Xs2 @ Ys3 )
= ( append @ A @ Ys3 @ Xs2 ) )
=> ? [N: nat,Zs3: list @ A] :
( ( ord_less @ nat @ ( one_one @ nat ) @ N )
& ( ( concat @ A @ ( replicate @ ( list @ A ) @ N @ Zs3 ) )
= ( append @ A @ Xs2 @ Ys3 ) ) ) ) ) ) ).
% comm_append_is_replicate
thf(fact_6754_lexord__same__pref__iff,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A,R2: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ Xs2 @ Ys3 ) @ ( append @ A @ Xs2 @ Zs ) ) @ ( lexord @ A @ R2 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X3 @ X3 ) @ R2 ) )
| ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Ys3 @ Zs ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_same_pref_iff
thf(fact_6755_prod__list_Oeq__foldr,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( groups5270119922927024881d_list @ A )
= ( ^ [Xs: list @ A] : ( foldr @ A @ A @ ( times_times @ A ) @ Xs @ ( one_one @ A ) ) ) ) ) ).
% prod_list.eq_foldr
thf(fact_6756_lexord__sufI,axiom,
! [A: $tType,U: list @ A,W2: list @ A,R2: set @ ( product_prod @ A @ A ),V2: list @ A,Z2: list @ A] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ U @ W2 ) @ ( lexord @ A @ R2 ) )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ W2 ) @ ( size_size @ ( list @ A ) @ U ) )
=> ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ ( append @ A @ U @ V2 ) @ ( append @ A @ W2 @ Z2 ) ) @ ( lexord @ A @ R2 ) ) ) ) ).
% lexord_sufI
thf(fact_6757_upt__rec,axiom,
( upt
= ( ^ [I3: nat,J3: nat] : ( if @ ( list @ nat ) @ ( ord_less @ nat @ I3 @ J3 ) @ ( cons @ nat @ I3 @ ( upt @ ( suc @ I3 ) @ J3 ) ) @ ( nil @ nat ) ) ) ) ).
% upt_rec
thf(fact_6758_horner__sum__append,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_1 @ A )
=> ! [F2: B > A,A2: A,Xs2: list @ B,Ys3: list @ B] :
( ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ ( append @ B @ Xs2 @ Ys3 ) )
= ( plus_plus @ A @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Xs2 ) @ ( times_times @ A @ ( power_power @ A @ A2 @ ( size_size @ ( list @ B ) @ Xs2 ) ) @ ( groups4207007520872428315er_sum @ B @ A @ F2 @ A2 @ Ys3 ) ) ) ) ) ).
% horner_sum_append
thf(fact_6759_nths__Cons,axiom,
! [A: $tType,X: A,L: list @ A,A4: set @ nat] :
( ( nths @ A @ ( cons @ A @ X @ L ) @ A4 )
= ( append @ A @ ( if @ ( list @ A ) @ ( member @ nat @ ( zero_zero @ nat ) @ A4 ) @ ( cons @ A @ X @ ( nil @ A ) ) @ ( nil @ A ) )
@ ( nths @ A @ L
@ ( collect @ nat
@ ^ [J3: nat] : ( member @ nat @ ( suc @ J3 ) @ A4 ) ) ) ) ) ).
% nths_Cons
thf(fact_6760_horner__sum__foldr,axiom,
! [A: $tType,B: $tType] :
( ( comm_semiring_0 @ A )
=> ( ( groups4207007520872428315er_sum @ B @ A )
= ( ^ [F3: B > A,A3: A,Xs: list @ B] :
( foldr @ B @ A
@ ^ [X3: B,B3: A] : ( plus_plus @ A @ ( F3 @ X3 ) @ ( times_times @ A @ A3 @ B3 ) )
@ Xs
@ ( zero_zero @ A ) ) ) ) ) ).
% horner_sum_foldr
thf(fact_6761_take__Suc__conv__app__nth,axiom,
! [A: $tType,I: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( take @ A @ ( suc @ I ) @ Xs2 )
= ( append @ A @ ( take @ A @ I @ Xs2 ) @ ( cons @ A @ ( nth @ A @ Xs2 @ I ) @ ( nil @ A ) ) ) ) ) ).
% take_Suc_conv_app_nth
thf(fact_6762_length__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( transpose @ A @ Xs2 ) )
= ( foldr @ ( list @ A ) @ nat
@ ^ [Xs: list @ A] : ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs ) )
@ Xs2
@ ( zero_zero @ nat ) ) ) ).
% length_transpose
thf(fact_6763_foldr__max__sorted,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Y: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ Xs2 ) )
=> ( ( ( Xs2
= ( nil @ A ) )
=> ( ( foldr @ A @ A @ ( ord_max @ A ) @ Xs2 @ Y )
= Y ) )
& ( ( Xs2
!= ( nil @ A ) )
=> ( ( foldr @ A @ A @ ( ord_max @ A ) @ Xs2 @ Y )
= ( ord_max @ A @ ( nth @ A @ Xs2 @ ( zero_zero @ nat ) ) @ Y ) ) ) ) ) ) ).
% foldr_max_sorted
thf(fact_6764_transpose__aux__max,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Xss: list @ ( list @ B )] :
( ( ord_max @ nat @ ( suc @ ( size_size @ ( list @ A ) @ Xs2 ) )
@ ( foldr @ ( list @ B ) @ nat
@ ^ [Xs: list @ B] : ( ord_max @ nat @ ( size_size @ ( list @ B ) @ Xs ) )
@ Xss
@ ( zero_zero @ nat ) ) )
= ( suc
@ ( ord_max @ nat @ ( size_size @ ( list @ A ) @ Xs2 )
@ ( foldr @ ( list @ B ) @ nat
@ ^ [X3: list @ B] : ( ord_max @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ B ) @ X3 ) @ ( suc @ ( zero_zero @ nat ) ) ) )
@ ( filter2 @ ( list @ B )
@ ^ [Ys2: list @ B] :
( Ys2
!= ( nil @ B ) )
@ Xss )
@ ( zero_zero @ nat ) ) ) ) ) ).
% transpose_aux_max
thf(fact_6765_nth__repl,axiom,
! [A: $tType,M: nat,Xs2: list @ A,N2: nat,X: A] :
( ( ord_less @ nat @ M @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( M != N2 )
=> ( ( nth @ A @ ( append @ A @ ( take @ A @ N2 @ Xs2 ) @ ( append @ A @ ( cons @ A @ X @ ( nil @ A ) ) @ ( drop @ A @ ( plus_plus @ nat @ N2 @ ( one_one @ nat ) ) @ Xs2 ) ) ) @ M )
= ( nth @ A @ Xs2 @ M ) ) ) ) ) ).
% nth_repl
thf(fact_6766_pos__n__replace,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,Y: A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ ( append @ A @ ( take @ A @ N2 @ Xs2 ) @ ( append @ A @ ( cons @ A @ Y @ ( nil @ A ) ) @ ( drop @ A @ ( suc @ N2 ) @ Xs2 ) ) ) ) ) ) ).
% pos_n_replace
thf(fact_6767_drop0,axiom,
! [A: $tType] :
( ( drop @ A @ ( zero_zero @ nat ) )
= ( ^ [X3: list @ A] : X3 ) ) ).
% drop0
thf(fact_6768_drop__drop,axiom,
! [A: $tType,N2: nat,M: nat,Xs2: list @ A] :
( ( drop @ A @ N2 @ ( drop @ A @ M @ Xs2 ) )
= ( drop @ A @ ( plus_plus @ nat @ N2 @ M ) @ Xs2 ) ) ).
% drop_drop
thf(fact_6769_drop__upt,axiom,
! [M: nat,I: nat,J: nat] :
( ( drop @ nat @ M @ ( upt @ I @ J ) )
= ( upt @ ( plus_plus @ nat @ I @ M ) @ J ) ) ).
% drop_upt
thf(fact_6770_drop__Suc__Cons,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( drop @ A @ ( suc @ N2 ) @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ N2 @ Xs2 ) ) ).
% drop_Suc_Cons
thf(fact_6771_drop__update__cancel,axiom,
! [A: $tType,N2: nat,M: nat,Xs2: list @ A,X: A] :
( ( ord_less @ nat @ N2 @ M )
=> ( ( drop @ A @ M @ ( list_update @ A @ Xs2 @ N2 @ X ) )
= ( drop @ A @ M @ Xs2 ) ) ) ).
% drop_update_cancel
thf(fact_6772_drop__eq__Nil2,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( nil @ A )
= ( drop @ A @ N2 @ Xs2 ) )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 ) ) ).
% drop_eq_Nil2
thf(fact_6773_drop__eq__Nil,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ( drop @ A @ N2 @ Xs2 )
= ( nil @ A ) )
= ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 ) ) ).
% drop_eq_Nil
thf(fact_6774_drop__all,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ N2 )
=> ( ( drop @ A @ N2 @ Xs2 )
= ( nil @ A ) ) ) ).
% drop_all
thf(fact_6775_drop__Cons__numeral,axiom,
! [A: $tType,V2: num,X: A,Xs2: list @ A] :
( ( drop @ A @ ( numeral_numeral @ nat @ V2 ) @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ ( minus_minus @ nat @ ( numeral_numeral @ nat @ V2 ) @ ( one_one @ nat ) ) @ Xs2 ) ) ).
% drop_Cons_numeral
thf(fact_6776_nth__drop,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,I: nat] :
( ( ord_less_eq @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ ( drop @ A @ N2 @ Xs2 ) @ I )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ N2 @ I ) ) ) ) ).
% nth_drop
thf(fact_6777_take__drop,axiom,
! [A: $tType,N2: nat,M: nat,Xs2: list @ A] :
( ( take @ A @ N2 @ ( drop @ A @ M @ Xs2 ) )
= ( drop @ A @ M @ ( take @ A @ ( plus_plus @ nat @ N2 @ M ) @ Xs2 ) ) ) ).
% take_drop
thf(fact_6778_in__set__dropD,axiom,
! [A: $tType,X: A,N2: nat,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( drop @ A @ N2 @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_dropD
thf(fact_6779_set__drop__subset,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( drop @ A @ N2 @ Xs2 ) ) @ ( set2 @ A @ Xs2 ) ) ).
% set_drop_subset
thf(fact_6780_drop__0,axiom,
! [A: $tType,Xs2: list @ A] :
( ( drop @ A @ ( zero_zero @ nat ) @ Xs2 )
= Xs2 ) ).
% drop_0
thf(fact_6781_drop__eq__nths,axiom,
! [A: $tType] :
( ( drop @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( nths @ A @ Xs @ ( collect @ nat @ ( ord_less_eq @ nat @ N3 ) ) ) ) ) ).
% drop_eq_nths
thf(fact_6782_sorted__drop,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,N2: nat] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( drop @ A @ N2 @ Xs2 ) ) ) ) ).
% sorted_drop
thf(fact_6783_set__drop__subset__set__drop,axiom,
! [A: $tType,N2: nat,M: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ N2 @ M )
=> ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ ( drop @ A @ M @ Xs2 ) ) @ ( set2 @ A @ ( drop @ A @ N2 @ Xs2 ) ) ) ) ).
% set_drop_subset_set_drop
thf(fact_6784_drop__update__swap,axiom,
! [A: $tType,M: nat,N2: nat,Xs2: list @ A,X: A] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( drop @ A @ M @ ( list_update @ A @ Xs2 @ N2 @ X ) )
= ( list_update @ A @ ( drop @ A @ M @ Xs2 ) @ ( minus_minus @ nat @ N2 @ M ) @ X ) ) ) ).
% drop_update_swap
thf(fact_6785_take__add,axiom,
! [A: $tType,I: nat,J: nat,Xs2: list @ A] :
( ( take @ A @ ( plus_plus @ nat @ I @ J ) @ Xs2 )
= ( append @ A @ ( take @ A @ I @ Xs2 ) @ ( take @ A @ J @ ( drop @ A @ I @ Xs2 ) ) ) ) ).
% take_add
thf(fact_6786_nths__drop,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,I5: set @ nat] :
( ( nths @ A @ ( drop @ A @ N2 @ Xs2 ) @ I5 )
= ( nths @ A @ Xs2 @ ( image @ nat @ nat @ ( plus_plus @ nat @ N2 ) @ I5 ) ) ) ).
% nths_drop
thf(fact_6787_drop__Cons_H,axiom,
! [A: $tType,N2: nat,X: A,Xs2: list @ A] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( drop @ A @ N2 @ ( cons @ A @ X @ Xs2 ) )
= ( cons @ A @ X @ Xs2 ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( drop @ A @ N2 @ ( cons @ A @ X @ Xs2 ) )
= ( drop @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ Xs2 ) ) ) ) ).
% drop_Cons'
thf(fact_6788_append__eq__append__conv__if,axiom,
! [A: $tType,Xs_1: list @ A,Xs_2: list @ A,Ys_1: list @ A,Ys_2: list @ A] :
( ( ( append @ A @ Xs_1 @ Xs_2 )
= ( append @ A @ Ys_1 @ Ys_2 ) )
= ( ( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs_1 ) @ ( size_size @ ( list @ A ) @ Ys_1 ) )
=> ( ( Xs_1
= ( take @ A @ ( size_size @ ( list @ A ) @ Xs_1 ) @ Ys_1 ) )
& ( Xs_2
= ( append @ A @ ( drop @ A @ ( size_size @ ( list @ A ) @ Xs_1 ) @ Ys_1 ) @ Ys_2 ) ) ) )
& ( ~ ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs_1 ) @ ( size_size @ ( list @ A ) @ Ys_1 ) )
=> ( ( ( take @ A @ ( size_size @ ( list @ A ) @ Ys_1 ) @ Xs_1 )
= Ys_1 )
& ( ( append @ A @ ( drop @ A @ ( size_size @ ( list @ A ) @ Ys_1 ) @ Xs_1 ) @ Xs_2 )
= Ys_2 ) ) ) ) ) ).
% append_eq_append_conv_if
thf(fact_6789_Cons__nth__drop__Suc,axiom,
! [A: $tType,I: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( cons @ A @ ( nth @ A @ Xs2 @ I ) @ ( drop @ A @ ( suc @ I ) @ Xs2 ) )
= ( drop @ A @ I @ Xs2 ) ) ) ).
% Cons_nth_drop_Suc
thf(fact_6790_id__take__nth__drop,axiom,
! [A: $tType,I: nat,Xs2: list @ A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( Xs2
= ( append @ A @ ( take @ A @ I @ Xs2 ) @ ( cons @ A @ ( nth @ A @ Xs2 @ I ) @ ( drop @ A @ ( suc @ I ) @ Xs2 ) ) ) ) ) ).
% id_take_nth_drop
thf(fact_6791_upd__conv__take__nth__drop,axiom,
! [A: $tType,I: nat,Xs2: list @ A,A2: A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( list_update @ A @ Xs2 @ I @ A2 )
= ( append @ A @ ( take @ A @ I @ Xs2 ) @ ( cons @ A @ A2 @ ( drop @ A @ ( suc @ I ) @ Xs2 ) ) ) ) ) ).
% upd_conv_take_nth_drop
thf(fact_6792_list__decode_Opelims,axiom,
! [X: nat,Y: list @ nat] :
( ( ( nat_list_decode @ X )
= Y )
=> ( ( accp @ nat @ nat_list_decode_rel @ X )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( ( Y
= ( nil @ nat ) )
=> ~ ( accp @ nat @ nat_list_decode_rel @ ( zero_zero @ nat ) ) ) )
=> ~ ! [N: nat] :
( ( X
= ( suc @ N ) )
=> ( ( Y
= ( product_case_prod @ nat @ nat @ ( list @ nat )
@ ^ [X3: nat,Y2: nat] : ( cons @ nat @ X3 @ ( nat_list_decode @ Y2 ) )
@ ( nat_prod_decode @ N ) ) )
=> ~ ( accp @ nat @ nat_list_decode_rel @ ( suc @ N ) ) ) ) ) ) ) ).
% list_decode.pelims
thf(fact_6793_length__product__lists,axiom,
! [B: $tType,Xss: list @ ( list @ B )] :
( ( size_size @ ( list @ ( list @ B ) ) @ ( product_lists @ B @ Xss ) )
= ( foldr @ nat @ nat @ ( times_times @ nat ) @ ( map @ ( list @ B ) @ nat @ ( size_size @ ( list @ B ) ) @ Xss ) @ ( one_one @ nat ) ) ) ).
% length_product_lists
thf(fact_6794_bij__list__decode,axiom,
bij_betw @ nat @ ( list @ nat ) @ nat_list_decode @ ( top_top @ ( set @ nat ) ) @ ( top_top @ ( set @ ( list @ nat ) ) ) ).
% bij_list_decode
thf(fact_6795_list__decode__eq,axiom,
! [X: nat,Y: nat] :
( ( ( nat_list_decode @ X )
= ( nat_list_decode @ Y ) )
= ( X = Y ) ) ).
% list_decode_eq
thf(fact_6796_inj__list__decode,axiom,
! [A4: set @ nat] : ( inj_on @ nat @ ( list @ nat ) @ nat_list_decode @ A4 ) ).
% inj_list_decode
thf(fact_6797_surj__list__decode,axiom,
( ( image @ nat @ ( list @ nat ) @ nat_list_decode @ ( top_top @ ( set @ nat ) ) )
= ( top_top @ ( set @ ( list @ nat ) ) ) ) ).
% surj_list_decode
thf(fact_6798_list__decode_Osimps_I1_J,axiom,
( ( nat_list_decode @ ( zero_zero @ nat ) )
= ( nil @ nat ) ) ).
% list_decode.simps(1)
thf(fact_6799_list__decode_Osimps_I2_J,axiom,
! [N2: nat] :
( ( nat_list_decode @ ( suc @ N2 ) )
= ( product_case_prod @ nat @ nat @ ( list @ nat )
@ ^ [X3: nat,Y2: nat] : ( cons @ nat @ X3 @ ( nat_list_decode @ Y2 ) )
@ ( nat_prod_decode @ N2 ) ) ) ).
% list_decode.simps(2)
thf(fact_6800_list__decode_Opsimps_I1_J,axiom,
( ( accp @ nat @ nat_list_decode_rel @ ( zero_zero @ nat ) )
=> ( ( nat_list_decode @ ( zero_zero @ nat ) )
= ( nil @ nat ) ) ) ).
% list_decode.psimps(1)
thf(fact_6801_list__decode_Oelims,axiom,
! [X: nat,Y: list @ nat] :
( ( ( nat_list_decode @ X )
= Y )
=> ( ( ( X
= ( zero_zero @ nat ) )
=> ( Y
!= ( nil @ nat ) ) )
=> ~ ! [N: nat] :
( ( X
= ( suc @ N ) )
=> ( Y
!= ( product_case_prod @ nat @ nat @ ( list @ nat )
@ ^ [X3: nat,Y2: nat] : ( cons @ nat @ X3 @ ( nat_list_decode @ Y2 ) )
@ ( nat_prod_decode @ N ) ) ) ) ) ) ).
% list_decode.elims
thf(fact_6802_list__decode_Opsimps_I2_J,axiom,
! [N2: nat] :
( ( accp @ nat @ nat_list_decode_rel @ ( suc @ N2 ) )
=> ( ( nat_list_decode @ ( suc @ N2 ) )
= ( product_case_prod @ nat @ nat @ ( list @ nat )
@ ^ [X3: nat,Y2: nat] : ( cons @ nat @ X3 @ ( nat_list_decode @ Y2 ) )
@ ( nat_prod_decode @ N2 ) ) ) ) ).
% list_decode.psimps(2)
thf(fact_6803_list__encode_Oelims,axiom,
! [X: list @ nat,Y: nat] :
( ( ( nat_list_encode @ X )
= Y )
=> ( ( ( X
= ( nil @ nat ) )
=> ( Y
!= ( zero_zero @ nat ) ) )
=> ~ ! [X4: nat,Xs3: list @ nat] :
( ( X
= ( cons @ nat @ X4 @ Xs3 ) )
=> ( Y
!= ( suc @ ( nat_prod_encode @ ( product_Pair @ nat @ nat @ X4 @ ( nat_list_encode @ Xs3 ) ) ) ) ) ) ) ) ).
% list_encode.elims
thf(fact_6804_transpose__transpose,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( sorted_wrt @ nat @ ( ord_less_eq @ nat ) @ ( rev @ nat @ ( map @ ( list @ A ) @ nat @ ( size_size @ ( list @ A ) ) @ Xs2 ) ) )
=> ( ( transpose @ A @ ( transpose @ A @ Xs2 ) )
= ( takeWhile @ ( list @ A )
@ ^ [X3: list @ A] :
( X3
!= ( nil @ A ) )
@ Xs2 ) ) ) ).
% transpose_transpose
thf(fact_6805_takeWhile__eq__all__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( takeWhile @ A @ P @ Xs2 )
= Xs2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) ) ) ) ).
% takeWhile_eq_all_conv
thf(fact_6806_list__encode__inverse,axiom,
! [X: list @ nat] :
( ( nat_list_decode @ ( nat_list_encode @ X ) )
= X ) ).
% list_encode_inverse
thf(fact_6807_list__decode__inverse,axiom,
! [N2: nat] :
( ( nat_list_encode @ ( nat_list_decode @ N2 ) )
= N2 ) ).
% list_decode_inverse
thf(fact_6808_takeWhile__append1,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% takeWhile_append1
thf(fact_6809_takeWhile__append2,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ Xs2 @ ( takeWhile @ A @ P @ Ys3 ) ) ) ) ).
% takeWhile_append2
thf(fact_6810_surj__list__encode,axiom,
( ( image @ ( list @ nat ) @ nat @ nat_list_encode @ ( top_top @ ( set @ ( list @ nat ) ) ) )
= ( top_top @ ( set @ nat ) ) ) ).
% surj_list_encode
thf(fact_6811_inj__list__encode,axiom,
! [A4: set @ ( list @ nat )] : ( inj_on @ ( list @ nat ) @ nat @ nat_list_encode @ A4 ) ).
% inj_list_encode
thf(fact_6812_takeWhile__cong,axiom,
! [A: $tType,L: list @ A,K: list @ A,P: A > $o,Q: A > $o] :
( ( L = K )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ L ) )
=> ( ( P @ X4 )
= ( Q @ X4 ) ) )
=> ( ( takeWhile @ A @ P @ L )
= ( takeWhile @ A @ Q @ K ) ) ) ) ).
% takeWhile_cong
thf(fact_6813_set__takeWhileD,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( takeWhile @ A @ P @ Xs2 ) ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
& ( P @ X ) ) ) ).
% set_takeWhileD
thf(fact_6814_length__takeWhile__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_takeWhile_le
thf(fact_6815_list__encode__eq,axiom,
! [X: list @ nat,Y: list @ nat] :
( ( ( nat_list_encode @ X )
= ( nat_list_encode @ Y ) )
= ( X = Y ) ) ).
% list_encode_eq
thf(fact_6816_bij__list__encode,axiom,
bij_betw @ ( list @ nat ) @ nat @ nat_list_encode @ ( top_top @ ( set @ ( list @ nat ) ) ) @ ( top_top @ ( set @ nat ) ) ).
% bij_list_encode
thf(fact_6817_sorted__takeWhile,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% sorted_takeWhile
thf(fact_6818_nth__length__takeWhile,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ~ ( P @ ( nth @ A @ Xs2 @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ).
% nth_length_takeWhile
thf(fact_6819_takeWhile__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) )
=> ( ( nth @ A @ ( takeWhile @ A @ P @ Xs2 ) @ J )
= ( nth @ A @ Xs2 @ J ) ) ) ).
% takeWhile_nth
thf(fact_6820_takeWhile__append,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ Xs2 @ ( takeWhile @ A @ P @ Ys3 ) ) ) )
& ( ~ ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X2 ) )
=> ( ( takeWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( takeWhile @ A @ P @ Xs2 ) ) ) ) ).
% takeWhile_append
thf(fact_6821_list__encode_Osimps_I1_J,axiom,
( ( nat_list_encode @ ( nil @ nat ) )
= ( zero_zero @ nat ) ) ).
% list_encode.simps(1)
thf(fact_6822_length__takeWhile__less__P__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) )
=> ( ( ord_less_eq @ nat @ J @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ord_less_eq @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ).
% length_takeWhile_less_P_nth
thf(fact_6823_takeWhile__eq__take__P__nth,axiom,
! [A: $tType,N2: nat,Xs2: list @ A,P: A > $o] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N2 )
=> ( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I2 ) ) ) )
=> ( ( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ~ ( P @ ( nth @ A @ Xs2 @ N2 ) ) )
=> ( ( takeWhile @ A @ P @ Xs2 )
= ( take @ A @ N2 @ Xs2 ) ) ) ) ).
% takeWhile_eq_take_P_nth
thf(fact_6824_filter__equals__takeWhile__sorted__rev,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,T2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( rev @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) )
=> ( ( filter2 @ B
@ ^ [X3: B] : ( ord_less @ A @ T2 @ ( F2 @ X3 ) )
@ Xs2 )
= ( takeWhile @ B
@ ^ [X3: B] : ( ord_less @ A @ T2 @ ( F2 @ X3 ) )
@ Xs2 ) ) ) ) ).
% filter_equals_takeWhile_sorted_rev
thf(fact_6825_list__encode_Osimps_I2_J,axiom,
! [X: nat,Xs2: list @ nat] :
( ( nat_list_encode @ ( cons @ nat @ X @ Xs2 ) )
= ( suc @ ( nat_prod_encode @ ( product_Pair @ nat @ nat @ X @ ( nat_list_encode @ Xs2 ) ) ) ) ) ).
% list_encode.simps(2)
thf(fact_6826_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I3: int,J3: int,Js: list @ int] : ( if @ ( list @ int ) @ ( ord_less @ int @ J3 @ I3 ) @ Js @ ( upto_aux @ I3 @ ( minus_minus @ int @ J3 @ ( one_one @ int ) ) @ ( cons @ int @ J3 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_6827_take__hd__drop,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( append @ A @ ( take @ A @ N2 @ Xs2 ) @ ( cons @ A @ ( hd @ A @ ( drop @ A @ N2 @ Xs2 ) ) @ ( nil @ A ) ) )
= ( take @ A @ ( suc @ N2 ) @ Xs2 ) ) ) ).
% take_hd_drop
thf(fact_6828_hd__upt,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( hd @ nat @ ( upt @ I @ J ) )
= I ) ) ).
% hd_upt
thf(fact_6829_hd__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ( hd @ A @ ( replicate @ A @ N2 @ X ) )
= X ) ) ).
% hd_replicate
thf(fact_6830_hd__take,axiom,
! [A: $tType,J: nat,Xs2: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ J )
=> ( ( hd @ A @ ( take @ A @ J @ Xs2 ) )
= ( hd @ A @ Xs2 ) ) ) ).
% hd_take
thf(fact_6831_list_Oset__sel_I1_J,axiom,
! [A: $tType,A2: list @ A] :
( ( A2
!= ( nil @ A ) )
=> ( member @ A @ ( hd @ A @ A2 ) @ ( set2 @ A @ A2 ) ) ) ).
% list.set_sel(1)
thf(fact_6832_hd__in__set,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( member @ A @ ( hd @ A @ Xs2 ) @ ( set2 @ A @ Xs2 ) ) ) ).
% hd_in_set
thf(fact_6833_hd__conv__nth,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( hd @ A @ Xs2 )
= ( nth @ A @ Xs2 @ ( zero_zero @ nat ) ) ) ) ).
% hd_conv_nth
thf(fact_6834_hd__drop__conv__nth,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( hd @ A @ ( drop @ A @ N2 @ Xs2 ) )
= ( nth @ A @ Xs2 @ N2 ) ) ) ).
% hd_drop_conv_nth
thf(fact_6835_remdups__adj__singleton__iff,axiom,
! [A: $tType,Xs2: list @ A] :
( ( ( size_size @ ( list @ A ) @ ( remdups_adj @ A @ Xs2 ) )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( Xs2
!= ( nil @ A ) )
& ( Xs2
= ( replicate @ A @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( hd @ A @ Xs2 ) ) ) ) ) ).
% remdups_adj_singleton_iff
thf(fact_6836_insort__key__remove1,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [A2: B,Xs2: list @ B,F2: B > A] :
( ( member @ B @ A2 @ ( set2 @ B @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( ( hd @ B
@ ( filter2 @ B
@ ^ [X3: B] :
( ( F2 @ A2 )
= ( F2 @ X3 ) )
@ Xs2 ) )
= A2 )
=> ( ( linorder_insort_key @ B @ A @ F2 @ A2 @ ( remove1 @ B @ A2 @ Xs2 ) )
= Xs2 ) ) ) ) ) ).
% insort_key_remove1
thf(fact_6837_extract__Some__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys3: list @ A,Y: A,Zs: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ Ys3 @ ( product_Pair @ A @ ( list @ A ) @ Y @ Zs ) ) ) )
= ( ( Xs2
= ( append @ A @ Ys3 @ ( cons @ A @ Y @ Zs ) ) )
& ( P @ Y )
& ~ ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
& ( P @ X3 ) ) ) ) ).
% extract_Some_iff
thf(fact_6838_length__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( size_size @ ( list @ B ) @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( suc @ ( size_size @ ( list @ B ) @ Xs2 ) ) ) ) ).
% length_insort
thf(fact_6839_insort__key_Osimps_I2_J,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Y: B,Ys3: list @ B] :
( ( ( ord_less_eq @ A @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ X @ ( cons @ B @ Y @ Ys3 ) )
= ( cons @ B @ X @ ( cons @ B @ Y @ Ys3 ) ) ) )
& ( ~ ( ord_less_eq @ A @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ X @ ( cons @ B @ Y @ Ys3 ) )
= ( cons @ B @ Y @ ( linorder_insort_key @ B @ A @ F2 @ X @ Ys3 ) ) ) ) ) ) ).
% insort_key.simps(2)
thf(fact_6840_set__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( set2 @ B @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( insert2 @ B @ X @ ( set2 @ B @ Xs2 ) ) ) ) ).
% set_insort_key
thf(fact_6841_extract__None__iff,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( none @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) ) )
= ( ~ ? [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
& ( P @ X3 ) ) ) ) ).
% extract_None_iff
thf(fact_6842_distinct__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( distinct @ B @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( ~ ( member @ B @ X @ ( set2 @ B @ Xs2 ) )
& ( distinct @ B @ Xs2 ) ) ) ) ).
% distinct_insort
thf(fact_6843_sorted__insort,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( linorder_insort_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 ) )
= ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 ) ) ) ).
% sorted_insort
thf(fact_6844_insort__is__Cons,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ B,F2: B > A,A2: B] :
( ! [X4: B] :
( ( member @ B @ X4 @ ( set2 @ B @ Xs2 ) )
=> ( ord_less_eq @ A @ ( F2 @ A2 ) @ ( F2 @ X4 ) ) )
=> ( ( linorder_insort_key @ B @ A @ F2 @ A2 @ Xs2 )
= ( cons @ B @ A2 @ Xs2 ) ) ) ) ).
% insort_is_Cons
thf(fact_6845_sorted__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) ) )
= ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ).
% sorted_insort_key
thf(fact_6846_distinct__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( distinct @ A @ ( map @ B @ A @ F2 @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) ) )
= ( ~ ( member @ A @ ( F2 @ X ) @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
& ( distinct @ A @ ( map @ B @ A @ F2 @ Xs2 ) ) ) ) ) ).
% distinct_insort_key
thf(fact_6847_filter__insort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,P: B > $o,X: B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( ( P @ X )
=> ( ( filter2 @ B @ P @ ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) )
= ( linorder_insort_key @ B @ A @ F2 @ X @ ( filter2 @ B @ P @ Xs2 ) ) ) ) ) ) ).
% filter_insort
thf(fact_6848_insort__remove1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,Xs2: list @ A] :
( ( member @ A @ A2 @ ( set2 @ A @ Xs2 ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( linorder_insort_key @ A @ A
@ ^ [X3: A] : X3
@ A2
@ ( remove1 @ A @ A2 @ Xs2 ) )
= Xs2 ) ) ) ) ).
% insort_remove1
thf(fact_6849_sorted__insort__is__snoc,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,A2: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( ord_less_eq @ A @ X4 @ A2 ) )
=> ( ( linorder_insort_key @ A @ A
@ ^ [X3: A] : X3
@ A2
@ Xs2 )
= ( append @ A @ Xs2 @ ( cons @ A @ A2 @ ( nil @ A ) ) ) ) ) ) ) ).
% sorted_insort_is_snoc
thf(fact_6850_extract__SomeE,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Ys3: list @ A,Y: A,Zs: list @ A] :
( ( ( extract @ A @ P @ Xs2 )
= ( some @ ( product_prod @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) ) @ ( product_Pair @ ( list @ A ) @ ( product_prod @ A @ ( list @ A ) ) @ Ys3 @ ( product_Pair @ A @ ( list @ A ) @ Y @ Zs ) ) ) )
=> ( ( Xs2
= ( append @ A @ Ys3 @ ( cons @ A @ Y @ Zs ) ) )
& ( P @ Y )
& ~ ? [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Ys3 ) )
& ( P @ X2 ) ) ) ) ).
% extract_SomeE
thf(fact_6851_the__elem__set,axiom,
! [A: $tType,X: A] :
( ( the_elem @ A @ ( set2 @ A @ ( cons @ A @ X @ ( nil @ A ) ) ) )
= X ) ).
% the_elem_set
thf(fact_6852_f__arg__min__list__f,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [Xs2: list @ A,F2: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( F2 @ ( arg_min_list @ A @ B @ F2 @ Xs2 ) )
= ( lattic643756798350308766er_Min @ B @ ( image @ A @ B @ F2 @ ( set2 @ A @ Xs2 ) ) ) ) ) ) ).
% f_arg_min_list_f
thf(fact_6853_arg__min__list__in,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [Xs2: list @ A,F2: A > B] :
( ( Xs2
!= ( nil @ A ) )
=> ( member @ A @ ( arg_min_list @ A @ B @ F2 @ Xs2 ) @ ( set2 @ A @ Xs2 ) ) ) ) ).
% arg_min_list_in
thf(fact_6854_arg__min__list_Osimps_I2_J,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [F2: A > B,X: A,Y: A,Zs: list @ A] :
( ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ X @ ( cons @ A @ Y @ Zs ) ) )
= ( if @ A @ ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ Y @ Zs ) ) ) ) @ X @ ( arg_min_list @ A @ B @ F2 @ ( cons @ A @ Y @ Zs ) ) ) ) ) ).
% arg_min_list.simps(2)
thf(fact_6855_min__list__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( min_list @ A @ Xs2 )
= ( lattic643756798350308766er_Min @ A @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% min_list_Min
thf(fact_6856_Nitpick_Osize__list__simp_I1_J,axiom,
! [A: $tType] :
( ( size_list @ A )
= ( ^ [F3: A > nat,Xs: list @ A] :
( if @ nat
@ ( Xs
= ( nil @ A ) )
@ ( zero_zero @ nat )
@ ( suc @ ( plus_plus @ nat @ ( F3 @ ( hd @ A @ Xs ) ) @ ( size_list @ A @ F3 @ ( tl @ A @ Xs ) ) ) ) ) ) ) ).
% Nitpick.size_list_simp(1)
thf(fact_6857_tl__upt,axiom,
! [M: nat,N2: nat] :
( ( tl @ nat @ ( upt @ M @ N2 ) )
= ( upt @ ( suc @ M ) @ N2 ) ) ).
% tl_upt
thf(fact_6858_length__tl,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( tl @ A @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) ).
% length_tl
thf(fact_6859_tl__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( tl @ A @ ( replicate @ A @ N2 @ X ) )
= ( replicate @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ X ) ) ).
% tl_replicate
thf(fact_6860_drop__Suc,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( drop @ A @ ( suc @ N2 ) @ Xs2 )
= ( drop @ A @ N2 @ ( tl @ A @ Xs2 ) ) ) ).
% drop_Suc
thf(fact_6861_take__tl,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( take @ A @ N2 @ ( tl @ A @ Xs2 ) )
= ( tl @ A @ ( take @ A @ ( suc @ N2 ) @ Xs2 ) ) ) ).
% take_tl
thf(fact_6862_sorted__tl,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( tl @ A @ Xs2 ) ) ) ) ).
% sorted_tl
thf(fact_6863_list_Oset__sel_I2_J,axiom,
! [A: $tType,A2: list @ A,X: A] :
( ( A2
!= ( nil @ A ) )
=> ( ( member @ A @ X @ ( set2 @ A @ ( tl @ A @ A2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ A2 ) ) ) ) ).
% list.set_sel(2)
thf(fact_6864_tl__take,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( tl @ A @ ( take @ A @ N2 @ Xs2 ) )
= ( take @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ ( tl @ A @ Xs2 ) ) ) ).
% tl_take
thf(fact_6865_Nitpick_Osize__list__simp_I2_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) )
= ( ^ [Xs: list @ A] :
( if @ nat
@ ( Xs
= ( nil @ A ) )
@ ( zero_zero @ nat )
@ ( suc @ ( size_size @ ( list @ A ) @ ( tl @ A @ Xs ) ) ) ) ) ) ).
% Nitpick.size_list_simp(2)
thf(fact_6866_nth__tl,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ ( tl @ A @ Xs2 ) ) )
=> ( ( nth @ A @ ( tl @ A @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ ( suc @ N2 ) ) ) ) ).
% nth_tl
thf(fact_6867_take__Suc,axiom,
! [A: $tType,Xs2: list @ A,N2: nat] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( take @ A @ ( suc @ N2 ) @ Xs2 )
= ( cons @ A @ ( hd @ A @ Xs2 ) @ ( take @ A @ N2 @ ( tl @ A @ Xs2 ) ) ) ) ) ).
% take_Suc
thf(fact_6868_list__encode_Opelims,axiom,
! [X: list @ nat,Y: nat] :
( ( ( nat_list_encode @ X )
= Y )
=> ( ( accp @ ( list @ nat ) @ nat_list_encode_rel @ X )
=> ( ( ( X
= ( nil @ nat ) )
=> ( ( Y
= ( zero_zero @ nat ) )
=> ~ ( accp @ ( list @ nat ) @ nat_list_encode_rel @ ( nil @ nat ) ) ) )
=> ~ ! [X4: nat,Xs3: list @ nat] :
( ( X
= ( cons @ nat @ X4 @ Xs3 ) )
=> ( ( Y
= ( suc @ ( nat_prod_encode @ ( product_Pair @ nat @ nat @ X4 @ ( nat_list_encode @ Xs3 ) ) ) ) )
=> ~ ( accp @ ( list @ nat ) @ nat_list_encode_rel @ ( cons @ nat @ X4 @ Xs3 ) ) ) ) ) ) ) ).
% list_encode.pelims
thf(fact_6869_distinct__concat__iff,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( distinct @ A @ ( concat @ A @ Xs2 ) )
= ( ( distinct @ ( list @ A ) @ ( removeAll @ ( list @ A ) @ ( nil @ A ) @ Xs2 ) )
& ! [Ys2: list @ A] :
( ( member @ ( list @ A ) @ Ys2 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Ys2 ) )
& ! [Ys2: list @ A,Zs2: list @ A] :
( ( ( member @ ( list @ A ) @ Ys2 @ ( set2 @ ( list @ A ) @ Xs2 ) )
& ( member @ ( list @ A ) @ Zs2 @ ( set2 @ ( list @ A ) @ Xs2 ) )
& ( Ys2 != Zs2 ) )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Ys2 ) @ ( set2 @ A @ Zs2 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% distinct_concat_iff
thf(fact_6870_inf_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) )
= ( ( ord_less_eq @ A @ A2 @ B2 )
& ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% inf.bounded_iff
thf(fact_6871_le__inf__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ ( inf_inf @ A @ Y @ Z2 ) )
= ( ( ord_less_eq @ A @ X @ Y )
& ( ord_less_eq @ A @ X @ Z2 ) ) ) ) ).
% le_inf_iff
thf(fact_6872_Int__atMost,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ A2 ) @ ( set_ord_atMost @ A @ B2 ) )
= ( set_ord_atMost @ A @ ( ord_min @ A @ A2 @ B2 ) ) ) ) ).
% Int_atMost
thf(fact_6873_inf__Sup__absorb,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( inf_inf @ A @ A2 @ ( lattic5882676163264333800up_fin @ A @ A4 ) )
= A2 ) ) ) ) ).
% inf_Sup_absorb
thf(fact_6874_Int__atLeastAtMost,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( ord_max @ A @ A2 @ C2 ) @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_atLeastAtMost
thf(fact_6875_Int__atLeastAtMostR1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [B2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ B2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( set_or1337092689740270186AtMost @ A @ C2 @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_atLeastAtMostR1
thf(fact_6876_Int__atLeastAtMostL1,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_ord_atMost @ A @ D2 ) )
= ( set_or1337092689740270186AtMost @ A @ A2 @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_atLeastAtMostL1
thf(fact_6877_Int__atLeastLessThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ A2 @ B2 ) @ ( set_or7035219750837199246ssThan @ A @ C2 @ D2 ) )
= ( set_or7035219750837199246ssThan @ A @ ( ord_max @ A @ A2 @ C2 ) @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_atLeastLessThan
thf(fact_6878_Int__atLeastAtMostL2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ A2 @ B2 ) @ ( set_ord_atLeast @ A @ C2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( ord_max @ A @ A2 @ C2 ) @ B2 ) ) ) ).
% Int_atLeastAtMostL2
thf(fact_6879_Int__atLeastAtMostR2,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atLeast @ A @ A2 ) @ ( set_or1337092689740270186AtMost @ A @ C2 @ D2 ) )
= ( set_or1337092689740270186AtMost @ A @ ( ord_max @ A @ A2 @ C2 ) @ D2 ) ) ) ).
% Int_atLeastAtMostR2
thf(fact_6880_Int__greaterThanLessThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ A2 @ B2 ) @ ( set_or5935395276787703475ssThan @ A @ C2 @ D2 ) )
= ( set_or5935395276787703475ssThan @ A @ ( ord_max @ A @ A2 @ C2 ) @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_greaterThanLessThan
thf(fact_6881_Int__greaterThanAtMost,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( set_or3652927894154168847AtMost @ A @ ( ord_max @ A @ A2 @ C2 ) @ ( ord_min @ A @ B2 @ D2 ) ) ) ) ).
% Int_greaterThanAtMost
thf(fact_6882_distinct__append,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( distinct @ A @ ( append @ A @ Xs2 @ Ys3 ) )
= ( ( distinct @ A @ Xs2 )
& ( distinct @ A @ Ys3 )
& ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% distinct_append
thf(fact_6883_mono__inf,axiom,
! [B: $tType,A: $tType] :
( ( ( semilattice_inf @ A )
& ( semilattice_inf @ B ) )
=> ! [F2: A > B,A4: A,B4: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( F2 @ ( inf_inf @ A @ A4 @ B4 ) ) @ ( inf_inf @ B @ ( F2 @ A4 ) @ ( F2 @ B4 ) ) ) ) ) ).
% mono_inf
thf(fact_6884_inter__set__filter,axiom,
! [A: $tType,A4: set @ A,Xs2: list @ A] :
( ( inf_inf @ ( set @ A ) @ A4 @ ( set2 @ A @ Xs2 ) )
= ( set2 @ A
@ ( filter2 @ A
@ ^ [X3: A] : ( member @ A @ X3 @ A4 )
@ Xs2 ) ) ) ).
% inter_set_filter
thf(fact_6885_Sup__inf__eq__bot__iff,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [B4: set @ A,A2: A] :
( ( ( inf_inf @ A @ ( complete_Sup_Sup @ A @ B4 ) @ A2 )
= ( bot_bot @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ B4 )
=> ( ( inf_inf @ A @ X3 @ A2 )
= ( bot_bot @ A ) ) ) ) ) ) ).
% Sup_inf_eq_bot_iff
thf(fact_6886_ivl__disj__int__two_I3_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(3)
thf(fact_6887_distrib__inf__le,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [X: A,Y: A,Z2: A] : ( ord_less_eq @ A @ ( sup_sup @ A @ ( inf_inf @ A @ X @ Y ) @ ( inf_inf @ A @ X @ Z2 ) ) @ ( inf_inf @ A @ X @ ( sup_sup @ A @ Y @ Z2 ) ) ) ) ).
% distrib_inf_le
thf(fact_6888_distrib__sup__le,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [X: A,Y: A,Z2: A] : ( ord_less_eq @ A @ ( sup_sup @ A @ X @ ( inf_inf @ A @ Y @ Z2 ) ) @ ( inf_inf @ A @ ( sup_sup @ A @ X @ Y ) @ ( sup_sup @ A @ X @ Z2 ) ) ) ) ).
% distrib_sup_le
thf(fact_6889_inf_OcoboundedI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ C2 )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.coboundedI2
thf(fact_6890_inf_OcoboundedI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.coboundedI1
thf(fact_6891_inf_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B3: A,A3: A] :
( ( inf_inf @ A @ A3 @ B3 )
= B3 ) ) ) ) ).
% inf.absorb_iff2
thf(fact_6892_inf_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( ( inf_inf @ A @ A3 @ B3 )
= A3 ) ) ) ) ).
% inf.absorb_iff1
thf(fact_6893_inf_Ocobounded2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ B2 ) ) ).
% inf.cobounded2
thf(fact_6894_inf_Ocobounded1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ A2 ) ) ).
% inf.cobounded1
thf(fact_6895_inf_Oorder__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B3: A] :
( A3
= ( inf_inf @ A @ A3 @ B3 ) ) ) ) ) ).
% inf.order_iff
thf(fact_6896_inf__greatest,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ Z2 )
=> ( ord_less_eq @ A @ X @ ( inf_inf @ A @ Y @ Z2 ) ) ) ) ) ).
% inf_greatest
thf(fact_6897_inf_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) ) ) ) ) ).
% inf.boundedI
thf(fact_6898_inf_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less_eq @ A @ A2 @ B2 )
=> ~ ( ord_less_eq @ A @ A2 @ C2 ) ) ) ) ).
% inf.boundedE
thf(fact_6899_inf__absorb2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( inf_inf @ A @ X @ Y )
= Y ) ) ) ).
% inf_absorb2
thf(fact_6900_inf__absorb1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( inf_inf @ A @ X @ Y )
= X ) ) ) ).
% inf_absorb1
thf(fact_6901_inf_Oabsorb2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= B2 ) ) ) ).
% inf.absorb2
thf(fact_6902_inf_Oabsorb1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= A2 ) ) ) ).
% inf.absorb1
thf(fact_6903_le__iff__inf,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X3: A,Y2: A] :
( ( inf_inf @ A @ X3 @ Y2 )
= X3 ) ) ) ) ).
% le_iff_inf
thf(fact_6904_inf__unique,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [F2: A > A > A,X: A,Y: A] :
( ! [X4: A,Y4: A] : ( ord_less_eq @ A @ ( F2 @ X4 @ Y4 ) @ X4 )
=> ( ! [X4: A,Y4: A] : ( ord_less_eq @ A @ ( F2 @ X4 @ Y4 ) @ Y4 )
=> ( ! [X4: A,Y4: A,Z: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ( ord_less_eq @ A @ X4 @ Z )
=> ( ord_less_eq @ A @ X4 @ ( F2 @ Y4 @ Z ) ) ) )
=> ( ( inf_inf @ A @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ) ).
% inf_unique
thf(fact_6905_inf_OorderI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] :
( ( A2
= ( inf_inf @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% inf.orderI
thf(fact_6906_inf_OorderE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2
= ( inf_inf @ A @ A2 @ B2 ) ) ) ) ).
% inf.orderE
thf(fact_6907_le__infI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,X: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ X )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% le_infI2
thf(fact_6908_le__infI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ X )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% le_infI1
thf(fact_6909_inf__mono,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( ord_less_eq @ A @ A2 @ C2 )
=> ( ( ord_less_eq @ A @ B2 @ D2 )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ ( inf_inf @ A @ C2 @ D2 ) ) ) ) ) ).
% inf_mono
thf(fact_6910_le__infI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ X @ A2 )
=> ( ( ord_less_eq @ A @ X @ B2 )
=> ( ord_less_eq @ A @ X @ ( inf_inf @ A @ A2 @ B2 ) ) ) ) ) ).
% le_infI
thf(fact_6911_le__infE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ X @ ( inf_inf @ A @ A2 @ B2 ) )
=> ~ ( ( ord_less_eq @ A @ X @ A2 )
=> ~ ( ord_less_eq @ A @ X @ B2 ) ) ) ) ).
% le_infE
thf(fact_6912_inf__le2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ Y ) ) ).
% inf_le2
thf(fact_6913_inf__le1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ X ) ) ).
% inf_le1
thf(fact_6914_inf__sup__ord_I1_J,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ X ) ) ).
% inf_sup_ord(1)
thf(fact_6915_inf__sup__ord_I2_J,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ Y ) ) ).
% inf_sup_ord(2)
thf(fact_6916_Sup__inter__less__eq,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,B4: set @ A] : ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) @ ( inf_inf @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ).
% Sup_inter_less_eq
thf(fact_6917_greaterThan__Int__greaterThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ A2 ) @ ( set_ord_lessThan @ A @ B2 ) )
= ( set_ord_lessThan @ A @ ( ord_min @ A @ A2 @ B2 ) ) ) ) ).
% greaterThan_Int_greaterThan
thf(fact_6918_ivl__disj__int__two_I6_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(6)
thf(fact_6919_lessThan__Int__lessThan,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_greaterThan @ A @ A2 ) @ ( set_ord_greaterThan @ A @ B2 ) )
= ( set_ord_greaterThan @ A @ ( ord_max @ A @ A2 @ B2 ) ) ) ) ).
% lessThan_Int_lessThan
thf(fact_6920_less__infI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less @ A @ A2 @ X )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% less_infI1
thf(fact_6921_less__infI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,X: A,A2: A] :
( ( ord_less @ A @ B2 @ X )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% less_infI2
thf(fact_6922_inf_Oabsorb3,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= A2 ) ) ) ).
% inf.absorb3
thf(fact_6923_inf_Oabsorb4,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= B2 ) ) ) ).
% inf.absorb4
thf(fact_6924_inf_Ostrict__boundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( ord_less @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) )
=> ~ ( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ A2 @ C2 ) ) ) ) ).
% inf.strict_boundedE
thf(fact_6925_inf_Ostrict__order__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B3: A] :
( ( A3
= ( inf_inf @ A @ A3 @ B3 ) )
& ( A3 != B3 ) ) ) ) ) ).
% inf.strict_order_iff
thf(fact_6926_inf_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( ord_less @ A @ A2 @ C2 )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.strict_coboundedI1
thf(fact_6927_inf_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [B2: A,C2: A,A2: A] :
( ( ord_less @ A @ B2 @ C2 )
=> ( ord_less @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 ) ) ) ).
% inf.strict_coboundedI2
thf(fact_6928_translation__Int,axiom,
! [A: $tType] :
( ( ab_group_add @ A )
=> ! [A2: A,S: set @ A,T2: set @ A] :
( ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ ( inf_inf @ ( set @ A ) @ S @ T2 ) )
= ( inf_inf @ ( set @ A ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ S ) @ ( image @ A @ A @ ( plus_plus @ A @ A2 ) @ T2 ) ) ) ) ).
% translation_Int
thf(fact_6929_inf__Sup,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A2: A,B4: set @ A] :
( ( inf_inf @ A @ A2 @ ( complete_Sup_Sup @ A @ B4 ) )
= ( complete_Sup_Sup @ A @ ( image @ A @ A @ ( inf_inf @ A @ A2 ) @ B4 ) ) ) ) ).
% inf_Sup
thf(fact_6930_SUP__inf,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [F2: B > A,B4: set @ B,A2: A] :
( ( inf_inf @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ B4 ) ) @ A2 )
= ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [B3: B] : ( inf_inf @ A @ ( F2 @ B3 ) @ A2 )
@ B4 ) ) ) ) ).
% SUP_inf
thf(fact_6931_Sup__inf,axiom,
! [A: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [B4: set @ A,A2: A] :
( ( inf_inf @ A @ ( complete_Sup_Sup @ A @ B4 ) @ A2 )
= ( complete_Sup_Sup @ A
@ ( image @ A @ A
@ ^ [B3: A] : ( inf_inf @ A @ B3 @ A2 )
@ B4 ) ) ) ) ).
% Sup_inf
thf(fact_6932_inf__SUP,axiom,
! [A: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [A2: A,F2: B > A,B4: set @ B] :
( ( inf_inf @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ B4 ) ) )
= ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [B3: B] : ( inf_inf @ A @ A2 @ ( F2 @ B3 ) )
@ B4 ) ) ) ) ).
% inf_SUP
thf(fact_6933_SUP__inf__distrib2,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( comple592849572758109894attice @ A )
=> ! [F2: B > A,A4: set @ B,G: C > A,B4: set @ C] :
( ( inf_inf @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B4 ) ) )
= ( complete_Sup_Sup @ A
@ ( image @ B @ A
@ ^ [A3: B] :
( complete_Sup_Sup @ A
@ ( image @ C @ A
@ ^ [B3: C] : ( inf_inf @ A @ ( F2 @ A3 ) @ ( G @ B3 ) )
@ B4 ) )
@ A4 ) ) ) ) ).
% SUP_inf_distrib2
thf(fact_6934_inf__shunt,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A] :
( ( ( inf_inf @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% inf_shunt
thf(fact_6935_shunt1,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ Z2 )
= ( ord_less_eq @ A @ X @ ( sup_sup @ A @ ( uminus_uminus @ A @ Y ) @ Z2 ) ) ) ) ).
% shunt1
thf(fact_6936_shunt2,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ ( inf_inf @ A @ X @ ( uminus_uminus @ A @ Y ) ) @ Z2 )
= ( ord_less_eq @ A @ X @ ( sup_sup @ A @ Y @ Z2 ) ) ) ) ).
% shunt2
thf(fact_6937_sup__neg__inf,axiom,
! [A: $tType] :
( ( boolea8198339166811842893lgebra @ A )
=> ! [P6: A,Q4: A,R2: A] :
( ( ord_less_eq @ A @ P6 @ ( sup_sup @ A @ Q4 @ R2 ) )
= ( ord_less_eq @ A @ ( inf_inf @ A @ P6 @ ( uminus_uminus @ A @ Q4 ) ) @ R2 ) ) ) ).
% sup_neg_inf
thf(fact_6938_less__eq__Inf__inter,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A,B4: set @ A] : ( ord_less_eq @ A @ ( sup_sup @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) @ ( complete_Inf_Inf @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ).
% less_eq_Inf_inter
thf(fact_6939_ivl__disj__int__two_I7_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(7)
thf(fact_6940_ivl__disj__int__one_I4_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(4)
thf(fact_6941_Ioc__disjoint,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ A2 @ B2 ) @ ( set_or3652927894154168847AtMost @ A @ C2 @ D2 ) )
= ( bot_bot @ ( set @ A ) ) )
= ( ( ord_less_eq @ A @ B2 @ A2 )
| ( ord_less_eq @ A @ D2 @ C2 )
| ( ord_less_eq @ A @ B2 @ C2 )
| ( ord_less_eq @ A @ D2 @ A2 ) ) ) ) ).
% Ioc_disjoint
thf(fact_6942_ivl__disj__int__one_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ L ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(2)
thf(fact_6943_ivl__disj__int__one_I7_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(7)
thf(fact_6944_ivl__disj__int__two_I4_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(4)
thf(fact_6945_ivl__disj__int__two_I5_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or1337092689740270186AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(5)
thf(fact_6946_ivl__disj__int__two_I8_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or1337092689740270186AtMost @ A @ L @ M ) @ ( set_or3652927894154168847AtMost @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(8)
thf(fact_6947_ivl__disj__int__two_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ M ) @ ( set_or7035219750837199246ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(1)
thf(fact_6948_ivl__disj__int__one_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(1)
thf(fact_6949_ivl__disj__int__one_I8_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or7035219750837199246ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(8)
thf(fact_6950_ivl__disj__int__one_I3_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ L ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(3)
thf(fact_6951_ivl__disj__int__one_I5_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ U ) @ ( set_ord_greaterThan @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(5)
thf(fact_6952_atLeastLessThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_or7035219750837199246ssThan @ A )
= ( ^ [L2: A,U2: A] : ( inf_inf @ ( set @ A ) @ ( set_ord_atLeast @ A @ L2 ) @ ( set_ord_lessThan @ A @ U2 ) ) ) ) ) ).
% atLeastLessThan_def
thf(fact_6953_atLeastAtMost__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_or1337092689740270186AtMost @ A )
= ( ^ [L2: A,U2: A] : ( inf_inf @ ( set @ A ) @ ( set_ord_atLeast @ A @ L2 ) @ ( set_ord_atMost @ A @ U2 ) ) ) ) ) ).
% atLeastAtMost_def
thf(fact_6954_ivl__disj__int__two_I2_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,M: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or3652927894154168847AtMost @ A @ L @ M ) @ ( set_or5935395276787703475ssThan @ A @ M @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_two(2)
thf(fact_6955_greaterThanLessThan__eq,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_or5935395276787703475ssThan @ A )
= ( ^ [A3: A,B3: A] : ( inf_inf @ ( set @ A ) @ ( set_ord_greaterThan @ A @ A3 ) @ ( set_ord_lessThan @ A @ B3 ) ) ) ) ) ).
% greaterThanLessThan_eq
thf(fact_6956_greaterThanLessThan__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_or5935395276787703475ssThan @ A )
= ( ^ [L2: A,U2: A] : ( inf_inf @ ( set @ A ) @ ( set_ord_greaterThan @ A @ L2 ) @ ( set_ord_lessThan @ A @ U2 ) ) ) ) ) ).
% greaterThanLessThan_def
thf(fact_6957_ivl__disj__int__one_I6_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [L: A,U: A] :
( ( inf_inf @ ( set @ A ) @ ( set_or5935395276787703475ssThan @ A @ L @ U ) @ ( set_ord_atLeast @ A @ U ) )
= ( bot_bot @ ( set @ A ) ) ) ) ).
% ivl_disj_int_one(6)
thf(fact_6958_greaterThanAtMost__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_or3652927894154168847AtMost @ A )
= ( ^ [L2: A,U2: A] : ( inf_inf @ ( set @ A ) @ ( set_ord_greaterThan @ A @ L2 ) @ ( set_ord_atMost @ A @ U2 ) ) ) ) ) ).
% greaterThanAtMost_def
thf(fact_6959_sum_Ointer__restrict,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A,B4: set @ B] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) )
= ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( if @ A @ ( member @ B @ X3 @ B4 ) @ ( G @ X3 ) @ ( zero_zero @ A ) )
@ A4 ) ) ) ) ).
% sum.inter_restrict
thf(fact_6960_prod_Ointer__restrict,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,G: B > A,B4: set @ B] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) )
= ( groups7121269368397514597t_prod @ B @ A
@ ^ [X3: B] : ( if @ A @ ( member @ B @ X3 @ B4 ) @ ( G @ X3 ) @ ( one_one @ A ) )
@ A4 ) ) ) ) ).
% prod.inter_restrict
thf(fact_6961_open__Collect__less__Int,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real,G: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ( ( topolo81223032696312382ous_on @ A @ real @ S @ G )
=> ? [A7: set @ A] :
( ( topolo1002775350975398744n_open @ A @ A7 )
& ( ( inf_inf @ ( set @ A ) @ A7 @ S )
= ( collect @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ S )
& ( ord_less @ real @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ) ) ) ).
% open_Collect_less_Int
thf(fact_6962_sum_Omono__neutral__cong,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [T6: set @ B,S3: set @ B,H: B > A,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ S3 @ T6 ) )
=> ( ( G @ I2 )
= ( zero_zero @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( inf_inf @ ( set @ B ) @ S3 @ T6 ) )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ S3 )
= ( groups7311177749621191930dd_sum @ B @ A @ H @ T6 ) ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong
thf(fact_6963_Inf__set__fold,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [Xs2: list @ A] :
( ( complete_Inf_Inf @ A @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ A @ ( inf_inf @ A ) @ Xs2 @ ( top_top @ A ) ) ) ) ).
% Inf_set_fold
thf(fact_6964_Iio__Int__singleton,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,K: A] :
( ( ( ord_less @ A @ X @ K )
=> ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ K ) @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) )
& ( ~ ( ord_less @ A @ X @ K )
=> ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ K ) @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% Iio_Int_singleton
thf(fact_6965_sum_Ounion__inter,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,B4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B4 ) ) ) ) ) ) ).
% sum.union_inter
thf(fact_6966_sum_OInt__Diff,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,G: B > A,B4: set @ B] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A4 @ B4 ) ) ) ) ) ) ).
% sum.Int_Diff
thf(fact_6967_prod_Omono__neutral__cong,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [T6: set @ B,S3: set @ B,H: B > A,G: B > A] :
( ( finite_finite @ B @ T6 )
=> ( ( finite_finite @ B @ S3 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ T6 @ S3 ) )
=> ( ( H @ I2 )
= ( one_one @ A ) ) )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ ( minus_minus @ ( set @ B ) @ S3 @ T6 ) )
=> ( ( G @ I2 )
= ( one_one @ A ) ) )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( inf_inf @ ( set @ B ) @ S3 @ T6 ) )
=> ( ( G @ X4 )
= ( H @ X4 ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ S3 )
= ( groups7121269368397514597t_prod @ B @ A @ H @ T6 ) ) ) ) ) ) ) ) ).
% prod.mono_neutral_cong
thf(fact_6968_card__Un__Int,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( plus_plus @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) )
= ( plus_plus @ nat @ ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) ) @ ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ).
% card_Un_Int
thf(fact_6969_less__separate,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [A5: A,B5: A] :
( ( member @ A @ X @ ( set_ord_lessThan @ A @ A5 ) )
& ( member @ A @ Y @ ( set_ord_greaterThan @ A @ B5 ) )
& ( ( inf_inf @ ( set @ A ) @ ( set_ord_lessThan @ A @ A5 ) @ ( set_ord_greaterThan @ A @ B5 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% less_separate
thf(fact_6970_inf__top_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( ( bounde4346867609351753570nf_top @ A )
=> ( semila1105856199041335345_order @ A @ ( inf_inf @ A ) @ ( top_top @ A ) @ ( ord_less_eq @ A ) @ ( ord_less @ A ) ) ) ).
% inf_top.semilattice_neutr_order_axioms
thf(fact_6971_atMost__Int__atLeast,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [N2: A] :
( ( inf_inf @ ( set @ A ) @ ( set_ord_atMost @ A @ N2 ) @ ( set_ord_atLeast @ A @ N2 ) )
= ( insert2 @ A @ N2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% atMost_Int_atLeast
thf(fact_6972_INF__nat__binary,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: A,B4: A] :
( ( inf_inf @ A @ A4
@ ( complete_Inf_Inf @ A
@ ( image @ nat @ A
@ ^ [X3: nat] : B4
@ ( collect @ nat @ ( ord_less @ nat @ ( zero_zero @ nat ) ) ) ) ) )
= ( inf_inf @ A @ A4 @ B4 ) ) ) ).
% INF_nat_binary
thf(fact_6973_inf__Sup1__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ A @ X @ ( lattic5882676163264333800up_fin @ A @ A4 ) )
= ( lattic5882676163264333800up_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A3: A] :
( ( Uu3
= ( inf_inf @ A @ X @ A3 ) )
& ( member @ A @ A3 @ A4 ) ) ) ) ) ) ) ) ).
% inf_Sup1_distrib
thf(fact_6974_inf__Sup2__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( inf_inf @ A @ ( lattic5882676163264333800up_fin @ A @ A4 ) @ ( lattic5882676163264333800up_fin @ A @ B4 ) )
= ( lattic5882676163264333800up_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A3: A,B3: A] :
( ( Uu3
= ( inf_inf @ A @ A3 @ B3 ) )
& ( member @ A @ A3 @ A4 )
& ( member @ A @ B3 @ B4 ) ) ) ) ) ) ) ) ) ) ).
% inf_Sup2_distrib
thf(fact_6975_sum_OIf__cases,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,P: B > $o,H: B > A,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A
@ ^ [X3: B] : ( if @ A @ ( P @ X3 ) @ ( H @ X3 ) @ ( G @ X3 ) )
@ A4 )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ H @ ( inf_inf @ ( set @ B ) @ A4 @ ( collect @ B @ P ) ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ ( uminus_uminus @ ( set @ B ) @ ( collect @ B @ P ) ) ) ) ) ) ) ) ).
% sum.If_cases
thf(fact_6976_open__Collect__positive,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [S: set @ A,F2: A > real] :
( ( topolo81223032696312382ous_on @ A @ real @ S @ F2 )
=> ? [A7: set @ A] :
( ( topolo1002775350975398744n_open @ A @ A7 )
& ( ( inf_inf @ ( set @ A ) @ A7 @ S )
= ( collect @ A
@ ^ [X3: A] :
( ( member @ A @ X3 @ S )
& ( ord_less @ real @ ( zero_zero @ real ) @ ( F2 @ X3 ) ) ) ) ) ) ) ) ).
% open_Collect_positive
thf(fact_6977_sum_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,B4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) )
=> ( ( G @ X4 )
= ( zero_zero @ A ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% sum.union_inter_neutral
thf(fact_6978_sum__Un,axiom,
! [A: $tType,B: $tType] :
( ( ab_group_add @ A )
=> ! [A4: set @ B,B4: set @ B,F2: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( minus_minus @ A @ ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) ) ) ) ) ) ) ).
% sum_Un
thf(fact_6979_sum_Ounion__disjoint,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,B4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( ( inf_inf @ ( set @ B ) @ A4 @ B4 )
= ( bot_bot @ ( set @ B ) ) )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ A4 ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% sum.union_disjoint
thf(fact_6980_prod_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A4: set @ B,B4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) )
=> ( ( G @ X4 )
= ( one_one @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ G @ A4 ) @ ( groups7121269368397514597t_prod @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% prod.union_inter_neutral
thf(fact_6981_sum__Un2,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ B )
=> ! [A4: set @ A,B4: set @ A,F2: A > B] :
( ( finite_finite @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
=> ( ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( plus_plus @ B @ ( plus_plus @ B @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ A4 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( minus_minus @ ( set @ A ) @ B4 @ A4 ) ) ) @ ( groups7311177749621191930dd_sum @ A @ B @ F2 @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ).
% sum_Un2
thf(fact_6982_sum_Ounion__diff2,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A4: set @ B,B4: set @ B,G: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ( groups7311177749621191930dd_sum @ B @ A @ G @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( plus_plus @ A @ ( plus_plus @ A @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ A4 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( minus_minus @ ( set @ B ) @ B4 @ A4 ) ) ) @ ( groups7311177749621191930dd_sum @ B @ A @ G @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) ) ) ) ) ) ) ).
% sum.union_diff2
thf(fact_6983_card__Un__disjoint,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( ( inf_inf @ ( set @ A ) @ A4 @ B4 )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( plus_plus @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ) ) ) ).
% card_Un_disjoint
thf(fact_6984_sum__Un__nat,axiom,
! [A: $tType,A4: set @ A,B4: set @ A,F2: A > nat] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( minus_minus @ nat @ ( plus_plus @ nat @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ A4 ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ B4 ) ) @ ( groups7311177749621191930dd_sum @ A @ nat @ F2 @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ).
% sum_Un_nat
thf(fact_6985_sum__div__partition,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel @ A )
=> ! [A4: set @ B,F2: B > A,B2: A] :
( ( finite_finite @ B @ A4 )
=> ( ( divide_divide @ A @ ( groups7311177749621191930dd_sum @ B @ A @ F2 @ A4 ) @ B2 )
= ( plus_plus @ A
@ ( groups7311177749621191930dd_sum @ B @ A
@ ^ [A3: B] : ( divide_divide @ A @ ( F2 @ A3 ) @ B2 )
@ ( inf_inf @ ( set @ B ) @ A4
@ ( collect @ B
@ ^ [A3: B] : ( dvd_dvd @ A @ B2 @ ( F2 @ A3 ) ) ) ) )
@ ( divide_divide @ A
@ ( groups7311177749621191930dd_sum @ B @ A @ F2
@ ( inf_inf @ ( set @ B ) @ A4
@ ( collect @ B
@ ^ [A3: B] :
~ ( dvd_dvd @ A @ B2 @ ( F2 @ A3 ) ) ) ) )
@ B2 ) ) ) ) ) ).
% sum_div_partition
thf(fact_6986_distinct__concat,axiom,
! [A: $tType,Xs2: list @ ( list @ A )] :
( ( distinct @ ( list @ A ) @ Xs2 )
=> ( ! [Ys4: list @ A] :
( ( member @ ( list @ A ) @ Ys4 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( distinct @ A @ Ys4 ) )
=> ( ! [Ys4: list @ A,Zs3: list @ A] :
( ( member @ ( list @ A ) @ Ys4 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( member @ ( list @ A ) @ Zs3 @ ( set2 @ ( list @ A ) @ Xs2 ) )
=> ( ( Ys4 != Zs3 )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Ys4 ) @ ( set2 @ A @ Zs3 ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) )
=> ( distinct @ A @ ( concat @ A @ Xs2 ) ) ) ) ) ).
