TPTP Problem File: ITP202^2.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP202^2 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer USubst problem prob_411__6333658_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : USubst/prob_411__6333658_1 [Des21]

% Status   : Theorem
% Rating   : 0.00 v7.5.0
% Syntax   : Number of formulae    :  337 ( 149 unt;  61 typ;   0 def)
%            Number of atoms       :  695 ( 495 equ;   0 cnn)
%            Maximal formula atoms :   31 (   2 avg)
%            Number of connectives : 7368 ( 199   ~;  10   |;  25   &;6770   @)
%                                         (   0 <=>; 364  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   29 (   7 avg)
%            Number of types       :    8 (   7 usr)
%            Number of type conns  : 1260 (1260   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   57 (  54 usr;   7 con; 0-8 aty)
%            Number of variables   : 1395 ( 225   ^;1126   !;  14   ?;1395   :)
%                                         (  30  !>;   0  ?*;   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 16:19:27.220
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_t_Denotational__Semantics_Ointerp,type,
    denotational_interp: $tType ).

thf(ty_t_Product__Type_Oprod,type,
    product_prod: $tType > $tType > $tType ).

thf(ty_t_Syntax_Ovariable,type,
    variable: $tType ).

thf(ty_t_Option_Ooption,type,
    option: $tType > $tType ).

thf(ty_t_Syntax_Ogame,type,
    game: $tType ).

thf(ty_t_String_Ochar,type,
    char: $tType ).

thf(ty_t_Syntax_Otrm,type,
    trm: $tType ).

thf(ty_t_Syntax_Ofml,type,
    fml: $tType ).

thf(ty_t_Real_Oreal,type,
    real: $tType ).

thf(ty_t_Set_Oset,type,
    set: $tType > $tType ).

% Explicit typings (51)
thf(sy_cl_Lattices_Obounded__lattice,type,
    bounded_lattice: 
      !>[A: $tType] : $o ).

thf(sy_cl_HOL_Otype,type,
    type: 
      !>[A: $tType] : $o ).

thf(sy_cl_Orderings_Obot,type,
    bot: 
      !>[A: $tType] : $o ).

thf(sy_cl_Lattices_Olattice,type,
    lattice: 
      !>[A: $tType] : $o ).

thf(sy_cl_Lattices_Osemilattice__inf,type,
    semilattice_inf: 
      !>[A: $tType] : $o ).

thf(sy_cl_Lattices_Obounded__lattice__bot,type,
    bounded_lattice_bot: 
      !>[A: $tType] : $o ).

thf(sy_c_If,type,
    if: 
      !>[A: $tType] : ( $o > A > A > A ) ).

thf(sy_c_Lattices_Oinf__class_Oinf,type,
    inf_inf: 
      !>[A: $tType] : ( A > A > A ) ).

thf(sy_c_Option_Ocombine__options,type,
    combine_options: 
      !>[A: $tType] : ( ( A > A > A ) > ( option @ A ) > ( option @ A ) > ( option @ A ) ) ).

thf(sy_c_Option_Ooption_ONone,type,
    none: 
      !>[A: $tType] : ( option @ A ) ).

thf(sy_c_Option_Ooption_OSome,type,
    some: 
      !>[A: $tType] : ( A > ( option @ A ) ) ).

thf(sy_c_Option_Ooption_Ocase__option,type,
    case_option: 
      !>[B: $tType,A: $tType] : ( B > ( A > B ) > ( option @ A ) > B ) ).

thf(sy_c_Option_Ooption_Othe,type,
    the: 
      !>[A: $tType] : ( ( option @ A ) > A ) ).

thf(sy_c_Orderings_Obot__class_Obot,type,
    bot_bot: 
      !>[A: $tType] : A ).

thf(sy_c_Product__Type_OPair,type,
    product_Pair: 
      !>[A: $tType,B: $tType] : ( A > B > ( product_prod @ A @ B ) ) ).

thf(sy_c_Product__Type_Ointernal__case__prod,type,
    produc2004651681e_prod: 
      !>[A: $tType,B: $tType,C: $tType] : ( ( A > B > C ) > ( product_prod @ A @ B ) > C ) ).

thf(sy_c_Product__Type_Oold_Oprod_Orec__prod,type,
    product_rec_prod: 
      !>[A: $tType,B: $tType,T: $tType] : ( ( A > B > T ) > ( product_prod @ A @ B ) > T ) ).

thf(sy_c_Product__Type_Oprod_Ocase__prod,type,
    product_case_prod: 
      !>[A: $tType,B: $tType,C: $tType] : ( ( A > B > C ) > ( product_prod @ A @ B ) > C ) ).

thf(sy_c_Set_OCollect,type,
    collect: 
      !>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).

thf(sy_c_Set_Ois__empty,type,
    is_empty: 
      !>[A: $tType] : ( ( set @ A ) > $o ) ).

thf(sy_c_Static__Semantics_OFVF,type,
    static_FVF: fml > ( set @ variable ) ).

thf(sy_c_Static__Semantics_OFVT,type,
    static_FVT: trm > ( set @ variable ) ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_Syntax_Ofml_OGeq,type,
    geq: trm > trm > fml ).

thf(sy_c_Syntax_Ofml_OPred,type,
    pred: char > trm > fml ).

thf(sy_c_Syntax_Otrm_OConst,type,
    const: char > trm ).

thf(sy_c_Syntax_Otrm_ODifferential,type,
    differential: trm > trm ).

thf(sy_c_Syntax_Otrm_OFunc,type,
    func: char > trm > trm ).

thf(sy_c_Syntax_Otrm_ONumber,type,
    number: real > trm ).

thf(sy_c_Syntax_Otrm_OPlus,type,
    plus: trm > trm > trm ).

thf(sy_c_Syntax_Otrm_OTimes,type,
    times: trm > trm > trm ).

thf(sy_c_Syntax_Otrm_OVar,type,
    var: variable > trm ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_ODifferentialo,type,
    uSubst259074819ntialo: ( option @ trm ) > ( option @ trm ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OGeqo,type,
    uSubst1556497037e_Geqo: ( option @ trm ) > ( option @ trm ) > ( option @ fml ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OGeqo__rel,type,
    uSubst864323244qo_rel: ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > $o ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OPluso,type,
    uSubst1112714340_Pluso: ( option @ trm ) > ( option @ trm ) > ( option @ trm ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OPluso__rel,type,
    uSubst270600597so_rel: ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > $o ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OTimeso,type,
    uSubst277968634Timeso: ( option @ trm ) > ( option @ trm ) > ( option @ trm ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_OTimeso__rel,type,
    uSubst1377811071so_rel: ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) > $o ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Odot,type,
    uSubst_Mirabelle_dot: trm ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Odotsubstt,type,
    uSubst969145931substt: trm > ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Ousappconst,type,
    uSubst1138577137pconst: ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) > ( set @ variable ) > char > ( option @ trm ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Ousubstappf,type,
    uSubst95898978stappf: ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) > ( set @ variable ) > fml > ( option @ fml ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Ousubstappt,type,
    uSubst95898992stappt: ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) > ( set @ variable ) > trm > ( option @ trm ) ).

thf(sy_c_USubst__Mirabelle__nnnzepxswx_Ousubstappt__rel,type,
    uSubst2096773001pt_rel: ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) > ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) > $o ).

thf(sy_c_Wellfounded_Oaccp,type,
    accp: 
      !>[A: $tType] : ( ( A > A > $o ) > A > $o ) ).

thf(sy_c_member,type,
    member: 
      !>[A: $tType] : ( A > ( set @ A ) > $o ) ).

thf(sy_v_U,type,
    u: set @ variable ).

thf(sy_v_V,type,
    v: set @ variable ).

thf(sy_v__092_060sigma_062,type,
    sigma: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ).

thf(sy_v_f____,type,
    f: char ).

% Relevant facts (255)
thf(fact_0_f2,axiom,
    ! [Z: option @ trm,F: trm > ( option @ trm ),Za: option @ trm] :
      ( ( ( Za
          = ( none @ trm ) )
       => ( ( case_option @ ( option @ trm ) @ trm @ Z @ F @ Za )
          = Z ) )
      & ( ( Za
         != ( none @ trm ) )
       => ( ( case_option @ ( option @ trm ) @ trm @ Z @ F @ Za )
          = ( F @ ( the @ trm @ Za ) ) ) ) ) ).

% f2
thf(fact_1_Const_Oprems_I1_J,axiom,
    ( ( uSubst95898992stappt @ sigma @ u @ ( const @ f ) )
   != ( none @ trm ) ) ).

% Const.prems(1)
thf(fact_2_Const_Oprems_I2_J,axiom,
    ( ( uSubst95898992stappt @ sigma @ v @ ( const @ f ) )
   != ( none @ trm ) ) ).

% Const.prems(2)
thf(fact_3_f3,axiom,
    ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f )
     != ( none @ trm ) )
   => ( ( inf_inf @ ( set @ variable )
        @ ( static_FVT
          @ ( the @ trm
            @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [F0: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uu: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
              @ sigma
              @ f ) ) )
        @ u )
      = ( bot_bot @ ( set @ variable ) ) ) ) ).

% f3
thf(fact_4__092_060open_062SConst_A_092_060sigma_062_Af_A_092_060noteq_062_Aundeft_A_092_060longrightarrow_062_AFVT_A_Ithe_A_ISConst_A_092_060sigma_062_Af_J_J_A_092_060inter_062_AV_A_061_A_123_125_092_060close_062,axiom,
    ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f )
     != ( none @ trm ) )
   => ( ( inf_inf @ ( set @ variable )
        @ ( static_FVT
          @ ( the @ trm
            @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [F0: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uu: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
              @ sigma
              @ f ) ) )
        @ v )
      = ( bot_bot @ ( set @ variable ) ) ) ) ).

% \<open>SConst \<sigma> f \<noteq> undeft \<longrightarrow> FVT (the (SConst \<sigma> f)) \<inter> V = {}\<close>
thf(fact_5_usappconst__def,axiom,
    ( uSubst1138577137pconst
    = ( ^ [Sigma: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U: set @ variable,F2: char] :
          ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( const @ F2 ) )
          @ ^ [R: trm] :
              ( if @ ( option @ trm )
              @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R ) @ U )
                = ( bot_bot @ ( set @ variable ) ) )
              @ ( some @ trm @ R )
              @ ( none @ trm ) )
          @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [F0: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uu: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
            @ Sigma
            @ F2 ) ) ) ) ).

% usappconst_def
thf(fact_6_f1,axiom,
    ( ( uSubst95898992stappt @ sigma @ u @ ( const @ f ) )
    = ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( const @ f ) )
      @ ^ [T2: trm] :
          ( if @ ( option @ trm )
          @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ T2 ) @ u )
            = ( bot_bot @ ( set @ variable ) ) )
          @ ( some @ trm @ T2 )
          @ ( none @ trm ) )
      @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f ) ) ) ).

% f1
thf(fact_7_usubstappt_Osimps_I3_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( const @ F3 ) )
      = ( uSubst1138577137pconst @ Sigma2 @ U2 @ F3 ) ) ).

% usubstappt.simps(3)
thf(fact_8_undeft__None,axiom,
    ( ( none @ trm )
    = ( none @ trm ) ) ).

% undeft_None
thf(fact_9__092_060open_062SConst_A_092_060sigma_062_Af_A_092_060noteq_062_Aundeft_A_092_060longrightarrow_062_A_Iif_AFVT_A_Ithe_A_ISConst_A_092_060sigma_062_Af_J_J_A_092_060inter_062_AV_A_061_A_123_125_Athen_AAterm_A_Ithe_A_ISConst_A_092_060sigma_062_Af_J_J_Aelse_Aundeft_J_A_061_Ausappconst_A_092_060sigma_062_AV_Af_092_060close_062,axiom,
    ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f )
     != ( none @ trm ) )
   => ( ( ( ( inf_inf @ ( set @ variable )
            @ ( static_FVT
              @ ( the @ trm
                @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F0: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uu: char > ( option @ trm )] :
                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                  @ sigma
                  @ f ) ) )
            @ v )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( some @ trm
            @ ( the @ trm
              @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [F0: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uu: char > ( option @ trm )] :
                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                @ sigma
                @ f ) ) )
          = ( uSubst1138577137pconst @ sigma @ v @ f ) ) )
      & ( ( ( inf_inf @ ( set @ variable )
            @ ( static_FVT
              @ ( the @ trm
                @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F0: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uu: char > ( option @ trm )] :
                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                  @ sigma
                  @ f ) ) )
            @ v )
         != ( bot_bot @ ( set @ variable ) ) )
       => ( ( none @ trm )
          = ( uSubst1138577137pconst @ sigma @ v @ f ) ) ) ) ) ).

% \<open>SConst \<sigma> f \<noteq> undeft \<longrightarrow> (if FVT (the (SConst \<sigma> f)) \<inter> V = {} then Aterm (the (SConst \<sigma> f)) else undeft) = usappconst \<sigma> V f\<close>
thf(fact_10__092_060open_062SConst_A_092_060sigma_062_Af_A_092_060noteq_062_Aundeft_A_092_060longrightarrow_062_A_Iif_AFVT_A_Ithe_A_ISConst_A_092_060sigma_062_Af_J_J_A_092_060inter_062_AU_A_061_A_123_125_Athen_AAterm_A_Ithe_A_ISConst_A_092_060sigma_062_Af_J_J_Aelse_Aundeft_J_A_061_Ausappconst_A_092_060sigma_062_AU_Af_092_060close_062,axiom,
    ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f )
     != ( none @ trm ) )
   => ( ( ( ( inf_inf @ ( set @ variable )
            @ ( static_FVT
              @ ( the @ trm
                @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F0: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uu: char > ( option @ trm )] :
                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                  @ sigma
                  @ f ) ) )
            @ u )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( some @ trm
            @ ( the @ trm
              @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [F0: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uu: char > ( option @ trm )] :
                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                @ sigma
                @ f ) ) )
          = ( uSubst1138577137pconst @ sigma @ u @ f ) ) )
      & ( ( ( inf_inf @ ( set @ variable )
            @ ( static_FVT
              @ ( the @ trm
                @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F0: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uu: char > ( option @ trm )] :
                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                  @ sigma
                  @ f ) ) )
            @ u )
         != ( bot_bot @ ( set @ variable ) ) )
       => ( ( none @ trm )
          = ( uSubst1138577137pconst @ sigma @ u @ f ) ) ) ) ) ).

% \<open>SConst \<sigma> f \<noteq> undeft \<longrightarrow> (if FVT (the (SConst \<sigma> f)) \<inter> U = {} then Aterm (the (SConst \<sigma> f)) else undeft) = usappconst \<sigma> U f\<close>
thf(fact_11_trm_Oinject_I3_J,axiom,
    ! [X3: char,Y3: char] :
      ( ( ( const @ X3 )
        = ( const @ Y3 ) )
      = ( X3 = Y3 ) ) ).

% trm.inject(3)
thf(fact_12_case__prod__app,axiom,
    ! [A: $tType,D: $tType,C: $tType,B: $tType] :
      ( ( product_case_prod @ B @ C @ ( D > A ) )
      = ( ^ [F2: B > C > D > A,X: product_prod @ B @ C,Y: D] :
            ( product_case_prod @ B @ C @ A
            @ ^ [L: B,R: C] : ( F2 @ L @ R @ Y )
            @ X ) ) ) ).

% case_prod_app
thf(fact_13_usubstappt__const,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),F3: char,R2: trm,U2: set @ variable] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
          @ ^ [F0: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [Uu: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
          @ Sigma2
          @ F3 )
        = ( some @ trm @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R2 ) @ U2 )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( const @ F3 ) )
          = ( some @ trm @ R2 ) ) ) ) ).

