TPTP Problem File: ITP199^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP199^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer USubst problem prob_1246__6349986_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : USubst/prob_1246__6349986_1 [Des21]

% Status   : Theorem
% Rating   : 0.25 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0
% Syntax   : Number of formulae    :  462 ( 256 unt; 105 typ;   0 def)
%            Number of atoms       :  834 ( 531 equ;   0 cnn)
%            Maximal formula atoms :    9 (   2 avg)
%            Number of connectives : 2475 ( 116   ~;  23   |;  68   &;2092   @)
%                                         (   0 <=>; 176  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   5 avg)
%            Number of types       :   19 (  18 usr)
%            Number of type conns  :  373 ( 373   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   90 (  87 usr;  22 con; 0-7 aty)
%            Number of variables   :  849 (  54   ^; 774   !;  21   ?; 849   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:37:46.391
%------------------------------------------------------------------------------
% Could-be-implicit typings (18)
thf(ty_n_t__Product____Type__Oprod_I_062_It__String__Ochar_Mt__Option__Ooption_It__Syntax__Otrm_J_J_Mt__Product____Type__Oprod_I_062_It__String__Ochar_Mt__Option__Ooption_It__Syntax__Otrm_J_J_Mt__Product____Type__Oprod_I_062_It__String__Ochar_Mt__Option__Ooption_It__Syntax__Ofml_J_J_M_062_It__String__Ochar_Mt__Option__Ooption_It__Syntax__Ogame_J_J_J_J_J,type,
    produc1418842292n_game: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J_J,type,
    set_op12188086e_real: $tType ).

thf(ty_n_t__Option__Ooption_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    option_variable_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    set_variable_real: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Syntax__Ovariable_J_J,type,
    set_option_variable: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Syntax__Otrm_J_J,type,
    set_option_trm: $tType ).

thf(ty_n_t__Option__Ooption_It__Syntax__Ovariable_J,type,
    option_variable: $tType ).

thf(ty_n_t__Option__Ooption_It__Syntax__Otrm_J,type,
    option_trm: $tType ).

thf(ty_n_t__Denotational____Semantics__Ointerp,type,
    denotational_interp: $tType ).

thf(ty_n_t__Set__Oset_It__Syntax__Ovariable_J,type,
    set_variable: $tType ).

thf(ty_n_t__Set__Oset_It__Syntax__Otrm_J,type,
    set_trm: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Syntax__Ovariable,type,
    variable: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Syntax__Otrm,type,
    trm: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (87)
thf(sy_c_Coincidence_Ostatediff,type,
    statediff: ( variable > real ) > ( variable > real ) > set_variable ).

thf(sy_c_Coincidence_Ostateinterpol,type,
    stateinterpol: ( variable > real ) > ( variable > real ) > set_variable > variable > real ).

thf(sy_c_Denotational__Semantics_OUvariation,type,
    denota1419872369iation: ( variable > real ) > ( variable > real ) > set_variable > $o ).

thf(sy_c_Denotational__Semantics_OVagree,type,
    denotational_Vagree: ( variable > real ) > ( variable > real ) > set_variable > $o ).

thf(sy_c_Denotational__Semantics_Orepv,type,
    denotational_repv: ( variable > real ) > variable > real > variable > real ).

thf(sy_c_Denotational__Semantics_Osolves__ODE,type,
    denota1778088425es_ODE: denotational_interp > ( real > variable > real ) > char > trm > $o ).

thf(sy_c_Denotational__Semantics_Oterm__sem,type,
    denota1863255036rm_sem: denotational_interp > trm > ( variable > real ) > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    uminus430703407e_real: set_variable_real > set_variable_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Syntax__Ovariable_J,type,
    uminus1851247844riable: set_variable > set_variable ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Set__Oset_It__Nat__Onat_J,type,
    zero_zero_set_nat: set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Set__Oset_It__Real__Oreal_J,type,
    zero_zero_set_real: set_real ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    inf_in1556002680e_real: set_variable_real > set_variable_real > set_variable_real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Syntax__Ovariable_J,type,
    inf_inf_set_variable: set_variable > set_variable > set_variable ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    sup_su1685293586e_real: set_variable_real > set_variable_real > set_variable_real ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Syntax__Ovariable_J,type,
    sup_sup_set_variable: set_variable > set_variable > set_variable ).

thf(sy_c_Nat_Osize__class_Osize_001t__Syntax__Ovariable,type,
    size_size_variable: variable > nat ).

thf(sy_c_Option_Ooption_ONone_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    none_variable_real: option_variable_real ).

thf(sy_c_Option_Ooption_ONone_001t__Syntax__Otrm,type,
    none_trm: option_trm ).

thf(sy_c_Option_Ooption_ONone_001t__Syntax__Ovariable,type,
    none_variable: option_variable ).

thf(sy_c_Option_Ooption_OSome_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    some_variable_real: ( variable > real ) > option_variable_real ).

thf(sy_c_Option_Ooption_OSome_001t__Syntax__Otrm,type,
    some_trm: trm > option_trm ).

thf(sy_c_Option_Ooption_OSome_001t__Syntax__Ovariable,type,
    some_variable: variable > option_variable ).

thf(sy_c_Option_Ooption_Oset__option_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    set_op697949218e_real: option_variable_real > set_variable_real ).

thf(sy_c_Option_Ooption_Oset__option_001t__Syntax__Otrm,type,
    set_option_trm2: option_trm > set_trm ).

thf(sy_c_Option_Ooption_Oset__option_001t__Syntax__Ovariable,type,
    set_option_variable2: option_variable > set_variable ).

thf(sy_c_Option_Ooption_Othe_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    the_variable_real: option_variable_real > variable > real ).

thf(sy_c_Option_Ooption_Othe_001t__Syntax__Otrm,type,
    the_trm: option_trm > trm ).

thf(sy_c_Option_Ooption_Othe_001t__Syntax__Ovariable,type,
    the_variable: option_variable > variable ).

thf(sy_c_Option_Othese_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    these_variable_real: set_op12188086e_real > set_variable_real ).

thf(sy_c_Option_Othese_001t__Syntax__Otrm,type,
    these_trm: set_option_trm > set_trm ).

thf(sy_c_Option_Othese_001t__Syntax__Ovariable,type,
    these_variable: set_option_variable > set_variable ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_M_Eo_J,type,
    bot_bo1661475211real_o: ( variable > real ) > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Syntax__Ovariable_M_Eo_J,type,
    bot_bot_variable_o: variable > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    bot_bo721182586e_real: set_variable_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J_J,type,
    bot_bo1411475018e_real: set_op12188086e_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Syntax__Otrm_J_J,type,
    bot_bo946428664on_trm: set_option_trm ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Syntax__Ovariable_J_J,type,
    bot_bo266290559riable: set_option_variable ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Syntax__Otrm_J,type,
    bot_bot_set_trm: set_trm ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Syntax__Ovariable_J,type,
    bot_bot_set_variable: set_variable ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    ord_le1113654598e_real: set_variable_real > set_variable_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Syntax__Ovariable_J,type,
    ord_le282106107riable: set_variable > set_variable > $o ).

thf(sy_c_Set_OCollect_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    collec633296133e_real: ( ( variable > real ) > $o ) > set_variable_real ).

thf(sy_c_Set_OCollect_001t__Syntax__Ovariable,type,
    collect_variable: ( variable > $o ) > set_variable ).

thf(sy_c_Set_Oinsert_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    insert_variable_real: ( variable > real ) > set_variable_real > set_variable_real ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    insert526581936e_real: option_variable_real > set_op12188086e_real > set_op12188086e_real ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Syntax__Otrm_J,type,
    insert_option_trm: option_trm > set_option_trm > set_option_trm ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Syntax__Ovariable_J,type,
    insert1340772453riable: option_variable > set_option_variable > set_option_variable ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Oinsert_001t__Syntax__Otrm,type,
    insert_trm: trm > set_trm > set_trm ).

thf(sy_c_Set_Oinsert_001t__Syntax__Ovariable,type,
    insert_variable: variable > set_variable > set_variable ).

thf(sy_c_Set_Ois__empty_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    is_emp227886046e_real: set_variable_real > $o ).

thf(sy_c_Set_Ois__empty_001t__Syntax__Ovariable,type,
    is_empty_variable: set_variable > $o ).

thf(sy_c_Set_Ois__singleton_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    is_sin524757308e_real: set_variable_real > $o ).

thf(sy_c_Set_Ois__singleton_001t__Syntax__Ovariable,type,
    is_sin155454833riable: set_variable > $o ).

thf(sy_c_Set_Othe__elem_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    the_el1059226619e_real: set_variable_real > variable > real ).

thf(sy_c_Set_Othe__elem_001t__Syntax__Ovariable,type,
    the_elem_variable: set_variable > variable ).

thf(sy_c_Static__Semantics_OFVT,type,
    static_FVT: trm > set_variable ).

thf(sy_c_Static__Semantics_Oselectlike,type,
    static_selectlike: set_variable_real > ( variable > real ) > set_variable > set_variable_real ).

thf(sy_c_Syntax_Otrm_OTimes,type,
    times: trm > trm > trm ).

thf(sy_c_Syntax_Ovariable_ODVar,type,
    dVar: char > variable ).

thf(sy_c_Syntax_Ovariable_ORVar,type,
    rVar: char > variable ).

thf(sy_c_Syntax_Ovariable_Osize__variable,type,
    size_variable: variable > nat ).

thf(sy_c_USubst__Mirabelle__vidvnmlwwz_OTimeso,type,
    uSubst918876924Timeso: option_trm > option_trm > option_trm ).

thf(sy_c_USubst__Mirabelle__vidvnmlwwz_Oadjoint,type,
    uSubst1599435252djoint: produc1418842292n_game > denotational_interp > ( variable > real ) > denotational_interp ).

thf(sy_c_USubst__Mirabelle__vidvnmlwwz_Ousubstappt,type,
    uSubst516392818stappt: produc1418842292n_game > set_variable > trm > option_trm ).

thf(sy_c_member_001_062_It__Syntax__Ovariable_Mt__Real__Oreal_J,type,
    member_variable_real: ( variable > real ) > set_variable_real > $o ).

thf(sy_c_member_001t__Option__Ooption_I_062_It__Syntax__Ovariable_Mt__Real__Oreal_J_J,type,
    member523846807e_real: option_variable_real > set_op12188086e_real > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Syntax__Otrm_J,type,
    member_option_trm: option_trm > set_option_trm > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Syntax__Ovariable_J,type,
    member814448204riable: option_variable > set_option_variable > $o ).

thf(sy_c_member_001t__Syntax__Otrm,type,
    member_trm: trm > set_trm > $o ).

thf(sy_c_member_001t__Syntax__Ovariable,type,
    member_variable: variable > set_variable > $o ).

thf(sy_v_F,type,
    f: real > variable > real ).

thf(sy_v_I,type,
    i: denotational_interp ).

thf(sy_v_U,type,
    u: set_variable ).

thf(sy_v__092_060omega_062,type,
    omega: variable > real ).

thf(sy_v__092_060sigma_062,type,
    sigma: produc1418842292n_game ).

thf(sy_v__092_060theta_062,type,
    theta: trm ).

thf(sy_v_rr____,type,
    rr: trm > denotational_interp > trm > denotational_interp > char > ( real > variable > real ) > variable > real ).

thf(sy_v_x,type,
    x: char ).

% Relevant facts (353)
thf(fact_0_uv,axiom,
    denota1419872369iation @ ( f @ zero_zero_real ) @ omega @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) ).

% uv
thf(fact_1_Uvariation__empty,axiom,
    ! [Nu: variable > real,Nu2: variable > real] :
      ( ( denota1419872369iation @ Nu @ Nu2 @ bot_bot_set_variable )
      = ( Nu = Nu2 ) ) ).