% distinct_concat
thf(fact_6987_distinct__length__filter,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o] :
( ( distinct @ A @ Xs2 )
=> ( ( size_size @ ( list @ A ) @ ( filter2 @ A @ P @ Xs2 ) )
= ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ ( collect @ A @ P ) @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% distinct_length_filter
thf(fact_6988_prod__Un,axiom,
! [A: $tType,B: $tType] :
( ( field @ A )
=> ! [A4: set @ B,B4: set @ B,F2: B > A] :
( ( finite_finite @ B @ A4 )
=> ( ( finite_finite @ B @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) )
=> ( ( F2 @ X4 )
!= ( zero_zero @ A ) ) )
=> ( ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( sup_sup @ ( set @ B ) @ A4 @ B4 ) )
= ( divide_divide @ A @ ( times_times @ A @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ A4 ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ B4 ) ) @ ( groups7121269368397514597t_prod @ B @ A @ F2 @ ( inf_inf @ ( set @ B ) @ A4 @ B4 ) ) ) ) ) ) ) ) ).
% prod_Un
thf(fact_6989_INF__set__fold,axiom,
! [B: $tType,A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
= ( fold @ B @ A @ ( comp @ A @ ( A > A ) @ B @ ( inf_inf @ A ) @ F2 ) @ Xs2 @ ( top_top @ A ) ) ) ) ).
% INF_set_fold
thf(fact_6990_set__take__disj__set__drop__if__distinct,axiom,
! [A: $tType,Vs3: list @ A,I: nat,J: nat] :
( ( distinct @ A @ Vs3 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ I @ Vs3 ) ) @ ( set2 @ A @ ( drop @ A @ J @ Vs3 ) ) )
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% set_take_disj_set_drop_if_distinct
thf(fact_6991_Inf__fin_Oeq__fold_H,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( lattic7752659483105999362nf_fin @ A )
= ( ^ [A8: set @ A] :
( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X3: A,Y2: option @ A] : ( some @ A @ ( case_option @ A @ A @ X3 @ ( inf_inf @ A @ X3 ) @ Y2 ) )
@ ( none @ A )
@ A8 ) ) ) ) ) ).
% Inf_fin.eq_fold'
thf(fact_6992_card__disjoint__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_card @ ( list @ A ) @ ( shuffles @ A @ Xs2 @ Ys3 ) )
= ( binomial @ ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys3 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ).
% card_disjoint_shuffles
thf(fact_6993_Inf__fin_Osingleton,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A] :
( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% Inf_fin.singleton
thf(fact_6994_sup__Inf__absorb,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( sup_sup @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ A2 )
= A2 ) ) ) ) ).
% sup_Inf_absorb
thf(fact_6995_Inf__fin_Oinsert,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ) ).
% Inf_fin.insert
thf(fact_6996_inf__int__def,axiom,
( ( inf_inf @ int )
= ( ord_min @ int ) ) ).
% inf_int_def
thf(fact_6997_inf__nat__def,axiom,
( ( inf_inf @ nat )
= ( ord_min @ nat ) ) ).
% inf_nat_def
thf(fact_6998_Inf__fin_Oin__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) )
= ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ).
% Inf_fin.in_idem
thf(fact_6999_set__shuffles,axiom,
! [A: $tType,Zs: list @ A,Xs2: list @ A,Ys3: list @ A] :
( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( set2 @ A @ Zs )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) ) ) ) ).
% set_shuffles
thf(fact_7000_length__shuffles,axiom,
! [A: $tType,Zs: list @ A,Xs2: list @ A,Ys3: list @ A] :
( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( size_size @ ( list @ A ) @ Zs )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys3 ) ) ) ) ).
% length_shuffles
thf(fact_7001_Inf__fin_OcoboundedI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ord_less_eq @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ A2 ) ) ) ) ).
% Inf_fin.coboundedI
thf(fact_7002_Inf__fin__Min,axiom,
! [A: $tType] :
( ( ( semilattice_inf @ A )
& ( linorder @ A ) )
=> ( ( lattic7752659483105999362nf_fin @ A )
= ( lattic643756798350308766er_Min @ A ) ) ) ).
% Inf_fin_Min
thf(fact_7003_Inf__fin_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) )
=> ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( ord_less_eq @ A @ X @ A9 ) ) ) ) ) ) ).
% Inf_fin.boundedE
thf(fact_7004_Inf__fin_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ord_less_eq @ A @ X @ A5 ) )
=> ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ) ).
% Inf_fin.boundedI
thf(fact_7005_Inf__fin_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X @ X3 ) ) ) ) ) ) ) ).
% Inf_fin.bounded_iff
thf(fact_7006_Inf__fin__Inf,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A4 )
= ( complete_Inf_Inf @ A @ A4 ) ) ) ) ) ).
% Inf_fin_Inf
thf(fact_7007_Inf__fin_Oinfinite,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( lattic7752659483105999362nf_fin @ A @ A4 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% Inf_fin.infinite
thf(fact_7008_distinct__disjoint__shuffles,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A] :
( ( distinct @ A @ Xs2 )
=> ( ( distinct @ A @ Ys3 )
=> ( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( distinct @ A @ Zs ) ) ) ) ) ).
% distinct_disjoint_shuffles
thf(fact_7009_Inf__fin_Osubset__imp,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ A @ ( lattic7752659483105999362nf_fin @ A @ B4 ) @ ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ) ).
% Inf_fin.subset_imp
thf(fact_7010_Inf__fin_Ohom__commute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [H: A > A,N7: set @ A] :
( ! [X4: A,Y4: A] :
( ( H @ ( inf_inf @ A @ X4 @ Y4 ) )
= ( inf_inf @ A @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ( N7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H @ ( lattic7752659483105999362nf_fin @ A @ N7 ) )
= ( lattic7752659483105999362nf_fin @ A @ ( image @ A @ A @ H @ N7 ) ) ) ) ) ) ) ).
% Inf_fin.hom_commute
thf(fact_7011_Inf__fin_Osubset,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( inf_inf @ A @ ( lattic7752659483105999362nf_fin @ A @ B4 ) @ ( lattic7752659483105999362nf_fin @ A @ A4 ) )
= ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ) ).
% Inf_fin.subset
thf(fact_7012_Inf__fin_Oclosed,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A,Y4: A] : ( member @ A @ ( inf_inf @ A @ X4 @ Y4 ) @ ( insert2 @ A @ X4 @ ( insert2 @ A @ Y4 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ A4 ) ) ) ) ) ).
% Inf_fin.closed
thf(fact_7013_Inf__fin_Oinsert__not__elem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) ) ) ) ) ) ) ).
% Inf_fin.insert_not_elem
thf(fact_7014_Inf__fin_Ounion,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( inf_inf @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ ( lattic7752659483105999362nf_fin @ A @ B4 ) ) ) ) ) ) ) ) ).
% Inf_fin.union
thf(fact_7015_Inf__fin__le__Sup__fin,axiom,
! [A: $tType] :
( ( lattice @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ ( lattic5882676163264333800up_fin @ A @ A4 ) ) ) ) ) ).
% Inf_fin_le_Sup_fin
thf(fact_7016_Inf__fin_Oeq__fold,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( finite_fold @ A @ A @ ( inf_inf @ A ) @ X @ A4 ) ) ) ) ).
% Inf_fin.eq_fold
thf(fact_7017_Inf__fin_Oset__eq__fold,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [X: A,Xs2: list @ A] :
( ( lattic7752659483105999362nf_fin @ A @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
= ( fold @ A @ A @ ( inf_inf @ A ) @ Xs2 @ X ) ) ) ).
% Inf_fin.set_eq_fold
thf(fact_7018_filter__shuffles__disjoint2_I1_J,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( filter2 @ A
@ ^ [X3: A] : ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
@ Zs )
= Ys3 ) ) ) ).
% filter_shuffles_disjoint2(1)
thf(fact_7019_filter__shuffles__disjoint2_I2_J,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( filter2 @ A
@ ^ [X3: A] :
~ ( member @ A @ X3 @ ( set2 @ A @ Ys3 ) )
@ Zs )
= Xs2 ) ) ) ).
% filter_shuffles_disjoint2(2)
thf(fact_7020_filter__shuffles__disjoint1_I1_J,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( filter2 @ A
@ ^ [X3: A] : ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
@ Zs )
= Xs2 ) ) ) ).
% filter_shuffles_disjoint1(1)
thf(fact_7021_filter__shuffles__disjoint1_I2_J,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,Zs: list @ A] :
( ( ( inf_inf @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ ( set2 @ A @ Ys3 ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( member @ ( list @ A ) @ Zs @ ( shuffles @ A @ Xs2 @ Ys3 ) )
=> ( ( filter2 @ A
@ ^ [X3: A] :
~ ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
@ Zs )
= Ys3 ) ) ) ).
% filter_shuffles_disjoint1(2)
thf(fact_7022_sup__Inf1__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( sup_sup @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ A4 ) )
= ( lattic7752659483105999362nf_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A3: A] :
( ( Uu3
= ( sup_sup @ A @ X @ A3 ) )
& ( member @ A @ A3 @ A4 ) ) ) ) ) ) ) ) ).
% sup_Inf1_distrib
thf(fact_7023_sup__Inf2__distrib,axiom,
! [A: $tType] :
( ( distrib_lattice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( sup_sup @ A @ ( lattic7752659483105999362nf_fin @ A @ A4 ) @ ( lattic7752659483105999362nf_fin @ A @ B4 ) )
= ( lattic7752659483105999362nf_fin @ A
@ ( collect @ A
@ ^ [Uu3: A] :
? [A3: A,B3: A] :
( ( Uu3
= ( sup_sup @ A @ A3 @ B3 ) )
& ( member @ A @ A3 @ A4 )
& ( member @ A @ B3 @ B4 ) ) ) ) ) ) ) ) ) ) ).
% sup_Inf2_distrib
thf(fact_7024_Inf__fin_Oinsert__remove,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ ( insert2 @ A @ X @ A4 ) )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% Inf_fin.insert_remove
thf(fact_7025_Inf__fin_Oremove,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ! [A4: set @ A,X: A] :
( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A4 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic7752659483105999362nf_fin @ A @ A4 )
= ( inf_inf @ A @ X @ ( lattic7752659483105999362nf_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% Inf_fin.remove
thf(fact_7026_takeWhile__neq__rev,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( takeWhile @ A
@ ^ [Y2: A] : ( Y2 != X )
@ ( rev @ A @ Xs2 ) )
= ( rev @ A
@ ( tl @ A
@ ( dropWhile @ A
@ ^ [Y2: A] : ( Y2 != X )
@ Xs2 ) ) ) ) ) ) ).
% takeWhile_neq_rev
thf(fact_7027_cauchy__def,axiom,
( cauchy
= ( ^ [X7: nat > rat] :
! [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
=> ? [K3: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ K3 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( minus_minus @ rat @ ( X7 @ M6 ) @ ( X7 @ N3 ) ) ) @ R5 ) ) ) ) ) ) ).
% cauchy_def
thf(fact_7028_dropWhile__eq__Nil__conv,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( ( dropWhile @ A @ P @ Xs2 )
= ( nil @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 ) ) ) ) ).
% dropWhile_eq_Nil_conv
thf(fact_7029_dropWhile__append1,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ ( dropWhile @ A @ P @ Xs2 ) @ Ys3 ) ) ) ) ).
% dropWhile_append1
thf(fact_7030_dropWhile__append2,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( dropWhile @ A @ P @ Ys3 ) ) ) ).
% dropWhile_append2
thf(fact_7031_sorted__dropWhile,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,P: A > $o] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) ) ) ).
% sorted_dropWhile
thf(fact_7032_cauchy__minus,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( cauchy
@ ^ [N3: nat] : ( uminus_uminus @ rat @ ( X6 @ N3 ) ) ) ) ).
% cauchy_minus
thf(fact_7033_cauchy__const,axiom,
! [X: rat] :
( cauchy
@ ^ [N3: nat] : X ) ).
% cauchy_const
thf(fact_7034_cauchy__add,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( cauchy
@ ^ [N3: nat] : ( plus_plus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% cauchy_add
thf(fact_7035_cauchy__diff,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( cauchy
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% cauchy_diff
thf(fact_7036_cauchy__mult,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( cauchy
@ ^ [N3: nat] : ( times_times @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% cauchy_mult
thf(fact_7037_length__dropWhile__le,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] : ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) @ ( size_size @ ( list @ A ) @ Xs2 ) ) ).
% length_dropWhile_le
thf(fact_7038_dropWhile__cong,axiom,
! [A: $tType,L: list @ A,K: list @ A,P: A > $o,Q: A > $o] :
( ( L = K )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ L ) )
=> ( ( P @ X4 )
= ( Q @ X4 ) ) )
=> ( ( dropWhile @ A @ P @ L )
= ( dropWhile @ A @ Q @ K ) ) ) ) ).
% dropWhile_cong
thf(fact_7039_set__dropWhileD,axiom,
! [A: $tType,X: A,P: A > $o,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% set_dropWhileD
thf(fact_7040_takeWhile__eq__filter,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ~ ( P @ X4 ) )
=> ( ( takeWhile @ A @ P @ Xs2 )
= ( filter2 @ A @ P @ Xs2 ) ) ) ).
% takeWhile_eq_filter
thf(fact_7041_dropWhile__append,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( dropWhile @ A @ P @ Ys3 ) ) )
& ( ~ ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X2 ) )
=> ( ( dropWhile @ A @ P @ ( append @ A @ Xs2 @ Ys3 ) )
= ( append @ A @ ( dropWhile @ A @ P @ Xs2 ) @ Ys3 ) ) ) ) ).
% dropWhile_append
thf(fact_7042_cauchy__imp__bounded,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ? [B5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ B5 )
& ! [N5: nat] : ( ord_less @ rat @ ( abs_abs @ rat @ ( X6 @ N5 ) ) @ B5 ) ) ) ).
% cauchy_imp_bounded
thf(fact_7043_dropWhile__nth,axiom,
! [A: $tType,J: nat,P: A > $o,Xs2: list @ A] :
( ( ord_less @ nat @ J @ ( size_size @ ( list @ A ) @ ( dropWhile @ A @ P @ Xs2 ) ) )
=> ( ( nth @ A @ ( dropWhile @ A @ P @ Xs2 ) @ J )
= ( nth @ A @ Xs2 @ ( plus_plus @ nat @ J @ ( size_size @ ( list @ A ) @ ( takeWhile @ A @ P @ Xs2 ) ) ) ) ) ) ).
% dropWhile_nth
thf(fact_7044_dropWhile__neq__rev,axiom,
! [A: $tType,Xs2: list @ A,X: A] :
( ( distinct @ A @ Xs2 )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( dropWhile @ A
@ ^ [Y2: A] : ( Y2 != X )
@ ( rev @ A @ Xs2 ) )
= ( cons @ A @ X
@ ( rev @ A
@ ( takeWhile @ A
@ ^ [Y2: A] : ( Y2 != X )
@ Xs2 ) ) ) ) ) ) ).
% dropWhile_neq_rev
thf(fact_7045_cauchyD,axiom,
! [X6: nat > rat,R2: rat] :
( ( cauchy @ X6 )
=> ( ( ord_less @ rat @ ( zero_zero @ rat ) @ R2 )
=> ? [K2: nat] :
! [M2: nat] :
( ( ord_less_eq @ nat @ K2 @ M2 )
=> ! [N5: nat] :
( ( ord_less_eq @ nat @ K2 @ N5 )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( minus_minus @ rat @ ( X6 @ M2 ) @ ( X6 @ N5 ) ) ) @ R2 ) ) ) ) ) ).
% cauchyD
thf(fact_7046_cauchyI,axiom,
! [X6: nat > rat] :
( ! [R3: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R3 )
=> ? [K4: nat] :
! [M5: nat] :
( ( ord_less_eq @ nat @ K4 @ M5 )
=> ! [N: nat] :
( ( ord_less_eq @ nat @ K4 @ N )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( minus_minus @ rat @ ( X6 @ M5 ) @ ( X6 @ N ) ) ) @ R3 ) ) ) )
=> ( cauchy @ X6 ) ) ).
% cauchyI
thf(fact_7047_le__Real,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( ord_less_eq @ real @ ( real2 @ X6 ) @ ( real2 @ Y6 ) )
= ( ! [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
=> ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less_eq @ rat @ ( X6 @ N3 ) @ ( plus_plus @ rat @ ( Y6 @ N3 ) @ R5 ) ) ) ) ) ) ) ) ).
% le_Real
thf(fact_7048_cauchy__not__vanishes,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ~ ( vanishes @ X6 )
=> ? [B5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ B5 )
& ? [K2: nat] :
! [N5: nat] :
( ( ord_less_eq @ nat @ K2 @ N5 )
=> ( ord_less @ rat @ B5 @ ( abs_abs @ rat @ ( X6 @ N5 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes
thf(fact_7049_vanishes__const,axiom,
! [C2: rat] :
( ( vanishes
@ ^ [N3: nat] : C2 )
= ( C2
= ( zero_zero @ rat ) ) ) ).
% vanishes_const
thf(fact_7050_eq__Real,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( ( real2 @ X6 )
= ( real2 @ Y6 ) )
= ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ) ).
% eq_Real
thf(fact_7051_inverse__Real,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( ( vanishes @ X6 )
=> ( ( inverse_inverse @ real @ ( real2 @ X6 ) )
= ( zero_zero @ real ) ) )
& ( ~ ( vanishes @ X6 )
=> ( ( inverse_inverse @ real @ ( real2 @ X6 ) )
= ( real2
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X6 @ N3 ) ) ) ) ) ) ) ).
% inverse_Real
thf(fact_7052_Real__induct,axiom,
! [P: real > $o,X: real] :
( ! [X17: nat > rat] :
( ( cauchy @ X17 )
=> ( P @ ( real2 @ X17 ) ) )
=> ( P @ X ) ) ).
% Real_induct
thf(fact_7053_mult__Real,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( times_times @ real @ ( real2 @ X6 ) @ ( real2 @ Y6 ) )
= ( real2
@ ^ [N3: nat] : ( times_times @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ) ).
% mult_Real
thf(fact_7054_vanishes__add,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( vanishes @ X6 )
=> ( ( vanishes @ Y6 )
=> ( vanishes
@ ^ [N3: nat] : ( plus_plus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% vanishes_add
thf(fact_7055_vanishes__minus,axiom,
! [X6: nat > rat] :
( ( vanishes @ X6 )
=> ( vanishes
@ ^ [N3: nat] : ( uminus_uminus @ rat @ ( X6 @ N3 ) ) ) ) ).
% vanishes_minus
thf(fact_7056_of__nat__Real,axiom,
( ( semiring_1_of_nat @ real )
= ( ^ [X3: nat] :
( real2
@ ^ [N3: nat] : ( semiring_1_of_nat @ rat @ X3 ) ) ) ) ).
% of_nat_Real
thf(fact_7057_vanishes__diff,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( vanishes @ X6 )
=> ( ( vanishes @ Y6 )
=> ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% vanishes_diff
thf(fact_7058_zero__real__def,axiom,
( ( zero_zero @ real )
= ( real2
@ ^ [N3: nat] : ( zero_zero @ rat ) ) ) ).
% zero_real_def
thf(fact_7059_one__real__def,axiom,
( ( one_one @ real )
= ( real2
@ ^ [N3: nat] : ( one_one @ rat ) ) ) ).
% one_real_def
thf(fact_7060_of__int__Real,axiom,
( ( ring_1_of_int @ real )
= ( ^ [X3: int] :
( real2
@ ^ [N3: nat] : ( ring_1_of_int @ rat @ X3 ) ) ) ) ).
% of_int_Real
thf(fact_7061_cauchy__inverse,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ~ ( vanishes @ X6 )
=> ( cauchy
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X6 @ N3 ) ) ) ) ) ).
% cauchy_inverse
thf(fact_7062_minus__Real,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( uminus_uminus @ real @ ( real2 @ X6 ) )
= ( real2
@ ^ [N3: nat] : ( uminus_uminus @ rat @ ( X6 @ N3 ) ) ) ) ) ).
% minus_Real
thf(fact_7063_add__Real,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( plus_plus @ real @ ( real2 @ X6 ) @ ( real2 @ Y6 ) )
= ( real2
@ ^ [N3: nat] : ( plus_plus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ) ).
% add_Real
thf(fact_7064_diff__Real,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( minus_minus @ real @ ( real2 @ X6 ) @ ( real2 @ Y6 ) )
= ( real2
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ) ).
% diff_Real
thf(fact_7065_vanishes__mult__bounded,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ? [A9: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ A9 )
& ! [N: nat] : ( ord_less @ rat @ ( abs_abs @ rat @ ( X6 @ N ) ) @ A9 ) )
=> ( ( vanishes @ Y6 )
=> ( vanishes
@ ^ [N3: nat] : ( times_times @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ).
% vanishes_mult_bounded
thf(fact_7066_vanishes__diff__inverse,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ~ ( vanishes @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ~ ( vanishes @ Y6 )
=> ( ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) )
=> ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( inverse_inverse @ rat @ ( X6 @ N3 ) ) @ ( inverse_inverse @ rat @ ( Y6 @ N3 ) ) ) ) ) ) ) ) ) ).
% vanishes_diff_inverse
thf(fact_7067_vanishes__def,axiom,
( vanishes
= ( ^ [X7: nat > rat] :
! [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
=> ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( X7 @ N3 ) ) @ R5 ) ) ) ) ) ).
% vanishes_def
thf(fact_7068_vanishesI,axiom,
! [X6: nat > rat] :
( ! [R3: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R3 )
=> ? [K4: nat] :
! [N: nat] :
( ( ord_less_eq @ nat @ K4 @ N )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( X6 @ N ) ) @ R3 ) ) )
=> ( vanishes @ X6 ) ) ).
% vanishesI
thf(fact_7069_vanishesD,axiom,
! [X6: nat > rat,R2: rat] :
( ( vanishes @ X6 )
=> ( ( ord_less @ rat @ ( zero_zero @ rat ) @ R2 )
=> ? [K2: nat] :
! [N5: nat] :
( ( ord_less_eq @ nat @ K2 @ N5 )
=> ( ord_less @ rat @ ( abs_abs @ rat @ ( X6 @ N5 ) ) @ R2 ) ) ) ) ).
% vanishesD
thf(fact_7070_cauchy__not__vanishes__cases,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ~ ( vanishes @ X6 )
=> ? [B5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ B5 )
& ? [K2: nat] :
( ! [N5: nat] :
( ( ord_less_eq @ nat @ K2 @ N5 )
=> ( ord_less @ rat @ B5 @ ( uminus_uminus @ rat @ ( X6 @ N5 ) ) ) )
| ! [N5: nat] :
( ( ord_less_eq @ nat @ K2 @ N5 )
=> ( ord_less @ rat @ B5 @ ( X6 @ N5 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes_cases
thf(fact_7071_not__positive__Real,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( ~ ( positive2 @ ( real2 @ X6 ) ) )
= ( ! [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
=> ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less_eq @ rat @ ( X6 @ N3 ) @ R5 ) ) ) ) ) ) ).
% not_positive_Real
thf(fact_7072_positive__Real,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( positive2 @ ( real2 @ X6 ) )
= ( ? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X6 @ N3 ) ) ) ) ) ) ) ).
% positive_Real
thf(fact_7073_Real_Opositive__mult,axiom,
! [X: real,Y: real] :
( ( positive2 @ X )
=> ( ( positive2 @ Y )
=> ( positive2 @ ( times_times @ real @ X @ Y ) ) ) ) ).
% Real.positive_mult
thf(fact_7074_Real_Opositive__zero,axiom,
~ ( positive2 @ ( zero_zero @ real ) ) ).
% Real.positive_zero
thf(fact_7075_Real_Opositive__add,axiom,
! [X: real,Y: real] :
( ( positive2 @ X )
=> ( ( positive2 @ Y )
=> ( positive2 @ ( plus_plus @ real @ X @ Y ) ) ) ) ).
% Real.positive_add
thf(fact_7076_Real_Opositive__minus,axiom,
! [X: real] :
( ~ ( positive2 @ X )
=> ( ( X
!= ( zero_zero @ real ) )
=> ( positive2 @ ( uminus_uminus @ real @ X ) ) ) ) ).
% Real.positive_minus
thf(fact_7077_less__real__def,axiom,
( ( ord_less @ real )
= ( ^ [X3: real,Y2: real] : ( positive2 @ ( minus_minus @ real @ Y2 @ X3 ) ) ) ) ).
% less_real_def
thf(fact_7078_Real_Opositive_Orep__eq,axiom,
( positive2
= ( ^ [X3: real] :
? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( rep_real @ X3 @ N3 ) ) ) ) ) ) ).
% Real.positive.rep_eq
thf(fact_7079_inverse__real_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( inverse_inverse @ real @ ( real2 @ X ) )
= ( real2
@ ( if @ ( nat > rat ) @ ( vanishes @ X )
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X @ N3 ) ) ) ) ) ) ).
% inverse_real.abs_eq
thf(fact_7080_realrel__refl,axiom,
! [X6: nat > rat] :
( ( cauchy @ X6 )
=> ( realrel @ X6 @ X6 ) ) ).
% realrel_refl
thf(fact_7081_one__real_Orsp,axiom,
( realrel
@ ^ [N3: nat] : ( one_one @ rat )
@ ^ [N3: nat] : ( one_one @ rat ) ) ).
% one_real.rsp
thf(fact_7082_zero__real_Orsp,axiom,
( realrel
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( zero_zero @ rat ) ) ).
% zero_real.rsp
thf(fact_7083_real_Oabs__induct,axiom,
! [P: real > $o,X: real] :
( ! [Y4: nat > rat] :
( ( realrel @ Y4 @ Y4 )
=> ( P @ ( real2 @ Y4 ) ) )
=> ( P @ X ) ) ).
% real.abs_induct
thf(fact_7084_uminus__real_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( uminus_uminus @ real @ ( real2 @ X ) )
= ( real2
@ ^ [N3: nat] : ( uminus_uminus @ rat @ ( X @ N3 ) ) ) ) ) ).
% uminus_real.abs_eq
thf(fact_7085_plus__real_Oabs__eq,axiom,
! [Xa2: nat > rat,X: nat > rat] :
( ( realrel @ Xa2 @ Xa2 )
=> ( ( realrel @ X @ X )
=> ( ( plus_plus @ real @ ( real2 @ Xa2 ) @ ( real2 @ X ) )
= ( real2
@ ^ [N3: nat] : ( plus_plus @ rat @ ( Xa2 @ N3 ) @ ( X @ N3 ) ) ) ) ) ) ).
% plus_real.abs_eq
thf(fact_7086_times__real_Oabs__eq,axiom,
! [Xa2: nat > rat,X: nat > rat] :
( ( realrel @ Xa2 @ Xa2 )
=> ( ( realrel @ X @ X )
=> ( ( times_times @ real @ ( real2 @ Xa2 ) @ ( real2 @ X ) )
= ( real2
@ ^ [N3: nat] : ( times_times @ rat @ ( Xa2 @ N3 ) @ ( X @ N3 ) ) ) ) ) ) ).
% times_real.abs_eq
thf(fact_7087_realrelI,axiom,
! [X6: nat > rat,Y6: nat > rat] :
( ( cauchy @ X6 )
=> ( ( cauchy @ Y6 )
=> ( ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) )
=> ( realrel @ X6 @ Y6 ) ) ) ) ).
% realrelI
thf(fact_7088_realrel__def,axiom,
( realrel
= ( ^ [X7: nat > rat,Y8: nat > rat] :
( ( cauchy @ X7 )
& ( cauchy @ Y8 )
& ( vanishes
@ ^ [N3: nat] : ( minus_minus @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).
% realrel_def
thf(fact_7089_Real_Opositive_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( positive2 @ ( real2 @ X ) )
= ( ? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X @ N3 ) ) ) ) ) ) ) ).
% Real.positive.abs_eq
thf(fact_7090_Real_Opositive__def,axiom,
( positive2
= ( map_fun @ real @ ( nat > rat ) @ $o @ $o @ rep_real @ ( id @ $o )
@ ^ [X7: nat > rat] :
? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X7 @ N3 ) ) ) ) ) ) ).
% Real.positive_def
thf(fact_7091_inverse__real__def,axiom,
( ( inverse_inverse @ real )
= ( map_fun @ real @ ( nat > rat ) @ ( nat > rat ) @ real @ rep_real @ real2
@ ^ [X7: nat > rat] :
( if @ ( nat > rat ) @ ( vanishes @ X7 )
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X7 @ N3 ) ) ) ) ) ).
% inverse_real_def
thf(fact_7092_uminus__real__def,axiom,
( ( uminus_uminus @ real )
= ( map_fun @ real @ ( nat > rat ) @ ( nat > rat ) @ real @ rep_real @ real2
@ ^ [X7: nat > rat,N3: nat] : ( uminus_uminus @ rat @ ( X7 @ N3 ) ) ) ) ).
% uminus_real_def
thf(fact_7093_times__real__def,axiom,
( ( times_times @ real )
= ( map_fun @ real @ ( nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ ( real > real ) @ rep_real @ ( map_fun @ real @ ( nat > rat ) @ ( nat > rat ) @ real @ rep_real @ real2 )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( times_times @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ).
% times_real_def
thf(fact_7094_plus__real__def,axiom,
( ( plus_plus @ real )
= ( map_fun @ real @ ( nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ ( real > real ) @ rep_real @ ( map_fun @ real @ ( nat > rat ) @ ( nat > rat ) @ real @ rep_real @ real2 )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( plus_plus @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ).
% plus_real_def
thf(fact_7095_Real_Opositive_Orsp,axiom,
( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ $o @ $o @ realrel
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ ^ [X7: nat > rat] :
? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X7 @ N3 ) ) ) )
@ ^ [X7: nat > rat] :
? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X7 @ N3 ) ) ) ) ) ).
% Real.positive.rsp
thf(fact_7096_cr__real__def,axiom,
( cr_real
= ( ^ [X3: nat > rat,Y2: real] :
( ( realrel @ X3 @ X3 )
& ( ( real2 @ X3 )
= Y2 ) ) ) ) ).
% cr_real_def
thf(fact_7097_power__transfer,axiom,
! [A: $tType,B: $tType] :
( ( ( power @ B )
& ( power @ A ) )
=> ! [R: A > B > $o] :
( ( R @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ R @ ( bNF_rel_fun @ A @ B @ A @ B @ R @ R ) @ ( times_times @ A ) @ ( times_times @ B ) )
=> ( bNF_rel_fun @ A @ B @ ( nat > A ) @ ( nat > B ) @ R
@ ( bNF_rel_fun @ nat @ nat @ A @ B
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ R )
@ ( power_power @ A )
@ ( power_power @ B ) ) ) ) ) ).
% power_transfer
thf(fact_7098_transfer__rule__of__int,axiom,
! [A: $tType,B: $tType] :
( ( ( ring_1 @ B )
& ( ring_1 @ A ) )
=> ! [R: A > B > $o] :
( ( R @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( R @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ R @ ( bNF_rel_fun @ A @ B @ A @ B @ R @ R ) @ ( plus_plus @ A ) @ ( plus_plus @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ A @ B @ R @ R @ ( uminus_uminus @ A ) @ ( uminus_uminus @ B ) )
=> ( bNF_rel_fun @ int @ int @ A @ B
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ R
@ ( ring_1_of_int @ A )
@ ( ring_1_of_int @ B ) ) ) ) ) ) ) ).
% transfer_rule_of_int
thf(fact_7099_transfer__rule__numeral,axiom,
! [A: $tType,B: $tType] :
( ( ( monoid_add @ B )
& ( semiring_numeral @ B )
& ( monoid_add @ A )
& ( semiring_numeral @ A ) )
=> ! [R: A > B > $o] :
( ( R @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( R @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ R @ ( bNF_rel_fun @ A @ B @ A @ B @ R @ R ) @ ( plus_plus @ A ) @ ( plus_plus @ B ) )
=> ( bNF_rel_fun @ num @ num @ A @ B
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ R
@ ( numeral_numeral @ A )
@ ( numeral_numeral @ B ) ) ) ) ) ) ).
% transfer_rule_numeral
thf(fact_7100_transfer__rule__of__nat,axiom,
! [A: $tType,B: $tType] :
( ( ( semiring_1 @ B )
& ( semiring_1 @ A ) )
=> ! [R: A > B > $o] :
( ( R @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( R @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ R @ ( bNF_rel_fun @ A @ B @ A @ B @ R @ R ) @ ( plus_plus @ A ) @ ( plus_plus @ B ) )
=> ( bNF_rel_fun @ nat @ nat @ A @ B
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ R
@ ( semiring_1_of_nat @ A )
@ ( semiring_1_of_nat @ B ) ) ) ) ) ) ).
% transfer_rule_of_nat
thf(fact_7101_butlast__take,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less_eq @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( butlast @ A @ ( take @ A @ N2 @ Xs2 ) )
= ( take @ A @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) @ Xs2 ) ) ) ).
% butlast_take
thf(fact_7102_length__butlast,axiom,
! [A: $tType,Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ ( butlast @ A @ Xs2 ) )
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) ).
% length_butlast
thf(fact_7103_plus__real_Orsp,axiom,
( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ realrel @ ( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ realrel @ realrel )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( plus_plus @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( plus_plus @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) ) ) ).
% plus_real.rsp
thf(fact_7104_uminus__real_Orsp,axiom,
( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ realrel @ realrel
@ ^ [X7: nat > rat,N3: nat] : ( uminus_uminus @ rat @ ( X7 @ N3 ) )
@ ^ [X7: nat > rat,N3: nat] : ( uminus_uminus @ rat @ ( X7 @ N3 ) ) ) ).
% uminus_real.rsp
thf(fact_7105_times__real_Orsp,axiom,
( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ ( ( nat > rat ) > nat > rat ) @ realrel @ ( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ realrel @ realrel )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( times_times @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( times_times @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) ) ) ).
% times_real.rsp
thf(fact_7106_transfer__rule__of__bool,axiom,
! [A: $tType,B: $tType] :
( ( ( zero_neq_one @ B )
& ( zero_neq_one @ A ) )
=> ! [R: A > B > $o] :
( ( R @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( R @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( bNF_rel_fun @ $o @ $o @ A @ B
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ R
@ ( zero_neq_one_of_bool @ A )
@ ( zero_neq_one_of_bool @ B ) ) ) ) ) ).
% transfer_rule_of_bool
thf(fact_7107_gcd__integer_Orsp,axiom,
( bNF_rel_fun @ int @ int @ ( int > int ) @ ( int > int )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ int @ int @ int @ int
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
@ ( gcd_gcd @ int )
@ ( gcd_gcd @ int ) ) ).
% gcd_integer.rsp
thf(fact_7108_in__set__butlastD,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ ( butlast @ A @ Xs2 ) ) )
=> ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% in_set_butlastD
thf(fact_7109_in__set__butlast__appendI,axiom,
! [A: $tType,X: A,Xs2: list @ A,Ys3: list @ A] :
( ( ( member @ A @ X @ ( set2 @ A @ ( butlast @ A @ Xs2 ) ) )
| ( member @ A @ X @ ( set2 @ A @ ( butlast @ A @ Ys3 ) ) ) )
=> ( member @ A @ X @ ( set2 @ A @ ( butlast @ A @ ( append @ A @ Xs2 @ Ys3 ) ) ) ) ) ).
% in_set_butlast_appendI
thf(fact_7110_nth__butlast,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ ( butlast @ A @ Xs2 ) ) )
=> ( ( nth @ A @ ( butlast @ A @ Xs2 ) @ N2 )
= ( nth @ A @ Xs2 @ N2 ) ) ) ).
% nth_butlast
thf(fact_7111_sorted__butlast,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( butlast @ A @ Xs2 ) ) ) ) ) ).
% sorted_butlast
thf(fact_7112_take__butlast,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( take @ A @ N2 @ ( butlast @ A @ Xs2 ) )
= ( take @ A @ N2 @ Xs2 ) ) ) ).
% take_butlast
thf(fact_7113_inverse__real_Orsp,axiom,
( bNF_rel_fun @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ ( nat > rat ) @ realrel @ realrel
@ ^ [X7: nat > rat] :
( if @ ( nat > rat ) @ ( vanishes @ X7 )
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X7 @ N3 ) ) )
@ ^ [X7: nat > rat] :
( if @ ( nat > rat ) @ ( vanishes @ X7 )
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X7 @ N3 ) ) ) ) ).
% inverse_real.rsp
thf(fact_7114_butlast__conv__take,axiom,
! [A: $tType] :
( ( butlast @ A )
= ( ^ [Xs: list @ A] : ( take @ A @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ ( one_one @ nat ) ) @ Xs ) ) ) ).
% butlast_conv_take
thf(fact_7115_butlast__list__update,axiom,
! [A: $tType,K: nat,Xs2: list @ A,X: A] :
( ( ( K
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) )
=> ( ( butlast @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= ( butlast @ A @ Xs2 ) ) )
& ( ( K
!= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) )
=> ( ( butlast @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= ( list_update @ A @ ( butlast @ A @ Xs2 ) @ K @ X ) ) ) ) ).
% butlast_list_update
thf(fact_7116_Real_Opositive_Otransfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ $o @ $o @ pcr_real
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ ^ [X7: nat > rat] :
? [R5: rat] :
( ( ord_less @ rat @ ( zero_zero @ rat ) @ R5 )
& ? [K3: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ K3 @ N3 )
=> ( ord_less @ rat @ R5 @ ( X7 @ N3 ) ) ) )
@ positive2 ) ).
% Real.positive.transfer
thf(fact_7117_inverse__rat_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ int @ int ) @ rat @ ( product_prod @ int @ int ) @ rat @ pcr_rat @ pcr_rat
@ ^ [X3: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int )
@ ( ( product_fst @ int @ int @ X3 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ X3 ) @ ( product_fst @ int @ int @ X3 ) ) )
@ ( inverse_inverse @ rat ) ) ).
% inverse_rat.transfer
thf(fact_7118_real_Orel__eq__transfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ ( ( nat > rat ) > $o ) @ ( real > $o ) @ pcr_real
@ ( bNF_rel_fun @ ( nat > rat ) @ real @ $o @ $o @ pcr_real
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ realrel
@ ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) ) ).
% real.rel_eq_transfer
thf(fact_7119_real_Opcr__cr__eq,axiom,
pcr_real = cr_real ).
% real.pcr_cr_eq
thf(fact_7120_zero__real_Otransfer,axiom,
( pcr_real
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ( zero_zero @ real ) ) ).
% zero_real.transfer
thf(fact_7121_one__real_Otransfer,axiom,
( pcr_real
@ ^ [N3: nat] : ( one_one @ rat )
@ ( one_one @ real ) ) ).
% one_real.transfer
thf(fact_7122_cr__real__eq,axiom,
( pcr_real
= ( ^ [X3: nat > rat,Y2: real] :
( ( cauchy @ X3 )
& ( ( real2 @ X3 )
= Y2 ) ) ) ) ).
% cr_real_eq
thf(fact_7123_uminus__real_Otransfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ ( nat > rat ) @ real @ pcr_real @ pcr_real
@ ^ [X7: nat > rat,N3: nat] : ( uminus_uminus @ rat @ ( X7 @ N3 ) )
@ ( uminus_uminus @ real ) ) ).
% uminus_real.transfer
thf(fact_7124_plus__real_Otransfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ ( ( nat > rat ) > nat > rat ) @ ( real > real ) @ pcr_real @ ( bNF_rel_fun @ ( nat > rat ) @ real @ ( nat > rat ) @ real @ pcr_real @ pcr_real )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( plus_plus @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) )
@ ( plus_plus @ real ) ) ).
% plus_real.transfer
thf(fact_7125_times__real_Otransfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ ( ( nat > rat ) > nat > rat ) @ ( real > real ) @ pcr_real @ ( bNF_rel_fun @ ( nat > rat ) @ real @ ( nat > rat ) @ real @ pcr_real @ pcr_real )
@ ^ [X7: nat > rat,Y8: nat > rat,N3: nat] : ( times_times @ rat @ ( X7 @ N3 ) @ ( Y8 @ N3 ) )
@ ( times_times @ real ) ) ).
% times_real.transfer
thf(fact_7126_zero__rat_Otransfer,axiom,
pcr_rat @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) @ ( zero_zero @ rat ) ).
% zero_rat.transfer
thf(fact_7127_Fract_Otransfer,axiom,
( bNF_rel_fun @ int @ int @ ( int > ( product_prod @ int @ int ) ) @ ( int > rat )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ int @ int @ ( product_prod @ int @ int ) @ rat
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ pcr_rat )
@ ^ [A3: int,B3: int] :
( if @ ( product_prod @ int @ int )
@ ( B3
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ A3 @ B3 ) )
@ fract ) ).
% Fract.transfer
thf(fact_7128_inverse__real_Otransfer,axiom,
( bNF_rel_fun @ ( nat > rat ) @ real @ ( nat > rat ) @ real @ pcr_real @ pcr_real
@ ^ [X7: nat > rat] :
( if @ ( nat > rat ) @ ( vanishes @ X7 )
@ ^ [N3: nat] : ( zero_zero @ rat )
@ ^ [N3: nat] : ( inverse_inverse @ rat @ ( X7 @ N3 ) ) )
@ ( inverse_inverse @ real ) ) ).
% inverse_real.transfer
thf(fact_7129_Rat_Opositive_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ int @ int ) @ rat @ $o @ $o @ pcr_rat
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ ^ [X3: product_prod @ int @ int] : ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ X3 ) ) )
@ positive ) ).
% Rat.positive.transfer
thf(fact_7130_times__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ pcr_int @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( product_prod @ nat @ nat ) @ int @ pcr_int @ pcr_int )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ U2 ) @ ( times_times @ nat @ Y2 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ V5 ) @ ( times_times @ nat @ Y2 @ U2 ) ) ) ) )
@ ( times_times @ int ) ) ).
% times_int.transfer
thf(fact_7131_minus__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ pcr_int @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( product_prod @ nat @ nat ) @ int @ pcr_int @ pcr_int )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ Y2 @ U2 ) ) ) )
@ ( minus_minus @ int ) ) ).
% minus_int.transfer
thf(fact_7132_zero__int_Otransfer,axiom,
pcr_int @ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ ( zero_zero @ nat ) ) @ ( zero_zero @ int ) ).
% zero_int.transfer
thf(fact_7133_int__transfer,axiom,
( bNF_rel_fun @ nat @ nat @ ( product_prod @ nat @ nat ) @ int
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ pcr_int
@ ^ [N3: nat] : ( product_Pair @ nat @ nat @ N3 @ ( zero_zero @ nat ) )
@ ( semiring_1_of_nat @ int ) ) ).
% int_transfer
thf(fact_7134_uminus__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( product_prod @ nat @ nat ) @ int @ pcr_int @ pcr_int
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [X3: nat,Y2: nat] : ( product_Pair @ nat @ nat @ Y2 @ X3 ) )
@ ( uminus_uminus @ int ) ) ).
% uminus_int.transfer
thf(fact_7135_nat_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ nat @ nat @ pcr_int
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) )
@ nat2 ) ).
% nat.transfer
thf(fact_7136_one__int_Otransfer,axiom,
pcr_int @ ( product_Pair @ nat @ nat @ ( one_one @ nat ) @ ( zero_zero @ nat ) ) @ ( one_one @ int ) ).
% one_int.transfer
thf(fact_7137_of__int_Otransfer,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ A @ A @ pcr_int
@ ^ [Y5: A,Z3: A] : ( Y5 = Z3 )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) ) )
@ ( ring_1_of_int @ A ) ) ) ).
% of_int.transfer
thf(fact_7138_less__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > $o ) @ ( int > $o ) @ pcr_int
@ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ $o @ $o @ pcr_int
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) )
@ ( ord_less @ int ) ) ).
% less_int.transfer
thf(fact_7139_less__eq__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > $o ) @ ( int > $o ) @ pcr_int
@ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ $o @ $o @ pcr_int
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) )
@ ( ord_less_eq @ int ) ) ).
% less_eq_int.transfer
thf(fact_7140_plus__int_Otransfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( int > int ) @ pcr_int @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( product_prod @ nat @ nat ) @ int @ pcr_int @ pcr_int )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ U2 ) @ ( plus_plus @ nat @ Y2 @ V5 ) ) ) )
@ ( plus_plus @ int ) ) ).
% plus_int.transfer
thf(fact_7141_times__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ intrel @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ intrel @ intrel )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ U2 ) @ ( times_times @ nat @ Y2 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ V5 ) @ ( times_times @ nat @ Y2 @ U2 ) ) ) ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ U2 ) @ ( times_times @ nat @ Y2 @ V5 ) ) @ ( plus_plus @ nat @ ( times_times @ nat @ X3 @ V5 ) @ ( times_times @ nat @ Y2 @ U2 ) ) ) ) ) ) ).
% times_int.rsp
thf(fact_7142_mono__transfer,axiom,
! [A: $tType,C: $tType,D: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ D )
& ( order @ C )
& ( order @ A ) )
=> ! [A4: A > B > $o,B4: C > D > $o] :
( ( bi_total @ A @ B @ A4 )
=> ( ( bNF_rel_fun @ A @ B @ ( A > $o ) @ ( B > $o ) @ A4
@ ( bNF_rel_fun @ A @ B @ $o @ $o @ A4
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( ord_less_eq @ A )
@ ( ord_less_eq @ B ) )
=> ( ( bNF_rel_fun @ C @ D @ ( C > $o ) @ ( D > $o ) @ B4
@ ( bNF_rel_fun @ C @ D @ $o @ $o @ B4
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( ord_less_eq @ C )
@ ( ord_less_eq @ D ) )
=> ( bNF_rel_fun @ ( A > C ) @ ( B > D ) @ $o @ $o @ ( bNF_rel_fun @ A @ B @ C @ D @ A4 @ B4 )
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ ( order_mono @ A @ C )
@ ( order_mono @ B @ D ) ) ) ) ) ) ).
% mono_transfer
thf(fact_7143_intrel__iff,axiom,
! [X: nat,Y: nat,U: nat,V2: nat] :
( ( intrel @ ( product_Pair @ nat @ nat @ X @ Y ) @ ( product_Pair @ nat @ nat @ U @ V2 ) )
= ( ( plus_plus @ nat @ X @ V2 )
= ( plus_plus @ nat @ U @ Y ) ) ) ).
% intrel_iff
thf(fact_7144_int_Orel__eq__transfer,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ ( ( product_prod @ nat @ nat ) > $o ) @ ( int > $o ) @ pcr_int
@ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ int @ $o @ $o @ pcr_int
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ intrel
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) ) ).
% int.rel_eq_transfer
thf(fact_7145_int_Obi__total,axiom,
bi_total @ ( product_prod @ nat @ nat ) @ int @ pcr_int ).
% int.bi_total
thf(fact_7146_zero__int_Orsp,axiom,
intrel @ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ ( zero_zero @ nat ) ) @ ( product_Pair @ nat @ nat @ ( zero_zero @ nat ) @ ( zero_zero @ nat ) ) ).
% zero_int.rsp
thf(fact_7147_int_Oabs__eq__iff,axiom,
! [X: product_prod @ nat @ nat,Y: product_prod @ nat @ nat] :
( ( ( abs_Integ @ X )
= ( abs_Integ @ Y ) )
= ( intrel @ X @ Y ) ) ).
% int.abs_eq_iff
thf(fact_7148_uminus__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ intrel @ intrel
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [X3: nat,Y2: nat] : ( product_Pair @ nat @ nat @ Y2 @ X3 ) )
@ ( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [X3: nat,Y2: nat] : ( product_Pair @ nat @ nat @ Y2 @ X3 ) ) ) ).
% uminus_int.rsp
thf(fact_7149_nat_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ nat @ nat @ intrel
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) )
@ ( product_case_prod @ nat @ nat @ nat @ ( minus_minus @ nat ) ) ) ).
% nat.rsp
thf(fact_7150_one__int_Orsp,axiom,
intrel @ ( product_Pair @ nat @ nat @ ( one_one @ nat ) @ ( zero_zero @ nat ) ) @ ( product_Pair @ nat @ nat @ ( one_one @ nat ) @ ( zero_zero @ nat ) ) ).
% one_int.rsp
thf(fact_7151_of__int_Orsp,axiom,
! [A: $tType] :
( ( ring_1 @ A )
=> ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ A @ A @ intrel
@ ^ [Y5: A,Z3: A] : ( Y5 = Z3 )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) ) )
@ ( product_case_prod @ nat @ nat @ A
@ ^ [I3: nat,J3: nat] : ( minus_minus @ A @ ( semiring_1_of_nat @ A @ I3 ) @ ( semiring_1_of_nat @ A @ J3 ) ) ) ) ) ).
% of_int.rsp
thf(fact_7152_intrel__def,axiom,
( intrel
= ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] :
( ( plus_plus @ nat @ X3 @ V5 )
= ( plus_plus @ nat @ U2 @ Y2 ) ) ) ) ) ).
% intrel_def
thf(fact_7153_less__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > $o ) @ ( ( product_prod @ nat @ nat ) > $o ) @ intrel
@ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ $o @ $o @ intrel
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) ) ) ).
% less_int.rsp
thf(fact_7154_less__eq__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > $o ) @ ( ( product_prod @ nat @ nat ) > $o ) @ intrel
@ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ $o @ $o @ intrel
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > $o )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ $o
@ ^ [U2: nat,V5: nat] : ( ord_less_eq @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ U2 @ Y2 ) ) ) ) ) ).
% less_eq_int.rsp
thf(fact_7155_plus__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ intrel @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ intrel @ intrel )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ U2 ) @ ( plus_plus @ nat @ Y2 @ V5 ) ) ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ U2 ) @ ( plus_plus @ nat @ Y2 @ V5 ) ) ) ) ) ).
% plus_int.rsp
thf(fact_7156_minus__int_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) ) @ intrel @ ( bNF_rel_fun @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) @ intrel @ intrel )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ Y2 @ U2 ) ) ) )
@ ( product_case_prod @ nat @ nat @ ( ( product_prod @ nat @ nat ) > ( product_prod @ nat @ nat ) )
@ ^ [X3: nat,Y2: nat] :
( product_case_prod @ nat @ nat @ ( product_prod @ nat @ nat )
@ ^ [U2: nat,V5: nat] : ( product_Pair @ nat @ nat @ ( plus_plus @ nat @ X3 @ V5 ) @ ( plus_plus @ nat @ Y2 @ U2 ) ) ) ) ) ).
% minus_int.rsp
thf(fact_7157_finite__enumerate__initial__segment,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat,S: A] :
( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ N2 @ ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ S3 @ ( set_ord_lessThan @ A @ S ) ) ) )
=> ( ( infini527867602293511546merate @ A @ ( inf_inf @ ( set @ A ) @ S3 @ ( set_ord_lessThan @ A @ S ) ) @ N2 )
= ( infini527867602293511546merate @ A @ S3 @ N2 ) ) ) ) ) ).
% finite_enumerate_initial_segment
thf(fact_7158_relpow__finite__bounded1,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),K: nat] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ K @ R )
@ ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R )
@ ( collect @ nat
@ ^ [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R ) ) ) ) ) ) ) ) ) ).
% relpow_finite_bounded1
thf(fact_7159_relpow__1,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( one_one @ nat ) @ R )
= R ) ).
% relpow_1
thf(fact_7160_enumerate__mono__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,M: nat,N2: nat] :
( ~ ( finite_finite @ A @ S3 )
=> ( ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ M ) @ ( infini527867602293511546merate @ A @ S3 @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ) ) ).
% enumerate_mono_iff
thf(fact_7161_finite__relpow,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),N2: nat] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( finite_finite @ ( product_prod @ A @ A ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) ) ) ) ).
% finite_relpow
thf(fact_7162_finite__enumerate__mono__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,M: nat,N2: nat] :
( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ M @ ( finite_card @ A @ S3 ) )
=> ( ( ord_less @ nat @ N2 @ ( finite_card @ A @ S3 ) )
=> ( ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ M ) @ ( infini527867602293511546merate @ A @ S3 @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ) ) ) ) ).
% finite_enumerate_mono_iff
thf(fact_7163_le__enumerate,axiom,
! [S3: set @ nat,N2: nat] :
( ~ ( finite_finite @ nat @ S3 )
=> ( ord_less_eq @ nat @ N2 @ ( infini527867602293511546merate @ nat @ S3 @ N2 ) ) ) ).
% le_enumerate
thf(fact_7164_relpow__0__I,axiom,
! [A: $tType,X: A,R: set @ ( product_prod @ A @ A )] : ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ X ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( zero_zero @ nat ) @ R ) ) ).
% relpow_0_I
thf(fact_7165_relpow__0__E,axiom,
! [A: $tType,X: A,Y: A,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( zero_zero @ nat ) @ R ) )
=> ( X = Y ) ) ).
% relpow_0_E
thf(fact_7166_relpow__Suc__I2,axiom,
! [A: $tType,X: A,Y: A,R: set @ ( product_prod @ A @ A ),Z2: A,N2: nat] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ R )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R ) ) ) ) ).
% relpow_Suc_I2
thf(fact_7167_relpow__Suc__E2,axiom,
! [A: $tType,X: A,Z2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R ) )
=> ~ ! [Y4: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y4 ) @ R )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) ) ) ) ).
% relpow_Suc_E2
thf(fact_7168_relpow__Suc__D2,axiom,
! [A: $tType,X: A,Z2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R ) )
=> ? [Y4: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y4 ) @ R )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) ) ) ) ).
% relpow_Suc_D2
thf(fact_7169_relpow__Suc__I,axiom,
! [A: $tType,X: A,Y: A,N2: nat,R: set @ ( product_prod @ A @ A ),Z2: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y @ Z2 ) @ R )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R ) ) ) ) ).
% relpow_Suc_I
thf(fact_7170_relpow__Suc__E,axiom,
! [A: $tType,X: A,Z2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R ) )
=> ~ ! [Y4: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y4 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z2 ) @ R ) ) ) ).
% relpow_Suc_E
thf(fact_7171_relpow__E2,axiom,
! [A: $tType,X: A,Z2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
=> ( ( ( N2
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y4: A,M5: nat] :
( ( N2
= ( suc @ M5 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y4 ) @ R )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M5 @ R ) ) ) ) ) ) ).
% relpow_E2
thf(fact_7172_relpow__E,axiom,
! [A: $tType,X: A,Z2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Z2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
=> ( ( ( N2
= ( zero_zero @ nat ) )
=> ( X != Z2 ) )
=> ~ ! [Y4: A,M5: nat] :
( ( N2
= ( suc @ M5 ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y4 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M5 @ R ) )
=> ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ Z2 ) @ R ) ) ) ) ) ).
% relpow_E
thf(fact_7173_relpow__empty,axiom,
! [A: $tType,N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ).
% relpow_empty
thf(fact_7174_enumerate__step,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ~ ( finite_finite @ A @ S3 )
=> ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ N2 ) @ ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) ) ) ) ) ).
% enumerate_step
thf(fact_7175_enumerate__mono,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [M: nat,N2: nat,S3: set @ A] :
( ( ord_less @ nat @ M @ N2 )
=> ( ~ ( finite_finite @ A @ S3 )
=> ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ M ) @ ( infini527867602293511546merate @ A @ S3 @ N2 ) ) ) ) ) ).
% enumerate_mono
thf(fact_7176_finite__enum__ext,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [X6: set @ A,Y6: set @ A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( finite_card @ A @ X6 ) )
=> ( ( infini527867602293511546merate @ A @ X6 @ I2 )
= ( infini527867602293511546merate @ A @ Y6 @ I2 ) ) )
=> ( ( finite_finite @ A @ X6 )
=> ( ( finite_finite @ A @ Y6 )
=> ( ( ( finite_card @ A @ X6 )
= ( finite_card @ A @ Y6 ) )
=> ( X6 = Y6 ) ) ) ) ) ) ).
% finite_enum_ext
thf(fact_7177_finite__enumerate__Ex,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,S: A] :
( ( finite_finite @ A @ S3 )
=> ( ( member @ A @ S @ S3 )
=> ? [N: nat] :
( ( ord_less @ nat @ N @ ( finite_card @ A @ S3 ) )
& ( ( infini527867602293511546merate @ A @ S3 @ N )
= S ) ) ) ) ) ).
% finite_enumerate_Ex
thf(fact_7178_finite__enumerate__in__set,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ N2 @ ( finite_card @ A @ S3 ) )
=> ( member @ A @ ( infini527867602293511546merate @ A @ S3 @ N2 ) @ S3 ) ) ) ) ).
% finite_enumerate_in_set
thf(fact_7179_relpow__finite__bounded,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),K: nat] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ K @ R )
@ ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R )
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R ) ) ) ) ) ) ) ).
% relpow_finite_bounded
thf(fact_7180_relpow__fun__conv,axiom,
! [A: $tType,A2: A,B2: A,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ A2 @ B2 ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) )
= ( ? [F3: nat > A] :
( ( ( F3 @ ( zero_zero @ nat ) )
= A2 )
& ( ( F3 @ N2 )
= B2 )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N2 )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( F3 @ I3 ) @ ( F3 @ ( suc @ I3 ) ) ) @ R ) ) ) ) ) ).
% relpow_fun_conv
thf(fact_7181_finite__enumerate__mono,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [M: nat,N2: nat,S3: set @ A] :
( ( ord_less @ nat @ M @ N2 )
=> ( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ N2 @ ( finite_card @ A @ S3 ) )
=> ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ M ) @ ( infini527867602293511546merate @ A @ S3 @ N2 ) ) ) ) ) ) ).
% finite_enumerate_mono
thf(fact_7182_finite__le__enumerate,axiom,
! [S3: set @ nat,N2: nat] :
( ( finite_finite @ nat @ S3 )
=> ( ( ord_less @ nat @ N2 @ ( finite_card @ nat @ S3 ) )
=> ( ord_less_eq @ nat @ N2 @ ( infini527867602293511546merate @ nat @ S3 @ N2 ) ) ) ) ).
% finite_le_enumerate
thf(fact_7183_finite__enumerate__step,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ ( suc @ N2 ) @ ( finite_card @ A @ S3 ) )
=> ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ N2 ) @ ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) ) ) ) ) ) ).
% finite_enumerate_step
thf(fact_7184_enumerate__Suc_H,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) )
= ( infini527867602293511546merate @ A @ ( minus_minus @ ( set @ A ) @ S3 @ ( insert2 @ A @ ( infini527867602293511546merate @ A @ S3 @ ( zero_zero @ nat ) ) @ ( bot_bot @ ( set @ A ) ) ) ) @ N2 ) ) ) ).
% enumerate_Suc'
thf(fact_7185_finite__enum__subset,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [X6: set @ A,Y6: set @ A] :
( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( finite_card @ A @ X6 ) )
=> ( ( infini527867602293511546merate @ A @ X6 @ I2 )
= ( infini527867602293511546merate @ A @ Y6 @ I2 ) ) )
=> ( ( finite_finite @ A @ X6 )
=> ( ( finite_finite @ A @ Y6 )
=> ( ( ord_less_eq @ nat @ ( finite_card @ A @ X6 ) @ ( finite_card @ A @ Y6 ) )
=> ( ord_less_eq @ ( set @ A ) @ X6 @ Y6 ) ) ) ) ) ) ).
% finite_enum_subset
thf(fact_7186_ntrancl__def,axiom,
! [A: $tType] :
( ( transitive_ntrancl @ A )
= ( ^ [N3: nat,R6: set @ ( product_prod @ A @ A )] :
( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [I3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ I3 @ R6 )
@ ( collect @ nat
@ ^ [I3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ I3 )
& ( ord_less_eq @ nat @ I3 @ ( suc @ N3 ) ) ) ) ) ) ) ) ).
% ntrancl_def
thf(fact_7187_trancl__finite__eq__relpow,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ( transitive_trancl @ A @ R )
= ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R )
@ ( collect @ nat
@ ^ [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R ) ) ) ) ) ) ) ) ).
% trancl_finite_eq_relpow
thf(fact_7188_ntrancl__Zero,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( transitive_ntrancl @ A @ ( zero_zero @ nat ) @ R )
= R ) ).
% ntrancl_Zero
thf(fact_7189_finite__trancl__ntranl,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ( transitive_trancl @ A @ R )
= ( transitive_ntrancl @ A @ ( minus_minus @ nat @ ( finite_card @ ( product_prod @ A @ A ) @ R ) @ ( one_one @ nat ) ) @ R ) ) ) ).
% finite_trancl_ntranl
thf(fact_7190_trancl__set__ntrancl,axiom,
! [A: $tType,Xs2: list @ ( product_prod @ A @ A )] :
( ( transitive_trancl @ A @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) )
= ( transitive_ntrancl @ A @ ( minus_minus @ nat @ ( finite_card @ ( product_prod @ A @ A ) @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) ) @ ( one_one @ nat ) ) @ ( set2 @ ( product_prod @ A @ A ) @ Xs2 ) ) ) ).
% trancl_set_ntrancl
thf(fact_7191_trancl__power,axiom,
! [A: $tType,P6: product_prod @ A @ A,R: set @ ( product_prod @ A @ A )] :
( ( member @ ( product_prod @ A @ A ) @ P6 @ ( transitive_trancl @ A @ R ) )
= ( ? [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( member @ ( product_prod @ A @ A ) @ P6 @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R ) ) ) ) ) ).
% trancl_power
thf(fact_7192_less__eq,axiom,
! [M: nat,N2: nat] :
( ( member @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ M @ N2 ) @ ( transitive_trancl @ nat @ pred_nat ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% less_eq
thf(fact_7193_finite__enumerate__Suc_H_H,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ( finite_finite @ A @ S3 )
=> ( ( ord_less @ nat @ ( suc @ N2 ) @ ( finite_card @ A @ S3 ) )
=> ( ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) )
= ( ord_Least @ A
@ ^ [S6: A] :
( ( member @ A @ S6 @ S3 )
& ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ N2 ) @ S6 ) ) ) ) ) ) ) ).
% finite_enumerate_Suc''
thf(fact_7194_enumerate__Suc,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) )
= ( infini527867602293511546merate @ A
@ ( minus_minus @ ( set @ A ) @ S3
@ ( insert2 @ A
@ ( ord_Least @ A
@ ^ [N3: A] : ( member @ A @ N3 @ S3 ) )
@ ( bot_bot @ ( set @ A ) ) ) )
@ N2 ) ) ) ).
% enumerate_Suc
thf(fact_7195_Least__eq__0,axiom,
! [P: nat > $o] :
( ( P @ ( zero_zero @ nat ) )
=> ( ( ord_Least @ nat @ P )
= ( zero_zero @ nat ) ) ) ).
% Least_eq_0
thf(fact_7196_Least__Suc2,axiom,
! [P: nat > $o,N2: nat,Q: nat > $o,M: nat] :
( ( P @ N2 )
=> ( ( Q @ M )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ( ! [K2: nat] :
( ( P @ ( suc @ K2 ) )
= ( Q @ K2 ) )
=> ( ( ord_Least @ nat @ P )
= ( suc @ ( ord_Least @ nat @ Q ) ) ) ) ) ) ) ).
% Least_Suc2
thf(fact_7197_not__less__Least,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [K: A,P: A > $o] :
( ( ord_less @ A @ K @ ( ord_Least @ A @ P ) )
=> ~ ( P @ K ) ) ) ).
% not_less_Least
thf(fact_7198_LeastI2__ex,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,Q: A > $o] :
( ? [X_12: A] : ( P @ X_12 )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( Q @ ( ord_Least @ A @ P ) ) ) ) ) ).
% LeastI2_ex
thf(fact_7199_LeastI__ex,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o] :
( ? [X_12: A] : ( P @ X_12 )
=> ( P @ ( ord_Least @ A @ P ) ) ) ) ).
% LeastI_ex
thf(fact_7200_LeastI2,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,A2: A,Q: A > $o] :
( ( P @ A2 )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( Q @ ( ord_Least @ A @ P ) ) ) ) ) ).
% LeastI2
thf(fact_7201_LeastI,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,K: A] :
( ( P @ K )
=> ( P @ ( ord_Least @ A @ P ) ) ) ) ).
% LeastI
thf(fact_7202_Least__le,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,K: A] :
( ( P @ K )
=> ( ord_less_eq @ A @ ( ord_Least @ A @ P ) @ K ) ) ) ).
% Least_le
thf(fact_7203_Least1I,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o] :
( ? [X2: A] :
( ( P @ X2 )
& ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ X2 @ Y4 ) )
& ! [Y4: A] :
( ( ( P @ Y4 )
& ! [Ya2: A] :
( ( P @ Ya2 )
=> ( ord_less_eq @ A @ Y4 @ Ya2 ) ) )
=> ( Y4 = X2 ) ) )
=> ( P @ ( ord_Least @ A @ P ) ) ) ) ).
% Least1I
thf(fact_7204_Least1__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o,Z2: A] :
( ? [X2: A] :
( ( P @ X2 )
& ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ X2 @ Y4 ) )
& ! [Y4: A] :
( ( ( P @ Y4 )
& ! [Ya2: A] :
( ( P @ Ya2 )
=> ( ord_less_eq @ A @ Y4 @ Ya2 ) ) )
=> ( Y4 = X2 ) ) )
=> ( ( P @ Z2 )
=> ( ord_less_eq @ A @ ( ord_Least @ A @ P ) @ Z2 ) ) ) ) ).
% Least1_le
thf(fact_7205_LeastI2__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o,X: A,Q: A > $o] :
( ( P @ X )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ X @ Y4 ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ A @ X4 @ Y3 ) )
=> ( Q @ X4 ) ) )
=> ( Q @ ( ord_Least @ A @ P ) ) ) ) ) ) ).
% LeastI2_order
thf(fact_7206_Least__equality,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [P: A > $o,X: A] :
( ( P @ X )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ A @ X @ Y4 ) )
=> ( ( ord_Least @ A @ P )
= X ) ) ) ) ).
% Least_equality
thf(fact_7207_LeastI2__wellorder,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,A2: A,Q: A > $o] :
( ( P @ A2 )
=> ( ! [A5: A] :
( ( P @ A5 )
=> ( ! [B11: A] :
( ( P @ B11 )
=> ( ord_less_eq @ A @ A5 @ B11 ) )
=> ( Q @ A5 ) ) )
=> ( Q @ ( ord_Least @ A @ P ) ) ) ) ) ).
% LeastI2_wellorder
thf(fact_7208_LeastI2__wellorder__ex,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P: A > $o,Q: A > $o] :
( ? [X_12: A] : ( P @ X_12 )
=> ( ! [A5: A] :
( ( P @ A5 )
=> ( ! [B11: A] :
( ( P @ B11 )
=> ( ord_less_eq @ A @ A5 @ B11 ) )
=> ( Q @ A5 ) ) )
=> ( Q @ ( ord_Least @ A @ P ) ) ) ) ) ).
% LeastI2_wellorder_ex
thf(fact_7209_Least__Suc,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ( ( ord_Least @ nat @ P )
= ( suc
@ ( ord_Least @ nat
@ ^ [M6: nat] : ( P @ ( suc @ M6 ) ) ) ) ) ) ) ).
% Least_Suc
thf(fact_7210_Least__Min,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P: A > $o] :
( ( finite_finite @ A @ ( collect @ A @ P ) )
=> ( ? [X_12: A] : ( P @ X_12 )
=> ( ( ord_Least @ A @ P )
= ( lattic643756798350308766er_Min @ A @ ( collect @ A @ P ) ) ) ) ) ) ).
% Least_Min
thf(fact_7211_enumerate__0,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A] :
( ( infini527867602293511546merate @ A @ S3 @ ( zero_zero @ nat ) )
= ( ord_Least @ A
@ ^ [N3: A] : ( member @ A @ N3 @ S3 ) ) ) ) ).
% enumerate_0
thf(fact_7212_Sup__real__def,axiom,
( ( complete_Sup_Sup @ real )
= ( ^ [X7: set @ real] :
( ord_Least @ real
@ ^ [Z5: real] :
! [X3: real] :
( ( member @ real @ X3 @ X7 )
=> ( ord_less_eq @ real @ X3 @ Z5 ) ) ) ) ) ).
% Sup_real_def
thf(fact_7213_Least__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A )
& ( order @ B ) )
=> ! [F2: A > B,S3: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ? [X2: A] :
( ( member @ A @ X2 @ S3 )
& ! [Xa3: A] :
( ( member @ A @ Xa3 @ S3 )
=> ( ord_less_eq @ A @ X2 @ Xa3 ) ) )
=> ( ( ord_Least @ B
@ ^ [Y2: B] : ( member @ B @ Y2 @ ( image @ A @ B @ F2 @ S3 ) ) )
= ( F2
@ ( ord_Least @ A
@ ^ [X3: A] : ( member @ A @ X3 @ S3 ) ) ) ) ) ) ) ).
% Least_mono
thf(fact_7214_Least__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_Least @ A )
= ( ^ [P3: A > $o] :
( the @ A
@ ^ [X3: A] :
( ( P3 @ X3 )
& ! [Y2: A] :
( ( P3 @ Y2 )
=> ( ord_less_eq @ A @ X3 @ Y2 ) ) ) ) ) ) ) ).
% Least_def
thf(fact_7215_enumerate__Suc_H_H,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [S3: set @ A,N2: nat] :
( ~ ( finite_finite @ A @ S3 )
=> ( ( infini527867602293511546merate @ A @ S3 @ ( suc @ N2 ) )
= ( ord_Least @ A
@ ^ [S6: A] :
( ( member @ A @ S6 @ S3 )
& ( ord_less @ A @ ( infini527867602293511546merate @ A @ S3 @ N2 ) @ S6 ) ) ) ) ) ) ).