% usubstappt_const
thf(fact_14_usubstappt__const__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( const @ F3 ) )
       != ( none @ trm ) )
     => ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [F0: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uu: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
            @ Sigma2
            @ F3 )
          = ( none @ trm ) )
        | ? [R3: trm] :
            ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [F0: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uu: char > ( option @ trm )] :
                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                @ Sigma2
                @ F3 )
              = ( some @ trm @ R3 ) )
            & ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R3 ) @ U2 )
              = ( bot_bot @ ( set @ variable ) ) ) ) ) ) ).

% usubstappt_const_conv
thf(fact_15_usappconst__simp,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),F3: char,R2: trm,U2: set @ variable] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
          @ ^ [F0: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [Uu: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
          @ Sigma2
          @ F3 )
        = ( some @ trm @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R2 ) @ U2 )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( uSubst1138577137pconst @ Sigma2 @ U2 @ F3 )
          = ( some @ trm @ R2 ) ) ) ) ).

% usappconst_simp
thf(fact_16_usappconst__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char] :
      ( ( ( uSubst1138577137pconst @ Sigma2 @ U2 @ F3 )
       != ( none @ trm ) )
     => ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [F0: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uu: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
            @ Sigma2
            @ F3 )
          = ( none @ trm ) )
        | ? [R3: trm] :
            ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [F0: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                    @ ^ [Uu: char > ( option @ trm )] :
                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
                @ Sigma2
                @ F3 )
              = ( some @ trm @ R3 ) )
            & ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R3 ) @ U2 )
              = ( bot_bot @ ( set @ variable ) ) ) ) ) ) ).

% usappconst_conv
thf(fact_17_ODEo_Oinduct,axiom,
    ! [P: char > ( option @ trm ) > $o,A0: char,A1: option @ trm] :
      ( ! [X2: char,Theta: trm] : ( P @ X2 @ ( some @ trm @ Theta ) )
     => ( ! [X2: char] : ( P @ X2 @ ( none @ trm ) )
       => ( P @ A0 @ A1 ) ) ) ).

% ODEo.induct
thf(fact_18_undeft__equiv,axiom,
    ! [Theta2: option @ trm] :
      ( ( Theta2
       != ( none @ trm ) )
      = ( ? [T2: trm] :
            ( Theta2
            = ( some @ trm @ T2 ) ) ) ) ).

% undeft_equiv
thf(fact_19_Timeso_Oinduct,axiom,
    ! [P: ( option @ trm ) > ( option @ trm ) > $o,A0: option @ trm,A1: option @ trm] :
      ( ! [Theta: trm,Eta: trm] : ( P @ ( some @ trm @ Theta ) @ ( some @ trm @ Eta ) )
     => ( ! [X_1: option @ trm] : ( P @ ( none @ trm ) @ X_1 )
       => ( ! [V: trm] : ( P @ ( some @ trm @ V ) @ ( none @ trm ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% Timeso.induct
thf(fact_20_Assigno_Oinduct,axiom,
    ! [P: variable > ( option @ trm ) > $o,A0: variable,A1: option @ trm] :
      ( ! [X2: variable,Theta: trm] : ( P @ X2 @ ( some @ trm @ Theta ) )
     => ( ! [X2: variable] : ( P @ X2 @ ( none @ trm ) )
       => ( P @ A0 @ A1 ) ) ) ).

% Assigno.induct
thf(fact_21_Aterm__Some,axiom,
    ( ( some @ trm )
    = ( some @ trm ) ) ).

% Aterm_Some
thf(fact_22_Differentialo_Oinduct,axiom,
    ! [P: ( option @ trm ) > $o,A0: option @ trm] :
      ( ! [Theta: trm] : ( P @ ( some @ trm @ Theta ) )
     => ( ( P @ ( none @ trm ) )
       => ( P @ A0 ) ) ) ).

% Differentialo.induct
thf(fact_23_Differentialo_Ocases,axiom,
    ! [X4: option @ trm] :
      ( ! [Theta: trm] :
          ( X4
         != ( some @ trm @ Theta ) )
     => ( X4
        = ( none @ trm ) ) ) ).

% Differentialo.cases
thf(fact_24_option_Ocollapse,axiom,
    ! [A: $tType,Option: option @ A] :
      ( ( Option
       != ( none @ A ) )
     => ( ( some @ A @ ( the @ A @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_25_not__Some__eq,axiom,
    ! [A: $tType,X4: option @ A] :
      ( ( ! [Y: A] :
            ( X4
           != ( some @ A @ Y ) ) )
      = ( X4
        = ( none @ A ) ) ) ).

% not_Some_eq
thf(fact_26_not__None__eq,axiom,
    ! [A: $tType,X4: option @ A] :
      ( ( X4
       != ( none @ A ) )
      = ( ? [Y: A] :
            ( X4
            = ( some @ A @ Y ) ) ) ) ).

% not_None_eq
thf(fact_27_inf__bot__left,axiom,
    ! [A: $tType] :
      ( ( bounded_lattice_bot @ A )
     => ! [X4: A] :
          ( ( inf_inf @ A @ ( bot_bot @ A ) @ X4 )
          = ( bot_bot @ A ) ) ) ).

% inf_bot_left
thf(fact_28_inf__bot__right,axiom,
    ! [A: $tType] :
      ( ( bounded_lattice_bot @ A )
     => ! [X4: A] :
          ( ( inf_inf @ A @ X4 @ ( bot_bot @ A ) )
          = ( bot_bot @ A ) ) ) ).

% inf_bot_right
thf(fact_29_usubstappt__func2,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),F3: char,R2: trm,U2: set @ variable,Theta2: trm] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
          @ ^ [Uu: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [F4: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
          @ Sigma2
          @ F3 )
        = ( some @ trm @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R2 ) @ U2 )
         != ( bot_bot @ ( set @ variable ) ) )
       => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( func @ F3 @ Theta2 ) )
          = ( none @ trm ) ) ) ) ).

% usubstappt_func2
thf(fact_30_option_Osplit__sel__asm,axiom,
    ! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > B,Option: option @ A] :
      ( ( P @ ( case_option @ B @ A @ F1 @ F22 @ Option ) )
      = ( ~ ( ( ( Option
                = ( none @ A ) )
              & ~ ( P @ F1 ) )
            | ( ( Option
                = ( some @ A @ ( the @ A @ Option ) ) )
              & ~ ( P @ ( F22 @ ( the @ A @ Option ) ) ) ) ) ) ) ).

% option.split_sel_asm
thf(fact_31_option_Osplit__sel,axiom,
    ! [B: $tType,A: $tType,P: B > $o,F1: B,F22: A > B,Option: option @ A] :
      ( ( P @ ( case_option @ B @ A @ F1 @ F22 @ Option ) )
      = ( ( ( Option
            = ( none @ A ) )
         => ( P @ F1 ) )
        & ( ( Option
            = ( some @ A @ ( the @ A @ Option ) ) )
         => ( P @ ( F22 @ ( the @ A @ Option ) ) ) ) ) ) ).

% option.split_sel
thf(fact_32_usubstappt__func__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char,Theta2: trm] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( func @ F3 @ Theta2 ) )
       != ( none @ trm ) )
     => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
         != ( none @ trm ) )
        & ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [Uu: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F4: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
              @ Sigma2
              @ F3 )
            = ( none @ trm ) )
          | ? [R3: trm] :
              ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uu: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                      @ ^ [F4: char > ( option @ trm )] :
                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                  @ Sigma2
                  @ F3 )
                = ( some @ trm @ R3 ) )
              & ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R3 ) @ U2 )
                = ( bot_bot @ ( set @ variable ) ) ) ) ) ) ) ).

% usubstappt_func_conv
thf(fact_33_option_Ocase__eq__if,axiom,
    ! [A: $tType,B: $tType] :
      ( ( case_option @ B @ A )
      = ( ^ [F12: B,F23: A > B,Option2: option @ A] :
            ( if @ B
            @ ( Option2
              = ( none @ A ) )
            @ F12
            @ ( F23 @ ( the @ A @ Option2 ) ) ) ) ) ).

% option.case_eq_if
thf(fact_34_inf__right__idem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [X4: A,Y2: A] :
          ( ( inf_inf @ A @ ( inf_inf @ A @ X4 @ Y2 ) @ Y2 )
          = ( inf_inf @ A @ X4 @ Y2 ) ) ) ).

% inf_right_idem
thf(fact_35_inf_Oright__idem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [A2: A,B2: A] :
          ( ( inf_inf @ A @ ( inf_inf @ A @ A2 @ B2 ) @ B2 )
          = ( inf_inf @ A @ A2 @ B2 ) ) ) ).

% inf.right_idem
thf(fact_36_inf__left__idem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [X4: A,Y2: A] :
          ( ( inf_inf @ A @ X4 @ ( inf_inf @ A @ X4 @ Y2 ) )
          = ( inf_inf @ A @ X4 @ Y2 ) ) ) ).

% inf_left_idem
thf(fact_37_inf_Oleft__idem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [A2: A,B2: A] :
          ( ( inf_inf @ A @ A2 @ ( inf_inf @ A @ A2 @ B2 ) )
          = ( inf_inf @ A @ A2 @ B2 ) ) ) ).

% inf.left_idem
thf(fact_38_inf__idem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [X4: A] :
          ( ( inf_inf @ A @ X4 @ X4 )
          = X4 ) ) ).

% inf_idem
thf(fact_39_inf_Oidem,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [A2: A] :
          ( ( inf_inf @ A @ A2 @ A2 )
          = A2 ) ) ).

% inf.idem
thf(fact_40_inf__apply,axiom,
    ! [B: $tType,A: $tType] :
      ( ( semilattice_inf @ B )
     => ( ( inf_inf @ ( A > B ) )
        = ( ^ [F2: A > B,G: A > B,X: A] : ( inf_inf @ B @ ( F2 @ X ) @ ( G @ X ) ) ) ) ) ).

% inf_apply
thf(fact_41_option_Oinject,axiom,
    ! [A: $tType,X22: A,Y22: A] :
      ( ( ( some @ A @ X22 )
        = ( some @ A @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_42_trm_Oinject_I4_J,axiom,
    ! [X41: char,X42: trm,Y41: char,Y42: trm] :
      ( ( ( func @ X41 @ X42 )
        = ( func @ Y41 @ Y42 ) )
      = ( ( X41 = Y41 )
        & ( X42 = Y42 ) ) ) ).

% trm.inject(4)
thf(fact_43_option_Odisc__eq__case_I2_J,axiom,
    ! [A: $tType,Option: option @ A] :
      ( ( Option
       != ( none @ A ) )
      = ( case_option @ $o @ A @ $false
        @ ^ [Uu: A] : $true
        @ Option ) ) ).

% option.disc_eq_case(2)
thf(fact_44_option_Odisc__eq__case_I1_J,axiom,
    ! [A: $tType,Option: option @ A] :
      ( ( Option
        = ( none @ A ) )
      = ( case_option @ $o @ A @ $true
        @ ^ [Uu: A] : $false
        @ Option ) ) ).

% option.disc_eq_case(1)
thf(fact_45_mem__Collect__eq,axiom,
    ! [A: $tType,A2: A,P: A > $o] :
      ( ( member @ A @ A2 @ ( collect @ A @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( collect @ A
        @ ^ [X: A] : ( member @ A @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
    ! [A: $tType,P: A > $o,Q: A > $o] :
      ( ! [X2: A] :
          ( ( P @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect @ A @ P )
        = ( collect @ A @ Q ) ) ) ).

% Collect_cong
thf(fact_48_ext,axiom,
    ! [B: $tType,A: $tType,F3: A > B,G2: A > B] :
      ( ! [X2: A] :
          ( ( F3 @ X2 )
          = ( G2 @ X2 ) )
     => ( F3 = G2 ) ) ).

% ext
thf(fact_49_trm_Odistinct_I23_J,axiom,
    ! [X3: char,X41: char,X42: trm] :
      ( ( const @ X3 )
     != ( func @ X41 @ X42 ) ) ).

% trm.distinct(23)
thf(fact_50_case__optionE,axiom,
    ! [A: $tType,P: $o,Q: A > $o,X4: option @ A] :
      ( ( case_option @ $o @ A @ P @ Q @ X4 )
     => ( ( ( X4
            = ( none @ A ) )
         => ~ P )
       => ~ ! [Y4: A] :
              ( ( X4
                = ( some @ A @ Y4 ) )
             => ~ ( Q @ Y4 ) ) ) ) ).

% case_optionE
thf(fact_51_inf__left__commute,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [X4: A,Y2: A,Z2: A] :
          ( ( inf_inf @ A @ X4 @ ( inf_inf @ A @ Y2 @ Z2 ) )
          = ( inf_inf @ A @ Y2 @ ( inf_inf @ A @ X4 @ Z2 ) ) ) ) ).

% inf_left_commute
thf(fact_52_inf_Oleft__commute,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [B2: A,A2: A,C2: A] :
          ( ( inf_inf @ A @ B2 @ ( inf_inf @ A @ A2 @ C2 ) )
          = ( inf_inf @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) ) ) ) ).

% inf.left_commute
thf(fact_53_inf__commute,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ( ( inf_inf @ A )
        = ( ^ [X: A,Y: A] : ( inf_inf @ A @ Y @ X ) ) ) ) ).

% inf_commute
thf(fact_54_inf_Ocommute,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ( ( inf_inf @ A )
        = ( ^ [A4: A,B3: A] : ( inf_inf @ A @ B3 @ A4 ) ) ) ) ).

% inf.commute
thf(fact_55_inf__assoc,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [X4: A,Y2: A,Z2: A] :
          ( ( inf_inf @ A @ ( inf_inf @ A @ X4 @ Y2 ) @ Z2 )
          = ( inf_inf @ A @ X4 @ ( inf_inf @ A @ Y2 @ Z2 ) ) ) ) ).

% inf_assoc
thf(fact_56_inf_Oassoc,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [A2: A,B2: A,C2: A] :
          ( ( inf_inf @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C2 )
          = ( inf_inf @ A @ A2 @ ( inf_inf @ A @ B2 @ C2 ) ) ) ) ).

% inf.assoc
thf(fact_57_boolean__algebra__cancel_Oinf2,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [B4: A,K: A,B2: A,A2: A] :
          ( ( B4
            = ( inf_inf @ A @ K @ B2 ) )
         => ( ( inf_inf @ A @ A2 @ B4 )
            = ( inf_inf @ A @ K @ ( inf_inf @ A @ A2 @ B2 ) ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_58_boolean__algebra__cancel_Oinf1,axiom,
    ! [A: $tType] :
      ( ( semilattice_inf @ A )
     => ! [A3: A,K: A,A2: A,B2: A] :
          ( ( A3
            = ( inf_inf @ A @ K @ A2 ) )
         => ( ( inf_inf @ A @ A3 @ B2 )
            = ( inf_inf @ A @ K @ ( inf_inf @ A @ A2 @ B2 ) ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_59_inf__fun__def,axiom,
    ! [B: $tType,A: $tType] :
      ( ( semilattice_inf @ B )
     => ( ( inf_inf @ ( A > B ) )
        = ( ^ [F2: A > B,G: A > B,X: A] : ( inf_inf @ B @ ( F2 @ X ) @ ( G @ X ) ) ) ) ) ).

% inf_fun_def
thf(fact_60_inf__sup__aci_I1_J,axiom,
    ! [A: $tType] :
      ( ( lattice @ A )
     => ( ( inf_inf @ A )
        = ( ^ [X: A,Y: A] : ( inf_inf @ A @ Y @ X ) ) ) ) ).