% Uvariation_empty
thf(fact_2_Un__insert__left,axiom,
    ! [A: variable,B: set_variable,C: set_variable] :
      ( ( sup_sup_set_variable @ ( insert_variable @ A @ B ) @ C )
      = ( insert_variable @ A @ ( sup_sup_set_variable @ B @ C ) ) ) ).

% Un_insert_left
thf(fact_3_Un__insert__left,axiom,
    ! [A: variable > real,B: set_variable_real,C: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( insert_variable_real @ A @ B ) @ C )
      = ( insert_variable_real @ A @ ( sup_su1685293586e_real @ B @ C ) ) ) ).

% Un_insert_left
thf(fact_4_Un__insert__right,axiom,
    ! [A2: set_variable,A: variable,B: set_variable] :
      ( ( sup_sup_set_variable @ A2 @ ( insert_variable @ A @ B ) )
      = ( insert_variable @ A @ ( sup_sup_set_variable @ A2 @ B ) ) ) ).

% Un_insert_right
thf(fact_5_Un__insert__right,axiom,
    ! [A2: set_variable_real,A: variable > real,B: set_variable_real] :
      ( ( sup_su1685293586e_real @ A2 @ ( insert_variable_real @ A @ B ) )
      = ( insert_variable_real @ A @ ( sup_su1685293586e_real @ A2 @ B ) ) ) ).

% Un_insert_right
thf(fact_6_Un__empty,axiom,
    ! [A2: set_variable_real,B: set_variable_real] :
      ( ( ( sup_su1685293586e_real @ A2 @ B )
        = bot_bo721182586e_real )
      = ( ( A2 = bot_bo721182586e_real )
        & ( B = bot_bo721182586e_real ) ) ) ).

% Un_empty
thf(fact_7_Un__empty,axiom,
    ! [A2: set_variable,B: set_variable] :
      ( ( ( sup_sup_set_variable @ A2 @ B )
        = bot_bot_set_variable )
      = ( ( A2 = bot_bot_set_variable )
        & ( B = bot_bot_set_variable ) ) ) ).

% Un_empty
thf(fact_8_sup__bot__left,axiom,
    ! [X: set_variable_real] :
      ( ( sup_su1685293586e_real @ bot_bo721182586e_real @ X )
      = X ) ).

% sup_bot_left
thf(fact_9_sup__bot__left,axiom,
    ! [X: set_variable] :
      ( ( sup_sup_set_variable @ bot_bot_set_variable @ X )
      = X ) ).

% sup_bot_left
thf(fact_10_sup__bot__right,axiom,
    ! [X: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ bot_bo721182586e_real )
      = X ) ).

% sup_bot_right
thf(fact_11_sup__bot__right,axiom,
    ! [X: set_variable] :
      ( ( sup_sup_set_variable @ X @ bot_bot_set_variable )
      = X ) ).

% sup_bot_right
thf(fact_12_bot__eq__sup__iff,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( bot_bo721182586e_real
        = ( sup_su1685293586e_real @ X @ Y ) )
      = ( ( X = bot_bo721182586e_real )
        & ( Y = bot_bo721182586e_real ) ) ) ).

% bot_eq_sup_iff
thf(fact_13_bot__eq__sup__iff,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( bot_bot_set_variable
        = ( sup_sup_set_variable @ X @ Y ) )
      = ( ( X = bot_bot_set_variable )
        & ( Y = bot_bot_set_variable ) ) ) ).

% bot_eq_sup_iff
thf(fact_14_sup__eq__bot__iff,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( ( sup_su1685293586e_real @ X @ Y )
        = bot_bo721182586e_real )
      = ( ( X = bot_bo721182586e_real )
        & ( Y = bot_bo721182586e_real ) ) ) ).

% sup_eq_bot_iff
thf(fact_15_sup__eq__bot__iff,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( ( sup_sup_set_variable @ X @ Y )
        = bot_bot_set_variable )
      = ( ( X = bot_bot_set_variable )
        & ( Y = bot_bot_set_variable ) ) ) ).

% sup_eq_bot_iff
thf(fact_16_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_variable_real,B2: set_variable_real] :
      ( ( ( sup_su1685293586e_real @ A @ B2 )
        = bot_bo721182586e_real )
      = ( ( A = bot_bo721182586e_real )
        & ( B2 = bot_bo721182586e_real ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_17_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( ( sup_sup_set_variable @ A @ B2 )
        = bot_bot_set_variable )
      = ( ( A = bot_bot_set_variable )
        & ( B2 = bot_bot_set_variable ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_18_sup__bot_Oleft__neutral,axiom,
    ! [A: set_variable] :
      ( ( sup_sup_set_variable @ bot_bot_set_variable @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_19_sup__bot_Oleft__neutral,axiom,
    ! [A: set_variable_real] :
      ( ( sup_su1685293586e_real @ bot_bo721182586e_real @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_20_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( bot_bot_set_variable
        = ( sup_sup_set_variable @ A @ B2 ) )
      = ( ( A = bot_bot_set_variable )
        & ( B2 = bot_bot_set_variable ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_21_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_variable_real,B2: set_variable_real] :
      ( ( bot_bo721182586e_real
        = ( sup_su1685293586e_real @ A @ B2 ) )
      = ( ( A = bot_bo721182586e_real )
        & ( B2 = bot_bo721182586e_real ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_22_sup__bot_Oright__neutral,axiom,
    ! [A: set_variable] :
      ( ( sup_sup_set_variable @ A @ bot_bot_set_variable )
      = A ) ).

% sup_bot.right_neutral
thf(fact_23_sup__bot_Oright__neutral,axiom,
    ! [A: set_variable_real] :
      ( ( sup_su1685293586e_real @ A @ bot_bo721182586e_real )
      = A ) ).

% sup_bot.right_neutral
thf(fact_24_empty__Collect__eq,axiom,
    ! [P: variable > $o] :
      ( ( bot_bot_set_variable
        = ( collect_variable @ P ) )
      = ( ! [X2: variable] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_25_empty__Collect__eq,axiom,
    ! [P: ( variable > real ) > $o] :
      ( ( bot_bo721182586e_real
        = ( collec633296133e_real @ P ) )
      = ( ! [X2: variable > real] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_26_Collect__empty__eq,axiom,
    ! [P: variable > $o] :
      ( ( ( collect_variable @ P )
        = bot_bot_set_variable )
      = ( ! [X2: variable] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_27_Collect__empty__eq,axiom,
    ! [P: ( variable > real ) > $o] :
      ( ( ( collec633296133e_real @ P )
        = bot_bo721182586e_real )
      = ( ! [X2: variable > real] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_28_all__not__in__conv,axiom,
    ! [A2: set_variable] :
      ( ( ! [X2: variable] :
            ~ ( member_variable @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_variable ) ) ).

% all_not_in_conv
thf(fact_29_all__not__in__conv,axiom,
    ! [A2: set_variable_real] :
      ( ( ! [X2: variable > real] :
            ~ ( member_variable_real @ X2 @ A2 ) )
      = ( A2 = bot_bo721182586e_real ) ) ).

% all_not_in_conv
thf(fact_30_empty__iff,axiom,
    ! [C2: variable] :
      ~ ( member_variable @ C2 @ bot_bot_set_variable ) ).

% empty_iff
thf(fact_31_empty__iff,axiom,
    ! [C2: variable > real] :
      ~ ( member_variable_real @ C2 @ bot_bo721182586e_real ) ).

% empty_iff
thf(fact_32_insert__absorb2,axiom,
    ! [X: variable,A2: set_variable] :
      ( ( insert_variable @ X @ ( insert_variable @ X @ A2 ) )
      = ( insert_variable @ X @ A2 ) ) ).

% insert_absorb2
thf(fact_33_insert__absorb2,axiom,
    ! [X: variable > real,A2: set_variable_real] :
      ( ( insert_variable_real @ X @ ( insert_variable_real @ X @ A2 ) )
      = ( insert_variable_real @ X @ A2 ) ) ).

% insert_absorb2
thf(fact_34_insert__iff,axiom,
    ! [A: variable,B2: variable,A2: set_variable] :
      ( ( member_variable @ A @ ( insert_variable @ B2 @ A2 ) )
      = ( ( A = B2 )
        | ( member_variable @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_35_insert__iff,axiom,
    ! [A: variable > real,B2: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ A @ ( insert_variable_real @ B2 @ A2 ) )
      = ( ( A = B2 )
        | ( member_variable_real @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_36_insertCI,axiom,
    ! [A: variable,B: set_variable,B2: variable] :
      ( ( ~ ( member_variable @ A @ B )
       => ( A = B2 ) )
     => ( member_variable @ A @ ( insert_variable @ B2 @ B ) ) ) ).

% insertCI
thf(fact_37_insertCI,axiom,
    ! [A: variable > real,B: set_variable_real,B2: variable > real] :
      ( ( ~ ( member_variable_real @ A @ B )
       => ( A = B2 ) )
     => ( member_variable_real @ A @ ( insert_variable_real @ B2 @ B ) ) ) ).

% insertCI
thf(fact_38_sup_Oright__idem,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( sup_sup_set_variable @ ( sup_sup_set_variable @ A @ B2 ) @ B2 )
      = ( sup_sup_set_variable @ A @ B2 ) ) ).

% sup.right_idem
thf(fact_39_sup_Oright__idem,axiom,
    ! [A: set_variable_real,B2: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( sup_su1685293586e_real @ A @ B2 ) @ B2 )
      = ( sup_su1685293586e_real @ A @ B2 ) ) ).

% sup.right_idem
thf(fact_40_sup__left__idem,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ X @ Y ) )
      = ( sup_sup_set_variable @ X @ Y ) ) ).

% sup_left_idem
thf(fact_41_sup__left__idem,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ X @ Y ) )
      = ( sup_su1685293586e_real @ X @ Y ) ) ).

% sup_left_idem
thf(fact_42_sup_Oleft__idem,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( sup_sup_set_variable @ A @ ( sup_sup_set_variable @ A @ B2 ) )
      = ( sup_sup_set_variable @ A @ B2 ) ) ).

% sup.left_idem
thf(fact_43_sup_Oleft__idem,axiom,
    ! [A: set_variable_real,B2: set_variable_real] :
      ( ( sup_su1685293586e_real @ A @ ( sup_su1685293586e_real @ A @ B2 ) )
      = ( sup_su1685293586e_real @ A @ B2 ) ) ).

% sup.left_idem
thf(fact_44_sup__idem,axiom,
    ! [X: set_variable] :
      ( ( sup_sup_set_variable @ X @ X )
      = X ) ).

% sup_idem
thf(fact_45_sup__idem,axiom,
    ! [X: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ X )
      = X ) ).

% sup_idem
thf(fact_46_sup_Oidem,axiom,
    ! [A: set_variable] :
      ( ( sup_sup_set_variable @ A @ A )
      = A ) ).

% sup.idem
thf(fact_47_sup_Oidem,axiom,
    ! [A: set_variable_real] :
      ( ( sup_su1685293586e_real @ A @ A )
      = A ) ).

% sup.idem
thf(fact_48_UnCI,axiom,
    ! [C2: variable,B: set_variable,A2: set_variable] :
      ( ( ~ ( member_variable @ C2 @ B )
       => ( member_variable @ C2 @ A2 ) )
     => ( member_variable @ C2 @ ( sup_sup_set_variable @ A2 @ B ) ) ) ).

% UnCI
thf(fact_49_UnCI,axiom,
    ! [C2: variable > real,B: set_variable_real,A2: set_variable_real] :
      ( ( ~ ( member_variable_real @ C2 @ B )
       => ( member_variable_real @ C2 @ A2 ) )
     => ( member_variable_real @ C2 @ ( sup_su1685293586e_real @ A2 @ B ) ) ) ).

% UnCI
thf(fact_50_singletonI,axiom,
    ! [A: variable] : ( member_variable @ A @ ( insert_variable @ A @ bot_bot_set_variable ) ) ).

% singletonI
thf(fact_51_singletonI,axiom,
    ! [A: variable > real] : ( member_variable_real @ A @ ( insert_variable_real @ A @ bot_bo721182586e_real ) ) ).