% enumerate_Suc''
thf(fact_7216_rtrancl__finite__eq__relpow,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( finite_finite @ ( product_prod @ A @ A ) @ R )
=> ( ( transitive_rtrancl @ A @ R )
= ( complete_Sup_Sup @ ( set @ ( product_prod @ A @ A ) )
@ ( image @ nat @ ( set @ ( product_prod @ A @ A ) )
@ ^ [N3: nat] : ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N3 @ R )
@ ( collect @ nat
@ ^ [N3: nat] : ( ord_less_eq @ nat @ N3 @ ( finite_card @ ( product_prod @ A @ A ) @ R ) ) ) ) ) ) ) ).
% rtrancl_finite_eq_relpow
thf(fact_7217_fold__atLeastAtMost__nat_Opelims,axiom,
! [A: $tType,X: nat > A > A,Xa2: nat,Xb3: nat,Xc: A,Y: A] :
( ( ( set_fo6178422350223883121st_nat @ A @ X @ Xa2 @ Xb3 @ Xc )
= Y )
=> ( ( accp @ ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) @ ( set_fo1817059534552279752at_rel @ A ) @ ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ X @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ Xa2 @ ( product_Pair @ nat @ A @ Xb3 @ Xc ) ) ) )
=> ~ ( ( ( ( ord_less @ nat @ Xb3 @ Xa2 )
=> ( Y = Xc ) )
& ( ~ ( ord_less @ nat @ Xb3 @ Xa2 )
=> ( Y
= ( set_fo6178422350223883121st_nat @ A @ X @ ( plus_plus @ nat @ Xa2 @ ( one_one @ nat ) ) @ Xb3 @ ( X @ Xa2 @ Xc ) ) ) ) )
=> ~ ( accp @ ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) @ ( set_fo1817059534552279752at_rel @ A ) @ ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ X @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ Xa2 @ ( product_Pair @ nat @ A @ Xb3 @ Xc ) ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.pelims
thf(fact_7218_pred__nat__trancl__eq__le,axiom,
! [M: nat,N2: nat] :
( ( member @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ M @ N2 ) @ ( transitive_rtrancl @ nat @ pred_nat ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% pred_nat_trancl_eq_le
thf(fact_7219_fold__atLeastAtMost__nat_Opinduct,axiom,
! [A: $tType,A0: nat > A > A,A12: nat,A23: nat,A33: A,P: ( nat > A > A ) > nat > nat > A > $o] :
( ( accp @ ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) @ ( set_fo1817059534552279752at_rel @ A ) @ ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ A0 @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ A12 @ ( product_Pair @ nat @ A @ A23 @ A33 ) ) ) )
=> ( ! [F5: nat > A > A,A5: nat,B5: nat,Acc: A] :
( ( accp @ ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) @ ( set_fo1817059534552279752at_rel @ A ) @ ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ F5 @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ A5 @ ( product_Pair @ nat @ A @ B5 @ Acc ) ) ) )
=> ( ( ~ ( ord_less @ nat @ B5 @ A5 )
=> ( P @ F5 @ ( plus_plus @ nat @ A5 @ ( one_one @ nat ) ) @ B5 @ ( F5 @ A5 @ Acc ) ) )
=> ( P @ F5 @ A5 @ B5 @ Acc ) ) )
=> ( P @ A0 @ A12 @ A23 @ A33 ) ) ) ).
% fold_atLeastAtMost_nat.pinduct
thf(fact_7220_fold__atLeastAtMost__nat_Opsimps,axiom,
! [A: $tType,F2: nat > A > A,A2: nat,B2: nat,Acc3: A] :
( ( accp @ ( product_prod @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) ) @ ( set_fo1817059534552279752at_rel @ A ) @ ( product_Pair @ ( nat > A > A ) @ ( product_prod @ nat @ ( product_prod @ nat @ A ) ) @ F2 @ ( product_Pair @ nat @ ( product_prod @ nat @ A ) @ A2 @ ( product_Pair @ nat @ A @ B2 @ Acc3 ) ) ) )
=> ( ( ( ord_less @ nat @ B2 @ A2 )
=> ( ( set_fo6178422350223883121st_nat @ A @ F2 @ A2 @ B2 @ Acc3 )
= Acc3 ) )
& ( ~ ( ord_less @ nat @ B2 @ A2 )
=> ( ( set_fo6178422350223883121st_nat @ A @ F2 @ A2 @ B2 @ Acc3 )
= ( set_fo6178422350223883121st_nat @ A @ F2 @ ( plus_plus @ nat @ A2 @ ( one_one @ nat ) ) @ B2 @ ( F2 @ A2 @ Acc3 ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.psimps
thf(fact_7221_Gcd__fin_Oeq__fold,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( semiring_gcd_Gcd_fin @ A )
= ( ^ [A8: set @ A] : ( if @ A @ ( finite_finite @ A @ A8 ) @ ( finite_fold @ A @ A @ ( gcd_gcd @ A ) @ ( zero_zero @ A ) @ A8 ) @ ( one_one @ A ) ) ) ) ) ).
% Gcd_fin.eq_fold
thf(fact_7222_independent__explicit__finite__subsets,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A4: set @ A] :
( ( ~ ( real_V358717886546972837endent @ A @ A4 ) )
= ( ! [S7: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ S7 @ A4 )
=> ( ( finite_finite @ A @ S7 )
=> ! [U2: A > real] :
( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( U2 @ V5 ) @ V5 )
@ S7 )
= ( zero_zero @ A ) )
=> ! [X3: A] :
( ( member @ A @ X3 @ S7 )
=> ( ( U2 @ X3 )
= ( zero_zero @ real ) ) ) ) ) ) ) ) ) ).
% independent_explicit_finite_subsets
thf(fact_7223_Gcd__fin_Oempty,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( semiring_gcd_Gcd_fin @ A @ ( bot_bot @ ( set @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% Gcd_fin.empty
thf(fact_7224_Gcd__fin_Oinfinite,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A] :
( ~ ( finite_finite @ A @ A4 )
=> ( ( semiring_gcd_Gcd_fin @ A @ A4 )
= ( one_one @ A ) ) ) ) ).
% Gcd_fin.infinite
thf(fact_7225_is__unit__Gcd__fin__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A] :
( ( dvd_dvd @ A @ ( semiring_gcd_Gcd_fin @ A @ A4 ) @ ( one_one @ A ) )
= ( ( semiring_gcd_Gcd_fin @ A @ A4 )
= ( one_one @ A ) ) ) ) ).
% is_unit_Gcd_fin_iff
thf(fact_7226_Gcd__fin_Oinsert,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( semiring_gcd_Gcd_fin @ A @ ( insert2 @ A @ A2 @ A4 ) )
= ( gcd_gcd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ) ).
% Gcd_fin.insert
thf(fact_7227_Gcd__fin__eq__Gcd,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( semiring_gcd_Gcd_fin @ A @ A4 )
= ( gcd_Gcd @ A @ A4 ) ) ) ) ).
% Gcd_fin_eq_Gcd
thf(fact_7228_dependent__single,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A] :
( ( real_V358717886546972837endent @ A @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% dependent_single
thf(fact_7229_Gcd__fin_Ounion,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( semiring_gcd_Gcd_fin @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( gcd_gcd @ A @ ( semiring_gcd_Gcd_fin @ A @ A4 ) @ ( semiring_gcd_Gcd_fin @ A @ B4 ) ) ) ) ).
% Gcd_fin.union
thf(fact_7230_gcd__list__greatest,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [Bs: list @ A,A2: A] :
( ! [B5: A] :
( ( member @ A @ B5 @ ( set2 @ A @ Bs ) )
=> ( dvd_dvd @ A @ A2 @ B5 ) )
=> ( dvd_dvd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ ( set2 @ A @ Bs ) ) ) ) ) ).
% gcd_list_greatest
thf(fact_7231_dvd__gcd__list__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,Xs2: list @ A] :
( ( dvd_dvd @ A @ B2 @ ( semiring_gcd_Gcd_fin @ A @ ( set2 @ A @ Xs2 ) ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( dvd_dvd @ A @ B2 @ X3 ) ) ) ) ) ).
% dvd_gcd_list_iff
thf(fact_7232_dependent__zero,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A4: set @ A] :
( ( member @ A @ ( zero_zero @ A ) @ A4 )
=> ( real_V358717886546972837endent @ A @ A4 ) ) ) ).
% dependent_zero
thf(fact_7233_Gcd__fin__dvd,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( dvd_dvd @ A @ ( semiring_gcd_Gcd_fin @ A @ A4 ) @ A2 ) ) ) ).
% Gcd_fin_dvd
thf(fact_7234_Gcd__fin_Oin__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( ( gcd_gcd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ A4 ) )
= ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ) ).
% Gcd_fin.in_idem
thf(fact_7235_Gcd__fin_Osubset,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( gcd_gcd @ A @ ( semiring_gcd_Gcd_fin @ A @ B4 ) @ ( semiring_gcd_Gcd_fin @ A @ A4 ) )
= ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ) ).
% Gcd_fin.subset
thf(fact_7236_dvd__Gcd__fin__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A,B2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( dvd_dvd @ A @ B2 @ ( semiring_gcd_Gcd_fin @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( dvd_dvd @ A @ B2 @ X3 ) ) ) ) ) ) ).
% dvd_Gcd_fin_iff
thf(fact_7237_Gcd__fin__greatest,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A,A2: A] :
( ( finite_finite @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( dvd_dvd @ A @ A2 @ B5 ) )
=> ( dvd_dvd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ) ) ).
% Gcd_fin_greatest
thf(fact_7238_unique__representation,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,F2: A > real,G: A > real] :
( ~ ( real_V358717886546972837endent @ A @ Basis )
=> ( ! [V3: A] :
( ( ( F2 @ V3 )
!= ( zero_zero @ real ) )
=> ( member @ A @ V3 @ Basis ) )
=> ( ! [V3: A] :
( ( ( G @ V3 )
!= ( zero_zero @ real ) )
=> ( member @ A @ V3 @ Basis ) )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [V5: A] :
( ( F2 @ V5 )
!= ( zero_zero @ real ) ) ) )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [V5: A] :
( ( G @ V5 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( F2 @ V5 ) @ V5 )
@ ( collect @ A
@ ^ [V5: A] :
( ( F2 @ V5 )
!= ( zero_zero @ real ) ) ) )
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( G @ V5 ) @ V5 )
@ ( collect @ A
@ ^ [V5: A] :
( ( G @ V5 )
!= ( zero_zero @ real ) ) ) ) )
=> ( F2 = G ) ) ) ) ) ) ) ) ).
% unique_representation
thf(fact_7239_Gcd__fin_Oremove,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( ( semiring_gcd_Gcd_fin @ A @ A4 )
= ( gcd_gcd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% Gcd_fin.remove
thf(fact_7240_Gcd__fin_Oinsert__remove,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( semiring_gcd_Gcd_fin @ A @ ( insert2 @ A @ A2 @ A4 ) )
= ( gcd_gcd @ A @ A2 @ ( semiring_gcd_Gcd_fin @ A @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% Gcd_fin.insert_remove
thf(fact_7241_Gcd__fin_Oset__eq__fold,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [Xs2: list @ A] :
( ( semiring_gcd_Gcd_fin @ A @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ A @ ( gcd_gcd @ A ) @ Xs2 @ ( zero_zero @ A ) ) ) ) ).
% Gcd_fin.set_eq_fold
thf(fact_7242_dependent__finite,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A] :
( ( finite_finite @ A @ S3 )
=> ( ( real_V358717886546972837endent @ A @ S3 )
= ( ? [U2: A > real] :
( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ( U2 @ X3 )
!= ( zero_zero @ real ) ) )
& ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( U2 @ V5 ) @ V5 )
@ S3 )
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% dependent_finite
thf(fact_7243_independent__if__scalars__zero,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ! [F5: A > real,X4: A] :
( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [Y2: A] : ( real_V8093663219630862766scaleR @ A @ ( F5 @ Y2 ) @ Y2 )
@ A4 )
= ( zero_zero @ A ) )
=> ( ( member @ A @ X4 @ A4 )
=> ( ( F5 @ X4 )
= ( zero_zero @ real ) ) ) )
=> ~ ( real_V358717886546972837endent @ A @ A4 ) ) ) ) ).
% independent_if_scalars_zero
thf(fact_7244_independentD__unique,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B4: set @ A,X6: A > real,Y6: A > real] :
( ~ ( real_V358717886546972837endent @ A @ B4 )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) )
@ B4 )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( Y6 @ X3 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( Y6 @ X3 )
!= ( zero_zero @ real ) ) )
@ B4 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( X6 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) ) )
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( Y6 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( Y6 @ X3 )
!= ( zero_zero @ real ) ) ) ) )
=> ( X6 = Y6 ) ) ) ) ) ) ) ) ).
% independentD_unique
thf(fact_7245_Gcd__fin__0__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A] :
( ( ( semiring_gcd_Gcd_fin @ A @ A4 )
= ( zero_zero @ A ) )
= ( ( ord_less_eq @ ( set @ A ) @ A4 @ ( insert2 @ A @ ( zero_zero @ A ) @ ( bot_bot @ ( set @ A ) ) ) )
& ( finite_finite @ A @ A4 ) ) ) ) ).
% Gcd_fin_0_iff
thf(fact_7246_dependent__alt,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_V358717886546972837endent @ A )
= ( ^ [B8: set @ A] :
? [X7: A > real] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) ) )
& ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) )
@ B8 )
& ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( X7 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) ) )
= ( zero_zero @ A ) )
& ? [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) ) ) ) ) ).
% dependent_alt
thf(fact_7247_independent__alt,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B4: set @ A] :
( ( ~ ( real_V358717886546972837endent @ A @ B4 ) )
= ( ! [X7: A > real] :
( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) )
@ B4 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( X7 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( X7 @ X3 )
!= ( zero_zero @ real ) ) ) )
= ( zero_zero @ A ) )
=> ! [X3: A] :
( ( X7 @ X3 )
= ( zero_zero @ real ) ) ) ) ) ) ) ) ).
% independent_alt
thf(fact_7248_independentD__alt,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B4: set @ A,X6: A > real,X: A] :
( ~ ( real_V358717886546972837endent @ A @ B4 )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) )
@ B4 )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( X6 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( X6 @ X3 )
!= ( zero_zero @ real ) ) ) )
= ( zero_zero @ A ) )
=> ( ( X6 @ X )
= ( zero_zero @ real ) ) ) ) ) ) ) ).
% independentD_alt
thf(fact_7249_independentD,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S: set @ A,T2: set @ A,U: A > real,V2: A] :
( ~ ( real_V358717886546972837endent @ A @ S )
=> ( ( finite_finite @ A @ T2 )
=> ( ( ord_less_eq @ ( set @ A ) @ T2 @ S )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( U @ V5 ) @ V5 )
@ T2 )
= ( zero_zero @ A ) )
=> ( ( member @ A @ V2 @ T2 )
=> ( ( U @ V2 )
= ( zero_zero @ real ) ) ) ) ) ) ) ) ).
% independentD
thf(fact_7250_dependent__explicit,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_V358717886546972837endent @ A )
= ( ^ [S6: set @ A] :
? [T3: set @ A] :
( ( finite_finite @ A @ T3 )
& ( ord_less_eq @ ( set @ A ) @ T3 @ S6 )
& ? [U2: A > real] :
( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( U2 @ V5 ) @ V5 )
@ T3 )
= ( zero_zero @ A ) )
& ? [X3: A] :
( ( member @ A @ X3 @ T3 )
& ( ( U2 @ X3 )
!= ( zero_zero @ real ) ) ) ) ) ) ) ) ).
% dependent_explicit
thf(fact_7251_independent__explicit__module,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S: set @ A] :
( ( ~ ( real_V358717886546972837endent @ A @ S ) )
= ( ! [T3: set @ A,U2: A > real,V5: A] :
( ( finite_finite @ A @ T3 )
=> ( ( ord_less_eq @ ( set @ A ) @ T3 @ S )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [W3: A] : ( real_V8093663219630862766scaleR @ A @ ( U2 @ W3 ) @ W3 )
@ T3 )
= ( zero_zero @ A ) )
=> ( ( member @ A @ V5 @ T3 )
=> ( ( U2 @ V5 )
= ( zero_zero @ real ) ) ) ) ) ) ) ) ) ).
% independent_explicit_module
thf(fact_7252_isUCont__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ! [F2: A > B] :
( ( topolo6026614971017936543ous_on @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 )
= ( ! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ? [S6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ S6 )
& ! [X3: A,Y2: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ Y2 ) @ S6 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X3 ) @ ( F2 @ Y2 ) ) @ R5 ) ) ) ) ) ) ) ).
% isUCont_def
thf(fact_7253_possible__bit__def,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ( ( bit_se6407376104438227557le_bit @ A )
= ( ^ [Tyrep: itself @ A,N3: nat] :
( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 )
!= ( zero_zero @ A ) ) ) ) ) ).
% possible_bit_def
thf(fact_7254_possible__bit__less__imp,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [Tyrep2: itself @ A,I: nat,J: nat] :
( ( bit_se6407376104438227557le_bit @ A @ Tyrep2 @ I )
=> ( ( ord_less_eq @ nat @ J @ I )
=> ( bit_se6407376104438227557le_bit @ A @ Tyrep2 @ J ) ) ) ) ).
% possible_bit_less_imp
thf(fact_7255_possible__bit__0,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [Ty: itself @ A] : ( bit_se6407376104438227557le_bit @ A @ Ty @ ( zero_zero @ nat ) ) ) ).
% possible_bit_0
thf(fact_7256_uniformly__continuous__on__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V7819770556892013058_space @ A )
& ( real_V7819770556892013058_space @ B ) )
=> ( ( topolo6026614971017936543ous_on @ A @ B )
= ( ^ [S6: set @ A,F3: A > B] :
! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [D6: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ D6 )
& ! [X3: A] :
( ( member @ A @ X3 @ S6 )
=> ! [Y2: A] :
( ( member @ A @ Y2 @ S6 )
=> ( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y2 @ X3 ) @ D6 )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F3 @ Y2 ) @ ( F3 @ X3 ) ) @ E3 ) ) ) ) ) ) ) ) ) ).
% uniformly_continuous_on_def
thf(fact_7257_drop__bit__exp__eq,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se4197421643247451524op_bit @ A @ M @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 ) )
= ( times_times @ A
@ ( zero_neq_one_of_bool @ A
@ ( ( ord_less_eq @ nat @ M @ N2 )
& ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 ) ) )
@ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ).
% drop_bit_exp_eq
thf(fact_7258_bit__minus__2__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ) ).
% bit_minus_2_iff
thf(fact_7259_CHAR__eq__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ( ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) )
= ( zero_zero @ nat ) ) ) ).
% CHAR_eq_0
thf(fact_7260_of__nat__CHAR,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_CHAR
thf(fact_7261_bit__minus__1__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ N2 )
= ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 ) ) ) ).
% bit_minus_1_iff
thf(fact_7262_bit__mask__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se2239418461657761734s_mask @ A @ M ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ( ord_less @ nat @ N2 @ M ) ) ) ) ).
% bit_mask_iff
thf(fact_7263_CHAR__eqI,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [C2: nat] :
( ( ( semiring_1_of_nat @ A @ C2 )
= ( zero_zero @ A ) )
=> ( ! [X4: nat] :
( ( ( semiring_1_of_nat @ A @ X4 )
= ( zero_zero @ A ) )
=> ( dvd_dvd @ nat @ C2 @ X4 ) )
=> ( ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) )
= C2 ) ) ) ) ).
% CHAR_eqI
thf(fact_7264_of__nat__eq__0__iff__char__dvd,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N2: nat] :
( ( ( semiring_1_of_nat @ A @ N2 )
= ( zero_zero @ A ) )
= ( dvd_dvd @ nat @ ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) ) @ N2 ) ) ) ).
% of_nat_eq_0_iff_char_dvd
thf(fact_7265_bit__minus__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( uminus_uminus @ A @ A2 ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ~ ( bit_se5641148757651400278ts_bit @ A @ ( minus_minus @ A @ A2 @ ( one_one @ A ) ) @ N2 ) ) ) ) ).
% bit_minus_iff
thf(fact_7266_CHAR__eq0__iff,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) )
= ( zero_zero @ nat ) )
= ( ! [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
=> ( ( semiring_1_of_nat @ A @ N3 )
!= ( zero_zero @ A ) ) ) ) ) ) ).
% CHAR_eq0_iff
thf(fact_7267_CHAR__eq__posI,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [C2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ C2 )
=> ( ( ( semiring_1_of_nat @ A @ C2 )
= ( zero_zero @ A ) )
=> ( ! [X4: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ X4 )
=> ( ( ord_less @ nat @ X4 @ C2 )
=> ( ( semiring_1_of_nat @ A @ X4 )
!= ( zero_zero @ A ) ) ) )
=> ( ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) )
= C2 ) ) ) ) ) ).
% CHAR_eq_posI
thf(fact_7268_CHAR__pos__iff,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( semiri4206861660011772517g_char @ A @ ( type2 @ A ) ) )
= ( ? [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
& ( ( semiring_1_of_nat @ A @ N3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% CHAR_pos_iff
thf(fact_7269_bit__push__bit__iff,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ! [M: nat,A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( bit_se4730199178511100633sh_bit @ A @ M @ A2 ) @ N2 )
= ( ( ord_less_eq @ nat @ M @ N2 )
& ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( minus_minus @ nat @ N2 @ M ) ) ) ) ) ).
% bit_push_bit_iff
thf(fact_7270_fold__possible__bit,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat] :
( ( ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
= ( zero_zero @ A ) )
= ( ~ ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 ) ) ) ) ).
% fold_possible_bit
thf(fact_7271_bit__2__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ ( one_one @ nat ) )
& ( N2
= ( one_one @ nat ) ) ) ) ) ).
% bit_2_iff
thf(fact_7272_bit__minus__exp__iff,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( uminus_uminus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ( ord_less_eq @ nat @ M @ N2 ) ) ) ) ).
% bit_minus_exp_iff
thf(fact_7273_bit__mask__sub__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [M: nat,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( minus_minus @ A @ ( power_power @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ M ) @ ( one_one @ A ) ) @ N2 )
= ( ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 )
& ( ord_less @ nat @ N2 @ M ) ) ) ) ).
% bit_mask_sub_iff
thf(fact_7274_bit__double__iff,axiom,
! [A: $tType] :
( ( bit_semiring_bits @ A )
=> ! [A2: A,N2: nat] :
( ( bit_se5641148757651400278ts_bit @ A @ ( times_times @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ A2 ) @ N2 )
= ( ( bit_se5641148757651400278ts_bit @ A @ A2 @ ( minus_minus @ nat @ N2 @ ( one_one @ nat ) ) )
& ( N2
!= ( zero_zero @ nat ) )
& ( bit_se6407376104438227557le_bit @ A @ ( type2 @ A ) @ N2 ) ) ) ) ).
% bit_double_iff
thf(fact_7275_of__real__sqrt,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( real_Vector_of_real @ complex @ ( sqrt @ X ) )
= ( csqrt @ ( real_Vector_of_real @ complex @ X ) ) ) ) ).
% of_real_sqrt
thf(fact_7276_inverse__rat_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int ) @ ratrel @ ratrel
@ ^ [X3: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int )
@ ( ( product_fst @ int @ int @ X3 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ X3 ) @ ( product_fst @ int @ int @ X3 ) ) )
@ ^ [X3: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int )
@ ( ( product_fst @ int @ int @ X3 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ X3 ) @ ( product_fst @ int @ int @ X3 ) ) ) ) ).
% inverse_rat.rsp
thf(fact_7277_csqrt__0,axiom,
( ( csqrt @ ( zero_zero @ complex ) )
= ( zero_zero @ complex ) ) ).
% csqrt_0
thf(fact_7278_csqrt__eq__0,axiom,
! [Z2: complex] :
( ( ( csqrt @ Z2 )
= ( zero_zero @ complex ) )
= ( Z2
= ( zero_zero @ complex ) ) ) ).
% csqrt_eq_0
thf(fact_7279_ratrel__iff,axiom,
( ratrel
= ( ^ [X3: product_prod @ int @ int,Y2: product_prod @ int @ int] :
( ( ( product_snd @ int @ int @ X3 )
!= ( zero_zero @ int ) )
& ( ( product_snd @ int @ int @ Y2 )
!= ( zero_zero @ int ) )
& ( ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ Y2 ) )
= ( times_times @ int @ ( product_fst @ int @ int @ Y2 ) @ ( product_snd @ int @ int @ X3 ) ) ) ) ) ) ).
% ratrel_iff
thf(fact_7280_zero__rat_Orsp,axiom,
ratrel @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ).
% zero_rat.rsp
thf(fact_7281_Fract_Orsp,axiom,
( bNF_rel_fun @ int @ int @ ( int > ( product_prod @ int @ int ) ) @ ( int > ( product_prod @ int @ int ) )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ int @ int @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ratrel )
@ ^ [A3: int,B3: int] :
( if @ ( product_prod @ int @ int )
@ ( B3
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ A3 @ B3 ) )
@ ^ [A3: int,B3: int] :
( if @ ( product_prod @ int @ int )
@ ( B3
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ A3 @ B3 ) ) ) ).
% Fract.rsp
thf(fact_7282_ratrel__def,axiom,
( ratrel
= ( ^ [X3: product_prod @ int @ int,Y2: product_prod @ int @ int] :
( ( ( product_snd @ int @ int @ X3 )
!= ( zero_zero @ int ) )
& ( ( product_snd @ int @ int @ Y2 )
!= ( zero_zero @ int ) )
& ( ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ Y2 ) )
= ( times_times @ int @ ( product_fst @ int @ int @ Y2 ) @ ( product_snd @ int @ int @ X3 ) ) ) ) ) ) ).
% ratrel_def
thf(fact_7283_Rat_Opositive_Orsp,axiom,
( bNF_rel_fun @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int ) @ $o @ $o @ ratrel
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 )
@ ^ [X3: product_prod @ int @ int] : ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ X3 ) ) )
@ ^ [X3: product_prod @ int @ int] : ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ X3 ) @ ( product_snd @ int @ int @ X3 ) ) ) ) ).
% Rat.positive.rsp
thf(fact_7284_inverse__rat_Oabs__eq,axiom,
! [X: product_prod @ int @ int] :
( ( ratrel @ X @ X )
=> ( ( inverse_inverse @ rat @ ( abs_Rat @ X ) )
= ( abs_Rat
@ ( if @ ( product_prod @ int @ int )
@ ( ( product_fst @ int @ int @ X )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ X ) @ ( product_fst @ int @ int @ X ) ) ) ) ) ) ).
% inverse_rat.abs_eq
thf(fact_7285_Rat_Opositive_Oabs__eq,axiom,
! [X: product_prod @ int @ int] :
( ( ratrel @ X @ X )
=> ( ( positive @ ( abs_Rat @ X ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ ( times_times @ int @ ( product_fst @ int @ int @ X ) @ ( product_snd @ int @ int @ X ) ) ) ) ) ).
% Rat.positive.abs_eq
thf(fact_7286_Fract_Oabs__eq,axiom,
( fract
= ( ^ [Xa4: int,X3: int] :
( abs_Rat
@ ( if @ ( product_prod @ int @ int )
@ ( X3
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ Xa4 @ X3 ) ) ) ) ) ).
% Fract.abs_eq
thf(fact_7287_zero__rat__def,axiom,
( ( zero_zero @ rat )
= ( abs_Rat @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) ) ) ) ).
% zero_rat_def
thf(fact_7288_inverse__rat__def,axiom,
( ( inverse_inverse @ rat )
= ( map_fun @ rat @ ( product_prod @ int @ int ) @ ( product_prod @ int @ int ) @ rat @ rep_Rat @ abs_Rat
@ ^ [X3: product_prod @ int @ int] :
( if @ ( product_prod @ int @ int )
@ ( ( product_fst @ int @ int @ X3 )
= ( zero_zero @ int ) )
@ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ ( one_one @ int ) )
@ ( product_Pair @ int @ int @ ( product_snd @ int @ int @ X3 ) @ ( product_fst @ int @ int @ X3 ) ) ) ) ) ).
% inverse_rat_def
thf(fact_7289_csqrt_Ocode,axiom,
( csqrt
= ( ^ [Z5: complex] :
( complex2 @ ( sqrt @ ( divide_divide @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) )
@ ( times_times @ real
@ ( if @ real
@ ( ( im @ Z5 )
= ( zero_zero @ real ) )
@ ( one_one @ real )
@ ( sgn_sgn @ real @ ( im @ Z5 ) ) )
@ ( sqrt @ ( divide_divide @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% csqrt.code
thf(fact_7290_complex__Im__fact,axiom,
! [N2: nat] :
( ( im @ ( semiring_char_0_fact @ complex @ N2 ) )
= ( zero_zero @ real ) ) ).
% complex_Im_fact
thf(fact_7291_complex__Im__of__int,axiom,
! [Z2: int] :
( ( im @ ( ring_1_of_int @ complex @ Z2 ) )
= ( zero_zero @ real ) ) ).
% complex_Im_of_int
thf(fact_7292_complex__Im__of__nat,axiom,
! [N2: nat] :
( ( im @ ( semiring_1_of_nat @ complex @ N2 ) )
= ( zero_zero @ real ) ) ).
% complex_Im_of_nat
thf(fact_7293_Im__complex__of__real,axiom,
! [Z2: real] :
( ( im @ ( real_Vector_of_real @ complex @ Z2 ) )
= ( zero_zero @ real ) ) ).
% Im_complex_of_real
thf(fact_7294_Im__power__real,axiom,
! [X: complex,N2: nat] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( im @ ( power_power @ complex @ X @ N2 ) )
= ( zero_zero @ real ) ) ) ).
% Im_power_real
thf(fact_7295_complex__Im__numeral,axiom,
! [V2: num] :
( ( im @ ( numeral_numeral @ complex @ V2 ) )
= ( zero_zero @ real ) ) ).
% complex_Im_numeral
thf(fact_7296_Re__power__real,axiom,
! [X: complex,N2: nat] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( re @ ( power_power @ complex @ X @ N2 ) )
= ( power_power @ real @ ( re @ X ) @ N2 ) ) ) ).
% Re_power_real
thf(fact_7297_cos__Arg__i__mult__zero,axiom,
! [Y: complex] :
( ( Y
!= ( zero_zero @ complex ) )
=> ( ( ( re @ Y )
= ( zero_zero @ real ) )
=> ( ( cos @ real @ ( arg @ Y ) )
= ( zero_zero @ real ) ) ) ) ).
% cos_Arg_i_mult_zero
thf(fact_7298_csqrt__of__real__nonneg,axiom,
! [X: complex] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ X ) )
=> ( ( csqrt @ X )
= ( real_Vector_of_real @ complex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).
% csqrt_of_real_nonneg
thf(fact_7299_one__complex_Osimps_I2_J,axiom,
( ( im @ ( one_one @ complex ) )
= ( zero_zero @ real ) ) ).
% one_complex.simps(2)
thf(fact_7300_zero__complex_Osimps_I1_J,axiom,
( ( re @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% zero_complex.simps(1)
thf(fact_7301_cmod__eq__Re,axiom,
! [Z2: complex] :
( ( ( im @ Z2 )
= ( zero_zero @ real ) )
=> ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( abs_abs @ real @ ( re @ Z2 ) ) ) ) ).
% cmod_eq_Re
thf(fact_7302_cmod__eq__Im,axiom,
! [Z2: complex] :
( ( ( re @ Z2 )
= ( zero_zero @ real ) )
=> ( ( real_V7770717601297561774m_norm @ complex @ Z2 )
= ( abs_abs @ real @ ( im @ Z2 ) ) ) ) ).
% cmod_eq_Im
thf(fact_7303_Im__eq__0,axiom,
! [Z2: complex] :
( ( ( abs_abs @ real @ ( re @ Z2 ) )
= ( real_V7770717601297561774m_norm @ complex @ Z2 ) )
=> ( ( im @ Z2 )
= ( zero_zero @ real ) ) ) ).
% Im_eq_0
thf(fact_7304_complex__is__Int__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( ring_1_Ints @ complex ) )
= ( ( ( im @ Z2 )
= ( zero_zero @ real ) )
& ? [I3: int] :
( ( re @ Z2 )
= ( ring_1_of_int @ real @ I3 ) ) ) ) ).
% complex_is_Int_iff
thf(fact_7305_zero__complex_Osimps_I2_J,axiom,
( ( im @ ( zero_zero @ complex ) )
= ( zero_zero @ real ) ) ).
% zero_complex.simps(2)
thf(fact_7306_complex__is__Nat__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( semiring_1_Nats @ complex ) )
= ( ( ( im @ Z2 )
= ( zero_zero @ real ) )
& ? [I3: nat] :
( ( re @ Z2 )
= ( semiring_1_of_nat @ real @ I3 ) ) ) ) ).
% complex_is_Nat_iff
thf(fact_7307_csqrt__principal,axiom,
! [Z2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( csqrt @ Z2 ) ) )
| ( ( ( re @ ( csqrt @ Z2 ) )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( csqrt @ Z2 ) ) ) ) ) ).
% csqrt_principal
thf(fact_7308_Re__csqrt,axiom,
! [Z2: complex] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( csqrt @ Z2 ) ) ) ).
% Re_csqrt
thf(fact_7309_complex__eq__0,axiom,
! [Z2: complex] :
( ( Z2
= ( zero_zero @ complex ) )
= ( ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( zero_zero @ real ) ) ) ).
% complex_eq_0
thf(fact_7310_complex__neq__0,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( plus_plus @ real @ ( power_power @ real @ ( re @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( im @ Z2 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ).
% complex_neq_0
thf(fact_7311_csqrt__square,axiom,
! [B2: complex] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ B2 ) )
| ( ( ( re @ B2 )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ B2 ) ) ) )
=> ( ( csqrt @ ( power_power @ complex @ B2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= B2 ) ) ).
% csqrt_square
thf(fact_7312_csqrt__unique,axiom,
! [W2: complex,Z2: complex] :
( ( ( power_power @ complex @ W2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
= Z2 )
=> ( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ W2 ) )
| ( ( ( re @ W2 )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ W2 ) ) ) )
=> ( ( csqrt @ Z2 )
= W2 ) ) ) ).
% csqrt_unique
thf(fact_7313_complex__unit__circle,axiom,
! [Z2: complex] :
( ( Z2
!= ( zero_zero @ complex ) )
=> ( ( plus_plus @ real @ ( power_power @ real @ ( divide_divide @ real @ ( re @ Z2 ) @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) @ ( power_power @ real @ ( divide_divide @ real @ ( im @ Z2 ) @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( one_one @ real ) ) ) ).
% complex_unit_circle
thf(fact_7314_cmod__plus__Re__le__0__iff,axiom,
! [Z2: complex] :
( ( ord_less_eq @ real @ ( plus_plus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( re @ Z2 ) ) @ ( zero_zero @ real ) )
= ( ( re @ Z2 )
= ( uminus_uminus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) ) ) ) ).
% cmod_plus_Re_le_0_iff
thf(fact_7315_csqrt_Osimps_I2_J,axiom,
! [Z2: complex] :
( ( im @ ( csqrt @ Z2 ) )
= ( times_times @ real
@ ( if @ real
@ ( ( im @ Z2 )
= ( zero_zero @ real ) )
@ ( one_one @ real )
@ ( sgn_sgn @ real @ ( im @ Z2 ) ) )
@ ( sqrt @ ( divide_divide @ real @ ( minus_minus @ real @ ( real_V7770717601297561774m_norm @ complex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral @ real @ ( bit0 @ one2 ) ) ) ) ) ) ).
% csqrt.simps(2)
thf(fact_7316_csqrt__of__real__nonpos,axiom,
! [X: complex] :
( ( ( im @ X )
= ( zero_zero @ real ) )
=> ( ( ord_less_eq @ real @ ( re @ X ) @ ( zero_zero @ real ) )
=> ( ( csqrt @ X )
= ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ ( sqrt @ ( abs_abs @ real @ ( re @ X ) ) ) ) ) ) ) ) ).
% csqrt_of_real_nonpos
thf(fact_7317_csqrt__minus,axiom,
! [X: complex] :
( ( ( ord_less @ real @ ( im @ X ) @ ( zero_zero @ real ) )
| ( ( ( im @ X )
= ( zero_zero @ real ) )
& ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ X ) ) ) )
=> ( ( csqrt @ ( uminus_uminus @ complex @ X ) )
= ( times_times @ complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).
% csqrt_minus
thf(fact_7318_imaginary__unit_Osimps_I1_J,axiom,
( ( re @ imaginary_unit )
= ( zero_zero @ real ) ) ).
% imaginary_unit.simps(1)
thf(fact_7319_complex__i__not__zero,axiom,
( imaginary_unit
!= ( zero_zero @ complex ) ) ).
% complex_i_not_zero
thf(fact_7320_Complex__eq__i,axiom,
! [X: real,Y: real] :
( ( ( complex2 @ X @ Y )
= imaginary_unit )
= ( ( X
= ( zero_zero @ real ) )
& ( Y
= ( one_one @ real ) ) ) ) ).
% Complex_eq_i
thf(fact_7321_imaginary__unit_Ocode,axiom,
( imaginary_unit
= ( complex2 @ ( zero_zero @ real ) @ ( one_one @ real ) ) ) ).
% imaginary_unit.code
thf(fact_7322_complex__of__real__i,axiom,
! [R2: real] :
( ( times_times @ complex @ ( real_Vector_of_real @ complex @ R2 ) @ imaginary_unit )
= ( complex2 @ ( zero_zero @ real ) @ R2 ) ) ).
% complex_of_real_i
thf(fact_7323_i__complex__of__real,axiom,
! [R2: real] :
( ( times_times @ complex @ imaginary_unit @ ( real_Vector_of_real @ complex @ R2 ) )
= ( complex2 @ ( zero_zero @ real ) @ R2 ) ) ).
% i_complex_of_real
thf(fact_7324_series__comparison__complex,axiom,
! [A: $tType] :
( ( real_Vector_banach @ A )
=> ! [G: nat > complex,N7: nat,F2: nat > A] :
( ( summable @ complex @ G )
=> ( ! [N: nat] : ( member @ complex @ ( G @ N ) @ ( real_Vector_Reals @ complex ) )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( G @ N ) ) )
=> ( ! [N: nat] :
( ( ord_less_eq @ nat @ N7 @ N )
=> ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ A @ ( F2 @ N ) ) @ ( real_V7770717601297561774m_norm @ complex @ ( G @ N ) ) ) )
=> ( summable @ A @ F2 ) ) ) ) ) ) ).
% series_comparison_complex
thf(fact_7325_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K3: int] :
( if @ code_integer @ ( ord_less @ int @ K3 @ ( zero_zero @ int ) ) @ ( uminus_uminus @ code_integer @ ( code_integer_of_int @ ( uminus_uminus @ int @ K3 ) ) )
@ ( if @ code_integer
@ ( K3
= ( zero_zero @ int ) )
@ ( zero_zero @ code_integer )
@ ( if @ code_integer
@ ( ( modulo_modulo @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) )
= ( zero_zero @ int ) )
@ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ ( code_integer_of_int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) )
@ ( plus_plus @ code_integer @ ( times_times @ code_integer @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) @ ( code_integer_of_int @ ( divide_divide @ int @ K3 @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) ) ) ) @ ( one_one @ code_integer ) ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_7326_real__eq__imaginary__iff,axiom,
! [Y: complex,X: complex] :
( ( member @ complex @ Y @ ( real_Vector_Reals @ complex ) )
=> ( ( member @ complex @ X @ ( real_Vector_Reals @ complex ) )
=> ( ( X
= ( times_times @ complex @ imaginary_unit @ Y ) )
= ( ( X
= ( zero_zero @ complex ) )
& ( Y
= ( zero_zero @ complex ) ) ) ) ) ) ).
% real_eq_imaginary_iff
thf(fact_7327_imaginary__eq__real__iff,axiom,
! [Y: complex,X: complex] :
( ( member @ complex @ Y @ ( real_Vector_Reals @ complex ) )
=> ( ( member @ complex @ X @ ( real_Vector_Reals @ complex ) )
=> ( ( ( times_times @ complex @ imaginary_unit @ Y )
= X )
= ( ( X
= ( zero_zero @ complex ) )
& ( Y
= ( zero_zero @ complex ) ) ) ) ) ) ).
% imaginary_eq_real_iff
thf(fact_7328_times__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( times_times @ code_integer @ ( zero_zero @ code_integer ) @ L )
= ( zero_zero @ code_integer ) ) ).
% times_integer_code(2)
thf(fact_7329_times__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( times_times @ code_integer @ K @ ( zero_zero @ code_integer ) )
= ( zero_zero @ code_integer ) ) ).
% times_integer_code(1)
thf(fact_7330_Complex__in__Reals,axiom,
! [X: real] : ( member @ complex @ ( complex2 @ X @ ( zero_zero @ real ) ) @ ( real_Vector_Reals @ complex ) ) ).
% Complex_in_Reals
thf(fact_7331_nonzero__Reals__divide,axiom,
! [A: $tType] :
( ( real_V7773925162809079976_field @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( member @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ) ).
% nonzero_Reals_divide
thf(fact_7332_less__eq__integer__code_I1_J,axiom,
ord_less_eq @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ).
% less_eq_integer_code(1)
thf(fact_7333_uminus__integer__code_I1_J,axiom,
( ( uminus_uminus @ code_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ code_integer ) ) ).
% uminus_integer_code(1)
thf(fact_7334_minus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( minus_minus @ code_integer @ ( zero_zero @ code_integer ) @ L )
= ( uminus_uminus @ code_integer @ L ) ) ).
% minus_integer_code(2)
thf(fact_7335_minus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( minus_minus @ code_integer @ K @ ( zero_zero @ code_integer ) )
= K ) ).
% minus_integer_code(1)
thf(fact_7336_gcd__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( gcd_gcd @ code_integer @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( gcd_gcd @ int @ Xa2 @ X ) ) ) ).
% gcd_integer.abs_eq
thf(fact_7337_gcd__code__integer,axiom,
( ( gcd_gcd @ code_integer )
= ( ^ [K3: code_integer,L2: code_integer] :
( abs_abs @ code_integer
@ ( if @ code_integer
@ ( L2
= ( zero_zero @ code_integer ) )
@ K3
@ ( gcd_gcd @ code_integer @ L2 @ ( modulo_modulo @ code_integer @ ( abs_abs @ code_integer @ K3 ) @ ( abs_abs @ code_integer @ L2 ) ) ) ) ) ) ) ).
% gcd_code_integer
thf(fact_7338_plus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( plus_plus @ code_integer @ ( zero_zero @ code_integer ) @ L )
= L ) ).
% plus_integer_code(2)
thf(fact_7339_plus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( plus_plus @ code_integer @ K @ ( zero_zero @ code_integer ) )
= K ) ).
% plus_integer_code(1)
thf(fact_7340_Reals__add,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ! [A2: A,B2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( member @ A @ B2 @ ( real_Vector_Reals @ A ) )
=> ( member @ A @ ( plus_plus @ A @ A2 @ B2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% Reals_add
thf(fact_7341_Reals__1,axiom,
! [B: $tType] :
( ( real_V2191834092415804123ebra_1 @ B )
=> ( member @ B @ ( one_one @ B ) @ ( real_Vector_Reals @ B ) ) ) ).
% Reals_1
thf(fact_7342_zero__integer__def,axiom,
( ( zero_zero @ code_integer )
= ( code_integer_of_int @ ( zero_zero @ int ) ) ) ).
% zero_integer_def
thf(fact_7343_Reals__0,axiom,
! [A: $tType] :
( ( real_V2191834092415804123ebra_1 @ A )
=> ( member @ A @ ( zero_zero @ A ) @ ( real_Vector_Reals @ A ) ) ) ).
% Reals_0
thf(fact_7344_less__integer_Oabs__eq,axiom,
! [Xa2: int,X: int] :
( ( ord_less @ code_integer @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
= ( ord_less @ int @ Xa2 @ X ) ) ).
% less_integer.abs_eq
thf(fact_7345_less__integer__code_I1_J,axiom,
~ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ) ).
% less_integer_code(1)
thf(fact_7346_abs__integer__code,axiom,
( ( abs_abs @ code_integer )
= ( ^ [K3: code_integer] : ( if @ code_integer @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ code_integer @ K3 ) @ K3 ) ) ) ).
% abs_integer_code
thf(fact_7347_nonzero__Reals__inverse,axiom,
! [A: $tType] :
( ( real_V5047593784448816457lgebra @ A )
=> ! [A2: A] :
( ( member @ A @ A2 @ ( real_Vector_Reals @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( member @ A @ ( inverse_inverse @ A @ A2 ) @ ( real_Vector_Reals @ A ) ) ) ) ) ).
% nonzero_Reals_inverse
thf(fact_7348_sgn__integer__code,axiom,
( ( sgn_sgn @ code_integer )
= ( ^ [K3: code_integer] :
( if @ code_integer
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( zero_zero @ code_integer )
@ ( if @ code_integer @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ code_integer @ ( one_one @ code_integer ) ) @ ( one_one @ code_integer ) ) ) ) ) ).
% sgn_integer_code
thf(fact_7349_complex__is__Real__iff,axiom,
! [Z2: complex] :
( ( member @ complex @ Z2 @ ( real_Vector_Reals @ complex ) )
= ( ( im @ Z2 )
= ( zero_zero @ real ) ) ) ).
% complex_is_Real_iff
thf(fact_7350_Suc_Orsp,axiom,
( bNF_rel_fun @ nat @ nat @ nat @ nat
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ suc
@ suc ) ).
% Suc.rsp
thf(fact_7351_zero__natural_Orsp,axiom,
( ( zero_zero @ nat )
= ( zero_zero @ nat ) ) ).
% zero_natural.rsp
thf(fact_7352_less__natural_Orsp,axiom,
( bNF_rel_fun @ nat @ nat @ ( nat > $o ) @ ( nat > $o )
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ nat @ nat @ $o @ $o
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( ord_less @ nat )
@ ( ord_less @ nat ) ) ).
% less_natural.rsp
thf(fact_7353_less__eq__natural_Orsp,axiom,
( bNF_rel_fun @ nat @ nat @ ( nat > $o ) @ ( nat > $o )
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ nat @ nat @ $o @ $o
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( ord_less_eq @ nat )
@ ( ord_less_eq @ nat ) ) ).
% less_eq_natural.rsp
thf(fact_7354_zero__integer_Orsp,axiom,
( ( zero_zero @ int )
= ( zero_zero @ int ) ) ).
% zero_integer.rsp
thf(fact_7355_plus__natural_Orsp,axiom,
( bNF_rel_fun @ nat @ nat @ ( nat > nat ) @ ( nat > nat )
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ nat @ nat @ nat @ nat
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
@ ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
@ ( plus_plus @ nat )
@ ( plus_plus @ nat ) ) ).
% plus_natural.rsp
thf(fact_7356_less__integer_Orsp,axiom,
( bNF_rel_fun @ int @ int @ ( int > $o ) @ ( int > $o )
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ int @ int @ $o @ $o
@ ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ^ [Y5: $o,Z3: $o] : ( Y5 = Z3 ) )
@ ( ord_less @ int )
@ ( ord_less @ int ) ) ).
% less_integer.rsp
thf(fact_7357_one__natural_Orsp,axiom,
( ( one_one @ nat )
= ( one_one @ nat ) ) ).
% one_natural.rsp
thf(fact_7358_int__of__integer__code,axiom,
( code_int_of_integer
= ( ^ [K3: code_integer] :
( if @ int @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( uminus_uminus @ int @ ( code_int_of_integer @ ( uminus_uminus @ code_integer @ K3 ) ) )
@ ( if @ int
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( zero_zero @ int )
@ ( product_case_prod @ code_integer @ code_integer @ int
@ ^ [L2: code_integer,J3: code_integer] :
( if @ int
@ ( J3
= ( zero_zero @ code_integer ) )
@ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( code_int_of_integer @ L2 ) )
@ ( plus_plus @ int @ ( times_times @ int @ ( numeral_numeral @ int @ ( bit0 @ one2 ) ) @ ( code_int_of_integer @ L2 ) ) @ ( one_one @ int ) ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ).
% int_of_integer_code
thf(fact_7359_num__of__integer__code,axiom,
( code_num_of_integer
= ( ^ [K3: code_integer] :
( if @ num @ ( ord_less_eq @ code_integer @ K3 @ ( one_one @ code_integer ) ) @ one2
@ ( product_case_prod @ code_integer @ code_integer @ num
@ ^ [L2: code_integer,J3: code_integer] :
( if @ num
@ ( J3
= ( zero_zero @ code_integer ) )
@ ( plus_plus @ num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) )
@ ( plus_plus @ num @ ( plus_plus @ num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one2 ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% num_of_integer_code
thf(fact_7360_zero__integer_Orep__eq,axiom,
( ( code_int_of_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ int ) ) ).
% zero_integer.rep_eq
thf(fact_7361_integer__less__iff,axiom,
( ( ord_less @ code_integer )
= ( ^ [K3: code_integer,L2: code_integer] : ( ord_less @ int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).
% integer_less_iff
thf(fact_7362_less__integer_Orep__eq,axiom,
( ( ord_less @ code_integer )
= ( ^ [X3: code_integer,Xa4: code_integer] : ( ord_less @ int @ ( code_int_of_integer @ X3 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).
% less_integer.rep_eq
thf(fact_7363_gcd__integer_Orep__eq,axiom,
! [X: code_integer,Xa2: code_integer] :
( ( code_int_of_integer @ ( gcd_gcd @ code_integer @ X @ Xa2 ) )
= ( gcd_gcd @ int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).
% gcd_integer.rep_eq
thf(fact_7364_nat__of__integer__code,axiom,
( code_nat_of_integer
= ( ^ [K3: code_integer] :
( if @ nat @ ( ord_less_eq @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( zero_zero @ nat )
@ ( product_case_prod @ code_integer @ code_integer @ nat
@ ^ [L2: code_integer,J3: code_integer] :
( if @ nat
@ ( J3
= ( zero_zero @ code_integer ) )
@ ( plus_plus @ nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) )
@ ( plus_plus @ nat @ ( plus_plus @ nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( one_one @ nat ) ) )
@ ( code_divmod_integer @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% nat_of_integer_code
thf(fact_7365_bit__cut__integer__code,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( if @ ( product_prod @ code_integer @ $o )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ $o @ ( zero_zero @ code_integer ) @ $false )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ $o )
@ ^ [R5: code_integer,S6: code_integer] :
( product_Pair @ code_integer @ $o @ ( if @ code_integer @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ K3 ) @ R5 @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ S6 ) )
@ ( S6
= ( one_one @ code_integer ) ) )
@ ( code_divmod_abs @ K3 @ ( numeral_numeral @ code_integer @ ( bit0 @ one2 ) ) ) ) ) ) ) ).
% bit_cut_integer_code
thf(fact_7366_of__nat__of__integer,axiom,
! [K: code_integer] :
( ( semiring_1_of_nat @ code_integer @ ( code_nat_of_integer @ K ) )
= ( ord_max @ code_integer @ ( zero_zero @ code_integer ) @ K ) ) ).
% of_nat_of_integer
thf(fact_7367_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( ( ord_less_eq @ code_integer @ K @ ( zero_zero @ code_integer ) )
=> ( ( code_nat_of_integer @ K )
= ( zero_zero @ nat ) ) ) ).
% nat_of_integer_non_positive
thf(fact_7368_divmod__abs__code_I6_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ ( zero_zero @ code_integer ) @ J )
= ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) ) ) ).
% divmod_abs_code(6)
thf(fact_7369_nat__of__integer__code__post_I1_J,axiom,
( ( code_nat_of_integer @ ( zero_zero @ code_integer ) )
= ( zero_zero @ nat ) ) ).
% nat_of_integer_code_post(1)
thf(fact_7370_divmod__abs__code_I5_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ J @ ( zero_zero @ code_integer ) )
= ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( abs_abs @ code_integer @ J ) ) ) ).
% divmod_abs_code(5)
thf(fact_7371_nat__of__integer__code__post_I2_J,axiom,
( ( code_nat_of_integer @ ( one_one @ code_integer ) )
= ( one_one @ nat ) ) ).
% nat_of_integer_code_post(2)
thf(fact_7372_divmod__integer__eq__cases,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) )
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( L2
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ K3 )
@ ( comp @ code_integer @ ( ( product_prod @ code_integer @ code_integer ) > ( product_prod @ code_integer @ code_integer ) ) @ code_integer @ ( comp @ ( code_integer > code_integer ) @ ( ( product_prod @ code_integer @ code_integer ) > ( product_prod @ code_integer @ code_integer ) ) @ code_integer @ ( product_apsnd @ code_integer @ code_integer @ code_integer ) @ ( times_times @ code_integer ) ) @ ( sgn_sgn @ code_integer ) @ L2
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( ( sgn_sgn @ code_integer @ K3 )
= ( sgn_sgn @ code_integer @ L2 ) )
@ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ ( abs_abs @ code_integer @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ).
% divmod_integer_eq_cases
thf(fact_7373_divmod__integer__code,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L2: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( K3
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ ( zero_zero @ code_integer ) )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ L2 )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ ( zero_zero @ code_integer ) @ K3 ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ L2 @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) )
@ ( if @ ( product_prod @ code_integer @ code_integer )
@ ( L2
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( zero_zero @ code_integer ) @ K3 )
@ ( product_apsnd @ code_integer @ code_integer @ code_integer @ ( uminus_uminus @ code_integer )
@ ( if @ ( product_prod @ code_integer @ code_integer ) @ ( ord_less @ code_integer @ K3 @ ( zero_zero @ code_integer ) ) @ ( code_divmod_abs @ K3 @ L2 )
@ ( product_case_prod @ code_integer @ code_integer @ ( product_prod @ code_integer @ code_integer )
@ ^ [R5: code_integer,S6: code_integer] :
( if @ ( product_prod @ code_integer @ code_integer )
@ ( S6
= ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( zero_zero @ code_integer ) )
@ ( product_Pair @ code_integer @ code_integer @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ R5 ) @ ( one_one @ code_integer ) ) @ ( minus_minus @ code_integer @ ( uminus_uminus @ code_integer @ L2 ) @ S6 ) ) )
@ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ) ).
% divmod_integer_code
thf(fact_7374_numeral__xor__num,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: num] :
( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_un2480387367778600638or_num @ M @ N2 ) ) ) ) ).
% numeral_xor_num
thf(fact_7375_set__rec,axiom,
! [A: $tType] :
( ( set2 @ A )
= ( rec_list @ ( set @ A ) @ A @ ( bot_bot @ ( set @ A ) )
@ ^ [X3: A,Uu3: list @ A] : ( insert2 @ A @ X3 ) ) ) ).
% set_rec
thf(fact_7376_xor__num__eq__None__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: num] :
( ( ( bit_un2480387367778600638or_num @ M @ N2 )
= ( none @ num ) )
= ( ( bit_se5824344971392196577ns_xor @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( zero_zero @ A ) ) ) ) ).
% xor_num_eq_None_iff
thf(fact_7377_numeral__and__num,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: num] :
( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( case_option @ A @ num @ ( zero_zero @ A ) @ ( numeral_numeral @ A ) @ ( bit_un7362597486090784418nd_num @ M @ N2 ) ) ) ) ).
% numeral_and_num
thf(fact_7378_last__list__update,axiom,
! [A: $tType,Xs2: list @ A,K: nat,X: A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( ( K
= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) )
=> ( ( last @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= X ) )
& ( ( K
!= ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) )
=> ( ( last @ A @ ( list_update @ A @ Xs2 @ K @ X ) )
= ( last @ A @ Xs2 ) ) ) ) ) ).
% last_list_update
thf(fact_7379_last__replicate,axiom,
! [A: $tType,N2: nat,X: A] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( ( last @ A @ ( replicate @ A @ N2 @ X ) )
= X ) ) ).
% last_replicate
thf(fact_7380_last__upt,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( last @ nat @ ( upt @ I @ J ) )
= ( minus_minus @ nat @ J @ ( one_one @ nat ) ) ) ) ).
% last_upt
thf(fact_7381_last__drop,axiom,
! [A: $tType,N2: nat,Xs2: list @ A] :
( ( ord_less @ nat @ N2 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( last @ A @ ( drop @ A @ N2 @ Xs2 ) )
= ( last @ A @ Xs2 ) ) ) ).
% last_drop
thf(fact_7382_dropWhile__last,axiom,
! [A: $tType,X: A,Xs2: list @ A,P: A > $o] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ~ ( P @ X )
=> ( ( last @ A @ ( dropWhile @ A @ P @ Xs2 ) )
= ( last @ A @ Xs2 ) ) ) ) ).
% dropWhile_last
thf(fact_7383_last__in__set,axiom,
! [A: $tType,As: list @ A] :
( ( As
!= ( nil @ A ) )
=> ( member @ A @ ( last @ A @ As ) @ ( set2 @ A @ As ) ) ) ).
% last_in_set
thf(fact_7384_and__num__eq__None__iff,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [M: num,N2: num] :
( ( ( bit_un7362597486090784418nd_num @ M @ N2 )
= ( none @ num ) )
= ( ( bit_se5824344872417868541ns_and @ A @ ( numeral_numeral @ A @ M ) @ ( numeral_numeral @ A @ N2 ) )
= ( zero_zero @ A ) ) ) ) ).
% and_num_eq_None_iff
thf(fact_7385_last__conv__nth,axiom,
! [A: $tType,Xs2: list @ A] :
( ( Xs2
!= ( nil @ A ) )
=> ( ( last @ A @ Xs2 )
= ( nth @ A @ Xs2 @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( one_one @ nat ) ) ) ) ) ).
% last_conv_nth
thf(fact_7386_listrel__iff__nth,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,R2: set @ ( product_prod @ A @ B )] :
( ( member @ ( product_prod @ ( list @ A ) @ ( list @ B ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ B ) @ Xs2 @ Ys3 ) @ ( listrel @ A @ B @ R2 ) )
= ( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
& ! [N3: nat] :
( ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ ( nth @ A @ Xs2 @ N3 ) @ ( nth @ B @ Ys3 @ N3 ) ) @ R2 ) ) ) ) ).
% listrel_iff_nth
thf(fact_7387_minus__coset__filter,axiom,
! [A: $tType,A4: set @ A,Xs2: list @ A] :
( ( minus_minus @ ( set @ A ) @ A4 @ ( coset @ A @ Xs2 ) )
= ( set2 @ A
@ ( filter2 @ A
@ ^ [X3: A] : ( member @ A @ X3 @ A4 )
@ Xs2 ) ) ) ).
% minus_coset_filter
thf(fact_7388_subset__code_I2_J,axiom,
! [B: $tType,A4: set @ B,Ys3: list @ B] :
( ( ord_less_eq @ ( set @ B ) @ A4 @ ( coset @ B @ Ys3 ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ ( set2 @ B @ Ys3 ) )
=> ~ ( member @ B @ X3 @ A4 ) ) ) ) ).
% subset_code(2)
thf(fact_7389_coset__def,axiom,
! [A: $tType] :
( ( coset @ A )
= ( ^ [Xs: list @ A] : ( uminus_uminus @ ( set @ A ) @ ( set2 @ A @ Xs ) ) ) ) ).
% coset_def
thf(fact_7390_compl__coset,axiom,
! [A: $tType,Xs2: list @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( coset @ A @ Xs2 ) )
= ( set2 @ A @ Xs2 ) ) ).
% compl_coset
thf(fact_7391_subset__code_I3_J,axiom,
! [C: $tType] :
~ ( ord_less_eq @ ( set @ C ) @ ( coset @ C @ ( nil @ C ) ) @ ( set2 @ C @ ( nil @ C ) ) ) ).
% subset_code(3)
thf(fact_7392_insort__insert__insort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ~ ( member @ A @ ( F2 @ X ) @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
=> ( ( linord329482645794927042rt_key @ B @ A @ F2 @ X @ Xs2 )
= ( linorder_insort_key @ B @ A @ F2 @ X @ Xs2 ) ) ) ) ).
% insort_insert_insort_key
thf(fact_7393_insort__insert__key__def,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ( ( linord329482645794927042rt_key @ B @ A )
= ( ^ [F3: B > A,X3: B,Xs: list @ B] : ( if @ ( list @ B ) @ ( member @ A @ ( F3 @ X3 ) @ ( image @ B @ A @ F3 @ ( set2 @ B @ Xs ) ) ) @ Xs @ ( linorder_insort_key @ B @ A @ F3 @ X3 @ Xs ) ) ) ) ) ).
% insort_insert_key_def
thf(fact_7394_insort__insert__triv,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( linord329482645794927042rt_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 )
= Xs2 ) ) ) ).
% insort_insert_triv
thf(fact_7395_insort__insert__key__triv,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,X: B,Xs2: list @ B] :
( ( member @ A @ ( F2 @ X ) @ ( image @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) ) )
=> ( ( linord329482645794927042rt_key @ B @ A @ F2 @ X @ Xs2 )
= Xs2 ) ) ) ).
% insort_insert_key_triv
thf(fact_7396_set__insort__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ( set2 @ A
@ ( linord329482645794927042rt_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 ) )
= ( insert2 @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ) ).
% set_insort_insert
thf(fact_7397_sorted__insort__insert,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,X: A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( linord329482645794927042rt_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 ) ) ) ) ).
% sorted_insort_insert
thf(fact_7398_insort__insert__insort,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( linord329482645794927042rt_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 )
= ( linorder_insort_key @ A @ A
@ ^ [X3: A] : X3
@ X
@ Xs2 ) ) ) ) ).
% insort_insert_insort
thf(fact_7399_sorted__insort__insert__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B,X: B] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ Xs2 ) )
=> ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( linord329482645794927042rt_key @ B @ A @ F2 @ X @ Xs2 ) ) ) ) ) ).
% sorted_insort_insert_key
thf(fact_7400_sort__key__conv__fold,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( inj_on @ B @ A @ F2 @ ( set2 @ B @ Xs2 ) )
=> ( ( linorder_sort_key @ B @ A @ F2 @ Xs2 )
= ( fold @ B @ ( list @ B ) @ ( linorder_insort_key @ B @ A @ F2 ) @ Xs2 @ ( nil @ B ) ) ) ) ) ).
% sort_key_conv_fold
thf(fact_7401_arg__min__inj__eq,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [F2: A > B,P: A > $o,A2: A] :
( ( inj_on @ A @ B @ F2 @ ( collect @ A @ P ) )
=> ( ( P @ A2 )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ A2 ) @ ( F2 @ Y4 ) ) )
=> ( ( lattices_ord_arg_min @ A @ B @ F2 @ P )
= A2 ) ) ) ) ) ).
% arg_min_inj_eq
thf(fact_7402_set__sort,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B] :
( ( set2 @ B @ ( linorder_sort_key @ B @ A @ F2 @ Xs2 ) )
= ( set2 @ B @ Xs2 ) ) ) ).
% set_sort
thf(fact_7403_arg__min__equality,axiom,
! [A: $tType,C: $tType] :
( ( order @ A )
=> ! [P: C > $o,K: C,F2: C > A] :
( ( P @ K )
=> ( ! [X4: C] :
( ( P @ X4 )
=> ( ord_less_eq @ A @ ( F2 @ K ) @ ( F2 @ X4 ) ) )
=> ( ( F2 @ ( lattices_ord_arg_min @ C @ A @ F2 @ P ) )
= ( F2 @ K ) ) ) ) ) ).
% arg_min_equality
thf(fact_7404_arg__min__nat__lemma,axiom,
! [A: $tType,P: A > $o,K: A,M: A > nat] :
( ( P @ K )
=> ( ( P @ ( lattices_ord_arg_min @ A @ nat @ M @ P ) )
& ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ nat @ ( M @ ( lattices_ord_arg_min @ A @ nat @ M @ P ) ) @ ( M @ Y3 ) ) ) ) ) ).
% arg_min_nat_lemma
thf(fact_7405_arg__min__nat__le,axiom,
! [A: $tType,P: A > $o,X: A,M: A > nat] :
( ( P @ X )
=> ( ord_less_eq @ nat @ ( M @ ( lattices_ord_arg_min @ A @ nat @ M @ P ) ) @ ( M @ X ) ) ) ).
% arg_min_nat_le
thf(fact_7406_arg__minI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [P: A > $o,X: A,F2: A > B,Q: A > $o] :
( ( P @ X )
=> ( ! [Y4: A] :
( ( P @ Y4 )
=> ~ ( ord_less @ B @ ( F2 @ Y4 ) @ ( F2 @ X ) ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( ! [Y3: A] :
( ( P @ Y3 )
=> ~ ( ord_less @ B @ ( F2 @ Y3 ) @ ( F2 @ X4 ) ) )
=> ( Q @ X4 ) ) )
=> ( Q @ ( lattices_ord_arg_min @ A @ B @ F2 @ P ) ) ) ) ) ) ).
% arg_minI
thf(fact_7407_sorted__sort,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( sorted_wrt @ A @ ( ord_less_eq @ A )
@ ( linorder_sort_key @ A @ A
@ ^ [X3: A] : X3
@ Xs2 ) ) ) ).
% sorted_sort
thf(fact_7408_sorted__sort__id,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ Xs2 )
=> ( ( linorder_sort_key @ A @ A
@ ^ [X3: A] : X3
@ Xs2 )
= Xs2 ) ) ) ).
% sorted_sort_id
thf(fact_7409_sorted__sort__key,axiom,
! [A: $tType,B: $tType] :
( ( linorder @ A )
=> ! [F2: B > A,Xs2: list @ B] : ( sorted_wrt @ A @ ( ord_less_eq @ A ) @ ( map @ B @ A @ F2 @ ( linorder_sort_key @ B @ A @ F2 @ Xs2 ) ) ) ) ).
% sorted_sort_key
thf(fact_7410_arg__min__on__def,axiom,
! [A: $tType,B: $tType] :
( ( ord @ A )
=> ( ( lattic7623131987881927897min_on @ B @ A )
= ( ^ [F3: B > A,S7: set @ B] :
( lattices_ord_arg_min @ B @ A @ F3
@ ^ [X3: B] : ( member @ B @ X3 @ S7 ) ) ) ) ) ).
% arg_min_on_def
thf(fact_7411_sorted__list__of__set__sort__remdups,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A] :
( ( linord4507533701916653071of_set @ A @ ( set2 @ A @ Xs2 ) )
= ( linorder_sort_key @ A @ A
@ ^ [X3: A] : X3
@ ( remdups @ A @ Xs2 ) ) ) ) ).
% sorted_list_of_set_sort_remdups
thf(fact_7412_arg__min__def,axiom,
! [A: $tType,B: $tType] :
( ( ord @ A )
=> ( ( lattices_ord_arg_min @ B @ A )
= ( ^ [F3: B > A,P3: B > $o] : ( fChoice @ B @ ( lattic501386751177426532rg_min @ B @ A @ F3 @ P3 ) ) ) ) ) ).
% arg_min_def
thf(fact_7413_in__measures_I2_J,axiom,
! [A: $tType,X: A,Y: A,F2: A > nat,Fs: list @ ( A > nat )] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measures @ A @ ( cons @ ( A > nat ) @ F2 @ Fs ) ) )
= ( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
| ( ( ( F2 @ X )
= ( F2 @ Y ) )
& ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measures @ A @ Fs ) ) ) ) ) ).
% in_measures(2)
thf(fact_7414_arg__min__natI,axiom,
! [A: $tType,P: A > $o,K: A,M: A > nat] :
( ( P @ K )
=> ( P @ ( lattices_ord_arg_min @ A @ nat @ M @ P ) ) ) ).
% arg_min_natI
thf(fact_7415_is__arg__min__arg__min__nat,axiom,
! [A: $tType,P: A > $o,X: A,M: A > nat] :
( ( P @ X )
=> ( lattic501386751177426532rg_min @ A @ nat @ M @ P @ ( lattices_ord_arg_min @ A @ nat @ M @ P ) ) ) ).
% is_arg_min_arg_min_nat
thf(fact_7416_is__arg__min__antimono,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [F2: A > B,P: A > $o,X: A,Y: A] :
( ( lattic501386751177426532rg_min @ A @ B @ F2 @ P @ X )
=> ( ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) )
=> ( ( P @ Y )
=> ( lattic501386751177426532rg_min @ A @ B @ F2 @ P @ Y ) ) ) ) ) ).
% is_arg_min_antimono
thf(fact_7417_is__arg__min__linorder,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ( ( lattic501386751177426532rg_min @ A @ B )
= ( ^ [F3: A > B,P3: A > $o,X3: A] :
( ( P3 @ X3 )
& ! [Y2: A] :
( ( P3 @ Y2 )
=> ( ord_less_eq @ B @ ( F3 @ X3 ) @ ( F3 @ Y2 ) ) ) ) ) ) ) ).
% is_arg_min_linorder
thf(fact_7418_is__arg__min__def,axiom,
! [A: $tType,B: $tType] :
( ( ord @ A )
=> ( ( lattic501386751177426532rg_min @ B @ A )
= ( ^ [F3: B > A,P3: B > $o,X3: B] :
( ( P3 @ X3 )
& ~ ? [Y2: B] :
( ( P3 @ Y2 )
& ( ord_less @ A @ ( F3 @ Y2 ) @ ( F3 @ X3 ) ) ) ) ) ) ) ).
% is_arg_min_def
thf(fact_7419_measures__less,axiom,
! [A: $tType,F2: A > nat,X: A,Y: A,Fs: list @ ( A > nat )] :
( ( ord_less @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measures @ A @ ( cons @ ( A > nat ) @ F2 @ Fs ) ) ) ) ).