% inf_sup_aci(1)
thf(fact_61_inf__sup__aci_I2_J,axiom,
    ! [A: $tType] :
      ( ( lattice @ A )
     => ! [X4: A,Y2: A,Z2: A] :
          ( ( inf_inf @ A @ ( inf_inf @ A @ X4 @ Y2 ) @ Z2 )
          = ( inf_inf @ A @ X4 @ ( inf_inf @ A @ Y2 @ Z2 ) ) ) ) ).

% inf_sup_aci(2)
thf(fact_62_inf__sup__aci_I3_J,axiom,
    ! [A: $tType] :
      ( ( lattice @ A )
     => ! [X4: A,Y2: A,Z2: A] :
          ( ( inf_inf @ A @ X4 @ ( inf_inf @ A @ Y2 @ Z2 ) )
          = ( inf_inf @ A @ Y2 @ ( inf_inf @ A @ X4 @ Z2 ) ) ) ) ).

% inf_sup_aci(3)
thf(fact_63_inf__sup__aci_I4_J,axiom,
    ! [A: $tType] :
      ( ( lattice @ A )
     => ! [X4: A,Y2: A] :
          ( ( inf_inf @ A @ X4 @ ( inf_inf @ A @ X4 @ Y2 ) )
          = ( inf_inf @ A @ X4 @ Y2 ) ) ) ).

% inf_sup_aci(4)
thf(fact_64_option_Ocase__distrib,axiom,
    ! [C: $tType,B: $tType,A: $tType,H: B > C,F1: B,F22: A > B,Option: option @ A] :
      ( ( H @ ( case_option @ B @ A @ F1 @ F22 @ Option ) )
      = ( case_option @ C @ A @ ( H @ F1 )
        @ ^ [X: A] : ( H @ ( F22 @ X ) )
        @ Option ) ) ).

% option.case_distrib
thf(fact_65_option_Odistinct_I1_J,axiom,
    ! [A: $tType,X22: A] :
      ( ( none @ A )
     != ( some @ A @ X22 ) ) ).

% option.distinct(1)
thf(fact_66_option_OdiscI,axiom,
    ! [A: $tType,Option: option @ A,X22: A] :
      ( ( Option
        = ( some @ A @ X22 ) )
     => ( Option
       != ( none @ A ) ) ) ).

% option.discI
thf(fact_67_option_Oexhaust,axiom,
    ! [A: $tType,Y2: option @ A] :
      ( ( Y2
       != ( none @ A ) )
     => ~ ! [X23: A] :
            ( Y2
           != ( some @ A @ X23 ) ) ) ).

% option.exhaust
thf(fact_68_option_Oinducts,axiom,
    ! [A: $tType,P: ( option @ A ) > $o,Option: option @ A] :
      ( ( P @ ( none @ A ) )
     => ( ! [X2: A] : ( P @ ( some @ A @ X2 ) )
       => ( P @ Option ) ) ) ).

% option.inducts
thf(fact_69_split__option__ex,axiom,
    ! [A: $tType] :
      ( ( ^ [P2: ( option @ A ) > $o] :
          ? [X5: option @ A] : ( P2 @ X5 ) )
      = ( ^ [P3: ( option @ A ) > $o] :
            ( ( P3 @ ( none @ A ) )
            | ? [X: A] : ( P3 @ ( some @ A @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_70_split__option__all,axiom,
    ! [A: $tType] :
      ( ( ^ [P2: ( option @ A ) > $o] :
          ! [X5: option @ A] : ( P2 @ X5 ) )
      = ( ^ [P3: ( option @ A ) > $o] :
            ( ( P3 @ ( none @ A ) )
            & ! [X: A] : ( P3 @ ( some @ A @ X ) ) ) ) ) ).

% split_option_all
thf(fact_71_combine__options__cases,axiom,
    ! [A: $tType,B: $tType,X4: option @ A,P: ( option @ A ) > ( option @ B ) > $o,Y2: option @ B] :
      ( ( ( X4
          = ( none @ A ) )
       => ( P @ X4 @ Y2 ) )
     => ( ( ( Y2
            = ( none @ B ) )
         => ( P @ X4 @ Y2 ) )
       => ( ! [A5: A,B5: B] :
              ( ( X4
                = ( some @ A @ A5 ) )
             => ( ( Y2
                  = ( some @ B @ B5 ) )
               => ( P @ X4 @ Y2 ) ) )
         => ( P @ X4 @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_72_option_Osimps_I4_J,axiom,
    ! [A: $tType,B: $tType,F1: B,F22: A > B] :
      ( ( case_option @ B @ A @ F1 @ F22 @ ( none @ A ) )
      = F1 ) ).

% option.simps(4)
thf(fact_73_option_Osimps_I5_J,axiom,
    ! [B: $tType,A: $tType,F1: B,F22: A > B,X22: A] :
      ( ( case_option @ B @ A @ F1 @ F22 @ ( some @ A @ X22 ) )
      = ( F22 @ X22 ) ) ).

% option.simps(5)
thf(fact_74_option_Oexpand,axiom,
    ! [A: $tType,Option: option @ A,Option3: option @ A] :
      ( ( ( Option
          = ( none @ A ) )
        = ( Option3
          = ( none @ A ) ) )
     => ( ( ( Option
           != ( none @ A ) )
         => ( ( Option3
             != ( none @ A ) )
           => ( ( the @ A @ Option )
              = ( the @ A @ Option3 ) ) ) )
       => ( Option = Option3 ) ) ) ).

% option.expand
thf(fact_75_option_Osel,axiom,
    ! [A: $tType,X22: A] :
      ( ( the @ A @ ( some @ A @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_76_option_Oexhaust__sel,axiom,
    ! [A: $tType,Option: option @ A] :
      ( ( Option
       != ( none @ A ) )
     => ( Option
        = ( some @ A @ ( the @ A @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_77_usubstappt__func,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),F3: char,R2: trm,U2: set @ variable,Theta2: trm,Sigma_theta: trm] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
          @ ^ [Uu: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [F4: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                  @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
          @ Sigma2
          @ F3 )
        = ( some @ trm @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R2 ) @ U2 )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
            = ( some @ trm @ Sigma_theta ) )
         => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( func @ F3 @ Theta2 ) )
            = ( uSubst95898992stappt @ ( uSubst969145931substt @ Sigma_theta ) @ ( bot_bot @ ( set @ variable ) ) @ R2 ) ) ) ) ) ).

% usubstappt_func
thf(fact_78_usubstappt_Osimps_I4_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char,Theta2: trm] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( func @ F3 @ Theta2 ) )
      = ( case_option @ ( option @ trm ) @ trm @ ( none @ trm )
        @ ^ [Sigma_theta2: trm] :
            ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( func @ F3 @ Sigma_theta2 ) )
            @ ^ [R: trm] :
                ( if @ ( option @ trm )
                @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R ) @ U2 )
                  = ( bot_bot @ ( set @ variable ) ) )
                @ ( uSubst95898992stappt @ ( uSubst969145931substt @ Sigma_theta2 ) @ ( bot_bot @ ( set @ variable ) ) @ R )
                @ ( none @ trm ) )
            @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
              @ ^ [Uu: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                  @ ^ [F4: char > ( option @ trm )] :
                      ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                      @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
              @ Sigma2
              @ F3 ) )
        @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) ) ) ).

% usubstappt.simps(4)
thf(fact_79_Int__iff,axiom,
    ! [A: $tType,C2: A,A3: set @ A,B4: set @ A] :
      ( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) )
      = ( ( member @ A @ C2 @ A3 )
        & ( member @ A @ C2 @ B4 ) ) ) ).

% Int_iff
thf(fact_80_IntI,axiom,
    ! [A: $tType,C2: A,A3: set @ A,B4: set @ A] :
      ( ( member @ A @ C2 @ A3 )
     => ( ( member @ A @ C2 @ B4 )
       => ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) ) ) ) ).

% IntI
thf(fact_81_empty__Collect__eq,axiom,
    ! [A: $tType,P: A > $o] :
      ( ( ( bot_bot @ ( set @ A ) )
        = ( collect @ A @ P ) )
      = ( ! [X: A] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_82_Collect__empty__eq,axiom,
    ! [A: $tType,P: A > $o] :
      ( ( ( collect @ A @ P )
        = ( bot_bot @ ( set @ A ) ) )
      = ( ! [X: A] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_83_all__not__in__conv,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( ! [X: A] :
            ~ ( member @ A @ X @ A3 ) )
      = ( A3
        = ( bot_bot @ ( set @ A ) ) ) ) ).

% all_not_in_conv
thf(fact_84_empty__iff,axiom,
    ! [A: $tType,C2: A] :
      ~ ( member @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) ).

% empty_iff
thf(fact_85_bot__apply,axiom,
    ! [C: $tType,D: $tType] :
      ( ( bot @ C )
     => ( ( bot_bot @ ( D > C ) )
        = ( ^ [X: D] : ( bot_bot @ C ) ) ) ) ).

% bot_apply
thf(fact_86_bot__fun__def,axiom,
    ! [B: $tType,A: $tType] :
      ( ( bot @ B )
     => ( ( bot_bot @ ( A > B ) )
        = ( ^ [X: A] : ( bot_bot @ B ) ) ) ) ).

% bot_fun_def
thf(fact_87_emptyE,axiom,
    ! [A: $tType,A2: A] :
      ~ ( member @ A @ A2 @ ( bot_bot @ ( set @ A ) ) ) ).

% emptyE
thf(fact_88_equals0D,axiom,
    ! [A: $tType,A3: set @ A,A2: A] :
      ( ( A3
        = ( bot_bot @ ( set @ A ) ) )
     => ~ ( member @ A @ A2 @ A3 ) ) ).

% equals0D
thf(fact_89_equals0I,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ! [Y4: A] :
          ~ ( member @ A @ Y4 @ A3 )
     => ( A3
        = ( bot_bot @ ( set @ A ) ) ) ) ).

% equals0I
thf(fact_90_ex__in__conv,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( ? [X: A] : ( member @ A @ X @ A3 ) )
      = ( A3
       != ( bot_bot @ ( set @ A ) ) ) ) ).

% ex_in_conv
thf(fact_91_bot__set__def,axiom,
    ! [A: $tType] :
      ( ( bot_bot @ ( set @ A ) )
      = ( collect @ A @ ( bot_bot @ ( A > $o ) ) ) ) ).

% bot_set_def
thf(fact_92_IntE,axiom,
    ! [A: $tType,C2: A,A3: set @ A,B4: set @ A] :
      ( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) )
     => ~ ( ( member @ A @ C2 @ A3 )
         => ~ ( member @ A @ C2 @ B4 ) ) ) ).

% IntE
thf(fact_93_IntD1,axiom,
    ! [A: $tType,C2: A,A3: set @ A,B4: set @ A] :
      ( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) )
     => ( member @ A @ C2 @ A3 ) ) ).

% IntD1
thf(fact_94_IntD2,axiom,
    ! [A: $tType,C2: A,A3: set @ A,B4: set @ A] :
      ( ( member @ A @ C2 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) )
     => ( member @ A @ C2 @ B4 ) ) ).

% IntD2
thf(fact_95_Int__assoc,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A,C3: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) @ C3 )
      = ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B4 @ C3 ) ) ) ).

% Int_assoc
thf(fact_96_Int__absorb,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ A3 @ A3 )
      = A3 ) ).

% Int_absorb
thf(fact_97_Int__commute,axiom,
    ! [A: $tType] :
      ( ( inf_inf @ ( set @ A ) )
      = ( ^ [A6: set @ A,B6: set @ A] : ( inf_inf @ ( set @ A ) @ B6 @ A6 ) ) ) ).

% Int_commute
thf(fact_98_Int__left__absorb,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ A3 @ B4 ) )
      = ( inf_inf @ ( set @ A ) @ A3 @ B4 ) ) ).

% Int_left_absorb
thf(fact_99_Int__left__commute,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A,C3: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ A3 @ ( inf_inf @ ( set @ A ) @ B4 @ C3 ) )
      = ( inf_inf @ ( set @ A ) @ B4 @ ( inf_inf @ ( set @ A ) @ A3 @ C3 ) ) ) ).

% Int_left_commute
thf(fact_100_empty__def,axiom,
    ! [A: $tType] :
      ( ( bot_bot @ ( set @ A ) )
      = ( collect @ A
        @ ^ [X: A] : $false ) ) ).

% empty_def
thf(fact_101_Collect__conj__eq,axiom,
    ! [A: $tType,P: A > $o,Q: A > $o] :
      ( ( collect @ A
        @ ^ [X: A] :
            ( ( P @ X )
            & ( Q @ X ) ) )
      = ( inf_inf @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_102_Int__Collect,axiom,
    ! [A: $tType,X4: A,A3: set @ A,P: A > $o] :
      ( ( member @ A @ X4 @ ( inf_inf @ ( set @ A ) @ A3 @ ( collect @ A @ P ) ) )
      = ( ( member @ A @ X4 @ A3 )
        & ( P @ X4 ) ) ) ).

% Int_Collect
thf(fact_103_Int__def,axiom,
    ! [A: $tType] :
      ( ( inf_inf @ ( set @ A ) )
      = ( ^ [A6: set @ A,B6: set @ A] :
            ( collect @ A
            @ ^ [X: A] :
                ( ( member @ A @ X @ A6 )
                & ( member @ A @ X @ B6 ) ) ) ) ) ).

% Int_def
thf(fact_104_inf__set__def,axiom,
    ! [A: $tType] :
      ( ( inf_inf @ ( set @ A ) )
      = ( ^ [A6: set @ A,B6: set @ A] :
            ( collect @ A
            @ ( inf_inf @ ( A > $o )
              @ ^ [X: A] : ( member @ A @ X @ A6 )
              @ ^ [X: A] : ( member @ A @ X @ B6 ) ) ) ) ) ).

% inf_set_def
thf(fact_105_Int__emptyI,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A] :
      ( ! [X2: A] :
          ( ( member @ A @ X2 @ A3 )
         => ~ ( member @ A @ X2 @ B4 ) )
     => ( ( inf_inf @ ( set @ A ) @ A3 @ B4 )
        = ( bot_bot @ ( set @ A ) ) ) ) ).

% Int_emptyI
thf(fact_106_disjoint__iff,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A] :
      ( ( ( inf_inf @ ( set @ A ) @ A3 @ B4 )
        = ( bot_bot @ ( set @ A ) ) )
      = ( ! [X: A] :
            ( ( member @ A @ X @ A3 )
           => ~ ( member @ A @ X @ B4 ) ) ) ) ).

% disjoint_iff
thf(fact_107_Int__empty__left,axiom,
    ! [A: $tType,B4: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ B4 )
      = ( bot_bot @ ( set @ A ) ) ) ).

% Int_empty_left
thf(fact_108_Int__empty__right,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( inf_inf @ ( set @ A ) @ A3 @ ( bot_bot @ ( set @ A ) ) )
      = ( bot_bot @ ( set @ A ) ) ) ).

% Int_empty_right
thf(fact_109_disjoint__iff__not__equal,axiom,
    ! [A: $tType,A3: set @ A,B4: set @ A] :
      ( ( ( inf_inf @ ( set @ A ) @ A3 @ B4 )
        = ( bot_bot @ ( set @ A ) ) )
      = ( ! [X: A] :
            ( ( member @ A @ X @ A3 )
           => ! [Y: A] :
                ( ( member @ A @ Y @ B4 )
               => ( X != Y ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_110_disjE__realizer2,axiom,
    ! [B: $tType,A: $tType,P: $o,Q: A > $o,X4: option @ A,R4: B > $o,F3: B,G2: A > B] :
      ( ( case_option @ $o @ A @ P @ Q @ X4 )
     => ( ( P
         => ( R4 @ F3 ) )
       => ( ! [Q2: A] :
              ( ( Q @ Q2 )
             => ( R4 @ ( G2 @ Q2 ) ) )
         => ( R4 @ ( case_option @ B @ A @ F3 @ G2 @ X4 ) ) ) ) ) ).