% singletonI
thf(fact_52_bot__set__def,axiom,
    ( bot_bot_set_variable
    = ( collect_variable @ bot_bot_variable_o ) ) ).

% bot_set_def
thf(fact_53_bot__set__def,axiom,
    ( bot_bo721182586e_real
    = ( collec633296133e_real @ bot_bo1661475211real_o ) ) ).

% bot_set_def
thf(fact_54_ex__in__conv,axiom,
    ! [A2: set_variable] :
      ( ( ? [X2: variable] : ( member_variable @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_variable ) ) ).

% ex_in_conv
thf(fact_55_ex__in__conv,axiom,
    ! [A2: set_variable_real] :
      ( ( ? [X2: variable > real] : ( member_variable_real @ X2 @ A2 ) )
      = ( A2 != bot_bo721182586e_real ) ) ).

% ex_in_conv
thf(fact_56_equals0I,axiom,
    ! [A2: set_variable] :
      ( ! [Y2: variable] :
          ~ ( member_variable @ Y2 @ A2 )
     => ( A2 = bot_bot_set_variable ) ) ).

% equals0I
thf(fact_57_equals0I,axiom,
    ! [A2: set_variable_real] :
      ( ! [Y2: variable > real] :
          ~ ( member_variable_real @ Y2 @ A2 )
     => ( A2 = bot_bo721182586e_real ) ) ).

% equals0I
thf(fact_58_equals0D,axiom,
    ! [A2: set_variable,A: variable] :
      ( ( A2 = bot_bot_set_variable )
     => ~ ( member_variable @ A @ A2 ) ) ).

% equals0D
thf(fact_59_equals0D,axiom,
    ! [A2: set_variable_real,A: variable > real] :
      ( ( A2 = bot_bo721182586e_real )
     => ~ ( member_variable_real @ A @ A2 ) ) ).

% equals0D
thf(fact_60_emptyE,axiom,
    ! [A: variable] :
      ~ ( member_variable @ A @ bot_bot_set_variable ) ).

% emptyE
thf(fact_61_emptyE,axiom,
    ! [A: variable > real] :
      ~ ( member_variable_real @ A @ bot_bo721182586e_real ) ).

% emptyE
thf(fact_62_mk__disjoint__insert,axiom,
    ! [A: variable,A2: set_variable] :
      ( ( member_variable @ A @ A2 )
     => ? [B3: set_variable] :
          ( ( A2
            = ( insert_variable @ A @ B3 ) )
          & ~ ( member_variable @ A @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_63_mk__disjoint__insert,axiom,
    ! [A: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ A @ A2 )
     => ? [B3: set_variable_real] :
          ( ( A2
            = ( insert_variable_real @ A @ B3 ) )
          & ~ ( member_variable_real @ A @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_64_insert__commute,axiom,
    ! [X: variable,Y: variable,A2: set_variable] :
      ( ( insert_variable @ X @ ( insert_variable @ Y @ A2 ) )
      = ( insert_variable @ Y @ ( insert_variable @ X @ A2 ) ) ) ).

% insert_commute
thf(fact_65_insert__commute,axiom,
    ! [X: variable > real,Y: variable > real,A2: set_variable_real] :
      ( ( insert_variable_real @ X @ ( insert_variable_real @ Y @ A2 ) )
      = ( insert_variable_real @ Y @ ( insert_variable_real @ X @ A2 ) ) ) ).

% insert_commute
thf(fact_66_insert__eq__iff,axiom,
    ! [A: variable,A2: set_variable,B2: variable,B: set_variable] :
      ( ~ ( member_variable @ A @ A2 )
     => ( ~ ( member_variable @ B2 @ B )
       => ( ( ( insert_variable @ A @ A2 )
            = ( insert_variable @ B2 @ B ) )
          = ( ( ( A = B2 )
             => ( A2 = B ) )
            & ( ( A != B2 )
             => ? [C3: set_variable] :
                  ( ( A2
                    = ( insert_variable @ B2 @ C3 ) )
                  & ~ ( member_variable @ B2 @ C3 )
                  & ( B
                    = ( insert_variable @ A @ C3 ) )
                  & ~ ( member_variable @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_67_insert__eq__iff,axiom,
    ! [A: variable > real,A2: set_variable_real,B2: variable > real,B: set_variable_real] :
      ( ~ ( member_variable_real @ A @ A2 )
     => ( ~ ( member_variable_real @ B2 @ B )
       => ( ( ( insert_variable_real @ A @ A2 )
            = ( insert_variable_real @ B2 @ B ) )
          = ( ( ( A = B2 )
             => ( A2 = B ) )
            & ( ( A != B2 )
             => ? [C3: set_variable_real] :
                  ( ( A2
                    = ( insert_variable_real @ B2 @ C3 ) )
                  & ~ ( member_variable_real @ B2 @ C3 )
                  & ( B
                    = ( insert_variable_real @ A @ C3 ) )
                  & ~ ( member_variable_real @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_68_insert__absorb,axiom,
    ! [A: variable,A2: set_variable] :
      ( ( member_variable @ A @ A2 )
     => ( ( insert_variable @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_69_insert__absorb,axiom,
    ! [A: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ A @ A2 )
     => ( ( insert_variable_real @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_70_insert__ident,axiom,
    ! [X: variable,A2: set_variable,B: set_variable] :
      ( ~ ( member_variable @ X @ A2 )
     => ( ~ ( member_variable @ X @ B )
       => ( ( ( insert_variable @ X @ A2 )
            = ( insert_variable @ X @ B ) )
          = ( A2 = B ) ) ) ) ).

% insert_ident
thf(fact_71_insert__ident,axiom,
    ! [X: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ~ ( member_variable_real @ X @ A2 )
     => ( ~ ( member_variable_real @ X @ B )
       => ( ( ( insert_variable_real @ X @ A2 )
            = ( insert_variable_real @ X @ B ) )
          = ( A2 = B ) ) ) ) ).

% insert_ident
thf(fact_72_Set_Oset__insert,axiom,
    ! [X: variable,A2: set_variable] :
      ( ( member_variable @ X @ A2 )
     => ~ ! [B3: set_variable] :
            ( ( A2
              = ( insert_variable @ X @ B3 ) )
           => ( member_variable @ X @ B3 ) ) ) ).

% Set.set_insert
thf(fact_73_Set_Oset__insert,axiom,
    ! [X: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ X @ A2 )
     => ~ ! [B3: set_variable_real] :
            ( ( A2
              = ( insert_variable_real @ X @ B3 ) )
           => ( member_variable_real @ X @ B3 ) ) ) ).

% Set.set_insert
thf(fact_74_insertI2,axiom,
    ! [A: variable,B: set_variable,B2: variable] :
      ( ( member_variable @ A @ B )
     => ( member_variable @ A @ ( insert_variable @ B2 @ B ) ) ) ).

% insertI2
thf(fact_75_insertI2,axiom,
    ! [A: variable > real,B: set_variable_real,B2: variable > real] :
      ( ( member_variable_real @ A @ B )
     => ( member_variable_real @ A @ ( insert_variable_real @ B2 @ B ) ) ) ).

% insertI2
thf(fact_76_insertI1,axiom,
    ! [A: variable,B: set_variable] : ( member_variable @ A @ ( insert_variable @ A @ B ) ) ).

% insertI1
thf(fact_77_insertI1,axiom,
    ! [A: variable > real,B: set_variable_real] : ( member_variable_real @ A @ ( insert_variable_real @ A @ B ) ) ).

% insertI1
thf(fact_78_insertE,axiom,
    ! [A: variable,B2: variable,A2: set_variable] :
      ( ( member_variable @ A @ ( insert_variable @ B2 @ A2 ) )
     => ( ( A != B2 )
       => ( member_variable @ A @ A2 ) ) ) ).

% insertE
thf(fact_79_insertE,axiom,
    ! [A: variable > real,B2: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ A @ ( insert_variable_real @ B2 @ A2 ) )
     => ( ( A != B2 )
       => ( member_variable_real @ A @ A2 ) ) ) ).

% insertE
thf(fact_80_sup__left__commute,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ Y @ Z ) )
      = ( sup_sup_set_variable @ Y @ ( sup_sup_set_variable @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_81_sup__left__commute,axiom,
    ! [X: set_variable_real,Y: set_variable_real,Z: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ Y @ Z ) )
      = ( sup_su1685293586e_real @ Y @ ( sup_su1685293586e_real @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_82_sup_Oleft__commute,axiom,
    ! [B2: set_variable,A: set_variable,C2: set_variable] :
      ( ( sup_sup_set_variable @ B2 @ ( sup_sup_set_variable @ A @ C2 ) )
      = ( sup_sup_set_variable @ A @ ( sup_sup_set_variable @ B2 @ C2 ) ) ) ).

% sup.left_commute
thf(fact_83_sup_Oleft__commute,axiom,
    ! [B2: set_variable_real,A: set_variable_real,C2: set_variable_real] :
      ( ( sup_su1685293586e_real @ B2 @ ( sup_su1685293586e_real @ A @ C2 ) )
      = ( sup_su1685293586e_real @ A @ ( sup_su1685293586e_real @ B2 @ C2 ) ) ) ).

% sup.left_commute
thf(fact_84_sup__commute,axiom,
    ( sup_sup_set_variable
    = ( ^ [X2: set_variable,Y3: set_variable] : ( sup_sup_set_variable @ Y3 @ X2 ) ) ) ).

% sup_commute
thf(fact_85_sup__commute,axiom,
    ( sup_su1685293586e_real
    = ( ^ [X2: set_variable_real,Y3: set_variable_real] : ( sup_su1685293586e_real @ Y3 @ X2 ) ) ) ).

% sup_commute
thf(fact_86_mem__Collect__eq,axiom,
    ! [A: variable,P: variable > $o] :
      ( ( member_variable @ A @ ( collect_variable @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_87_mem__Collect__eq,axiom,
    ! [A: variable > real,P: ( variable > real ) > $o] :
      ( ( member_variable_real @ A @ ( collec633296133e_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_88_Collect__mem__eq,axiom,
    ! [A2: set_variable] :
      ( ( collect_variable
        @ ^ [X2: variable] : ( member_variable @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_89_Collect__mem__eq,axiom,
    ! [A2: set_variable_real] :
      ( ( collec633296133e_real
        @ ^ [X2: variable > real] : ( member_variable_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_90_sup_Ocommute,axiom,
    ( sup_sup_set_variable
    = ( ^ [A3: set_variable,B4: set_variable] : ( sup_sup_set_variable @ B4 @ A3 ) ) ) ).

% sup.commute
thf(fact_91_sup_Ocommute,axiom,
    ( sup_su1685293586e_real
    = ( ^ [A3: set_variable_real,B4: set_variable_real] : ( sup_su1685293586e_real @ B4 @ A3 ) ) ) ).

% sup.commute
thf(fact_92_sup__assoc,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( sup_sup_set_variable @ ( sup_sup_set_variable @ X @ Y ) @ Z )
      = ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_93_sup__assoc,axiom,
    ! [X: set_variable_real,Y: set_variable_real,Z: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( sup_su1685293586e_real @ X @ Y ) @ Z )
      = ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_94_sup_Oassoc,axiom,
    ! [A: set_variable,B2: set_variable,C2: set_variable] :
      ( ( sup_sup_set_variable @ ( sup_sup_set_variable @ A @ B2 ) @ C2 )
      = ( sup_sup_set_variable @ A @ ( sup_sup_set_variable @ B2 @ C2 ) ) ) ).

% sup.assoc
thf(fact_95_sup_Oassoc,axiom,
    ! [A: set_variable_real,B2: set_variable_real,C2: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( sup_su1685293586e_real @ A @ B2 ) @ C2 )
      = ( sup_su1685293586e_real @ A @ ( sup_su1685293586e_real @ B2 @ C2 ) ) ) ).