% measures_less
thf(fact_7420_measures__lesseq,axiom,
! [A: $tType,F2: A > nat,X: A,Y: A,Fs: list @ ( A > nat )] :
( ( ord_less_eq @ nat @ ( F2 @ X ) @ ( F2 @ Y ) )
=> ( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measures @ A @ Fs ) )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X @ Y ) @ ( measures @ A @ ( cons @ ( A > nat ) @ F2 @ Fs ) ) ) ) ) ).
% measures_lesseq
thf(fact_7421_ex__is__arg__min__if__finite,axiom,
! [B: $tType,A: $tType] :
( ( order @ B )
=> ! [S3: set @ A,F2: A > B] :
( ( finite_finite @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X_1: A] :
( lattic501386751177426532rg_min @ A @ B @ F2
@ ^ [X3: A] : ( member @ A @ X3 @ S3 )
@ X_1 ) ) ) ) ).
% ex_is_arg_min_if_finite
thf(fact_7422_nhds__metric,axiom,
! [A: $tType] :
( ( real_V7819770556892013058_space @ A )
=> ( ( topolo7230453075368039082e_nhds @ A )
= ( ^ [X3: A] :
( complete_Inf_Inf @ ( filter @ A )
@ ( image @ real @ ( filter @ A )
@ ^ [E3: real] :
( principal @ A
@ ( collect @ A
@ ^ [Y2: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ Y2 @ X3 ) @ E3 ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ) ).
% nhds_metric
thf(fact_7423_eventually__uniformity__metric,axiom,
! [A: $tType] :
( ( real_V768167426530841204y_dist @ A )
=> ! [P: ( product_prod @ A @ A ) > $o] :
( ( eventually @ ( product_prod @ A @ A ) @ P @ ( topolo7806501430040627800ormity @ A ) )
= ( ? [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
& ! [X3: A,Y2: A] :
( ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ Y2 ) @ E3 )
=> ( P @ ( product_Pair @ A @ A @ X3 @ Y2 ) ) ) ) ) ) ) ).
% eventually_uniformity_metric
thf(fact_7424_uniformity__real__def,axiom,
( ( topolo7806501430040627800ormity @ real )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ real @ real ) )
@ ( image @ real @ ( filter @ ( product_prod @ real @ real ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ real @ real )
@ ( collect @ ( product_prod @ real @ real )
@ ( product_case_prod @ real @ real @ $o
@ ^ [X3: real,Y2: real] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ real @ X3 @ Y2 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% uniformity_real_def
thf(fact_7425_uniformity__complex__def,axiom,
( ( topolo7806501430040627800ormity @ complex )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ complex @ complex ) )
@ ( image @ real @ ( filter @ ( product_prod @ complex @ complex ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ complex @ complex )
@ ( collect @ ( product_prod @ complex @ complex )
@ ( product_case_prod @ complex @ complex @ $o
@ ^ [X3: complex,Y2: complex] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ complex @ X3 @ Y2 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% uniformity_complex_def
thf(fact_7426_uniformity__dist,axiom,
! [A: $tType] :
( ( real_V768167426530841204y_dist @ A )
=> ( ( topolo7806501430040627800ormity @ A )
= ( complete_Inf_Inf @ ( filter @ ( product_prod @ A @ A ) )
@ ( image @ real @ ( filter @ ( product_prod @ A @ A ) )
@ ^ [E3: real] :
( principal @ ( product_prod @ A @ A )
@ ( collect @ ( product_prod @ A @ A )
@ ( product_case_prod @ A @ A @ $o
@ ^ [X3: A,Y2: A] : ( ord_less @ real @ ( real_V557655796197034286t_dist @ A @ X3 @ Y2 ) @ E3 ) ) ) )
@ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ) ).
% uniformity_dist
thf(fact_7427_Cauchy__uniform__iff,axiom,
! [A: $tType] :
( ( topolo7287701948861334536_space @ A )
=> ( ( topolo3814608138187158403Cauchy @ A )
= ( ^ [X7: nat > A] :
! [P3: ( product_prod @ A @ A ) > $o] :
( ( eventually @ ( product_prod @ A @ A ) @ P3 @ ( topolo7806501430040627800ormity @ A ) )
=> ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ! [M6: nat] :
( ( ord_less_eq @ nat @ N6 @ M6 )
=> ( P3 @ ( product_Pair @ A @ A @ ( X7 @ N3 ) @ ( X7 @ M6 ) ) ) ) ) ) ) ) ) ).
% Cauchy_uniform_iff
thf(fact_7428_at__left__eq,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [Y: A,X: A] :
( ( ord_less @ A @ Y @ X )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_ord_lessThan @ A @ X ) )
= ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A3: A] : ( principal @ A @ ( set_or5935395276787703475ssThan @ A @ A3 @ X ) )
@ ( set_ord_lessThan @ A @ X ) ) ) ) ) ) ).
% at_left_eq
thf(fact_7429_at__right__eq,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( topolo174197925503356063within @ A @ X @ ( set_ord_greaterThan @ A @ X ) )
= ( complete_Inf_Inf @ ( filter @ A )
@ ( image @ A @ ( filter @ A )
@ ^ [A3: A] : ( principal @ A @ ( set_or5935395276787703475ssThan @ A @ X @ A3 ) )
@ ( set_ord_greaterThan @ A @ X ) ) ) ) ) ) ).
% at_right_eq
thf(fact_7430_Bseq__monoseq__convergent_H__inc,axiom,
! [F2: nat > real,M7: nat] :
( ( bfun @ nat @ real
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ M7 ) )
@ ( at_top @ nat ) )
=> ( ! [M5: nat,N: nat] :
( ( ord_less_eq @ nat @ M7 @ M5 )
=> ( ( ord_less_eq @ nat @ M5 @ N )
=> ( ord_less_eq @ real @ ( F2 @ M5 ) @ ( F2 @ N ) ) ) )
=> ( topolo6863149650580417670ergent @ real @ F2 ) ) ) ).
% Bseq_monoseq_convergent'_inc
thf(fact_7431_Bseq__monoseq__convergent_H__dec,axiom,
! [F2: nat > real,M7: nat] :
( ( bfun @ nat @ real
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ M7 ) )
@ ( at_top @ nat ) )
=> ( ! [M5: nat,N: nat] :
( ( ord_less_eq @ nat @ M7 @ M5 )
=> ( ( ord_less_eq @ nat @ M5 @ N )
=> ( ord_less_eq @ real @ ( F2 @ N ) @ ( F2 @ M5 ) ) ) )
=> ( topolo6863149650580417670ergent @ real @ F2 ) ) ) ).
% Bseq_monoseq_convergent'_dec
thf(fact_7432_convergent__mult__const__right__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( times_times @ A @ ( F2 @ N3 ) @ C2 ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ) ).
% convergent_mult_const_right_iff
thf(fact_7433_convergent__mult__const__iff,axiom,
! [A: $tType] :
( ( ( field @ A )
& ( topolo4211221413907600880p_mult @ A ) )
=> ! [C2: A,F2: nat > A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( times_times @ A @ C2 @ ( F2 @ N3 ) ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ) ).
% convergent_mult_const_iff
thf(fact_7434_convergent__ignore__initial__segment,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A,M: nat] :
( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( F2 @ ( plus_plus @ nat @ N3 @ M ) ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ).
% convergent_ignore_initial_segment
thf(fact_7435_convergent__add,axiom,
! [A: $tType] :
( ( topolo6943815403480290642id_add @ A )
=> ! [X6: nat > A,Y6: nat > A] :
( ( topolo6863149650580417670ergent @ A @ X6 )
=> ( ( topolo6863149650580417670ergent @ A @ Y6 )
=> ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( X6 @ N3 ) @ ( Y6 @ N3 ) ) ) ) ) ) ).
% convergent_add
thf(fact_7436_convergent__add__const__iff,axiom,
! [A: $tType] :
( ( topolo1287966508704411220up_add @ A )
=> ! [C2: A,F2: nat > A] :
( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( plus_plus @ A @ C2 @ ( F2 @ N3 ) ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ).
% convergent_add_const_iff
thf(fact_7437_convergent__add__const__right__iff,axiom,
! [A: $tType] :
( ( topolo1287966508704411220up_add @ A )
=> ! [F2: nat > A,C2: A] :
( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( plus_plus @ A @ ( F2 @ N3 ) @ C2 ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ).
% convergent_add_const_right_iff
thf(fact_7438_convergent__Suc__iff,axiom,
! [A: $tType] :
( ( topolo4958980785337419405_space @ A )
=> ! [F2: nat > A] :
( ( topolo6863149650580417670ergent @ A
@ ^ [N3: nat] : ( F2 @ ( suc @ N3 ) ) )
= ( topolo6863149650580417670ergent @ A @ F2 ) ) ) ).
% convergent_Suc_iff
thf(fact_7439_lim__le,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [F2: nat > A,X: A] :
( ( topolo6863149650580417670ergent @ A @ F2 )
=> ( ! [N: nat] : ( ord_less_eq @ A @ ( F2 @ N ) @ X )
=> ( ord_less_eq @ A @ ( topolo3827282254853284352ce_Lim @ nat @ A @ ( at_top @ nat ) @ F2 ) @ X ) ) ) ) ).
% lim_le
thf(fact_7440_Bseq__mono__convergent,axiom,
! [X6: nat > real] :
( ( bfun @ nat @ real @ X6 @ ( at_top @ nat ) )
=> ( ! [M5: nat,N: nat] :
( ( ord_less_eq @ nat @ M5 @ N )
=> ( ord_less_eq @ real @ ( X6 @ M5 ) @ ( X6 @ N ) ) )
=> ( topolo6863149650580417670ergent @ real @ X6 ) ) ) ).
% Bseq_mono_convergent
thf(fact_7441_convergent__realpow,axiom,
! [X: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ X )
=> ( ( ord_less_eq @ real @ X @ ( one_one @ real ) )
=> ( topolo6863149650580417670ergent @ real @ ( power_power @ real @ X ) ) ) ) ).
% convergent_realpow
thf(fact_7442_cauchy__filter__metric__filtermap,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V768167426530841204y_dist @ B )
& ( topolo7287701948861334536_space @ B ) )
=> ! [F2: A > B,F4: filter @ A] :
( ( topolo6773858410816713723filter @ B @ ( filtermap @ A @ B @ F2 @ F4 ) )
= ( ! [E3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E3 )
=> ? [P3: A > $o] :
( ( eventually @ A @ P3 @ F4 )
& ! [X3: A,Y2: A] :
( ( ( P3 @ X3 )
& ( P3 @ Y2 ) )
=> ( ord_less @ real @ ( real_V557655796197034286t_dist @ B @ ( F2 @ X3 ) @ ( F2 @ Y2 ) ) @ E3 ) ) ) ) ) ) ) ).
% cauchy_filter_metric_filtermap
thf(fact_7443_horner__sum__transfer,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType] :
( ( ( comm_semiring_0 @ B )
& ( comm_semiring_0 @ A ) )
=> ! [A4: A > B > $o,B4: C > D > $o] :
( ( A4 @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ A4 @ ( bNF_rel_fun @ A @ B @ A @ B @ A4 @ A4 ) @ ( plus_plus @ A ) @ ( plus_plus @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ A4 @ ( bNF_rel_fun @ A @ B @ A @ B @ A4 @ A4 ) @ ( times_times @ A ) @ ( times_times @ B ) )
=> ( bNF_rel_fun @ ( C > A ) @ ( D > B ) @ ( A > ( list @ C ) > A ) @ ( B > ( list @ D ) > B ) @ ( bNF_rel_fun @ C @ D @ A @ B @ B4 @ A4 ) @ ( bNF_rel_fun @ A @ B @ ( ( list @ C ) > A ) @ ( ( list @ D ) > B ) @ A4 @ ( bNF_rel_fun @ ( list @ C ) @ ( list @ D ) @ A @ B @ ( list_all2 @ C @ D @ B4 ) @ A4 ) ) @ ( groups4207007520872428315er_sum @ C @ A ) @ ( groups4207007520872428315er_sum @ D @ B ) ) ) ) ) ) ).
% horner_sum_transfer
thf(fact_7444_list__all2__nthD,axiom,
! [A: $tType,B: $tType,P: A > B > $o,Xs2: list @ A,Ys3: list @ B,P6: nat] :
( ( list_all2 @ A @ B @ P @ Xs2 @ Ys3 )
=> ( ( ord_less @ nat @ P6 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ P6 ) @ ( nth @ B @ Ys3 @ P6 ) ) ) ) ).
% list_all2_nthD
thf(fact_7445_list__all2__nthD2,axiom,
! [A: $tType,B: $tType,P: A > B > $o,Xs2: list @ A,Ys3: list @ B,P6: nat] :
( ( list_all2 @ A @ B @ P @ Xs2 @ Ys3 )
=> ( ( ord_less @ nat @ P6 @ ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( P @ ( nth @ A @ Xs2 @ P6 ) @ ( nth @ B @ Ys3 @ P6 ) ) ) ) ).
% list_all2_nthD2
thf(fact_7446_list__all2__all__nthI,axiom,
! [A: $tType,B: $tType,A2: list @ A,B2: list @ B,P: A > B > $o] :
( ( ( size_size @ ( list @ A ) @ A2 )
= ( size_size @ ( list @ B ) @ B2 ) )
=> ( ! [N: nat] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ A2 ) )
=> ( P @ ( nth @ A @ A2 @ N ) @ ( nth @ B @ B2 @ N ) ) )
=> ( list_all2 @ A @ B @ P @ A2 @ B2 ) ) ) ).
% list_all2_all_nthI
thf(fact_7447_list__all2__conv__all__nth,axiom,
! [B: $tType,A: $tType] :
( ( list_all2 @ A @ B )
= ( ^ [P3: A > B > $o,Xs: list @ A,Ys2: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ B ) @ Ys2 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( P3 @ ( nth @ A @ Xs @ I3 ) @ ( nth @ B @ Ys2 @ I3 ) ) ) ) ) ) ).
% list_all2_conv_all_nth
thf(fact_7448_list_Orel__cong,axiom,
! [A: $tType,B: $tType,X: list @ A,Ya: list @ A,Y: list @ B,Xa2: list @ B,R: A > B > $o,Ra: A > B > $o] :
( ( X = Ya )
=> ( ( Y = Xa2 )
=> ( ! [Z: A,Yb: B] :
( ( member @ A @ Z @ ( set2 @ A @ Ya ) )
=> ( ( member @ B @ Yb @ ( set2 @ B @ Xa2 ) )
=> ( ( R @ Z @ Yb )
= ( Ra @ Z @ Yb ) ) ) )
=> ( ( list_all2 @ A @ B @ R @ X @ Y )
= ( list_all2 @ A @ B @ Ra @ Ya @ Xa2 ) ) ) ) ) ).
% list.rel_cong
thf(fact_7449_list_Orel__mono__strong,axiom,
! [A: $tType,B: $tType,R: A > B > $o,X: list @ A,Y: list @ B,Ra: A > B > $o] :
( ( list_all2 @ A @ B @ R @ X @ Y )
=> ( ! [Z: A,Yb: B] :
( ( member @ A @ Z @ ( set2 @ A @ X ) )
=> ( ( member @ B @ Yb @ ( set2 @ B @ Y ) )
=> ( ( R @ Z @ Yb )
=> ( Ra @ Z @ Yb ) ) ) )
=> ( list_all2 @ A @ B @ Ra @ X @ Y ) ) ) ).
% list.rel_mono_strong
thf(fact_7450_list_Orel__refl__strong,axiom,
! [A: $tType,X: list @ A,Ra: A > A > $o] :
( ! [Z: A] :
( ( member @ A @ Z @ ( set2 @ A @ X ) )
=> ( Ra @ Z @ Z ) )
=> ( list_all2 @ A @ A @ Ra @ X @ X ) ) ).
% list.rel_refl_strong
thf(fact_7451_list__all2__same,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A] :
( ( list_all2 @ A @ A @ P @ Xs2 @ Xs2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X3 @ X3 ) ) ) ) ).
% list_all2_same
thf(fact_7452_filtermap__nhds__times,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ! [C2: A,A2: A] :
( ( C2
!= ( zero_zero @ A ) )
=> ( ( filtermap @ A @ A @ ( times_times @ A @ C2 ) @ ( topolo7230453075368039082e_nhds @ A @ A2 ) )
= ( topolo7230453075368039082e_nhds @ A @ ( times_times @ A @ C2 @ A2 ) ) ) ) ) ).
% filtermap_nhds_times
thf(fact_7453_product__lists__set,axiom,
! [A: $tType,Xss: list @ ( list @ A )] :
( ( set2 @ ( list @ A ) @ ( product_lists @ A @ Xss ) )
= ( collect @ ( list @ A )
@ ^ [Xs: list @ A] :
( list_all2 @ A @ ( list @ A )
@ ^ [X3: A,Ys2: list @ A] : ( member @ A @ X3 @ ( set2 @ A @ Ys2 ) )
@ Xs
@ Xss ) ) ) ).
% product_lists_set
thf(fact_7454_at__to__0,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [A2: A] :
( ( topolo174197925503356063within @ A @ A2 @ ( top_top @ ( set @ A ) ) )
= ( filtermap @ A @ A
@ ^ [X3: A] : ( plus_plus @ A @ X3 @ A2 )
@ ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% at_to_0
thf(fact_7455_at__right__to__0,axiom,
! [A2: real] :
( ( topolo174197925503356063within @ real @ A2 @ ( set_ord_greaterThan @ real @ A2 ) )
= ( filtermap @ real @ real
@ ^ [X3: real] : ( plus_plus @ real @ X3 @ A2 )
@ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% at_right_to_0
thf(fact_7456_sum__list__transfer,axiom,
! [A: $tType,B: $tType] :
( ( ( monoid_add @ B )
& ( monoid_add @ A ) )
=> ! [A4: A > B > $o] :
( ( A4 @ ( zero_zero @ A ) @ ( zero_zero @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ A4 @ ( bNF_rel_fun @ A @ B @ A @ B @ A4 @ A4 ) @ ( plus_plus @ A ) @ ( plus_plus @ B ) )
=> ( bNF_rel_fun @ ( list @ A ) @ ( list @ B ) @ A @ B @ ( list_all2 @ A @ B @ A4 ) @ A4 @ ( groups8242544230860333062m_list @ A ) @ ( groups8242544230860333062m_list @ B ) ) ) ) ) ).
% sum_list_transfer
thf(fact_7457_prod__list__transfer,axiom,
! [A: $tType,B: $tType] :
( ( ( monoid_mult @ B )
& ( monoid_mult @ A ) )
=> ! [A4: A > B > $o] :
( ( A4 @ ( one_one @ A ) @ ( one_one @ B ) )
=> ( ( bNF_rel_fun @ A @ B @ ( A > A ) @ ( B > B ) @ A4 @ ( bNF_rel_fun @ A @ B @ A @ B @ A4 @ A4 ) @ ( times_times @ A ) @ ( times_times @ B ) )
=> ( bNF_rel_fun @ ( list @ A ) @ ( list @ B ) @ A @ B @ ( list_all2 @ A @ B @ A4 ) @ A4 @ ( groups5270119922927024881d_list @ A ) @ ( groups5270119922927024881d_list @ B ) ) ) ) ) ).
% prod_list_transfer
thf(fact_7458_filtermap__times__pos__at__right,axiom,
! [A: $tType] :
( ( ( linordered_field @ A )
& ( topolo1944317154257567458pology @ A ) )
=> ! [C2: A,P6: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ C2 )
=> ( ( filtermap @ A @ A @ ( times_times @ A @ C2 ) @ ( topolo174197925503356063within @ A @ P6 @ ( set_ord_greaterThan @ A @ P6 ) ) )
= ( topolo174197925503356063within @ A @ ( times_times @ A @ C2 @ P6 ) @ ( set_ord_greaterThan @ A @ ( times_times @ A @ C2 @ P6 ) ) ) ) ) ) ).
% filtermap_times_pos_at_right
thf(fact_7459_at__to__infinity,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field @ A )
=> ( ( topolo174197925503356063within @ A @ ( zero_zero @ A ) @ ( top_top @ ( set @ A ) ) )
= ( filtermap @ A @ A @ ( inverse_inverse @ A ) @ ( at_infinity @ A ) ) ) ) ).
% at_to_infinity
thf(fact_7460_at__top__to__right,axiom,
( ( at_top @ real )
= ( filtermap @ real @ real @ ( inverse_inverse @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) ) ) ).
% at_top_to_right
thf(fact_7461_at__right__to__top,axiom,
( ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) )
= ( filtermap @ real @ real @ ( inverse_inverse @ real ) @ ( at_top @ real ) ) ) ).
% at_right_to_top
thf(fact_7462_filtermap__ln__at__right,axiom,
( ( filtermap @ real @ real @ ( ln_ln @ real ) @ ( topolo174197925503356063within @ real @ ( zero_zero @ real ) @ ( set_ord_greaterThan @ real @ ( zero_zero @ real ) ) ) )
= ( at_bot @ real ) ) ).
% filtermap_ln_at_right
thf(fact_7463_VEBT_Osimps_I7_J,axiom,
! [A: $tType,F1: ( option @ ( product_prod @ nat @ nat ) ) > nat > ( list @ ( product_prod @ vEBT_VEBT @ A ) ) > vEBT_VEBT > A > A,F22: $o > $o > A,X11: option @ ( product_prod @ nat @ nat ),X12: nat,X13: list @ vEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_rec_VEBT @ A @ F1 @ F22 @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( F1 @ X11 @ X12
@ ( map @ vEBT_VEBT @ ( product_prod @ vEBT_VEBT @ A )
@ ^ [VEBT: vEBT_VEBT] : ( product_Pair @ vEBT_VEBT @ A @ VEBT @ ( vEBT_rec_VEBT @ A @ F1 @ F22 @ VEBT ) )
@ X13 )
@ X14
@ ( vEBT_rec_VEBT @ A @ F1 @ F22 @ X14 ) ) ) ).
% VEBT.simps(7)
thf(fact_7464_arg__min__list_Oelims,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [X: A > B,Xa2: list @ A,Y: A] :
( ( ( arg_min_list @ A @ B @ X @ Xa2 )
= Y )
=> ( ! [X4: A] :
( ( Xa2
= ( cons @ A @ X4 @ ( nil @ A ) ) )
=> ( Y != X4 ) )
=> ( ! [X4: A,Y4: A,Zs3: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ ( cons @ A @ Y4 @ Zs3 ) ) )
=> ( Y
!= ( if @ A @ ( ord_less_eq @ B @ ( X @ X4 ) @ ( X @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y4 @ Zs3 ) ) ) ) @ X4 @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y4 @ Zs3 ) ) ) ) )
=> ~ ( ( Xa2
= ( nil @ A ) )
=> ( Y
!= ( undefined @ A ) ) ) ) ) ) ) ).
% arg_min_list.elims
thf(fact_7465_VEBT_Osimps_I8_J,axiom,
! [A: $tType,F1: ( option @ ( product_prod @ nat @ nat ) ) > nat > ( list @ ( product_prod @ vEBT_VEBT @ A ) ) > vEBT_VEBT > A > A,F22: $o > $o > A,X21: $o,X222: $o] :
( ( vEBT_rec_VEBT @ A @ F1 @ F22 @ ( vEBT_Leaf @ X21 @ X222 ) )
= ( F22 @ X21 @ X222 ) ) ).
% VEBT.simps(8)
thf(fact_7466_bot_Oordering__top__axioms,axiom,
! [A: $tType] :
( ( order_bot @ A )
=> ( ordering_top @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 )
@ ^ [X3: A,Y2: A] : ( ord_less @ A @ Y2 @ X3 )
@ ( bot_bot @ A ) ) ) ).
% bot.ordering_top_axioms
thf(fact_7467_subseqs__powset,axiom,
! [A: $tType,Xs2: list @ A] :
( ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( set2 @ ( list @ A ) @ ( subseqs @ A @ Xs2 ) ) )
= ( pow2 @ A @ ( set2 @ A @ Xs2 ) ) ) ).
% subseqs_powset
thf(fact_7468_ordering__top_Oextremum,axiom,
! [A: $tType,Less_eq2: A > A > $o,Less: A > A > $o,Top: A,A2: A] :
( ( ordering_top @ A @ Less_eq2 @ Less @ Top )
=> ( Less_eq2 @ A2 @ Top ) ) ).
% ordering_top.extremum
thf(fact_7469_ordering__top_Oextremum__strict,axiom,
! [A: $tType,Less_eq2: A > A > $o,Less: A > A > $o,Top: A,A2: A] :
( ( ordering_top @ A @ Less_eq2 @ Less @ Top )
=> ~ ( Less @ Top @ A2 ) ) ).
% ordering_top.extremum_strict
thf(fact_7470_ordering__top_Oextremum__unique,axiom,
! [A: $tType,Less_eq2: A > A > $o,Less: A > A > $o,Top: A,A2: A] :
( ( ordering_top @ A @ Less_eq2 @ Less @ Top )
=> ( ( Less_eq2 @ Top @ A2 )
= ( A2 = Top ) ) ) ).
% ordering_top.extremum_unique
thf(fact_7471_ordering__top_Onot__eq__extremum,axiom,
! [A: $tType,Less_eq2: A > A > $o,Less: A > A > $o,Top: A,A2: A] :
( ( ordering_top @ A @ Less_eq2 @ Less @ Top )
=> ( ( A2 != Top )
= ( Less @ A2 @ Top ) ) ) ).
% ordering_top.not_eq_extremum
thf(fact_7472_ordering__top_Oextremum__uniqueI,axiom,
! [A: $tType,Less_eq2: A > A > $o,Less: A > A > $o,Top: A,A2: A] :
( ( ordering_top @ A @ Less_eq2 @ Less @ Top )
=> ( ( Less_eq2 @ Top @ A2 )
=> ( A2 = Top ) ) ) ).
% ordering_top.extremum_uniqueI
thf(fact_7473_Pow__set_I2_J,axiom,
! [B: $tType,X: B,Xs2: list @ B] :
( ( pow2 @ B @ ( set2 @ B @ ( cons @ B @ X @ Xs2 ) ) )
= ( sup_sup @ ( set @ ( set @ B ) ) @ ( pow2 @ B @ ( set2 @ B @ Xs2 ) ) @ ( image @ ( set @ B ) @ ( set @ B ) @ ( insert2 @ B @ X ) @ ( pow2 @ B @ ( set2 @ B @ Xs2 ) ) ) ) ) ).
% Pow_set(2)
thf(fact_7474_gcd__nat_Oordering__top__axioms,axiom,
( ordering_top @ nat @ ( dvd_dvd @ nat )
@ ^ [M6: nat,N3: nat] :
( ( dvd_dvd @ nat @ M6 @ N3 )
& ( M6 != N3 ) )
@ ( zero_zero @ nat ) ) ).
% gcd_nat.ordering_top_axioms
thf(fact_7475_Pow__set_I1_J,axiom,
! [A: $tType] :
( ( pow2 @ A @ ( set2 @ A @ ( nil @ A ) ) )
= ( insert2 @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ ( set @ A ) ) ) ) ) ).
% Pow_set(1)
thf(fact_7476_top_Oordering__top__axioms,axiom,
! [A: $tType] :
( ( order_top @ A )
=> ( ordering_top @ A @ ( ord_less_eq @ A ) @ ( ord_less @ A ) @ ( top_top @ A ) ) ) ).
% top.ordering_top_axioms
thf(fact_7477_binomial__def,axiom,
( binomial
= ( ^ [N3: nat,K3: nat] :
( finite_card @ ( set @ nat )
@ ( collect @ ( set @ nat )
@ ^ [K6: set @ nat] :
( ( member @ ( set @ nat ) @ K6 @ ( pow2 @ nat @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ N3 ) ) )
& ( ( finite_card @ nat @ K6 )
= K3 ) ) ) ) ) ) ).
% binomial_def
thf(fact_7478_bot__nat__0_Oordering__top__axioms,axiom,
( ordering_top @ nat
@ ^ [X3: nat,Y2: nat] : ( ord_less_eq @ nat @ Y2 @ X3 )
@ ^ [X3: nat,Y2: nat] : ( ord_less @ nat @ Y2 @ X3 )
@ ( zero_zero @ nat ) ) ).
% bot_nat_0.ordering_top_axioms
thf(fact_7479_euclidean__size__times__nonunit,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ~ ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ B2 ) @ ( euclid6346220572633701492n_size @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ) ) ).
% euclidean_size_times_nonunit
thf(fact_7480_set__encode__vimage__Suc,axiom,
! [A4: set @ nat] :
( ( nat_set_encode @ ( vimage @ nat @ nat @ suc @ A4 ) )
= ( divide_divide @ nat @ ( nat_set_encode @ A4 ) @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ).
% set_encode_vimage_Suc
thf(fact_7481_size__0,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ( ( euclid6346220572633701492n_size @ A @ ( zero_zero @ A ) )
= ( zero_zero @ nat ) ) ) ).
% size_0
thf(fact_7482_euclidean__size__eq__0__iff,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A] :
( ( ( euclid6346220572633701492n_size @ A @ B2 )
= ( zero_zero @ nat ) )
= ( B2
= ( zero_zero @ A ) ) ) ) ).
% euclidean_size_eq_0_iff
thf(fact_7483_euclidean__size__1,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( euclid6346220572633701492n_size @ A @ ( one_one @ A ) )
= ( one_one @ nat ) ) ) ).
% euclidean_size_1
thf(fact_7484_euclidean__size__greater__0__iff,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
= ( B2
!= ( zero_zero @ A ) ) ) ) ).
% euclidean_size_greater_0_iff
thf(fact_7485_dvd__euclidean__size__eq__imp__dvd,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( ( euclid6346220572633701492n_size @ A @ A2 )
= ( euclid6346220572633701492n_size @ A @ B2 ) )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( dvd_dvd @ A @ A2 @ B2 ) ) ) ) ) ).
% dvd_euclidean_size_eq_imp_dvd
thf(fact_7486_euclidean__size__unit,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( euclid6346220572633701492n_size @ A @ A2 )
= ( euclid6346220572633701492n_size @ A @ ( one_one @ A ) ) ) ) ) ).
% euclidean_size_unit
thf(fact_7487_vimage__Suc__insert__0,axiom,
! [A4: set @ nat] :
( ( vimage @ nat @ nat @ suc @ ( insert2 @ nat @ ( zero_zero @ nat ) @ A4 ) )
= ( vimage @ nat @ nat @ suc @ A4 ) ) ).
% vimage_Suc_insert_0
thf(fact_7488_vimage__Suc__insert__Suc,axiom,
! [N2: nat,A4: set @ nat] :
( ( vimage @ nat @ nat @ suc @ ( insert2 @ nat @ ( suc @ N2 ) @ A4 ) )
= ( insert2 @ nat @ N2 @ ( vimage @ nat @ nat @ suc @ A4 ) ) ) ).
% vimage_Suc_insert_Suc
thf(fact_7489_finite__vimage__Suc__iff,axiom,
! [F4: set @ nat] :
( ( finite_finite @ nat @ ( vimage @ nat @ nat @ suc @ F4 ) )
= ( finite_finite @ nat @ F4 ) ) ).
% finite_vimage_Suc_iff
thf(fact_7490_unit__iff__euclidean__size,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
= ( ( ( euclid6346220572633701492n_size @ A @ A2 )
= ( euclid6346220572633701492n_size @ A @ ( one_one @ A ) ) )
& ( A2
!= ( zero_zero @ A ) ) ) ) ) ).
% unit_iff_euclidean_size
thf(fact_7491_size__mult__mono,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ord_less_eq @ nat @ ( euclid6346220572633701492n_size @ A @ A2 ) @ ( euclid6346220572633701492n_size @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% size_mult_mono
thf(fact_7492_size__mult__mono_H,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ord_less_eq @ nat @ ( euclid6346220572633701492n_size @ A @ A2 ) @ ( euclid6346220572633701492n_size @ A @ ( times_times @ A @ B2 @ A2 ) ) ) ) ) ).
% size_mult_mono'
thf(fact_7493_euclidean__size__times__unit,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( euclid6346220572633701492n_size @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( euclid6346220572633701492n_size @ A @ B2 ) ) ) ) ).
% euclidean_size_times_unit
thf(fact_7494_dvd__proper__imp__size__less,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ~ ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ A2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) ) ) ) ) ) ).
% dvd_proper_imp_size_less
thf(fact_7495_dvd__imp__size__le,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ord_less_eq @ nat @ ( euclid6346220572633701492n_size @ A @ A2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) ) ) ) ) ).
% dvd_imp_size_le
thf(fact_7496_mod__size__less,axiom,
! [A: $tType] :
( ( euclid3725896446679973847miring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ ( modulo_modulo @ A @ A2 @ B2 ) ) @ ( euclid6346220572633701492n_size @ A @ B2 ) ) ) ) ).
% mod_size_less
thf(fact_7497_card__vimage__inj__on__le,axiom,
! [A: $tType,B: $tType,F2: A > B,D4: set @ A,A4: set @ B] :
( ( inj_on @ A @ B @ F2 @ D4 )
=> ( ( finite_finite @ B @ A4 )
=> ( ord_less_eq @ nat @ ( finite_card @ A @ ( inf_inf @ ( set @ A ) @ ( vimage @ A @ B @ F2 @ A4 ) @ D4 ) ) @ ( finite_card @ B @ A4 ) ) ) ) ).
% card_vimage_inj_on_le
thf(fact_7498_set__decode__div__2,axiom,
! [X: nat] :
( ( nat_set_decode @ ( divide_divide @ nat @ X @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) )
= ( vimage @ nat @ nat @ suc @ ( nat_set_decode @ X ) ) ) ).
% set_decode_div_2
thf(fact_7499_divmod__cases,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [B2: A,A2: A] :
( ( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( modulo_modulo @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( A2
!= ( times_times @ A @ ( divide_divide @ A @ A2 @ B2 ) @ B2 ) ) ) )
=> ( ( ( B2
!= ( zero_zero @ A ) )
=> ! [Q2: A,R3: A] :
( ( ( euclid7384307370059645450egment @ A @ R3 )
= ( euclid7384307370059645450egment @ A @ B2 ) )
=> ( ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ R3 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
=> ( ( R3
!= ( zero_zero @ A ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= Q2 )
=> ( ( ( modulo_modulo @ A @ A2 @ B2 )
= R3 )
=> ( A2
!= ( plus_plus @ A @ ( times_times @ A @ Q2 @ B2 ) @ R3 ) ) ) ) ) ) ) )
=> ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divmod_cases
thf(fact_7500_mod__eqI,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [B2: A,R2: A,Q4: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( euclid7384307370059645450egment @ A @ R2 )
= ( euclid7384307370059645450egment @ A @ B2 ) )
=> ( ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ R2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
=> ( ( ( plus_plus @ A @ ( times_times @ A @ Q4 @ B2 ) @ R2 )
= A2 )
=> ( ( modulo_modulo @ A @ A2 @ B2 )
= R2 ) ) ) ) ) ) ).
% mod_eqI
thf(fact_7501_division__segment__1,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ( ( euclid7384307370059645450egment @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% division_segment_1
thf(fact_7502_division__segment__numeral,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [K: num] :
( ( euclid7384307370059645450egment @ A @ ( numeral_numeral @ A @ K ) )
= ( one_one @ A ) ) ) ).
% division_segment_numeral
thf(fact_7503_division__segment__of__nat,axiom,
! [A: $tType] :
( ( euclid5411537665997757685th_nat @ A )
=> ! [N2: nat] :
( ( euclid7384307370059645450egment @ A @ ( semiring_1_of_nat @ A @ N2 ) )
= ( one_one @ A ) ) ) ).
% division_segment_of_nat
thf(fact_7504_division__segment__eq__sgn,axiom,
! [K: int] :
( ( K
!= ( zero_zero @ int ) )
=> ( ( euclid7384307370059645450egment @ int @ K )
= ( sgn_sgn @ int @ K ) ) ) ).
% division_segment_eq_sgn
thf(fact_7505_division__segment__not__0,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A] :
( ( euclid7384307370059645450egment @ A @ A2 )
!= ( zero_zero @ A ) ) ) ).
% division_segment_not_0
thf(fact_7506_division__segment__nat__def,axiom,
( ( euclid7384307370059645450egment @ nat )
= ( ^ [N3: nat] : ( one_one @ nat ) ) ) ).
% division_segment_nat_def
thf(fact_7507_is__unit__division__segment,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A] : ( dvd_dvd @ A @ ( euclid7384307370059645450egment @ A @ A2 ) @ ( one_one @ A ) ) ) ).
% is_unit_division_segment
thf(fact_7508_division__segment__mult,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( euclid7384307370059645450egment @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( euclid7384307370059645450egment @ A @ A2 ) @ ( euclid7384307370059645450egment @ A @ B2 ) ) ) ) ) ) ).
% division_segment_mult
thf(fact_7509_division__segment__mod,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [B2: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ~ ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( euclid7384307370059645450egment @ A @ ( modulo_modulo @ A @ A2 @ B2 ) )
= ( euclid7384307370059645450egment @ A @ B2 ) ) ) ) ) ).
% division_segment_mod
thf(fact_7510_division__segment__int__def,axiom,
( ( euclid7384307370059645450egment @ int )
= ( ^ [K3: int] : ( if @ int @ ( ord_less_eq @ int @ ( zero_zero @ int ) @ K3 ) @ ( one_one @ int ) @ ( uminus_uminus @ int @ ( one_one @ int ) ) ) ) ) ).
% division_segment_int_def
thf(fact_7511_unique__euclidean__semiring__class_Odiv__eq__0__iff,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [A2: A,B2: A] :
( ( ( euclid7384307370059645450egment @ A @ A2 )
= ( euclid7384307370059645450egment @ A @ B2 ) )
=> ( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ A2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ) ).
% unique_euclidean_semiring_class.div_eq_0_iff
thf(fact_7512_div__eqI,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [B2: A,R2: A,Q4: A,A2: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( euclid7384307370059645450egment @ A @ R2 )
= ( euclid7384307370059645450egment @ A @ B2 ) )
=> ( ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ R2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
=> ( ( ( plus_plus @ A @ ( times_times @ A @ Q4 @ B2 ) @ R2 )
= A2 )
=> ( ( divide_divide @ A @ A2 @ B2 )
= Q4 ) ) ) ) ) ) ).
% div_eqI
thf(fact_7513_div__bounded,axiom,
! [A: $tType] :
( ( euclid3128863361964157862miring @ A )
=> ! [B2: A,R2: A,Q4: A] :
( ( B2
!= ( zero_zero @ A ) )
=> ( ( ( euclid7384307370059645450egment @ A @ R2 )
= ( euclid7384307370059645450egment @ A @ B2 ) )
=> ( ( ord_less @ nat @ ( euclid6346220572633701492n_size @ A @ R2 ) @ ( euclid6346220572633701492n_size @ A @ B2 ) )
=> ( ( divide_divide @ A @ ( plus_plus @ A @ ( times_times @ A @ Q4 @ B2 ) @ R2 ) @ B2 )
= Q4 ) ) ) ) ) ).
% div_bounded
thf(fact_7514_inv__image__partition,axiom,
! [A: $tType,Xs2: list @ A,P: A > $o,Ys3: list @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( P @ X4 ) )
=> ( ! [Y4: A] :
( ( member @ A @ Y4 @ ( set2 @ A @ Ys3 ) )
=> ~ ( P @ Y4 ) )
=> ( ( vimage @ ( list @ A ) @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( partition @ A @ P ) @ ( insert2 @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs2 @ Ys3 ) @ ( bot_bot @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ) )
= ( shuffles @ A @ Xs2 @ Ys3 ) ) ) ) ).
% inv_image_partition
thf(fact_7515_less__eq__enat__def,axiom,
( ( ord_less_eq @ extended_enat )
= ( ^ [M6: extended_enat] :
( extended_case_enat @ $o
@ ^ [N1: nat] :
( extended_case_enat @ $o
@ ^ [M1: nat] : ( ord_less_eq @ nat @ M1 @ N1 )
@ $false
@ M6 )
@ $true ) ) ) ).
% less_eq_enat_def
thf(fact_7516_partition__P,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Yes: list @ A,No4: list @ A] :
( ( ( partition @ A @ P @ Xs2 )
= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Yes @ No4 ) )
=> ( ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Yes ) )
=> ( P @ X2 ) )
& ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ No4 ) )
=> ~ ( P @ X2 ) ) ) ) ).
% partition_P
thf(fact_7517_partition__set,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A,Yes: list @ A,No4: list @ A] :
( ( ( partition @ A @ P @ Xs2 )
= ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Yes @ No4 ) )
=> ( ( sup_sup @ ( set @ A ) @ ( set2 @ A @ Yes ) @ ( set2 @ A @ No4 ) )
= ( set2 @ A @ Xs2 ) ) ) ).
% partition_set
thf(fact_7518_less__enat__def,axiom,
( ( ord_less @ extended_enat )
= ( ^ [M6: extended_enat,N3: extended_enat] :
( extended_case_enat @ $o
@ ^ [M1: nat] : ( extended_case_enat @ $o @ ( ord_less @ nat @ M1 ) @ $true @ N3 )
@ $false
@ M6 ) ) ) ).
% less_enat_def
thf(fact_7519_lexn_Osimps_I1_J,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A )] :
( ( lexn @ A @ R2 @ ( zero_zero @ nat ) )
= ( bot_bot @ ( set @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) ) ) ) ).
% lexn.simps(1)
thf(fact_7520_sorted__wrt__iff__nth__Suc__transp,axiom,
! [A: $tType,P: A > A > $o,Xs2: list @ A] :
( ( transp @ A @ P )
=> ( ( sorted_wrt @ A @ P @ Xs2 )
= ( ! [I3: nat] :
( ( ord_less @ nat @ ( suc @ I3 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ ( nth @ A @ Xs2 @ I3 ) @ ( nth @ A @ Xs2 @ ( suc @ I3 ) ) ) ) ) ) ) ).
% sorted_wrt_iff_nth_Suc_transp
thf(fact_7521_transp__realrel,axiom,
transp @ ( nat > rat ) @ realrel ).
% transp_realrel
thf(fact_7522_transp__gr,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( transp @ A
@ ^ [X3: A,Y2: A] : ( ord_less @ A @ Y2 @ X3 ) ) ) ).
% transp_gr
thf(fact_7523_transp__ge,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( transp @ A
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ).
% transp_ge
thf(fact_7524_transp__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( transp @ A @ ( ord_less_eq @ A ) ) ) ).
% transp_le
thf(fact_7525_transp__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( transp @ A @ ( ord_less @ A ) ) ) ).
% transp_less
thf(fact_7526_Frct__code__post_I1_J,axiom,
! [A2: int] :
( ( frct @ ( product_Pair @ int @ int @ ( zero_zero @ int ) @ A2 ) )
= ( zero_zero @ rat ) ) ).
% Frct_code_post(1)
thf(fact_7527_Frct__code__post_I2_J,axiom,
! [A2: int] :
( ( frct @ ( product_Pair @ int @ int @ A2 @ ( zero_zero @ int ) ) )
= ( zero_zero @ rat ) ) ).
% Frct_code_post(2)
thf(fact_7528_of__rat__le__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less_eq @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( one_one @ A ) )
= ( ord_less_eq @ rat @ R2 @ ( one_one @ rat ) ) ) ) ).
% of_rat_le_1_iff
thf(fact_7529_one__le__of__rat__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less_eq @ A @ ( one_one @ A ) @ ( field_char_0_of_rat @ A @ R2 ) )
= ( ord_less_eq @ rat @ ( one_one @ rat ) @ R2 ) ) ) ).
% one_le_of_rat_iff
thf(fact_7530_of__rat__0,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( field_char_0_of_rat @ A @ ( zero_zero @ rat ) )
= ( zero_zero @ A ) ) ) ).
% of_rat_0
thf(fact_7531_of__rat__eq__0__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat] :
( ( ( field_char_0_of_rat @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ rat ) ) ) ) ).
% of_rat_eq_0_iff
thf(fact_7532_zero__eq__of__rat__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat] :
( ( ( zero_zero @ A )
= ( field_char_0_of_rat @ A @ A2 ) )
= ( ( zero_zero @ rat )
= A2 ) ) ) ).
% zero_eq_of_rat_iff
thf(fact_7533_of__rat__1,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( field_char_0_of_rat @ A @ ( one_one @ rat ) )
= ( one_one @ A ) ) ) ).
% of_rat_1
thf(fact_7534_of__rat__eq__1__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat] :
( ( ( field_char_0_of_rat @ A @ A2 )
= ( one_one @ A ) )
= ( A2
= ( one_one @ rat ) ) ) ) ).
% of_rat_eq_1_iff
thf(fact_7535_one__eq__of__rat__iff,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat] :
( ( ( one_one @ A )
= ( field_char_0_of_rat @ A @ A2 ) )
= ( ( one_one @ rat )
= A2 ) ) ) ).
% one_eq_of_rat_iff
thf(fact_7536_of__rat__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( zero_zero @ A ) )
= ( ord_less @ rat @ R2 @ ( zero_zero @ rat ) ) ) ) ).
% of_rat_less_0_iff
thf(fact_7537_zero__less__of__rat__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( field_char_0_of_rat @ A @ R2 ) )
= ( ord_less @ rat @ ( zero_zero @ rat ) @ R2 ) ) ) ).
% zero_less_of_rat_iff
thf(fact_7538_one__less__of__rat__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less @ A @ ( one_one @ A ) @ ( field_char_0_of_rat @ A @ R2 ) )
= ( ord_less @ rat @ ( one_one @ rat ) @ R2 ) ) ) ).
% one_less_of_rat_iff
thf(fact_7539_of__rat__less__1__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( one_one @ A ) )
= ( ord_less @ rat @ R2 @ ( one_one @ rat ) ) ) ) ).
% of_rat_less_1_iff
thf(fact_7540_of__rat__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less_eq @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ rat @ R2 @ ( zero_zero @ rat ) ) ) ) ).
% of_rat_le_0_iff
thf(fact_7541_zero__le__of__rat__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( field_char_0_of_rat @ A @ R2 ) )
= ( ord_less_eq @ rat @ ( zero_zero @ rat ) @ R2 ) ) ) ).
% zero_le_of_rat_iff
thf(fact_7542_of__rat__neg__one,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( field_char_0_of_rat @ A @ ( uminus_uminus @ rat @ ( one_one @ rat ) ) )
= ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% of_rat_neg_one
thf(fact_7543_of__rat__add,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat,B2: rat] :
( ( field_char_0_of_rat @ A @ ( plus_plus @ rat @ A2 @ B2 ) )
= ( plus_plus @ A @ ( field_char_0_of_rat @ A @ A2 ) @ ( field_char_0_of_rat @ A @ B2 ) ) ) ) ).
% of_rat_add
thf(fact_7544_nonzero__of__rat__divide,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [B2: rat,A2: rat] :
( ( B2
!= ( zero_zero @ rat ) )
=> ( ( field_char_0_of_rat @ A @ ( divide_divide @ rat @ A2 @ B2 ) )
= ( divide_divide @ A @ ( field_char_0_of_rat @ A @ A2 ) @ ( field_char_0_of_rat @ A @ B2 ) ) ) ) ) ).
% nonzero_of_rat_divide
thf(fact_7545_of__rat__Real,axiom,
( ( field_char_0_of_rat @ real )
= ( ^ [X3: rat] :
( real2
@ ^ [N3: nat] : X3 ) ) ) ).
% of_rat_Real
thf(fact_7546_of__rat__less__eq,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat,S: rat] :
( ( ord_less_eq @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( field_char_0_of_rat @ A @ S ) )
= ( ord_less_eq @ rat @ R2 @ S ) ) ) ).
% of_rat_less_eq
thf(fact_7547_of__rat__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [R2: rat,S: rat] :
( ( ord_less @ A @ ( field_char_0_of_rat @ A @ R2 ) @ ( field_char_0_of_rat @ A @ S ) )
= ( ord_less @ rat @ R2 @ S ) ) ) ).
% of_rat_less
thf(fact_7548_of__rat__dense,axiom,
! [X: real,Y: real] :
( ( ord_less @ real @ X @ Y )
=> ? [Q2: rat] :
( ( ord_less @ real @ X @ ( field_char_0_of_rat @ real @ Q2 ) )
& ( ord_less @ real @ ( field_char_0_of_rat @ real @ Q2 ) @ Y ) ) ) ).
% of_rat_dense
thf(fact_7549_less__RealD,axiom,
! [Y6: nat > rat,X: real] :
( ( cauchy @ Y6 )
=> ( ( ord_less @ real @ X @ ( real2 @ Y6 ) )
=> ? [N: nat] : ( ord_less @ real @ X @ ( field_char_0_of_rat @ real @ ( Y6 @ N ) ) ) ) ) ).
% less_RealD
thf(fact_7550_Real__leI,axiom,
! [X6: nat > rat,Y: real] :
( ( cauchy @ X6 )
=> ( ! [N: nat] : ( ord_less_eq @ real @ ( field_char_0_of_rat @ real @ ( X6 @ N ) ) @ Y )
=> ( ord_less_eq @ real @ ( real2 @ X6 ) @ Y ) ) ) ).
% Real_leI
thf(fact_7551_le__RealI,axiom,
! [Y6: nat > rat,X: real] :
( ( cauchy @ Y6 )
=> ( ! [N: nat] : ( ord_less_eq @ real @ X @ ( field_char_0_of_rat @ real @ ( Y6 @ N ) ) )
=> ( ord_less_eq @ real @ X @ ( real2 @ Y6 ) ) ) ) ).
% le_RealI
thf(fact_7552_nonzero__of__rat__inverse,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [A2: rat] :
( ( A2
!= ( zero_zero @ rat ) )
=> ( ( field_char_0_of_rat @ A @ ( inverse_inverse @ rat @ A2 ) )
= ( inverse_inverse @ A @ ( field_char_0_of_rat @ A @ A2 ) ) ) ) ) ).
% nonzero_of_rat_inverse
thf(fact_7553_of__rat__rat,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [B2: int,A2: int] :
( ( B2
!= ( zero_zero @ int ) )
=> ( ( field_char_0_of_rat @ A @ ( fract @ A2 @ B2 ) )
= ( divide_divide @ A @ ( ring_1_of_int @ A @ A2 ) @ ( ring_1_of_int @ A @ B2 ) ) ) ) ) ).
% of_rat_rat
thf(fact_7554_span__alt,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_Vector_span @ A )
= ( ^ [B8: set @ A] :
( collect @ A
@ ^ [Uu3: A] :
? [F3: A > real] :
( ( Uu3
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( F3 @ X3 ) @ X3 )
@ ( collect @ A
@ ^ [X3: A] :
( ( F3 @ X3 )
!= ( zero_zero @ real ) ) ) ) )
& ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X3: A] :
( ( F3 @ X3 )
!= ( zero_zero @ real ) ) )
@ B8 )
& ( finite_finite @ A
@ ( collect @ A
@ ^ [X3: A] :
( ( F3 @ X3 )
!= ( zero_zero @ real ) ) ) ) ) ) ) ) ) ).
% span_alt
thf(fact_7555_span__explicit_H,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_Vector_span @ A )
= ( ^ [B3: set @ A] :
( collect @ A
@ ^ [Uu3: A] :
? [F3: A > real] :
( ( Uu3
= ( groups7311177749621191930dd_sum @ A @ A
@ ^ [V5: A] : ( real_V8093663219630862766scaleR @ A @ ( F3 @ V5 ) @ V5 )
@ ( collect @ A
@ ^ [V5: A] :
( ( F3 @ V5 )
!= ( zero_zero @ real ) ) ) ) )
& ( finite_finite @ A
@ ( collect @ A
@ ^ [V5: A] :
( ( F3 @ V5 )
!= ( zero_zero @ real ) ) ) )
& ! [V5: A] :
( ( ( F3 @ V5 )
!= ( zero_zero @ real ) )
=> ( member @ A @ V5 @ B3 ) ) ) ) ) ) ) ).
% span_explicit'
thf(fact_7556_span__insert__0,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A] :
( ( real_Vector_span @ A @ ( insert2 @ A @ ( zero_zero @ A ) @ S3 ) )
= ( real_Vector_span @ A @ S3 ) ) ) ).
% span_insert_0
thf(fact_7557_span__empty,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_Vector_span @ A @ ( bot_bot @ ( set @ A ) ) )
= ( insert2 @ A @ ( zero_zero @ A ) @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% span_empty
thf(fact_7558_span__delete__0,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A] :
( ( real_Vector_span @ A @ ( minus_minus @ ( set @ A ) @ S3 @ ( insert2 @ A @ ( zero_zero @ A ) @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( real_Vector_span @ A @ S3 ) ) ) ).
% span_delete_0
thf(fact_7559_span__induct__alt,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,S3: set @ A,H: A > $o] :
( ( member @ A @ X @ ( real_Vector_span @ A @ S3 ) )
=> ( ( H @ ( zero_zero @ A ) )
=> ( ! [C4: real,X4: A,Y4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ( H @ Y4 )
=> ( H @ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ C4 @ X4 ) @ Y4 ) ) ) )
=> ( H @ X ) ) ) ) ) ).
% span_induct_alt
thf(fact_7560_span__0,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A] : ( member @ A @ ( zero_zero @ A ) @ ( real_Vector_span @ A @ S3 ) ) ) ).
% span_0
thf(fact_7561_span__add__eq2,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Y: A,S3: set @ A,X: A] :
( ( member @ A @ Y @ ( real_Vector_span @ A @ S3 ) )
=> ( ( member @ A @ ( plus_plus @ A @ X @ Y ) @ ( real_Vector_span @ A @ S3 ) )
= ( member @ A @ X @ ( real_Vector_span @ A @ S3 ) ) ) ) ) ).
% span_add_eq2
thf(fact_7562_span__add__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,S3: set @ A,Y: A] :
( ( member @ A @ X @ ( real_Vector_span @ A @ S3 ) )
=> ( ( member @ A @ ( plus_plus @ A @ X @ Y ) @ ( real_Vector_span @ A @ S3 ) )
= ( member @ A @ Y @ ( real_Vector_span @ A @ S3 ) ) ) ) ) ).
% span_add_eq
thf(fact_7563_span__add,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [X: A,S3: set @ A,Y: A] :
( ( member @ A @ X @ ( real_Vector_span @ A @ S3 ) )
=> ( ( member @ A @ Y @ ( real_Vector_span @ A @ S3 ) )
=> ( member @ A @ ( plus_plus @ A @ X @ Y ) @ ( real_Vector_span @ A @ S3 ) ) ) ) ) ).
% span_add
thf(fact_7564_span__Un,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A,T6: set @ A] :
( ( real_Vector_span @ A @ ( sup_sup @ ( set @ A ) @ S3 @ T6 ) )
= ( collect @ A
@ ^ [Uu3: A] :
? [X3: A,Y2: A] :
( ( Uu3
= ( plus_plus @ A @ X3 @ Y2 ) )
& ( member @ A @ X3 @ ( real_Vector_span @ A @ S3 ) )
& ( member @ A @ Y2 @ ( real_Vector_span @ A @ T6 ) ) ) ) ) ) ).
% span_Un
thf(fact_7565_span__image__scale,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S3: set @ A,C2: A > real] :
( ( finite_finite @ A @ S3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ S3 )
=> ( ( C2 @ X4 )
!= ( zero_zero @ real ) ) )
=> ( ( real_Vector_span @ A
@ ( image @ A @ A
@ ^ [X3: A] : ( real_V8093663219630862766scaleR @ A @ ( C2 @ X3 ) @ X3 )
@ S3 ) )
= ( real_Vector_span @ A @ S3 ) ) ) ) ) ).
% span_image_scale
thf(fact_7566_independent__span__bound,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [T6: set @ A,S3: set @ A] :
( ( finite_finite @ A @ T6 )
=> ( ~ ( real_V358717886546972837endent @ A @ S3 )
=> ( ( ord_less_eq @ ( set @ A ) @ S3 @ ( real_Vector_span @ A @ T6 ) )
=> ( ( finite_finite @ A @ S3 )
& ( ord_less_eq @ nat @ ( finite_card @ A @ S3 ) @ ( finite_card @ A @ T6 ) ) ) ) ) ) ) ).
% independent_span_bound
thf(fact_7567_representation__def,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_V7696804695334737415tation @ A )
= ( ^ [Basis2: set @ A,V5: A] :
( if @ ( A > real )
@ ( ~ ( real_V358717886546972837endent @ A @ Basis2 )
& ( member @ A @ V5 @ ( real_Vector_span @ A @ Basis2 ) ) )
@ ( fChoice @ ( A > real )
@ ^ [F3: A > real] :
( ! [W3: A] :
( ( ( F3 @ W3 )
!= ( zero_zero @ real ) )
=> ( member @ A @ W3 @ Basis2 ) )
& ( finite_finite @ A
@ ( collect @ A
@ ^ [W3: A] :
( ( F3 @ W3 )
!= ( zero_zero @ real ) ) ) )
& ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [W3: A] : ( real_V8093663219630862766scaleR @ A @ ( F3 @ W3 ) @ W3 )
@ ( collect @ A
@ ^ [W3: A] :
( ( F3 @ W3 )
!= ( zero_zero @ real ) ) ) )
= V5 ) ) )
@ ^ [B3: A] : ( zero_zero @ real ) ) ) ) ) ).
% representation_def
thf(fact_7568_representation__eqI,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,V2: A,F2: A > real] :
( ~ ( real_V358717886546972837endent @ A @ Basis )
=> ( ( member @ A @ V2 @ ( real_Vector_span @ A @ Basis ) )
=> ( ! [B5: A] :
( ( ( F2 @ B5 )
!= ( zero_zero @ real ) )
=> ( member @ A @ B5 @ Basis ) )
=> ( ( finite_finite @ A
@ ( collect @ A
@ ^ [B3: A] :
( ( F2 @ B3 )
!= ( zero_zero @ real ) ) ) )
=> ( ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [B3: A] : ( real_V8093663219630862766scaleR @ A @ ( F2 @ B3 ) @ B3 )
@ ( collect @ A
@ ^ [B3: A] :
( ( F2 @ B3 )
!= ( zero_zero @ real ) ) ) )
= V2 )
=> ( ( real_V7696804695334737415tation @ A @ Basis @ V2 )
= F2 ) ) ) ) ) ) ) ).
% representation_eqI
thf(fact_7569_representation__zero,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A] :
( ( real_V7696804695334737415tation @ A @ Basis @ ( zero_zero @ A ) )
= ( ^ [B3: A] : ( zero_zero @ real ) ) ) ) ).
% representation_zero
thf(fact_7570_representation__ne__zero,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,V2: A,B2: A] :
( ( ( real_V7696804695334737415tation @ A @ Basis @ V2 @ B2 )
!= ( zero_zero @ real ) )
=> ( member @ A @ B2 @ Basis ) ) ) ).
% representation_ne_zero
thf(fact_7571_finite__representation,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,V2: A] :
( finite_finite @ A
@ ( collect @ A
@ ^ [B3: A] :
( ( real_V7696804695334737415tation @ A @ Basis @ V2 @ B3 )
!= ( zero_zero @ real ) ) ) ) ) ).
% finite_representation
thf(fact_7572_representation__basis,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,B2: A] :
( ~ ( real_V358717886546972837endent @ A @ Basis )
=> ( ( member @ A @ B2 @ Basis )
=> ( ( real_V7696804695334737415tation @ A @ Basis @ B2 )
= ( ^ [V5: A] : ( if @ real @ ( V5 = B2 ) @ ( one_one @ real ) @ ( zero_zero @ real ) ) ) ) ) ) ) ).
% representation_basis
thf(fact_7573_representation__add,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,V2: A,U: A] :
( ~ ( real_V358717886546972837endent @ A @ Basis )
=> ( ( member @ A @ V2 @ ( real_Vector_span @ A @ Basis ) )
=> ( ( member @ A @ U @ ( real_Vector_span @ A @ Basis ) )
=> ( ( real_V7696804695334737415tation @ A @ Basis @ ( plus_plus @ A @ U @ V2 ) )
= ( ^ [B3: A] : ( plus_plus @ real @ ( real_V7696804695334737415tation @ A @ Basis @ U @ B3 ) @ ( real_V7696804695334737415tation @ A @ Basis @ V2 @ B3 ) ) ) ) ) ) ) ) ).
% representation_add
thf(fact_7574_sum__nonzero__representation__eq,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [Basis: set @ A,V2: A] :
( ~ ( real_V358717886546972837endent @ A @ Basis )
=> ( ( member @ A @ V2 @ ( real_Vector_span @ A @ Basis ) )
=> ( ( groups7311177749621191930dd_sum @ A @ A
@ ^ [B3: A] : ( real_V8093663219630862766scaleR @ A @ ( real_V7696804695334737415tation @ A @ Basis @ V2 @ B3 ) @ B3 )
@ ( collect @ A
@ ^ [B3: A] :
( ( real_V7696804695334737415tation @ A @ Basis @ V2 @ B3 )
!= ( zero_zero @ real ) ) ) )
= V2 ) ) ) ) ).
% sum_nonzero_representation_eq
thf(fact_7575_span__card__ge__dim,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [B4: set @ A,V: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ V )
=> ( ( ord_less_eq @ ( set @ A ) @ V @ ( real_Vector_span @ A @ B4 ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ord_less_eq @ nat @ ( real_Vector_dim @ A @ V ) @ ( finite_card @ A @ B4 ) ) ) ) ) ) ).
% span_card_ge_dim
thf(fact_7576_dim__le__card,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [V: set @ A,W4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ V @ ( real_Vector_span @ A @ W4 ) )
=> ( ( finite_finite @ A @ W4 )
=> ( ord_less_eq @ nat @ ( real_Vector_dim @ A @ V ) @ ( finite_card @ A @ W4 ) ) ) ) ) ).
% dim_le_card
thf(fact_7577_dim__le__card_H,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ! [S: set @ A] :
( ( finite_finite @ A @ S )
=> ( ord_less_eq @ nat @ ( real_Vector_dim @ A @ S ) @ ( finite_card @ A @ S ) ) ) ) ).
% dim_le_card'
thf(fact_7578_dim__def,axiom,
! [A: $tType] :
( ( real_V4867850818363320053vector @ A )
=> ( ( real_Vector_dim @ A )
= ( ^ [V6: set @ A] :
( if @ nat
@ ? [B3: set @ A] :
( ~ ( real_V358717886546972837endent @ A @ B3 )
& ( ( real_Vector_span @ A @ B3 )
= ( real_Vector_span @ A @ V6 ) ) )
@ ( finite_card @ A
@ ( fChoice @ ( set @ A )
@ ^ [B3: set @ A] :
( ~ ( real_V358717886546972837endent @ A @ B3 )
& ( ( real_Vector_span @ A @ B3 )
= ( real_Vector_span @ A @ V6 ) ) ) ) )
@ ( zero_zero @ nat ) ) ) ) ) ).
% dim_def
thf(fact_7579_linear__indep__image__lemma,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [F2: A > B,B4: set @ A,X: A] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ( finite_finite @ A @ B4 )
=> ( ~ ( real_V358717886546972837endent @ B @ ( image @ A @ B @ F2 @ B4 ) )
=> ( ( inj_on @ A @ B @ F2 @ B4 )
=> ( ( member @ A @ X @ ( real_Vector_span @ A @ B4 ) )
=> ( ( ( F2 @ X )
= ( zero_zero @ B ) )
=> ( X
= ( zero_zero @ A ) ) ) ) ) ) ) ) ) ).
% linear_indep_image_lemma
thf(fact_7580_lexordp__conv__lexord,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_lexordp @ A )
= ( ^ [Xs: list @ A,Ys2: list @ A] : ( member @ ( product_prod @ ( list @ A ) @ ( list @ A ) ) @ ( product_Pair @ ( list @ A ) @ ( list @ A ) @ Xs @ Ys2 ) @ ( lexord @ A @ ( collect @ ( product_prod @ A @ A ) @ ( product_case_prod @ A @ A @ $o @ ( ord_less @ A ) ) ) ) ) ) ) ) ).
% lexordp_conv_lexord
thf(fact_7581_lexordp__simps_I3_J,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Xs2: list @ A,Y: A,Ys3: list @ A] :
( ( ord_lexordp @ A @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys3 ) )
= ( ( ord_less @ A @ X @ Y )
| ( ~ ( ord_less @ A @ Y @ X )
& ( ord_lexordp @ A @ Xs2 @ Ys3 ) ) ) ) ) ).
% lexordp_simps(3)
thf(fact_7582_linear__eq__0__on__span,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V4867850818363320053vector @ B )
& ( real_V4867850818363320053vector @ A ) )
=> ! [F2: A > B,B2: set @ A,X: A] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ B2 )
=> ( ( F2 @ X4 )
= ( zero_zero @ B ) ) )
=> ( ( member @ A @ X @ ( real_Vector_span @ A @ B2 ) )
=> ( ( F2 @ X )
= ( zero_zero @ B ) ) ) ) ) ) ).
% linear_eq_0_on_span
thf(fact_7583_linear__injective__0,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [F2: A > B] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
= ( ! [X3: A] :
( ( ( F2 @ X3 )
= ( zero_zero @ B ) )
=> ( X3
= ( zero_zero @ A ) ) ) ) ) ) ) ).
% linear_injective_0
thf(fact_7584_Real__Vector__Spaces_Olinear__iff,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ( ( real_Vector_linear @ A @ B )
= ( ^ [F3: A > B] :
( ! [X3: A,Y2: A] :
( ( F3 @ ( plus_plus @ A @ X3 @ Y2 ) )
= ( plus_plus @ B @ ( F3 @ X3 ) @ ( F3 @ Y2 ) ) )
& ! [C3: real,X3: A] :
( ( F3 @ ( real_V8093663219630862766scaleR @ A @ C3 @ X3 ) )
= ( real_V8093663219630862766scaleR @ B @ C3 @ ( F3 @ X3 ) ) ) ) ) ) ) ).
% Real_Vector_Spaces.linear_iff
thf(fact_7585_linearI,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [F2: A > B] :
( ! [B1: A,B22: A] :
( ( F2 @ ( plus_plus @ A @ B1 @ B22 ) )
= ( plus_plus @ B @ ( F2 @ B1 ) @ ( F2 @ B22 ) ) )
=> ( ! [R3: real,B5: A] :
( ( F2 @ ( real_V8093663219630862766scaleR @ A @ R3 @ B5 ) )
= ( real_V8093663219630862766scaleR @ B @ R3 @ ( F2 @ B5 ) ) )
=> ( real_Vector_linear @ A @ B @ F2 ) ) ) ) ).
% linearI
thf(fact_7586_module__hom__zero,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ( real_Vector_linear @ A @ B
@ ^ [X3: A] : ( zero_zero @ B ) ) ) ).
% module_hom_zero
thf(fact_7587_linear__compose__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [F2: A > B,G: A > B] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ( real_Vector_linear @ A @ B @ G )
=> ( real_Vector_linear @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ) ) ).
% linear_compose_add
thf(fact_7588_linear__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [F2: A > B,B13: A,B23: A] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ( F2 @ ( plus_plus @ A @ B13 @ B23 ) )
= ( plus_plus @ B @ ( F2 @ B13 ) @ ( F2 @ B23 ) ) ) ) ) ).
% linear_add
thf(fact_7589_linear__0,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V4867850818363320053vector @ B )
& ( real_V4867850818363320053vector @ A ) )
=> ! [F2: A > B] :
( ( real_Vector_linear @ A @ B @ F2 )
=> ( ( F2 @ ( zero_zero @ A ) )
= ( zero_zero @ B ) ) ) ) ).
% linear_0
thf(fact_7590_lexordp__append__leftD,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [Xs2: list @ A,Us3: list @ A,Vs3: list @ A] :
( ( ord_lexordp @ A @ ( append @ A @ Xs2 @ Us3 ) @ ( append @ A @ Xs2 @ Vs3 ) )
=> ( ! [A5: A] :
~ ( ord_less @ A @ A5 @ A5 )
=> ( ord_lexordp @ A @ Us3 @ Vs3 ) ) ) ) ).
% lexordp_append_leftD
thf(fact_7591_lexordp__irreflexive,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [Xs2: list @ A] :
( ! [X4: A] :
~ ( ord_less @ A @ X4 @ X4 )
=> ~ ( ord_lexordp @ A @ Xs2 @ Xs2 ) ) ) ).
% lexordp_irreflexive
thf(fact_7592_lexordp_OCons,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Y: A,Xs2: list @ A,Ys3: list @ A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_lexordp @ A @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys3 ) ) ) ) ).
% lexordp.Cons
thf(fact_7593_lexordp_OCons__eq,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Y: A,Xs2: list @ A,Ys3: list @ A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ~ ( ord_less @ A @ Y @ X )
=> ( ( ord_lexordp @ A @ Xs2 @ Ys3 )
=> ( ord_lexordp @ A @ ( cons @ A @ X @ Xs2 ) @ ( cons @ A @ Y @ Ys3 ) ) ) ) ) ) ).
% lexordp.Cons_eq
thf(fact_7594_lexordp__induct,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys3: list @ A,P: ( list @ A ) > ( list @ A ) > $o] :
( ( ord_lexordp @ A @ Xs2 @ Ys3 )
=> ( ! [Y4: A,Ys4: list @ A] : ( P @ ( nil @ A ) @ ( cons @ A @ Y4 @ Ys4 ) )
=> ( ! [X4: A,Xs3: list @ A,Y4: A,Ys4: list @ A] :
( ( ord_less @ A @ X4 @ Y4 )
=> ( P @ ( cons @ A @ X4 @ Xs3 ) @ ( cons @ A @ Y4 @ Ys4 ) ) )
=> ( ! [X4: A,Xs3: list @ A,Ys4: list @ A] :
( ( ord_lexordp @ A @ Xs3 @ Ys4 )
=> ( ( P @ Xs3 @ Ys4 )
=> ( P @ ( cons @ A @ X4 @ Xs3 ) @ ( cons @ A @ X4 @ Ys4 ) ) ) )
=> ( P @ Xs2 @ Ys3 ) ) ) ) ) ) ).