% disjE_realizer2
thf(fact_111_Set_Ois__empty__def,axiom,
    ! [A: $tType] :
      ( ( is_empty @ A )
      = ( ^ [A6: set @ A] :
            ( A6
            = ( bot_bot @ ( set @ A ) ) ) ) ) ).

% Set.is_empty_def
thf(fact_112_prod_Ocase__distrib,axiom,
    ! [C: $tType,D: $tType,B: $tType,A: $tType,H: C > D,F3: A > B > C,Prod: product_prod @ A @ B] :
      ( ( H @ ( product_case_prod @ A @ B @ C @ F3 @ Prod ) )
      = ( product_case_prod @ A @ B @ D
        @ ^ [X1: A,X24: B] : ( H @ ( F3 @ X1 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_113_inf__Int__eq,axiom,
    ! [A: $tType,R4: set @ A,S: set @ A] :
      ( ( inf_inf @ ( A > $o )
        @ ^ [X: A] : ( member @ A @ X @ R4 )
        @ ^ [X: A] : ( member @ A @ X @ S ) )
      = ( ^ [X: A] : ( member @ A @ X @ ( inf_inf @ ( set @ A ) @ R4 @ S ) ) ) ) ).

% inf_Int_eq
thf(fact_114_Timeso_Osimps_I3_J,axiom,
    ! [V2: trm] :
      ( ( uSubst277968634Timeso @ ( some @ trm @ V2 ) @ ( none @ trm ) )
      = ( none @ trm ) ) ).

% Timeso.simps(3)
thf(fact_115_Pluso_Osimps_I3_J,axiom,
    ! [V2: trm] :
      ( ( uSubst1112714340_Pluso @ ( some @ trm @ V2 ) @ ( none @ trm ) )
      = ( none @ trm ) ) ).

% Pluso.simps(3)
thf(fact_116_inf1I,axiom,
    ! [A: $tType,A3: A > $o,X4: A,B4: A > $o] :
      ( ( A3 @ X4 )
     => ( ( B4 @ X4 )
       => ( inf_inf @ ( A > $o ) @ A3 @ B4 @ X4 ) ) ) ).

% inf1I
thf(fact_117_inf1E,axiom,
    ! [A: $tType,A3: A > $o,B4: A > $o,X4: A] :
      ( ( inf_inf @ ( A > $o ) @ A3 @ B4 @ X4 )
     => ~ ( ( A3 @ X4 )
         => ~ ( B4 @ X4 ) ) ) ).

% inf1E
thf(fact_118_inf1D1,axiom,
    ! [A: $tType,A3: A > $o,B4: A > $o,X4: A] :
      ( ( inf_inf @ ( A > $o ) @ A3 @ B4 @ X4 )
     => ( A3 @ X4 ) ) ).

% inf1D1
thf(fact_119_inf1D2,axiom,
    ! [A: $tType,A3: A > $o,B4: A > $o,X4: A] :
      ( ( inf_inf @ ( A > $o ) @ A3 @ B4 @ X4 )
     => ( B4 @ X4 ) ) ).

% inf1D2
thf(fact_120_Pluso_Osimps_I2_J,axiom,
    ! [Eta2: option @ trm] :
      ( ( uSubst1112714340_Pluso @ ( none @ trm ) @ Eta2 )
      = ( none @ trm ) ) ).

% Pluso.simps(2)
thf(fact_121_Timeso_Osimps_I2_J,axiom,
    ! [Eta2: option @ trm] :
      ( ( uSubst277968634Timeso @ ( none @ trm ) @ Eta2 )
      = ( none @ trm ) ) ).

% Timeso.simps(2)
thf(fact_122_Pluso__undef,axiom,
    ! [Theta2: option @ trm,Eta2: option @ trm] :
      ( ( ( uSubst1112714340_Pluso @ Theta2 @ Eta2 )
        = ( none @ trm ) )
      = ( ( Theta2
          = ( none @ trm ) )
        | ( Eta2
          = ( none @ trm ) ) ) ) ).

% Pluso_undef
thf(fact_123_Timeso__undef,axiom,
    ! [Theta2: option @ trm,Eta2: option @ trm] :
      ( ( ( uSubst277968634Timeso @ Theta2 @ Eta2 )
        = ( none @ trm ) )
      = ( ( Theta2
          = ( none @ trm ) )
        | ( Eta2
          = ( none @ trm ) ) ) ) ).

% Timeso_undef
thf(fact_124_bot__empty__eq,axiom,
    ! [A: $tType] :
      ( ( bot_bot @ ( A > $o ) )
      = ( ^ [X: A] : ( member @ A @ X @ ( bot_bot @ ( set @ A ) ) ) ) ) ).

% bot_empty_eq
thf(fact_125_Collect__empty__eq__bot,axiom,
    ! [A: $tType,P: A > $o] :
      ( ( ( collect @ A @ P )
        = ( bot_bot @ ( set @ A ) ) )
      = ( P
        = ( bot_bot @ ( A > $o ) ) ) ) ).

% Collect_empty_eq_bot
thf(fact_126_internal__case__prod__def,axiom,
    ! [C: $tType,B: $tType,A: $tType] :
      ( ( produc2004651681e_prod @ A @ B @ C )
      = ( product_case_prod @ A @ B @ C ) ) ).

% internal_case_prod_def
thf(fact_127_Pluso_Oelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ trm] :
      ( ( ( uSubst1112714340_Pluso @ X4 @ Xa )
        = Y2 )
     => ( ! [Theta: trm] :
            ( ( X4
              = ( some @ trm @ Theta ) )
           => ! [Eta: trm] :
                ( ( Xa
                  = ( some @ trm @ Eta ) )
               => ( Y2
                 != ( some @ trm @ ( plus @ Theta @ Eta ) ) ) ) )
       => ( ( ( X4
              = ( none @ trm ) )
           => ( Y2
             != ( none @ trm ) ) )
         => ~ ( ? [V: trm] :
                  ( X4
                  = ( some @ trm @ V ) )
             => ( ( Xa
                  = ( none @ trm ) )
               => ( Y2
                 != ( none @ trm ) ) ) ) ) ) ) ).

% Pluso.elims
thf(fact_128_Timeso_Oelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ trm] :
      ( ( ( uSubst277968634Timeso @ X4 @ Xa )
        = Y2 )
     => ( ! [Theta: trm] :
            ( ( X4
              = ( some @ trm @ Theta ) )
           => ! [Eta: trm] :
                ( ( Xa
                  = ( some @ trm @ Eta ) )
               => ( Y2
                 != ( some @ trm @ ( times @ Theta @ Eta ) ) ) ) )
       => ( ( ( X4
              = ( none @ trm ) )
           => ( Y2
             != ( none @ trm ) ) )
         => ~ ( ? [V: trm] :
                  ( X4
                  = ( some @ trm @ V ) )
             => ( ( Xa
                  = ( none @ trm ) )
               => ( Y2
                 != ( none @ trm ) ) ) ) ) ) ) ).

% Timeso.elims
thf(fact_129_trm_Oinject_I5_J,axiom,
    ! [X51: trm,X52: trm,Y51: trm,Y52: trm] :
      ( ( ( plus @ X51 @ X52 )
        = ( plus @ Y51 @ Y52 ) )
      = ( ( X51 = Y51 )
        & ( X52 = Y52 ) ) ) ).

% trm.inject(5)
thf(fact_130_trm_Oinject_I6_J,axiom,
    ! [X61: trm,X62: trm,Y61: trm,Y62: trm] :
      ( ( ( times @ X61 @ X62 )
        = ( times @ Y61 @ Y62 ) )
      = ( ( X61 = Y61 )
        & ( X62 = Y62 ) ) ) ).

% trm.inject(6)
thf(fact_131_trm_Odistinct_I37_J,axiom,
    ! [X51: trm,X52: trm,X61: trm,X62: trm] :
      ( ( plus @ X51 @ X52 )
     != ( times @ X61 @ X62 ) ) ).

% trm.distinct(37)
thf(fact_132_trm_Odistinct_I25_J,axiom,
    ! [X3: char,X51: trm,X52: trm] :
      ( ( const @ X3 )
     != ( plus @ X51 @ X52 ) ) ).

% trm.distinct(25)
thf(fact_133_trm_Odistinct_I27_J,axiom,
    ! [X3: char,X61: trm,X62: trm] :
      ( ( const @ X3 )
     != ( times @ X61 @ X62 ) ) ).

% trm.distinct(27)
thf(fact_134_trm_Odistinct_I31_J,axiom,
    ! [X41: char,X42: trm,X51: trm,X52: trm] :
      ( ( func @ X41 @ X42 )
     != ( plus @ X51 @ X52 ) ) ).

% trm.distinct(31)
thf(fact_135_trm_Odistinct_I33_J,axiom,
    ! [X41: char,X42: trm,X61: trm,X62: trm] :
      ( ( func @ X41 @ X42 )
     != ( times @ X61 @ X62 ) ) ).

% trm.distinct(33)
thf(fact_136_usubstappt__times__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( times @ Theta2 @ Eta2 ) )
       != ( none @ trm ) )
     => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
         != ( none @ trm ) )
        & ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 )
         != ( none @ trm ) ) ) ) ).

% usubstappt_times_conv
thf(fact_137_usubstappt__plus__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( plus @ Theta2 @ Eta2 ) )
       != ( none @ trm ) )
     => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
         != ( none @ trm ) )
        & ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 )
         != ( none @ trm ) ) ) ) ).

% usubstappt_plus_conv
thf(fact_138_Timeso_Osimps_I1_J,axiom,
    ! [Theta2: trm,Eta2: trm] :
      ( ( uSubst277968634Timeso @ ( some @ trm @ Theta2 ) @ ( some @ trm @ Eta2 ) )
      = ( some @ trm @ ( times @ Theta2 @ Eta2 ) ) ) ).

% Timeso.simps(1)
thf(fact_139_Pluso_Osimps_I1_J,axiom,
    ! [Theta2: trm,Eta2: trm] :
      ( ( uSubst1112714340_Pluso @ ( some @ trm @ Theta2 ) @ ( some @ trm @ Eta2 ) )
      = ( some @ trm @ ( plus @ Theta2 @ Eta2 ) ) ) ).

% Pluso.simps(1)
thf(fact_140_usubstappt_Osimps_I6_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( times @ Theta2 @ Eta2 ) )
      = ( uSubst277968634Timeso @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ).

% usubstappt.simps(6)
thf(fact_141_usubstappt_Osimps_I5_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( plus @ Theta2 @ Eta2 ) )
      = ( uSubst1112714340_Pluso @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ).

% usubstappt.simps(5)
thf(fact_142_usubstappt_Oelims,axiom,
    ! [X4: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),Xa: set @ variable,Xb: trm,Y2: option @ trm] :
      ( ( ( uSubst95898992stappt @ X4 @ Xa @ Xb )
        = Y2 )
     => ( ! [X2: variable] :
            ( ( Xb
              = ( var @ X2 ) )
           => ( Y2
             != ( some @ trm @ ( var @ X2 ) ) ) )
       => ( ! [R3: real] :
              ( ( Xb
                = ( number @ R3 ) )
             => ( Y2
               != ( some @ trm @ ( number @ R3 ) ) ) )
         => ( ! [F5: char] :
                ( ( Xb
                  = ( const @ F5 ) )
               => ( Y2
                 != ( uSubst1138577137pconst @ X4 @ Xa @ F5 ) ) )
           => ( ! [F5: char,Theta: trm] :
                  ( ( Xb
                    = ( func @ F5 @ Theta ) )
                 => ( Y2
                   != ( case_option @ ( option @ trm ) @ trm @ ( none @ trm )
                      @ ^ [Sigma_theta2: trm] :
                          ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( func @ F5 @ Sigma_theta2 ) )
                          @ ^ [R: trm] :
                              ( if @ ( option @ trm )
                              @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R ) @ Xa )
                                = ( bot_bot @ ( set @ variable ) ) )
                              @ ( uSubst95898992stappt @ ( uSubst969145931substt @ Sigma_theta2 ) @ ( bot_bot @ ( set @ variable ) ) @ R )
                              @ ( none @ trm ) )
                          @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                            @ ^ [Uu: char > ( option @ trm )] :
                                ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                                @ ^ [F4: char > ( option @ trm )] :
                                    ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                                    @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                            @ X4
                            @ F5 ) )
                      @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) ) ) )
             => ( ! [Theta: trm,Eta: trm] :
                    ( ( Xb
                      = ( plus @ Theta @ Eta ) )
                   => ( Y2
                     != ( uSubst1112714340_Pluso @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) @ ( uSubst95898992stappt @ X4 @ Xa @ Eta ) ) ) )
               => ( ! [Theta: trm,Eta: trm] :
                      ( ( Xb
                        = ( times @ Theta @ Eta ) )
                     => ( Y2
                       != ( uSubst277968634Timeso @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) @ ( uSubst95898992stappt @ X4 @ Xa @ Eta ) ) ) )
                 => ~ ! [Theta: trm] :
                        ( ( Xb
                          = ( differential @ Theta ) )
                       => ( Y2
                         != ( uSubst259074819ntialo
                            @ ( uSubst95898992stappt @ X4
                              @ ( collect @ variable
                                @ ^ [X: variable] : $true )
                              @ Theta ) ) ) ) ) ) ) ) ) ) ) ).

% usubstappt.elims
thf(fact_143_usubstappt__induct,axiom,
    ! [P: ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) > ( set @ variable ) > trm > $o,A0: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),A1: set @ variable,A22: trm] :
      ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,X2: variable] : ( P @ Sigma3 @ U3 @ ( var @ X2 ) )
     => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,R3: real] : ( P @ Sigma3 @ U3 @ ( number @ R3 ) )
       => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char] : ( P @ Sigma3 @ U3 @ ( const @ F5 ) )
         => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char,Theta: trm] :
                ( ( P @ Sigma3 @ U3 @ Theta )
               => ( ! [X25: trm] :
                      ( ( ( uSubst95898992stappt @ Sigma3 @ U3 @ Theta )
                        = ( some @ trm @ X25 ) )
                     => ! [X2a: trm] :
                          ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                              @ ^ [Uu: char > ( option @ trm )] :
                                  ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                                  @ ^ [F4: char > ( option @ trm )] :
                                      ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                                      @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                              @ Sigma3
                              @ F5 )
                            = ( some @ trm @ X2a ) )
                         => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ X2a ) @ U3 )
                              = ( bot_bot @ ( set @ variable ) ) )
                           => ( P @ ( uSubst969145931substt @ X25 ) @ ( bot_bot @ ( set @ variable ) ) @ X2a ) ) ) )
                 => ( P @ Sigma3 @ U3 @ ( func @ F5 @ Theta ) ) ) )
           => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm] :
                  ( ( P @ Sigma3 @ U3 @ Theta )
                 => ! [Eta: trm] :
                      ( ( P @ Sigma3 @ U3 @ Eta )
                     => ( P @ Sigma3 @ U3 @ ( plus @ Theta @ Eta ) ) ) )
             => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm] :
                    ( ( P @ Sigma3 @ U3 @ Theta )
                   => ! [Eta: trm] :
                        ( ( P @ Sigma3 @ U3 @ Eta )
                       => ( P @ Sigma3 @ U3 @ ( times @ Theta @ Eta ) ) ) )
               => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm] :
                      ( ( P @ Sigma3
                        @ ( collect @ variable
                          @ ^ [X: variable] : $true )
                        @ Theta )
                     => ( P @ Sigma3 @ U3 @ ( differential @ Theta ) ) )
                 => ( P @ A0 @ A1 @ A22 ) ) ) ) ) ) ) ) ).