% sup.assoc
thf(fact_96_boolean__algebra__cancel_Osup2,axiom,
    ! [B: set_variable,K: set_variable,B2: set_variable,A: set_variable] :
      ( ( B
        = ( sup_sup_set_variable @ K @ B2 ) )
     => ( ( sup_sup_set_variable @ A @ B )
        = ( sup_sup_set_variable @ K @ ( sup_sup_set_variable @ A @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_97_boolean__algebra__cancel_Osup2,axiom,
    ! [B: set_variable_real,K: set_variable_real,B2: set_variable_real,A: set_variable_real] :
      ( ( B
        = ( sup_su1685293586e_real @ K @ B2 ) )
     => ( ( sup_su1685293586e_real @ A @ B )
        = ( sup_su1685293586e_real @ K @ ( sup_su1685293586e_real @ A @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_98_boolean__algebra__cancel_Osup1,axiom,
    ! [A2: set_variable,K: set_variable,A: set_variable,B2: set_variable] :
      ( ( A2
        = ( sup_sup_set_variable @ K @ A ) )
     => ( ( sup_sup_set_variable @ A2 @ B2 )
        = ( sup_sup_set_variable @ K @ ( sup_sup_set_variable @ A @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_99_boolean__algebra__cancel_Osup1,axiom,
    ! [A2: set_variable_real,K: set_variable_real,A: set_variable_real,B2: set_variable_real] :
      ( ( A2
        = ( sup_su1685293586e_real @ K @ A ) )
     => ( ( sup_su1685293586e_real @ A2 @ B2 )
        = ( sup_su1685293586e_real @ K @ ( sup_su1685293586e_real @ A @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_100_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_variable
    = ( ^ [X2: set_variable,Y3: set_variable] : ( sup_sup_set_variable @ Y3 @ X2 ) ) ) ).

% inf_sup_aci(5)
thf(fact_101_inf__sup__aci_I5_J,axiom,
    ( sup_su1685293586e_real
    = ( ^ [X2: set_variable_real,Y3: set_variable_real] : ( sup_su1685293586e_real @ Y3 @ X2 ) ) ) ).

% inf_sup_aci(5)
thf(fact_102_inf__sup__aci_I6_J,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( sup_sup_set_variable @ ( sup_sup_set_variable @ X @ Y ) @ Z )
      = ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_103_inf__sup__aci_I6_J,axiom,
    ! [X: set_variable_real,Y: set_variable_real,Z: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( sup_su1685293586e_real @ X @ Y ) @ Z )
      = ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_104_inf__sup__aci_I7_J,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ Y @ Z ) )
      = ( sup_sup_set_variable @ Y @ ( sup_sup_set_variable @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_105_inf__sup__aci_I7_J,axiom,
    ! [X: set_variable_real,Y: set_variable_real,Z: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ Y @ Z ) )
      = ( sup_su1685293586e_real @ Y @ ( sup_su1685293586e_real @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_106_inf__sup__aci_I8_J,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( sup_sup_set_variable @ X @ ( sup_sup_set_variable @ X @ Y ) )
      = ( sup_sup_set_variable @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_107_inf__sup__aci_I8_J,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( sup_su1685293586e_real @ X @ ( sup_su1685293586e_real @ X @ Y ) )
      = ( sup_su1685293586e_real @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_108_Un__left__commute,axiom,
    ! [A2: set_variable,B: set_variable,C: set_variable] :
      ( ( sup_sup_set_variable @ A2 @ ( sup_sup_set_variable @ B @ C ) )
      = ( sup_sup_set_variable @ B @ ( sup_sup_set_variable @ A2 @ C ) ) ) ).

% Un_left_commute
thf(fact_109_Un__left__commute,axiom,
    ! [A2: set_variable_real,B: set_variable_real,C: set_variable_real] :
      ( ( sup_su1685293586e_real @ A2 @ ( sup_su1685293586e_real @ B @ C ) )
      = ( sup_su1685293586e_real @ B @ ( sup_su1685293586e_real @ A2 @ C ) ) ) ).

% Un_left_commute
thf(fact_110_Un__left__absorb,axiom,
    ! [A2: set_variable,B: set_variable] :
      ( ( sup_sup_set_variable @ A2 @ ( sup_sup_set_variable @ A2 @ B ) )
      = ( sup_sup_set_variable @ A2 @ B ) ) ).

% Un_left_absorb
thf(fact_111_Un__left__absorb,axiom,
    ! [A2: set_variable_real,B: set_variable_real] :
      ( ( sup_su1685293586e_real @ A2 @ ( sup_su1685293586e_real @ A2 @ B ) )
      = ( sup_su1685293586e_real @ A2 @ B ) ) ).

% Un_left_absorb
thf(fact_112_Un__commute,axiom,
    ( sup_sup_set_variable
    = ( ^ [A4: set_variable,B5: set_variable] : ( sup_sup_set_variable @ B5 @ A4 ) ) ) ).

% Un_commute
thf(fact_113_Un__commute,axiom,
    ( sup_su1685293586e_real
    = ( ^ [A4: set_variable_real,B5: set_variable_real] : ( sup_su1685293586e_real @ B5 @ A4 ) ) ) ).

% Un_commute
thf(fact_114_Un__absorb,axiom,
    ! [A2: set_variable] :
      ( ( sup_sup_set_variable @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_115_Un__absorb,axiom,
    ! [A2: set_variable_real] :
      ( ( sup_su1685293586e_real @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_116_Un__assoc,axiom,
    ! [A2: set_variable,B: set_variable,C: set_variable] :
      ( ( sup_sup_set_variable @ ( sup_sup_set_variable @ A2 @ B ) @ C )
      = ( sup_sup_set_variable @ A2 @ ( sup_sup_set_variable @ B @ C ) ) ) ).

% Un_assoc
thf(fact_117_Un__assoc,axiom,
    ! [A2: set_variable_real,B: set_variable_real,C: set_variable_real] :
      ( ( sup_su1685293586e_real @ ( sup_su1685293586e_real @ A2 @ B ) @ C )
      = ( sup_su1685293586e_real @ A2 @ ( sup_su1685293586e_real @ B @ C ) ) ) ).

% Un_assoc
thf(fact_118_ball__Un,axiom,
    ! [A2: set_variable,B: set_variable,P: variable > $o] :
      ( ( ! [X2: variable] :
            ( ( member_variable @ X2 @ ( sup_sup_set_variable @ A2 @ B ) )
           => ( P @ X2 ) ) )
      = ( ! [X2: variable] :
            ( ( member_variable @ X2 @ A2 )
           => ( P @ X2 ) )
        & ! [X2: variable] :
            ( ( member_variable @ X2 @ B )
           => ( P @ X2 ) ) ) ) ).

% ball_Un
thf(fact_119_ball__Un,axiom,
    ! [A2: set_variable_real,B: set_variable_real,P: ( variable > real ) > $o] :
      ( ( ! [X2: variable > real] :
            ( ( member_variable_real @ X2 @ ( sup_su1685293586e_real @ A2 @ B ) )
           => ( P @ X2 ) ) )
      = ( ! [X2: variable > real] :
            ( ( member_variable_real @ X2 @ A2 )
           => ( P @ X2 ) )
        & ! [X2: variable > real] :
            ( ( member_variable_real @ X2 @ B )
           => ( P @ X2 ) ) ) ) ).

% ball_Un
thf(fact_120_bex__Un,axiom,
    ! [A2: set_variable,B: set_variable,P: variable > $o] :
      ( ( ? [X2: variable] :
            ( ( member_variable @ X2 @ ( sup_sup_set_variable @ A2 @ B ) )
            & ( P @ X2 ) ) )
      = ( ? [X2: variable] :
            ( ( member_variable @ X2 @ A2 )
            & ( P @ X2 ) )
        | ? [X2: variable] :
            ( ( member_variable @ X2 @ B )
            & ( P @ X2 ) ) ) ) ).

% bex_Un
thf(fact_121_bex__Un,axiom,
    ! [A2: set_variable_real,B: set_variable_real,P: ( variable > real ) > $o] :
      ( ( ? [X2: variable > real] :
            ( ( member_variable_real @ X2 @ ( sup_su1685293586e_real @ A2 @ B ) )
            & ( P @ X2 ) ) )
      = ( ? [X2: variable > real] :
            ( ( member_variable_real @ X2 @ A2 )
            & ( P @ X2 ) )
        | ? [X2: variable > real] :
            ( ( member_variable_real @ X2 @ B )
            & ( P @ X2 ) ) ) ) ).

% bex_Un
thf(fact_122_UnI2,axiom,
    ! [C2: variable,B: set_variable,A2: set_variable] :
      ( ( member_variable @ C2 @ B )
     => ( member_variable @ C2 @ ( sup_sup_set_variable @ A2 @ B ) ) ) ).

% UnI2
thf(fact_123_UnI2,axiom,
    ! [C2: variable > real,B: set_variable_real,A2: set_variable_real] :
      ( ( member_variable_real @ C2 @ B )
     => ( member_variable_real @ C2 @ ( sup_su1685293586e_real @ A2 @ B ) ) ) ).

% UnI2
thf(fact_124_UnI1,axiom,
    ! [C2: variable,A2: set_variable,B: set_variable] :
      ( ( member_variable @ C2 @ A2 )
     => ( member_variable @ C2 @ ( sup_sup_set_variable @ A2 @ B ) ) ) ).

% UnI1
thf(fact_125_UnI1,axiom,
    ! [C2: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( member_variable_real @ C2 @ A2 )
     => ( member_variable_real @ C2 @ ( sup_su1685293586e_real @ A2 @ B ) ) ) ).

% UnI1
thf(fact_126_UnE,axiom,
    ! [C2: variable,A2: set_variable,B: set_variable] :
      ( ( member_variable @ C2 @ ( sup_sup_set_variable @ A2 @ B ) )
     => ( ~ ( member_variable @ C2 @ A2 )
       => ( member_variable @ C2 @ B ) ) ) ).

% UnE
thf(fact_127_UnE,axiom,
    ! [C2: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( member_variable_real @ C2 @ ( sup_su1685293586e_real @ A2 @ B ) )
     => ( ~ ( member_variable_real @ C2 @ A2 )
       => ( member_variable_real @ C2 @ B ) ) ) ).

% UnE
thf(fact_128_Uvariation__sym__rel,axiom,
    ! [Omega: variable > real,Nu: variable > real,U: set_variable] :
      ( ( denota1419872369iation @ Omega @ Nu @ U )
     => ( denota1419872369iation @ Nu @ Omega @ U ) ) ).

% Uvariation_sym_rel
thf(fact_129_Uvariation__refl,axiom,
    ! [Nu: variable > real,V: set_variable] : ( denota1419872369iation @ Nu @ Nu @ V ) ).

% Uvariation_refl
thf(fact_130_Uvariation__sym,axiom,
    ( denota1419872369iation
    = ( ^ [Omega2: variable > real,Nu3: variable > real] : ( denota1419872369iation @ Nu3 @ Omega2 ) ) ) ).

% Uvariation_sym
thf(fact_131_Uvariation__def,axiom,
    ( denota1419872369iation
    = ( ^ [Nu3: variable > real,Nu4: variable > real,U2: set_variable] :
        ! [I: variable] :
          ( ~ ( member_variable @ I @ U2 )
         => ( ( Nu3 @ I )
            = ( Nu4 @ I ) ) ) ) ) ).

% Uvariation_def
thf(fact_132_singleton__inject,axiom,
    ! [A: variable,B2: variable] :
      ( ( ( insert_variable @ A @ bot_bot_set_variable )
        = ( insert_variable @ B2 @ bot_bot_set_variable ) )
     => ( A = B2 ) ) ).

% singleton_inject
thf(fact_133_singleton__inject,axiom,
    ! [A: variable > real,B2: variable > real] :
      ( ( ( insert_variable_real @ A @ bot_bo721182586e_real )
        = ( insert_variable_real @ B2 @ bot_bo721182586e_real ) )
     => ( A = B2 ) ) ).