% lexordp_induct
thf(fact_7595_lexordp__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Xs2: list @ A,Ys3: list @ A] :
( ( ord_lexordp @ A @ Xs2 @ Ys3 )
=> ( ( ( Xs2
= ( nil @ A ) )
=> ! [Y4: A,Ys6: list @ A] :
( Ys3
!= ( cons @ A @ Y4 @ Ys6 ) ) )
=> ( ! [X4: A] :
( ? [Xs5: list @ A] :
( Xs2
= ( cons @ A @ X4 @ Xs5 ) )
=> ! [Y4: A] :
( ? [Ys6: list @ A] :
( Ys3
= ( cons @ A @ Y4 @ Ys6 ) )
=> ~ ( ord_less @ A @ X4 @ Y4 ) ) )
=> ~ ! [X4: A,Xs5: list @ A] :
( ( Xs2
= ( cons @ A @ X4 @ Xs5 ) )
=> ! [Ys6: list @ A] :
( ( Ys3
= ( cons @ A @ X4 @ Ys6 ) )
=> ~ ( ord_lexordp @ A @ Xs5 @ Ys6 ) ) ) ) ) ) ) ).
% lexordp_cases
thf(fact_7596_lexordp_Osimps,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_lexordp @ A )
= ( ^ [A1: list @ A,A22: list @ A] :
( ? [Y2: A,Ys2: list @ A] :
( ( A1
= ( nil @ A ) )
& ( A22
= ( cons @ A @ Y2 @ Ys2 ) ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( A1
= ( cons @ A @ X3 @ Xs ) )
& ( A22
= ( cons @ A @ Y2 @ Ys2 ) )
& ( ord_less @ A @ X3 @ Y2 ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( A1
= ( cons @ A @ X3 @ Xs ) )
& ( A22
= ( cons @ A @ Y2 @ Ys2 ) )
& ~ ( ord_less @ A @ X3 @ Y2 )
& ~ ( ord_less @ A @ Y2 @ X3 )
& ( ord_lexordp @ A @ Xs @ Ys2 ) ) ) ) ) ) ).
% lexordp.simps
thf(fact_7597_lexordp_Ocases,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A12: list @ A,A23: list @ A] :
( ( ord_lexordp @ A @ A12 @ A23 )
=> ( ( ( A12
= ( nil @ A ) )
=> ! [Y4: A,Ys4: list @ A] :
( A23
!= ( cons @ A @ Y4 @ Ys4 ) ) )
=> ( ! [X4: A] :
( ? [Xs3: list @ A] :
( A12
= ( cons @ A @ X4 @ Xs3 ) )
=> ! [Y4: A] :
( ? [Ys4: list @ A] :
( A23
= ( cons @ A @ Y4 @ Ys4 ) )
=> ~ ( ord_less @ A @ X4 @ Y4 ) ) )
=> ~ ! [X4: A,Y4: A,Xs3: list @ A] :
( ( A12
= ( cons @ A @ X4 @ Xs3 ) )
=> ! [Ys4: list @ A] :
( ( A23
= ( cons @ A @ Y4 @ Ys4 ) )
=> ( ~ ( ord_less @ A @ X4 @ Y4 )
=> ( ~ ( ord_less @ A @ Y4 @ X4 )
=> ~ ( ord_lexordp @ A @ Xs3 @ Ys4 ) ) ) ) ) ) ) ) ) ).
% lexordp.cases
thf(fact_7598_lexordp__append__left__rightI,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [X: A,Y: A,Us3: list @ A,Xs2: list @ A,Ys3: list @ A] :
( ( ord_less @ A @ X @ Y )
=> ( ord_lexordp @ A @ ( append @ A @ Us3 @ ( cons @ A @ X @ Xs2 ) ) @ ( append @ A @ Us3 @ ( cons @ A @ Y @ Ys3 ) ) ) ) ) ).
% lexordp_append_left_rightI
thf(fact_7599_lexordp__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_lexordp @ A )
= ( ^ [Xs: list @ A,Ys2: list @ A] :
( ? [X3: A,Vs: list @ A] :
( Ys2
= ( append @ A @ Xs @ ( cons @ A @ X3 @ Vs ) ) )
| ? [Us: list @ A,A3: A,B3: A,Vs: list @ A,Ws: list @ A] :
( ( ord_less @ A @ A3 @ B3 )
& ( Xs
= ( append @ A @ Us @ ( cons @ A @ A3 @ Vs ) ) )
& ( Ys2
= ( append @ A @ Us @ ( cons @ A @ B3 @ Ws ) ) ) ) ) ) ) ) ).
% lexordp_iff
thf(fact_7600_ord__class_Olexordp__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_lexordp @ A )
= ( complete_lattice_lfp @ ( ( list @ A ) > ( list @ A ) > $o )
@ ^ [P5: ( list @ A ) > ( list @ A ) > $o,X16: list @ A,X24: list @ A] :
( ? [Y2: A,Ys2: list @ A] :
( ( X16
= ( nil @ A ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( X16
= ( cons @ A @ X3 @ Xs ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) )
& ( ord_less @ A @ X3 @ Y2 ) )
| ? [X3: A,Y2: A,Xs: list @ A,Ys2: list @ A] :
( ( X16
= ( cons @ A @ X3 @ Xs ) )
& ( X24
= ( cons @ A @ Y2 @ Ys2 ) )
& ~ ( ord_less @ A @ X3 @ Y2 )
& ~ ( ord_less @ A @ Y2 @ X3 )
& ( P5 @ Xs @ Ys2 ) ) ) ) ) ) ).
% ord_class.lexordp_def
thf(fact_7601_bounded__bilinear_Ointro,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C] :
( ! [A5: A,A15: A,B5: B] :
( ( Prod @ ( plus_plus @ A @ A5 @ A15 ) @ B5 )
= ( plus_plus @ C @ ( Prod @ A5 @ B5 ) @ ( Prod @ A15 @ B5 ) ) )
=> ( ! [A5: A,B5: B,B9: B] :
( ( Prod @ A5 @ ( plus_plus @ B @ B5 @ B9 ) )
= ( plus_plus @ C @ ( Prod @ A5 @ B5 ) @ ( Prod @ A5 @ B9 ) ) )
=> ( ! [R3: real,A5: A,B5: B] :
( ( Prod @ ( real_V8093663219630862766scaleR @ A @ R3 @ A5 ) @ B5 )
= ( real_V8093663219630862766scaleR @ C @ R3 @ ( Prod @ A5 @ B5 ) ) )
=> ( ! [A5: A,R3: real,B5: B] :
( ( Prod @ A5 @ ( real_V8093663219630862766scaleR @ B @ R3 @ B5 ) )
= ( real_V8093663219630862766scaleR @ C @ R3 @ ( Prod @ A5 @ B5 ) ) )
=> ( ? [K9: real] :
! [A5: A,B5: B] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( Prod @ A5 @ B5 ) ) @ ( times_times @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ A5 ) @ ( real_V7770717601297561774m_norm @ B @ B5 ) ) @ K9 ) )
=> ( real_V2442710119149674383linear @ A @ B @ C @ Prod ) ) ) ) ) ) ) ).
% bounded_bilinear.intro
thf(fact_7602_bounded__bilinear_Oprod__diff__prod,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A ) )
=> ! [Prod: A > B > C,X: A,Y: B,A2: A,B2: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( minus_minus @ C @ ( Prod @ X @ Y ) @ ( Prod @ A2 @ B2 ) )
= ( plus_plus @ C @ ( plus_plus @ C @ ( Prod @ ( minus_minus @ A @ X @ A2 ) @ ( minus_minus @ B @ Y @ B2 ) ) @ ( Prod @ ( minus_minus @ A @ X @ A2 ) @ B2 ) ) @ ( Prod @ A2 @ ( minus_minus @ B @ Y @ B2 ) ) ) ) ) ) ).
% bounded_bilinear.prod_diff_prod
thf(fact_7603_bounded__bilinear_Ozero__right,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [Prod: A > B > C,A2: A] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( Prod @ A2 @ ( zero_zero @ B ) )
= ( zero_zero @ C ) ) ) ) ).
% bounded_bilinear.zero_right
thf(fact_7604_bounded__bilinear_Ozero__left,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B ) )
=> ! [Prod: A > B > C,B2: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( Prod @ ( zero_zero @ A ) @ B2 )
= ( zero_zero @ C ) ) ) ) ).
% bounded_bilinear.zero_left
thf(fact_7605_bounded__bilinear_Oadd__right,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A ) )
=> ! [Prod: A > B > C,A2: A,B2: B,B6: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( Prod @ A2 @ ( plus_plus @ B @ B2 @ B6 ) )
= ( plus_plus @ C @ ( Prod @ A2 @ B2 ) @ ( Prod @ A2 @ B6 ) ) ) ) ) ).
% bounded_bilinear.add_right
thf(fact_7606_bounded__bilinear_Oadd__left,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A ) )
=> ! [Prod: A > B > C,A2: A,A6: A,B2: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( Prod @ ( plus_plus @ A @ A2 @ A6 ) @ B2 )
= ( plus_plus @ C @ ( Prod @ A2 @ B2 ) @ ( Prod @ A6 @ B2 ) ) ) ) ) ).
% bounded_bilinear.add_left
thf(fact_7607_bounded__bilinear_Otendsto__zero,axiom,
! [C: $tType,B: $tType,A: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C,F2: D > A,F4: filter @ D,G: D > B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( ( filterlim @ D @ B @ G @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( filterlim @ D @ C
@ ^ [X3: D] : ( Prod @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F4 ) ) ) ) ) ).
% bounded_bilinear.tendsto_zero
thf(fact_7608_bounded__bilinear_Otendsto__left__zero,axiom,
! [C: $tType,B: $tType,A: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C,F2: D > A,F4: filter @ D,C2: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( filterlim @ D @ A @ F2 @ ( topolo7230453075368039082e_nhds @ A @ ( zero_zero @ A ) ) @ F4 )
=> ( filterlim @ D @ C
@ ^ [X3: D] : ( Prod @ ( F2 @ X3 ) @ C2 )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F4 ) ) ) ) ).
% bounded_bilinear.tendsto_left_zero
thf(fact_7609_bounded__bilinear_Otendsto__right__zero,axiom,
! [C: $tType,B: $tType,A: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C,F2: D > B,F4: filter @ D,C2: A] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( filterlim @ D @ B @ F2 @ ( topolo7230453075368039082e_nhds @ B @ ( zero_zero @ B ) ) @ F4 )
=> ( filterlim @ D @ C
@ ^ [X3: D] : ( Prod @ C2 @ ( F2 @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ C @ ( zero_zero @ C ) )
@ F4 ) ) ) ) ).
% bounded_bilinear.tendsto_right_zero
thf(fact_7610_lfp__funpow,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,N2: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( complete_lattice_lfp @ A @ ( compow @ ( A > A ) @ ( suc @ N2 ) @ F2 ) )
= ( complete_lattice_lfp @ A @ F2 ) ) ) ) ).
% lfp_funpow
thf(fact_7611_bounded__bilinear_OFDERIV,axiom,
! [A: $tType,C: $tType,B: $tType,D: $tType] :
( ( ( real_V822414075346904944vector @ D )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ A ) )
=> ! [Prod: A > B > C,F2: D > A,F6: D > A,X: D,S: set @ D,G: D > B,G4: D > B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( has_derivative @ D @ A @ F2 @ F6 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( ( has_derivative @ D @ B @ G @ G4 @ ( topolo174197925503356063within @ D @ X @ S ) )
=> ( has_derivative @ D @ C
@ ^ [X3: D] : ( Prod @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ^ [H2: D] : ( plus_plus @ C @ ( Prod @ ( F2 @ X ) @ ( G4 @ H2 ) ) @ ( Prod @ ( F6 @ H2 ) @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ D @ X @ S ) ) ) ) ) ) ).
% bounded_bilinear.FDERIV
thf(fact_7612_bounded__bilinear_Ononneg__bounded,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ? [K8: real] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ K8 )
& ! [A9: A,B11: B] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( Prod @ A9 @ B11 ) ) @ ( times_times @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ A9 ) @ ( real_V7770717601297561774m_norm @ B @ B11 ) ) @ K8 ) ) ) ) ) ).
% bounded_bilinear.nonneg_bounded
thf(fact_7613_lfp__Kleene__iter,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ( compow @ ( A > A ) @ ( suc @ K ) @ F2 @ ( bot_bot @ A ) )
= ( compow @ ( A > A ) @ K @ F2 @ ( bot_bot @ A ) ) )
=> ( ( complete_lattice_lfp @ A @ F2 )
= ( compow @ ( A > A ) @ K @ F2 @ ( bot_bot @ A ) ) ) ) ) ) ).
% lfp_Kleene_iter
thf(fact_7614_bounded__bilinear_Opos__bounded,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ! [Prod: A > B > C] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ? [K8: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ K8 )
& ! [A9: A,B11: B] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( Prod @ A9 @ B11 ) ) @ ( times_times @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ A9 ) @ ( real_V7770717601297561774m_norm @ B @ B11 ) ) @ K8 ) ) ) ) ) ).
% bounded_bilinear.pos_bounded
thf(fact_7615_bounded__bilinear__def,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ B )
& ( real_V822414075346904944vector @ C ) )
=> ( ( real_V2442710119149674383linear @ A @ B @ C )
= ( ^ [Prod2: A > B > C] :
( ! [A3: A,A16: A,B3: B] :
( ( Prod2 @ ( plus_plus @ A @ A3 @ A16 ) @ B3 )
= ( plus_plus @ C @ ( Prod2 @ A3 @ B3 ) @ ( Prod2 @ A16 @ B3 ) ) )
& ! [A3: A,B3: B,B14: B] :
( ( Prod2 @ A3 @ ( plus_plus @ B @ B3 @ B14 ) )
= ( plus_plus @ C @ ( Prod2 @ A3 @ B3 ) @ ( Prod2 @ A3 @ B14 ) ) )
& ! [R5: real,A3: A,B3: B] :
( ( Prod2 @ ( real_V8093663219630862766scaleR @ A @ R5 @ A3 ) @ B3 )
= ( real_V8093663219630862766scaleR @ C @ R5 @ ( Prod2 @ A3 @ B3 ) ) )
& ! [A3: A,R5: real,B3: B] :
( ( Prod2 @ A3 @ ( real_V8093663219630862766scaleR @ B @ R5 @ B3 ) )
= ( real_V8093663219630862766scaleR @ C @ R5 @ ( Prod2 @ A3 @ B3 ) ) )
& ? [K6: real] :
! [A3: A,B3: B] : ( ord_less_eq @ real @ ( real_V7770717601297561774m_norm @ C @ ( Prod2 @ A3 @ B3 ) ) @ ( times_times @ real @ ( times_times @ real @ ( real_V7770717601297561774m_norm @ A @ A3 ) @ ( real_V7770717601297561774m_norm @ B @ B3 ) ) @ K6 ) ) ) ) ) ) ).
% bounded_bilinear_def
thf(fact_7616_lfp__ordinal__induct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,P: A > $o] :
( ( order_mono @ A @ A @ F2 )
=> ( ! [S5: A] :
( ( P @ S5 )
=> ( ( ord_less_eq @ A @ S5 @ ( complete_lattice_lfp @ A @ F2 ) )
=> ( P @ ( F2 @ S5 ) ) ) )
=> ( ! [M8: set @ A] :
( ! [X2: A] :
( ( member @ A @ X2 @ M8 )
=> ( P @ X2 ) )
=> ( P @ ( complete_Sup_Sup @ A @ M8 ) ) )
=> ( P @ ( complete_lattice_lfp @ A @ F2 ) ) ) ) ) ) ).
% lfp_ordinal_induct
thf(fact_7617_lfp__induct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,P: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ ( inf_inf @ A @ ( complete_lattice_lfp @ A @ F2 ) @ P ) ) @ P )
=> ( ord_less_eq @ A @ ( complete_lattice_lfp @ A @ F2 ) @ P ) ) ) ) ).
% lfp_induct
thf(fact_7618_le__rel__bool__arg__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( ord_less_eq @ ( $o > A ) )
= ( ^ [X7: $o > A,Y8: $o > A] :
( ( ord_less_eq @ A @ ( X7 @ $false ) @ ( Y8 @ $false ) )
& ( ord_less_eq @ A @ ( X7 @ $true ) @ ( Y8 @ $true ) ) ) ) ) ) ).
% le_rel_bool_arg_iff
thf(fact_7619_lfp__greatest,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,A4: A] :
( ! [U3: A] :
( ( ord_less_eq @ A @ ( F2 @ U3 ) @ U3 )
=> ( ord_less_eq @ A @ A4 @ U3 ) )
=> ( ord_less_eq @ A @ A4 @ ( complete_lattice_lfp @ A @ F2 ) ) ) ) ).
% lfp_greatest
thf(fact_7620_lfp__lowerbound,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,A4: A] :
( ( ord_less_eq @ A @ ( F2 @ A4 ) @ A4 )
=> ( ord_less_eq @ A @ ( complete_lattice_lfp @ A @ F2 ) @ A4 ) ) ) ).
% lfp_lowerbound
thf(fact_7621_lfp__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,G: A > A] :
( ! [Z9: A] : ( ord_less_eq @ A @ ( F2 @ Z9 ) @ ( G @ Z9 ) )
=> ( ord_less_eq @ A @ ( complete_lattice_lfp @ A @ F2 ) @ ( complete_lattice_lfp @ A @ G ) ) ) ) ).
% lfp_mono
thf(fact_7622_lfp__lfp,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A > A] :
( ! [X4: A,Y4: A,W: A,Z: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ( ord_less_eq @ A @ W @ Z )
=> ( ord_less_eq @ A @ ( F2 @ X4 @ W ) @ ( F2 @ Y4 @ Z ) ) ) )
=> ( ( complete_lattice_lfp @ A
@ ^ [X3: A] : ( complete_lattice_lfp @ A @ ( F2 @ X3 ) ) )
= ( complete_lattice_lfp @ A
@ ^ [X3: A] : ( F2 @ X3 @ X3 ) ) ) ) ) ).
% lfp_lfp
thf(fact_7623_lfp__eqI,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F4: A > A,X: A] :
( ( order_mono @ A @ A @ F4 )
=> ( ( ( F4 @ X )
= X )
=> ( ! [Z: A] :
( ( ( F4 @ Z )
= Z )
=> ( ord_less_eq @ A @ X @ Z ) )
=> ( ( complete_lattice_lfp @ A @ F4 )
= X ) ) ) ) ) ).
% lfp_eqI
thf(fact_7624_lfp__def,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_lattice_lfp @ A )
= ( ^ [F3: A > A] :
( complete_Inf_Inf @ A
@ ( collect @ A
@ ^ [U2: A] : ( ord_less_eq @ A @ ( F3 @ U2 ) @ U2 ) ) ) ) ) ) ).
% lfp_def
thf(fact_7625_def__lfp__induct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: A,F2: A > A,P: A] :
( ( A4
= ( complete_lattice_lfp @ A @ F2 ) )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ ( inf_inf @ A @ A4 @ P ) ) @ P )
=> ( ord_less_eq @ A @ A4 @ P ) ) ) ) ) ).
% def_lfp_induct
thf(fact_7626_lfp__transfer__bounded,axiom,
! [A: $tType,B: $tType] :
( ( ( comple6319245703460814977attice @ B )
& ( comple6319245703460814977attice @ A ) )
=> ! [P: A > $o,F2: A > A,Alpha: A > B,G: B > B] :
( ( P @ ( bot_bot @ A ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( P @ ( F2 @ X4 ) ) )
=> ( ! [M8: nat > A] :
( ! [I4: nat] : ( P @ ( M8 @ I4 ) )
=> ( P @ ( complete_Sup_Sup @ A @ ( image @ nat @ A @ M8 @ ( top_top @ ( set @ nat ) ) ) ) ) )
=> ( ! [M8: nat > A] :
( ( order_mono @ nat @ A @ M8 )
=> ( ! [I4: nat] : ( P @ ( M8 @ I4 ) )
=> ( ( Alpha @ ( complete_Sup_Sup @ A @ ( image @ nat @ A @ M8 @ ( top_top @ ( set @ nat ) ) ) ) )
= ( complete_Sup_Sup @ B
@ ( image @ nat @ B
@ ^ [I3: nat] : ( Alpha @ ( M8 @ I3 ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) )
=> ( ( order_sup_continuous @ A @ A @ F2 )
=> ( ( order_sup_continuous @ B @ B @ G )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( ( ord_less_eq @ A @ X4 @ ( complete_lattice_lfp @ A @ F2 ) )
=> ( ( Alpha @ ( F2 @ X4 ) )
= ( G @ ( Alpha @ X4 ) ) ) ) )
=> ( ! [X4: B] : ( ord_less_eq @ B @ ( Alpha @ ( bot_bot @ A ) ) @ ( G @ X4 ) )
=> ( ( Alpha @ ( complete_lattice_lfp @ A @ F2 ) )
= ( complete_lattice_lfp @ B @ G ) ) ) ) ) ) ) ) ) ) ) ).
% lfp_transfer_bounded
thf(fact_7627_mono__cSup,axiom,
! [B: $tType,A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit941137186595557371_above @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ B @ ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ A4 ) ) @ ( F2 @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ) ) ).
% mono_cSup
thf(fact_7628_bdd__above_OI,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A4: set @ A,M7: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ X4 @ M7 ) )
=> ( condit941137186595557371_above @ A @ A4 ) ) ) ).
% bdd_above.I
thf(fact_7629_less__cSup__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,Y: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ X6 )
=> ( ( ord_less @ A @ Y @ ( complete_Sup_Sup @ A @ X6 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ X6 )
& ( ord_less @ A @ Y @ X3 ) ) ) ) ) ) ) ).
% less_cSup_iff
thf(fact_7630_cSup__le__iff,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ S3 ) @ A2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ S3 )
=> ( ord_less_eq @ A @ X3 @ A2 ) ) ) ) ) ) ) ).
% cSup_le_iff
thf(fact_7631_cSup__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ B4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ( ord_less_eq @ A @ B5 @ X2 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ B4 ) @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ) ).
% cSup_mono
thf(fact_7632_cSUP__upper2,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A4: set @ B,X: B,U: A] :
( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( member @ B @ X @ A4 )
=> ( ( ord_less_eq @ A @ U @ ( F2 @ X ) )
=> ( ord_less_eq @ A @ U @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ) ).
% cSUP_upper2
thf(fact_7633_cSUP__upper,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: B,A4: set @ B,F2: B > A] :
( ( member @ B @ X @ A4 )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ord_less_eq @ A @ ( F2 @ X ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ).
% cSUP_upper
thf(fact_7634_bdd__above_OI2,axiom,
! [A: $tType,B: $tType] :
( ( preorder @ A )
=> ! [A4: set @ B,F2: B > A,M7: A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ M7 ) )
=> ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ).
% bdd_above.I2
thf(fact_7635_bdd__above_OE,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A4: set @ A] :
( ( condit941137186595557371_above @ A @ A4 )
=> ~ ! [M8: A] :
~ ! [X2: A] :
( ( member @ A @ X2 @ A4 )
=> ( ord_less_eq @ A @ X2 @ M8 ) ) ) ) ).
% bdd_above.E
thf(fact_7636_bdd__above_Ounfold,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( condit941137186595557371_above @ A )
= ( ^ [A8: set @ A] :
? [M9: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( ord_less_eq @ A @ X3 @ M9 ) ) ) ) ) ).
% bdd_above.unfold
thf(fact_7637_cSup__upper,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A,X6: set @ A] :
( ( member @ A @ X @ X6 )
=> ( ( condit941137186595557371_above @ A @ X6 )
=> ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ X6 ) ) ) ) ) ).
% cSup_upper
thf(fact_7638_cSup__upper2,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A,X6: set @ A,Y: A] :
( ( member @ A @ X @ X6 )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( ( condit941137186595557371_above @ A @ X6 )
=> ( ord_less_eq @ A @ Y @ ( complete_Sup_Sup @ A @ X6 ) ) ) ) ) ) ).
% cSup_upper2
thf(fact_7639_cSUP__lessD,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A4: set @ B,Y: A,I: B] :
( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ Y )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less @ A @ ( F2 @ I ) @ Y ) ) ) ) ) ).
% cSUP_lessD
thf(fact_7640_lfp__transfer,axiom,
! [A: $tType,B: $tType] :
( ( ( comple6319245703460814977attice @ B )
& ( comple6319245703460814977attice @ A ) )
=> ! [Alpha: A > B,F2: A > A,G: B > B] :
( ( order_sup_continuous @ A @ B @ Alpha )
=> ( ( order_sup_continuous @ A @ A @ F2 )
=> ( ( order_sup_continuous @ B @ B @ G )
=> ( ! [X4: B] : ( ord_less_eq @ B @ ( Alpha @ ( bot_bot @ A ) ) @ ( G @ X4 ) )
=> ( ! [X4: A] :
( ( ord_less_eq @ A @ X4 @ ( complete_lattice_lfp @ A @ F2 ) )
=> ( ( Alpha @ ( F2 @ X4 ) )
= ( G @ ( Alpha @ X4 ) ) ) )
=> ( ( Alpha @ ( complete_lattice_lfp @ A @ F2 ) )
= ( complete_lattice_lfp @ B @ G ) ) ) ) ) ) ) ) ).
% lfp_transfer
thf(fact_7641_cSUP__le__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,F2: B > A,U: A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ U ) ) ) ) ) ) ) ).
% cSUP_le_iff
thf(fact_7642_cSUP__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,G: C > A,B4: set @ C,F2: B > A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ C @ A @ G @ B4 ) )
=> ( ! [N: B] :
( ( member @ B @ N @ A4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ B4 )
& ( ord_less_eq @ A @ ( F2 @ N ) @ ( G @ X2 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ) ) ).
% cSUP_mono
thf(fact_7643_cSup__subset__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ) ) ).
% cSup_subset_mono
thf(fact_7644_less__cSUP__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A4: set @ B,F2: B > A,A2: A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ A2 @ ( F2 @ X3 ) ) ) ) ) ) ) ) ).
% less_cSUP_iff
thf(fact_7645_cSUP__subset__mono,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,G: B > A,B4: set @ B,F2: B > A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit941137186595557371_above @ A @ ( image @ B @ A @ G @ B4 ) )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ) ) ).
% cSUP_subset_mono
thf(fact_7646_cSup__inter__less__eq,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( condit941137186595557371_above @ A @ A4 )
=> ( ( condit941137186595557371_above @ A @ B4 )
=> ( ( ( inf_inf @ ( set @ A ) @ A4 @ B4 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) @ ( sup_sup @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ) ) ) ).
% cSup_inter_less_eq
thf(fact_7647_cSup__cInf,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ S3 )
=> ( ( complete_Sup_Sup @ A @ S3 )
= ( complete_Inf_Inf @ A
@ ( collect @ A
@ ^ [X3: A] :
! [Y2: A] :
( ( member @ A @ Y2 @ S3 )
=> ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ) ) ) ).
% cSup_cInf
thf(fact_7648_mono__cSUP,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A4: C > A,I5: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit941137186595557371_above @ A @ ( image @ C @ A @ A4 @ I5 ) )
=> ( ( I5
!= ( bot_bot @ ( set @ C ) ) )
=> ( ord_less_eq @ B
@ ( complete_Sup_Sup @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) )
@ ( F2 @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ A4 @ I5 ) ) ) ) ) ) ) ) ).
% mono_cSUP
thf(fact_7649_Max_Osemilattice__order__set__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( lattic4895041142388067077er_set @ A @ ( ord_max @ A )
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 )
@ ^ [X3: A,Y2: A] : ( ord_less @ A @ Y2 @ X3 ) ) ) ).
% Max.semilattice_order_set_axioms
thf(fact_7650_mono__cINF,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A4: C > A,I5: set @ C] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit1013018076250108175_below @ A @ ( image @ C @ A @ A4 @ I5 ) )
=> ( ( I5
!= ( bot_bot @ ( set @ C ) ) )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ A4 @ I5 ) ) )
@ ( complete_Inf_Inf @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) ) ) ) ) ) ) ).
% mono_cINF
thf(fact_7651_bdd__belowI,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A4: set @ A,M: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ M @ X4 ) )
=> ( condit1013018076250108175_below @ A @ A4 ) ) ) ).
% bdd_belowI
thf(fact_7652_bdd__below_OI,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A4: set @ A,M7: A] :
( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ M7 @ X4 ) )
=> ( condit1013018076250108175_below @ A @ A4 ) ) ) ).
% bdd_below.I
thf(fact_7653_le__cInf__iff,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A,A2: A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( ord_less_eq @ A @ A2 @ ( complete_Inf_Inf @ A @ S3 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ S3 )
=> ( ord_less_eq @ A @ A2 @ X3 ) ) ) ) ) ) ) ).
% le_cInf_iff
thf(fact_7654_cInf__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ B4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ( ord_less_eq @ A @ X2 @ B5 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) ) ) ) ) ).
% cInf_mono
thf(fact_7655_bdd__belowI2,axiom,
! [A: $tType,B: $tType] :
( ( preorder @ A )
=> ! [A4: set @ B,M: A,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ M @ ( F2 @ X4 ) ) )
=> ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ).
% bdd_belowI2
thf(fact_7656_bdd__below_OI2,axiom,
! [A: $tType,B: $tType] :
( ( preorder @ A )
=> ! [A4: set @ B,M7: A,F2: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ M7 @ ( F2 @ X4 ) ) )
=> ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ).
% bdd_below.I2
thf(fact_7657_cINF__lower,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A4: set @ B,X: B] :
( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( member @ B @ X @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( F2 @ X ) ) ) ) ) ).
% cINF_lower
thf(fact_7658_cINF__lower2,axiom,
! [B: $tType,A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A4: set @ B,X: B,U: A] :
( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( member @ B @ X @ A4 )
=> ( ( ord_less_eq @ A @ ( F2 @ X ) @ U )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U ) ) ) ) ) ).
% cINF_lower2
thf(fact_7659_cInf__lower2,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A,X6: set @ A,Y: A] :
( ( member @ A @ X @ X6 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( condit1013018076250108175_below @ A @ X6 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ X6 ) @ Y ) ) ) ) ) ).
% cInf_lower2
thf(fact_7660_cInf__lower,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [X: A,X6: set @ A] :
( ( member @ A @ X @ X6 )
=> ( ( condit1013018076250108175_below @ A @ X6 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ X6 ) @ X ) ) ) ) ).
% cInf_lower
thf(fact_7661_bdd__below_OE,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A4: set @ A] :
( ( condit1013018076250108175_below @ A @ A4 )
=> ~ ! [M8: A] :
~ ! [X2: A] :
( ( member @ A @ X2 @ A4 )
=> ( ord_less_eq @ A @ M8 @ X2 ) ) ) ) ).
% bdd_below.E
thf(fact_7662_bdd__below_Ounfold,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( condit1013018076250108175_below @ A )
= ( ^ [A8: set @ A] :
? [M9: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( ord_less_eq @ A @ M9 @ X3 ) ) ) ) ) ).
% bdd_below.unfold
thf(fact_7663_cInf__less__iff,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [X6: set @ A,Y: A] :
( ( X6
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ X6 )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ X6 ) @ Y )
= ( ? [X3: A] :
( ( member @ A @ X3 @ X6 )
& ( ord_less @ A @ X3 @ Y ) ) ) ) ) ) ) ).
% cInf_less_iff
thf(fact_7664_less__cINF__D,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [F2: B > A,A4: set @ B,Y: A,I: B] :
( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less @ A @ Y @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less @ A @ Y @ ( F2 @ I ) ) ) ) ) ) ).
% less_cINF_D
thf(fact_7665_le__cINF__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,F2: B > A,U: A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ U @ ( F2 @ X3 ) ) ) ) ) ) ) ) ).
% le_cINF_iff
thf(fact_7666_cINF__mono,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [B4: set @ B,F2: C > A,A4: set @ C,G: B > A] :
( ( B4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ C @ A @ F2 @ A4 ) )
=> ( ! [M5: B] :
( ( member @ B @ M5 @ B4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ A4 )
& ( ord_less_eq @ A @ ( F2 @ X2 ) @ ( G @ M5 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% cINF_mono
thf(fact_7667_cInf__superset__mono,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ B4 ) @ ( complete_Inf_Inf @ A @ A4 ) ) ) ) ) ) ).
% cInf_superset_mono
thf(fact_7668_cINF__less__iff,axiom,
! [A: $tType,B: $tType] :
( ( condit6923001295902523014norder @ A )
=> ! [A4: set @ B,F2: B > A,A2: A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ A2 )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ ( F2 @ X3 ) @ A2 ) ) ) ) ) ) ) ).
% cINF_less_iff
thf(fact_7669_Inf__fin_Osemilattice__order__set__axioms,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( lattic4895041142388067077er_set @ A @ ( inf_inf @ A ) @ ( ord_less_eq @ A ) @ ( ord_less @ A ) ) ) ).
% Inf_fin.semilattice_order_set_axioms
thf(fact_7670_Min_Osemilattice__order__set__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( lattic4895041142388067077er_set @ A @ ( ord_min @ A ) @ ( ord_less_eq @ A ) @ ( ord_less @ A ) ) ) ).
% Min.semilattice_order_set_axioms
thf(fact_7671_cINF__superset__mono,axiom,
! [A: $tType,B: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ B,G: B > A,B4: set @ B,F2: B > A] :
( ( A4
!= ( bot_bot @ ( set @ B ) ) )
=> ( ( condit1013018076250108175_below @ A @ ( image @ B @ A @ G @ B4 ) )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ B4 )
=> ( ord_less_eq @ A @ ( G @ X4 ) @ ( F2 @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ) ) ).
% cINF_superset_mono
thf(fact_7672_less__eq__cInf__inter,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( condit1013018076250108175_below @ A @ A4 )
=> ( ( condit1013018076250108175_below @ A @ B4 )
=> ( ( ( inf_inf @ ( set @ A ) @ A4 @ B4 )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) @ ( complete_Inf_Inf @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ) ).
% less_eq_cInf_inter
thf(fact_7673_cInf__le__cSup,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [A4: set @ A] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit941137186595557371_above @ A @ A4 )
=> ( ( condit1013018076250108175_below @ A @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ) ).
% cInf_le_cSup
thf(fact_7674_Sup__fin_Osemilattice__order__set__axioms,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( lattic4895041142388067077er_set @ A @ ( sup_sup @ A )
@ ^ [X3: A,Y2: A] : ( ord_less_eq @ A @ Y2 @ X3 )
@ ^ [X3: A,Y2: A] : ( ord_less @ A @ Y2 @ X3 ) ) ) ).
% Sup_fin.semilattice_order_set_axioms
thf(fact_7675_cInf__cSup,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice @ A )
=> ! [S3: set @ A] :
( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( condit1013018076250108175_below @ A @ S3 )
=> ( ( complete_Inf_Inf @ A @ S3 )
= ( complete_Sup_Sup @ A
@ ( collect @ A
@ ^ [X3: A] :
! [Y2: A] :
( ( member @ A @ Y2 @ S3 )
=> ( ord_less_eq @ A @ X3 @ Y2 ) ) ) ) ) ) ) ) ).
% cInf_cSup
thf(fact_7676_mono__cInf,axiom,
! [B: $tType,A: $tType] :
( ( ( condit1219197933456340205attice @ A )
& ( condit1219197933456340205attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( condit1013018076250108175_below @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ A4 ) ) @ ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ) ) ).
% mono_cInf
thf(fact_7677_Gcd__fin__def,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( semiring_gcd_Gcd_fin @ A )
= ( bounde2362111253966948842tice_F @ A @ ( gcd_gcd @ A ) @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ) ).
% Gcd_fin_def
thf(fact_7678_gen__length__def,axiom,
! [A: $tType] :
( ( gen_length @ A )
= ( ^ [N3: nat,Xs: list @ A] : ( plus_plus @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) ) ) ) ).
% gen_length_def
thf(fact_7679_bounded__quasi__semilattice__set_OF_Ocong,axiom,
! [A: $tType] :
( ( bounde2362111253966948842tice_F @ A )
= ( bounde2362111253966948842tice_F @ A ) ) ).
% bounded_quasi_semilattice_set.F.cong
thf(fact_7680_gen__length__code_I2_J,axiom,
! [B: $tType,N2: nat,X: B,Xs2: list @ B] :
( ( gen_length @ B @ N2 @ ( cons @ B @ X @ Xs2 ) )
= ( gen_length @ B @ ( suc @ N2 ) @ Xs2 ) ) ).
% gen_length_code(2)
thf(fact_7681_length__code,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) )
= ( gen_length @ A @ ( zero_zero @ nat ) ) ) ).
% length_code
thf(fact_7682_bounded__quasi__semilattice__set_Oremove,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A2: A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 )
= ( F2 @ A2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ).
% bounded_quasi_semilattice_set.remove
thf(fact_7683_bounded__quasi__semilattice__set_Oinsert__remove,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A2: A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( insert2 @ A @ A2 @ A4 ) )
= ( F2 @ A2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ).
% bounded_quasi_semilattice_set.insert_remove
thf(fact_7684_bounded__quasi__semilattice__set_Oin__idem,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A2: A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( F2 @ A2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) )
= ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) ) ) ) ).
% bounded_quasi_semilattice_set.in_idem
thf(fact_7685_bounded__quasi__semilattice__set_Onormalize,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( Normalize @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) )
= ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) ) ) ).
% bounded_quasi_semilattice_set.normalize
thf(fact_7686_bounded__quasi__semilattice__set_Oempty,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( bot_bot @ ( set @ A ) ) )
= Top ) ) ).
% bounded_quasi_semilattice_set.empty
thf(fact_7687_bounded__quasi__semilattice__set_Oinfinite,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ~ ( finite_finite @ A @ A4 )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 )
= Bot ) ) ) ).
% bounded_quasi_semilattice_set.infinite
thf(fact_7688_bounded__quasi__semilattice__set_Osubset,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,B4: set @ A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( F2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ B4 ) @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) )
= ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) ) ) ) ).
% bounded_quasi_semilattice_set.subset
thf(fact_7689_bounded__quasi__semilattice__set_Oinsert,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A2: A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( insert2 @ A @ A2 @ A4 ) )
= ( F2 @ A2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) ) ) ) ).
% bounded_quasi_semilattice_set.insert
thf(fact_7690_bounded__quasi__semilattice__set_Ounion,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A4: set @ A,B4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( F2 @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 ) @ ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ B4 ) ) ) ) ).
% bounded_quasi_semilattice_set.union
thf(fact_7691_bounded__quasi__semilattice__set_Oeq__fold,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,A4: set @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( ( finite_finite @ A @ A4 )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 )
= ( finite_fold @ A @ A @ F2 @ Top @ A4 ) ) )
& ( ~ ( finite_finite @ A @ A4 )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ A4 )
= Bot ) ) ) ) ).
% bounded_quasi_semilattice_set.eq_fold
thf(fact_7692_bounded__quasi__semilattice__set_Oset__eq__fold,axiom,
! [A: $tType,F2: A > A > A,Top: A,Bot: A,Normalize: A > A,Xs2: list @ A] :
( ( bounde6485984586167503788ce_set @ A @ F2 @ Top @ Bot @ Normalize )
=> ( ( bounde2362111253966948842tice_F @ A @ F2 @ Top @ Bot @ ( set2 @ A @ Xs2 ) )
= ( fold @ A @ A @ F2 @ Xs2 @ Top ) ) ) ).
% bounded_quasi_semilattice_set.set_eq_fold
thf(fact_7693_compute__powr__real,axiom,
( powr_real
= ( ^ [B3: real,I3: real] :
( if @ real @ ( ord_less_eq @ real @ B3 @ ( zero_zero @ real ) )
@ ( abort @ real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( zero_zero @ literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ ^ [Uu3: product_unit] : ( powr_real @ B3 @ I3 ) )
@ ( if @ real
@ ( ( ring_1_of_int @ real @ ( archim6421214686448440834_floor @ real @ I3 ) )
= I3 )
@ ( if @ real @ ( ord_less_eq @ real @ ( zero_zero @ real ) @ I3 ) @ ( power_power @ real @ B3 @ ( nat2 @ ( archim6421214686448440834_floor @ real @ I3 ) ) ) @ ( divide_divide @ real @ ( one_one @ real ) @ ( power_power @ real @ B3 @ ( nat2 @ ( archim6421214686448440834_floor @ real @ ( uminus_uminus @ real @ I3 ) ) ) ) ) )
@ ( abort @ real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $true @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( zero_zero @ literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ ^ [Uu3: product_unit] : ( powr_real @ B3 @ I3 ) ) ) ) ) ) ).
% compute_powr_real
thf(fact_7694_char__of__take__bit__eq,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ! [N2: nat,M: A] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) @ N2 )
=> ( ( unique5772411509450598832har_of @ A @ ( bit_se2584673776208193580ke_bit @ A @ N2 @ M ) )
= ( unique5772411509450598832har_of @ A @ M ) ) ) ) ).
% char_of_take_bit_eq
thf(fact_7695_String_Oempty__neq__Literal,axiom,
! [B0: $o,B13: $o,B23: $o,B32: $o,B42: $o,B52: $o,B62: $o,S: literal] :
( ( zero_zero @ literal )
!= ( literal2 @ B0 @ B13 @ B23 @ B32 @ B42 @ B52 @ B62 @ S ) ) ).
% String.empty_neq_Literal
thf(fact_7696_inj__on__char__of__nat,axiom,
inj_on @ nat @ char @ ( unique5772411509450598832har_of @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% inj_on_char_of_nat
thf(fact_7697_UNIV__char__of__nat,axiom,
( ( top_top @ ( set @ char ) )
= ( image @ nat @ char @ ( unique5772411509450598832har_of @ nat ) @ ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% UNIV_char_of_nat
thf(fact_7698_char__of__def,axiom,
! [A: $tType] :
( ( bit_un5681908812861735899ations @ A )
=> ( ( unique5772411509450598832har_of @ A )
= ( ^ [N3: A] :
( char2
@ ~ ( dvd_dvd @ A @ ( numeral_numeral @ A @ ( bit0 @ one2 ) ) @ N3 )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( one_one @ nat ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ one2 ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ ( bit0 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit0 @ ( bit1 @ one2 ) ) ) )
@ ( bit_se5641148757651400278ts_bit @ A @ N3 @ ( numeral_numeral @ nat @ ( bit1 @ ( bit1 @ one2 ) ) ) ) ) ) ) ) ).
% char_of_def
thf(fact_7699_range__nat__of__char,axiom,
( ( image @ char @ nat @ ( comm_s6883823935334413003f_char @ nat ) @ ( top_top @ ( set @ char ) ) )
= ( set_or7035219750837199246ssThan @ nat @ ( zero_zero @ nat ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ).
% range_nat_of_char
thf(fact_7700_char_Osize_I2_J,axiom,
! [X15: $o,X22: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_size @ char @ ( char2 @ X15 @ X22 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= ( zero_zero @ nat ) ) ).
% char.size(2)
thf(fact_7701_nat__of__char__less__256,axiom,
! [C2: char] : ( ord_less @ nat @ ( comm_s6883823935334413003f_char @ nat @ C2 ) @ ( numeral_numeral @ nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ).
% nat_of_char_less_256
thf(fact_7702_char_Osize__gen,axiom,
! [X15: $o,X22: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_char @ ( char2 @ X15 @ X22 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= ( zero_zero @ nat ) ) ).
% char.size_gen
thf(fact_7703_uniformity__Abort,axiom,
! [A: $tType] :
( ( topolo4638772830378233104ormity @ A )
=> ( ( topolo7806501430040627800ormity @ A )
= ( abstract_filter @ ( product_prod @ A @ A )
@ ^ [U2: product_unit] :
( abort @ ( filter @ ( product_prod @ A @ A ) ) @ ( literal2 @ $true @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( zero_zero @ literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ ^ [V5: product_unit] : ( topolo7806501430040627800ormity @ A ) ) ) ) ) ).
% uniformity_Abort
thf(fact_7704_card__def,axiom,
! [B: $tType] :
( ( finite_card @ B )
= ( finite_folding_F @ B @ nat
@ ^ [Uu3: B] : suc
@ ( zero_zero @ nat ) ) ) ).
% card_def
thf(fact_7705_tendsto__add__Pair,axiom,
! [A: $tType] :
( ( topolo6943815403480290642id_add @ A )
=> ! [A2: A,B2: A] :
( filterlim @ ( product_prod @ A @ A ) @ A
@ ^ [X3: product_prod @ A @ A] : ( plus_plus @ A @ ( product_fst @ A @ A @ X3 ) @ ( product_snd @ A @ A @ X3 ) )
@ ( topolo7230453075368039082e_nhds @ A @ ( plus_plus @ A @ A2 @ B2 ) )
@ ( prod_filter @ A @ A @ ( topolo7230453075368039082e_nhds @ A @ A2 ) @ ( topolo7230453075368039082e_nhds @ A @ B2 ) ) ) ) ).
% tendsto_add_Pair
thf(fact_7706_eventually__prod__sequentially,axiom,
! [P: ( product_prod @ nat @ nat ) > $o] :
( ( eventually @ ( product_prod @ nat @ nat ) @ P @ ( prod_filter @ nat @ nat @ ( at_top @ nat ) @ ( at_top @ nat ) ) )
= ( ? [N6: nat] :
! [M6: nat] :
( ( ord_less_eq @ nat @ N6 @ M6 )
=> ! [N3: nat] :
( ( ord_less_eq @ nat @ N6 @ N3 )
=> ( P @ ( product_Pair @ nat @ nat @ N3 @ M6 ) ) ) ) ) ) ).
% eventually_prod_sequentially
thf(fact_7707_numeral__le__enat__iff,axiom,
! [M: num,N2: nat] :
( ( ord_less_eq @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( extended_enat2 @ N2 ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ M ) @ N2 ) ) ).
% numeral_le_enat_iff
thf(fact_7708_elimnum,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ N2 ) ) )
= ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) ) ) ).
% elimnum
thf(fact_7709_enat__ord__simps_I2_J,axiom,
! [M: nat,N2: nat] :
( ( ord_less @ extended_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N2 ) )
= ( ord_less @ nat @ M @ N2 ) ) ).
% enat_ord_simps(2)
thf(fact_7710_enat__ord__simps_I1_J,axiom,
! [M: nat,N2: nat] :
( ( ord_less_eq @ extended_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N2 ) )
= ( ord_less_eq @ nat @ M @ N2 ) ) ).
% enat_ord_simps(1)
thf(fact_7711_plus__enat__simps_I1_J,axiom,
! [M: nat,N2: nat] :
( ( plus_plus @ extended_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N2 ) )
= ( extended_enat2 @ ( plus_plus @ nat @ M @ N2 ) ) ) ).
% plus_enat_simps(1)
thf(fact_7712_idiff__enat__0,axiom,
! [N2: extended_enat] :
( ( minus_minus @ extended_enat @ ( extended_enat2 @ ( zero_zero @ nat ) ) @ N2 )
= ( extended_enat2 @ ( zero_zero @ nat ) ) ) ).
% idiff_enat_0
thf(fact_7713_idiff__enat__0__right,axiom,
! [N2: extended_enat] :
( ( minus_minus @ extended_enat @ N2 @ ( extended_enat2 @ ( zero_zero @ nat ) ) )
= N2 ) ).
% idiff_enat_0_right
thf(fact_7714_numeral__less__enat__iff,axiom,
! [M: num,N2: nat] :
( ( ord_less @ extended_enat @ ( numeral_numeral @ extended_enat @ M ) @ ( extended_enat2 @ N2 ) )
= ( ord_less @ nat @ ( numeral_numeral @ nat @ M ) @ N2 ) ) ).
% numeral_less_enat_iff
thf(fact_7715_enat__iless,axiom,
! [N2: extended_enat,M: nat] :
( ( ord_less @ extended_enat @ N2 @ ( extended_enat2 @ M ) )
=> ? [K2: nat] :
( N2
= ( extended_enat2 @ K2 ) ) ) ).
% enat_iless
thf(fact_7716_chain__incr,axiom,
! [A: $tType,Y6: A > extended_enat,K: nat] :
( ! [I2: A] :
? [J4: A] : ( ord_less @ extended_enat @ ( Y6 @ I2 ) @ ( Y6 @ J4 ) )
=> ? [J2: A] : ( ord_less @ extended_enat @ ( extended_enat2 @ K ) @ ( Y6 @ J2 ) ) ) ).
% chain_incr
thf(fact_7717_less__enatE,axiom,
! [N2: extended_enat,M: nat] :
( ( ord_less @ extended_enat @ N2 @ ( extended_enat2 @ M ) )
=> ~ ! [K2: nat] :
( ( N2
= ( extended_enat2 @ K2 ) )
=> ~ ( ord_less @ nat @ K2 @ M ) ) ) ).
% less_enatE
thf(fact_7718_VEBT__internal_Oelim__dead_Osimps_I1_J,axiom,
! [A2: $o,B2: $o,Uu: extended_enat] :
( ( vEBT_VEBT_elim_dead @ ( vEBT_Leaf @ A2 @ B2 ) @ Uu )
= ( vEBT_Leaf @ A2 @ B2 ) ) ).
% VEBT_internal.elim_dead.simps(1)
thf(fact_7719_enat__1__iff_I2_J,axiom,
! [X: nat] :
( ( ( one_one @ extended_enat )
= ( extended_enat2 @ X ) )
= ( X
= ( one_one @ nat ) ) ) ).
% enat_1_iff(2)
thf(fact_7720_enat__1__iff_I1_J,axiom,
! [X: nat] :
( ( ( extended_enat2 @ X )
= ( one_one @ extended_enat ) )
= ( X
= ( one_one @ nat ) ) ) ).
% enat_1_iff(1)
thf(fact_7721_one__enat__def,axiom,
( ( one_one @ extended_enat )
= ( extended_enat2 @ ( one_one @ nat ) ) ) ).
% one_enat_def
thf(fact_7722_Suc__ile__eq,axiom,
! [M: nat,N2: extended_enat] :
( ( ord_less_eq @ extended_enat @ ( extended_enat2 @ ( suc @ M ) ) @ N2 )
= ( ord_less @ extended_enat @ ( extended_enat2 @ M ) @ N2 ) ) ).
% Suc_ile_eq
thf(fact_7723_enat__0__iff_I2_J,axiom,
! [X: nat] :
( ( ( zero_zero @ extended_enat )
= ( extended_enat2 @ X ) )
= ( X
= ( zero_zero @ nat ) ) ) ).
% enat_0_iff(2)
thf(fact_7724_enat__0__iff_I1_J,axiom,
! [X: nat] :
( ( ( extended_enat2 @ X )
= ( zero_zero @ extended_enat ) )
= ( X
= ( zero_zero @ nat ) ) ) ).
% enat_0_iff(1)
thf(fact_7725_zero__enat__def,axiom,
( ( zero_zero @ extended_enat )
= ( extended_enat2 @ ( zero_zero @ nat ) ) ) ).
% zero_enat_def
thf(fact_7726_VEBT__internal_Oelim__dead_Osimps_I3_J,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,L: nat] :
( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ ( extended_enat2 @ L ) )
= ( vEBT_Node @ Info2 @ Deg
@ ( take @ vEBT_VEBT @ ( divide_divide @ nat @ L @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList2 ) )
@ ( vEBT_VEBT_elim_dead @ Summary @ ( extended_enat2 @ ( divide_divide @ nat @ L @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.elim_dead.simps(3)
thf(fact_7727_iadd__le__enat__iff,axiom,
! [X: extended_enat,Y: extended_enat,N2: nat] :
( ( ord_less_eq @ extended_enat @ ( plus_plus @ extended_enat @ X @ Y ) @ ( extended_enat2 @ N2 ) )
= ( ? [Y7: nat,X9: nat] :
( ( X
= ( extended_enat2 @ X9 ) )
& ( Y
= ( extended_enat2 @ Y7 ) )
& ( ord_less_eq @ nat @ ( plus_plus @ nat @ X9 @ Y7 ) @ N2 ) ) ) ) ).
% iadd_le_enat_iff
thf(fact_7728_VEBT__internal_Oelim__dead_Oelims,axiom,
! [X: vEBT_VEBT,Xa2: extended_enat,Y: vEBT_VEBT] :
( ( ( vEBT_VEBT_elim_dead @ X @ Xa2 )
= Y )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( Y
!= ( vEBT_Leaf @ A5 @ B5 ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( Xa2
= ( extend4730790105801354508finity @ extended_enat ) )
=> ( Y
!= ( vEBT_Node @ Info @ Deg2
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList )
@ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extend4730790105801354508finity @ extended_enat ) ) ) ) ) )
=> ~ ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) )
=> ! [L4: nat] :
( ( Xa2
= ( extended_enat2 @ L4 ) )
=> ( Y
!= ( vEBT_Node @ Info @ Deg2
@ ( take @ vEBT_VEBT @ ( divide_divide @ nat @ L4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList ) )
@ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide @ nat @ L4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.elim_dead.elims
thf(fact_7729_elimcomplete,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ N2 )
=> ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ ( extend4730790105801354508finity @ extended_enat ) )
= ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) ) ) ).
% elimcomplete
thf(fact_7730_enat__ord__simps_I4_J,axiom,
! [Q4: extended_enat] :
( ( ord_less @ extended_enat @ Q4 @ ( extend4730790105801354508finity @ extended_enat ) )
= ( Q4
!= ( extend4730790105801354508finity @ extended_enat ) ) ) ).
% enat_ord_simps(4)
thf(fact_7731_enat__ord__simps_I6_J,axiom,
! [Q4: extended_enat] :
~ ( ord_less @ extended_enat @ ( extend4730790105801354508finity @ extended_enat ) @ Q4 ) ).
% enat_ord_simps(6)
thf(fact_7732_idiff__self,axiom,
! [N2: extended_enat] :
( ( N2
!= ( extend4730790105801354508finity @ extended_enat ) )
=> ( ( minus_minus @ extended_enat @ N2 @ N2 )
= ( zero_zero @ extended_enat ) ) ) ).
% idiff_self
thf(fact_7733_idiff__infinity__right,axiom,
! [A2: nat] :
( ( minus_minus @ extended_enat @ ( extended_enat2 @ A2 ) @ ( extend4730790105801354508finity @ extended_enat ) )
= ( zero_zero @ extended_enat ) ) ).
% idiff_infinity_right
thf(fact_7734_times__enat__simps_I4_J,axiom,
! [M: nat] :
( ( ( M
= ( zero_zero @ nat ) )
=> ( ( times_times @ extended_enat @ ( extended_enat2 @ M ) @ ( extend4730790105801354508finity @ extended_enat ) )
= ( zero_zero @ extended_enat ) ) )
& ( ( M
!= ( zero_zero @ nat ) )
=> ( ( times_times @ extended_enat @ ( extended_enat2 @ M ) @ ( extend4730790105801354508finity @ extended_enat ) )
= ( extend4730790105801354508finity @ extended_enat ) ) ) ) ).
% times_enat_simps(4)
thf(fact_7735_times__enat__simps_I3_J,axiom,
! [N2: nat] :
( ( ( N2
= ( zero_zero @ nat ) )
=> ( ( times_times @ extended_enat @ ( extend4730790105801354508finity @ extended_enat ) @ ( extended_enat2 @ N2 ) )
= ( zero_zero @ extended_enat ) ) )
& ( ( N2
!= ( zero_zero @ nat ) )
=> ( ( times_times @ extended_enat @ ( extend4730790105801354508finity @ extended_enat ) @ ( extended_enat2 @ N2 ) )
= ( extend4730790105801354508finity @ extended_enat ) ) ) ) ).
% times_enat_simps(3)
thf(fact_7736_VEBT__internal_Oelim__dead_Ocases,axiom,
! [X: product_prod @ vEBT_VEBT @ extended_enat] :
( ! [A5: $o,B5: $o,Uu2: extended_enat] :
( X
!= ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Leaf @ A5 @ B5 ) @ Uu2 ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( X
!= ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) @ ( extend4730790105801354508finity @ extended_enat ) ) )
=> ~ ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT,L4: nat] :
( X
!= ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) @ ( extended_enat2 @ L4 ) ) ) ) ) ).
% VEBT_internal.elim_dead.cases
thf(fact_7737_enat__ord__code_I4_J,axiom,
! [M: nat] : ( ord_less @ extended_enat @ ( extended_enat2 @ M ) @ ( extend4730790105801354508finity @ extended_enat ) ) ).
% enat_ord_code(4)
thf(fact_7738_less__infinityE,axiom,
! [N2: extended_enat] :
( ( ord_less @ extended_enat @ N2 @ ( extend4730790105801354508finity @ extended_enat ) )
=> ~ ! [K2: nat] :
( N2
!= ( extended_enat2 @ K2 ) ) ) ).
% less_infinityE
thf(fact_7739_infinity__ilessE,axiom,
! [M: nat] :
~ ( ord_less @ extended_enat @ ( extend4730790105801354508finity @ extended_enat ) @ ( extended_enat2 @ M ) ) ).
% infinity_ilessE
thf(fact_7740_Sup__enat__def,axiom,
( ( complete_Sup_Sup @ extended_enat )
= ( ^ [A8: set @ extended_enat] :
( if @ extended_enat
@ ( A8
= ( bot_bot @ ( set @ extended_enat ) ) )
@ ( zero_zero @ extended_enat )
@ ( if @ extended_enat @ ( finite_finite @ extended_enat @ A8 ) @ ( lattic643756798349783984er_Max @ extended_enat @ A8 ) @ ( extend4730790105801354508finity @ extended_enat ) ) ) ) ) ).
% Sup_enat_def
thf(fact_7741_infinity__ne__i0,axiom,
( ( extend4730790105801354508finity @ extended_enat )
!= ( zero_zero @ extended_enat ) ) ).
% infinity_ne_i0
thf(fact_7742_imult__is__infinity,axiom,
! [A2: extended_enat,B2: extended_enat] :
( ( ( times_times @ extended_enat @ A2 @ B2 )
= ( extend4730790105801354508finity @ extended_enat ) )
= ( ( ( A2
= ( extend4730790105801354508finity @ extended_enat ) )
& ( B2
!= ( zero_zero @ extended_enat ) ) )
| ( ( B2
= ( extend4730790105801354508finity @ extended_enat ) )
& ( A2
!= ( zero_zero @ extended_enat ) ) ) ) ) ).
% imult_is_infinity
thf(fact_7743_enat__add__left__cancel__less,axiom,
! [A2: extended_enat,B2: extended_enat,C2: extended_enat] :
( ( ord_less @ extended_enat @ ( plus_plus @ extended_enat @ A2 @ B2 ) @ ( plus_plus @ extended_enat @ A2 @ C2 ) )
= ( ( A2
!= ( extend4730790105801354508finity @ extended_enat ) )
& ( ord_less @ extended_enat @ B2 @ C2 ) ) ) ).
% enat_add_left_cancel_less
thf(fact_7744_imult__infinity,axiom,
! [N2: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 )
=> ( ( times_times @ extended_enat @ ( extend4730790105801354508finity @ extended_enat ) @ N2 )
= ( extend4730790105801354508finity @ extended_enat ) ) ) ).
% imult_infinity
thf(fact_7745_imult__infinity__right,axiom,
! [N2: extended_enat] :
( ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 )
=> ( ( times_times @ extended_enat @ N2 @ ( extend4730790105801354508finity @ extended_enat ) )
= ( extend4730790105801354508finity @ extended_enat ) ) ) ).
% imult_infinity_right
thf(fact_7746_VEBT__internal_Oelim__dead_Osimps_I2_J,axiom,
! [Info2: option @ ( product_prod @ nat @ nat ),Deg: nat,TreeList2: list @ vEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info2 @ Deg @ TreeList2 @ Summary ) @ ( extend4730790105801354508finity @ extended_enat ) )
= ( vEBT_Node @ Info2 @ Deg
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList2 )
@ ( vEBT_VEBT_elim_dead @ Summary @ ( extend4730790105801354508finity @ extended_enat ) ) ) ) ).
% VEBT_internal.elim_dead.simps(2)
thf(fact_7747_times__enat__def,axiom,
( ( times_times @ extended_enat )
= ( ^ [M6: extended_enat,N3: extended_enat] :
( extended_case_enat @ extended_enat
@ ^ [O: nat] :
( extended_case_enat @ extended_enat
@ ^ [P5: nat] : ( extended_enat2 @ ( times_times @ nat @ O @ P5 ) )
@ ( if @ extended_enat
@ ( O
= ( zero_zero @ nat ) )
@ ( zero_zero @ extended_enat )
@ ( extend4730790105801354508finity @ extended_enat ) )
@ N3 )
@ ( if @ extended_enat
@ ( N3
= ( zero_zero @ extended_enat ) )
@ ( zero_zero @ extended_enat )
@ ( extend4730790105801354508finity @ extended_enat ) )
@ M6 ) ) ) ).
% times_enat_def
thf(fact_7748_VEBT__internal_Oelim__dead_Opelims,axiom,
! [X: vEBT_VEBT,Xa2: extended_enat,Y: vEBT_VEBT] :
( ( ( vEBT_VEBT_elim_dead @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ vEBT_VEBT @ extended_enat ) @ vEBT_V312737461966249ad_rel @ ( product_Pair @ vEBT_VEBT @ extended_enat @ X @ Xa2 ) )
=> ( ! [A5: $o,B5: $o] :
( ( X
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ( ( Y
= ( vEBT_Leaf @ A5 @ B5 ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ extended_enat ) @ vEBT_V312737461966249ad_rel @ ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Leaf @ A5 @ B5 ) @ Xa2 ) ) ) )
=> ( ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) )
=> ( ( Xa2
= ( extend4730790105801354508finity @ extended_enat ) )
=> ( ( Y
= ( vEBT_Node @ Info @ Deg2
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList )
@ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extend4730790105801354508finity @ extended_enat ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ extended_enat ) @ vEBT_V312737461966249ad_rel @ ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) @ ( extend4730790105801354508finity @ extended_enat ) ) ) ) ) )
=> ~ ! [Info: option @ ( product_prod @ nat @ nat ),Deg2: nat,TreeList: list @ vEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) )
=> ! [L4: nat] :
( ( Xa2
= ( extended_enat2 @ L4 ) )
=> ( ( Y
= ( vEBT_Node @ Info @ Deg2
@ ( take @ vEBT_VEBT @ ( divide_divide @ nat @ L4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) )
@ ( map @ vEBT_VEBT @ vEBT_VEBT
@ ^ [T3: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T3 @ ( extended_enat2 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) )
@ TreeList ) )
@ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide @ nat @ L4 @ ( power_power @ nat @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) @ ( divide_divide @ nat @ Deg2 @ ( numeral_numeral @ nat @ ( bit0 @ one2 ) ) ) ) ) ) ) ) )
=> ~ ( accp @ ( product_prod @ vEBT_VEBT @ extended_enat ) @ vEBT_V312737461966249ad_rel @ ( product_Pair @ vEBT_VEBT @ extended_enat @ ( vEBT_Node @ Info @ Deg2 @ TreeList @ Summary2 ) @ ( extended_enat2 @ L4 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.elim_dead.pelims
thf(fact_7749_plus__enat__def,axiom,
( ( plus_plus @ extended_enat )
= ( ^ [M6: extended_enat,N3: extended_enat] :
( extended_case_enat @ extended_enat
@ ^ [O: nat] :
( extended_case_enat @ extended_enat
@ ^ [P5: nat] : ( extended_enat2 @ ( plus_plus @ nat @ O @ P5 ) )
@ ( extend4730790105801354508finity @ extended_enat )
@ N3 )
@ ( extend4730790105801354508finity @ extended_enat )
@ M6 ) ) ) ).
% plus_enat_def
thf(fact_7750_diff__enat__def,axiom,
( ( minus_minus @ extended_enat )
= ( ^ [A3: extended_enat,B3: extended_enat] :
( extended_case_enat @ extended_enat
@ ^ [X3: nat] :
( extended_case_enat @ extended_enat
@ ^ [Y2: nat] : ( extended_enat2 @ ( minus_minus @ nat @ X3 @ Y2 ) )
@ ( zero_zero @ extended_enat )
@ B3 )
@ ( extend4730790105801354508finity @ extended_enat )
@ A3 ) ) ) ).
% diff_enat_def
thf(fact_7751_eSuc__def,axiom,
( extended_eSuc
= ( extended_case_enat @ extended_enat
@ ^ [N3: nat] : ( extended_enat2 @ ( suc @ N3 ) )
@ ( extend4730790105801354508finity @ extended_enat ) ) ) ).
% eSuc_def
thf(fact_7752_iless__Suc__eq,axiom,
! [M: nat,N2: extended_enat] :
( ( ord_less @ extended_enat @ ( extended_enat2 @ M ) @ ( extended_eSuc @ N2 ) )
= ( ord_less_eq @ extended_enat @ ( extended_enat2 @ M ) @ N2 ) ) ).
% iless_Suc_eq
thf(fact_7753_eSuc__mono,axiom,
! [N2: extended_enat,M: extended_enat] :
( ( ord_less @ extended_enat @ ( extended_eSuc @ N2 ) @ ( extended_eSuc @ M ) )
= ( ord_less @ extended_enat @ N2 @ M ) ) ).
% eSuc_mono
thf(fact_7754_iless__eSuc0,axiom,
! [N2: extended_enat] :
( ( ord_less @ extended_enat @ N2 @ ( extended_eSuc @ ( zero_zero @ extended_enat ) ) )
= ( N2
= ( zero_zero @ extended_enat ) ) ) ).
% iless_eSuc0
thf(fact_7755_enat__eSuc__iff,axiom,
! [Y: nat,X: extended_enat] :
( ( ( extended_enat2 @ Y )
= ( extended_eSuc @ X ) )
= ( ? [N3: nat] :
( ( Y
= ( suc @ N3 ) )
& ( ( extended_enat2 @ N3 )
= X ) ) ) ) ).
% enat_eSuc_iff
thf(fact_7756_eSuc__enat__iff,axiom,
! [X: extended_enat,Y: nat] :
( ( ( extended_eSuc @ X )
= ( extended_enat2 @ Y ) )
= ( ? [N3: nat] :
( ( Y
= ( suc @ N3 ) )
& ( X
= ( extended_enat2 @ N3 ) ) ) ) ) ).
% eSuc_enat_iff
thf(fact_7757_eSuc__enat,axiom,
! [N2: nat] :
( ( extended_eSuc @ ( extended_enat2 @ N2 ) )
= ( extended_enat2 @ ( suc @ N2 ) ) ) ).
% eSuc_enat
thf(fact_7758_i0__iless__eSuc,axiom,
! [N2: extended_enat] : ( ord_less @ extended_enat @ ( zero_zero @ extended_enat ) @ ( extended_eSuc @ N2 ) ) ).
% i0_iless_eSuc
thf(fact_7759_one__eSuc,axiom,
( ( one_one @ extended_enat )
= ( extended_eSuc @ ( zero_zero @ extended_enat ) ) ) ).
% one_eSuc
thf(fact_7760_zero__ne__eSuc,axiom,
! [N2: extended_enat] :
( ( zero_zero @ extended_enat )
!= ( extended_eSuc @ N2 ) ) ).
% zero_ne_eSuc
thf(fact_7761_not__eSuc__ilei0,axiom,
! [N2: extended_enat] :
~ ( ord_less_eq @ extended_enat @ ( extended_eSuc @ N2 ) @ ( zero_zero @ extended_enat ) ) ).
% not_eSuc_ilei0
thf(fact_7762_ileI1,axiom,
! [M: extended_enat,N2: extended_enat] :
( ( ord_less @ extended_enat @ M @ N2 )
=> ( ord_less_eq @ extended_enat @ ( extended_eSuc @ M ) @ N2 ) ) ).
% ileI1
thf(fact_7763_less__than__iff,axiom,
! [X: nat,Y: nat] :
( ( member @ ( product_prod @ nat @ nat ) @ ( product_Pair @ nat @ nat @ X @ Y ) @ less_than )
= ( ord_less @ nat @ X @ Y ) ) ).
% less_than_iff
thf(fact_7764_List_Oset__insert,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( set2 @ A @ ( insert @ A @ X @ Xs2 ) )
= ( insert2 @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ).
% List.set_insert
thf(fact_7765_in__set__insert,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( insert @ A @ X @ Xs2 )
= Xs2 ) ) ).
% in_set_insert
thf(fact_7766_not__in__set__insert,axiom,
! [A: $tType,X: A,Xs2: list @ A] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( insert @ A @ X @ Xs2 )
= ( cons @ A @ X @ Xs2 ) ) ) ).
% not_in_set_insert
thf(fact_7767_List_Oinsert__def,axiom,
! [A: $tType] :
( ( insert @ A )
= ( ^ [X3: A,Xs: list @ A] : ( if @ ( list @ A ) @ ( member @ A @ X3 @ ( set2 @ A @ Xs ) ) @ Xs @ ( cons @ A @ X3 @ Xs ) ) ) ) ).
% List.insert_def
thf(fact_7768_pair__less__def,axiom,
( fun_pair_less
= ( lex_prod @ nat @ nat @ less_than @ less_than ) ) ).