% usubstappt_induct
thf(fact_144_Geqo_Osimps_I3_J,axiom,
    ! [V2: trm] :
      ( ( uSubst1556497037e_Geqo @ ( some @ trm @ V2 ) @ ( none @ trm ) )
      = ( none @ fml ) ) ).

% Geqo.simps(3)
thf(fact_145_combine__options__def,axiom,
    ! [A: $tType] :
      ( ( combine_options @ A )
      = ( ^ [F2: A > A > A,X: option @ A,Y: option @ A] :
            ( case_option @ ( option @ A ) @ A @ Y
            @ ^ [Z3: A] :
                ( case_option @ ( option @ A ) @ A @ ( some @ A @ Z3 )
                @ ^ [Aa: A] : ( some @ A @ ( F2 @ Z3 @ Aa ) )
                @ Y )
            @ X ) ) ) ).

% combine_options_def
thf(fact_146_trm_Oinject_I2_J,axiom,
    ! [X22: real,Y22: real] :
      ( ( ( number @ X22 )
        = ( number @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% trm.inject(2)
thf(fact_147_trm_Oinject_I1_J,axiom,
    ! [X12: variable,Y1: variable] :
      ( ( ( var @ X12 )
        = ( var @ Y1 ) )
      = ( X12 = Y1 ) ) ).

% trm.inject(1)
thf(fact_148_trm_Oinject_I7_J,axiom,
    ! [X7: trm,Y7: trm] :
      ( ( ( differential @ X7 )
        = ( differential @ Y7 ) )
      = ( X7 = Y7 ) ) ).

% trm.inject(7)
thf(fact_149_combine__options__simps_I2_J,axiom,
    ! [A: $tType,F3: A > A > A,X4: option @ A] :
      ( ( combine_options @ A @ F3 @ X4 @ ( none @ A ) )
      = X4 ) ).

% combine_options_simps(2)
thf(fact_150_combine__options__simps_I1_J,axiom,
    ! [A: $tType,F3: A > A > A,Y2: option @ A] :
      ( ( combine_options @ A @ F3 @ ( none @ A ) @ Y2 )
      = Y2 ) ).

% combine_options_simps(1)
thf(fact_151_combine__options__simps_I3_J,axiom,
    ! [A: $tType,F3: A > A > A,A2: A,B2: A] :
      ( ( combine_options @ A @ F3 @ ( some @ A @ A2 ) @ ( some @ A @ B2 ) )
      = ( some @ A @ ( F3 @ A2 @ B2 ) ) ) ).

% combine_options_simps(3)
thf(fact_152_Differentialo_Osimps_I1_J,axiom,
    ! [Theta2: trm] :
      ( ( uSubst259074819ntialo @ ( some @ trm @ Theta2 ) )
      = ( some @ trm @ ( differential @ Theta2 ) ) ) ).

% Differentialo.simps(1)
thf(fact_153_trm_Odistinct_I21_J,axiom,
    ! [X22: real,X7: trm] :
      ( ( number @ X22 )
     != ( differential @ X7 ) ) ).

% trm.distinct(21)
thf(fact_154_trm_Odistinct_I11_J,axiom,
    ! [X12: variable,X7: trm] :
      ( ( var @ X12 )
     != ( differential @ X7 ) ) ).

% trm.distinct(11)
thf(fact_155_trm_Odistinct_I1_J,axiom,
    ! [X12: variable,X22: real] :
      ( ( var @ X12 )
     != ( number @ X22 ) ) ).

% trm.distinct(1)
thf(fact_156_combine__options__assoc,axiom,
    ! [A: $tType,F3: A > A > A,X4: option @ A,Y2: option @ A,Z2: option @ A] :
      ( ! [X2: A,Y4: A,Z4: A] :
          ( ( F3 @ ( F3 @ X2 @ Y4 ) @ Z4 )
          = ( F3 @ X2 @ ( F3 @ Y4 @ Z4 ) ) )
     => ( ( combine_options @ A @ F3 @ ( combine_options @ A @ F3 @ X4 @ Y2 ) @ Z2 )
        = ( combine_options @ A @ F3 @ X4 @ ( combine_options @ A @ F3 @ Y2 @ Z2 ) ) ) ) ).

% combine_options_assoc
thf(fact_157_combine__options__commute,axiom,
    ! [A: $tType,F3: A > A > A,X4: option @ A,Y2: option @ A] :
      ( ! [X2: A,Y4: A] :
          ( ( F3 @ X2 @ Y4 )
          = ( F3 @ Y4 @ X2 ) )
     => ( ( combine_options @ A @ F3 @ X4 @ Y2 )
        = ( combine_options @ A @ F3 @ Y2 @ X4 ) ) ) ).

% combine_options_commute
thf(fact_158_combine__options__left__commute,axiom,
    ! [A: $tType,F3: A > A > A,Y2: option @ A,X4: option @ A,Z2: option @ A] :
      ( ! [X2: A,Y4: A] :
          ( ( F3 @ X2 @ Y4 )
          = ( F3 @ Y4 @ X2 ) )
     => ( ! [X2: A,Y4: A,Z4: A] :
            ( ( F3 @ ( F3 @ X2 @ Y4 ) @ Z4 )
            = ( F3 @ X2 @ ( F3 @ Y4 @ Z4 ) ) )
       => ( ( combine_options @ A @ F3 @ Y2 @ ( combine_options @ A @ F3 @ X4 @ Z2 ) )
          = ( combine_options @ A @ F3 @ X4 @ ( combine_options @ A @ F3 @ Y2 @ Z2 ) ) ) ) ) ).

% combine_options_left_commute
thf(fact_159_usubstappt_Osimps_I7_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( differential @ Theta2 ) )
      = ( uSubst259074819ntialo
        @ ( uSubst95898992stappt @ Sigma2
          @ ( collect @ variable
            @ ^ [X: variable] : $true )
          @ Theta2 ) ) ) ).

% usubstappt.simps(7)
thf(fact_160_trm_Odistinct_I13_J,axiom,
    ! [X22: real,X3: char] :
      ( ( number @ X22 )
     != ( const @ X3 ) ) ).

% trm.distinct(13)
thf(fact_161_trm_Odistinct_I15_J,axiom,
    ! [X22: real,X41: char,X42: trm] :
      ( ( number @ X22 )
     != ( func @ X41 @ X42 ) ) ).

% trm.distinct(15)
thf(fact_162_trm_Odistinct_I19_J,axiom,
    ! [X22: real,X61: trm,X62: trm] :
      ( ( number @ X22 )
     != ( times @ X61 @ X62 ) ) ).

% trm.distinct(19)
thf(fact_163_trm_Odistinct_I17_J,axiom,
    ! [X22: real,X51: trm,X52: trm] :
      ( ( number @ X22 )
     != ( plus @ X51 @ X52 ) ) ).

% trm.distinct(17)
thf(fact_164_Differentialo_Oelims,axiom,
    ! [X4: option @ trm,Y2: option @ trm] :
      ( ( ( uSubst259074819ntialo @ X4 )
        = Y2 )
     => ( ! [Theta: trm] :
            ( ( X4
              = ( some @ trm @ Theta ) )
           => ( Y2
             != ( some @ trm @ ( differential @ Theta ) ) ) )
       => ~ ( ( X4
              = ( none @ trm ) )
           => ( Y2
             != ( none @ trm ) ) ) ) ) ).

% Differentialo.elims
thf(fact_165_trm_Odistinct_I3_J,axiom,
    ! [X12: variable,X3: char] :
      ( ( var @ X12 )
     != ( const @ X3 ) ) ).

% trm.distinct(3)
thf(fact_166_trm_Odistinct_I5_J,axiom,
    ! [X12: variable,X41: char,X42: trm] :
      ( ( var @ X12 )
     != ( func @ X41 @ X42 ) ) ).

% trm.distinct(5)
thf(fact_167_trm_Odistinct_I9_J,axiom,
    ! [X12: variable,X61: trm,X62: trm] :
      ( ( var @ X12 )
     != ( times @ X61 @ X62 ) ) ).

% trm.distinct(9)
thf(fact_168_trm_Odistinct_I7_J,axiom,
    ! [X12: variable,X51: trm,X52: trm] :
      ( ( var @ X12 )
     != ( plus @ X51 @ X52 ) ) ).

% trm.distinct(7)
thf(fact_169_trm_Odistinct_I29_J,axiom,
    ! [X3: char,X7: trm] :
      ( ( const @ X3 )
     != ( differential @ X7 ) ) ).

% trm.distinct(29)
thf(fact_170_trm_Odistinct_I35_J,axiom,
    ! [X41: char,X42: trm,X7: trm] :
      ( ( func @ X41 @ X42 )
     != ( differential @ X7 ) ) ).

% trm.distinct(35)
thf(fact_171_trm_Odistinct_I41_J,axiom,
    ! [X61: trm,X62: trm,X7: trm] :
      ( ( times @ X61 @ X62 )
     != ( differential @ X7 ) ) ).

% trm.distinct(41)
thf(fact_172_trm_Odistinct_I39_J,axiom,
    ! [X51: trm,X52: trm,X7: trm] :
      ( ( plus @ X51 @ X52 )
     != ( differential @ X7 ) ) ).

% trm.distinct(39)
thf(fact_173_trm_Oexhaust,axiom,
    ! [Y2: trm] :
      ( ! [X13: variable] :
          ( Y2
         != ( var @ X13 ) )
     => ( ! [X23: real] :
            ( Y2
           != ( number @ X23 ) )
       => ( ! [X32: char] :
              ( Y2
             != ( const @ X32 ) )
         => ( ! [X412: char,X422: trm] :
                ( Y2
               != ( func @ X412 @ X422 ) )
           => ( ! [X512: trm,X522: trm] :
                  ( Y2
                 != ( plus @ X512 @ X522 ) )
             => ( ! [X612: trm,X622: trm] :
                    ( Y2
                   != ( times @ X612 @ X622 ) )
               => ~ ! [X72: trm] :
                      ( Y2
                     != ( differential @ X72 ) ) ) ) ) ) ) ) ).

% trm.exhaust
thf(fact_174_trm_Oinduct,axiom,
    ! [P: trm > $o,Trm: trm] :
      ( ! [X2: variable] : ( P @ ( var @ X2 ) )
     => ( ! [X2: real] : ( P @ ( number @ X2 ) )
       => ( ! [X2: char] : ( P @ ( const @ X2 ) )
         => ( ! [X1a: char,X2a2: trm] :
                ( ( P @ X2a2 )
               => ( P @ ( func @ X1a @ X2a2 ) ) )
           => ( ! [X1a: trm,X2a2: trm] :
                  ( ( P @ X1a )
                 => ( ( P @ X2a2 )
                   => ( P @ ( plus @ X1a @ X2a2 ) ) ) )
             => ( ! [X1a: trm,X2a2: trm] :
                    ( ( P @ X1a )
                   => ( ( P @ X2a2 )
                     => ( P @ ( times @ X1a @ X2a2 ) ) ) )
               => ( ! [X2: trm] :
                      ( ( P @ X2 )
                     => ( P @ ( differential @ X2 ) ) )
                 => ( P @ Trm ) ) ) ) ) ) ) ) ).

% trm.induct
thf(fact_175_Geqo_Osimps_I2_J,axiom,
    ! [Eta2: option @ trm] :
      ( ( uSubst1556497037e_Geqo @ ( none @ trm ) @ Eta2 )
      = ( none @ fml ) ) ).

% Geqo.simps(2)
thf(fact_176_Geqo__undef,axiom,
    ! [Theta2: option @ trm,Eta2: option @ trm] :
      ( ( ( uSubst1556497037e_Geqo @ Theta2 @ Eta2 )
        = ( none @ fml ) )
      = ( ( Theta2
          = ( none @ trm ) )
        | ( Eta2
          = ( none @ trm ) ) ) ) ).

% Geqo_undef
thf(fact_177_Differentialo_Osimps_I2_J,axiom,
    ( ( uSubst259074819ntialo @ ( none @ trm ) )
    = ( none @ trm ) ) ).

% Differentialo.simps(2)
thf(fact_178_Differentialo__undef,axiom,
    ! [Theta2: option @ trm] :
      ( ( ( uSubst259074819ntialo @ Theta2 )
        = ( none @ trm ) )
      = ( Theta2
        = ( none @ trm ) ) ) ).

% Differentialo_undef
thf(fact_179_usubstappt_Osimps_I2_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,R2: real] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( number @ R2 ) )
      = ( some @ trm @ ( number @ R2 ) ) ) ).

% usubstappt.simps(2)
thf(fact_180_usubstappt_Osimps_I1_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,X4: variable] :
      ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( var @ X4 ) )
      = ( some @ trm @ ( var @ X4 ) ) ) ).

% usubstappt.simps(1)
thf(fact_181_usubstappt__differential__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( differential @ Theta2 ) )
       != ( none @ trm ) )
     => ( ( uSubst95898992stappt @ Sigma2
          @ ( collect @ variable
            @ ^ [X: variable] : $true )
          @ Theta2 )
       != ( none @ trm ) ) ) ).