% singleton_inject
thf(fact_134_insert__not__empty,axiom,
    ! [A: variable,A2: set_variable] :
      ( ( insert_variable @ A @ A2 )
     != bot_bot_set_variable ) ).

% insert_not_empty
thf(fact_135_insert__not__empty,axiom,
    ! [A: variable > real,A2: set_variable_real] :
      ( ( insert_variable_real @ A @ A2 )
     != bot_bo721182586e_real ) ).

% insert_not_empty
thf(fact_136_doubleton__eq__iff,axiom,
    ! [A: variable,B2: variable,C2: variable,D: variable] :
      ( ( ( insert_variable @ A @ ( insert_variable @ B2 @ bot_bot_set_variable ) )
        = ( insert_variable @ C2 @ ( insert_variable @ D @ bot_bot_set_variable ) ) )
      = ( ( ( A = C2 )
          & ( B2 = D ) )
        | ( ( A = D )
          & ( B2 = C2 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_137_doubleton__eq__iff,axiom,
    ! [A: variable > real,B2: variable > real,C2: variable > real,D: variable > real] :
      ( ( ( insert_variable_real @ A @ ( insert_variable_real @ B2 @ bot_bo721182586e_real ) )
        = ( insert_variable_real @ C2 @ ( insert_variable_real @ D @ bot_bo721182586e_real ) ) )
      = ( ( ( A = C2 )
          & ( B2 = D ) )
        | ( ( A = D )
          & ( B2 = C2 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_138_singleton__iff,axiom,
    ! [B2: variable,A: variable] :
      ( ( member_variable @ B2 @ ( insert_variable @ A @ bot_bot_set_variable ) )
      = ( B2 = A ) ) ).

% singleton_iff
thf(fact_139_singleton__iff,axiom,
    ! [B2: variable > real,A: variable > real] :
      ( ( member_variable_real @ B2 @ ( insert_variable_real @ A @ bot_bo721182586e_real ) )
      = ( B2 = A ) ) ).

% singleton_iff
thf(fact_140_singletonD,axiom,
    ! [B2: variable,A: variable] :
      ( ( member_variable @ B2 @ ( insert_variable @ A @ bot_bot_set_variable ) )
     => ( B2 = A ) ) ).

% singletonD
thf(fact_141_singletonD,axiom,
    ! [B2: variable > real,A: variable > real] :
      ( ( member_variable_real @ B2 @ ( insert_variable_real @ A @ bot_bo721182586e_real ) )
     => ( B2 = A ) ) ).

% singletonD
thf(fact_142_Un__empty__right,axiom,
    ! [A2: set_variable] :
      ( ( sup_sup_set_variable @ A2 @ bot_bot_set_variable )
      = A2 ) ).

% Un_empty_right
thf(fact_143_Un__empty__right,axiom,
    ! [A2: set_variable_real] :
      ( ( sup_su1685293586e_real @ A2 @ bot_bo721182586e_real )
      = A2 ) ).

% Un_empty_right
thf(fact_144_Un__empty__left,axiom,
    ! [B: set_variable] :
      ( ( sup_sup_set_variable @ bot_bot_set_variable @ B )
      = B ) ).

% Un_empty_left
thf(fact_145_Un__empty__left,axiom,
    ! [B: set_variable_real] :
      ( ( sup_su1685293586e_real @ bot_bo721182586e_real @ B )
      = B ) ).

% Un_empty_left
thf(fact_146_Uvariation__trans,axiom,
    ! [Omega: variable > real,Nu: variable > real,U: set_variable,Mu: variable > real,V: set_variable] :
      ( ( denota1419872369iation @ Omega @ Nu @ U )
     => ( ( denota1419872369iation @ Nu @ Mu @ V )
       => ( denota1419872369iation @ Omega @ Mu @ ( sup_sup_set_variable @ U @ V ) ) ) ) ).

% Uvariation_trans
thf(fact_147_singleton__Un__iff,axiom,
    ! [X: variable,A2: set_variable,B: set_variable] :
      ( ( ( insert_variable @ X @ bot_bot_set_variable )
        = ( sup_sup_set_variable @ A2 @ B ) )
      = ( ( ( A2 = bot_bot_set_variable )
          & ( B
            = ( insert_variable @ X @ bot_bot_set_variable ) ) )
        | ( ( A2
            = ( insert_variable @ X @ bot_bot_set_variable ) )
          & ( B = bot_bot_set_variable ) )
        | ( ( A2
            = ( insert_variable @ X @ bot_bot_set_variable ) )
          & ( B
            = ( insert_variable @ X @ bot_bot_set_variable ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_148_singleton__Un__iff,axiom,
    ! [X: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( ( insert_variable_real @ X @ bot_bo721182586e_real )
        = ( sup_su1685293586e_real @ A2 @ B ) )
      = ( ( ( A2 = bot_bo721182586e_real )
          & ( B
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) ) )
        | ( ( A2
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) )
          & ( B = bot_bo721182586e_real ) )
        | ( ( A2
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) )
          & ( B
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_149_Un__singleton__iff,axiom,
    ! [A2: set_variable,B: set_variable,X: variable] :
      ( ( ( sup_sup_set_variable @ A2 @ B )
        = ( insert_variable @ X @ bot_bot_set_variable ) )
      = ( ( ( A2 = bot_bot_set_variable )
          & ( B
            = ( insert_variable @ X @ bot_bot_set_variable ) ) )
        | ( ( A2
            = ( insert_variable @ X @ bot_bot_set_variable ) )
          & ( B = bot_bot_set_variable ) )
        | ( ( A2
            = ( insert_variable @ X @ bot_bot_set_variable ) )
          & ( B
            = ( insert_variable @ X @ bot_bot_set_variable ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_150_Un__singleton__iff,axiom,
    ! [A2: set_variable_real,B: set_variable_real,X: variable > real] :
      ( ( ( sup_su1685293586e_real @ A2 @ B )
        = ( insert_variable_real @ X @ bot_bo721182586e_real ) )
      = ( ( ( A2 = bot_bo721182586e_real )
          & ( B
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) ) )
        | ( ( A2
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) )
          & ( B = bot_bo721182586e_real ) )
        | ( ( A2
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) )
          & ( B
            = ( insert_variable_real @ X @ bot_bo721182586e_real ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_151_insert__is__Un,axiom,
    ( insert_variable
    = ( ^ [A3: variable] : ( sup_sup_set_variable @ ( insert_variable @ A3 @ bot_bot_set_variable ) ) ) ) ).

% insert_is_Un
thf(fact_152_insert__is__Un,axiom,
    ( insert_variable_real
    = ( ^ [A3: variable > real] : ( sup_su1685293586e_real @ ( insert_variable_real @ A3 @ bot_bo721182586e_real ) ) ) ) ).

% insert_is_Un
thf(fact_153__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062rr_O_A_092_060forall_062x0_Ax1_Ax2_Ax3_Ax4_Ax5_O_A_I_092_060exists_062v6_O_AUvariation_Av6_A_Ix5_A0_J_A_123RVar_Ax4_M_ADVar_Ax4_125_A_092_060and_062_Aterm__sem_Ax3_Ax2_Av6_A_092_060noteq_062_Aterm__sem_Ax1_Ax0_Av6_J_A_061_A_IUvariation_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_A_Ix5_A0_J_A_123RVar_Ax4_M_ADVar_Ax4_125_A_092_060and_062_Aterm__sem_Ax3_Ax2_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_A_092_060noteq_062_Aterm__sem_Ax1_Ax0_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Rr: trm > denotational_interp > trm > denotational_interp > char > ( real > variable > real ) > variable > real] :
        ~ ! [X0: trm,X1: denotational_interp,X22: trm,X3: denotational_interp,X4: char,X5: real > variable > real] :
            ( ( ? [V6: variable > real] :
                  ( ( denota1419872369iation @ V6 @ ( X5 @ zero_zero_real ) @ ( insert_variable @ ( rVar @ X4 ) @ ( insert_variable @ ( dVar @ X4 ) @ bot_bot_set_variable ) ) )
                  & ( ( denota1863255036rm_sem @ X3 @ X22 @ V6 )
                   != ( denota1863255036rm_sem @ X1 @ X0 @ V6 ) ) ) )
            = ( ( denota1419872369iation @ ( Rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) @ ( X5 @ zero_zero_real ) @ ( insert_variable @ ( rVar @ X4 ) @ ( insert_variable @ ( dVar @ X4 ) @ bot_bot_set_variable ) ) )
              & ( ( denota1863255036rm_sem @ X3 @ X22 @ ( Rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) )
               != ( denota1863255036rm_sem @ X1 @ X0 @ ( Rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) ) ) ) ) ).

% \<open>\<And>thesis. (\<And>rr. \<forall>x0 x1 x2 x3 x4 x5. (\<exists>v6. Uvariation v6 (x5 0) {RVar x4, DVar x4} \<and> term_sem x3 x2 v6 \<noteq> term_sem x1 x0 v6) = (Uvariation (rr x0 x1 x2 x3 x4 x5) (x5 0) {RVar x4, DVar x4} \<and> term_sem x3 x2 (rr x0 x1 x2 x3 x4 x5) \<noteq> term_sem x1 x0 (rr x0 x1 x2 x3 x4 x5)) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_154_solves__Vagree__trans,axiom,
    ! [F: real > variable > real,Omega: variable > real,U: set_variable,I2: denotational_interp,X: char,Theta: trm,Zeta: real] :
      ( ( denota1419872369iation @ ( F @ zero_zero_real ) @ Omega @ U )
     => ( ( denota1778088425es_ODE @ I2 @ F @ X @ Theta )
       => ( denota1419872369iation @ ( F @ Zeta ) @ Omega @ ( sup_sup_set_variable @ U @ ( insert_variable @ ( rVar @ X ) @ ( insert_variable @ ( dVar @ X ) @ bot_bot_set_variable ) ) ) ) ) ) ).

% solves_Vagree_trans
thf(fact_155__092_060open_062_092_060forall_062x0_Ax1_Ax2_Ax3_Ax4_Ax5_O_A_I_092_060exists_062v6_O_AUvariation_Av6_A_Ix5_A0_J_A_123RVar_Ax4_M_ADVar_Ax4_125_A_092_060and_062_Aterm__sem_Ax3_Ax2_Av6_A_092_060noteq_062_Aterm__sem_Ax1_Ax0_Av6_J_A_061_A_IUvariation_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_A_Ix5_A0_J_A_123RVar_Ax4_M_ADVar_Ax4_125_A_092_060and_062_Aterm__sem_Ax3_Ax2_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_A_092_060noteq_062_Aterm__sem_Ax1_Ax0_A_Irr_Ax0_Ax1_Ax2_Ax3_Ax4_Ax5_J_J_092_060close_062,axiom,
    ! [X0: trm,X1: denotational_interp,X22: trm,X3: denotational_interp,X4: char,X5: real > variable > real] :
      ( ( ? [V6: variable > real] :
            ( ( denota1419872369iation @ V6 @ ( X5 @ zero_zero_real ) @ ( insert_variable @ ( rVar @ X4 ) @ ( insert_variable @ ( dVar @ X4 ) @ bot_bot_set_variable ) ) )
            & ( ( denota1863255036rm_sem @ X3 @ X22 @ V6 )
             != ( denota1863255036rm_sem @ X1 @ X0 @ V6 ) ) ) )
      = ( ( denota1419872369iation @ ( rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) @ ( X5 @ zero_zero_real ) @ ( insert_variable @ ( rVar @ X4 ) @ ( insert_variable @ ( dVar @ X4 ) @ bot_bot_set_variable ) ) )
        & ( ( denota1863255036rm_sem @ X3 @ X22 @ ( rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) )
         != ( denota1863255036rm_sem @ X1 @ X0 @ ( rr @ X0 @ X1 @ X22 @ X3 @ X4 @ X5 ) ) ) ) ) ).