% pair_less_def
thf(fact_7769_has__vector__derivative__scaleR,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: real > real,F6: real,X: real,S: set @ real,G: real > A,G4: A] :
( ( has_field_derivative @ real @ F2 @ F6 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( ( has_ve8173657378732805170vative @ A @ G @ G4 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( has_ve8173657378732805170vative @ A
@ ^ [X3: real] : ( real_V8093663219630862766scaleR @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ ( real_V8093663219630862766scaleR @ A @ ( F2 @ X ) @ G4 ) @ ( real_V8093663219630862766scaleR @ A @ F6 @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ real @ X @ S ) ) ) ) ) ).
% has_vector_derivative_scaleR
thf(fact_7770_has__vector__derivative__const,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [C2: A,Net: filter @ real] :
( has_ve8173657378732805170vative @ A
@ ^ [X3: real] : C2
@ ( zero_zero @ A )
@ Net ) ) ).
% has_vector_derivative_const
thf(fact_7771_has__vector__derivative__add__const,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [G: real > A,Z2: A,F6: A,Net: filter @ real] :
( ( has_ve8173657378732805170vative @ A
@ ^ [T3: real] : ( plus_plus @ A @ ( G @ T3 ) @ Z2 )
@ F6
@ Net )
= ( has_ve8173657378732805170vative @ A @ G @ F6 @ Net ) ) ) ).
% has_vector_derivative_add_const
thf(fact_7772_has__vector__derivative__add,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector @ A )
=> ! [F2: real > A,F6: A,Net: filter @ real,G: real > A,G4: A] :
( ( has_ve8173657378732805170vative @ A @ F2 @ F6 @ Net )
=> ( ( has_ve8173657378732805170vative @ A @ G @ G4 @ Net )
=> ( has_ve8173657378732805170vative @ A
@ ^ [X3: real] : ( plus_plus @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ F6 @ G4 )
@ Net ) ) ) ) ).
% has_vector_derivative_add
thf(fact_7773_has__vector__derivative__mult,axiom,
! [A: $tType] :
( ( real_V4412858255891104859lgebra @ A )
=> ! [F2: real > A,F6: A,X: real,S: set @ real,G: real > A,G4: A] :
( ( has_ve8173657378732805170vative @ A @ F2 @ F6 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( ( has_ve8173657378732805170vative @ A @ G @ G4 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( has_ve8173657378732805170vative @ A
@ ^ [X3: real] : ( times_times @ A @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ A @ ( times_times @ A @ ( F2 @ X ) @ G4 ) @ ( times_times @ A @ F6 @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ real @ X @ S ) ) ) ) ) ).
% has_vector_derivative_mult
thf(fact_7774_bounded__bilinear_Ohas__vector__derivative,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( ( real_V822414075346904944vector @ A )
& ( real_V822414075346904944vector @ C )
& ( real_V822414075346904944vector @ B ) )
=> ! [Prod: A > B > C,F2: real > A,F6: A,X: real,S: set @ real,G: real > B,G4: B] :
( ( real_V2442710119149674383linear @ A @ B @ C @ Prod )
=> ( ( has_ve8173657378732805170vative @ A @ F2 @ F6 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( ( has_ve8173657378732805170vative @ B @ G @ G4 @ ( topolo174197925503356063within @ real @ X @ S ) )
=> ( has_ve8173657378732805170vative @ C
@ ^ [X3: real] : ( Prod @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ ( plus_plus @ C @ ( Prod @ ( F2 @ X ) @ G4 ) @ ( Prod @ F6 @ ( G @ X ) ) )
@ ( topolo174197925503356063within @ real @ X @ S ) ) ) ) ) ) ).
% bounded_bilinear.has_vector_derivative
thf(fact_7775_num_Orec__transfer,axiom,
! [A: $tType,B: $tType,S3: A > B > $o] :
( bNF_rel_fun @ A @ B @ ( ( num > A > A ) > ( num > A > A ) > num > A ) @ ( ( num > B > B ) > ( num > B > B ) > num > B ) @ S3
@ ( bNF_rel_fun @ ( num > A > A ) @ ( num > B > B ) @ ( ( num > A > A ) > num > A ) @ ( ( num > B > B ) > num > B )
@ ( bNF_rel_fun @ num @ num @ ( A > A ) @ ( B > B )
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ A @ B @ A @ B @ S3 @ S3 ) )
@ ( bNF_rel_fun @ ( num > A > A ) @ ( num > B > B ) @ ( num > A ) @ ( num > B )
@ ( bNF_rel_fun @ num @ num @ ( A > A ) @ ( B > B )
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ ( bNF_rel_fun @ A @ B @ A @ B @ S3 @ S3 ) )
@ ( bNF_rel_fun @ num @ num @ A @ B
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ S3 ) ) )
@ ( rec_num @ A )
@ ( rec_num @ B ) ) ).
% num.rec_transfer
thf(fact_7776_Quotient__real,axiom,
quotient @ ( nat > rat ) @ real @ realrel @ real2 @ rep_real @ cr_real ).
% Quotient_real
thf(fact_7777_verit__eq__simplify_I19_J,axiom,
! [A: $tType,F1: A,F22: num > A > A,F32: num > A > A] :
( ( rec_num @ A @ F1 @ F22 @ F32 @ one2 )
= F1 ) ).
% verit_eq_simplify(19)
thf(fact_7778_verit__eq__simplify_I20_J,axiom,
! [A: $tType,F1: A,F22: num > A > A,F32: num > A > A,X22: num] :
( ( rec_num @ A @ F1 @ F22 @ F32 @ ( bit0 @ X22 ) )
= ( F22 @ X22 @ ( rec_num @ A @ F1 @ F22 @ F32 @ X22 ) ) ) ).
% verit_eq_simplify(20)
thf(fact_7779_verit__eq__simplify_I21_J,axiom,
! [A: $tType,F1: A,F22: num > A > A,F32: num > A > A,X32: num] :
( ( rec_num @ A @ F1 @ F22 @ F32 @ ( bit1 @ X32 ) )
= ( F32 @ X32 @ ( rec_num @ A @ F1 @ F22 @ F32 @ X32 ) ) ) ).
% verit_eq_simplify(21)
thf(fact_7780_num_Ocase__transfer,axiom,
! [A: $tType,B: $tType,S3: A > B > $o] :
( bNF_rel_fun @ A @ B @ ( ( num > A ) > ( num > A ) > num > A ) @ ( ( num > B ) > ( num > B ) > num > B ) @ S3
@ ( bNF_rel_fun @ ( num > A ) @ ( num > B ) @ ( ( num > A ) > num > A ) @ ( ( num > B ) > num > B )
@ ( bNF_rel_fun @ num @ num @ A @ B
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ S3 )
@ ( bNF_rel_fun @ ( num > A ) @ ( num > B ) @ ( num > A ) @ ( num > B )
@ ( bNF_rel_fun @ num @ num @ A @ B
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ S3 )
@ ( bNF_rel_fun @ num @ num @ A @ B
@ ^ [Y5: num,Z3: num] : ( Y5 = Z3 )
@ S3 ) ) )
@ ( case_num @ A )
@ ( case_num @ B ) ) ).
% num.case_transfer
thf(fact_7781_is__singleton__altdef,axiom,
! [A: $tType] :
( ( is_singleton @ A )
= ( ^ [A8: set @ A] :
( ( finite_card @ A @ A8 )
= ( one_one @ nat ) ) ) ) ).
% is_singleton_altdef
thf(fact_7782_verit__eq__simplify_I18_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A,X32: num] :
( ( case_num @ A @ F1 @ F22 @ F32 @ ( bit1 @ X32 ) )
= ( F32 @ X32 ) ) ).
% verit_eq_simplify(18)
thf(fact_7783_verit__eq__simplify_I17_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A,X22: num] :
( ( case_num @ A @ F1 @ F22 @ F32 @ ( bit0 @ X22 ) )
= ( F22 @ X22 ) ) ).
% verit_eq_simplify(17)
thf(fact_7784_verit__eq__simplify_I16_J,axiom,
! [A: $tType,F1: A,F22: num > A,F32: num > A] :
( ( case_num @ A @ F1 @ F22 @ F32 @ one2 )
= F1 ) ).
% verit_eq_simplify(16)
thf(fact_7785_num_Ocase__distrib,axiom,
! [B: $tType,A: $tType,H: A > B,F1: A,F22: num > A,F32: num > A,Num: num] :
( ( H @ ( case_num @ A @ F1 @ F22 @ F32 @ Num ) )
= ( case_num @ B @ ( H @ F1 )
@ ^ [X3: num] : ( H @ ( F22 @ X3 ) )
@ ^ [X3: num] : ( H @ ( F32 @ X3 ) )
@ Num ) ) ).
% num.case_distrib
thf(fact_7786_complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) )
& ( ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ) ).
% complex_div_gt_0
thf(fact_7787_prod__list__def,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( groups5270119922927024881d_list @ A )
= ( groups_monoid_F @ A @ ( times_times @ A ) @ ( one_one @ A ) ) ) ) ).
% prod_list_def
thf(fact_7788_complex__cnj__zero,axiom,
( ( cnj @ ( zero_zero @ complex ) )
= ( zero_zero @ complex ) ) ).
% complex_cnj_zero
thf(fact_7789_complex__cnj__zero__iff,axiom,
! [Z2: complex] :
( ( ( cnj @ Z2 )
= ( zero_zero @ complex ) )
= ( Z2
= ( zero_zero @ complex ) ) ) ).
% complex_cnj_zero_iff
thf(fact_7790_complex__In__mult__cnj__zero,axiom,
! [Z2: complex] :
( ( im @ ( times_times @ complex @ Z2 @ ( cnj @ Z2 ) ) )
= ( zero_zero @ real ) ) ).
% complex_In_mult_cnj_zero
thf(fact_7791_Re__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( ( re @ ( divide_divide @ complex @ A2 @ B2 ) )
= ( zero_zero @ real ) )
= ( ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) )
= ( zero_zero @ real ) ) ) ).
% Re_complex_div_eq_0
thf(fact_7792_Im__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( ( im @ ( divide_divide @ complex @ A2 @ B2 ) )
= ( zero_zero @ real ) )
= ( ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) )
= ( zero_zero @ real ) ) ) ).
% Im_complex_div_eq_0
thf(fact_7793_Re__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Re_complex_div_gt_0
thf(fact_7794_Re__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Re_complex_div_lt_0
thf(fact_7795_Re__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Re_complex_div_ge_0
thf(fact_7796_Re__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( re @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ ( re @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Re_complex_div_le_0
thf(fact_7797_Im__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Im_complex_div_gt_0
thf(fact_7798_Im__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less @ real @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less @ real @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Im_complex_div_lt_0
thf(fact_7799_Im__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) )
= ( ord_less_eq @ real @ ( zero_zero @ real ) @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) ) ) ).
% Im_complex_div_ge_0
thf(fact_7800_Im__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( ( ord_less_eq @ real @ ( im @ ( divide_divide @ complex @ A2 @ B2 ) ) @ ( zero_zero @ real ) )
= ( ord_less_eq @ real @ ( im @ ( times_times @ complex @ A2 @ ( cnj @ B2 ) ) ) @ ( zero_zero @ real ) ) ) ).
% Im_complex_div_le_0
thf(fact_7801_sum__list__def,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( ( groups8242544230860333062m_list @ A )
= ( groups_monoid_F @ A @ ( plus_plus @ A ) @ ( zero_zero @ A ) ) ) ) ).
% sum_list_def
thf(fact_7802_semilattice__order__set_Osubset__imp,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o,A4: set @ A,B4: set @ A] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( Less_eq2 @ ( lattic1715443433743089157tice_F @ A @ F2 @ B4 ) @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ) ).
% semilattice_order_set.subset_imp
thf(fact_7803_ZfunD,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A,R2: real] :
( ( zfun @ A @ B @ F2 @ F4 )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ R2 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ R2 )
@ F4 ) ) ) ) ).
% ZfunD
thf(fact_7804_semilattice__order__set_OcoboundedI,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o,A4: set @ A,A2: A] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ A2 @ A4 )
=> ( Less_eq2 @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) @ A2 ) ) ) ) ).
% semilattice_order_set.coboundedI
thf(fact_7805_Max__def,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798349783984er_Max @ A )
= ( lattic1715443433743089157tice_F @ A @ ( ord_max @ A ) ) ) ) ).
% Max_def
thf(fact_7806_Zfun__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F4: filter @ A] :
( zfun @ A @ B
@ ^ [X3: A] : ( zero_zero @ B )
@ F4 ) ) ).
% Zfun_zero
thf(fact_7807_Zfun__add,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A,G: A > B] :
( ( zfun @ A @ B @ F2 @ F4 )
=> ( ( zfun @ A @ B @ G @ F4 )
=> ( zfun @ A @ B
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ F4 ) ) ) ) ).
% Zfun_add
thf(fact_7808_Inf__fin__def,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( ( lattic7752659483105999362nf_fin @ A )
= ( lattic1715443433743089157tice_F @ A @ ( inf_inf @ A ) ) ) ) ).
% Inf_fin_def
thf(fact_7809_semilattice__set_OF_Ocong,axiom,
! [A: $tType] :
( ( lattic1715443433743089157tice_F @ A )
= ( lattic1715443433743089157tice_F @ A ) ) ).
% semilattice_set.F.cong
thf(fact_7810_Min__def,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( lattic643756798350308766er_Min @ A )
= ( lattic1715443433743089157tice_F @ A @ ( ord_min @ A ) ) ) ) ).
% Min_def
thf(fact_7811_Sup__fin__def,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( ( lattic5882676163264333800up_fin @ A )
= ( lattic1715443433743089157tice_F @ A @ ( sup_sup @ A ) ) ) ) ).
% Sup_fin_def
thf(fact_7812_semilattice__order__set_OboundedE,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o,A4: set @ A,X: A] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( Less_eq2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) )
=> ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( Less_eq2 @ X @ A9 ) ) ) ) ) ) ).
% semilattice_order_set.boundedE
thf(fact_7813_semilattice__order__set_OboundedI,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o,A4: set @ A,X: A] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( Less_eq2 @ X @ A5 ) )
=> ( Less_eq2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ) ).
% semilattice_order_set.boundedI
thf(fact_7814_semilattice__order__set_Obounded__iff,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o,A4: set @ A,X: A] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( Less_eq2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( Less_eq2 @ X @ X3 ) ) ) ) ) ) ) ).
% semilattice_order_set.bounded_iff
thf(fact_7815_Zfun__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ( ( zfun @ A @ B )
= ( ^ [F3: A > B,F9: filter @ A] :
! [R5: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R5 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( F3 @ X3 ) ) @ R5 )
@ F9 ) ) ) ) ) ).
% Zfun_def
thf(fact_7816_ZfunI,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector @ B )
=> ! [F2: A > B,F4: filter @ A] :
( ! [R3: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R3 )
=> ( eventually @ A
@ ^ [X3: A] : ( ord_less @ real @ ( real_V7770717601297561774m_norm @ B @ ( F2 @ X3 ) ) @ R3 )
@ F4 ) )
=> ( zfun @ A @ B @ F2 @ F4 ) ) ) ).
% ZfunI
thf(fact_7817_semilattice__set_Oeq__fold_H,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ A4 )
= ( the2 @ A
@ ( finite_fold @ A @ ( option @ A )
@ ^ [X3: A,Y2: option @ A] : ( some @ A @ ( case_option @ A @ A @ X3 @ ( F2 @ X3 ) @ Y2 ) )
@ ( none @ A )
@ A4 ) ) ) ) ).
% semilattice_set.eq_fold'
thf(fact_7818_semilattice__set_Oinsert__remove,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ A4 ) )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ A4 ) )
= ( F2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ).
% semilattice_set.insert_remove
thf(fact_7819_semilattice__set_Oin__idem,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( F2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) )
= ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ).
% semilattice_set.in_idem
thf(fact_7820_semilattice__order__set_Oaxioms_I2_J,axiom,
! [A: $tType,F2: A > A > A,Less_eq2: A > A > $o,Less: A > A > $o] :
( ( lattic4895041142388067077er_set @ A @ F2 @ Less_eq2 @ Less )
=> ( lattic149705377957585745ce_set @ A @ F2 ) ) ).
% semilattice_order_set.axioms(2)
thf(fact_7821_Sup__fin_Osemilattice__set__axioms,axiom,
! [A: $tType] :
( ( semilattice_sup @ A )
=> ( lattic149705377957585745ce_set @ A @ ( sup_sup @ A ) ) ) ).
% Sup_fin.semilattice_set_axioms
thf(fact_7822_Max_Osemilattice__set__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( lattic149705377957585745ce_set @ A @ ( ord_max @ A ) ) ) ).
% Max.semilattice_set_axioms
thf(fact_7823_Min_Osemilattice__set__axioms,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( lattic149705377957585745ce_set @ A @ ( ord_min @ A ) ) ) ).
% Min.semilattice_set_axioms
thf(fact_7824_Inf__fin_Osemilattice__set__axioms,axiom,
! [A: $tType] :
( ( semilattice_inf @ A )
=> ( lattic149705377957585745ce_set @ A @ ( inf_inf @ A ) ) ) ).
% Inf_fin.semilattice_set_axioms
thf(fact_7825_semilattice__set_Osingleton,axiom,
! [A: $tType,F2: A > A > A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= X ) ) ).
% semilattice_set.singleton
thf(fact_7826_semilattice__set_Ohom__commute,axiom,
! [A: $tType,F2: A > A > A,H: A > A,N7: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ! [X4: A,Y4: A] :
( ( H @ ( F2 @ X4 @ Y4 ) )
= ( F2 @ ( H @ X4 ) @ ( H @ Y4 ) ) )
=> ( ( finite_finite @ A @ N7 )
=> ( ( N7
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( H @ ( lattic1715443433743089157tice_F @ A @ F2 @ N7 ) )
= ( lattic1715443433743089157tice_F @ A @ F2 @ ( image @ A @ A @ H @ N7 ) ) ) ) ) ) ) ).
% semilattice_set.hom_commute
thf(fact_7827_semilattice__set_Osubset,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,B4: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( F2 @ ( lattic1715443433743089157tice_F @ A @ F2 @ B4 ) @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) )
= ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ) ).
% semilattice_set.subset
thf(fact_7828_semilattice__set_Oclosed,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [X4: A,Y4: A] : ( member @ A @ ( F2 @ X4 @ Y4 ) @ ( insert2 @ A @ X4 @ ( insert2 @ A @ Y4 @ ( bot_bot @ ( set @ A ) ) ) ) )
=> ( member @ A @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) @ A4 ) ) ) ) ) ).
% semilattice_set.closed
thf(fact_7829_semilattice__set_Oinsert,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ A4 ) )
= ( F2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ) ).
% semilattice_set.insert
thf(fact_7830_semilattice__set_Oinsert__not__elem,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ~ ( member @ A @ X @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ A4 ) )
= ( F2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) ) ) ) ) ) ) ).
% semilattice_set.insert_not_elem
thf(fact_7831_semilattice__set_Ounion,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,B4: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( finite_finite @ A @ B4 )
=> ( ( B4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( F2 @ ( lattic1715443433743089157tice_F @ A @ F2 @ A4 ) @ ( lattic1715443433743089157tice_F @ A @ F2 @ B4 ) ) ) ) ) ) ) ) ).
% semilattice_set.union
thf(fact_7832_semilattice__set_Oinfinite,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ~ ( finite_finite @ A @ A4 )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ A4 )
= ( the2 @ A @ ( none @ A ) ) ) ) ) ).
% semilattice_set.infinite
thf(fact_7833_semilattice__set_Oeq__fold,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( insert2 @ A @ X @ A4 ) )
= ( finite_fold @ A @ A @ F2 @ X @ A4 ) ) ) ) ).
% semilattice_set.eq_fold
thf(fact_7834_semilattice__set_Oset__eq__fold,axiom,
! [A: $tType,F2: A > A > A,X: A,Xs2: list @ A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ ( set2 @ A @ ( cons @ A @ X @ Xs2 ) ) )
= ( fold @ A @ A @ F2 @ Xs2 @ X ) ) ) ).
% semilattice_set.set_eq_fold
thf(fact_7835_semilattice__set_Oremove,axiom,
! [A: $tType,F2: A > A > A,A4: set @ A,X: A] :
( ( lattic149705377957585745ce_set @ A @ F2 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ A4 )
= X ) )
& ( ( ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) )
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( lattic1715443433743089157tice_F @ A @ F2 @ A4 )
= ( F2 @ X @ ( lattic1715443433743089157tice_F @ A @ F2 @ ( minus_minus @ ( set @ A ) @ A4 @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ) ) ) ) ) ) ).
% semilattice_set.remove
thf(fact_7836_not__in__connected__cases,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A,X: A] :
( ( topolo1966860045006549960nected @ A @ S3 )
=> ( ~ ( member @ A @ X @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( ( condit941137186595557371_above @ A @ S3 )
=> ~ ! [Y3: A] :
( ( member @ A @ Y3 @ S3 )
=> ( ord_less_eq @ A @ Y3 @ X ) ) )
=> ~ ( ( condit1013018076250108175_below @ A @ S3 )
=> ~ ! [Y3: A] :
( ( member @ A @ Y3 @ S3 )
=> ( ord_less_eq @ A @ X @ Y3 ) ) ) ) ) ) ) ) ).
% not_in_connected_cases
thf(fact_7837_cr__int__def,axiom,
( cr_int
= ( ^ [X3: product_prod @ nat @ nat] :
( ^ [Y5: int,Z3: int] : ( Y5 = Z3 )
@ ( abs_Integ @ X3 ) ) ) ) ).
% cr_int_def
thf(fact_7838_connectedD__interval,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [U4: set @ A,X: A,Y: A,Z2: A] :
( ( topolo1966860045006549960nected @ A @ U4 )
=> ( ( member @ A @ X @ U4 )
=> ( ( member @ A @ Y @ U4 )
=> ( ( ord_less_eq @ A @ X @ Z2 )
=> ( ( ord_less_eq @ A @ Z2 @ Y )
=> ( member @ A @ Z2 @ U4 ) ) ) ) ) ) ) ).
% connectedD_interval
thf(fact_7839_connectedI__interval,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ! [U4: set @ A] :
( ! [X4: A,Y4: A,Z: A] :
( ( member @ A @ X4 @ U4 )
=> ( ( member @ A @ Y4 @ U4 )
=> ( ( ord_less_eq @ A @ X4 @ Z )
=> ( ( ord_less_eq @ A @ Z @ Y4 )
=> ( member @ A @ Z @ U4 ) ) ) ) )
=> ( topolo1966860045006549960nected @ A @ U4 ) ) ) ).
% connectedI_interval
thf(fact_7840_connected__iff__interval,axiom,
! [A: $tType] :
( ( topolo8458572112393995274pology @ A )
=> ( ( topolo1966860045006549960nected @ A )
= ( ^ [U5: set @ A] :
! [X3: A] :
( ( member @ A @ X3 @ U5 )
=> ! [Y2: A] :
( ( member @ A @ Y2 @ U5 )
=> ! [Z5: A] :
( ( ord_less_eq @ A @ X3 @ Z5 )
=> ( ( ord_less_eq @ A @ Z5 @ Y2 )
=> ( member @ A @ Z5 @ U5 ) ) ) ) ) ) ) ) ).
% connected_iff_interval
thf(fact_7841_int_Opcr__cr__eq,axiom,
pcr_int = cr_int ).
% int.pcr_cr_eq
thf(fact_7842_Quotient__int,axiom,
quotient @ ( product_prod @ nat @ nat ) @ int @ intrel @ abs_Integ @ rep_Integ @ cr_int ).
% Quotient_int
thf(fact_7843_gfp__Kleene__iter,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,K: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ( compow @ ( A > A ) @ ( suc @ K ) @ F2 @ ( top_top @ A ) )
= ( compow @ ( A > A ) @ K @ F2 @ ( top_top @ A ) ) )
=> ( ( complete_lattice_gfp @ A @ F2 )
= ( compow @ ( A > A ) @ K @ F2 @ ( top_top @ A ) ) ) ) ) ) ).
% gfp_Kleene_iter
thf(fact_7844_gfp__mono,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,G: A > A] :
( ! [Z9: A] : ( ord_less_eq @ A @ ( F2 @ Z9 ) @ ( G @ Z9 ) )
=> ( ord_less_eq @ A @ ( complete_lattice_gfp @ A @ F2 ) @ ( complete_lattice_gfp @ A @ G ) ) ) ) ).
% gfp_mono
thf(fact_7845_gfp__upperbound,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X6: A,F2: A > A] :
( ( ord_less_eq @ A @ X6 @ ( F2 @ X6 ) )
=> ( ord_less_eq @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) ) ) ).
% gfp_upperbound
thf(fact_7846_gfp__least,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,X6: A] :
( ! [U3: A] :
( ( ord_less_eq @ A @ U3 @ ( F2 @ U3 ) )
=> ( ord_less_eq @ A @ U3 @ X6 ) )
=> ( ord_less_eq @ A @ ( complete_lattice_gfp @ A @ F2 ) @ X6 ) ) ) ).
% gfp_least
thf(fact_7847_gfp__gfp,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A > A] :
( ! [X4: A,Y4: A,W: A,Z: A] :
( ( ord_less_eq @ A @ X4 @ Y4 )
=> ( ( ord_less_eq @ A @ W @ Z )
=> ( ord_less_eq @ A @ ( F2 @ X4 @ W ) @ ( F2 @ Y4 @ Z ) ) ) )
=> ( ( complete_lattice_gfp @ A
@ ^ [X3: A] : ( complete_lattice_gfp @ A @ ( F2 @ X3 ) ) )
= ( complete_lattice_gfp @ A
@ ^ [X3: A] : ( F2 @ X3 @ X3 ) ) ) ) ) ).
% gfp_gfp
thf(fact_7848_gfp__eqI,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F4: A > A,X: A] :
( ( order_mono @ A @ A @ F4 )
=> ( ( ( F4 @ X )
= X )
=> ( ! [Z: A] :
( ( ( F4 @ Z )
= Z )
=> ( ord_less_eq @ A @ Z @ X ) )
=> ( ( complete_lattice_gfp @ A @ F4 )
= X ) ) ) ) ) ).
% gfp_eqI
thf(fact_7849_gfp__def,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ( ( complete_lattice_gfp @ A )
= ( ^ [F3: A > A] :
( complete_Sup_Sup @ A
@ ( collect @ A
@ ^ [U2: A] : ( ord_less_eq @ A @ U2 @ ( F3 @ U2 ) ) ) ) ) ) ) ).
% gfp_def
thf(fact_7850_coinduct__lemma,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [X6: A,F2: A > A] :
( ( ord_less_eq @ A @ X6 @ ( F2 @ ( sup_sup @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) ) )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) @ ( F2 @ ( sup_sup @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) ) ) ) ) ) ).
% coinduct_lemma
thf(fact_7851_def__coinduct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [A4: A,F2: A > A,X6: A] :
( ( A4
= ( complete_lattice_gfp @ A @ F2 ) )
=> ( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ X6 @ ( F2 @ ( sup_sup @ A @ X6 @ A4 ) ) )
=> ( ord_less_eq @ A @ X6 @ A4 ) ) ) ) ) ).
% def_coinduct
thf(fact_7852_coinduct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,X6: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ X6 @ ( F2 @ ( sup_sup @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) ) )
=> ( ord_less_eq @ A @ X6 @ ( complete_lattice_gfp @ A @ F2 ) ) ) ) ) ).
% coinduct
thf(fact_7853_gfp__ordinal__induct,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,P: A > $o] :
( ( order_mono @ A @ A @ F2 )
=> ( ! [S5: A] :
( ( P @ S5 )
=> ( ( ord_less_eq @ A @ ( complete_lattice_gfp @ A @ F2 ) @ S5 )
=> ( P @ ( F2 @ S5 ) ) ) )
=> ( ! [M8: set @ A] :
( ! [X2: A] :
( ( member @ A @ X2 @ M8 )
=> ( P @ X2 ) )
=> ( P @ ( complete_Inf_Inf @ A @ M8 ) ) )
=> ( P @ ( complete_lattice_gfp @ A @ F2 ) ) ) ) ) ) ).
% gfp_ordinal_induct
thf(fact_7854_gfp__funpow,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A,N2: nat] :
( ( order_mono @ A @ A @ F2 )
=> ( ( complete_lattice_gfp @ A @ ( compow @ ( A > A ) @ ( suc @ N2 ) @ F2 ) )
= ( complete_lattice_gfp @ A @ F2 ) ) ) ) ).
% gfp_funpow
thf(fact_7855_lfp__le__gfp,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice @ A )
=> ! [F2: A > A] :
( ( order_mono @ A @ A @ F2 )
=> ( ord_less_eq @ A @ ( complete_lattice_lfp @ A @ F2 ) @ ( complete_lattice_gfp @ A @ F2 ) ) ) ) ).
% lfp_le_gfp
thf(fact_7856_gfp__transfer__bounded,axiom,
! [A: $tType,B: $tType] :
( ( ( comple6319245703460814977attice @ B )
& ( comple6319245703460814977attice @ A ) )
=> ! [P: A > $o,F2: A > A,Alpha: A > B,G: B > B] :
( ( P @ ( F2 @ ( top_top @ A ) ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( P @ ( F2 @ X4 ) ) )
=> ( ! [M8: nat > A] :
( ( order_antimono @ nat @ A @ M8 )
=> ( ! [I4: nat] : ( P @ ( M8 @ I4 ) )
=> ( P @ ( complete_Inf_Inf @ A @ ( image @ nat @ A @ M8 @ ( top_top @ ( set @ nat ) ) ) ) ) ) )
=> ( ! [M8: nat > A] :
( ( order_antimono @ nat @ A @ M8 )
=> ( ! [I4: nat] : ( P @ ( M8 @ I4 ) )
=> ( ( Alpha @ ( complete_Inf_Inf @ A @ ( image @ nat @ A @ M8 @ ( top_top @ ( set @ nat ) ) ) ) )
= ( complete_Inf_Inf @ B
@ ( image @ nat @ B
@ ^ [I3: nat] : ( Alpha @ ( M8 @ I3 ) )
@ ( top_top @ ( set @ nat ) ) ) ) ) ) )
=> ( ( order_inf_continuous @ A @ A @ F2 )
=> ( ( order_inf_continuous @ B @ B @ G )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( ( Alpha @ ( F2 @ X4 ) )
= ( G @ ( Alpha @ X4 ) ) ) )
=> ( ! [X4: B] : ( ord_less_eq @ B @ ( G @ X4 ) @ ( Alpha @ ( F2 @ ( top_top @ A ) ) ) )
=> ( ( Alpha @ ( complete_lattice_gfp @ A @ F2 ) )
= ( complete_lattice_gfp @ B @ G ) ) ) ) ) ) ) ) ) ) ) ).
% gfp_transfer_bounded
thf(fact_7857_strict__sorted__equal__Uniq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A4: set @ A] :
( uniq @ ( list @ A )
@ ^ [Xs: list @ A] :
( ( sorted_wrt @ A @ ( ord_less @ A ) @ Xs )
& ( ( set2 @ A @ Xs )
= A4 ) ) ) ) ).
% strict_sorted_equal_Uniq
thf(fact_7858_list__ex__length,axiom,
! [A: $tType] :
( ( list_ex @ A )
= ( ^ [P3: A > $o,Xs: list @ A] :
? [N3: nat] :
( ( ord_less @ nat @ N3 @ ( size_size @ ( list @ A ) @ Xs ) )
& ( P3 @ ( nth @ A @ Xs @ N3 ) ) ) ) ) ).
% list_ex_length
thf(fact_7859_map__of__zip__nth,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,I: nat] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( distinct @ A @ Xs2 )
=> ( ( ord_less @ nat @ I @ ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) @ ( nth @ A @ Xs2 @ I ) )
= ( some @ B @ ( nth @ B @ Ys3 @ I ) ) ) ) ) ) ).
% map_of_zip_nth
thf(fact_7860_map__of__zip__is__None,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) @ X )
= ( none @ B ) )
= ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) ) ) ) ) ).
% map_of_zip_is_None
thf(fact_7861_map__of__eqI,axiom,
! [B: $tType,A: $tType,Xs2: list @ ( product_prod @ A @ B ),Ys3: list @ ( product_prod @ A @ B )] :
( ( ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Xs2 ) )
= ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Ys3 ) ) )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ ( map @ ( product_prod @ A @ B ) @ A @ ( product_fst @ A @ B ) @ Xs2 ) ) )
=> ( ( map_of @ A @ B @ Xs2 @ X4 )
= ( map_of @ A @ B @ Ys3 @ X4 ) ) )
=> ( ( map_of @ A @ B @ Xs2 )
= ( map_of @ A @ B @ Ys3 ) ) ) ) ).
% map_of_eqI
thf(fact_7862_list__ex__cong,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A,F2: A > $o,G: A > $o] :
( ( Xs2 = Ys3 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Ys3 ) )
=> ( ( F2 @ X4 )
= ( G @ X4 ) ) )
=> ( ( list_ex @ A @ F2 @ Xs2 )
= ( list_ex @ A @ G @ Ys3 ) ) ) ) ).
% list_ex_cong
thf(fact_7863_map__of__zip__is__Some,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,X: A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
= ( ? [Y2: B] :
( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) @ X )
= ( some @ B @ Y2 ) ) ) ) ) ).
% map_of_zip_is_Some
thf(fact_7864_map__of__zip__map,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,F2: A > B] :
( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ ( map @ A @ B @ F2 @ Xs2 ) ) )
= ( ^ [X3: A] : ( if @ ( option @ B ) @ ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) ) @ ( some @ B @ ( F2 @ X3 ) ) @ ( none @ B ) ) ) ) ).
% map_of_zip_map
thf(fact_7865_ran__map__of__zip,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( distinct @ A @ Xs2 )
=> ( ( ran @ A @ B @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
= ( set2 @ B @ Ys3 ) ) ) ) ).
% ran_map_of_zip
thf(fact_7866_map__of__map__restrict,axiom,
! [B: $tType,A: $tType,F2: A > B,Ks: list @ A] :
( ( map_of @ A @ B
@ ( map @ A @ ( product_prod @ A @ B )
@ ^ [K3: A] : ( product_Pair @ A @ B @ K3 @ ( F2 @ K3 ) )
@ Ks ) )
= ( restrict_map @ A @ B @ ( comp @ B @ ( option @ B ) @ A @ ( some @ B ) @ F2 ) @ ( set2 @ A @ Ks ) ) ) ).
% map_of_map_restrict
thf(fact_7867_restrict__map__upds,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,Ys3: list @ B,D4: set @ A,M: A > ( option @ B )] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs2 ) @ D4 )
=> ( ( restrict_map @ A @ B @ ( map_upds @ A @ B @ M @ Xs2 @ Ys3 ) @ D4 )
= ( map_upds @ A @ B @ ( restrict_map @ A @ B @ M @ ( minus_minus @ ( set @ A ) @ D4 @ ( set2 @ A @ Xs2 ) ) ) @ Xs2 @ Ys3 ) ) ) ) ).
% restrict_map_upds
thf(fact_7868_map__of__map__keys,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,M: A > ( option @ B )] :
( ( ( set2 @ A @ Xs2 )
= ( dom @ A @ B @ M ) )
=> ( ( map_of @ A @ B
@ ( map @ A @ ( product_prod @ A @ B )
@ ^ [K3: A] : ( product_Pair @ A @ B @ K3 @ ( the2 @ B @ ( M @ K3 ) ) )
@ Xs2 ) )
= M ) ) ).
% map_of_map_keys
thf(fact_7869_map__upds__apply__nontin,axiom,
! [B: $tType,A: $tType,X: A,Xs2: list @ A,F2: A > ( option @ B ),Ys3: list @ B] :
( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( map_upds @ A @ B @ F2 @ Xs2 @ Ys3 @ X )
= ( F2 @ X ) ) ) ).
% map_upds_apply_nontin
thf(fact_7870_map__upds__list__update2__drop,axiom,
! [A: $tType,B: $tType,Xs2: list @ A,I: nat,M: A > ( option @ B ),Ys3: list @ B,Y: B] :
( ( ord_less_eq @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ I )
=> ( ( map_upds @ A @ B @ M @ Xs2 @ ( list_update @ B @ Ys3 @ I @ Y ) )
= ( map_upds @ A @ B @ M @ Xs2 @ Ys3 ) ) ) ).
% map_upds_list_update2_drop
thf(fact_7871_dom__map__of__zip,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( dom @ A @ B @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) )
= ( set2 @ A @ Xs2 ) ) ) ).
% dom_map_of_zip
thf(fact_7872_dom__map__upds,axiom,
! [B: $tType,A: $tType,M: A > ( option @ B ),Xs2: list @ A,Ys3: list @ B] :
( ( dom @ A @ B @ ( map_upds @ A @ B @ M @ Xs2 @ Ys3 ) )
= ( sup_sup @ ( set @ A ) @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys3 ) @ Xs2 ) ) @ ( dom @ A @ B @ M ) ) ) ).
% dom_map_upds
thf(fact_7873_map__upds__append1,axiom,
! [B: $tType,A: $tType,Xs2: list @ A,Ys3: list @ B,M: A > ( option @ B ),X: A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ B ) @ Ys3 ) )
=> ( ( map_upds @ A @ B @ M @ ( append @ A @ Xs2 @ ( cons @ A @ X @ ( nil @ A ) ) ) @ Ys3 )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ M @ Xs2 @ Ys3 ) @ X @ ( some @ B @ ( nth @ B @ Ys3 @ ( size_size @ ( list @ A ) @ Xs2 ) ) ) ) ) ) ).
% map_upds_append1
thf(fact_7874_map__upd__upds__conv__if,axiom,
! [A: $tType,B: $tType,X: A,Ys3: list @ B,Xs2: list @ A,F2: A > ( option @ B ),Y: B] :
( ( ( member @ A @ X @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys3 ) @ Xs2 ) ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ ( some @ B @ Y ) ) @ Xs2 @ Ys3 )
= ( map_upds @ A @ B @ F2 @ Xs2 @ Ys3 ) ) )
& ( ~ ( member @ A @ X @ ( set2 @ A @ ( take @ A @ ( size_size @ ( list @ B ) @ Ys3 ) @ Xs2 ) ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ F2 @ X @ ( some @ B @ Y ) ) @ Xs2 @ Ys3 )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ F2 @ Xs2 @ Ys3 ) @ X @ ( some @ B @ Y ) ) ) ) ) ).
% map_upd_upds_conv_if
thf(fact_7875_map__fun__upd,axiom,
! [B: $tType,A: $tType,Y: A,Xs2: list @ A,F2: A > B,V2: B] :
( ~ ( member @ A @ Y @ ( set2 @ A @ Xs2 ) )
=> ( ( map @ A @ B @ ( fun_upd @ A @ B @ F2 @ Y @ V2 ) @ Xs2 )
= ( map @ A @ B @ F2 @ Xs2 ) ) ) ).
% map_fun_upd
thf(fact_7876_map__upds__twist,axiom,
! [A: $tType,B: $tType,A2: A,As: list @ A,M: A > ( option @ B ),B2: B,Bs: list @ B] :
( ~ ( member @ A @ A2 @ ( set2 @ A @ As ) )
=> ( ( map_upds @ A @ B @ ( fun_upd @ A @ ( option @ B ) @ M @ A2 @ ( some @ B @ B2 ) ) @ As @ Bs )
= ( fun_upd @ A @ ( option @ B ) @ ( map_upds @ A @ B @ M @ As @ Bs ) @ A2 @ ( some @ B @ B2 ) ) ) ) ).
% map_upds_twist
thf(fact_7877_map__of__zip__upd,axiom,
! [A: $tType,B: $tType,Ys3: list @ B,Xs2: list @ A,Zs: list @ B,X: A,Y: B,Z2: B] :
( ( ( size_size @ ( list @ B ) @ Ys3 )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( ( size_size @ ( list @ B ) @ Zs )
= ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ~ ( member @ A @ X @ ( set2 @ A @ Xs2 ) )
=> ( ( ( fun_upd @ A @ ( option @ B ) @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) ) @ X @ ( some @ B @ Y ) )
= ( fun_upd @ A @ ( option @ B ) @ ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Zs ) ) @ X @ ( some @ B @ Z2 ) ) )
=> ( ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Ys3 ) )
= ( map_of @ A @ B @ ( zip @ A @ B @ Xs2 @ Zs ) ) ) ) ) ) ) ).
% map_of_zip_upd
thf(fact_7878_and_Osemilattice__neutr__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( semilattice_neutr @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% and.semilattice_neutr_axioms
thf(fact_7879_finite__sequence__to__countable__set,axiom,
! [A: $tType,X6: set @ A] :
( ( countable_countable @ A @ X6 )
=> ~ ! [F14: nat > ( set @ A )] :
( ! [I4: nat] : ( ord_less_eq @ ( set @ A ) @ ( F14 @ I4 ) @ X6 )
=> ( ! [I4: nat] : ( ord_less_eq @ ( set @ A ) @ ( F14 @ I4 ) @ ( F14 @ ( suc @ I4 ) ) )
=> ( ! [I4: nat] : ( finite_finite @ A @ ( F14 @ I4 ) )
=> ( ( complete_Sup_Sup @ ( set @ A ) @ ( image @ nat @ ( set @ A ) @ F14 @ ( top_top @ ( set @ nat ) ) ) )
!= X6 ) ) ) ) ) ).
% finite_sequence_to_countable_set
thf(fact_7880_or_Osemilattice__neutr__axioms,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( semilattice_neutr @ A @ ( bit_se1065995026697491101ons_or @ A ) @ ( zero_zero @ A ) ) ) ).
% or.semilattice_neutr_axioms
thf(fact_7881_ccINF__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,B4: set @ C,F2: B > A,G: C > A] :
( ( countable_countable @ B @ A4 )
=> ( ( countable_countable @ C @ B4 )
=> ( ! [M5: C] :
( ( member @ C @ M5 @ B4 )
=> ? [X2: B] :
( ( member @ B @ X2 @ A4 )
& ( ord_less_eq @ A @ ( F2 @ X2 ) @ ( G @ M5 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ) ) ).
% ccINF_mono
thf(fact_7882_ccINF__lower,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,I: B,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( F2 @ I ) ) ) ) ) ).
% ccINF_lower
thf(fact_7883_ccINF__lower2,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,I: B,F2: B > A,U: A] :
( ( countable_countable @ B @ A4 )
=> ( ( member @ B @ I @ A4 )
=> ( ( ord_less_eq @ A @ ( F2 @ I ) @ U )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U ) ) ) ) ) ).
% ccINF_lower2
thf(fact_7884_le__ccINF__iff,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,U: A,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ U @ ( F2 @ X3 ) ) ) ) ) ) ) ).
% le_ccINF_iff
thf(fact_7885_ccINF__greatest,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,U: A,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ U @ ( F2 @ I2 ) ) )
=> ( ord_less_eq @ A @ U @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ).
% ccINF_greatest
thf(fact_7886_ccINF__less__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( counta3822494911875563373attice @ A )
& ( linorder @ A ) )
=> ! [A4: set @ B,F2: B > A,A2: A] :
( ( countable_countable @ B @ A4 )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ A2 )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ ( F2 @ X3 ) @ A2 ) ) ) ) ) ) ).
% ccINF_less_iff
thf(fact_7887_ccInf__less__iff,axiom,
! [A: $tType] :
( ( ( counta3822494911875563373attice @ A )
& ( linorder @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( countable_countable @ A @ S3 )
=> ( ( ord_less @ A @ ( complete_Inf_Inf @ A @ S3 ) @ A2 )
= ( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ord_less @ A @ X3 @ A2 ) ) ) ) ) ) ).
% ccInf_less_iff
thf(fact_7888_ccInf__superset__mono,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( countable_countable @ A @ A4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) ) ) ) ).
% ccInf_superset_mono
thf(fact_7889_ccInf__mono,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( countable_countable @ A @ B4 )
=> ( ( countable_countable @ A @ A4 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ B4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ( ord_less_eq @ A @ X2 @ B5 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) ) ) ) ) ).
% ccInf_mono
thf(fact_7890_ccInf__lower,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,X: A] :
( ( countable_countable @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ X ) ) ) ) ).
% ccInf_lower
thf(fact_7891_ccInf__lower2,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,U: A,V2: A] :
( ( countable_countable @ A @ A4 )
=> ( ( member @ A @ U @ A4 )
=> ( ( ord_less_eq @ A @ U @ V2 )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ A4 ) @ V2 ) ) ) ) ) ).
% ccInf_lower2
thf(fact_7892_le__ccInf__iff,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,B2: A] :
( ( countable_countable @ A @ A4 )
=> ( ( ord_less_eq @ A @ B2 @ ( complete_Inf_Inf @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ B2 @ X3 ) ) ) ) ) ) ).
% le_ccInf_iff
thf(fact_7893_ccInf__greatest,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,Z2: A] :
( ( countable_countable @ A @ A4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ Z2 @ X4 ) )
=> ( ord_less_eq @ A @ Z2 @ ( complete_Inf_Inf @ A @ A4 ) ) ) ) ) ).
% ccInf_greatest
thf(fact_7894_gcd__nat_Osemilattice__neutr__axioms,axiom,
semilattice_neutr @ nat @ ( gcd_gcd @ nat ) @ ( zero_zero @ nat ) ).
% gcd_nat.semilattice_neutr_axioms
thf(fact_7895_ccSup__subset__mono,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( countable_countable @ A @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ) ).
% ccSup_subset_mono
thf(fact_7896_ccSup__upper2,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,U: A,V2: A] :
( ( countable_countable @ A @ A4 )
=> ( ( member @ A @ U @ A4 )
=> ( ( ord_less_eq @ A @ V2 @ U )
=> ( ord_less_eq @ A @ V2 @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ) ).
% ccSup_upper2
thf(fact_7897_ccSup__le__iff,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,B2: A] :
( ( countable_countable @ A @ A4 )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ B2 )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( ord_less_eq @ A @ X3 @ B2 ) ) ) ) ) ) ).
% ccSup_le_iff
thf(fact_7898_ccSup__upper,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,X: A] :
( ( countable_countable @ A @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% ccSup_upper
thf(fact_7899_ccSup__least,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,Z2: A] :
( ( countable_countable @ A @ A4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ Z2 ) ) ) ) ).
% ccSup_least
thf(fact_7900_ccSup__mono,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [B4: set @ A,A4: set @ A] :
( ( countable_countable @ A @ B4 )
=> ( ( countable_countable @ A @ A4 )
=> ( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ? [X2: A] :
( ( member @ A @ X2 @ B4 )
& ( ord_less_eq @ A @ A5 @ X2 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ) ) ).
% ccSup_mono
thf(fact_7901_less__ccSup__iff,axiom,
! [A: $tType] :
( ( ( counta3822494911875563373attice @ A )
& ( linorder @ A ) )
=> ! [S3: set @ A,A2: A] :
( ( countable_countable @ A @ S3 )
=> ( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ S3 ) )
= ( ? [X3: A] :
( ( member @ A @ X3 @ S3 )
& ( ord_less @ A @ A2 @ X3 ) ) ) ) ) ) ).
% less_ccSup_iff
thf(fact_7902_ccSUP__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,B4: set @ C,F2: B > A,G: C > A] :
( ( countable_countable @ B @ A4 )
=> ( ( countable_countable @ C @ B4 )
=> ( ! [N: B] :
( ( member @ B @ N @ A4 )
=> ? [X2: C] :
( ( member @ C @ X2 @ B4 )
& ( ord_less_eq @ A @ ( F2 @ N ) @ ( G @ X2 ) ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ G @ B4 ) ) ) ) ) ) ) ).
% ccSUP_mono
thf(fact_7903_ccSUP__least,axiom,
! [B: $tType,A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,F2: B > A,U: A] :
( ( countable_countable @ B @ A4 )
=> ( ! [I2: B] :
( ( member @ B @ I2 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I2 ) @ U ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U ) ) ) ) ).
% ccSUP_least
thf(fact_7904_ccSUP__upper,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,I: B,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( member @ B @ I @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ I ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ).
% ccSUP_upper
thf(fact_7905_ccSUP__le__iff,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,F2: B > A,U: A] :
( ( countable_countable @ B @ A4 )
=> ( ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ U )
= ( ! [X3: B] :
( ( member @ B @ X3 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ U ) ) ) ) ) ) ).
% ccSUP_le_iff
thf(fact_7906_ccSUP__upper2,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,I: B,U: A,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( member @ B @ I @ A4 )
=> ( ( ord_less_eq @ A @ U @ ( F2 @ I ) )
=> ( ord_less_eq @ A @ U @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) ) ) ) ) ) ).
% ccSUP_upper2
thf(fact_7907_less__ccSUP__iff,axiom,
! [A: $tType,B: $tType] :
( ( ( counta3822494911875563373attice @ A )
& ( linorder @ A ) )
=> ! [A4: set @ B,A2: A,F2: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( ord_less @ A @ A2 @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) )
= ( ? [X3: B] :
( ( member @ B @ X3 @ A4 )
& ( ord_less @ A @ A2 @ ( F2 @ X3 ) ) ) ) ) ) ) ).
% less_ccSUP_iff
thf(fact_7908_max__nat_Osemilattice__neutr__axioms,axiom,
semilattice_neutr @ nat @ ( ord_max @ nat ) @ ( zero_zero @ nat ) ).
% max_nat.semilattice_neutr_axioms
thf(fact_7909_ccSup__inter__less__eq,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( countable_countable @ A @ A4 )
=> ( ( countable_countable @ A @ B4 )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) @ ( inf_inf @ A @ ( complete_Sup_Sup @ A @ A4 ) @ ( complete_Sup_Sup @ A @ B4 ) ) ) ) ) ) ).
% ccSup_inter_less_eq
thf(fact_7910_less__eq__ccInf__inter,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( countable_countable @ A @ A4 )
=> ( ( countable_countable @ A @ B4 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ ( complete_Inf_Inf @ A @ A4 ) @ ( complete_Inf_Inf @ A @ B4 ) ) @ ( complete_Inf_Inf @ A @ ( inf_inf @ ( set @ A ) @ A4 @ B4 ) ) ) ) ) ) ).
% less_eq_ccInf_inter
thf(fact_7911_ccSUP__subset__mono,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [B4: set @ B,A4: set @ B,F2: B > A,G: B > A] :
( ( countable_countable @ B @ B4 )
=> ( ( ord_less_eq @ ( set @ B ) @ A4 @ B4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Sup_Sup @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% ccSUP_subset_mono
thf(fact_7912_ccINF__superset__mono,axiom,
! [A: $tType,B: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [A4: set @ B,B4: set @ B,F2: B > A,G: B > A] :
( ( countable_countable @ B @ A4 )
=> ( ( ord_less_eq @ ( set @ B ) @ B4 @ A4 )
=> ( ! [X4: B] :
( ( member @ B @ X4 @ B4 )
=> ( ord_less_eq @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_eq @ A @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( complete_Inf_Inf @ A @ ( image @ B @ A @ G @ B4 ) ) ) ) ) ) ) ).
% ccINF_superset_mono
thf(fact_7913_mono__ccSUP,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( counta4013691401010221786attice @ A )
& ( counta3822494911875563373attice @ B ) )
=> ! [F2: A > B,I5: set @ C,A4: C > A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( countable_countable @ C @ I5 )
=> ( ord_less_eq @ B
@ ( complete_Sup_Sup @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) )
@ ( F2 @ ( complete_Sup_Sup @ A @ ( image @ C @ A @ A4 @ I5 ) ) ) ) ) ) ) ).
% mono_ccSUP
thf(fact_7914_mono__ccSup,axiom,
! [B: $tType,A: $tType] :
( ( ( counta4013691401010221786attice @ A )
& ( counta3822494911875563373attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( countable_countable @ A @ A4 )
=> ( ord_less_eq @ B @ ( complete_Sup_Sup @ B @ ( image @ A @ B @ F2 @ A4 ) ) @ ( F2 @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ) ).
% mono_ccSup
thf(fact_7915_mono__ccInf,axiom,
! [B: $tType,A: $tType] :
( ( ( counta4013691401010221786attice @ A )
& ( counta3822494911875563373attice @ B ) )
=> ! [F2: A > B,A4: set @ A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( countable_countable @ A @ A4 )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ A4 ) ) @ ( complete_Inf_Inf @ B @ ( image @ A @ B @ F2 @ A4 ) ) ) ) ) ) ).
% mono_ccInf
thf(fact_7916_mono__ccINF,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( ( counta4013691401010221786attice @ A )
& ( counta3822494911875563373attice @ B ) )
=> ! [F2: A > B,I5: set @ C,A4: C > A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( countable_countable @ C @ I5 )
=> ( ord_less_eq @ B @ ( F2 @ ( complete_Inf_Inf @ A @ ( image @ C @ A @ A4 @ I5 ) ) )
@ ( complete_Inf_Inf @ B
@ ( image @ C @ B
@ ^ [X3: C] : ( F2 @ ( A4 @ X3 ) )
@ I5 ) ) ) ) ) ) ).
% mono_ccINF
thf(fact_7917_Collect__finite__subset__eq__lists,axiom,
! [A: $tType,T6: set @ A] :
( ( collect @ ( set @ A )
@ ^ [A8: set @ A] :
( ( finite_finite @ A @ A8 )
& ( ord_less_eq @ ( set @ A ) @ A8 @ T6 ) ) )
= ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( lists @ A @ T6 ) ) ) ).
% Collect_finite_subset_eq_lists
thf(fact_7918_Collect__finite__eq__lists,axiom,
! [A: $tType] :
( ( collect @ ( set @ A ) @ ( finite_finite @ A ) )
= ( image @ ( list @ A ) @ ( set @ A ) @ ( set2 @ A ) @ ( lists @ A @ ( top_top @ ( set @ A ) ) ) ) ) ).
% Collect_finite_eq_lists
thf(fact_7919_in__listsI,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ A] :
( ! [X4: A] :
( ( member @ A @ X4 @ ( set2 @ A @ Xs2 ) )
=> ( member @ A @ X4 @ A4 ) )
=> ( member @ ( list @ A ) @ Xs2 @ ( lists @ A @ A4 ) ) ) ).
% in_listsI
thf(fact_7920_lists__eq__set,axiom,
! [A: $tType] :
( ( lists @ A )
= ( ^ [A8: set @ A] :
( collect @ ( list @ A )
@ ^ [Xs: list @ A] : ( ord_less_eq @ ( set @ A ) @ ( set2 @ A @ Xs ) @ A8 ) ) ) ) ).
% lists_eq_set
thf(fact_7921_in__lists__conv__set,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ A] :
( ( member @ ( list @ A ) @ Xs2 @ ( lists @ A @ A4 ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ ( set2 @ A @ Xs2 ) )
=> ( member @ A @ X3 @ A4 ) ) ) ) ).
% in_lists_conv_set
thf(fact_7922_in__listsD,axiom,
! [A: $tType,Xs2: list @ A,A4: set @ A] :
( ( member @ ( list @ A ) @ Xs2 @ ( lists @ A @ A4 ) )
=> ! [X2: A] :
( ( member @ A @ X2 @ ( set2 @ A @ Xs2 ) )
=> ( member @ A @ X2 @ A4 ) ) ) ).
% in_listsD
thf(fact_7923_cclfp__lowerbound,axiom,
! [A: $tType] :
( ( counta3822494911875563373attice @ A )
=> ! [F2: A > A,A4: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ A4 ) @ A4 )
=> ( ord_less_eq @ A @ ( order_532582986084564980_cclfp @ A @ F2 ) @ A4 ) ) ) ) ).
% cclfp_lowerbound
thf(fact_7924_card__Un__disjnt,axiom,
! [A: $tType,A4: set @ A,B4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( finite_finite @ A @ B4 )
=> ( ( disjnt @ A @ A4 @ B4 )
=> ( ( finite_card @ A @ ( sup_sup @ ( set @ A ) @ A4 @ B4 ) )
= ( plus_plus @ nat @ ( finite_card @ A @ A4 ) @ ( finite_card @ A @ B4 ) ) ) ) ) ) ).
% card_Un_disjnt
thf(fact_7925_disjnt__ge__max,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y6: set @ A,X6: set @ A] :
( ( finite_finite @ A @ Y6 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ X6 )
=> ( ord_less @ A @ ( lattic643756798349783984er_Max @ A @ Y6 ) @ X4 ) )
=> ( disjnt @ A @ X6 @ Y6 ) ) ) ) ).
% disjnt_ge_max
thf(fact_7926_construct__def,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ( ( real_V4425403222259421789struct @ A @ B )
= ( ^ [B8: set @ A,G2: A > B,V5: A] :
( groups7311177749621191930dd_sum @ A @ B
@ ^ [B3: A] : ( real_V8093663219630862766scaleR @ B @ ( real_V7696804695334737415tation @ A @ ( real_V4986007116245087402_basis @ A @ B8 ) @ V5 @ B3 ) @ ( if @ B @ ( member @ A @ B3 @ B8 ) @ ( G2 @ B3 ) @ ( zero_zero @ B ) ) )
@ ( collect @ A
@ ^ [B3: A] :
( ( real_V7696804695334737415tation @ A @ ( real_V4986007116245087402_basis @ A @ B8 ) @ V5 @ B3 )
!= ( zero_zero @ real ) ) ) ) ) ) ) ).
% construct_def
thf(fact_7927_natLess__def,axiom,
( bNF_Ca8459412986667044542atLess
= ( collect @ ( product_prod @ nat @ nat ) @ ( product_case_prod @ nat @ nat @ $o @ ( ord_less @ nat ) ) ) ) ).
% natLess_def
thf(fact_7928_construct__outside,axiom,
! [A: $tType,B: $tType] :
( ( ( real_V4867850818363320053vector @ B )
& ( real_V4867850818363320053vector @ A ) )
=> ! [B4: set @ A,V2: A,F2: A > B] :
( ~ ( real_V358717886546972837endent @ A @ B4 )
=> ( ( member @ A @ V2 @ ( real_Vector_span @ A @ ( minus_minus @ ( set @ A ) @ ( real_V4986007116245087402_basis @ A @ B4 ) @ B4 ) ) )
=> ( ( real_V4425403222259421789struct @ A @ B @ B4 @ F2 @ V2 )
= ( zero_zero @ B ) ) ) ) ) ).
% construct_outside
thf(fact_7929_construct__add,axiom,
! [B: $tType,A: $tType] :
( ( ( real_V4867850818363320053vector @ A )
& ( real_V4867850818363320053vector @ B ) )
=> ! [B4: set @ A,F2: A > B,G: A > B,V2: A] :
( ~ ( real_V358717886546972837endent @ A @ B4 )
=> ( ( real_V4425403222259421789struct @ A @ B @ B4
@ ^ [X3: A] : ( plus_plus @ B @ ( F2 @ X3 ) @ ( G @ X3 ) )
@ V2 )
= ( plus_plus @ B @ ( real_V4425403222259421789struct @ A @ B @ B4 @ F2 @ V2 ) @ ( real_V4425403222259421789struct @ A @ B @ B4 @ G @ V2 ) ) ) ) ) ).
% construct_add
thf(fact_7930_relChain__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( bNF_Ca3754400796208372196lChain @ A @ B )
= ( ^ [R5: set @ ( product_prod @ A @ A ),As2: A > B] :
! [I3: A,J3: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ I3 @ J3 ) @ R5 )
=> ( ord_less_eq @ B @ ( As2 @ I3 ) @ ( As2 @ J3 ) ) ) ) ) ) ).
% relChain_def
thf(fact_7931_Restr__natLeq,axiom,
! [N2: nat] :
( ( inf_inf @ ( set @ ( product_prod @ nat @ nat ) ) @ bNF_Ca8665028551170535155natLeq
@ ( product_Sigma @ nat @ nat
@ ( collect @ nat
@ ^ [X3: nat] : ( ord_less @ nat @ X3 @ N2 ) )
@ ^ [Uu3: nat] :
( collect @ nat
@ ^ [X3: nat] : ( ord_less @ nat @ X3 @ N2 ) ) ) )
= ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [X3: nat,Y2: nat] :
( ( ord_less @ nat @ X3 @ N2 )
& ( ord_less @ nat @ Y2 @ N2 )
& ( ord_less_eq @ nat @ X3 @ Y2 ) ) ) ) ) ).
% Restr_natLeq
thf(fact_7932_natLeq__def,axiom,
( bNF_Ca8665028551170535155natLeq
= ( collect @ ( product_prod @ nat @ nat ) @ ( product_case_prod @ nat @ nat @ $o @ ( ord_less_eq @ nat ) ) ) ) ).
% natLeq_def
thf(fact_7933_Restr__natLeq2,axiom,
! [N2: nat] :
( ( inf_inf @ ( set @ ( product_prod @ nat @ nat ) ) @ bNF_Ca8665028551170535155natLeq
@ ( product_Sigma @ nat @ nat @ ( order_underS @ nat @ bNF_Ca8665028551170535155natLeq @ N2 )
@ ^ [Uu3: nat] : ( order_underS @ nat @ bNF_Ca8665028551170535155natLeq @ N2 ) ) )
= ( collect @ ( product_prod @ nat @ nat )
@ ( product_case_prod @ nat @ nat @ $o
@ ^ [X3: nat,Y2: nat] :
( ( ord_less @ nat @ X3 @ N2 )
& ( ord_less @ nat @ Y2 @ N2 )
& ( ord_less_eq @ nat @ X3 @ Y2 ) ) ) ) ) ).
% Restr_natLeq2
thf(fact_7934_fun__cong__unused__0,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( zero @ B )
=> ! [F2: ( A > B ) > C,G: C] :
( ( F2
= ( ^ [X3: A > B] : G ) )
=> ( ( F2
@ ^ [X3: A] : ( zero_zero @ B ) )
= G ) ) ) ).
% fun_cong_unused_0
thf(fact_7935_natLeq__underS__less,axiom,
! [N2: nat] :
( ( order_underS @ nat @ bNF_Ca8665028551170535155natLeq @ N2 )
= ( collect @ nat
@ ^ [X3: nat] : ( ord_less @ nat @ X3 @ N2 ) ) ) ).
% natLeq_underS_less
thf(fact_7936_add_Ogroup__axioms,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( group @ A @ ( plus_plus @ A ) @ ( zero_zero @ A ) @ ( uminus_uminus @ A ) ) ) ).
% add.group_axioms
thf(fact_7937_finite__subset__wf,axiom,
! [A: $tType,A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( wf @ ( set @ A )
@ ( collect @ ( product_prod @ ( set @ A ) @ ( set @ A ) )
@ ( product_case_prod @ ( set @ A ) @ ( set @ A ) @ $o
@ ^ [X7: set @ A,Y8: set @ A] :
( ( ord_less @ ( set @ A ) @ X7 @ Y8 )
& ( ord_less_eq @ ( set @ A ) @ Y8 @ A4 ) ) ) ) ) ) ).
% finite_subset_wf
thf(fact_7938_wf,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( wf @ A @ ( collect @ ( product_prod @ A @ A ) @ ( product_case_prod @ A @ A @ $o @ ( ord_less @ A ) ) ) ) ) ).
% wf
thf(fact_7939_wf__if__measure,axiom,
! [A: $tType,P: A > $o,F2: A > nat,G: A > A] :
( ! [X4: A] :
( ( P @ X4 )
=> ( ord_less @ nat @ ( F2 @ ( G @ X4 ) ) @ ( F2 @ X4 ) ) )
=> ( wf @ A
@ ( collect @ ( product_prod @ A @ A )
@ ( product_case_prod @ A @ A @ $o
@ ^ [Y2: A,X3: A] :
( ( P @ X3 )
& ( Y2
= ( G @ X3 ) ) ) ) ) ) ) ).
% wf_if_measure
thf(fact_7940_group_Oleft__cancel,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A,B2: A,C2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( ( F2 @ A2 @ B2 )
= ( F2 @ A2 @ C2 ) )
= ( B2 = C2 ) ) ) ).
% group.left_cancel
thf(fact_7941_group_Oleft__inverse,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( F2 @ ( Inverse @ A2 ) @ A2 )
= Z2 ) ) ).
% group.left_inverse
thf(fact_7942_group_Oright__cancel,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,B2: A,A2: A,C2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( ( F2 @ B2 @ A2 )
= ( F2 @ C2 @ A2 ) )
= ( B2 = C2 ) ) ) ).
% group.right_cancel
thf(fact_7943_group_Oright__inverse,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( F2 @ A2 @ ( Inverse @ A2 ) )
= Z2 ) ) ).
% group.right_inverse
thf(fact_7944_group_Oinverse__unique,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A,B2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( ( F2 @ A2 @ B2 )
= Z2 )
=> ( ( Inverse @ A2 )
= B2 ) ) ) ).
% group.inverse_unique
thf(fact_7945_group_Oinverse__inverse,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( Inverse @ ( Inverse @ A2 ) )
= A2 ) ) ).
% group.inverse_inverse
thf(fact_7946_group_Oinverse__neutral,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( Inverse @ Z2 )
= Z2 ) ) ).
% group.inverse_neutral
thf(fact_7947_group_Ogroup__left__neutral,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( F2 @ Z2 @ A2 )
= A2 ) ) ).
% group.group_left_neutral
thf(fact_7948_group_Oinverse__distrib__swap,axiom,
! [A: $tType,F2: A > A > A,Z2: A,Inverse: A > A,A2: A,B2: A] :
( ( group @ A @ F2 @ Z2 @ Inverse )
=> ( ( Inverse @ ( F2 @ A2 @ B2 ) )
= ( F2 @ ( Inverse @ B2 ) @ ( Inverse @ A2 ) ) ) ) ).
% group.inverse_distrib_swap
thf(fact_7949_wf__bounded__measure,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),Ub: A > nat,F2: A > nat] :
( ! [A5: A,B5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ B5 @ A5 ) @ R2 )
=> ( ( ord_less_eq @ nat @ ( Ub @ B5 ) @ ( Ub @ A5 ) )
& ( ord_less_eq @ nat @ ( F2 @ B5 ) @ ( Ub @ A5 ) )
& ( ord_less @ nat @ ( F2 @ A5 ) @ ( F2 @ B5 ) ) ) )
=> ( wf @ A @ R2 ) ) ).
% wf_bounded_measure
thf(fact_7950_wf__no__infinite__down__chainE,axiom,
! [A: $tType,R2: set @ ( product_prod @ A @ A ),F2: nat > A] :
( ( wf @ A @ R2 )
=> ~ ! [K2: nat] : ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( F2 @ ( suc @ K2 ) ) @ ( F2 @ K2 ) ) @ R2 ) ) ).
% wf_no_infinite_down_chainE
thf(fact_7951_wf__iff__no__infinite__down__chain,axiom,
! [A: $tType] :
( ( wf @ A )
= ( ^ [R5: set @ ( product_prod @ A @ A )] :
~ ? [F3: nat > A] :
! [I3: nat] : ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( F3 @ ( suc @ I3 ) ) @ ( F3 @ I3 ) ) @ R5 ) ) ) ).
% wf_iff_no_infinite_down_chain
thf(fact_7952_wf__linord__ex__has__least,axiom,
! [B: $tType,A: $tType,R2: set @ ( product_prod @ A @ A ),P: B > $o,K: B,M: B > A] :
( ( wf @ A @ R2 )
=> ( ! [X4: A,Y4: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ X4 @ Y4 ) @ ( transitive_trancl @ A @ R2 ) )
= ( ~ ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ Y4 @ X4 ) @ ( transitive_rtrancl @ A @ R2 ) ) ) )
=> ( ( P @ K )
=> ? [X4: B] :
( ( P @ X4 )
& ! [Y3: B] :
( ( P @ Y3 )
=> ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ ( M @ X4 ) @ ( M @ Y3 ) ) @ ( transitive_rtrancl @ A @ R2 ) ) ) ) ) ) ) ).
% wf_linord_ex_has_least
thf(fact_7953_reduction__pair__lemma,axiom,
! [A: $tType,P: product_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ),R: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( fun_reduction_pair @ A @ P )
=> ( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ R @ ( product_fst @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P ) )
=> ( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ S3 @ ( product_snd @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P ) )
=> ( ( wf @ A @ S3 )
=> ( wf @ A @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ R @ S3 ) ) ) ) ) ) ).
% reduction_pair_lemma
thf(fact_7954_wf__bounded__set,axiom,
! [B: $tType,A: $tType,R2: set @ ( product_prod @ A @ A ),Ub: A > ( set @ B ),F2: A > ( set @ B )] :
( ! [A5: A,B5: A] :
( ( member @ ( product_prod @ A @ A ) @ ( product_Pair @ A @ A @ B5 @ A5 ) @ R2 )
=> ( ( finite_finite @ B @ ( Ub @ A5 ) )
& ( ord_less_eq @ ( set @ B ) @ ( Ub @ B5 ) @ ( Ub @ A5 ) )
& ( ord_less_eq @ ( set @ B ) @ ( F2 @ B5 ) @ ( Ub @ A5 ) )
& ( ord_less @ ( set @ B ) @ ( F2 @ A5 ) @ ( F2 @ B5 ) ) ) )
=> ( wf @ A @ R2 ) ) ).
% wf_bounded_set
thf(fact_7955_reduction__pairI,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( wf @ A @ R )
=> ( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ R @ S3 ) @ R )
=> ( fun_reduction_pair @ A @ ( product_Pair @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ R @ S3 ) ) ) ) ).
% reduction_pairI
thf(fact_7956_splice__replicate,axiom,
! [A: $tType,M: nat,X: A,N2: nat] :
( ( splice @ A @ ( replicate @ A @ M @ X ) @ ( replicate @ A @ N2 @ X ) )
= ( replicate @ A @ ( plus_plus @ nat @ M @ N2 ) @ X ) ) ).