% usubstappt_differential_conv
thf(fact_182_usubstappt_Opelims,axiom,
    ! [X4: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),Xa: set @ variable,Xb: trm,Y2: option @ trm] :
      ( ( ( uSubst95898992stappt @ X4 @ Xa @ Xb )
        = Y2 )
     => ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ Xb ) ) )
       => ( ! [X2: variable] :
              ( ( Xb
                = ( var @ X2 ) )
             => ( ( Y2
                  = ( some @ trm @ ( var @ X2 ) ) )
               => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( var @ X2 ) ) ) ) ) )
         => ( ! [R3: real] :
                ( ( Xb
                  = ( number @ R3 ) )
               => ( ( Y2
                    = ( some @ trm @ ( number @ R3 ) ) )
                 => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( number @ R3 ) ) ) ) ) )
           => ( ! [F5: char] :
                  ( ( Xb
                    = ( const @ F5 ) )
                 => ( ( Y2
                      = ( uSubst1138577137pconst @ X4 @ Xa @ F5 ) )
                   => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( const @ F5 ) ) ) ) ) )
             => ( ! [F5: char,Theta: trm] :
                    ( ( Xb
                      = ( func @ F5 @ Theta ) )
                   => ( ( Y2
                        = ( case_option @ ( option @ trm ) @ trm @ ( none @ trm )
                          @ ^ [Sigma_theta2: trm] :
                              ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( func @ F5 @ Sigma_theta2 ) )
                              @ ^ [R: trm] :
                                  ( if @ ( option @ trm )
                                  @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R ) @ Xa )
                                    = ( bot_bot @ ( set @ variable ) ) )
                                  @ ( uSubst95898992stappt @ ( uSubst969145931substt @ Sigma_theta2 ) @ ( bot_bot @ ( set @ variable ) ) @ R )
                                  @ ( none @ trm ) )
                              @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                                @ ^ [Uu: char > ( option @ trm )] :
                                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                                    @ ^ [F4: char > ( option @ trm )] :
                                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                                @ X4
                                @ F5 ) )
                          @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) ) )
                     => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( func @ F5 @ Theta ) ) ) ) ) )
               => ( ! [Theta: trm,Eta: trm] :
                      ( ( Xb
                        = ( plus @ Theta @ Eta ) )
                     => ( ( Y2
                          = ( uSubst1112714340_Pluso @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) @ ( uSubst95898992stappt @ X4 @ Xa @ Eta ) ) )
                       => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( plus @ Theta @ Eta ) ) ) ) ) )
                 => ( ! [Theta: trm,Eta: trm] :
                        ( ( Xb
                          = ( times @ Theta @ Eta ) )
                       => ( ( Y2
                            = ( uSubst277968634Timeso @ ( uSubst95898992stappt @ X4 @ Xa @ Theta ) @ ( uSubst95898992stappt @ X4 @ Xa @ Eta ) ) )
                         => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( times @ Theta @ Eta ) ) ) ) ) )
                   => ~ ! [Theta: trm] :
                          ( ( Xb
                            = ( differential @ Theta ) )
                         => ( ( Y2
                              = ( uSubst259074819ntialo
                                @ ( uSubst95898992stappt @ X4
                                  @ ( collect @ variable
                                    @ ^ [X: variable] : $true )
                                  @ Theta ) ) )
                           => ~ ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ X4 @ ( product_Pair @ ( set @ variable ) @ trm @ Xa @ ( differential @ Theta ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% usubstappt.pelims
thf(fact_183_term__sem_Ocases,axiom,
    ! [X4: product_prod @ denotational_interp @ trm] :
      ( ! [I: denotational_interp,X2: variable] :
          ( X4
         != ( product_Pair @ denotational_interp @ trm @ I @ ( var @ X2 ) ) )
     => ( ! [I: denotational_interp,R3: real] :
            ( X4
           != ( product_Pair @ denotational_interp @ trm @ I @ ( number @ R3 ) ) )
       => ( ! [I: denotational_interp,F5: char] :
              ( X4
             != ( product_Pair @ denotational_interp @ trm @ I @ ( const @ F5 ) ) )
         => ( ! [I: denotational_interp,F5: char,Theta: trm] :
                ( X4
               != ( product_Pair @ denotational_interp @ trm @ I @ ( func @ F5 @ Theta ) ) )
           => ( ! [I: denotational_interp,Theta: trm,Eta: trm] :
                  ( X4
                 != ( product_Pair @ denotational_interp @ trm @ I @ ( plus @ Theta @ Eta ) ) )
             => ( ! [I: denotational_interp,Theta: trm,Eta: trm] :
                    ( X4
                   != ( product_Pair @ denotational_interp @ trm @ I @ ( times @ Theta @ Eta ) ) )
               => ~ ! [I: denotational_interp,Theta: trm] :
                      ( X4
                     != ( product_Pair @ denotational_interp @ trm @ I @ ( differential @ Theta ) ) ) ) ) ) ) ) ) ).

% term_sem.cases
thf(fact_184_term__sem_Oinduct,axiom,
    ! [P: denotational_interp > trm > $o,A0: denotational_interp,A1: trm] :
      ( ! [I: denotational_interp,X2: variable] : ( P @ I @ ( var @ X2 ) )
     => ( ! [I: denotational_interp,R3: real] : ( P @ I @ ( number @ R3 ) )
       => ( ! [I: denotational_interp,F5: char] : ( P @ I @ ( const @ F5 ) )
         => ( ! [I: denotational_interp,F5: char,Theta: trm] :
                ( ( P @ I @ Theta )
               => ( P @ I @ ( func @ F5 @ Theta ) ) )
           => ( ! [I: denotational_interp,Theta: trm] :
                  ( ( P @ I @ Theta )
                 => ! [Eta: trm] :
                      ( ( P @ I @ Eta )
                     => ( P @ I @ ( plus @ Theta @ Eta ) ) ) )
             => ( ! [I: denotational_interp,Theta: trm] :
                    ( ( P @ I @ Theta )
                   => ! [Eta: trm] :
                        ( ( P @ I @ Eta )
                       => ( P @ I @ ( times @ Theta @ Eta ) ) ) )
               => ( ! [I: denotational_interp,Theta: trm] :
                      ( ( ? [Xa2: char] :
                            ( member @ char @ Xa2
                            @ ( collect @ char
                              @ ^ [Uu: char] : $true ) )
                       => ( P @ I @ Theta ) )
                     => ( P @ I @ ( differential @ Theta ) ) )
                 => ( P @ A0 @ A1 ) ) ) ) ) ) ) ) ).

% term_sem.induct
thf(fact_185_old_Oprod_Oinject,axiom,
    ! [A: $tType,B: $tType,A2: A,B2: B,A7: A,B7: B] :
      ( ( ( product_Pair @ A @ B @ A2 @ B2 )
        = ( product_Pair @ A @ B @ A7 @ B7 ) )
      = ( ( A2 = A7 )
        & ( B2 = B7 ) ) ) ).

% old.prod.inject
thf(fact_186_prod_Oinject,axiom,
    ! [A: $tType,B: $tType,X12: A,X22: B,Y1: A,Y22: B] :
      ( ( ( product_Pair @ A @ B @ X12 @ X22 )
        = ( product_Pair @ A @ B @ Y1 @ Y22 ) )
      = ( ( X12 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_187_case__prodI,axiom,
    ! [A: $tType,B: $tType,F3: A > B > $o,A2: A,B2: B] :
      ( ( F3 @ A2 @ B2 )
     => ( product_case_prod @ A @ B @ $o @ F3 @ ( product_Pair @ A @ B @ A2 @ B2 ) ) ) ).

% case_prodI
thf(fact_188_case__prodI2,axiom,
    ! [B: $tType,A: $tType,P4: product_prod @ A @ B,C2: A > B > $o] :
      ( ! [A5: A,B5: B] :
          ( ( P4
            = ( product_Pair @ A @ B @ A5 @ B5 ) )
         => ( C2 @ A5 @ B5 ) )
     => ( product_case_prod @ A @ B @ $o @ C2 @ P4 ) ) ).

% case_prodI2
thf(fact_189_case__prodI2_H,axiom,
    ! [A: $tType,B: $tType,C: $tType,P4: product_prod @ A @ B,C2: A > B > C > $o,X4: C] :
      ( ! [A5: A,B5: B] :
          ( ( ( product_Pair @ A @ B @ A5 @ B5 )
            = P4 )
         => ( C2 @ A5 @ B5 @ X4 ) )
     => ( product_case_prod @ A @ B @ ( C > $o ) @ C2 @ P4 @ X4 ) ) ).

% case_prodI2'
thf(fact_190_mem__case__prodI,axiom,
    ! [A: $tType,B: $tType,C: $tType,Z2: A,C2: B > C > ( set @ A ),A2: B,B2: C] :
      ( ( member @ A @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member @ A @ Z2 @ ( product_case_prod @ B @ C @ ( set @ A ) @ C2 @ ( product_Pair @ B @ C @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_191_mem__case__prodI2,axiom,
    ! [C: $tType,B: $tType,A: $tType,P4: product_prod @ A @ B,Z2: C,C2: A > B > ( set @ C )] :
      ( ! [A5: A,B5: B] :
          ( ( P4
            = ( product_Pair @ A @ B @ A5 @ B5 ) )
         => ( member @ C @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member @ C @ Z2 @ ( product_case_prod @ A @ B @ ( set @ C ) @ C2 @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_192_case__prod__conv,axiom,
    ! [B: $tType,A: $tType,C: $tType,F3: B > C > A,A2: B,B2: C] :
      ( ( product_case_prod @ B @ C @ A @ F3 @ ( product_Pair @ B @ C @ A2 @ B2 ) )
      = ( F3 @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_193_usubstappt_Opsimps_I7_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( differential @ Theta2 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( differential @ Theta2 ) )
        = ( uSubst259074819ntialo
          @ ( uSubst95898992stappt @ Sigma2
            @ ( collect @ variable
              @ ^ [X: variable] : $true )
            @ Theta2 ) ) ) ) ).

% usubstappt.psimps(7)
thf(fact_194_usubstappt_Opsimps_I1_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,X4: variable] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( var @ X4 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( var @ X4 ) )
        = ( some @ trm @ ( var @ X4 ) ) ) ) ).

% usubstappt.psimps(1)
thf(fact_195_usubstappt_Opsimps_I2_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,R2: real] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( number @ R2 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( number @ R2 ) )
        = ( some @ trm @ ( number @ R2 ) ) ) ) ).

% usubstappt.psimps(2)
thf(fact_196_cond__case__prod__eta,axiom,
    ! [C: $tType,B: $tType,A: $tType,F3: A > B > C,G2: ( product_prod @ A @ B ) > C] :
      ( ! [X2: A,Y4: B] :
          ( ( F3 @ X2 @ Y4 )
          = ( G2 @ ( product_Pair @ A @ B @ X2 @ Y4 ) ) )
     => ( ( product_case_prod @ A @ B @ C @ F3 )
        = G2 ) ) ).

% cond_case_prod_eta
thf(fact_197_case__prod__eta,axiom,
    ! [C: $tType,B: $tType,A: $tType,F3: ( product_prod @ A @ B ) > C] :
      ( ( product_case_prod @ A @ B @ C
        @ ^ [X: A,Y: B] : ( F3 @ ( product_Pair @ A @ B @ X @ Y ) ) )
      = F3 ) ).

% case_prod_eta
thf(fact_198_case__prodE2,axiom,
    ! [B: $tType,A: $tType,C: $tType,Q: A > $o,P: B > C > A,Z2: product_prod @ B @ C] :
      ( ( Q @ ( product_case_prod @ B @ C @ A @ P @ Z2 ) )
     => ~ ! [X2: B,Y4: C] :
            ( ( Z2
              = ( product_Pair @ B @ C @ X2 @ Y4 ) )
           => ~ ( Q @ ( P @ X2 @ Y4 ) ) ) ) ).

% case_prodE2
thf(fact_199_inf__Int__eq2,axiom,
    ! [B: $tType,A: $tType,R4: set @ ( product_prod @ A @ B ),S: set @ ( product_prod @ A @ B )] :
      ( ( inf_inf @ ( A > B > $o )
        @ ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ R4 )
        @ ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ S ) )
      = ( ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( inf_inf @ ( set @ ( product_prod @ A @ B ) ) @ R4 @ S ) ) ) ) ).

% inf_Int_eq2
thf(fact_200_bot__empty__eq2,axiom,
    ! [B: $tType,A: $tType] :
      ( ( bot_bot @ ( A > B > $o ) )
      = ( ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ ( bot_bot @ ( set @ ( product_prod @ A @ B ) ) ) ) ) ) ).

% bot_empty_eq2
thf(fact_201_case__prodD,axiom,
    ! [A: $tType,B: $tType,F3: A > B > $o,A2: A,B2: B] :
      ( ( product_case_prod @ A @ B @ $o @ F3 @ ( product_Pair @ A @ B @ A2 @ B2 ) )
     => ( F3 @ A2 @ B2 ) ) ).

% case_prodD
thf(fact_202_case__prodE,axiom,
    ! [A: $tType,B: $tType,C2: A > B > $o,P4: product_prod @ A @ B] :
      ( ( product_case_prod @ A @ B @ $o @ C2 @ P4 )
     => ~ ! [X2: A,Y4: B] :
            ( ( P4
              = ( product_Pair @ A @ B @ X2 @ Y4 ) )
           => ~ ( C2 @ X2 @ Y4 ) ) ) ).

% case_prodE
thf(fact_203_case__prodD_H,axiom,
    ! [B: $tType,A: $tType,C: $tType,R4: A > B > C > $o,A2: A,B2: B,C2: C] :
      ( ( product_case_prod @ A @ B @ ( C > $o ) @ R4 @ ( product_Pair @ A @ B @ A2 @ B2 ) @ C2 )
     => ( R4 @ A2 @ B2 @ C2 ) ) ).

% case_prodD'
thf(fact_204_case__prodE_H,axiom,
    ! [B: $tType,A: $tType,C: $tType,C2: A > B > C > $o,P4: product_prod @ A @ B,Z2: C] :
      ( ( product_case_prod @ A @ B @ ( C > $o ) @ C2 @ P4 @ Z2 )
     => ~ ! [X2: A,Y4: B] :
            ( ( P4
              = ( product_Pair @ A @ B @ X2 @ Y4 ) )
           => ~ ( C2 @ X2 @ Y4 @ Z2 ) ) ) ).

% case_prodE'
thf(fact_205_pred__equals__eq2,axiom,
    ! [B: $tType,A: $tType,R4: set @ ( product_prod @ A @ B ),S: set @ ( product_prod @ A @ B )] :
      ( ( ( ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ R4 ) )
        = ( ^ [X: A,Y: B] : ( member @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B @ X @ Y ) @ S ) ) )
      = ( R4 = S ) ) ).

% pred_equals_eq2
thf(fact_206_mem__case__prodE,axiom,
    ! [B: $tType,A: $tType,C: $tType,Z2: A,C2: B > C > ( set @ A ),P4: product_prod @ B @ C] :
      ( ( member @ A @ Z2 @ ( product_case_prod @ B @ C @ ( set @ A ) @ C2 @ P4 ) )
     => ~ ! [X2: B,Y4: C] :
            ( ( P4
              = ( product_Pair @ B @ C @ X2 @ Y4 ) )
           => ~ ( member @ A @ Z2 @ ( C2 @ X2 @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_207_old_Oprod_Oinducts,axiom,
    ! [B: $tType,A: $tType,P: ( product_prod @ A @ B ) > $o,Prod: product_prod @ A @ B] :
      ( ! [A5: A,B5: B] : ( P @ ( product_Pair @ A @ B @ A5 @ B5 ) )
     => ( P @ Prod ) ) ).

% old.prod.inducts
thf(fact_208_old_Oprod_Oexhaust,axiom,
    ! [A: $tType,B: $tType,Y2: product_prod @ A @ B] :
      ~ ! [A5: A,B5: B] :
          ( Y2
         != ( product_Pair @ A @ B @ A5 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_209_prod__induct7,axiom,
    ! [G3: $tType,F6: $tType,E: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: ( product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) ) ) > $o,X4: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) )] :
      ( ! [A5: A,B5: B,C4: C,D2: D,E2: E,F5: F6,G4: G3] : ( P @ ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) @ C4 @ ( product_Pair @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) @ D2 @ ( product_Pair @ E @ ( product_prod @ F6 @ G3 ) @ E2 @ ( product_Pair @ F6 @ G3 @ F5 @ G4 ) ) ) ) ) ) )
     => ( P @ X4 ) ) ).

% prod_induct7
thf(fact_210_prod__induct6,axiom,
    ! [F6: $tType,E: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: ( product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) ) ) > $o,X4: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) )] :
      ( ! [A5: A,B5: B,C4: C,D2: D,E2: E,F5: F6] : ( P @ ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) @ C4 @ ( product_Pair @ D @ ( product_prod @ E @ F6 ) @ D2 @ ( product_Pair @ E @ F6 @ E2 @ F5 ) ) ) ) ) )
     => ( P @ X4 ) ) ).

% prod_induct6
thf(fact_211_prod__induct5,axiom,
    ! [E: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: ( product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) ) ) > $o,X4: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) )] :
      ( ! [A5: A,B5: B,C4: C,D2: D,E2: E] : ( P @ ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ E ) @ C4 @ ( product_Pair @ D @ E @ D2 @ E2 ) ) ) ) )
     => ( P @ X4 ) ) ).