% \<open>\<forall>x0 x1 x2 x3 x4 x5. (\<exists>v6. Uvariation v6 (x5 0) {RVar x4, DVar x4} \<and> term_sem x3 x2 v6 \<noteq> term_sem x1 x0 v6) = (Uvariation (rr x0 x1 x2 x3 x4 x5) (x5 0) {RVar x4, DVar x4} \<and> term_sem x3 x2 (rr x0 x1 x2 x3 x4 x5) \<noteq> term_sem x1 x0 (rr x0 x1 x2 x3 x4 x5))\<close>
thf(fact_156_variable_Oinject_I1_J,axiom,
    ! [X12: char,Y1: char] :
      ( ( ( rVar @ X12 )
        = ( rVar @ Y1 ) )
      = ( X12 = Y1 ) ) ).

% variable.inject(1)
thf(fact_157_set__zero,axiom,
    ( zero_zero_set_real
    = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) ).

% set_zero
thf(fact_158_set__zero,axiom,
    ( zero_zero_set_nat
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% set_zero
thf(fact_159_variable_Oinject_I2_J,axiom,
    ! [X23: char,Y22: char] :
      ( ( ( dVar @ X23 )
        = ( dVar @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% variable.inject(2)
thf(fact_160_union__or,axiom,
    ! [C2: variable,A2: set_variable,B: set_variable] :
      ( ( member_variable @ C2 @ ( sup_sup_set_variable @ A2 @ B ) )
      = ( ( member_variable @ C2 @ A2 )
        | ( member_variable @ C2 @ B ) ) ) ).

% union_or
thf(fact_161_union__or,axiom,
    ! [C2: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( member_variable_real @ C2 @ ( sup_su1685293586e_real @ A2 @ B ) )
      = ( ( member_variable_real @ C2 @ A2 )
        | ( member_variable_real @ C2 @ B ) ) ) ).

% union_or
thf(fact_162_ball__insert,axiom,
    ! [A: variable,B: set_variable,P: variable > $o] :
      ( ( ! [X2: variable] :
            ( ( member_variable @ X2 @ ( insert_variable @ A @ B ) )
           => ( P @ X2 ) ) )
      = ( ( P @ A )
        & ! [X2: variable] :
            ( ( member_variable @ X2 @ B )
           => ( P @ X2 ) ) ) ) ).

% ball_insert
thf(fact_163_ball__insert,axiom,
    ! [A: variable > real,B: set_variable_real,P: ( variable > real ) > $o] :
      ( ( ! [X2: variable > real] :
            ( ( member_variable_real @ X2 @ ( insert_variable_real @ A @ B ) )
           => ( P @ X2 ) ) )
      = ( ( P @ A )
        & ! [X2: variable > real] :
            ( ( member_variable_real @ X2 @ B )
           => ( P @ X2 ) ) ) ) ).

% ball_insert
thf(fact_164_the__elem__eq,axiom,
    ! [X: variable] :
      ( ( the_elem_variable @ ( insert_variable @ X @ bot_bot_set_variable ) )
      = X ) ).

% the_elem_eq
thf(fact_165_the__elem__eq,axiom,
    ! [X: variable > real] :
      ( ( the_el1059226619e_real @ ( insert_variable_real @ X @ bot_bo721182586e_real ) )
      = X ) ).

% the_elem_eq
thf(fact_166_f2,axiom,
    ! [F2: real > variable > real,C4: char,I3: denotational_interp,T: trm,Ia: denotational_interp,Ta: trm] :
      ( ( ( denota1419872369iation @ ( rr @ Ta @ Ia @ T @ I3 @ C4 @ F2 ) @ ( F2 @ zero_zero_real ) @ ( insert_variable @ ( rVar @ C4 ) @ ( insert_variable @ ( dVar @ C4 ) @ bot_bot_set_variable ) ) )
        & ( ( denota1863255036rm_sem @ I3 @ T @ ( rr @ Ta @ Ia @ T @ I3 @ C4 @ F2 ) )
         != ( denota1863255036rm_sem @ Ia @ Ta @ ( rr @ Ta @ Ia @ T @ I3 @ C4 @ F2 ) ) ) )
      | ( ( denota1778088425es_ODE @ I3 @ F2 @ C4 @ T )
        = ( denota1778088425es_ODE @ Ia @ F2 @ C4 @ Ta ) ) ) ).

% f2
thf(fact_167_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_168_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_169_not__union__or,axiom,
    ! [X: variable,A2: set_variable,B: set_variable] :
      ( ( ~ ( member_variable @ X @ ( sup_sup_set_variable @ A2 @ B ) ) )
      = ( ~ ( member_variable @ X @ A2 )
        & ~ ( member_variable @ X @ B ) ) ) ).

% not_union_or
thf(fact_170_not__union__or,axiom,
    ! [X: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( ~ ( member_variable_real @ X @ ( sup_su1685293586e_real @ A2 @ B ) ) )
      = ( ~ ( member_variable_real @ X @ A2 )
        & ~ ( member_variable_real @ X @ B ) ) ) ).

% not_union_or
thf(fact_171_same__ODE__same__sol,axiom,
    ! [F: real > variable > real,X: char,I2: denotational_interp,Theta: trm,J: denotational_interp,Eta: trm] :
      ( ! [Nu5: variable > real] :
          ( ( denota1419872369iation @ Nu5 @ ( F @ zero_zero_real ) @ ( insert_variable @ ( rVar @ X ) @ ( insert_variable @ ( dVar @ X ) @ bot_bot_set_variable ) ) )
         => ( ( denota1863255036rm_sem @ I2 @ Theta @ Nu5 )
            = ( denota1863255036rm_sem @ J @ Eta @ Nu5 ) ) )
     => ( ( denota1778088425es_ODE @ I2 @ F @ X @ Theta )
        = ( denota1778088425es_ODE @ J @ F @ X @ Eta ) ) ) ).

% same_ODE_same_sol
thf(fact_172_variable_Odistinct_I1_J,axiom,
    ! [X12: char,X23: char] :
      ( ( rVar @ X12 )
     != ( dVar @ X23 ) ) ).

% variable.distinct(1)
thf(fact_173_variable_Oinduct,axiom,
    ! [P: variable > $o,Variable: variable] :
      ( ! [X6: char] : ( P @ ( rVar @ X6 ) )
     => ( ! [X6: char] : ( P @ ( dVar @ X6 ) )
       => ( P @ Variable ) ) ) ).

% variable.induct
thf(fact_174_variable_Oexhaust,axiom,
    ! [Y: variable] :
      ( ! [X13: char] :
          ( Y
         != ( rVar @ X13 ) )
     => ~ ! [X24: char] :
            ( Y
           != ( dVar @ X24 ) ) ) ).

% variable.exhaust
thf(fact_175_bot__empty__eq,axiom,
    ( bot_bot_variable_o
    = ( ^ [X2: variable] : ( member_variable @ X2 @ bot_bot_set_variable ) ) ) ).

% bot_empty_eq
thf(fact_176_bot__empty__eq,axiom,
    ( bot_bo1661475211real_o
    = ( ^ [X2: variable > real] : ( member_variable_real @ X2 @ bot_bo721182586e_real ) ) ) ).

% bot_empty_eq
thf(fact_177_Collect__empty__eq__bot,axiom,
    ! [P: variable > $o] :
      ( ( ( collect_variable @ P )
        = bot_bot_set_variable )
      = ( P = bot_bot_variable_o ) ) ).

% Collect_empty_eq_bot
thf(fact_178_Collect__empty__eq__bot,axiom,
    ! [P: ( variable > real ) > $o] :
      ( ( ( collec633296133e_real @ P )
        = bot_bo721182586e_real )
      = ( P = bot_bo1661475211real_o ) ) ).

% Collect_empty_eq_bot
thf(fact_179_is__singleton__the__elem,axiom,
    ( is_sin155454833riable
    = ( ^ [A4: set_variable] :
          ( A4
          = ( insert_variable @ ( the_elem_variable @ A4 ) @ bot_bot_set_variable ) ) ) ) ).

% is_singleton_the_elem
thf(fact_180_is__singleton__the__elem,axiom,
    ( is_sin524757308e_real
    = ( ^ [A4: set_variable_real] :
          ( A4
          = ( insert_variable_real @ ( the_el1059226619e_real @ A4 ) @ bot_bo721182586e_real ) ) ) ) ).

% is_singleton_the_elem
thf(fact_181_vaflow2,axiom,
    ! [F: real > variable > real,Theta: trm,Zeta: real] :
      ( ( denota1778088425es_ODE @ ( uSubst1599435252djoint @ sigma @ i @ omega ) @ F @ x @ Theta )
     => ( denota1419872369iation @ ( F @ Zeta ) @ ( F @ zero_zero_real ) @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) ) ).

% vaflow2
thf(fact_182_is__singletonI,axiom,
    ! [X: variable] : ( is_sin155454833riable @ ( insert_variable @ X @ bot_bot_set_variable ) ) ).

% is_singletonI
thf(fact_183_is__singletonI,axiom,
    ! [X: variable > real] : ( is_sin524757308e_real @ ( insert_variable_real @ X @ bot_bo721182586e_real ) ) ).

% is_singletonI
thf(fact_184_a1,axiom,
    denota1778088425es_ODE @ ( uSubst1599435252djoint @ sigma @ i @ omega ) @ f @ x @ theta ).

% a1
thf(fact_185_is__singletonI_H,axiom,
    ! [A2: set_variable] :
      ( ( A2 != bot_bot_set_variable )
     => ( ! [X6: variable,Y2: variable] :
            ( ( member_variable @ X6 @ A2 )
           => ( ( member_variable @ Y2 @ A2 )
             => ( X6 = Y2 ) ) )
       => ( is_sin155454833riable @ A2 ) ) ) ).

% is_singletonI'
thf(fact_186_is__singletonI_H,axiom,
    ! [A2: set_variable_real] :
      ( ( A2 != bot_bo721182586e_real )
     => ( ! [X6: variable > real,Y2: variable > real] :
            ( ( member_variable_real @ X6 @ A2 )
           => ( ( member_variable_real @ Y2 @ A2 )
             => ( X6 = Y2 ) ) )
       => ( is_sin524757308e_real @ A2 ) ) ) ).

% is_singletonI'
thf(fact_187_is__singleton__def,axiom,
    ( is_sin155454833riable
    = ( ^ [A4: set_variable] :
        ? [X2: variable] :
          ( A4
          = ( insert_variable @ X2 @ bot_bot_set_variable ) ) ) ) ).

% is_singleton_def
thf(fact_188_is__singleton__def,axiom,
    ( is_sin524757308e_real
    = ( ^ [A4: set_variable_real] :
        ? [X2: variable > real] :
          ( A4
          = ( insert_variable_real @ X2 @ bot_bo721182586e_real ) ) ) ) ).

% is_singleton_def
thf(fact_189_is__singletonE,axiom,
    ! [A2: set_variable] :
      ( ( is_sin155454833riable @ A2 )
     => ~ ! [X6: variable] :
            ( A2
           != ( insert_variable @ X6 @ bot_bot_set_variable ) ) ) ).

% is_singletonE
thf(fact_190_is__singletonE,axiom,
    ! [A2: set_variable_real] :
      ( ( is_sin524757308e_real @ A2 )
     => ~ ! [X6: variable > real] :
            ( A2
           != ( insert_variable_real @ X6 @ bot_bo721182586e_real ) ) ) ).

% is_singletonE
thf(fact_191_vaflow1,axiom,
    ! [F: real > variable > real,Theta: trm,Zeta: real] :
      ( ( denota1778088425es_ODE @ i @ F @ x @ ( the_trm @ ( uSubst516392818stappt @ sigma @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) @ Theta ) ) )
     => ( denota1419872369iation @ ( F @ Zeta ) @ ( F @ zero_zero_real ) @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) ) ).

% vaflow1
thf(fact_192_l2r,axiom,
    ( ( denota1778088425es_ODE @ i @ f @ x @ ( the_trm @ ( uSubst516392818stappt @ sigma @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) @ theta ) ) )
   => ( denota1778088425es_ODE @ ( uSubst1599435252djoint @ sigma @ i @ omega ) @ f @ x @ theta ) ) ).