% splice_replicate
thf(fact_7957_length__splice,axiom,
! [A: $tType,Xs2: list @ A,Ys3: list @ A] :
( ( size_size @ ( list @ A ) @ ( splice @ A @ Xs2 @ Ys3 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ Xs2 ) @ ( size_size @ ( list @ A ) @ Ys3 ) ) ) ).
% length_splice
thf(fact_7958_wf__less,axiom,
wf @ nat @ ( collect @ ( product_prod @ nat @ nat ) @ ( product_case_prod @ nat @ nat @ $o @ ( ord_less @ nat ) ) ) ).
% wf_less
thf(fact_7959_wf__pair__less,axiom,
wf @ ( product_prod @ nat @ nat ) @ fun_pair_less ).
% wf_pair_less
thf(fact_7960_wf__int__ge__less__than2,axiom,
! [D2: int] : ( wf @ int @ ( int_ge_less_than2 @ D2 ) ) ).
% wf_int_ge_less_than2
thf(fact_7961_wf__int__ge__less__than,axiom,
! [D2: int] : ( wf @ int @ ( int_ge_less_than @ D2 ) ) ).
% wf_int_ge_less_than
thf(fact_7962_wf__no__loop,axiom,
! [B: $tType,R: set @ ( product_prod @ B @ B )] :
( ( ( relcomp @ B @ B @ B @ R @ R )
= ( bot_bot @ ( set @ ( product_prod @ B @ B ) ) ) )
=> ( wf @ B @ R ) ) ).
% wf_no_loop
thf(fact_7963_union__comp__emptyR,axiom,
! [A: $tType,A4: set @ ( product_prod @ A @ A ),B4: set @ ( product_prod @ A @ A ),C5: set @ ( product_prod @ A @ A )] :
( ( ( relcomp @ A @ A @ A @ A4 @ B4 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( ( relcomp @ A @ A @ A @ A4 @ C5 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( relcomp @ A @ A @ A @ A4 @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ B4 @ C5 ) )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ) ).
% union_comp_emptyR
thf(fact_7964_union__comp__emptyL,axiom,
! [A: $tType,A4: set @ ( product_prod @ A @ A ),C5: set @ ( product_prod @ A @ A ),B4: set @ ( product_prod @ A @ A )] :
( ( ( relcomp @ A @ A @ A @ A4 @ C5 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( ( relcomp @ A @ A @ A @ B4 @ C5 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) )
=> ( ( relcomp @ A @ A @ A @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ A4 @ B4 ) @ C5 )
= ( bot_bot @ ( set @ ( product_prod @ A @ A ) ) ) ) ) ) ).
% union_comp_emptyL
thf(fact_7965_relpow__add,axiom,
! [A: $tType,M: nat,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( plus_plus @ nat @ M @ N2 ) @ R )
= ( relcomp @ A @ A @ A @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ M @ R ) @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) ) ) ).
% relpow_add
thf(fact_7966_relpow_Osimps_I2_J,axiom,
! [A: $tType,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( suc @ N2 ) @ R )
= ( relcomp @ A @ A @ A @ ( compow @ ( set @ ( product_prod @ A @ A ) ) @ N2 @ R ) @ R ) ) ).
% relpow.simps(2)
thf(fact_7967_reduction__pair__def,axiom,
! [A: $tType] :
( ( fun_reduction_pair @ A )
= ( ^ [P3: product_prod @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) )] :
( ( wf @ A @ ( product_fst @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P3 ) )
& ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ ( product_fst @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P3 ) @ ( product_snd @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P3 ) ) @ ( product_fst @ ( set @ ( product_prod @ A @ A ) ) @ ( set @ ( product_prod @ A @ A ) ) @ P3 ) ) ) ) ) ).
% reduction_pair_def
thf(fact_7968_max__ext__compat,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ R @ S3 ) @ R )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( relcomp @ ( set @ A ) @ ( set @ A ) @ ( set @ A ) @ ( max_ext @ A @ R ) @ ( sup_sup @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( max_ext @ A @ S3 ) @ ( insert2 @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ) ) ) @ ( max_ext @ A @ R ) ) ) ).
% max_ext_compat
thf(fact_7969_min__ext__compat,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A ),S3: set @ ( product_prod @ A @ A )] :
( ( ord_less_eq @ ( set @ ( product_prod @ A @ A ) ) @ ( relcomp @ A @ A @ A @ R @ S3 ) @ R )
=> ( ord_less_eq @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( relcomp @ ( set @ A ) @ ( set @ A ) @ ( set @ A ) @ ( min_ext @ A @ R ) @ ( sup_sup @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) @ ( min_ext @ A @ S3 ) @ ( insert2 @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) @ ( product_Pair @ ( set @ A ) @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ ( bot_bot @ ( set @ A ) ) ) @ ( bot_bot @ ( set @ ( product_prod @ ( set @ A ) @ ( set @ A ) ) ) ) ) ) ) @ ( min_ext @ A @ R ) ) ) ).
% min_ext_compat
thf(fact_7970_ntrancl__Suc,axiom,
! [A: $tType,N2: nat,R: set @ ( product_prod @ A @ A )] :
( ( transitive_ntrancl @ A @ ( suc @ N2 ) @ R )
= ( relcomp @ A @ A @ A @ ( transitive_ntrancl @ A @ N2 @ R ) @ ( sup_sup @ ( set @ ( product_prod @ A @ A ) ) @ ( id2 @ A ) @ R ) ) ) ).
% ntrancl_Suc
thf(fact_7971_and_Omonoid__axioms,axiom,
! [A: $tType] :
( ( bit_ri3973907225187159222ations @ A )
=> ( monoid @ A @ ( bit_se5824344872417868541ns_and @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% and.monoid_axioms
thf(fact_7972_pair__leq__def,axiom,
( fun_pair_leq
= ( sup_sup @ ( set @ ( product_prod @ ( product_prod @ nat @ nat ) @ ( product_prod @ nat @ nat ) ) ) @ fun_pair_less @ ( id2 @ ( product_prod @ nat @ nat ) ) ) ) ).
% pair_leq_def
thf(fact_7973_monoid_Oleft__neutral,axiom,
! [A: $tType,F2: A > A > A,Z2: A,A2: A] :
( ( monoid @ A @ F2 @ Z2 )
=> ( ( F2 @ Z2 @ A2 )
= A2 ) ) ).
% monoid.left_neutral
thf(fact_7974_monoid_Oright__neutral,axiom,
! [A: $tType,F2: A > A > A,Z2: A,A2: A] :
( ( monoid @ A @ F2 @ Z2 )
=> ( ( F2 @ A2 @ Z2 )
= A2 ) ) ).
% monoid.right_neutral
thf(fact_7975_mult_Omonoid__axioms,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( monoid @ A @ ( times_times @ A ) @ ( one_one @ A ) ) ) ).
% mult.monoid_axioms
thf(fact_7976_max__nat_Omonoid__axioms,axiom,
monoid @ nat @ ( ord_max @ nat ) @ ( zero_zero @ nat ) ).
% max_nat.monoid_axioms
thf(fact_7977_xor_Omonoid__axioms,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( monoid @ A @ ( bit_se5824344971392196577ns_xor @ A ) @ ( zero_zero @ A ) ) ) ).
% xor.monoid_axioms
thf(fact_7978_gcd__nat_Omonoid__axioms,axiom,
monoid @ nat @ ( gcd_gcd @ nat ) @ ( zero_zero @ nat ) ).
% gcd_nat.monoid_axioms
thf(fact_7979_relpow_Osimps_I1_J,axiom,
! [A: $tType,R: set @ ( product_prod @ A @ A )] :
( ( compow @ ( set @ ( product_prod @ A @ A ) ) @ ( zero_zero @ nat ) @ R )
= ( id2 @ A ) ) ).
% relpow.simps(1)
thf(fact_7980_add_Omonoid__axioms,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ( monoid @ A @ ( plus_plus @ A ) @ ( zero_zero @ A ) ) ) ).
% add.monoid_axioms
thf(fact_7981_or_Omonoid__axioms,axiom,
! [A: $tType] :
( ( bit_se359711467146920520ations @ A )
=> ( monoid @ A @ ( bit_se1065995026697491101ons_or @ A ) @ ( zero_zero @ A ) ) ) ).
% or.monoid_axioms
thf(fact_7982_iteratesp_Omono,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A] :
( order_mono @ ( A > $o ) @ ( A > $o )
@ ^ [P5: A > $o,X3: A] :
( ? [Y2: A] :
( ( X3
= ( F2 @ Y2 ) )
& ( P5 @ Y2 ) )
| ? [M9: set @ A] :
( ( X3
= ( complete_Sup_Sup @ A @ M9 ) )
& ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M9 )
& ! [Y2: A] :
( ( member @ A @ Y2 @ M9 )
=> ( P5 @ Y2 ) ) ) ) ) ) ).
% iteratesp.mono
thf(fact_7983_inv__o__cancel,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( comp @ B @ A @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ F2 )
= ( id @ A ) ) ) ).
% inv_o_cancel
thf(fact_7984_inv__into__f__f,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,X: A] :
( ( inj_on @ A @ B @ F2 @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( hilbert_inv_into @ A @ B @ A4 @ F2 @ ( F2 @ X ) )
= X ) ) ) ).
% inv_into_f_f
thf(fact_7985_inv__identity,axiom,
! [A: $tType] :
( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) )
@ ^ [A3: A] : A3 )
= ( ^ [A3: A] : A3 ) ) ).
% inv_identity
thf(fact_7986_inv__id,axiom,
! [A: $tType] :
( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ ( id @ A ) )
= ( id @ A ) ) ).
% inv_id
thf(fact_7987_inv__into__image__cancel,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,S3: set @ A] :
( ( inj_on @ A @ B @ F2 @ A4 )
=> ( ( ord_less_eq @ ( set @ A ) @ S3 @ A4 )
=> ( ( image @ B @ A @ ( hilbert_inv_into @ A @ B @ A4 @ F2 ) @ ( image @ A @ B @ F2 @ S3 ) )
= S3 ) ) ) ).
% inv_into_image_cancel
thf(fact_7988_o__inv__o__cancel,axiom,
! [B: $tType,C: $tType,A: $tType,F2: A > B,G: A > C] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( comp @ B @ C @ A @ ( comp @ A @ C @ B @ G @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) ) @ F2 )
= G ) ) ).
% o_inv_o_cancel
thf(fact_7989_bij__betw__inv__into__subset,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,A11: set @ B,B4: set @ A,B15: set @ B] :
( ( bij_betw @ A @ B @ F2 @ A4 @ A11 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A4 )
=> ( ( ( image @ A @ B @ F2 @ B4 )
= B15 )
=> ( bij_betw @ B @ A @ ( hilbert_inv_into @ A @ B @ A4 @ F2 ) @ B15 @ B4 ) ) ) ) ).
% bij_betw_inv_into_subset
thf(fact_7990_image__inv__into__cancel,axiom,
! [B: $tType,A: $tType,F2: B > A,A4: set @ B,A11: set @ A,B15: set @ A] :
( ( ( image @ B @ A @ F2 @ A4 )
= A11 )
=> ( ( ord_less_eq @ ( set @ A ) @ B15 @ A11 )
=> ( ( image @ B @ A @ F2 @ ( image @ A @ B @ ( hilbert_inv_into @ B @ A @ A4 @ F2 ) @ B15 ) )
= B15 ) ) ) ).
% image_inv_into_cancel
thf(fact_7991_inj__on__inv__into,axiom,
! [B: $tType,A: $tType,B4: set @ A,F2: B > A,A4: set @ B] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ ( image @ B @ A @ F2 @ A4 ) )
=> ( inj_on @ A @ B @ ( hilbert_inv_into @ B @ A @ A4 @ F2 ) @ B4 ) ) ).
% inj_on_inv_into
thf(fact_7992_chain__singleton,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [X: A] : ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ ( insert2 @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).
% chain_singleton
thf(fact_7993_ccpo__Sup__upper,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [A4: set @ A,X: A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ord_less_eq @ A @ X @ ( complete_Sup_Sup @ A @ A4 ) ) ) ) ) ).
% ccpo_Sup_upper
thf(fact_7994_ccpo__Sup__least,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [A4: set @ A,Z2: A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ A4 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ A4 )
=> ( ord_less_eq @ A @ X4 @ Z2 ) )
=> ( ord_less_eq @ A @ ( complete_Sup_Sup @ A @ A4 ) @ Z2 ) ) ) ) ).
% ccpo_Sup_least
thf(fact_7995_bij__betw__inv__into,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,B4: set @ B] :
( ( bij_betw @ A @ B @ F2 @ A4 @ B4 )
=> ( bij_betw @ B @ A @ ( hilbert_inv_into @ A @ B @ A4 @ F2 ) @ B4 @ A4 ) ) ).
% bij_betw_inv_into
thf(fact_7996_inv__into__inv__into__eq,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,A11: set @ B,A2: A] :
( ( bij_betw @ A @ B @ F2 @ A4 @ A11 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( hilbert_inv_into @ B @ A @ A11 @ ( hilbert_inv_into @ A @ B @ A4 @ F2 ) @ A2 )
= ( F2 @ A2 ) ) ) ) ).
% inv_into_inv_into_eq
thf(fact_7997_bij__betw__inv__into__left,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,A11: set @ B,A2: A] :
( ( bij_betw @ A @ B @ F2 @ A4 @ A11 )
=> ( ( member @ A @ A2 @ A4 )
=> ( ( hilbert_inv_into @ A @ B @ A4 @ F2 @ ( F2 @ A2 ) )
= A2 ) ) ) ).
% bij_betw_inv_into_left
thf(fact_7998_bij__betw__inv__into__right,axiom,
! [A: $tType,B: $tType,F2: A > B,A4: set @ A,A11: set @ B,A6: B] :
( ( bij_betw @ A @ B @ F2 @ A4 @ A11 )
=> ( ( member @ B @ A6 @ A11 )
=> ( ( F2 @ ( hilbert_inv_into @ A @ B @ A4 @ F2 @ A6 ) )
= A6 ) ) ) ).
% bij_betw_inv_into_right
thf(fact_7999_inv__into__def,axiom,
! [B: $tType,A: $tType] :
( ( hilbert_inv_into @ A @ B )
= ( ^ [A8: set @ A,F3: A > B,X3: B] :
( fChoice @ A
@ ^ [Y2: A] :
( ( member @ A @ Y2 @ A8 )
& ( ( F3 @ Y2 )
= X3 ) ) ) ) ) ).
% inv_into_def
thf(fact_8000_inv__into__def2,axiom,
! [B: $tType,A: $tType] :
( ( hilbert_inv_into @ A @ B )
= ( ^ [A8: set @ A,F3: A > B,X3: B] :
( fChoice @ A
@ ^ [Y2: A] :
( ( member @ A @ Y2 @ A8 )
& ( ( F3 @ Y2 )
= X3 ) ) ) ) ) ).
% inv_into_def2
thf(fact_8001_inv__def,axiom,
! [B: $tType,A: $tType,F2: B > A] :
( ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 )
= ( ^ [Y2: A] :
( fChoice @ B
@ ^ [X3: B] :
( ( F2 @ X3 )
= Y2 ) ) ) ) ).
% inv_def
thf(fact_8002_surj__imp__inj__inv,axiom,
! [B: $tType,A: $tType,F2: B > A] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( inj_on @ A @ B @ ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% surj_imp_inj_inv
thf(fact_8003_inj__imp__surj__inv,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( image @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% inj_imp_surj_inv
thf(fact_8004_image__inv__f__f,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( image @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( image @ A @ B @ F2 @ A4 ) )
= A4 ) ) ).
% image_inv_f_f
thf(fact_8005_inj__transfer,axiom,
! [B: $tType,A: $tType,F2: A > B,P: A > $o,X: A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ! [Y4: B] :
( ( member @ B @ Y4 @ ( image @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) )
=> ( P @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 @ Y4 ) ) )
=> ( P @ X ) ) ) ).
% inj_transfer
thf(fact_8006_f__inv__into__f,axiom,
! [B: $tType,A: $tType,Y: A,F2: B > A,A4: set @ B] :
( ( member @ A @ Y @ ( image @ B @ A @ F2 @ A4 ) )
=> ( ( F2 @ ( hilbert_inv_into @ B @ A @ A4 @ F2 @ Y ) )
= Y ) ) ).
% f_inv_into_f
thf(fact_8007_surj__f__inv__f,axiom,
! [B: $tType,A: $tType,F2: B > A,Y: A] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ( F2 @ ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 @ Y ) )
= Y ) ) ).
% surj_f_inv_f
thf(fact_8008_surj__iff__all,axiom,
! [B: $tType,A: $tType,F2: B > A] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
= ( ! [X3: A] :
( ( F2 @ ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 @ X3 ) )
= X3 ) ) ) ).
% surj_iff_all
thf(fact_8009_image__f__inv__f,axiom,
! [B: $tType,A: $tType,F2: B > A,A4: set @ A] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ( image @ B @ A @ F2 @ ( image @ A @ B @ ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 ) @ A4 ) )
= A4 ) ) ).
% image_f_inv_f
thf(fact_8010_inv__into__into,axiom,
! [A: $tType,B: $tType,X: A,F2: B > A,A4: set @ B] :
( ( member @ A @ X @ ( image @ B @ A @ F2 @ A4 ) )
=> ( member @ B @ ( hilbert_inv_into @ B @ A @ A4 @ F2 @ X ) @ A4 ) ) ).
% inv_into_into
thf(fact_8011_surj__imp__inv__eq,axiom,
! [B: $tType,A: $tType,F2: B > A,G: A > B] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
=> ( ! [X4: B] :
( ( G @ ( F2 @ X4 ) )
= X4 )
=> ( ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 )
= G ) ) ) ).
% surj_imp_inv_eq
thf(fact_8012_inv__into__injective,axiom,
! [A: $tType,B: $tType,A4: set @ A,F2: A > B,X: B,Y: B] :
( ( ( hilbert_inv_into @ A @ B @ A4 @ F2 @ X )
= ( hilbert_inv_into @ A @ B @ A4 @ F2 @ Y ) )
=> ( ( member @ B @ X @ ( image @ A @ B @ F2 @ A4 ) )
=> ( ( member @ B @ Y @ ( image @ A @ B @ F2 @ A4 ) )
=> ( X = Y ) ) ) ) ).
% inv_into_injective
thf(fact_8013_inv__equality,axiom,
! [A: $tType,B: $tType,G: B > A,F2: A > B] :
( ! [X4: A] :
( ( G @ ( F2 @ X4 ) )
= X4 )
=> ( ! [Y4: B] :
( ( F2 @ ( G @ Y4 ) )
= Y4 )
=> ( ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 )
= G ) ) ) ).
% inv_equality
thf(fact_8014_inv__inv__eq,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) )
= F2 ) ) ).
% inv_inv_eq
thf(fact_8015_bij__inv__eq__iff,axiom,
! [A: $tType,B: $tType,P6: A > B,X: A,Y: B] :
( ( bij_betw @ A @ B @ P6 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( X
= ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ P6 @ Y ) )
= ( ( P6 @ X )
= Y ) ) ) ).
% bij_inv_eq_iff
thf(fact_8016_bij__imp__bij__inv,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( bij_betw @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( top_top @ ( set @ B ) ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bij_imp_bij_inv
thf(fact_8017_inj__imp__inv__eq,axiom,
! [A: $tType,B: $tType,F2: A > B,G: B > A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ! [X4: B] :
( ( F2 @ ( G @ X4 ) )
= X4 )
=> ( ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 )
= G ) ) ) ).
% inj_imp_inv_eq
thf(fact_8018_inv__f__eq,axiom,
! [B: $tType,A: $tType,F2: A > B,X: A,Y: B] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( ( F2 @ X )
= Y )
=> ( ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 @ Y )
= X ) ) ) ).
% inv_f_eq
thf(fact_8019_inv__f__f,axiom,
! [B: $tType,A: $tType,F2: A > B,X: A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 @ ( F2 @ X ) )
= X ) ) ).
% inv_f_f
thf(fact_8020_inv__into__f__eq,axiom,
! [B: $tType,A: $tType,F2: A > B,A4: set @ A,X: A,Y: B] :
( ( inj_on @ A @ B @ F2 @ A4 )
=> ( ( member @ A @ X @ A4 )
=> ( ( ( F2 @ X )
= Y )
=> ( ( hilbert_inv_into @ A @ B @ A4 @ F2 @ Y )
= X ) ) ) ) ).
% inv_into_f_eq
thf(fact_8021_inv__fn,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ ( compow @ ( A > A ) @ N2 @ F2 ) )
= ( compow @ ( A > A ) @ N2 @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) ) ) ) ).
% inv_fn
thf(fact_8022_mono__inv,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( linorder @ B ) )
=> ! [F2: A > B] :
( ( order_mono @ A @ B @ F2 )
=> ( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( order_mono @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) ) ) ) ) ).
% mono_inv
thf(fact_8023_bij__image__Collect__eq,axiom,
! [A: $tType,B: $tType,F2: A > B,P: A > $o] :
( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( image @ A @ B @ F2 @ ( collect @ A @ P ) )
= ( collect @ B
@ ^ [Y2: B] : ( P @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 @ Y2 ) ) ) ) ) ).
% bij_image_Collect_eq
thf(fact_8024_inv__unique__comp,axiom,
! [B: $tType,A: $tType,F2: B > A,G: A > B] :
( ( ( comp @ B @ A @ A @ F2 @ G )
= ( id @ A ) )
=> ( ( ( comp @ A @ B @ B @ G @ F2 )
= ( id @ B ) )
=> ( ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 )
= G ) ) ) ).
% inv_unique_comp
thf(fact_8025_o__inv__distrib,axiom,
! [C: $tType,B: $tType,A: $tType,F2: A > B,G: C > A] :
( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( bij_betw @ C @ A @ G @ ( top_top @ ( set @ C ) ) @ ( top_top @ ( set @ A ) ) )
=> ( ( hilbert_inv_into @ C @ B @ ( top_top @ ( set @ C ) ) @ ( comp @ A @ B @ C @ F2 @ G ) )
= ( comp @ A @ C @ B @ ( hilbert_inv_into @ C @ A @ ( top_top @ ( set @ C ) ) @ G ) @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) ) ) ) ) ).
% o_inv_distrib
thf(fact_8026_inv__into__comp,axiom,
! [A: $tType,C: $tType,B: $tType,F2: A > B,G: C > A,A4: set @ C,X: B] :
( ( inj_on @ A @ B @ F2 @ ( image @ C @ A @ G @ A4 ) )
=> ( ( inj_on @ C @ A @ G @ A4 )
=> ( ( member @ B @ X @ ( image @ A @ B @ F2 @ ( image @ C @ A @ G @ A4 ) ) )
=> ( ( hilbert_inv_into @ C @ B @ A4 @ ( comp @ A @ B @ C @ F2 @ G ) @ X )
= ( comp @ A @ C @ B @ ( hilbert_inv_into @ C @ A @ A4 @ G ) @ ( hilbert_inv_into @ A @ B @ ( image @ C @ A @ G @ A4 ) @ F2 ) @ X ) ) ) ) ) ).
% inv_into_comp
thf(fact_8027_surj__iff,axiom,
! [B: $tType,A: $tType,F2: B > A] :
( ( ( image @ B @ A @ F2 @ ( top_top @ ( set @ B ) ) )
= ( top_top @ ( set @ A ) ) )
= ( ( comp @ B @ A @ A @ F2 @ ( hilbert_inv_into @ B @ A @ ( top_top @ ( set @ B ) ) @ F2 ) )
= ( id @ A ) ) ) ).
% surj_iff
thf(fact_8028_inj__imp__bij__betw__inv,axiom,
! [B: $tType,A: $tType,F2: A > B,M7: set @ A] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
=> ( bij_betw @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( image @ A @ B @ F2 @ M7 ) @ M7 ) ) ).
% inj_imp_bij_betw_inv
thf(fact_8029_inj__iff,axiom,
! [B: $tType,A: $tType,F2: A > B] :
( ( inj_on @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) )
= ( ( comp @ B @ A @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ F2 )
= ( id @ A ) ) ) ).
% inj_iff
thf(fact_8030_bij__vimage__eq__inv__image,axiom,
! [A: $tType,B: $tType,F2: A > B,A4: set @ B] :
( ( bij_betw @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ B ) ) )
=> ( ( vimage @ A @ B @ F2 @ A4 )
= ( image @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ A4 ) ) ) ).
% bij_vimage_eq_inv_image
thf(fact_8031_fn__o__inv__fn__is__id,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ N2 @ F2 ) @ ( compow @ ( A > A ) @ N2 @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) ) )
= ( ^ [X3: A] : X3 ) ) ) ).
% fn_o_inv_fn_is_id
thf(fact_8032_inv__fn__o__fn__is__id,axiom,
! [A: $tType,F2: A > A,N2: nat] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( ( comp @ A @ A @ A @ ( compow @ ( A > A ) @ N2 @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) ) @ ( compow @ ( A > A ) @ N2 @ F2 ) )
= ( ^ [X3: A] : X3 ) ) ) ).
% inv_fn_o_fn_is_id
thf(fact_8033_strict__mono__inv__on__range,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A )
& ( order @ B ) )
=> ! [F2: A > B] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( strict_mono_on @ B @ A @ ( hilbert_inv_into @ A @ B @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( image @ A @ B @ F2 @ ( top_top @ ( set @ A ) ) ) ) ) ) ).
% strict_mono_inv_on_range
thf(fact_8034_in__chain__finite,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [A4: set @ A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ A4 )
=> ( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( member @ A @ ( complete_Sup_Sup @ A @ A4 ) @ A4 ) ) ) ) ) ).
% in_chain_finite
thf(fact_8035_iteratesp__def,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ( ( comple7512665784863727008ratesp @ A )
= ( ^ [F3: A > A] :
( complete_lattice_lfp @ ( A > $o )
@ ^ [P5: A > $o,X3: A] :
( ? [Y2: A] :
( ( X3
= ( F3 @ Y2 ) )
& ( P5 @ Y2 ) )
| ? [M9: set @ A] :
( ( X3
= ( complete_Sup_Sup @ A @ M9 ) )
& ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M9 )
& ! [Y2: A] :
( ( member @ A @ Y2 @ M9 )
=> ( P5 @ Y2 ) ) ) ) ) ) ) ) ).
% iteratesp_def
thf(fact_8036_iteratesp_OSup,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [M7: set @ A,F2: A > A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M7 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ M7 )
=> ( comple7512665784863727008ratesp @ A @ F2 @ X4 ) )
=> ( comple7512665784863727008ratesp @ A @ F2 @ ( complete_Sup_Sup @ A @ M7 ) ) ) ) ) ).
% iteratesp.Sup
thf(fact_8037_iteratesp_Ocases,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A,A2: A] :
( ( comple7512665784863727008ratesp @ A @ F2 @ A2 )
=> ( ! [X4: A] :
( ( A2
= ( F2 @ X4 ) )
=> ~ ( comple7512665784863727008ratesp @ A @ F2 @ X4 ) )
=> ~ ! [M8: set @ A] :
( ( A2
= ( complete_Sup_Sup @ A @ M8 ) )
=> ( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M8 )
=> ~ ! [X2: A] :
( ( member @ A @ X2 @ M8 )
=> ( comple7512665784863727008ratesp @ A @ F2 @ X2 ) ) ) ) ) ) ) ).
% iteratesp.cases
thf(fact_8038_iteratesp_Osimps,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ( ( comple7512665784863727008ratesp @ A )
= ( ^ [F3: A > A,A3: A] :
( ? [X3: A] :
( ( A3
= ( F3 @ X3 ) )
& ( comple7512665784863727008ratesp @ A @ F3 @ X3 ) )
| ? [M9: set @ A] :
( ( A3
= ( complete_Sup_Sup @ A @ M9 ) )
& ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M9 )
& ! [X3: A] :
( ( member @ A @ X3 @ M9 )
=> ( comple7512665784863727008ratesp @ A @ F3 @ X3 ) ) ) ) ) ) ) ).
% iteratesp.simps
thf(fact_8039_bijection_Oinv__comp__right,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( comp @ A @ A @ A @ F2 @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) )
= ( id @ A ) ) ) ).
% bijection.inv_comp_right
thf(fact_8040_bijection_Oinv__comp__left,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( comp @ A @ A @ A @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) @ F2 )
= ( id @ A ) ) ) ).
% bijection.inv_comp_left
thf(fact_8041_bijection_Oeq__iff,axiom,
! [A: $tType,F2: A > A,A2: A,B2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
= ( A2 = B2 ) ) ) ).
% bijection.eq_iff
thf(fact_8042_bijection_OeqI,axiom,
! [A: $tType,F2: A > A,A2: A,B2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( ( F2 @ A2 )
= ( F2 @ B2 ) )
=> ( A2 = B2 ) ) ) ).
% bijection.eqI
thf(fact_8043_bijection_Osurj,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( image @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% bijection.surj
thf(fact_8044_bijection_Oinj,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( inj_on @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) ) ) ).
% bijection.inj
thf(fact_8045_bijection_Obij,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bijection.bij
thf(fact_8046_bijection_Ointro,axiom,
! [A: $tType,F2: A > A] :
( ( bij_betw @ A @ A @ F2 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) )
=> ( hilbert_bijection @ A @ F2 ) ) ).
% bijection.intro
thf(fact_8047_bijection__def,axiom,
! [A: $tType] :
( ( hilbert_bijection @ A )
= ( ^ [F3: A > A] : ( bij_betw @ A @ A @ F3 @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) ) ) ) ).
% bijection_def
thf(fact_8048_bijection_Oinv__right__eq__iff,axiom,
! [A: $tType,F2: A > A,B2: A,A2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( B2
= ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ A2 ) )
= ( ( F2 @ B2 )
= A2 ) ) ) ).
% bijection.inv_right_eq_iff
thf(fact_8049_bijection_Oinv__left__eq__iff,axiom,
! [A: $tType,F2: A > A,A2: A,B2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ A2 )
= B2 )
= ( ( F2 @ B2 )
= A2 ) ) ) ).
% bijection.inv_left_eq_iff
thf(fact_8050_bijection_Oeq__inv__iff,axiom,
! [A: $tType,F2: A > A,A2: A,B2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ A2 )
= ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ B2 ) )
= ( A2 = B2 ) ) ) ).
% bijection.eq_inv_iff
thf(fact_8051_bijection_Oinv__right,axiom,
! [A: $tType,F2: A > A,A2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( F2 @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ A2 ) )
= A2 ) ) ).
% bijection.inv_right
thf(fact_8052_bijection_Oinv__left,axiom,
! [A: $tType,F2: A > A,A2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ ( F2 @ A2 ) )
= A2 ) ) ).
% bijection.inv_left
thf(fact_8053_bijection_Oeq__invI,axiom,
! [A: $tType,F2: A > A,A2: A,B2: A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ A2 )
= ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 @ B2 ) )
=> ( A2 = B2 ) ) ) ).
% bijection.eq_invI
thf(fact_8054_bijection_Osurj__inv,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( ( image @ A @ A @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( top_top @ ( set @ A ) ) )
= ( top_top @ ( set @ A ) ) ) ) ).
% bijection.surj_inv
thf(fact_8055_bijection_Oinj__inv,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( inj_on @ A @ A @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bijection.inj_inv
thf(fact_8056_bijection_Obij__inv,axiom,
! [A: $tType,F2: A > A] :
( ( hilbert_bijection @ A @ F2 )
=> ( bij_betw @ A @ A @ ( hilbert_inv_into @ A @ A @ ( top_top @ ( set @ A ) ) @ F2 ) @ ( top_top @ ( set @ A ) ) @ ( top_top @ ( set @ A ) ) ) ) ).
% bijection.bij_inv
thf(fact_8057_admissible__chfin,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [P: A > $o] :
( ! [S5: set @ A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ S5 )
=> ( finite_finite @ A @ S5 ) )
=> ( comple1908693960933563346ssible @ A @ ( complete_Sup_Sup @ A ) @ ( ord_less_eq @ A ) @ P ) ) ) ).
% admissible_chfin
thf(fact_8058_arg__min__list_Opelims,axiom,
! [B: $tType,A: $tType] :
( ( linorder @ B )
=> ! [X: A > B,Xa2: list @ A,Y: A] :
( ( ( arg_min_list @ A @ B @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ ( A > B ) @ ( list @ A ) ) @ ( arg_min_list_rel @ A @ B ) @ ( product_Pair @ ( A > B ) @ ( list @ A ) @ X @ Xa2 ) )
=> ( ! [X4: A] :
( ( Xa2
= ( cons @ A @ X4 @ ( nil @ A ) ) )
=> ( ( Y = X4 )
=> ~ ( accp @ ( product_prod @ ( A > B ) @ ( list @ A ) ) @ ( arg_min_list_rel @ A @ B ) @ ( product_Pair @ ( A > B ) @ ( list @ A ) @ X @ ( cons @ A @ X4 @ ( nil @ A ) ) ) ) ) )
=> ( ! [X4: A,Y4: A,Zs3: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ ( cons @ A @ Y4 @ Zs3 ) ) )
=> ( ( Y
= ( if @ A @ ( ord_less_eq @ B @ ( X @ X4 ) @ ( X @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y4 @ Zs3 ) ) ) ) @ X4 @ ( arg_min_list @ A @ B @ X @ ( cons @ A @ Y4 @ Zs3 ) ) ) )
=> ~ ( accp @ ( product_prod @ ( A > B ) @ ( list @ A ) ) @ ( arg_min_list_rel @ A @ B ) @ ( product_Pair @ ( A > B ) @ ( list @ A ) @ X @ ( cons @ A @ X4 @ ( cons @ A @ Y4 @ Zs3 ) ) ) ) ) )
=> ~ ( ( Xa2
= ( nil @ A ) )
=> ( ( Y
= ( undefined @ A ) )
=> ~ ( accp @ ( product_prod @ ( A > B ) @ ( list @ A ) ) @ ( arg_min_list_rel @ A @ B ) @ ( product_Pair @ ( A > B ) @ ( list @ A ) @ X @ ( nil @ A ) ) ) ) ) ) ) ) ) ) ).
% arg_min_list.pelims
thf(fact_8059_admissible__disj,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [P: A > $o,Q: A > $o] :
( ( comple1908693960933563346ssible @ A @ ( complete_Sup_Sup @ A ) @ ( ord_less_eq @ A ) @ P )
=> ( ( comple1908693960933563346ssible @ A @ ( complete_Sup_Sup @ A ) @ ( ord_less_eq @ A ) @ Q )
=> ( comple1908693960933563346ssible @ A @ ( complete_Sup_Sup @ A ) @ ( ord_less_eq @ A )
@ ^ [X3: A] :
( ( P @ X3 )
| ( Q @ X3 ) ) ) ) ) ) ).
% admissible_disj
thf(fact_8060_sorted__wrt_Opelims_I1_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A,Y: $o] :
( ( ( sorted_wrt @ A @ X @ Xa2 )
= Y )
=> ( ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ Xa2 ) )
=> ( ( ( Xa2
= ( nil @ A ) )
=> ( Y
=> ~ ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ ( nil @ A ) ) ) ) )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ( ( Y
= ( ! [Y2: A] :
( ( member @ A @ Y2 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Y2 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) )
=> ~ ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ ( cons @ A @ X4 @ Ys4 ) ) ) ) ) ) ) ) ).
% sorted_wrt.pelims(1)
thf(fact_8061_sorted__wrt_Opelims_I2_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ( sorted_wrt @ A @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ Xa2 ) )
=> ( ( ( Xa2
= ( nil @ A ) )
=> ~ ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ ( nil @ A ) ) ) )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ( ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ ( cons @ A @ X4 @ Ys4 ) ) )
=> ~ ( ! [Xa: A] :
( ( member @ A @ Xa @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Xa ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ) ) ).
% sorted_wrt.pelims(2)
thf(fact_8062_sorted__wrt_Opelims_I3_J,axiom,
! [A: $tType,X: A > A > $o,Xa2: list @ A] :
( ~ ( sorted_wrt @ A @ X @ Xa2 )
=> ( ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ Xa2 ) )
=> ~ ! [X4: A,Ys4: list @ A] :
( ( Xa2
= ( cons @ A @ X4 @ Ys4 ) )
=> ( ( accp @ ( product_prod @ ( A > A > $o ) @ ( list @ A ) ) @ ( sorted_wrt_rel @ A ) @ ( product_Pair @ ( A > A > $o ) @ ( list @ A ) @ X @ ( cons @ A @ X4 @ Ys4 ) ) )
=> ( ! [Xa3: A] :
( ( member @ A @ Xa3 @ ( set2 @ A @ Ys4 ) )
=> ( X @ X4 @ Xa3 ) )
& ( sorted_wrt @ A @ X @ Ys4 ) ) ) ) ) ) ).
% sorted_wrt.pelims(3)
thf(fact_8063_iterates_Osimps,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [A2: A,F2: A > A] :
( ( member @ A @ A2 @ ( comple6359979572994053840erates @ A @ F2 ) )
= ( ? [X3: A] :
( ( A2
= ( F2 @ X3 ) )
& ( member @ A @ X3 @ ( comple6359979572994053840erates @ A @ F2 ) ) )
| ? [M9: set @ A] :
( ( A2
= ( complete_Sup_Sup @ A @ M9 ) )
& ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M9 )
& ! [X3: A] :
( ( member @ A @ X3 @ M9 )
=> ( member @ A @ X3 @ ( comple6359979572994053840erates @ A @ F2 ) ) ) ) ) ) ) ).
% iterates.simps
thf(fact_8064_iterates_OSup,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [M7: set @ A,F2: A > A] :
( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M7 )
=> ( ! [X4: A] :
( ( member @ A @ X4 @ M7 )
=> ( member @ A @ X4 @ ( comple6359979572994053840erates @ A @ F2 ) ) )
=> ( member @ A @ ( complete_Sup_Sup @ A @ M7 ) @ ( comple6359979572994053840erates @ A @ F2 ) ) ) ) ) ).
% iterates.Sup
thf(fact_8065_iterates_Ocases,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [A2: A,F2: A > A] :
( ( member @ A @ A2 @ ( comple6359979572994053840erates @ A @ F2 ) )
=> ( ! [X4: A] :
( ( A2
= ( F2 @ X4 ) )
=> ~ ( member @ A @ X4 @ ( comple6359979572994053840erates @ A @ F2 ) ) )
=> ~ ! [M8: set @ A] :
( ( A2
= ( complete_Sup_Sup @ A @ M8 ) )
=> ( ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ M8 )
=> ~ ! [X2: A] :
( ( member @ A @ X2 @ M8 )
=> ( member @ A @ X2 @ ( comple6359979572994053840erates @ A @ F2 ) ) ) ) ) ) ) ) ).
% iterates.cases
thf(fact_8066_chain__iterates,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A] :
( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( comple1602240252501008431_chain @ A @ ( ord_less_eq @ A ) @ ( comple6359979572994053840erates @ A @ F2 ) ) ) ) ).
% chain_iterates
thf(fact_8067_continuous__attains__sup,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo2193935891317330818ompact @ A @ S )
=> ( ( S
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ? [X4: A] :
( ( member @ A @ X4 @ S )
& ! [Xa: A] :
( ( member @ A @ Xa @ S )
=> ( ord_less_eq @ B @ ( F2 @ Xa ) @ ( F2 @ X4 ) ) ) ) ) ) ) ) ).
% continuous_attains_sup
thf(fact_8068_iterates__le__f,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [X: A,F2: A > A] :
( ( member @ A @ X @ ( comple6359979572994053840erates @ A @ F2 ) )
=> ( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( ord_less_eq @ A @ X @ ( F2 @ X ) ) ) ) ) ).
% iterates_le_f
thf(fact_8069_compact__attains__sup,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A] :
( ( topolo2193935891317330818ompact @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ S3 )
& ! [Xa: A] :
( ( member @ A @ Xa @ S3 )
=> ( ord_less_eq @ A @ Xa @ X4 ) ) ) ) ) ) ).
% compact_attains_sup
thf(fact_8070_compact__attains__inf,axiom,
! [A: $tType] :
( ( topolo1944317154257567458pology @ A )
=> ! [S3: set @ A] :
( ( topolo2193935891317330818ompact @ A @ S3 )
=> ( ( S3
!= ( bot_bot @ ( set @ A ) ) )
=> ? [X4: A] :
( ( member @ A @ X4 @ S3 )
& ! [Xa: A] :
( ( member @ A @ Xa @ S3 )
=> ( ord_less_eq @ A @ X4 @ Xa ) ) ) ) ) ) ).
% compact_attains_inf
thf(fact_8071_continuous__attains__inf,axiom,
! [B: $tType,A: $tType] :
( ( ( topolo4958980785337419405_space @ A )
& ( topolo1944317154257567458pology @ B ) )
=> ! [S: set @ A,F2: A > B] :
( ( topolo2193935891317330818ompact @ A @ S )
=> ( ( S
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( topolo81223032696312382ous_on @ A @ B @ S @ F2 )
=> ? [X4: A] :
( ( member @ A @ X4 @ S )
& ! [Xa: A] :
( ( member @ A @ Xa @ S )
=> ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( F2 @ Xa ) ) ) ) ) ) ) ) ).
% continuous_attains_inf
thf(fact_8072_fixp__induct,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [P: A > $o,F2: A > A] :
( ( comple1908693960933563346ssible @ A @ ( complete_Sup_Sup @ A ) @ ( ord_less_eq @ A ) @ P )
=> ( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( ( P @ ( complete_Sup_Sup @ A @ ( bot_bot @ ( set @ A ) ) ) )
=> ( ! [X4: A] :
( ( P @ X4 )
=> ( P @ ( F2 @ X4 ) ) )
=> ( P @ ( comple115746919287870866o_fixp @ A @ F2 ) ) ) ) ) ) ) ).
% fixp_induct
thf(fact_8073_iterates__fixp,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A] :
( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( member @ A @ ( comple115746919287870866o_fixp @ A @ F2 ) @ ( comple6359979572994053840erates @ A @ F2 ) ) ) ) ).
% iterates_fixp
thf(fact_8074_fixp__lowerbound,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A,Z2: A] :
( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ Z2 ) @ Z2 )
=> ( ord_less_eq @ A @ ( comple115746919287870866o_fixp @ A @ F2 ) @ Z2 ) ) ) ) ).
% fixp_lowerbound
thf(fact_8075_fixp__unfold,axiom,
! [A: $tType] :
( ( comple9053668089753744459l_ccpo @ A )
=> ! [F2: A > A] :
( ( comple7038119648293358887notone @ A @ A @ ( ord_less_eq @ A ) @ ( ord_less_eq @ A ) @ F2 )
=> ( ( comple115746919287870866o_fixp @ A @ F2 )
= ( F2 @ ( comple115746919287870866o_fixp @ A @ F2 ) ) ) ) ) ).
% fixp_unfold
thf(fact_8076_rcis__eq__zero__iff,axiom,
! [R2: real,A2: real] :
( ( ( rcis @ R2 @ A2 )
= ( zero_zero @ complex ) )
= ( R2
= ( zero_zero @ real ) ) ) ).
% rcis_eq_zero_iff
thf(fact_8077_rcis__zero__mod,axiom,
! [A2: real] :
( ( rcis @ ( zero_zero @ real ) @ A2 )
= ( zero_zero @ complex ) ) ).
% rcis_zero_mod
thf(fact_8078_rcis__zero__arg,axiom,
! [R2: real] :
( ( rcis @ R2 @ ( zero_zero @ real ) )
= ( real_Vector_of_real @ complex @ R2 ) ) ).
% rcis_zero_arg
thf(fact_8079_filter__set,axiom,
! [A: $tType,P: A > $o,Xs2: list @ A] :
( ( filter3 @ A @ P @ ( set2 @ A @ Xs2 ) )
= ( set2 @ A @ ( filter2 @ A @ P @ Xs2 ) ) ) ).
% filter_set
thf(fact_8080_Lcm__Gcd,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Lcm @ A )
= ( ^ [A8: set @ A] :
( gcd_Gcd @ A
@ ( collect @ A
@ ^ [B3: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( dvd_dvd @ A @ X3 @ B3 ) ) ) ) ) ) ) ).
% Lcm_Gcd
thf(fact_8081_Lcm__eq__0__I__nat,axiom,
! [A4: set @ nat] :
( ( member @ nat @ ( zero_zero @ nat ) @ A4 )
=> ( ( gcd_Lcm @ nat @ A4 )
= ( zero_zero @ nat ) ) ) ).
% Lcm_eq_0_I_nat
thf(fact_8082_abs__Lcm__eq,axiom,
! [K5: set @ int] :
( ( abs_abs @ int @ ( gcd_Lcm @ int @ K5 ) )
= ( gcd_Lcm @ int @ K5 ) ) ).
% abs_Lcm_eq
thf(fact_8083_Lcm__0__iff__nat,axiom,
! [A4: set @ nat] :
( ( finite_finite @ nat @ A4 )
=> ( ( ( gcd_Lcm @ nat @ A4 )
= ( zero_zero @ nat ) )
= ( member @ nat @ ( zero_zero @ nat ) @ A4 ) ) ) ).
% Lcm_0_iff_nat
thf(fact_8084_Lcm__abs__eq,axiom,
! [K5: set @ int] :
( ( gcd_Lcm @ int @ ( image @ int @ int @ ( abs_abs @ int ) @ K5 ) )
= ( gcd_Lcm @ int @ K5 ) ) ).
% Lcm_abs_eq
thf(fact_8085_Lcm__int__eq,axiom,
! [N7: set @ nat] :
( ( gcd_Lcm @ int @ ( image @ nat @ int @ ( semiring_1_of_nat @ int ) @ N7 ) )
= ( semiring_1_of_nat @ int @ ( gcd_Lcm @ nat @ N7 ) ) ) ).
% Lcm_int_eq
thf(fact_8086_Lcm__UNIV,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Lcm @ A @ ( top_top @ ( set @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% Lcm_UNIV
thf(fact_8087_Lcm__empty,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Lcm @ A @ ( bot_bot @ ( set @ A ) ) )
= ( one_one @ A ) ) ) ).
% Lcm_empty
thf(fact_8088_Lcm__1__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( ( gcd_Lcm @ A @ A4 )
= ( one_one @ A ) )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( dvd_dvd @ A @ X3 @ ( one_one @ A ) ) ) ) ) ) ).
% Lcm_1_iff
thf(fact_8089_Lcm__nat__abs__eq,axiom,
! [K5: set @ int] :
( ( gcd_Lcm @ nat
@ ( image @ int @ nat
@ ^ [K3: int] : ( nat2 @ ( abs_abs @ int @ K3 ) )
@ K5 ) )
= ( nat2 @ ( gcd_Lcm @ int @ K5 ) ) ) ).
% Lcm_nat_abs_eq
thf(fact_8090_Lcm__mono,axiom,
! [A: $tType,B: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ B,F2: B > A,G: B > A] :
( ! [X4: B] :
( ( member @ B @ X4 @ A4 )
=> ( dvd_dvd @ A @ ( F2 @ X4 ) @ ( G @ X4 ) ) )
=> ( dvd_dvd @ A @ ( gcd_Lcm @ A @ ( image @ B @ A @ F2 @ A4 ) ) @ ( gcd_Lcm @ A @ ( image @ B @ A @ G @ A4 ) ) ) ) ) ).
% Lcm_mono
thf(fact_8091_Gcd__nat__def,axiom,
( ( gcd_Gcd @ nat )
= ( ^ [M9: set @ nat] :
( gcd_Lcm @ nat
@ ( collect @ nat
@ ^ [D6: nat] :
! [X3: nat] :
( ( member @ nat @ X3 @ M9 )
=> ( dvd_dvd @ nat @ D6 @ X3 ) ) ) ) ) ) ).
% Gcd_nat_def
thf(fact_8092_dvd__Lcm__nat,axiom,
! [M: nat,M7: set @ nat] :
( ( member @ nat @ M @ M7 )
=> ( dvd_dvd @ nat @ M @ ( gcd_Lcm @ nat @ M7 ) ) ) ).
% dvd_Lcm_nat
thf(fact_8093_Lcm__dvd__nat,axiom,
! [M7: set @ nat,N2: nat] :
( ! [X4: nat] :
( ( member @ nat @ X4 @ M7 )
=> ( dvd_dvd @ nat @ X4 @ N2 ) )
=> ( dvd_dvd @ nat @ ( gcd_Lcm @ nat @ M7 ) @ N2 ) ) ).
% Lcm_dvd_nat
thf(fact_8094_Lcm__dvd__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,X: A] :
( ( dvd_dvd @ A @ ( gcd_Lcm @ A @ A4 ) @ X )
= ( ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( dvd_dvd @ A @ X3 @ X ) ) ) ) ) ).
% Lcm_dvd_iff
thf(fact_8095_Lcm__least,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,A2: A] :
( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( dvd_dvd @ A @ B5 @ A2 ) )
=> ( dvd_dvd @ A @ ( gcd_Lcm @ A @ A4 ) @ A2 ) ) ) ).
% Lcm_least
thf(fact_8096_Lcm__dvdD,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,X: A,Y: A] :
( ( dvd_dvd @ A @ ( gcd_Lcm @ A @ A4 ) @ X )
=> ( ( member @ A @ Y @ A4 )
=> ( dvd_dvd @ A @ Y @ X ) ) ) ) ).
% Lcm_dvdD
thf(fact_8097_dvd__Lcm,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( member @ A @ A2 @ A4 )
=> ( dvd_dvd @ A @ A2 @ ( gcd_Lcm @ A @ A4 ) ) ) ) ).
% dvd_Lcm
thf(fact_8098_Lcm__least__int,axiom,
! [A4: set @ int,A2: int] :
( ! [B5: int] :
( ( member @ int @ B5 @ A4 )
=> ( dvd_dvd @ int @ B5 @ A2 ) )
=> ( dvd_dvd @ int @ ( gcd_Lcm @ int @ A4 ) @ A2 ) ) ).
% Lcm_least_int
thf(fact_8099_dvd__Lcm__int,axiom,
! [M: int,M7: set @ int] :
( ( member @ int @ M @ M7 )
=> ( dvd_dvd @ int @ M @ ( gcd_Lcm @ int @ M7 ) ) ) ).
% dvd_Lcm_int
thf(fact_8100_Lcm__eq__0__I,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( member @ A @ ( zero_zero @ A ) @ A4 )
=> ( ( gcd_Lcm @ A @ A4 )
= ( zero_zero @ A ) ) ) ) ).
% Lcm_eq_0_I
thf(fact_8101_Lcm__no__multiple,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ! [M5: A] :
( ( M5
!= ( zero_zero @ A ) )
=> ? [X2: A] :
( ( member @ A @ X2 @ A4 )
& ~ ( dvd_dvd @ A @ X2 @ M5 ) ) )
=> ( ( gcd_Lcm @ A @ A4 )
= ( zero_zero @ A ) ) ) ) ).
% Lcm_no_multiple
thf(fact_8102_Lcm__0__iff_H,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( ( gcd_Lcm @ A @ A4 )
= ( zero_zero @ A ) )
= ( ~ ? [L2: A] :
( ( L2
!= ( zero_zero @ A ) )
& ! [X3: A] :
( ( member @ A @ X3 @ A4 )
=> ( dvd_dvd @ A @ X3 @ L2 ) ) ) ) ) ) ).
% Lcm_0_iff'
thf(fact_8103_Lcm__0__iff,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( ( gcd_Lcm @ A @ A4 )
= ( zero_zero @ A ) )
= ( member @ A @ ( zero_zero @ A ) @ A4 ) ) ) ) ).
% Lcm_0_iff
thf(fact_8104_Lcm__nat__infinite,axiom,
! [M7: set @ nat] :
( ~ ( finite_finite @ nat @ M7 )
=> ( ( gcd_Lcm @ nat @ M7 )
= ( zero_zero @ nat ) ) ) ).
% Lcm_nat_infinite
thf(fact_8105_Lcm__nat__empty,axiom,
( ( gcd_Lcm @ nat @ ( bot_bot @ ( set @ nat ) ) )
= ( one_one @ nat ) ) ).
% Lcm_nat_empty
thf(fact_8106_Lcm__int__greater__eq__0,axiom,
! [K5: set @ int] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( gcd_Lcm @ int @ K5 ) ) ).
% Lcm_int_greater_eq_0
thf(fact_8107_Lcm__subset,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
=> ( dvd_dvd @ A @ ( gcd_Lcm @ A @ A4 ) @ ( gcd_Lcm @ A @ B4 ) ) ) ) ).
% Lcm_subset
thf(fact_8108_Lcm__int__def,axiom,
( ( gcd_Lcm @ int )
= ( ^ [K6: set @ int] : ( semiring_1_of_nat @ int @ ( gcd_Lcm @ nat @ ( image @ int @ nat @ ( comp @ int @ nat @ int @ nat2 @ ( abs_abs @ int ) ) @ K6 ) ) ) ) ) ).
% Lcm_int_def
thf(fact_8109_Lcm__no__units,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Lcm @ A )
= ( ^ [A8: set @ A] :
( gcd_Lcm @ A
@ ( minus_minus @ ( set @ A ) @ A8
@ ( collect @ A
@ ^ [A3: A] : ( dvd_dvd @ A @ A3 @ ( one_one @ A ) ) ) ) ) ) ) ) ).
% Lcm_no_units
thf(fact_8110_Gcd__Lcm,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ( ( gcd_Gcd @ A )
= ( ^ [A8: set @ A] :
( gcd_Lcm @ A
@ ( collect @ A
@ ^ [B3: A] :
! [X3: A] :
( ( member @ A @ X3 @ A8 )
=> ( dvd_dvd @ A @ B3 @ X3 ) ) ) ) ) ) ) ).
% Gcd_Lcm
thf(fact_8111_Lcm__coprime_H,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( ( finite_card @ A @ A4 )
!= ( zero_zero @ nat ) )
=> ( ! [A5: A,B5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ( member @ A @ B5 @ A4 )
=> ( ( A5 != B5 )
=> ( algebr8660921524188924756oprime @ A @ A5 @ B5 ) ) ) )
=> ( ( gcd_Lcm @ A @ A4 )
= ( normal6383669964737779283malize @ A
@ ( groups7121269368397514597t_prod @ A @ A
@ ^ [X3: A] : X3
@ A4 ) ) ) ) ) ) ).
% Lcm_coprime'
thf(fact_8112_Lcm__coprime,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( finite_finite @ A @ A4 )
=> ( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ! [A5: A,B5: A] :
( ( member @ A @ A5 @ A4 )
=> ( ( member @ A @ B5 @ A4 )
=> ( ( A5 != B5 )
=> ( algebr8660921524188924756oprime @ A @ A5 @ B5 ) ) ) )
=> ( ( gcd_Lcm @ A @ A4 )
= ( normal6383669964737779283malize @ A
@ ( groups7121269368397514597t_prod @ A @ A
@ ^ [X3: A] : X3
@ A4 ) ) ) ) ) ) ) ).
% Lcm_coprime
thf(fact_8113_normalize__idem,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A] :
( ( normal6383669964737779283malize @ A @ ( normal6383669964737779283malize @ A @ A2 ) )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% normalize_idem
thf(fact_8114_lcm_Onormalize__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( normal6383669964737779283malize @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% lcm.normalize_bottom
thf(fact_8115_normalize__eq__0__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% normalize_eq_0_iff
thf(fact_8116_normalize__0,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ( ( normal6383669964737779283malize @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% normalize_0
thf(fact_8117_normalize__mult__normalize__right,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ ( normal6383669964737779283malize @ A @ B2 ) ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% normalize_mult_normalize_right
thf(fact_8118_normalize__mult__normalize__left,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( normal6383669964737779283malize @ A @ ( times_times @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ B2 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% normalize_mult_normalize_left
thf(fact_8119_normalize__1,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ( ( normal6383669964737779283malize @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% normalize_1
thf(fact_8120_gcd_Onormalize__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( ( normal6383669964737779283malize @ A @ ( one_one @ A ) )
= ( one_one @ A ) ) ) ).
% gcd.normalize_bottom
thf(fact_8121_dvd__normalize__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( normal6383669964737779283malize @ A @ B2 ) )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% dvd_normalize_iff
thf(fact_8122_normalize__dvd__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ B2 )
= ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% normalize_dvd_iff
thf(fact_8123_gcd_Onormalize__right__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ A2 @ ( normal6383669964737779283malize @ A @ B2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd.normalize_right_idem
thf(fact_8124_gcd_Onormalize__left__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_gcd @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ B2 )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd.normalize_left_idem
thf(fact_8125_gcd_Onormalize__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( normal6383669964737779283malize @ A @ ( gcd_gcd @ A @ A2 @ B2 ) )
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ).
% gcd.normalize_idem
thf(fact_8126_gcd_Oidem__normalize,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_gcd @ A @ A2 @ A2 )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% gcd.idem_normalize
thf(fact_8127_coprime__normalize__left__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ B2 )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% coprime_normalize_left_iff
thf(fact_8128_coprime__normalize__right__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ ( normal6383669964737779283malize @ A @ B2 ) )
= ( algebr8660921524188924756oprime @ A @ A2 @ B2 ) ) ) ).
% coprime_normalize_right_iff
thf(fact_8129_normalize__Lcm,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( normal6383669964737779283malize @ A @ ( gcd_Lcm @ A @ A4 ) )
= ( gcd_Lcm @ A @ A4 ) ) ) ).
% normalize_Lcm
thf(fact_8130_normalize__Gcd,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( normal6383669964737779283malize @ A @ ( gcd_Gcd @ A @ A4 ) )
= ( gcd_Gcd @ A @ A4 ) ) ) ).
% normalize_Gcd
thf(fact_8131_Gcd__fin_Onormalize,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A] :
( ( normal6383669964737779283malize @ A @ ( semiring_gcd_Gcd_fin @ A @ A4 ) )
= ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ).
% Gcd_fin.normalize
thf(fact_8132_gcd_Otop__right__normalize,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_gcd @ A @ A2 @ ( zero_zero @ A ) )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% gcd.top_right_normalize
thf(fact_8133_gcd_Otop__left__normalize,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_gcd @ A @ ( zero_zero @ A ) @ A2 )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% gcd.top_left_normalize
thf(fact_8134_Gcd__image__normalize,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A] :
( ( gcd_Gcd @ A @ ( image @ A @ A @ ( normal6383669964737779283malize @ A ) @ A4 ) )
= ( gcd_Gcd @ A @ A4 ) ) ) ).
% Gcd_image_normalize
thf(fact_8135_normalize__mult__unit__right,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ ( one_one @ A ) )
=> ( ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ) ).
% normalize_mult_unit_right
thf(fact_8136_normalize__mult__unit__left,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( normal6383669964737779283malize @ A @ B2 ) ) ) ) ).
% normalize_mult_unit_left
thf(fact_8137_Lcm__singleton,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A] :
( ( gcd_Lcm @ A @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% Lcm_singleton
thf(fact_8138_Gcd__singleton,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A] :
( ( gcd_Gcd @ A @ ( insert2 @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ).
% Gcd_singleton
thf(fact_8139_Lcm__eqI,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= A2 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( dvd_dvd @ A @ B5 @ A2 ) )
=> ( ! [C4: A] :
( ! [B11: A] :
( ( member @ A @ B11 @ A4 )
=> ( dvd_dvd @ A @ B11 @ C4 ) )
=> ( dvd_dvd @ A @ A2 @ C4 ) )
=> ( ( gcd_Lcm @ A @ A4 )
= A2 ) ) ) ) ) ).
% Lcm_eqI
thf(fact_8140_LcmI,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,B2: A] :
( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( dvd_dvd @ A @ A5 @ B2 ) )
=> ( ! [C4: A] :
( ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( dvd_dvd @ A @ A9 @ C4 ) )
=> ( dvd_dvd @ A @ B2 @ C4 ) )
=> ( ( ( normal6383669964737779283malize @ A @ B2 )
= B2 )
=> ( B2
= ( gcd_Lcm @ A @ A4 ) ) ) ) ) ) ).
% LcmI
thf(fact_8141_dvd__normalize__div,axiom,
! [A: $tType] :
( ( normal6328177297339901930cative @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( normal6383669964737779283malize @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ ( normal6383669964737779283malize @ A @ B2 ) ) ) ) ) ).
% dvd_normalize_div
thf(fact_8142_normalize__mult,axiom,
! [A: $tType] :
( ( normal6328177297339901930cative @ A )
=> ! [A2: A,B2: A] :
( ( normal6383669964737779283malize @ A @ ( times_times @ A @ A2 @ B2 ) )
= ( times_times @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ ( normal6383669964737779283malize @ A @ B2 ) ) ) ) ).
% normalize_mult
thf(fact_8143_coprime__crossproduct,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,D2: A,B2: A,C2: A] :
( ( algebr8660921524188924756oprime @ A @ A2 @ D2 )
=> ( ( algebr8660921524188924756oprime @ A @ B2 @ C2 )
=> ( ( ( times_times @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ ( normal6383669964737779283malize @ A @ C2 ) )
= ( times_times @ A @ ( normal6383669964737779283malize @ A @ B2 ) @ ( normal6383669964737779283malize @ A @ D2 ) ) )
= ( ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) )
& ( ( normal6383669964737779283malize @ A @ C2 )
= ( normal6383669964737779283malize @ A @ D2 ) ) ) ) ) ) ) ).
% coprime_crossproduct
thf(fact_8144_associated__unit,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) )
=> ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( dvd_dvd @ A @ B2 @ ( one_one @ A ) ) ) ) ) ).
% associated_unit
thf(fact_8145_normalize__1__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( one_one @ A ) )
= ( dvd_dvd @ A @ A2 @ ( one_one @ A ) ) ) ) ).
% normalize_1_iff
thf(fact_8146_is__unit__normalize,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A] :
( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
=> ( ( normal6383669964737779283malize @ A @ A2 )
= ( one_one @ A ) ) ) ) ).
% is_unit_normalize
thf(fact_8147_normalize__idem__imp__is__unit__iff,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= A2 )
=> ( ( dvd_dvd @ A @ A2 @ ( one_one @ A ) )
= ( A2
= ( one_one @ A ) ) ) ) ) ).
% normalize_idem_imp_is_unit_iff
thf(fact_8148_associatedI,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) ) ) ) ) ).
% associatedI
thf(fact_8149_associatedD1,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) )
=> ( dvd_dvd @ A @ A2 @ B2 ) ) ) ).
% associatedD1
thf(fact_8150_associatedD2,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) )
=> ( dvd_dvd @ A @ B2 @ A2 ) ) ) ).
% associatedD2
thf(fact_8151_associated__eqI,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( ( normal6383669964737779283malize @ A @ A2 )
= A2 )
=> ( ( ( normal6383669964737779283malize @ A @ B2 )
= B2 )
=> ( A2 = B2 ) ) ) ) ) ) ).
% associated_eqI
thf(fact_8152_associated__iff__dvd,axiom,
! [A: $tType] :
( ( normal8620421768224518004emidom @ A )
=> ! [A2: A,B2: A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= ( normal6383669964737779283malize @ A @ B2 ) )
= ( ( dvd_dvd @ A @ A2 @ B2 )
& ( dvd_dvd @ A @ B2 @ A2 ) ) ) ) ).
% associated_iff_dvd
thf(fact_8153_Gcd__eqI,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A2: A,A4: set @ A] :
( ( ( normal6383669964737779283malize @ A @ A2 )
= A2 )
=> ( ! [B5: A] :
( ( member @ A @ B5 @ A4 )
=> ( dvd_dvd @ A @ A2 @ B5 ) )
=> ( ! [C4: A] :
( ! [B11: A] :
( ( member @ A @ B11 @ A4 )
=> ( dvd_dvd @ A @ C4 @ B11 ) )
=> ( dvd_dvd @ A @ C4 @ A2 ) )
=> ( ( gcd_Gcd @ A @ A4 )
= A2 ) ) ) ) ) ).
% Gcd_eqI
thf(fact_8154_GcdI,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,B2: A] :
( ! [A5: A] :
( ( member @ A @ A5 @ A4 )
=> ( dvd_dvd @ A @ B2 @ A5 ) )
=> ( ! [C4: A] :
( ! [A9: A] :
( ( member @ A @ A9 @ A4 )
=> ( dvd_dvd @ A @ C4 @ A9 ) )
=> ( dvd_dvd @ A @ C4 @ B2 ) )
=> ( ( ( normal6383669964737779283malize @ A @ B2 )
= B2 )
=> ( B2
= ( gcd_Gcd @ A @ A4 ) ) ) ) ) ) ).
% GcdI
thf(fact_8155_gcd__exp__weak,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,N2: nat,B2: A] :
( ( gcd_gcd @ A @ ( power_power @ A @ A2 @ N2 ) @ ( power_power @ A @ B2 @ N2 ) )
= ( normal6383669964737779283malize @ A @ ( power_power @ A @ ( gcd_gcd @ A @ A2 @ B2 ) @ N2 ) ) ) ) ).
% gcd_exp_weak
thf(fact_8156_gcdI,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( dvd_dvd @ A @ C2 @ A2 )
=> ( ( dvd_dvd @ A @ C2 @ B2 )
=> ( ! [D5: A] :
( ( dvd_dvd @ A @ D5 @ A2 )
=> ( ( dvd_dvd @ A @ D5 @ B2 )
=> ( dvd_dvd @ A @ D5 @ C2 ) ) )
=> ( ( ( normal6383669964737779283malize @ A @ C2 )
= C2 )
=> ( C2
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ) ) ) ).
% gcdI
thf(fact_8157_gcd__unique,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [D2: A,A2: A,B2: A] :
( ( ( dvd_dvd @ A @ D2 @ A2 )
& ( dvd_dvd @ A @ D2 @ B2 )
& ( ( normal6383669964737779283malize @ A @ D2 )
= D2 )
& ! [E3: A] :
( ( ( dvd_dvd @ A @ E3 @ A2 )
& ( dvd_dvd @ A @ E3 @ B2 ) )
=> ( dvd_dvd @ A @ E3 @ D2 ) ) )
= ( D2
= ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ).
% gcd_unique
thf(fact_8158_gcd__proj1__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N2: A] :
( ( ( gcd_gcd @ A @ M @ N2 )
= ( normal6383669964737779283malize @ A @ M ) )
= ( dvd_dvd @ A @ M @ N2 ) ) ) ).
% gcd_proj1_iff
thf(fact_8159_gcd__proj2__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [M: A,N2: A] :
( ( ( gcd_gcd @ A @ M @ N2 )
= ( normal6383669964737779283malize @ A @ N2 ) )
= ( dvd_dvd @ A @ N2 @ M ) ) ) ).
% gcd_proj2_iff
thf(fact_8160_gcd__proj1__if__dvd,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( dvd_dvd @ A @ A2 @ B2 )
=> ( ( gcd_gcd @ A @ A2 @ B2 )
= ( normal6383669964737779283malize @ A @ A2 ) ) ) ) ).
% gcd_proj1_if_dvd
thf(fact_8161_gcd__proj2__if__dvd,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,A2: A] :
( ( dvd_dvd @ A @ B2 @ A2 )
=> ( ( gcd_gcd @ A @ A2 @ B2 )
= ( normal6383669964737779283malize @ A @ B2 ) ) ) ) ).
% gcd_proj2_if_dvd
thf(fact_8162_gcd__mult__left,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( gcd_gcd @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ C2 @ ( gcd_gcd @ A @ A2 @ B2 ) ) ) ) ) ).
% gcd_mult_left
thf(fact_8163_gcd__mult__right,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,C2: A,B2: A] :
( ( gcd_gcd @ A @ ( times_times @ A @ A2 @ C2 ) @ ( times_times @ A @ B2 @ C2 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ ( gcd_gcd @ A @ B2 @ A2 ) @ C2 ) ) ) ) ).
% gcd_mult_right
thf(fact_8164_gcd__mult__distrib_H,axiom,
! [A: $tType] :
( ( semiri6843258321239162965malize @ A )
=> ! [C2: A,A2: A,B2: A] :
( ( times_times @ A @ ( normal6383669964737779283malize @ A @ C2 ) @ ( gcd_gcd @ A @ A2 @ B2 ) )
= ( gcd_gcd @ A @ ( times_times @ A @ C2 @ A2 ) @ ( times_times @ A @ C2 @ B2 ) ) ) ) ).
% gcd_mult_distrib'
thf(fact_8165_Gcd__mult,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [C2: A,A4: set @ A] :
( ( gcd_Gcd @ A @ ( image @ A @ A @ ( times_times @ A @ C2 ) @ A4 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ C2 @ ( gcd_Gcd @ A @ A4 ) ) ) ) ) ).
% Gcd_mult
thf(fact_8166_Lcm__mult,axiom,
! [A: $tType] :
( ( semiring_Gcd @ A )
=> ! [A4: set @ A,C2: A] :
( ( A4
!= ( bot_bot @ ( set @ A ) ) )
=> ( ( gcd_Lcm @ A @ ( image @ A @ A @ ( times_times @ A @ C2 ) @ A4 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ C2 @ ( gcd_Lcm @ A @ A4 ) ) ) ) ) ) ).
% Lcm_mult
thf(fact_8167_Gcd__fin__mult,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A4: set @ A,B2: A] :
( ( finite_finite @ A @ A4 )
=> ( ( semiring_gcd_Gcd_fin @ A @ ( image @ A @ A @ ( times_times @ A @ B2 ) @ A4 ) )
= ( normal6383669964737779283malize @ A @ ( times_times @ A @ B2 @ ( semiring_gcd_Gcd_fin @ A @ A4 ) ) ) ) ) ) ).