% prod_induct5
thf(fact_212_prod__induct4,axiom,
    ! [D: $tType,C: $tType,B: $tType,A: $tType,P: ( product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ D ) ) ) > $o,X4: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ D ) )] :
      ( ! [A5: A,B5: B,C4: C,D2: D] : ( P @ ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ D ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ D ) @ B5 @ ( product_Pair @ C @ D @ C4 @ D2 ) ) ) )
     => ( P @ X4 ) ) ).

% prod_induct4
thf(fact_213_prod__induct3,axiom,
    ! [C: $tType,B: $tType,A: $tType,P: ( product_prod @ A @ ( product_prod @ B @ C ) ) > $o,X4: product_prod @ A @ ( product_prod @ B @ C )] :
      ( ! [A5: A,B5: B,C4: C] : ( P @ ( product_Pair @ A @ ( product_prod @ B @ C ) @ A5 @ ( product_Pair @ B @ C @ B5 @ C4 ) ) )
     => ( P @ X4 ) ) ).

% prod_induct3
thf(fact_214_prod__cases7,axiom,
    ! [A: $tType,B: $tType,C: $tType,D: $tType,E: $tType,F6: $tType,G3: $tType,Y2: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) )] :
      ~ ! [A5: A,B5: B,C4: C,D2: D,E2: E,F5: F6,G4: G3] :
          ( Y2
         != ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) ) @ C4 @ ( product_Pair @ D @ ( product_prod @ E @ ( product_prod @ F6 @ G3 ) ) @ D2 @ ( product_Pair @ E @ ( product_prod @ F6 @ G3 ) @ E2 @ ( product_Pair @ F6 @ G3 @ F5 @ G4 ) ) ) ) ) ) ) ).

% prod_cases7
thf(fact_215_prod__cases6,axiom,
    ! [A: $tType,B: $tType,C: $tType,D: $tType,E: $tType,F6: $tType,Y2: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) )] :
      ~ ! [A5: A,B5: B,C4: C,D2: D,E2: E,F5: F6] :
          ( Y2
         != ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ ( product_prod @ E @ F6 ) ) @ C4 @ ( product_Pair @ D @ ( product_prod @ E @ F6 ) @ D2 @ ( product_Pair @ E @ F6 @ E2 @ F5 ) ) ) ) ) ) ).

% prod_cases6
thf(fact_216_prod__cases5,axiom,
    ! [A: $tType,B: $tType,C: $tType,D: $tType,E: $tType,Y2: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) )] :
      ~ ! [A5: A,B5: B,C4: C,D2: D,E2: E] :
          ( Y2
         != ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ ( product_prod @ D @ E ) ) @ B5 @ ( product_Pair @ C @ ( product_prod @ D @ E ) @ C4 @ ( product_Pair @ D @ E @ D2 @ E2 ) ) ) ) ) ).

% prod_cases5
thf(fact_217_prod__cases4,axiom,
    ! [A: $tType,B: $tType,C: $tType,D: $tType,Y2: product_prod @ A @ ( product_prod @ B @ ( product_prod @ C @ D ) )] :
      ~ ! [A5: A,B5: B,C4: C,D2: D] :
          ( Y2
         != ( product_Pair @ A @ ( product_prod @ B @ ( product_prod @ C @ D ) ) @ A5 @ ( product_Pair @ B @ ( product_prod @ C @ D ) @ B5 @ ( product_Pair @ C @ D @ C4 @ D2 ) ) ) ) ).

% prod_cases4
thf(fact_218_prod__cases3,axiom,
    ! [A: $tType,B: $tType,C: $tType,Y2: product_prod @ A @ ( product_prod @ B @ C )] :
      ~ ! [A5: A,B5: B,C4: C] :
          ( Y2
         != ( product_Pair @ A @ ( product_prod @ B @ C ) @ A5 @ ( product_Pair @ B @ C @ B5 @ C4 ) ) ) ).

% prod_cases3
thf(fact_219_Pair__inject,axiom,
    ! [A: $tType,B: $tType,A2: A,B2: B,A7: A,B7: B] :
      ( ( ( product_Pair @ A @ B @ A2 @ B2 )
        = ( product_Pair @ A @ B @ A7 @ B7 ) )
     => ~ ( ( A2 = A7 )
         => ( B2 != B7 ) ) ) ).

% Pair_inject
thf(fact_220_prod__cases,axiom,
    ! [B: $tType,A: $tType,P: ( product_prod @ A @ B ) > $o,P4: product_prod @ A @ B] :
      ( ! [A5: A,B5: B] : ( P @ ( product_Pair @ A @ B @ A5 @ B5 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_221_surj__pair,axiom,
    ! [A: $tType,B: $tType,P4: product_prod @ A @ B] :
    ? [X2: A,Y4: B] :
      ( P4
      = ( product_Pair @ A @ B @ X2 @ Y4 ) ) ).

% surj_pair
thf(fact_222_old_Oprod_Ocase,axiom,
    ! [A: $tType,C: $tType,B: $tType,F3: A > B > C,X12: A,X22: B] :
      ( ( product_case_prod @ A @ B @ C @ F3 @ ( product_Pair @ A @ B @ X12 @ X22 ) )
      = ( F3 @ X12 @ X22 ) ) ).

% old.prod.case
thf(fact_223_case__prod__Pair__iden,axiom,
    ! [B: $tType,A: $tType,P4: product_prod @ A @ B] :
      ( ( product_case_prod @ A @ B @ ( product_prod @ A @ B ) @ ( product_Pair @ A @ B ) @ P4 )
      = P4 ) ).

% case_prod_Pair_iden
thf(fact_224_usubstappt_Opsimps_I3_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( const @ F3 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( const @ F3 ) )
        = ( uSubst1138577137pconst @ Sigma2 @ U2 @ F3 ) ) ) ).

% usubstappt.psimps(3)
thf(fact_225_usubstappt_Opsimps_I6_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( times @ Theta2 @ Eta2 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( times @ Theta2 @ Eta2 ) )
        = ( uSubst277968634Timeso @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ) ).

% usubstappt.psimps(6)
thf(fact_226_usubstappt_Opsimps_I5_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( plus @ Theta2 @ Eta2 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( plus @ Theta2 @ Eta2 ) )
        = ( uSubst1112714340_Pluso @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ) ).

% usubstappt.psimps(5)
thf(fact_227_internal__case__prod__conv,axiom,
    ! [B: $tType,A: $tType,C: $tType,C2: B > C > A,A2: B,B2: C] :
      ( ( produc2004651681e_prod @ B @ C @ A @ C2 @ ( product_Pair @ B @ C @ A2 @ B2 ) )
      = ( C2 @ A2 @ B2 ) ) ).

% internal_case_prod_conv
thf(fact_228_usubstappt_Opsimps_I4_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,F3: char,Theta2: trm] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma2 @ ( product_Pair @ ( set @ variable ) @ trm @ U2 @ ( func @ F3 @ Theta2 ) ) ) )
     => ( ( uSubst95898992stappt @ Sigma2 @ U2 @ ( func @ F3 @ Theta2 ) )
        = ( case_option @ ( option @ trm ) @ trm @ ( none @ trm )
          @ ^ [Sigma_theta2: trm] :
              ( case_option @ ( option @ trm ) @ trm @ ( some @ trm @ ( func @ F3 @ Sigma_theta2 ) )
              @ ^ [R: trm] :
                  ( if @ ( option @ trm )
                  @ ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ R ) @ U2 )
                    = ( bot_bot @ ( set @ variable ) ) )
                  @ ( uSubst95898992stappt @ ( uSubst969145931substt @ Sigma_theta2 ) @ ( bot_bot @ ( set @ variable ) ) @ R )
                  @ ( none @ trm ) )
              @ ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uu: char > ( option @ trm )] :
                    ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                    @ ^ [F4: char > ( option @ trm )] :
                        ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                        @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                @ Sigma2
                @ F3 ) )
          @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) ) ) ) ).

% usubstappt.psimps(4)
thf(fact_229_usubstappt_Ocases,axiom,
    ! [X4: product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm )] :
      ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,X2: variable] :
          ( X4
         != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( var @ X2 ) ) ) )
     => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,R3: real] :
            ( X4
           != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( number @ R3 ) ) ) )
       => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char] :
              ( X4
             != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( const @ F5 ) ) ) )
         => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char,Theta: trm] :
                ( X4
               != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( func @ F5 @ Theta ) ) ) )
           => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm,Eta: trm] :
                  ( X4
                 != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( plus @ Theta @ Eta ) ) ) )
             => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm,Eta: trm] :
                    ( X4
                   != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( times @ Theta @ Eta ) ) ) )
               => ~ ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm] :
                      ( X4
                     != ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( differential @ Theta ) ) ) ) ) ) ) ) ) ) ).

% usubstappt.cases
thf(fact_230_usubstappt_Opinduct,axiom,
    ! [A0: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),A1: set @ variable,A22: trm,P: ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) > ( set @ variable ) > trm > $o] :
      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ A0 @ ( product_Pair @ ( set @ variable ) @ trm @ A1 @ A22 ) ) )
     => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,X2: variable] :
            ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( var @ X2 ) ) ) )
           => ( P @ Sigma3 @ U3 @ ( var @ X2 ) ) )
       => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,R3: real] :
              ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( number @ R3 ) ) ) )
             => ( P @ Sigma3 @ U3 @ ( number @ R3 ) ) )
         => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char] :
                ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( const @ F5 ) ) ) )
               => ( P @ Sigma3 @ U3 @ ( const @ F5 ) ) )
           => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,F5: char,Theta: trm] :
                  ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( func @ F5 @ Theta ) ) ) )
                 => ( ( P @ Sigma3 @ U3 @ Theta )
                   => ( ! [X25: trm] :
                          ( ( ( uSubst95898992stappt @ Sigma3 @ U3 @ Theta )
                            = ( some @ trm @ X25 ) )
                         => ! [X2a: trm] :
                              ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
                                  @ ^ [Uu: char > ( option @ trm )] :
                                      ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
                                      @ ^ [F4: char > ( option @ trm )] :
                                          ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                                          @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F4 ) )
                                  @ Sigma3
                                  @ F5 )
                                = ( some @ trm @ X2a ) )
                             => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVT @ X2a ) @ U3 )
                                  = ( bot_bot @ ( set @ variable ) ) )
                               => ( P @ ( uSubst969145931substt @ X25 ) @ ( bot_bot @ ( set @ variable ) ) @ X2a ) ) ) )
                     => ( P @ Sigma3 @ U3 @ ( func @ F5 @ Theta ) ) ) ) )
             => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm,Eta: trm] :
                    ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( plus @ Theta @ Eta ) ) ) )
                   => ( ( P @ Sigma3 @ U3 @ Theta )
                     => ( ( P @ Sigma3 @ U3 @ Eta )
                       => ( P @ Sigma3 @ U3 @ ( plus @ Theta @ Eta ) ) ) ) )
               => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm,Eta: trm] :
                      ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( times @ Theta @ Eta ) ) ) )
                     => ( ( P @ Sigma3 @ U3 @ Theta )
                       => ( ( P @ Sigma3 @ U3 @ Eta )
                         => ( P @ Sigma3 @ U3 @ ( times @ Theta @ Eta ) ) ) ) )
                 => ( ! [Sigma3: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U3: set @ variable,Theta: trm] :
                        ( ( accp @ ( product_prod @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) ) @ uSubst2096773001pt_rel @ ( product_Pair @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) ) @ ( product_prod @ ( set @ variable ) @ trm ) @ Sigma3 @ ( product_Pair @ ( set @ variable ) @ trm @ U3 @ ( differential @ Theta ) ) ) )
                       => ( ( P @ Sigma3
                            @ ( collect @ variable
                              @ ^ [X: variable] : $true )
                            @ Theta )
                         => ( P @ Sigma3 @ U3 @ ( differential @ Theta ) ) ) )
                   => ( P @ A0 @ A1 @ A22 ) ) ) ) ) ) ) ) ) ).

% usubstappt.pinduct
thf(fact_231_old_Oprod_Orec,axiom,
    ! [A: $tType,T: $tType,B: $tType,F1: A > B > T,A2: A,B2: B] :
      ( ( product_rec_prod @ A @ B @ T @ F1 @ ( product_Pair @ A @ B @ A2 @ B2 ) )
      = ( F1 @ A2 @ B2 ) ) ).

% old.prod.rec
thf(fact_232_split__cong,axiom,
    ! [C: $tType,B: $tType,A: $tType,Q3: product_prod @ A @ B,F3: A > B > C,G2: A > B > C,P4: product_prod @ A @ B] :
      ( ! [X2: A,Y4: B] :
          ( ( ( product_Pair @ A @ B @ X2 @ Y4 )
            = Q3 )
         => ( ( F3 @ X2 @ Y4 )
            = ( G2 @ X2 @ Y4 ) ) )
     => ( ( P4 = Q3 )
       => ( ( product_case_prod @ A @ B @ C @ F3 @ P4 )
          = ( product_case_prod @ A @ B @ C @ G2 @ Q3 ) ) ) ) ).

% split_cong
thf(fact_233_Geqo_Oelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ fml] :
      ( ( ( uSubst1556497037e_Geqo @ X4 @ Xa )
        = Y2 )
     => ( ! [Theta: trm] :
            ( ( X4
              = ( some @ trm @ Theta ) )
           => ! [Eta: trm] :
                ( ( Xa
                  = ( some @ trm @ Eta ) )
               => ( Y2
                 != ( some @ fml @ ( geq @ Theta @ Eta ) ) ) ) )
       => ( ( ( X4
              = ( none @ trm ) )
           => ( Y2
             != ( none @ fml ) ) )
         => ~ ( ? [V: trm] :
                  ( X4
                  = ( some @ trm @ V ) )
             => ( ( Xa
                  = ( none @ trm ) )
               => ( Y2
                 != ( none @ fml ) ) ) ) ) ) ) ).

% Geqo.elims
thf(fact_234_fml_Oinject_I2_J,axiom,
    ! [X21: trm,X222: trm,Y21: trm,Y222: trm] :
      ( ( ( geq @ X21 @ X222 )
        = ( geq @ Y21 @ Y222 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y222 ) ) ) ).

% fml.inject(2)
thf(fact_235_Diamondo_Ocases,axiom,
    ! [X4: product_prod @ ( option @ game ) @ ( option @ fml )] :
      ( ! [Alpha: game,Phi: fml] :
          ( X4
         != ( product_Pair @ ( option @ game ) @ ( option @ fml ) @ ( some @ game @ Alpha ) @ ( some @ fml @ Phi ) ) )
     => ( ! [Phi: option @ fml] :
            ( X4
           != ( product_Pair @ ( option @ game ) @ ( option @ fml ) @ ( none @ game ) @ Phi ) )
       => ~ ! [V: game] :
              ( X4
             != ( product_Pair @ ( option @ game ) @ ( option @ fml ) @ ( some @ game @ V ) @ ( none @ fml ) ) ) ) ) ).

% Diamondo.cases
thf(fact_236_Existso_Ocases,axiom,
    ! [X4: product_prod @ variable @ ( option @ fml )] :
      ( ! [X2: variable,Phi: fml] :
          ( X4
         != ( product_Pair @ variable @ ( option @ fml ) @ X2 @ ( some @ fml @ Phi ) ) )
     => ~ ! [X2: variable] :
            ( X4
           != ( product_Pair @ variable @ ( option @ fml ) @ X2 @ ( none @ fml ) ) ) ) ).