% l2r
thf(fact_193_IH,axiom,
    ! [Nu: variable > real] :
      ( ( denota1419872369iation @ Nu @ ( f @ zero_zero_real ) @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) )
     => ( ( denota1863255036rm_sem @ i @ ( the_trm @ ( uSubst516392818stappt @ sigma @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) @ theta ) ) @ Nu )
        = ( denota1863255036rm_sem @ ( uSubst1599435252djoint @ sigma @ i @ ( f @ zero_zero_real ) ) @ theta @ Nu ) ) ) ).

% IH
thf(fact_194_subdef,axiom,
    ( ( uSubst516392818stappt @ sigma @ ( sup_sup_set_variable @ u @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) ) @ theta )
   != none_trm ) ).

% subdef
thf(fact_195_variable_Osize__gen_I1_J,axiom,
    ! [X12: char] :
      ( ( size_variable @ ( rVar @ X12 ) )
      = zero_zero_nat ) ).

% variable.size_gen(1)
thf(fact_196_usubst__term,axiom,
    ! [Nu: variable > real,Omega: variable > real,U: set_variable,Sigma: produc1418842292n_game,Theta: trm,I2: denotational_interp] :
      ( ( denota1419872369iation @ Nu @ Omega @ U )
     => ( ( ( uSubst516392818stappt @ Sigma @ U @ Theta )
         != none_trm )
       => ( ( denota1863255036rm_sem @ I2 @ ( the_trm @ ( uSubst516392818stappt @ Sigma @ U @ Theta ) ) @ Nu )
          = ( denota1863255036rm_sem @ ( uSubst1599435252djoint @ Sigma @ I2 @ Omega ) @ Theta @ Nu ) ) ) ) ).

% usubst_term
thf(fact_197_usubstappt__det,axiom,
    ! [Sigma: produc1418842292n_game,U: set_variable,Theta: trm,V: set_variable] :
      ( ( ( uSubst516392818stappt @ Sigma @ U @ Theta )
       != none_trm )
     => ( ( ( uSubst516392818stappt @ Sigma @ V @ Theta )
         != none_trm )
       => ( ( uSubst516392818stappt @ Sigma @ U @ Theta )
          = ( uSubst516392818stappt @ Sigma @ V @ Theta ) ) ) ) ).

% usubstappt_det
thf(fact_198_undeft__None,axiom,
    none_trm = none_trm ).

% undeft_None
thf(fact_199_usubst__ode,axiom,
    ! [Sigma: produc1418842292n_game,X: char,Theta: trm,I2: denotational_interp,F: real > variable > real] :
      ( ( ( uSubst516392818stappt @ Sigma @ ( insert_variable @ ( rVar @ X ) @ ( insert_variable @ ( dVar @ X ) @ bot_bot_set_variable ) ) @ Theta )
       != none_trm )
     => ( ( denota1778088425es_ODE @ I2 @ F @ X @ ( the_trm @ ( uSubst516392818stappt @ Sigma @ ( insert_variable @ ( rVar @ X ) @ ( insert_variable @ ( dVar @ X ) @ bot_bot_set_variable ) ) @ Theta ) ) )
        = ( denota1778088425es_ODE @ ( uSubst1599435252djoint @ Sigma @ I2 @ ( F @ zero_zero_real ) ) @ F @ X @ Theta ) ) ) ).

% usubst_ode
thf(fact_200_variable_Osize__gen_I2_J,axiom,
    ! [X23: char] :
      ( ( size_variable @ ( dVar @ X23 ) )
      = zero_zero_nat ) ).

% variable.size_gen(2)
thf(fact_201_option_Oexpand,axiom,
    ! [Option: option_trm,Option2: option_trm] :
      ( ( ( Option = none_trm )
        = ( Option2 = none_trm ) )
     => ( ( ( Option != none_trm )
         => ( ( Option2 != none_trm )
           => ( ( the_trm @ Option )
              = ( the_trm @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_202_variable_Osize_I3_J,axiom,
    ! [X12: char] :
      ( ( size_size_variable @ ( rVar @ X12 ) )
      = zero_zero_nat ) ).

% variable.size(3)
thf(fact_203_variable_Osize_I4_J,axiom,
    ! [X23: char] :
      ( ( size_size_variable @ ( dVar @ X23 ) )
      = zero_zero_nat ) ).

% variable.size(4)
thf(fact_204_Set_Ois__empty__def,axiom,
    ( is_empty_variable
    = ( ^ [A4: set_variable] : ( A4 = bot_bot_set_variable ) ) ) ).

% Set.is_empty_def
thf(fact_205_Set_Ois__empty__def,axiom,
    ( is_emp227886046e_real
    = ( ^ [A4: set_variable_real] : ( A4 = bot_bo721182586e_real ) ) ) ).

% Set.is_empty_def
thf(fact_206_Uvariation__repv,axiom,
    ! [Omega: variable > real,X: variable,D: real] : ( denota1419872369iation @ Omega @ ( denotational_repv @ Omega @ X @ D ) @ ( insert_variable @ X @ bot_bot_set_variable ) ) ).

% Uvariation_repv
thf(fact_207_these__empty__eq,axiom,
    ! [B: set_option_trm] :
      ( ( ( these_trm @ B )
        = bot_bot_set_trm )
      = ( ( B = bot_bo946428664on_trm )
        | ( B
          = ( insert_option_trm @ none_trm @ bot_bo946428664on_trm ) ) ) ) ).

% these_empty_eq
thf(fact_208_these__empty__eq,axiom,
    ! [B: set_option_variable] :
      ( ( ( these_variable @ B )
        = bot_bot_set_variable )
      = ( ( B = bot_bo266290559riable )
        | ( B
          = ( insert1340772453riable @ none_variable @ bot_bo266290559riable ) ) ) ) ).

% these_empty_eq
thf(fact_209_these__empty__eq,axiom,
    ! [B: set_op12188086e_real] :
      ( ( ( these_variable_real @ B )
        = bot_bo721182586e_real )
      = ( ( B = bot_bo1411475018e_real )
        | ( B
          = ( insert526581936e_real @ none_variable_real @ bot_bo1411475018e_real ) ) ) ) ).

% these_empty_eq
thf(fact_210_these__not__empty__eq,axiom,
    ! [B: set_option_trm] :
      ( ( ( these_trm @ B )
       != bot_bot_set_trm )
      = ( ( B != bot_bo946428664on_trm )
        & ( B
         != ( insert_option_trm @ none_trm @ bot_bo946428664on_trm ) ) ) ) ).

% these_not_empty_eq
thf(fact_211_these__not__empty__eq,axiom,
    ! [B: set_option_variable] :
      ( ( ( these_variable @ B )
       != bot_bot_set_variable )
      = ( ( B != bot_bo266290559riable )
        & ( B
         != ( insert1340772453riable @ none_variable @ bot_bo266290559riable ) ) ) ) ).

% these_not_empty_eq
thf(fact_212_these__not__empty__eq,axiom,
    ! [B: set_op12188086e_real] :
      ( ( ( these_variable_real @ B )
       != bot_bo721182586e_real )
      = ( ( B != bot_bo1411475018e_real )
        & ( B
         != ( insert526581936e_real @ none_variable_real @ bot_bo1411475018e_real ) ) ) ) ).

% these_not_empty_eq
thf(fact_213_repv__self,axiom,
    ! [Omega: variable > real,X: variable] :
      ( ( denotational_repv @ Omega @ X @ ( Omega @ X ) )
      = Omega ) ).

% repv_self
thf(fact_214_repv__access,axiom,
    ( denotational_repv
    = ( ^ [Omega2: variable > real,X2: variable,R: real,Y3: variable] : ( if_real @ ( X2 = Y3 ) @ R @ ( Omega2 @ Y3 ) ) ) ) ).

% repv_access
thf(fact_215_these__empty,axiom,
    ( ( these_variable @ bot_bo266290559riable )
    = bot_bot_set_variable ) ).

% these_empty
thf(fact_216_these__empty,axiom,
    ( ( these_variable_real @ bot_bo1411475018e_real )
    = bot_bo721182586e_real ) ).

% these_empty
thf(fact_217_these__insert__None,axiom,
    ! [A2: set_option_trm] :
      ( ( these_trm @ ( insert_option_trm @ none_trm @ A2 ) )
      = ( these_trm @ A2 ) ) ).

% these_insert_None
thf(fact_218_repv__def__correct,axiom,
    ( denotational_repv
    = ( ^ [Omega2: variable > real,X2: variable,R: real,Y3: variable] : ( if_real @ ( X2 = Y3 ) @ R @ ( Omega2 @ Y3 ) ) ) ) ).

% repv_def_correct
thf(fact_219_these__insert__Some,axiom,
    ! [X: variable,A2: set_option_variable] :
      ( ( these_variable @ ( insert1340772453riable @ ( some_variable @ X ) @ A2 ) )
      = ( insert_variable @ X @ ( these_variable @ A2 ) ) ) ).

% these_insert_Some
thf(fact_220_these__insert__Some,axiom,
    ! [X: variable > real,A2: set_op12188086e_real] :
      ( ( these_variable_real @ ( insert526581936e_real @ ( some_variable_real @ X ) @ A2 ) )
      = ( insert_variable_real @ X @ ( these_variable_real @ A2 ) ) ) ).

% these_insert_Some
thf(fact_221_these__insert__Some,axiom,
    ! [X: trm,A2: set_option_trm] :
      ( ( these_trm @ ( insert_option_trm @ ( some_trm @ X ) @ A2 ) )
      = ( insert_trm @ X @ ( these_trm @ A2 ) ) ) ).

% these_insert_Some
thf(fact_222_repv__selectlike__other__converse,axiom,
    ! [X: variable,Y: variable,Omega: variable > real,D: real,X7: set_variable_real] :
      ( ( X != Y )
     => ( ( member_variable_real @ ( denotational_repv @ Omega @ X @ D ) @ X7 )
        = ( member_variable_real @ ( denotational_repv @ Omega @ X @ D ) @ ( static_selectlike @ X7 @ Omega @ ( insert_variable @ Y @ bot_bot_set_variable ) ) ) ) ) ).

% repv_selectlike_other_converse
thf(fact_223_repv__selectlike__other,axiom,
    ! [X: variable,Y: variable,Omega: variable > real,D: real,X7: set_variable_real] :
      ( ( X != Y )
     => ( ( member_variable_real @ ( denotational_repv @ Omega @ X @ D ) @ ( static_selectlike @ X7 @ Omega @ ( insert_variable @ Y @ bot_bot_set_variable ) ) )
        = ( member_variable_real @ ( denotational_repv @ Omega @ X @ D ) @ X7 ) ) ) ).

% repv_selectlike_other
thf(fact_224_repv__selectlike__self,axiom,
    ! [Omega: variable > real,X: variable,D: real,X7: set_variable_real] :
      ( ( member_variable_real @ ( denotational_repv @ Omega @ X @ D ) @ ( static_selectlike @ X7 @ Omega @ ( insert_variable @ X @ bot_bot_set_variable ) ) )
      = ( ( D
          = ( Omega @ X ) )
        & ( member_variable_real @ Omega @ X7 ) ) ) ).

% repv_selectlike_self
thf(fact_225_option_Oinject,axiom,
    ! [X23: trm,Y22: trm] :
      ( ( ( some_trm @ X23 )
        = ( some_trm @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% option.inject
thf(fact_226_selectlike__self,axiom,
    ! [Nu: variable > real,X7: set_variable_real,V: set_variable] :
      ( ( member_variable_real @ Nu @ ( static_selectlike @ X7 @ Nu @ V ) )
      = ( member_variable_real @ Nu @ X7 ) ) ).

% selectlike_self
thf(fact_227_not__None__eq,axiom,
    ! [X: option_trm] :
      ( ( X != none_trm )
      = ( ? [Y3: trm] :
            ( X
            = ( some_trm @ Y3 ) ) ) ) ).