% Gcd_fin_mult
thf(fact_8168_Gcd__fin_Obounded__quasi__semilattice__set__axioms,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ( bounde6485984586167503788ce_set @ A @ ( gcd_gcd @ A ) @ ( zero_zero @ A ) @ ( one_one @ A ) @ ( normal6383669964737779283malize @ A ) ) ) ).
% Gcd_fin.bounded_quasi_semilattice_set_axioms
thf(fact_8169_Lcm__int__set__eq__fold,axiom,
! [Xs2: list @ int] :
( ( gcd_Lcm @ int @ ( set2 @ int @ Xs2 ) )
= ( fold @ int @ int @ ( gcd_lcm @ int ) @ Xs2 @ ( one_one @ int ) ) ) ).
% Lcm_int_set_eq_fold
thf(fact_8170_Lcm__eq__Max__nat,axiom,
! [M7: set @ nat] :
( ( finite_finite @ nat @ M7 )
=> ( ( M7
!= ( bot_bot @ ( set @ nat ) ) )
=> ( ~ ( member @ nat @ ( zero_zero @ nat ) @ M7 )
=> ( ! [M5: nat,N: nat] :
( ( member @ nat @ M5 @ M7 )
=> ( ( member @ nat @ N @ M7 )
=> ( member @ nat @ ( gcd_lcm @ nat @ M5 @ N ) @ M7 ) ) )
=> ( ( gcd_Lcm @ nat @ M7 )
= ( lattic643756798349783984er_Max @ nat @ M7 ) ) ) ) ) ) ).
% Lcm_eq_Max_nat
thf(fact_8171_lcm__left__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ A2 @ ( gcd_lcm @ A @ A2 @ B2 ) )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm_left_idem
thf(fact_8172_lcm__right__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ ( gcd_lcm @ A @ A2 @ B2 ) @ B2 )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm_right_idem
thf(fact_8173_lcm_Obottom__right__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_lcm @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% lcm.bottom_right_bottom
thf(fact_8174_lcm_Obottom__left__bottom,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A] :
( ( gcd_lcm @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% lcm.bottom_left_bottom
thf(fact_8175_lcm__neg1,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm_neg1
thf(fact_8176_lcm__neg2,axiom,
! [A: $tType] :
( ( ring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm_neg2
thf(fact_8177_lcm__least__iff,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A,C2: A] :
( ( dvd_dvd @ A @ ( gcd_lcm @ A @ A2 @ B2 ) @ C2 )
= ( ( dvd_dvd @ A @ A2 @ C2 )
& ( dvd_dvd @ A @ B2 @ C2 ) ) ) ) ).
% lcm_least_iff
thf(fact_8178_dvd__lcm2,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [B2: A,A2: A] : ( dvd_dvd @ A @ B2 @ ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% dvd_lcm2
thf(fact_8179_dvd__lcm1,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] : ( dvd_dvd @ A @ A2 @ ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% dvd_lcm1
thf(fact_8180_lcm_Onormalize__right__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ A2 @ ( normal6383669964737779283malize @ A @ B2 ) )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm.normalize_right_idem
thf(fact_8181_lcm_Onormalize__left__idem,axiom,
! [A: $tType] :
( ( semiring_gcd @ A )
=> ! [A2: A,B2: A] :
( ( gcd_lcm @ A @ ( normal6383669964737779283malize @ A @ A2 ) @ B2 )
= ( gcd_lcm @ A @ A2 @ B2 ) ) ) ).
% lcm.normalize_left_idem
% Type constructors (817)
thf(tcon_fun___Countable__Complete__Lattices_Ocountable__complete__distrib__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( comple592849572758109894attice @ A17 )
=> ( counta4013691401010221786attice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Conditionally__Complete__Lattices_Oconditionally__complete__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( condit1219197933456340205attice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Countable__Complete__Lattices_Ocountable__complete__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( counta3822494911875563373attice @ A17 )
=> ( counta3822494911875563373attice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Complete__Lattices_Ocomplete__distrib__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( comple592849572758109894attice @ A17 )
=> ( comple592849572758109894attice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__semilattice__sup__bot,axiom,
! [A10: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounde4967611905675639751up_bot @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__semilattice__inf__top,axiom,
! [A10: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounde4346867609351753570nf_top @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Complete__Lattices_Ocomplete__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( comple6319245703460814977attice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Boolean__Algebras_Oboolean__algebra,axiom,
! [A10: $tType,A17: $tType] :
( ( boolea8198339166811842893lgebra @ A17 )
=> ( boolea8198339166811842893lgebra @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Complete__Partial__Order_Occpo,axiom,
! [A10: $tType,A17: $tType] :
( ( comple6319245703460814977attice @ A17 )
=> ( comple9053668089753744459l_ccpo @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__sup,axiom,
! [A10: $tType,A17: $tType] :
( ( semilattice_sup @ A17 )
=> ( semilattice_sup @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__inf,axiom,
! [A10: $tType,A17: $tType] :
( ( semilattice_inf @ A17 )
=> ( semilattice_inf @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Odistrib__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( distrib_lattice @ A17 )
=> ( distrib_lattice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__lattice,axiom,
! [A10: $tType,A17: $tType] :
( ( bounded_lattice @ A17 )
=> ( bounded_lattice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder__top,axiom,
! [A10: $tType,A17: $tType] :
( ( order_top @ A17 )
=> ( order_top @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder__bot,axiom,
! [A10: $tType,A17: $tType] :
( ( order_bot @ A17 )
=> ( order_bot @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A10: $tType,A17: $tType] :
( ( preorder @ A17 )
=> ( preorder @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Lattices_Olattice,axiom,
! [A10: $tType,A17: $tType] :
( ( lattice @ A17 )
=> ( lattice @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A10: $tType,A17: $tType] :
( ( order @ A17 )
=> ( order @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Otop,axiom,
! [A10: $tType,A17: $tType] :
( ( top @ A17 )
=> ( top @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A10: $tType,A17: $tType] :
( ( ord @ A17 )
=> ( ord @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Orderings_Obot,axiom,
! [A10: $tType,A17: $tType] :
( ( bot @ A17 )
=> ( bot @ ( A10 > A17 ) ) ) ).
thf(tcon_fun___Groups_Ouminus,axiom,
! [A10: $tType,A17: $tType] :
( ( uminus @ A17 )
=> ( uminus @ ( A10 > A17 ) ) ) ).
thf(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__linorder,axiom,
condit6923001295902523014norder @ int ).
thf(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_1,axiom,
condit1219197933456340205attice @ int ).
thf(tcon_Int_Oint___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,axiom,
bit_un5681908812861735899ations @ int ).
thf(tcon_Int_Oint___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
semiri1453513574482234551roduct @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring__with__nat,axiom,
euclid5411537665997757685th_nat @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__ring__with__nat,axiom,
euclid8789492081693882211th_nat @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__monoid__add__imp__le,axiom,
ordere1937475149494474687imp_le @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring,axiom,
euclid3128863361964157862miring @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring__cancel,axiom,
euclid4440199948858584721cancel @ int ).
thf(tcon_Int_Oint___Rings_Onormalization__semidom__multiplicative,axiom,
normal6328177297339901930cative @ int ).
thf(tcon_Int_Oint___Divides_Ounique__euclidean__semiring__numeral,axiom,
unique1627219031080169319umeral @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__ring__cancel,axiom,
euclid8851590272496341667cancel @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors__cancel,axiom,
semiri6575147826004484403cancel @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__ab__semigroup__add,axiom,
strict9044650504122735259up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__cancel__ab__semigroup__add,axiom,
ordere580206878836729694up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add__imp__le,axiom,
ordere2412721322843649153imp_le @ int ).
thf(tcon_Int_Oint___Bit__Operations_Osemiring__bit__operations,axiom,
bit_se359711467146920520ations @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__comm__semiring__strict,axiom,
linord2810124833399127020strict @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__comm__monoid__add,axiom,
strict7427464778891057005id_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__cancel__comm__monoid__add,axiom,
ordere8940638589300402666id_add @ int ).
thf(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring,axiom,
euclid3725896446679973847miring @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Otopological__space,axiom,
topolo4958980785337419405_space @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Olinorder__topology,axiom,
topolo1944317154257567458pology @ int ).
thf(tcon_Int_Oint___Limits_Otopological__comm__monoid__mult,axiom,
topolo4987421752381908075d_mult @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__1__strict,axiom,
linord715952674999750819strict @ int ).
thf(tcon_Int_Oint___Limits_Otopological__comm__monoid__add,axiom,
topolo5987344860129210374id_add @ int ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__semigroup__add,axiom,
linord4140545234300271783up_add @ int ).
thf(tcon_Int_Oint___Bit__Operations_Oring__bit__operations,axiom,
bit_ri3973907225187159222ations @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Oorder__topology,axiom,
topolo2564578578187576103pology @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1__no__zero__divisors,axiom,
semiri2026040879449505780visors @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord181362715937106298miring @ int ).
thf(tcon_Int_Oint___Limits_Otopological__semigroup__mult,axiom,
topolo4211221413907600880p_mult @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__strict,axiom,
linord8928482502909563296strict @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors,axiom,
semiri3467727345109120633visors @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add,axiom,
ordere6658533253407199908up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__group__add__abs,axiom,
ordere166539214618696060dd_abs @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__gcd__mult__normalize,axiom,
semiri6843258321239162965malize @ int ).
thf(tcon_Int_Oint___Limits_Otopological__monoid__mult,axiom,
topolo1898628316856586783d_mult @ int ).
thf(tcon_Int_Oint___Groups_Oordered__comm__monoid__add,axiom,
ordere6911136660526730532id_add @ int ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord5086331880401160121up_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__ab__semigroup__add,axiom,
cancel2418104881723323429up_add @ int ).
thf(tcon_Int_Oint___Rings_Oring__1__no__zero__divisors,axiom,
ring_15535105094025558882visors @ int ).
thf(tcon_Int_Oint___Limits_Otopological__monoid__add,axiom,
topolo6943815403480290642id_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__comm__monoid__add,axiom,
cancel1802427076303600483id_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__ring__strict,axiom,
linord4710134922213307826strict @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__1__cancel,axiom,
comm_s4317794764714335236cancel @ int ).
thf(tcon_Int_Oint___Bit__Operations_Osemiring__bits,axiom,
bit_semiring_bits @ int ).
thf(tcon_Int_Oint___Topological__Spaces_Ot2__space,axiom,
topological_t2_space @ int ).
thf(tcon_Int_Oint___Rings_Oordered__comm__semiring,axiom,
ordere2520102378445227354miring @ int ).
thf(tcon_Int_Oint___Rings_Onormalization__semidom,axiom,
normal8620421768224518004emidom @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring__1,axiom,
linord6961819062388156250ring_1 @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__group__add,axiom,
ordered_ab_group_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__semigroup__add,axiom,
cancel_semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semiring,axiom,
linordered_semiring @ int ).
thf(tcon_Int_Oint___Rings_Oordered__semiring__0,axiom,
ordered_semiring_0 @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semidom,axiom,
linordered_semidom @ int ).
thf(tcon_Int_Oint___Lattices_Osemilattice__sup_2,axiom,
semilattice_sup @ int ).
thf(tcon_Int_Oint___Lattices_Osemilattice__inf_3,axiom,
semilattice_inf @ int ).
thf(tcon_Int_Oint___Lattices_Odistrib__lattice_4,axiom,
distrib_lattice @ int ).
thf(tcon_Int_Oint___Groups_Oab__semigroup__mult,axiom,
ab_semigroup_mult @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1__cancel,axiom,
semiring_1_cancel @ int ).
thf(tcon_Int_Oint___Rings_Oalgebraic__semidom,axiom,
algebraic_semidom @ int ).
thf(tcon_Int_Oint___Groups_Ocomm__monoid__mult,axiom,
comm_monoid_mult @ int ).
thf(tcon_Int_Oint___Groups_Oab__semigroup__add,axiom,
ab_semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Oordered__semiring,axiom,
ordered_semiring @ int ).
thf(tcon_Int_Oint___Rings_Oordered__ring__abs,axiom,
ordered_ring_abs @ int ).
thf(tcon_Int_Oint___Parity_Osemiring__parity,axiom,
semiring_parity @ int ).
thf(tcon_Int_Oint___Groups_Ocomm__monoid__add,axiom,
comm_monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__modulo,axiom,
semiring_modulo @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__ring,axiom,
linordered_ring @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__1,axiom,
comm_semiring_1 @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__0,axiom,
comm_semiring_0 @ int ).
thf(tcon_Int_Oint___Groups_Osemigroup__mult,axiom,
semigroup_mult @ int ).
thf(tcon_Int_Oint___Rings_Osemidom__modulo,axiom,
semidom_modulo @ int ).
thf(tcon_Int_Oint___Rings_Osemidom__divide,axiom,
semidom_divide @ int ).
thf(tcon_Int_Oint___Num_Osemiring__numeral,axiom,
semiring_numeral @ int ).
thf(tcon_Int_Oint___Groups_Osemigroup__add,axiom,
semigroup_add @ int ).
thf(tcon_Int_Oint___Rings_Ozero__less__one,axiom,
zero_less_one @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring,axiom,
comm_semiring @ int ).
thf(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0 @ int ).
thf(tcon_Int_Oint___Groups_Oab__group__add,axiom,
ab_group_add @ int ).
thf(tcon_Int_Oint___Rings_Ozero__neq__one,axiom,
zero_neq_one @ int ).
thf(tcon_Int_Oint___Rings_Oordered__ring,axiom,
ordered_ring @ int ).
thf(tcon_Int_Oint___Rings_Oidom__abs__sgn,axiom,
idom_abs_sgn @ int ).
thf(tcon_Int_Oint___Parity_Oring__parity,axiom,
ring_parity @ int ).
thf(tcon_Int_Oint___Orderings_Opreorder_5,axiom,
preorder @ int ).
thf(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder @ int ).
thf(tcon_Int_Oint___Groups_Omonoid__mult,axiom,
monoid_mult @ int ).
thf(tcon_Int_Oint___Rings_Oidom__modulo,axiom,
idom_modulo @ int ).
thf(tcon_Int_Oint___Rings_Oidom__divide,axiom,
idom_divide @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__ring__1,axiom,
comm_ring_1 @ int ).
thf(tcon_Int_Oint___Groups_Omonoid__add,axiom,
monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1 @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__0,axiom,
semiring_0 @ int ).
thf(tcon_Int_Oint___Orderings_Ono__top,axiom,
no_top @ int ).
thf(tcon_Int_Oint___Orderings_Ono__bot,axiom,
no_bot @ int ).
thf(tcon_Int_Oint___Lattices_Olattice_6,axiom,
lattice @ int ).
thf(tcon_Int_Oint___Groups_Ogroup__add,axiom,
group_add @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__gcd,axiom,
semiring_gcd @ int ).
thf(tcon_Int_Oint___GCD_Osemiring__Gcd,axiom,
semiring_Gcd @ int ).
thf(tcon_Int_Oint___Rings_Omult__zero,axiom,
mult_zero @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__ring,axiom,
comm_ring @ int ).
thf(tcon_Int_Oint___Orderings_Oorder_7,axiom,
order @ int ).
thf(tcon_Int_Oint___Num_Oneg__numeral,axiom,
neg_numeral @ int ).
thf(tcon_Int_Oint___Nat_Oring__char__0,axiom,
ring_char_0 @ int ).
thf(tcon_Int_Oint___Rings_Osemiring,axiom,
semiring @ int ).
thf(tcon_Int_Oint___Rings_Osemidom,axiom,
semidom @ int ).
thf(tcon_Int_Oint___Orderings_Oord_8,axiom,
ord @ int ).
thf(tcon_Int_Oint___Groups_Ouminus_9,axiom,
uminus @ int ).
thf(tcon_Int_Oint___Rings_Oring__1,axiom,
ring_1 @ int ).
thf(tcon_Int_Oint___Rings_Oabs__if,axiom,
abs_if @ int ).
thf(tcon_Int_Oint___GCD_Oring__gcd,axiom,
ring_gcd @ int ).
thf(tcon_Int_Oint___Power_Opower,axiom,
power @ int ).
thf(tcon_Int_Oint___Num_Onumeral,axiom,
numeral @ int ).
thf(tcon_Int_Oint___Groups_Ozero,axiom,
zero @ int ).
thf(tcon_Int_Oint___Groups_Oplus,axiom,
plus @ int ).
thf(tcon_Int_Oint___Rings_Oring,axiom,
ring @ int ).
thf(tcon_Int_Oint___Rings_Oidom,axiom,
idom @ int ).
thf(tcon_Int_Oint___Groups_Oone,axiom,
one @ int ).
thf(tcon_Int_Oint___Rings_Odvd,axiom,
dvd @ int ).
thf(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_10,axiom,
condit6923001295902523014norder @ nat ).
thf(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_11,axiom,
condit1219197933456340205attice @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_12,axiom,
bit_un5681908812861735899ations @ nat ).
thf(tcon_Nat_Onat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_13,axiom,
semiri1453513574482234551roduct @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring__with__nat_14,axiom,
euclid5411537665997757685th_nat @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_15,axiom,
ordere1937475149494474687imp_le @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring_16,axiom,
euclid3128863361964157862miring @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring__cancel_17,axiom,
euclid4440199948858584721cancel @ nat ).
thf(tcon_Nat_Onat___Rings_Onormalization__semidom__multiplicative_18,axiom,
normal6328177297339901930cative @ nat ).
thf(tcon_Nat_Onat___Divides_Ounique__euclidean__semiring__numeral_19,axiom,
unique1627219031080169319umeral @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors__cancel_20,axiom,
semiri6575147826004484403cancel @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__ab__semigroup__add_21,axiom,
strict9044650504122735259up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__diff,axiom,
ordere1170586879665033532d_diff @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__ab__semigroup__add_22,axiom,
ordere580206878836729694up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add__imp__le_23,axiom,
ordere2412721322843649153imp_le @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Osemiring__bit__operations_24,axiom,
bit_se359711467146920520ations @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__comm__semiring__strict_25,axiom,
linord2810124833399127020strict @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__comm__monoid__add_26,axiom,
strict7427464778891057005id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__add_27,axiom,
ordere8940638589300402666id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni5634975068530333245id_add @ nat ).
thf(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring_28,axiom,
euclid3725896446679973847miring @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Otopological__space_29,axiom,
topolo4958980785337419405_space @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Olinorder__topology_30,axiom,
topolo1944317154257567458pology @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__comm__monoid__mult_31,axiom,
topolo4987421752381908075d_mult @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__comm__monoid__add_32,axiom,
topolo5987344860129210374id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Olinordered__ab__semigroup__add_33,axiom,
linord4140545234300271783up_add @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Oorder__topology_34,axiom,
topolo2564578578187576103pology @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1__no__zero__divisors_35,axiom,
semiri2026040879449505780visors @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_36,axiom,
linord181362715937106298miring @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__semigroup__mult_37,axiom,
topolo4211221413907600880p_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semiring__strict_38,axiom,
linord8928482502909563296strict @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors_39,axiom,
semiri3467727345109120633visors @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add_40,axiom,
ordere6658533253407199908up_add @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__gcd__mult__normalize_41,axiom,
semiri6843258321239162965malize @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__monoid__mult_42,axiom,
topolo1898628316856586783d_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__comm__monoid__add_43,axiom,
ordere6911136660526730532id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add_44,axiom,
cancel2418104881723323429up_add @ nat ).
thf(tcon_Nat_Onat___Limits_Otopological__monoid__add_45,axiom,
topolo6943815403480290642id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add_46,axiom,
cancel1802427076303600483id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__1__cancel_47,axiom,
comm_s4317794764714335236cancel @ nat ).
thf(tcon_Nat_Onat___Bit__Operations_Osemiring__bits_48,axiom,
bit_semiring_bits @ nat ).
thf(tcon_Nat_Onat___Topological__Spaces_Ot2__space_49,axiom,
topological_t2_space @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__comm__semiring_50,axiom,
ordere2520102378445227354miring @ nat ).
thf(tcon_Nat_Onat___Rings_Onormalization__semidom_51,axiom,
normal8620421768224518004emidom @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__semigroup__add_52,axiom,
cancel_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semiring_53,axiom,
linordered_semiring @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring__0_54,axiom,
ordered_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semidom_55,axiom,
linordered_semidom @ nat ).
thf(tcon_Nat_Onat___Lattices_Osemilattice__sup_56,axiom,
semilattice_sup @ nat ).
thf(tcon_Nat_Onat___Lattices_Osemilattice__inf_57,axiom,
semilattice_inf @ nat ).
thf(tcon_Nat_Onat___Lattices_Odistrib__lattice_58,axiom,
distrib_lattice @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__mult_59,axiom,
ab_semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1__cancel_60,axiom,
semiring_1_cancel @ nat ).
thf(tcon_Nat_Onat___Rings_Oalgebraic__semidom_61,axiom,
algebraic_semidom @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__mult_62,axiom,
comm_monoid_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__diff,axiom,
comm_monoid_diff @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__add_63,axiom,
ab_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring_64,axiom,
ordered_semiring @ nat ).
thf(tcon_Nat_Onat___Parity_Osemiring__parity_65,axiom,
semiring_parity @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__add_66,axiom,
comm_monoid_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__modulo_67,axiom,
semiring_modulo @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__1_68,axiom,
comm_semiring_1 @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__0_69,axiom,
comm_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__mult_70,axiom,
semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom__modulo_71,axiom,
semidom_modulo @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom__divide_72,axiom,
semidom_divide @ nat ).
thf(tcon_Nat_Onat___Num_Osemiring__numeral_73,axiom,
semiring_numeral @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__add_74,axiom,
semigroup_add @ nat ).
thf(tcon_Nat_Onat___Rings_Ozero__less__one_75,axiom,
zero_less_one @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring_76,axiom,
comm_semiring @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder__bot_77,axiom,
order_bot @ nat ).
thf(tcon_Nat_Onat___Nat_Osemiring__char__0_78,axiom,
semiring_char_0 @ nat ).
thf(tcon_Nat_Onat___Rings_Ozero__neq__one_79,axiom,
zero_neq_one @ nat ).
thf(tcon_Nat_Onat___Orderings_Opreorder_80,axiom,
preorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder_81,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__mult_82,axiom,
monoid_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__add_83,axiom,
monoid_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1_84,axiom,
semiring_1 @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__0_85,axiom,
semiring_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Ono__top_86,axiom,
no_top @ nat ).
thf(tcon_Nat_Onat___Lattices_Olattice_87,axiom,
lattice @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__gcd_88,axiom,
semiring_gcd @ nat ).
thf(tcon_Nat_Onat___GCD_Osemiring__Gcd_89,axiom,
semiring_Gcd @ nat ).
thf(tcon_Nat_Onat___Rings_Omult__zero_90,axiom,
mult_zero @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_91,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring_92,axiom,
semiring @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom_93,axiom,
semidom @ nat ).
thf(tcon_Nat_Onat___Orderings_Oord_94,axiom,
ord @ nat ).
thf(tcon_Nat_Onat___Orderings_Obot_95,axiom,
bot @ nat ).
thf(tcon_Nat_Onat___Power_Opower_96,axiom,
power @ nat ).
thf(tcon_Nat_Onat___Num_Onumeral_97,axiom,
numeral @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero_98,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Groups_Oplus_99,axiom,
plus @ nat ).
thf(tcon_Nat_Onat___Groups_Oone_100,axiom,
one @ nat ).
thf(tcon_Nat_Onat___Rings_Odvd_101,axiom,
dvd @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_Num_Onum___Orderings_Opreorder_102,axiom,
preorder @ num ).
thf(tcon_Num_Onum___Orderings_Olinorder_103,axiom,
linorder @ num ).
thf(tcon_Num_Onum___Orderings_Oorder_104,axiom,
order @ num ).
thf(tcon_Num_Onum___Orderings_Oord_105,axiom,
ord @ num ).
thf(tcon_Num_Onum___Groups_Oplus_106,axiom,
plus @ num ).
thf(tcon_Num_Onum___Nat_Osize_107,axiom,
size @ num ).
thf(tcon_Rat_Orat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_108,axiom,
semiri1453513574482234551roduct @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_109,axiom,
ordere1937475149494474687imp_le @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors__cancel_110,axiom,
semiri6575147826004484403cancel @ rat ).
thf(tcon_Rat_Orat___Groups_Ostrict__ordered__ab__semigroup__add_111,axiom,
strict9044650504122735259up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__cancel__ab__semigroup__add_112,axiom,
ordere580206878836729694up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add__imp__le_113,axiom,
ordere2412721322843649153imp_le @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__comm__semiring__strict_114,axiom,
linord2810124833399127020strict @ rat ).
thf(tcon_Rat_Orat___Groups_Ostrict__ordered__comm__monoid__add_115,axiom,
strict7427464778891057005id_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__cancel__comm__monoid__add_116,axiom,
ordere8940638589300402666id_add @ rat ).
thf(tcon_Rat_Orat___Archimedean__Field_Oarchimedean__field,axiom,
archim462609752435547400_field @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__1__strict_117,axiom,
linord715952674999750819strict @ rat ).
thf(tcon_Rat_Orat___Orderings_Ounbounded__dense__linorder,axiom,
unboun7993243217541854897norder @ rat ).
thf(tcon_Rat_Orat___Groups_Olinordered__ab__semigroup__add_118,axiom,
linord4140545234300271783up_add @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1__no__zero__divisors_119,axiom,
semiri2026040879449505780visors @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__nonzero__semiring_120,axiom,
linord181362715937106298miring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__strict_121,axiom,
linord8928482502909563296strict @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors_122,axiom,
semiri3467727345109120633visors @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add_123,axiom,
ordere6658533253407199908up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__group__add__abs_124,axiom,
ordere166539214618696060dd_abs @ rat ).
thf(tcon_Rat_Orat___Archimedean__Field_Ofloor__ceiling,axiom,
archim2362893244070406136eiling @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__comm__monoid__add_125,axiom,
ordere6911136660526730532id_add @ rat ).
thf(tcon_Rat_Orat___Groups_Olinordered__ab__group__add_126,axiom,
linord5086331880401160121up_add @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__ab__semigroup__add_127,axiom,
cancel2418104881723323429up_add @ rat ).
thf(tcon_Rat_Orat___Rings_Oring__1__no__zero__divisors_128,axiom,
ring_15535105094025558882visors @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__comm__monoid__add_129,axiom,
cancel1802427076303600483id_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__ring__strict_130,axiom,
linord4710134922213307826strict @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__1__cancel_131,axiom,
comm_s4317794764714335236cancel @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__comm__semiring_132,axiom,
ordere2520102378445227354miring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring__1_133,axiom,
linord6961819062388156250ring_1 @ rat ).
thf(tcon_Rat_Orat___Groups_Oordered__ab__group__add_134,axiom,
ordered_ab_group_add @ rat ).
thf(tcon_Rat_Orat___Groups_Ocancel__semigroup__add_135,axiom,
cancel_semigroup_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semiring_136,axiom,
linordered_semiring @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__semiring__0_137,axiom,
ordered_semiring_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__semidom_138,axiom,
linordered_semidom @ rat ).
thf(tcon_Rat_Orat___Orderings_Odense__linorder,axiom,
dense_linorder @ rat ).
thf(tcon_Rat_Orat___Lattices_Osemilattice__sup_139,axiom,
semilattice_sup @ rat ).
thf(tcon_Rat_Orat___Lattices_Osemilattice__inf_140,axiom,
semilattice_inf @ rat ).
thf(tcon_Rat_Orat___Lattices_Odistrib__lattice_141,axiom,
distrib_lattice @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__semigroup__mult_142,axiom,
ab_semigroup_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1__cancel_143,axiom,
semiring_1_cancel @ rat ).
thf(tcon_Rat_Orat___Groups_Ocomm__monoid__mult_144,axiom,
comm_monoid_mult @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__semigroup__add_145,axiom,
ab_semigroup_add @ rat ).
thf(tcon_Rat_Orat___Fields_Olinordered__field,axiom,
linordered_field @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__semiring_146,axiom,
ordered_semiring @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__ring__abs_147,axiom,
ordered_ring_abs @ rat ).
thf(tcon_Rat_Orat___Groups_Ocomm__monoid__add_148,axiom,
comm_monoid_add @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__ring_149,axiom,
linordered_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Olinordered__idom_150,axiom,
linordered_idom @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__1_151,axiom,
comm_semiring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring__0_152,axiom,
comm_semiring_0 @ rat ).
thf(tcon_Rat_Orat___Orderings_Odense__order,axiom,
dense_order @ rat ).
thf(tcon_Rat_Orat___Groups_Osemigroup__mult_153,axiom,
semigroup_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Osemidom__divide_154,axiom,
semidom_divide @ rat ).
thf(tcon_Rat_Orat___Num_Osemiring__numeral_155,axiom,
semiring_numeral @ rat ).
thf(tcon_Rat_Orat___Groups_Osemigroup__add_156,axiom,
semigroup_add @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield__abs__sgn,axiom,
field_abs_sgn @ rat ).
thf(tcon_Rat_Orat___Fields_Odivision__ring,axiom,
division_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Ozero__less__one_157,axiom,
zero_less_one @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__semiring_158,axiom,
comm_semiring @ rat ).
thf(tcon_Rat_Orat___Nat_Osemiring__char__0_159,axiom,
semiring_char_0 @ rat ).
thf(tcon_Rat_Orat___Groups_Oab__group__add_160,axiom,
ab_group_add @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield__char__0,axiom,
field_char_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Ozero__neq__one_161,axiom,
zero_neq_one @ rat ).
thf(tcon_Rat_Orat___Rings_Oordered__ring_162,axiom,
ordered_ring @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom__abs__sgn_163,axiom,
idom_abs_sgn @ rat ).
thf(tcon_Rat_Orat___Orderings_Opreorder_164,axiom,
preorder @ rat ).
thf(tcon_Rat_Orat___Orderings_Olinorder_165,axiom,
linorder @ rat ).
thf(tcon_Rat_Orat___Groups_Omonoid__mult_166,axiom,
monoid_mult @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom__divide_167,axiom,
idom_divide @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__ring__1_168,axiom,
comm_ring_1 @ rat ).
thf(tcon_Rat_Orat___Groups_Omonoid__add_169,axiom,
monoid_add @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__1_170,axiom,
semiring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring__0_171,axiom,
semiring_0 @ rat ).
thf(tcon_Rat_Orat___Orderings_Ono__top_172,axiom,
no_top @ rat ).
thf(tcon_Rat_Orat___Orderings_Ono__bot_173,axiom,
no_bot @ rat ).
thf(tcon_Rat_Orat___Lattices_Olattice_174,axiom,
lattice @ rat ).
thf(tcon_Rat_Orat___Groups_Ogroup__add_175,axiom,
group_add @ rat ).
thf(tcon_Rat_Orat___Rings_Omult__zero_176,axiom,
mult_zero @ rat ).
thf(tcon_Rat_Orat___Rings_Ocomm__ring_177,axiom,
comm_ring @ rat ).
thf(tcon_Rat_Orat___Orderings_Oorder_178,axiom,
order @ rat ).
thf(tcon_Rat_Orat___Num_Oneg__numeral_179,axiom,
neg_numeral @ rat ).
thf(tcon_Rat_Orat___Nat_Oring__char__0_180,axiom,
ring_char_0 @ rat ).
thf(tcon_Rat_Orat___Rings_Osemiring_181,axiom,
semiring @ rat ).
thf(tcon_Rat_Orat___Fields_Oinverse,axiom,
inverse @ rat ).
thf(tcon_Rat_Orat___Rings_Osemidom_182,axiom,
semidom @ rat ).
thf(tcon_Rat_Orat___Orderings_Oord_183,axiom,
ord @ rat ).
thf(tcon_Rat_Orat___Groups_Ouminus_184,axiom,
uminus @ rat ).
thf(tcon_Rat_Orat___Rings_Oring__1_185,axiom,
ring_1 @ rat ).
thf(tcon_Rat_Orat___Rings_Oabs__if_186,axiom,
abs_if @ rat ).
thf(tcon_Rat_Orat___Fields_Ofield,axiom,
field @ rat ).
thf(tcon_Rat_Orat___Power_Opower_187,axiom,
power @ rat ).
thf(tcon_Rat_Orat___Num_Onumeral_188,axiom,
numeral @ rat ).
thf(tcon_Rat_Orat___Groups_Ozero_189,axiom,
zero @ rat ).
thf(tcon_Rat_Orat___Groups_Oplus_190,axiom,
plus @ rat ).
thf(tcon_Rat_Orat___Rings_Oring_191,axiom,
ring @ rat ).
thf(tcon_Rat_Orat___Rings_Oidom_192,axiom,
idom @ rat ).
thf(tcon_Rat_Orat___Groups_Oone_193,axiom,
one @ rat ).
thf(tcon_Rat_Orat___Rings_Odvd_194,axiom,
dvd @ rat ).
thf(tcon_Set_Oset___Countable__Complete__Lattices_Ocountable__complete__distrib__lattice_195,axiom,
! [A10: $tType] : ( counta4013691401010221786attice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_196,axiom,
! [A10: $tType] : ( condit1219197933456340205attice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Countable__Complete__Lattices_Ocountable__complete__lattice_197,axiom,
! [A10: $tType] : ( counta3822494911875563373attice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Complete__Lattices_Ocomplete__distrib__lattice_198,axiom,
! [A10: $tType] : ( comple592849572758109894attice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__semilattice__sup__bot_199,axiom,
! [A10: $tType] : ( bounde4967611905675639751up_bot @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__semilattice__inf__top_200,axiom,
! [A10: $tType] : ( bounde4346867609351753570nf_top @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Complete__Lattices_Ocomplete__lattice_201,axiom,
! [A10: $tType] : ( comple6319245703460814977attice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Boolean__Algebras_Oboolean__algebra_202,axiom,
! [A10: $tType] : ( boolea8198339166811842893lgebra @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Complete__Partial__Order_Occpo_203,axiom,
! [A10: $tType] : ( comple9053668089753744459l_ccpo @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__sup_204,axiom,
! [A10: $tType] : ( semilattice_sup @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__inf_205,axiom,
! [A10: $tType] : ( semilattice_inf @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Odistrib__lattice_206,axiom,
! [A10: $tType] : ( distrib_lattice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__lattice_207,axiom,
! [A10: $tType] : ( bounded_lattice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder__top_208,axiom,
! [A10: $tType] : ( order_top @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder__bot_209,axiom,
! [A10: $tType] : ( order_bot @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Opreorder_210,axiom,
! [A10: $tType] : ( preorder @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Lattices_Olattice_211,axiom,
! [A10: $tType] : ( lattice @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_212,axiom,
! [A10: $tType] : ( order @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Otop_213,axiom,
! [A10: $tType] : ( top @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_214,axiom,
! [A10: $tType] : ( ord @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Orderings_Obot_215,axiom,
! [A10: $tType] : ( bot @ ( set @ A10 ) ) ).
thf(tcon_Set_Oset___Groups_Ouminus_216,axiom,
! [A10: $tType] : ( uminus @ ( set @ A10 ) ) ).
thf(tcon_HOL_Obool___Countable__Complete__Lattices_Ocountable__complete__distrib__lattice_217,axiom,
counta4013691401010221786attice @ $o ).
thf(tcon_HOL_Obool___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_218,axiom,
condit1219197933456340205attice @ $o ).
thf(tcon_HOL_Obool___Countable__Complete__Lattices_Ocountable__complete__lattice_219,axiom,
counta3822494911875563373attice @ $o ).
thf(tcon_HOL_Obool___Complete__Lattices_Ocomplete__distrib__lattice_220,axiom,
comple592849572758109894attice @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Otopological__space_221,axiom,
topolo4958980785337419405_space @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Olinorder__topology_222,axiom,
topolo1944317154257567458pology @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__semilattice__sup__bot_223,axiom,
bounde4967611905675639751up_bot @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__semilattice__inf__top_224,axiom,
bounde4346867609351753570nf_top @ $o ).
thf(tcon_HOL_Obool___Complete__Lattices_Ocomplete__lattice_225,axiom,
comple6319245703460814977attice @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Oorder__topology_226,axiom,
topolo2564578578187576103pology @ $o ).
thf(tcon_HOL_Obool___Boolean__Algebras_Oboolean__algebra_227,axiom,
boolea8198339166811842893lgebra @ $o ).
thf(tcon_HOL_Obool___Topological__Spaces_Ot2__space_228,axiom,
topological_t2_space @ $o ).
thf(tcon_HOL_Obool___Complete__Partial__Order_Occpo_229,axiom,
comple9053668089753744459l_ccpo @ $o ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__sup_230,axiom,
semilattice_sup @ $o ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__inf_231,axiom,
semilattice_inf @ $o ).
thf(tcon_HOL_Obool___Lattices_Odistrib__lattice_232,axiom,
distrib_lattice @ $o ).
thf(tcon_HOL_Obool___Lattices_Obounded__lattice_233,axiom,
bounded_lattice @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder__top_234,axiom,
order_top @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder__bot_235,axiom,
order_bot @ $o ).
thf(tcon_HOL_Obool___Orderings_Opreorder_236,axiom,
preorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Olinorder_237,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Lattices_Olattice_238,axiom,
lattice @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_239,axiom,
order @ $o ).
thf(tcon_HOL_Obool___Orderings_Otop_240,axiom,
top @ $o ).
thf(tcon_HOL_Obool___Orderings_Oord_241,axiom,
ord @ $o ).
thf(tcon_HOL_Obool___Orderings_Obot_242,axiom,
bot @ $o ).
thf(tcon_HOL_Obool___Groups_Ouminus_243,axiom,
uminus @ $o ).
thf(tcon_List_Olist___Nat_Osize_244,axiom,
! [A10: $tType] : ( size @ ( list @ A10 ) ) ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_245,axiom,
condit6923001295902523014norder @ real ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_246,axiom,
condit1219197933456340205attice @ real ).
thf(tcon_Real_Oreal___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_247,axiom,
semiri1453513574482234551roduct @ real ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Olinear__continuum,axiom,
condit5016429287641298734tinuum @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__monoid__add__imp__le_248,axiom,
ordere1937475149494474687imp_le @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Olinear__continuum__topology,axiom,
topolo8458572112393995274pology @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ofirst__countable__topology,axiom,
topolo3112930676232923870pology @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__div__algebra,axiom,
real_V8999393235501362500lgebra @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra__1,axiom,
real_V2822296259951069270ebra_1 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors__cancel_249,axiom,
semiri6575147826004484403cancel @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra,axiom,
real_V4412858255891104859lgebra @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oordered__real__vector,axiom,
real_V5355595471888546746vector @ real ).
thf(tcon_Real_Oreal___Groups_Ostrict__ordered__ab__semigroup__add_250,axiom,
strict9044650504122735259up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__cancel__ab__semigroup__add_251,axiom,
ordere580206878836729694up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add__imp__le_252,axiom,
ordere2412721322843649153imp_le @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__comm__semiring__strict_253,axiom,
linord2810124833399127020strict @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__vector,axiom,
real_V822414075346904944vector @ real ).
thf(tcon_Real_Oreal___Groups_Ostrict__ordered__comm__monoid__add_254,axiom,
strict7427464778891057005id_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__cancel__comm__monoid__add_255,axiom,
ordere8940638589300402666id_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Otopological__space_256,axiom,
topolo4958980785337419405_space @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Olinorder__topology_257,axiom,
topolo1944317154257567458pology @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__field,axiom,
real_V3459762299906320749_field @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__div__algebra,axiom,
real_V5047593784448816457lgebra @ real ).
thf(tcon_Real_Oreal___Archimedean__Field_Oarchimedean__field_258,axiom,
archim462609752435547400_field @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__1__strict_259,axiom,
linord715952674999750819strict @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ouniformity__dist,axiom,
real_V768167426530841204y_dist @ real ).
thf(tcon_Real_Oreal___Orderings_Ounbounded__dense__linorder_260,axiom,
unboun7993243217541854897norder @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__comm__monoid__add_261,axiom,
topolo5987344860129210374id_add @ real ).
thf(tcon_Real_Oreal___Groups_Olinordered__ab__semigroup__add_262,axiom,
linord4140545234300271783up_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Oorder__topology_263,axiom,
topolo2564578578187576103pology @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1__no__zero__divisors_264,axiom,
semiri2026040879449505780visors @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__nonzero__semiring_265,axiom,
linord181362715937106298miring @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__algebra__1,axiom,
real_V2191834092415804123ebra_1 @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ocomplete__space,axiom,
real_V8037385150606011577_space @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__semigroup__mult_266,axiom,
topolo4211221413907600880p_mult @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ouniform__space,axiom,
topolo7287701948861334536_space @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Operfect__space,axiom,
topolo8386298272705272623_space @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__strict_267,axiom,
linord8928482502909563296strict @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors_268,axiom,
semiri3467727345109120633visors @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Ometric__space,axiom,
real_V7819770556892013058_space @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__ab__group__add,axiom,
topolo1287966508704411220up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add_269,axiom,
ordere6658533253407199908up_add @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__group__add__abs_270,axiom,
ordere166539214618696060dd_abs @ real ).
thf(tcon_Real_Oreal___Archimedean__Field_Ofloor__ceiling_271,axiom,
archim2362893244070406136eiling @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__vector,axiom,
real_V4867850818363320053vector @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__comm__monoid__add_272,axiom,
ordere6911136660526730532id_add @ real ).
thf(tcon_Real_Oreal___Groups_Olinordered__ab__group__add_273,axiom,
linord5086331880401160121up_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__ab__semigroup__add_274,axiom,
cancel2418104881723323429up_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ouniformity,axiom,
topolo4638772830378233104ormity @ real ).
thf(tcon_Real_Oreal___Rings_Oring__1__no__zero__divisors_275,axiom,
ring_15535105094025558882visors @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__field,axiom,
real_V7773925162809079976_field @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__monoid__add_276,axiom,
topolo6943815403480290642id_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__comm__monoid__add_277,axiom,
cancel1802427076303600483id_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__ring__strict_278,axiom,
linord4710134922213307826strict @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__1__cancel_279,axiom,
comm_s4317794764714335236cancel @ real ).
thf(tcon_Real_Oreal___Limits_Otopological__group__add,axiom,
topolo1633459387980952147up_add @ real ).
thf(tcon_Real_Oreal___Topological__Spaces_Ot2__space_280,axiom,
topological_t2_space @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__comm__semiring_281,axiom,
ordere2520102378445227354miring @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring__1_282,axiom,
linord6961819062388156250ring_1 @ real ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__group__add_283,axiom,
ordered_ab_group_add @ real ).
thf(tcon_Real_Oreal___Groups_Ocancel__semigroup__add_284,axiom,
cancel_semigroup_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semiring_285,axiom,
linordered_semiring @ real ).
thf(tcon_Real_Oreal___Real__Vector__Spaces_Obanach,axiom,
real_Vector_banach @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__semiring__0_286,axiom,
ordered_semiring_0 @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semidom_287,axiom,
linordered_semidom @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__linorder_288,axiom,
dense_linorder @ real ).
thf(tcon_Real_Oreal___Lattices_Osemilattice__sup_289,axiom,
semilattice_sup @ real ).
thf(tcon_Real_Oreal___Lattices_Osemilattice__inf_290,axiom,
semilattice_inf @ real ).
thf(tcon_Real_Oreal___Lattices_Odistrib__lattice_291,axiom,
distrib_lattice @ real ).
thf(tcon_Real_Oreal___Groups_Oab__semigroup__mult_292,axiom,
ab_semigroup_mult @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1__cancel_293,axiom,
semiring_1_cancel @ real ).
thf(tcon_Real_Oreal___Groups_Ocomm__monoid__mult_294,axiom,
comm_monoid_mult @ real ).
thf(tcon_Real_Oreal___Groups_Oab__semigroup__add_295,axiom,
ab_semigroup_add @ real ).
thf(tcon_Real_Oreal___Fields_Olinordered__field_296,axiom,
linordered_field @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__semiring_297,axiom,
ordered_semiring @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__ring__abs_298,axiom,
ordered_ring_abs @ real ).
thf(tcon_Real_Oreal___Groups_Ocomm__monoid__add_299,axiom,
comm_monoid_add @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__ring_300,axiom,
linordered_ring @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__idom_301,axiom,
linordered_idom @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__1_302,axiom,
comm_semiring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__0_303,axiom,
comm_semiring_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__order_304,axiom,
dense_order @ real ).
thf(tcon_Real_Oreal___Groups_Osemigroup__mult_305,axiom,
semigroup_mult @ real ).
thf(tcon_Real_Oreal___Rings_Osemidom__divide_306,axiom,
semidom_divide @ real ).
thf(tcon_Real_Oreal___Num_Osemiring__numeral_307,axiom,
semiring_numeral @ real ).
thf(tcon_Real_Oreal___Groups_Osemigroup__add_308,axiom,
semigroup_add @ real ).
thf(tcon_Real_Oreal___Fields_Ofield__abs__sgn_309,axiom,
field_abs_sgn @ real ).
thf(tcon_Real_Oreal___Fields_Odivision__ring_310,axiom,
division_ring @ real ).
thf(tcon_Real_Oreal___Rings_Ozero__less__one_311,axiom,
zero_less_one @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring_312,axiom,
comm_semiring @ real ).
thf(tcon_Real_Oreal___Nat_Osemiring__char__0_313,axiom,
semiring_char_0 @ real ).
thf(tcon_Real_Oreal___Groups_Oab__group__add_314,axiom,
ab_group_add @ real ).
thf(tcon_Real_Oreal___Fields_Ofield__char__0_315,axiom,
field_char_0 @ real ).
thf(tcon_Real_Oreal___Rings_Ozero__neq__one_316,axiom,
zero_neq_one @ real ).
thf(tcon_Real_Oreal___Rings_Oordered__ring_317,axiom,
ordered_ring @ real ).
thf(tcon_Real_Oreal___Rings_Oidom__abs__sgn_318,axiom,
idom_abs_sgn @ real ).
thf(tcon_Real_Oreal___Orderings_Opreorder_319,axiom,
preorder @ real ).
thf(tcon_Real_Oreal___Orderings_Olinorder_320,axiom,
linorder @ real ).
thf(tcon_Real_Oreal___Groups_Omonoid__mult_321,axiom,
monoid_mult @ real ).
thf(tcon_Real_Oreal___Transcendental_Oln,axiom,
ln @ real ).
thf(tcon_Real_Oreal___Rings_Oidom__divide_322,axiom,
idom_divide @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__ring__1_323,axiom,
comm_ring_1 @ real ).
thf(tcon_Real_Oreal___Groups_Omonoid__add_324,axiom,
monoid_add @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1_325,axiom,
semiring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__0_326,axiom,
semiring_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__top_327,axiom,
no_top @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__bot_328,axiom,
no_bot @ real ).
thf(tcon_Real_Oreal___Lattices_Olattice_329,axiom,
lattice @ real ).
thf(tcon_Real_Oreal___Groups_Ogroup__add_330,axiom,
group_add @ real ).
thf(tcon_Real_Oreal___Rings_Omult__zero_331,axiom,
mult_zero @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__ring_332,axiom,
comm_ring @ real ).
thf(tcon_Real_Oreal___Orderings_Oorder_333,axiom,
order @ real ).
thf(tcon_Real_Oreal___Num_Oneg__numeral_334,axiom,
neg_numeral @ real ).
thf(tcon_Real_Oreal___Nat_Oring__char__0_335,axiom,
ring_char_0 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring_336,axiom,
semiring @ real ).
thf(tcon_Real_Oreal___Fields_Oinverse_337,axiom,
inverse @ real ).
thf(tcon_Real_Oreal___Rings_Osemidom_338,axiom,
semidom @ real ).
thf(tcon_Real_Oreal___Orderings_Oord_339,axiom,
ord @ real ).
thf(tcon_Real_Oreal___Groups_Ouminus_340,axiom,
uminus @ real ).
thf(tcon_Real_Oreal___Rings_Oring__1_341,axiom,
ring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Oabs__if_342,axiom,
abs_if @ real ).
thf(tcon_Real_Oreal___Fields_Ofield_343,axiom,
field @ real ).
thf(tcon_Real_Oreal___Power_Opower_344,axiom,
power @ real ).
thf(tcon_Real_Oreal___Num_Onumeral_345,axiom,
numeral @ real ).
thf(tcon_Real_Oreal___Groups_Ozero_346,axiom,
zero @ real ).
thf(tcon_Real_Oreal___Groups_Oplus_347,axiom,
plus @ real ).
thf(tcon_Real_Oreal___Rings_Oring_348,axiom,
ring @ real ).
thf(tcon_Real_Oreal___Rings_Oidom_349,axiom,
idom @ real ).
thf(tcon_Real_Oreal___Groups_Oone_350,axiom,
one @ real ).
thf(tcon_Real_Oreal___Rings_Odvd_351,axiom,
dvd @ real ).
thf(tcon_String_Ochar___Nat_Osize_352,axiom,
size @ char ).
thf(tcon_Filter_Ofilter___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_353,axiom,
! [A10: $tType] : ( condit1219197933456340205attice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Countable__Complete__Lattices_Ocountable__complete__lattice_354,axiom,
! [A10: $tType] : ( counta3822494911875563373attice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__sup__bot_355,axiom,
! [A10: $tType] : ( bounde4967611905675639751up_bot @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__inf__top_356,axiom,
! [A10: $tType] : ( bounde4346867609351753570nf_top @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Complete__Lattices_Ocomplete__lattice_357,axiom,
! [A10: $tType] : ( comple6319245703460814977attice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Complete__Partial__Order_Occpo_358,axiom,
! [A10: $tType] : ( comple9053668089753744459l_ccpo @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Osemilattice__sup_359,axiom,
! [A10: $tType] : ( semilattice_sup @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Osemilattice__inf_360,axiom,
! [A10: $tType] : ( semilattice_inf @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Odistrib__lattice_361,axiom,
! [A10: $tType] : ( distrib_lattice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Obounded__lattice_362,axiom,
! [A10: $tType] : ( bounded_lattice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder__top_363,axiom,
! [A10: $tType] : ( order_top @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder__bot_364,axiom,
! [A10: $tType] : ( order_bot @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Opreorder_365,axiom,
! [A10: $tType] : ( preorder @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Lattices_Olattice_366,axiom,
! [A10: $tType] : ( lattice @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oorder_367,axiom,
! [A10: $tType] : ( order @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Otop_368,axiom,
! [A10: $tType] : ( top @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Oord_369,axiom,
! [A10: $tType] : ( ord @ ( filter @ A10 ) ) ).
thf(tcon_Filter_Ofilter___Orderings_Obot_370,axiom,
! [A10: $tType] : ( bot @ ( filter @ A10 ) ) ).
thf(tcon_Option_Ooption___Nat_Osize_371,axiom,
! [A10: $tType] : ( size @ ( option @ A10 ) ) ).
thf(tcon_String_Oliteral___Groups_Osemigroup__add_372,axiom,
semigroup_add @ literal ).
thf(tcon_String_Oliteral___Orderings_Opreorder_373,axiom,
preorder @ literal ).
thf(tcon_String_Oliteral___Orderings_Olinorder_374,axiom,
linorder @ literal ).
thf(tcon_String_Oliteral___Groups_Omonoid__add_375,axiom,
monoid_add @ literal ).
thf(tcon_String_Oliteral___Orderings_Oorder_376,axiom,
order @ literal ).
thf(tcon_String_Oliteral___Orderings_Oord_377,axiom,
ord @ literal ).
thf(tcon_String_Oliteral___Groups_Ozero_378,axiom,
zero @ literal ).
thf(tcon_String_Oliteral___Groups_Oplus_379,axiom,
plus @ literal ).
thf(tcon_String_Oliteral___Nat_Osize_380,axiom,
size @ literal ).
thf(tcon_Complex_Ocomplex___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_381,axiom,
semiri1453513574482234551roduct @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ofirst__countable__topology_382,axiom,
topolo3112930676232923870pology @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__div__algebra_383,axiom,
real_V8999393235501362500lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra__1_384,axiom,
real_V2822296259951069270ebra_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors__cancel_385,axiom,
semiri6575147826004484403cancel @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra_386,axiom,
real_V4412858255891104859lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__vector_387,axiom,
real_V822414075346904944vector @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Otopological__space_388,axiom,
topolo4958980785337419405_space @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__field_389,axiom,
real_V3459762299906320749_field @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__div__algebra_390,axiom,
real_V5047593784448816457lgebra @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ouniformity__dist_391,axiom,
real_V768167426530841204y_dist @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__comm__monoid__add_392,axiom,
topolo5987344860129210374id_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1__no__zero__divisors_393,axiom,
semiri2026040879449505780visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__algebra__1_394,axiom,
real_V2191834092415804123ebra_1 @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ocomplete__space_395,axiom,
real_V8037385150606011577_space @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__semigroup__mult_396,axiom,
topolo4211221413907600880p_mult @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ouniform__space_397,axiom,
topolo7287701948861334536_space @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Operfect__space_398,axiom,
topolo8386298272705272623_space @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors_399,axiom,
semiri3467727345109120633visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ometric__space_400,axiom,
real_V7819770556892013058_space @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__ab__group__add_401,axiom,
topolo1287966508704411220up_add @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__vector_402,axiom,
real_V4867850818363320053vector @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__ab__semigroup__add_403,axiom,
cancel2418104881723323429up_add @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ouniformity_404,axiom,
topolo4638772830378233104ormity @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring__1__no__zero__divisors_405,axiom,
ring_15535105094025558882visors @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__field_406,axiom,
real_V7773925162809079976_field @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__monoid__add_407,axiom,
topolo6943815403480290642id_add @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__comm__monoid__add_408,axiom,
cancel1802427076303600483id_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1__cancel_409,axiom,
comm_s4317794764714335236cancel @ complex ).
thf(tcon_Complex_Ocomplex___Limits_Otopological__group__add_410,axiom,
topolo1633459387980952147up_add @ complex ).
thf(tcon_Complex_Ocomplex___Topological__Spaces_Ot2__space_411,axiom,
topological_t2_space @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocancel__semigroup__add_412,axiom,
cancel_semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Real__Vector__Spaces_Obanach_413,axiom,
real_Vector_banach @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__semigroup__mult_414,axiom,
ab_semigroup_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1__cancel_415,axiom,
semiring_1_cancel @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__mult_416,axiom,
comm_monoid_mult @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__semigroup__add_417,axiom,
ab_semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__add_418,axiom,
comm_monoid_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1_419,axiom,
comm_semiring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__0_420,axiom,
comm_semiring_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Osemigroup__mult_421,axiom,
semigroup_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemidom__divide_422,axiom,
semidom_divide @ complex ).
thf(tcon_Complex_Ocomplex___Num_Osemiring__numeral_423,axiom,
semiring_numeral @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Osemigroup__add_424,axiom,
semigroup_add @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield__abs__sgn_425,axiom,
field_abs_sgn @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Odivision__ring_426,axiom,
division_ring @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__semiring_427,axiom,
comm_semiring @ complex ).
thf(tcon_Complex_Ocomplex___Nat_Osemiring__char__0_428,axiom,
semiring_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oab__group__add_429,axiom,
ab_group_add @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield__char__0_430,axiom,
field_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ozero__neq__one_431,axiom,
zero_neq_one @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom__abs__sgn_432,axiom,
idom_abs_sgn @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Omonoid__mult_433,axiom,
monoid_mult @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom__divide_434,axiom,
idom_divide @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__ring__1_435,axiom,
comm_ring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Omonoid__add_436,axiom,
monoid_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__1_437,axiom,
semiring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring__0_438,axiom,
semiring_0 @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ogroup__add_439,axiom,
group_add @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Omult__zero_440,axiom,
mult_zero @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Ocomm__ring_441,axiom,
comm_ring @ complex ).
thf(tcon_Complex_Ocomplex___Num_Oneg__numeral_442,axiom,
neg_numeral @ complex ).
thf(tcon_Complex_Ocomplex___Nat_Oring__char__0_443,axiom,
ring_char_0 @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemiring_444,axiom,
semiring @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Oinverse_445,axiom,
inverse @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Osemidom_446,axiom,
semidom @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ouminus_447,axiom,
uminus @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring__1_448,axiom,
ring_1 @ complex ).
thf(tcon_Complex_Ocomplex___Fields_Ofield_449,axiom,
field @ complex ).
thf(tcon_Complex_Ocomplex___Power_Opower_450,axiom,
power @ complex ).
thf(tcon_Complex_Ocomplex___Num_Onumeral_451,axiom,
numeral @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Ozero_452,axiom,
zero @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oplus_453,axiom,
plus @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oring_454,axiom,
ring @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Oidom_455,axiom,
idom @ complex ).
thf(tcon_Complex_Ocomplex___Groups_Oone_456,axiom,
one @ complex ).
thf(tcon_Complex_Ocomplex___Rings_Odvd_457,axiom,
dvd @ complex ).
thf(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_458,axiom,
condit6923001295902523014norder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Countable__Complete__Lattices_Ocountable__complete__distrib__lattice_459,axiom,
counta4013691401010221786attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_460,axiom,
condit1219197933456340205attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Countable__Complete__Lattices_Ocountable__complete__lattice_461,axiom,
counta3822494911875563373attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__distrib__lattice_462,axiom,
comple592849572758109894attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__ab__semigroup__add_463,axiom,
strict9044650504122735259up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__comm__monoid__add_464,axiom,
strict7427464778891057005id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocanonically__ordered__monoid__add_465,axiom,
canoni5634975068530333245id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__sup__bot_466,axiom,
bounde4967611905675639751up_bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__inf__top_467,axiom,
bounde4346867609351753570nf_top @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__linorder,axiom,
comple5582772986160207858norder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Olinordered__ab__semigroup__add_468,axiom,
linord4140545234300271783up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__lattice_469,axiom,
comple6319245703460814977attice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Olinordered__nonzero__semiring_470,axiom,
linord181362715937106298miring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__no__zero__divisors_471,axiom,
semiri3467727345109120633visors @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oordered__ab__semigroup__add_472,axiom,
ordere6658533253407199908up_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oordered__comm__monoid__add_473,axiom,
ordere6911136660526730532id_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Oordered__comm__semiring_474,axiom,
ordere2520102378445227354miring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Complete__Partial__Order_Occpo_475,axiom,
comple9053668089753744459l_ccpo @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__sup_476,axiom,
semilattice_sup @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__inf_477,axiom,
semilattice_inf @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Odistrib__lattice_478,axiom,
distrib_lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Obounded__lattice_479,axiom,
bounded_lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__mult_480,axiom,
ab_semigroup_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__mult_481,axiom,
comm_monoid_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__add_482,axiom,
ab_semigroup_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Oordered__semiring_483,axiom,
ordered_semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__add_484,axiom,
comm_monoid_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__1_485,axiom,
comm_semiring_1 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__0_486,axiom,
comm_semiring_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Osemigroup__mult_487,axiom,
semigroup_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Num_Osemiring__numeral_488,axiom,
semiring_numeral @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Osemigroup__add_489,axiom,
semigroup_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ozero__less__one_490,axiom,
zero_less_one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring_491,axiom,
comm_semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Owellorder_492,axiom,
wellorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder__top_493,axiom,
order_top @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder__bot_494,axiom,
order_bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Nat_Osemiring__char__0_495,axiom,
semiring_char_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Ozero__neq__one_496,axiom,
zero_neq_one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Opreorder_497,axiom,
preorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Olinorder_498,axiom,
linorder @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Omonoid__mult_499,axiom,
monoid_mult @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Omonoid__add_500,axiom,
monoid_add @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__1_501,axiom,
semiring_1 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring__0_502,axiom,
semiring_0 @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Lattices_Olattice_503,axiom,
lattice @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Omult__zero_504,axiom,
mult_zero @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder_505,axiom,
order @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Osemiring_506,axiom,
semiring @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Otop_507,axiom,
top @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oord_508,axiom,
ord @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Orderings_Obot_509,axiom,
bot @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Power_Opower_510,axiom,
power @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Num_Onumeral_511,axiom,
numeral @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Ozero_512,axiom,
zero @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oplus_513,axiom,
plus @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Groups_Oone_514,axiom,
one @ extended_enat ).
thf(tcon_Extended__Nat_Oenat___Rings_Odvd_515,axiom,
dvd @ extended_enat ).
thf(tcon_Product__Type_Oprod___Topological__Spaces_Otopological__space_516,axiom,
! [A10: $tType,A17: $tType] :
( ( ( topolo4958980785337419405_space @ A10 )
& ( topolo4958980785337419405_space @ A17 ) )
=> ( topolo4958980785337419405_space @ ( product_prod @ A10 @ A17 ) ) ) ).
thf(tcon_Product__Type_Oprod___Topological__Spaces_Ot2__space_517,axiom,
! [A10: $tType,A17: $tType] :
( ( ( topological_t2_space @ A10 )
& ( topological_t2_space @ A17 ) )
=> ( topological_t2_space @ ( product_prod @ A10 @ A17 ) ) ) ).
thf(tcon_Product__Type_Oprod___Nat_Osize_518,axiom,
! [A10: $tType,A17: $tType] : ( size @ ( product_prod @ A10 @ A17 ) ) ).
thf(tcon_Product__Type_Ounit___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_519,axiom,
condit6923001295902523014norder @ product_unit ).
thf(tcon_Product__Type_Ounit___Countable__Complete__Lattices_Ocountable__complete__distrib__lattice_520,axiom,
counta4013691401010221786attice @ product_unit ).
thf(tcon_Product__Type_Ounit___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_521,axiom,
condit1219197933456340205attice @ product_unit ).
thf(tcon_Product__Type_Ounit___Countable__Complete__Lattices_Ocountable__complete__lattice_522,axiom,
counta3822494911875563373attice @ product_unit ).
thf(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__distrib__lattice_523,axiom,
comple592849572758109894attice @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Obounded__semilattice__sup__bot_524,axiom,
bounde4967611905675639751up_bot @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Obounded__semilattice__inf__top_525,axiom,
bounde4346867609351753570nf_top @ product_unit ).
thf(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__linorder_526,axiom,
comple5582772986160207858norder @ product_unit ).
thf(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__lattice_527,axiom,
comple6319245703460814977attice @ product_unit ).
thf(tcon_Product__Type_Ounit___Boolean__Algebras_Oboolean__algebra_528,axiom,
boolea8198339166811842893lgebra @ product_unit ).
thf(tcon_Product__Type_Ounit___Complete__Partial__Order_Occpo_529,axiom,
comple9053668089753744459l_ccpo @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Osemilattice__sup_530,axiom,
semilattice_sup @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Osemilattice__inf_531,axiom,
semilattice_inf @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Odistrib__lattice_532,axiom,
distrib_lattice @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Obounded__lattice_533,axiom,
bounded_lattice @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Owellorder_534,axiom,
wellorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oorder__top_535,axiom,
order_top @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oorder__bot_536,axiom,
order_bot @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Opreorder_537,axiom,
preorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Olinorder_538,axiom,
linorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Lattices_Olattice_539,axiom,
lattice @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oorder_540,axiom,
order @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Otop_541,axiom,
top @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oord_542,axiom,
ord @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Obot_543,axiom,
bot @ product_unit ).
thf(tcon_Product__Type_Ounit___Groups_Ouminus_544,axiom,
uminus @ product_unit ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_545,axiom,
bit_un5681908812861735899ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_546,axiom,
semiri1453513574482234551roduct @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring__with__nat_547,axiom,
euclid5411537665997757685th_nat @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__ring__with__nat_548,axiom,
euclid8789492081693882211th_nat @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__monoid__add__imp__le_549,axiom,
ordere1937475149494474687imp_le @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring_550,axiom,
euclid3128863361964157862miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring__cancel_551,axiom,
euclid4440199948858584721cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Divides_Ounique__euclidean__semiring__numeral_552,axiom,
unique1627219031080169319umeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__ring__cancel_553,axiom,
euclid8851590272496341667cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors__cancel_554,axiom,
semiri6575147826004484403cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__ab__semigroup__add_555,axiom,
strict9044650504122735259up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__ab__semigroup__add_556,axiom,
ordere580206878836729694up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add__imp__le_557,axiom,
ordere2412721322843649153imp_le @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bit__operations_558,axiom,
bit_se359711467146920520ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__comm__semiring__strict_559,axiom,
linord2810124833399127020strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__comm__monoid__add_560,axiom,
strict7427464778891057005id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__comm__monoid__add_561,axiom,
ordere8940638589300402666id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring_562,axiom,
euclid3725896446679973847miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1__strict_563,axiom,
linord715952674999750819strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__semigroup__add_564,axiom,
linord4140545234300271783up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Oring__bit__operations_565,axiom,
bit_ri3973907225187159222ations @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__no__zero__divisors_566,axiom,
semiri2026040879449505780visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__nonzero__semiring_567,axiom,
linord181362715937106298miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__strict_568,axiom,
linord8928482502909563296strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors_569,axiom,
semiri3467727345109120633visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add_570,axiom,
ordere6658533253407199908up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add__abs_571,axiom,
ordere166539214618696060dd_abs @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__comm__monoid__add_572,axiom,
ordere6911136660526730532id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__group__add_573,axiom,
linord5086331880401160121up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__ab__semigroup__add_574,axiom,
cancel2418104881723323429up_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring__1__no__zero__divisors_575,axiom,
ring_15535105094025558882visors @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__comm__monoid__add_576,axiom,
cancel1802427076303600483id_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring__strict_577,axiom,
linord4710134922213307826strict @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1__cancel_578,axiom,
comm_s4317794764714335236cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bits_579,axiom,
bit_semiring_bits @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__comm__semiring_580,axiom,
ordere2520102378445227354miring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1_581,axiom,
linord6961819062388156250ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add_582,axiom,
ordered_ab_group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocancel__semigroup__add_583,axiom,
cancel_semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring_584,axiom,
linordered_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring__0_585,axiom,
ordered_semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semidom_586,axiom,
linordered_semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__mult_587,axiom,
ab_semigroup_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__cancel_588,axiom,
semiring_1_cancel @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oalgebraic__semidom_589,axiom,
algebraic_semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__mult_590,axiom,
comm_monoid_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__add_591,axiom,
ab_semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring_592,axiom,
ordered_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring__abs_593,axiom,
ordered_ring_abs @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Parity_Osemiring__parity_594,axiom,
semiring_parity @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__add_595,axiom,
comm_monoid_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__modulo_596,axiom,
semiring_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring_597,axiom,
linordered_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Olinordered__idom_598,axiom,
linordered_idom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1_599,axiom,
comm_semiring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__0_600,axiom,
comm_semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__mult_601,axiom,
semigroup_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom__modulo_602,axiom,
semidom_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom__divide_603,axiom,
semidom_divide @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Osemiring__numeral_604,axiom,
semiring_numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__add_605,axiom,
semigroup_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ozero__less__one_606,axiom,
zero_less_one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring_607,axiom,
comm_semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Nat_Osemiring__char__0_608,axiom,
semiring_char_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oab__group__add_609,axiom,
ab_group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ozero__neq__one_610,axiom,
zero_neq_one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring_611,axiom,
ordered_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__abs__sgn_612,axiom,
idom_abs_sgn @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Parity_Oring__parity_613,axiom,
ring_parity @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Opreorder_614,axiom,
preorder @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Olinorder_615,axiom,
linorder @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Omonoid__mult_616,axiom,
monoid_mult @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__modulo_617,axiom,
idom_modulo @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom__divide_618,axiom,
idom_divide @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring__1_619,axiom,
comm_ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Omonoid__add_620,axiom,
monoid_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1_621,axiom,
semiring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring__0_622,axiom,
semiring_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ogroup__add_623,axiom,
group_add @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Omult__zero_624,axiom,
mult_zero @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring_625,axiom,
comm_ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Oorder_626,axiom,
order @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Oneg__numeral_627,axiom,
neg_numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Nat_Oring__char__0_628,axiom,
ring_char_0 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemiring_629,axiom,
semiring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Osemidom_630,axiom,
semidom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Orderings_Oord_631,axiom,
ord @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ouminus_632,axiom,
uminus @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring__1_633,axiom,
ring_1 @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oabs__if_634,axiom,
abs_if @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Power_Opower_635,axiom,
power @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Num_Onumeral_636,axiom,
numeral @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Ozero_637,axiom,
zero @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oplus_638,axiom,
plus @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oring_639,axiom,
ring @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Oidom_640,axiom,
idom @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Groups_Oone_641,axiom,
one @ code_integer ).
thf(tcon_Code__Numeral_Ointeger___Rings_Odvd_642,axiom,
dvd @ code_integer ).
thf(tcon_VEBT__Definitions_OVEBT___Nat_Osize_643,axiom,
size @ vEBT_VEBT ).
% Helper facts (4)
thf(help_If_3_1_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $true @ X @ Y )
= X ) ).
thf(help_fChoice_1_1_T,axiom,
! [A: $tType,P: A > $o] :
( ( P @ ( fChoice @ A @ P ) )
= ( ? [X7: A] : ( P @ X7 ) ) ) ).
% Conjectures (1)
thf(conj_0,conjecture,
vEBT_V8194947554948674370ptions @ summary @ ( vEBT_VEBT_high @ ma @ na ) ).
%------------------------------------------------------------------------------