% Existso.cases
thf(fact_237_Ando_Ocases,axiom,
    ! [X4: product_prod @ ( option @ fml ) @ ( option @ fml )] :
      ( ! [Phi: fml,Psi: fml] :
          ( X4
         != ( product_Pair @ ( option @ fml ) @ ( option @ fml ) @ ( some @ fml @ Phi ) @ ( some @ fml @ Psi ) ) )
     => ( ! [Psi: option @ fml] :
            ( X4
           != ( product_Pair @ ( option @ fml ) @ ( option @ fml ) @ ( none @ fml ) @ Psi ) )
       => ~ ! [V: fml] :
              ( X4
             != ( product_Pair @ ( option @ fml ) @ ( option @ fml ) @ ( some @ fml @ V ) @ ( none @ fml ) ) ) ) ) ).

% Ando.cases
thf(fact_238_ODEo_Ocases,axiom,
    ! [X4: product_prod @ char @ ( option @ trm )] :
      ( ! [X2: char,Theta: trm] :
          ( X4
         != ( product_Pair @ char @ ( option @ trm ) @ X2 @ ( some @ trm @ Theta ) ) )
     => ~ ! [X2: char] :
            ( X4
           != ( product_Pair @ char @ ( option @ trm ) @ X2 @ ( none @ trm ) ) ) ) ).

% ODEo.cases
thf(fact_239_Assigno_Ocases,axiom,
    ! [X4: product_prod @ variable @ ( option @ trm )] :
      ( ! [X2: variable,Theta: trm] :
          ( X4
         != ( product_Pair @ variable @ ( option @ trm ) @ X2 @ ( some @ trm @ Theta ) ) )
     => ~ ! [X2: variable] :
            ( X4
           != ( product_Pair @ variable @ ( option @ trm ) @ X2 @ ( none @ trm ) ) ) ) ).

% Assigno.cases
thf(fact_240_Timeso_Ocases,axiom,
    ! [X4: product_prod @ ( option @ trm ) @ ( option @ trm )] :
      ( ! [Theta: trm,Eta: trm] :
          ( X4
         != ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ Theta ) @ ( some @ trm @ Eta ) ) )
     => ( ! [Eta: option @ trm] :
            ( X4
           != ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( none @ trm ) @ Eta ) )
       => ~ ! [V: trm] :
              ( X4
             != ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ V ) @ ( none @ trm ) ) ) ) ) ).

% Timeso.cases
thf(fact_241_Geqo_Osimps_I1_J,axiom,
    ! [Theta2: trm,Eta2: trm] :
      ( ( uSubst1556497037e_Geqo @ ( some @ trm @ Theta2 ) @ ( some @ trm @ Eta2 ) )
      = ( some @ fml @ ( geq @ Theta2 @ Eta2 ) ) ) ).

% Geqo.simps(1)
thf(fact_242_usubstappf__geqr,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( geq @ Theta2 @ Eta2 ) )
       != ( none @ fml ) )
     => ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( geq @ Theta2 @ Eta2 ) )
        = ( some @ fml @ ( geq @ ( the @ trm @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) ) @ ( the @ trm @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ) ) ) ).

% usubstappf_geqr
thf(fact_243_usubstappf__geq,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
       != ( none @ trm ) )
     => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 )
         != ( none @ trm ) )
       => ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( geq @ Theta2 @ Eta2 ) )
          = ( some @ fml @ ( geq @ ( the @ trm @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) ) @ ( the @ trm @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ) ) ) ) ).

% usubstappf_geq
thf(fact_244_Composeo_Ocases,axiom,
    ! [X4: product_prod @ ( option @ game ) @ ( option @ game )] :
      ( ! [Alpha: game,Beta: game] :
          ( X4
         != ( product_Pair @ ( option @ game ) @ ( option @ game ) @ ( some @ game @ Alpha ) @ ( some @ game @ Beta ) ) )
     => ( ! [Alpha: option @ game] :
            ( X4
           != ( product_Pair @ ( option @ game ) @ ( option @ game ) @ Alpha @ ( none @ game ) ) )
       => ~ ! [V: game] :
              ( X4
             != ( product_Pair @ ( option @ game ) @ ( option @ game ) @ ( none @ game ) @ ( some @ game @ V ) ) ) ) ) ).

% Composeo.cases
thf(fact_245_usubstappf_Osimps_I2_J,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( geq @ Theta2 @ Eta2 ) )
      = ( uSubst1556497037e_Geqo @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 ) @ ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 ) ) ) ).

% usubstappf.simps(2)
thf(fact_246_usubstappf__geq__conv,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),U2: set @ variable,Theta2: trm,Eta2: trm] :
      ( ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( geq @ Theta2 @ Eta2 ) )
       != ( none @ fml ) )
     => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
         != ( none @ trm ) )
        & ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Eta2 )
         != ( none @ trm ) ) ) ) ).

% usubstappf_geq_conv
thf(fact_247_dotsubstt__def,axiom,
    ( uSubst969145931substt
    = ( ^ [Theta3: trm] :
          ( product_Pair @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) )
          @ ^ [F2: char] :
              ( if @ ( option @ trm )
              @ ( F2
                = ( char2 @ $false @ $true @ $true @ $true @ $false @ $true @ $false @ $false ) )
              @ ( some @ trm @ Theta3 )
              @ ( none @ trm ) )
          @ ( product_Pair @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) )
            @ ^ [Uu: char] : ( none @ trm )
            @ ( product_Pair @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) )
              @ ^ [Uu: char] : ( none @ fml )
              @ ^ [Uu: char] : ( none @ game ) ) ) ) ) ) ).

% dotsubstt_def
thf(fact_248_Geqo_Opelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ fml] :
      ( ( ( uSubst1556497037e_Geqo @ X4 @ Xa )
        = Y2 )
     => ( ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst864323244qo_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ X4 @ Xa ) )
       => ( ! [Theta: trm] :
              ( ( X4
                = ( some @ trm @ Theta ) )
             => ! [Eta: trm] :
                  ( ( Xa
                    = ( some @ trm @ Eta ) )
                 => ( ( Y2
                      = ( some @ fml @ ( geq @ Theta @ Eta ) ) )
                   => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst864323244qo_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ Theta ) @ ( some @ trm @ Eta ) ) ) ) ) )
         => ( ( ( X4
                = ( none @ trm ) )
             => ( ( Y2
                  = ( none @ fml ) )
               => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst864323244qo_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( none @ trm ) @ Xa ) ) ) )
           => ~ ! [V: trm] :
                  ( ( X4
                    = ( some @ trm @ V ) )
                 => ( ( Xa
                      = ( none @ trm ) )
                   => ( ( Y2
                        = ( none @ fml ) )
                     => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst864323244qo_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ V ) @ ( none @ trm ) ) ) ) ) ) ) ) ) ) ).

% Geqo.pelims
thf(fact_249_Timeso_Opelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ trm] :
      ( ( ( uSubst277968634Timeso @ X4 @ Xa )
        = Y2 )
     => ( ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst1377811071so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ X4 @ Xa ) )
       => ( ! [Theta: trm] :
              ( ( X4
                = ( some @ trm @ Theta ) )
             => ! [Eta: trm] :
                  ( ( Xa
                    = ( some @ trm @ Eta ) )
                 => ( ( Y2
                      = ( some @ trm @ ( times @ Theta @ Eta ) ) )
                   => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst1377811071so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ Theta ) @ ( some @ trm @ Eta ) ) ) ) ) )
         => ( ( ( X4
                = ( none @ trm ) )
             => ( ( Y2
                  = ( none @ trm ) )
               => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst1377811071so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( none @ trm ) @ Xa ) ) ) )
           => ~ ! [V: trm] :
                  ( ( X4
                    = ( some @ trm @ V ) )
                 => ( ( Xa
                      = ( none @ trm ) )
                   => ( ( Y2
                        = ( none @ trm ) )
                     => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst1377811071so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ V ) @ ( none @ trm ) ) ) ) ) ) ) ) ) ) ).

% Timeso.pelims
thf(fact_250_Pluso_Opelims,axiom,
    ! [X4: option @ trm,Xa: option @ trm,Y2: option @ trm] :
      ( ( ( uSubst1112714340_Pluso @ X4 @ Xa )
        = Y2 )
     => ( ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst270600597so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ X4 @ Xa ) )
       => ( ! [Theta: trm] :
              ( ( X4
                = ( some @ trm @ Theta ) )
             => ! [Eta: trm] :
                  ( ( Xa
                    = ( some @ trm @ Eta ) )
                 => ( ( Y2
                      = ( some @ trm @ ( plus @ Theta @ Eta ) ) )
                   => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst270600597so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ Theta ) @ ( some @ trm @ Eta ) ) ) ) ) )
         => ( ( ( X4
                = ( none @ trm ) )
             => ( ( Y2
                  = ( none @ trm ) )
               => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst270600597so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( none @ trm ) @ Xa ) ) ) )
           => ~ ! [V: trm] :
                  ( ( X4
                    = ( some @ trm @ V ) )
                 => ( ( Xa
                      = ( none @ trm ) )
                   => ( ( Y2
                        = ( none @ trm ) )
                     => ~ ( accp @ ( product_prod @ ( option @ trm ) @ ( option @ trm ) ) @ uSubst270600597so_rel @ ( product_Pair @ ( option @ trm ) @ ( option @ trm ) @ ( some @ trm @ V ) @ ( none @ trm ) ) ) ) ) ) ) ) ) ) ).

% Pluso.pelims
thf(fact_251_dot__def,axiom,
    ( uSubst_Mirabelle_dot
    = ( const @ ( char2 @ $false @ $true @ $true @ $true @ $false @ $true @ $false @ $false ) ) ) ).

% dot_def
thf(fact_252_usubstappf__pred,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),P4: char,R2: fml,U2: set @ variable,Theta2: trm,Sigma_theta: trm] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ fml ) )
          @ ^ [Uu: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ fml ) )
              @ ^ [Uv: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ fml ) )
                  @ ^ [P3: char > ( option @ fml ),Uw: char > ( option @ game )] : P3 ) )
          @ Sigma2
          @ P4 )
        = ( some @ fml @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVF @ R2 ) @ U2 )
          = ( bot_bot @ ( set @ variable ) ) )
       => ( ( ( uSubst95898992stappt @ Sigma2 @ U2 @ Theta2 )
            = ( some @ trm @ Sigma_theta ) )
         => ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( pred @ P4 @ Theta2 ) )
            = ( uSubst95898978stappf @ ( uSubst969145931substt @ Sigma_theta ) @ ( bot_bot @ ( set @ variable ) ) @ R2 ) ) ) ) ) ).

% usubstappf_pred
thf(fact_253_fml_Oinject_I1_J,axiom,
    ! [X11: char,X122: trm,Y11: char,Y12: trm] :
      ( ( ( pred @ X11 @ X122 )
        = ( pred @ Y11 @ Y12 ) )
      = ( ( X11 = Y11 )
        & ( X122 = Y12 ) ) ) ).

% fml.inject(1)
thf(fact_254_usubstappf__pred2,axiom,
    ! [Sigma2: product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ),P4: char,R2: fml,U2: set @ variable,Theta2: trm] :
      ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ fml ) )
          @ ^ [Uu: char > ( option @ trm )] :
              ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ fml ) )
              @ ^ [Uv: char > ( option @ trm )] :
                  ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ fml ) )
                  @ ^ [P3: char > ( option @ fml ),Uw: char > ( option @ game )] : P3 ) )
          @ Sigma2
          @ P4 )
        = ( some @ fml @ R2 ) )
     => ( ( ( inf_inf @ ( set @ variable ) @ ( static_FVF @ R2 ) @ U2 )
         != ( bot_bot @ ( set @ variable ) ) )
       => ( ( uSubst95898978stappf @ Sigma2 @ U2 @ ( pred @ P4 @ Theta2 ) )
          = ( none @ fml ) ) ) ) ).

% usubstappf_pred2

% Type constructors (17)
thf(tcon_HOL_Obool___Lattices_Obounded__lattice,axiom,
    bounded_lattice @ $o ).

thf(tcon_Set_Oset___Lattices_Obounded__lattice_1,axiom,
    ! [A8: $tType] : ( bounded_lattice @ ( set @ A8 ) ) ).

thf(tcon_fun___Lattices_Obounded__lattice_2,axiom,
    ! [A8: $tType,A9: $tType] :
      ( ( bounded_lattice @ A9 )
     => ( bounded_lattice @ ( A8 > A9 ) ) ) ).

thf(tcon_fun___Lattices_Obounded__lattice__bot,axiom,
    ! [A8: $tType,A9: $tType] :
      ( ( bounded_lattice @ A9 )
     => ( bounded_lattice_bot @ ( A8 > A9 ) ) ) ).

thf(tcon_fun___Lattices_Osemilattice__inf,axiom,
    ! [A8: $tType,A9: $tType] :
      ( ( semilattice_inf @ A9 )
     => ( semilattice_inf @ ( A8 > A9 ) ) ) ).

thf(tcon_fun___Lattices_Olattice,axiom,
    ! [A8: $tType,A9: $tType] :
      ( ( lattice @ A9 )
     => ( lattice @ ( A8 > A9 ) ) ) ).

thf(tcon_fun___Orderings_Obot,axiom,
    ! [A8: $tType,A9: $tType] :
      ( ( bot @ A9 )
     => ( bot @ ( A8 > A9 ) ) ) ).

thf(tcon_Set_Oset___Lattices_Obounded__lattice__bot_3,axiom,
    ! [A8: $tType] : ( bounded_lattice_bot @ ( set @ A8 ) ) ).

thf(tcon_Set_Oset___Lattices_Osemilattice__inf_4,axiom,
    ! [A8: $tType] : ( semilattice_inf @ ( set @ A8 ) ) ).

thf(tcon_Set_Oset___Lattices_Olattice_5,axiom,
    ! [A8: $tType] : ( lattice @ ( set @ A8 ) ) ).

thf(tcon_Set_Oset___Orderings_Obot_6,axiom,
    ! [A8: $tType] : ( bot @ ( set @ A8 ) ) ).

thf(tcon_HOL_Obool___Lattices_Obounded__lattice__bot_7,axiom,
    bounded_lattice_bot @ $o ).

thf(tcon_HOL_Obool___Lattices_Osemilattice__inf_8,axiom,
    semilattice_inf @ $o ).

thf(tcon_HOL_Obool___Lattices_Olattice_9,axiom,
    lattice @ $o ).

thf(tcon_HOL_Obool___Orderings_Obot_10,axiom,
    bot @ $o ).

thf(tcon_Real_Oreal___Lattices_Osemilattice__inf_11,axiom,
    semilattice_inf @ real ).

thf(tcon_Real_Oreal___Lattices_Olattice_12,axiom,
    lattice @ real ).

% Helper facts (3)
thf(help_If_3_1_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_T,axiom,
    ! [A: $tType,X4: A,Y2: A] :
      ( ( if @ A @ $false @ X4 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_T,axiom,
    ! [A: $tType,X4: A,Y2: A] :
      ( ( if @ A @ $true @ X4 @ Y2 )
      = X4 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) ) @ ( char > ( option @ trm ) )
        @ ^ [F0: char > ( option @ trm )] :
            ( product_case_prod @ ( char > ( option @ trm ) ) @ ( product_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) ) @ ( char > ( option @ trm ) )
            @ ^ [Uu: char > ( option @ trm )] :
                ( product_case_prod @ ( char > ( option @ fml ) ) @ ( char > ( option @ game ) ) @ ( char > ( option @ trm ) )
                @ ^ [Uv: char > ( option @ fml ),Uw: char > ( option @ game )] : F0 ) )
        @ sigma
        @ f )
      = ( none @ trm ) )
    | ( ( uSubst95898992stappt @ sigma @ u @ ( const @ f ) )
      = ( uSubst1138577137pconst @ sigma @ v @ f ) ) ) ).

%------------------------------------------------------------------------------