TPTP Problem File: ITP209_3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP209_3 : TPTP v9.0.0. Released v8.0.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem Syntax_Match 00088_002922
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0023_Syntax_Match_00088_002922 [Des22]
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 21 ( 5 unt; 10 typ; 0 def)
% Number of atoms : 19 ( 12 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 8 ( 0 ~; 0 |; 1 &)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 5 ( 3 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 35 ( 35 !; 0 ?; 35 :)
% SPC : TX0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-17 14:22:46.591
%------------------------------------------------------------------------------
% Could-be-implicit typings (3)
tff(ty_n_t__fun_Itf__a_Mt__fun_Itf__a_Mtf__a_J_J,type,
fun_a_fun_a_a: $tType ).
tff(ty_n_t__fun_Itf__a_Mtf__a_J,type,
fun_a_a: $tType ).
tff(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (7)
tff(sy_c_Syntax__Match_Oac__operator_001tf__a,type,
syntax_ac_operator_a: fun_a_fun_a_a > $o ).
tff(sy_c_aa_001tf__a_001t__fun_Itf__a_Mtf__a_J,type,
aa_a_fun_a_a: ( fun_a_fun_a_a * a ) > fun_a_a ).
tff(sy_c_aa_001tf__a_001tf__a,type,
aa_a_a: ( fun_a_a * a ) > a ).
tff(sy_v_a,type,
a2: a ).
tff(sy_v_b,type,
b: a ).
tff(sy_v_c,type,
c: a ).
tff(sy_v_f,type,
f: fun_a_fun_a_a ).
% Relevant facts (10)
tff(fact_0_ac__operator__axioms,axiom,
syntax_ac_operator_a(f) ).
% ac_operator_axioms
tff(fact_1_commute,axiom,
! [Aa: a,Ba: a] : ( aa_a_a(aa_a_fun_a_a(f,Aa),Ba) = aa_a_a(aa_a_fun_a_a(f,Ba),Aa) ) ).
% commute
tff(fact_2_left__commute,axiom,
! [Aa: a,Ba: a,Ca: a] : ( aa_a_a(aa_a_fun_a_a(f,Aa),aa_a_a(aa_a_fun_a_a(f,Ba),Ca)) = aa_a_a(aa_a_fun_a_a(f,Ba),aa_a_a(aa_a_fun_a_a(f,Aa),Ca)) ) ).
% left_commute
tff(fact_3_right__assoc,axiom,
! [Aa: a,Ba: a,Ca: a] : ( aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,Aa),Ba)),Ca) = aa_a_a(aa_a_fun_a_a(f,Aa),aa_a_a(aa_a_fun_a_a(f,Ba),Ca)) ) ).
% right_assoc
tff(fact_4_ac__operator_Ointro,axiom,
! [Fa: fun_a_fun_a_a] :
( ! [A: a,B: a,C: a] : ( aa_a_a(aa_a_fun_a_a(Fa,aa_a_a(aa_a_fun_a_a(Fa,A),B)),C) = aa_a_a(aa_a_fun_a_a(Fa,A),aa_a_a(aa_a_fun_a_a(Fa,B),C)) )
=> ( ! [A: a,B: a] : ( aa_a_a(aa_a_fun_a_a(Fa,A),B) = aa_a_a(aa_a_fun_a_a(Fa,B),A) )
=> syntax_ac_operator_a(Fa) ) ) ).
% ac_operator.intro
tff(fact_5_ac__operator_Ocommute,axiom,
! [Fa: fun_a_fun_a_a,Aa: a,Ba: a] :
( syntax_ac_operator_a(Fa)
=> ( aa_a_a(aa_a_fun_a_a(Fa,Aa),Ba) = aa_a_a(aa_a_fun_a_a(Fa,Ba),Aa) ) ) ).
% ac_operator.commute
tff(fact_6_ac__operator_Oleft__assoc,axiom,
! [Fa: fun_a_fun_a_a,Aa: a,Ba: a,Ca: a] :
( syntax_ac_operator_a(Fa)
=> ( aa_a_a(aa_a_fun_a_a(Fa,Aa),aa_a_a(aa_a_fun_a_a(Fa,Ba),Ca)) = aa_a_a(aa_a_fun_a_a(Fa,aa_a_a(aa_a_fun_a_a(Fa,Aa),Ba)),Ca) ) ) ).
% ac_operator.left_assoc
tff(fact_7_ac__operator_Oright__assoc,axiom,
! [Fa: fun_a_fun_a_a,Aa: a,Ba: a,Ca: a] :
( syntax_ac_operator_a(Fa)
=> ( aa_a_a(aa_a_fun_a_a(Fa,aa_a_a(aa_a_fun_a_a(Fa,Aa),Ba)),Ca) = aa_a_a(aa_a_fun_a_a(Fa,Aa),aa_a_a(aa_a_fun_a_a(Fa,Ba),Ca)) ) ) ).
% ac_operator.right_assoc
tff(fact_8_ac__operator_Oleft__commute,axiom,
! [Fa: fun_a_fun_a_a,Aa: a,Ba: a,Ca: a] :
( syntax_ac_operator_a(Fa)
=> ( aa_a_a(aa_a_fun_a_a(Fa,Aa),aa_a_a(aa_a_fun_a_a(Fa,Ba),Ca)) = aa_a_a(aa_a_fun_a_a(Fa,Ba),aa_a_a(aa_a_fun_a_a(Fa,Aa),Ca)) ) ) ).
% ac_operator.left_commute
tff(fact_9_ac__operator__def,axiom,
! [Fa: fun_a_fun_a_a] :
( syntax_ac_operator_a(Fa)
<=> ( ! [A2: a,B2: a,C2: a] : ( aa_a_a(aa_a_fun_a_a(Fa,aa_a_a(aa_a_fun_a_a(Fa,A2),B2)),C2) = aa_a_a(aa_a_fun_a_a(Fa,A2),aa_a_a(aa_a_fun_a_a(Fa,B2),C2)) )
& ! [A2: a,B2: a] : ( aa_a_a(aa_a_fun_a_a(Fa,A2),B2) = aa_a_a(aa_a_fun_a_a(Fa,B2),A2) ) ) ) ).
% ac_operator_def
% Conjectures (1)
tff(conj_0,conjecture,
aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,a2),b)),c) = aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,a2),c)),b) ).
%------------------------------------------------------------------------------