% not_None_eq
thf(fact_228_not__Some__eq,axiom,
    ! [X: option_trm] :
      ( ( ! [Y3: trm] :
            ( X
           != ( some_trm @ Y3 ) ) )
      = ( X = none_trm ) ) ).

% not_Some_eq
thf(fact_229_selectlike__empty,axiom,
    ! [X7: set_variable_real,Nu: variable > real] :
      ( ( static_selectlike @ X7 @ Nu @ bot_bot_set_variable )
      = X7 ) ).

% selectlike_empty
thf(fact_230_selectlike__compose,axiom,
    ! [X7: set_variable_real,Nu: variable > real,V: set_variable,W: set_variable] :
      ( ( static_selectlike @ ( static_selectlike @ X7 @ Nu @ V ) @ Nu @ W )
      = ( static_selectlike @ X7 @ Nu @ ( sup_sup_set_variable @ V @ W ) ) ) ).

% selectlike_compose
thf(fact_231_option_Ocollapse,axiom,
    ! [Option: option_trm] :
      ( ( Option != none_trm )
     => ( ( some_trm @ ( the_trm @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_232_in__these__eq,axiom,
    ! [X: variable,A2: set_option_variable] :
      ( ( member_variable @ X @ ( these_variable @ A2 ) )
      = ( member814448204riable @ ( some_variable @ X ) @ A2 ) ) ).

% in_these_eq
thf(fact_233_in__these__eq,axiom,
    ! [X: variable > real,A2: set_op12188086e_real] :
      ( ( member_variable_real @ X @ ( these_variable_real @ A2 ) )
      = ( member523846807e_real @ ( some_variable_real @ X ) @ A2 ) ) ).

% in_these_eq
thf(fact_234_in__these__eq,axiom,
    ! [X: trm,A2: set_option_trm] :
      ( ( member_trm @ X @ ( these_trm @ A2 ) )
      = ( member_option_trm @ ( some_trm @ X ) @ A2 ) ) ).

% in_these_eq
thf(fact_235_selectlike__union,axiom,
    ! [X7: set_variable_real,Y4: set_variable_real,Nu: variable > real,V: set_variable] :
      ( ( static_selectlike @ ( sup_su1685293586e_real @ X7 @ Y4 ) @ Nu @ V )
      = ( sup_su1685293586e_real @ ( static_selectlike @ X7 @ Nu @ V ) @ ( static_selectlike @ Y4 @ Nu @ V ) ) ) ).

% selectlike_union
thf(fact_236_option_Odistinct_I1_J,axiom,
    ! [X23: trm] :
      ( none_trm
     != ( some_trm @ X23 ) ) ).

% option.distinct(1)
thf(fact_237_option_Osel,axiom,
    ! [X23: trm] :
      ( ( the_trm @ ( some_trm @ X23 ) )
      = X23 ) ).

% option.sel
thf(fact_238_option_OdiscI,axiom,
    ! [Option: option_trm,X23: trm] :
      ( ( Option
        = ( some_trm @ X23 ) )
     => ( Option != none_trm ) ) ).

% option.discI
thf(fact_239_option_Oexhaust,axiom,
    ! [Y: option_trm] :
      ( ( Y != none_trm )
     => ~ ! [X24: trm] :
            ( Y
           != ( some_trm @ X24 ) ) ) ).

% option.exhaust
thf(fact_240_option_Oinducts,axiom,
    ! [P: option_trm > $o,Option: option_trm] :
      ( ( P @ none_trm )
     => ( ! [X6: trm] : ( P @ ( some_trm @ X6 ) )
       => ( P @ Option ) ) ) ).

% option.inducts
thf(fact_241_split__option__ex,axiom,
    ( ( ^ [P2: option_trm > $o] :
        ? [X8: option_trm] : ( P2 @ X8 ) )
    = ( ^ [P3: option_trm > $o] :
          ( ( P3 @ none_trm )
          | ? [X2: trm] : ( P3 @ ( some_trm @ X2 ) ) ) ) ) ).

% split_option_ex
thf(fact_242_split__option__all,axiom,
    ( ( ^ [P2: option_trm > $o] :
        ! [X8: option_trm] : ( P2 @ X8 ) )
    = ( ^ [P3: option_trm > $o] :
          ( ( P3 @ none_trm )
          & ! [X2: trm] : ( P3 @ ( some_trm @ X2 ) ) ) ) ) ).

% split_option_all
thf(fact_243_combine__options__cases,axiom,
    ! [X: option_trm,P: option_trm > option_trm > $o,Y: option_trm] :
      ( ( ( X = none_trm )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_trm )
         => ( P @ X @ Y ) )
       => ( ! [A5: trm,B6: trm] :
              ( ( X
                = ( some_trm @ A5 ) )
             => ( ( Y
                  = ( some_trm @ B6 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_244_ODEo_Oinduct,axiom,
    ! [P: char > option_trm > $o,A0: char,A1: option_trm] :
      ( ! [X6: char,Theta2: trm] : ( P @ X6 @ ( some_trm @ Theta2 ) )
     => ( ! [X6: char] : ( P @ X6 @ none_trm )
       => ( P @ A0 @ A1 ) ) ) ).

% ODEo.induct
thf(fact_245_undeft__equiv,axiom,
    ! [Theta: option_trm] :
      ( ( Theta != none_trm )
      = ( ? [T2: trm] :
            ( Theta
            = ( some_trm @ T2 ) ) ) ) ).

% undeft_equiv
thf(fact_246_Timeso_Oinduct,axiom,
    ! [P: option_trm > option_trm > $o,A0: option_trm,A1: option_trm] :
      ( ! [Theta2: trm,Eta2: trm] : ( P @ ( some_trm @ Theta2 ) @ ( some_trm @ Eta2 ) )
     => ( ! [X_1: option_trm] : ( P @ none_trm @ X_1 )
       => ( ! [V2: trm] : ( P @ ( some_trm @ V2 ) @ none_trm )
         => ( P @ A0 @ A1 ) ) ) ) ).

% Timeso.induct
thf(fact_247_Assigno_Oinduct,axiom,
    ! [P: variable > option_trm > $o,A0: variable,A1: option_trm] :
      ( ! [X6: variable,Theta2: trm] : ( P @ X6 @ ( some_trm @ Theta2 ) )
     => ( ! [X6: variable] : ( P @ X6 @ none_trm )
       => ( P @ A0 @ A1 ) ) ) ).

% Assigno.induct
thf(fact_248_Differentialo_Ocases,axiom,
    ! [X: option_trm] :
      ( ! [Theta2: trm] :
          ( X
         != ( some_trm @ Theta2 ) )
     => ( X = none_trm ) ) ).

% Differentialo.cases
thf(fact_249_Differentialo_Oinduct,axiom,
    ! [P: option_trm > $o,A0: option_trm] :
      ( ! [Theta2: trm] : ( P @ ( some_trm @ Theta2 ) )
     => ( ( P @ none_trm )
       => ( P @ A0 ) ) ) ).

% Differentialo.induct
thf(fact_250_option_Oexhaust__sel,axiom,
    ! [Option: option_trm] :
      ( ( Option != none_trm )
     => ( Option
        = ( some_trm @ ( the_trm @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_251_option_Osimps_I15_J,axiom,
    ! [X23: trm] :
      ( ( set_option_trm2 @ ( some_trm @ X23 ) )
      = ( insert_trm @ X23 @ bot_bot_set_trm ) ) ).

% option.simps(15)
thf(fact_252_option_Osimps_I15_J,axiom,
    ! [X23: variable] :
      ( ( set_option_variable2 @ ( some_variable @ X23 ) )
      = ( insert_variable @ X23 @ bot_bot_set_variable ) ) ).

% option.simps(15)
thf(fact_253_option_Osimps_I15_J,axiom,
    ! [X23: variable > real] :
      ( ( set_op697949218e_real @ ( some_variable_real @ X23 ) )
      = ( insert_variable_real @ X23 @ bot_bo721182586e_real ) ) ).

% option.simps(15)
thf(fact_254_Vagree__repv__self,axiom,
    ! [Omega: variable > real,X: variable,D: real] :
      ( ( denotational_Vagree @ Omega @ ( denotational_repv @ Omega @ X @ D ) @ ( insert_variable @ X @ bot_bot_set_variable ) )
      = ( D
        = ( Omega @ X ) ) ) ).

% Vagree_repv_self
thf(fact_255_elem__set,axiom,
    ! [X: variable,Xo: option_variable] :
      ( ( member_variable @ X @ ( set_option_variable2 @ Xo ) )
      = ( Xo
        = ( some_variable @ X ) ) ) ).

% elem_set
thf(fact_256_elem__set,axiom,
    ! [X: variable > real,Xo: option_variable_real] :
      ( ( member_variable_real @ X @ ( set_op697949218e_real @ Xo ) )
      = ( Xo
        = ( some_variable_real @ X ) ) ) ).

% elem_set
thf(fact_257_elem__set,axiom,
    ! [X: trm,Xo: option_trm] :
      ( ( member_trm @ X @ ( set_option_trm2 @ Xo ) )
      = ( Xo
        = ( some_trm @ X ) ) ) ).

% elem_set
thf(fact_258_Vagree__and,axiom,
    ! [Nu: variable > real,Nu2: variable > real,V: set_variable,W: set_variable] :
      ( ( ( denotational_Vagree @ Nu @ Nu2 @ V )
        & ( denotational_Vagree @ Nu @ Nu2 @ W ) )
      = ( denotational_Vagree @ Nu @ Nu2 @ ( sup_sup_set_variable @ V @ W ) ) ) ).

% Vagree_and
thf(fact_259_set__empty__eq,axiom,
    ! [Xo: option_trm] :
      ( ( ( set_option_trm2 @ Xo )
        = bot_bot_set_trm )
      = ( Xo = none_trm ) ) ).

% set_empty_eq
thf(fact_260_set__empty__eq,axiom,
    ! [Xo: option_variable] :
      ( ( ( set_option_variable2 @ Xo )
        = bot_bot_set_variable )
      = ( Xo = none_variable ) ) ).

% set_empty_eq
thf(fact_261_set__empty__eq,axiom,
    ! [Xo: option_variable_real] :
      ( ( ( set_op697949218e_real @ Xo )
        = bot_bo721182586e_real )
      = ( Xo = none_variable_real ) ) ).

% set_empty_eq
thf(fact_262_similar__selectlike__mem,axiom,
    ! [Nu: variable > real,Omega: variable > real,V: set_variable,X7: set_variable_real] :
      ( ( denotational_Vagree @ Nu @ Omega @ V )
     => ( ( member_variable_real @ Nu @ ( static_selectlike @ X7 @ Omega @ V ) )
        = ( member_variable_real @ Nu @ X7 ) ) ) ).

% similar_selectlike_mem
thf(fact_263_selectlike__Vagree,axiom,
    ! [Nu: variable > real,Omega: variable > real,V: set_variable,X7: set_variable_real] :
      ( ( denotational_Vagree @ Nu @ Omega @ V )
     => ( ( static_selectlike @ X7 @ Nu @ V )
        = ( static_selectlike @ X7 @ Omega @ V ) ) ) ).

% selectlike_Vagree
thf(fact_264_Aterm__Some,axiom,
    some_trm = some_trm ).

% Aterm_Some
thf(fact_265_option_Oset__intros,axiom,
    ! [X23: variable] : ( member_variable @ X23 @ ( set_option_variable2 @ ( some_variable @ X23 ) ) ) ).

% option.set_intros
thf(fact_266_option_Oset__intros,axiom,
    ! [X23: variable > real] : ( member_variable_real @ X23 @ ( set_op697949218e_real @ ( some_variable_real @ X23 ) ) ) ).

% option.set_intros
thf(fact_267_option_Oset__intros,axiom,
    ! [X23: trm] : ( member_trm @ X23 @ ( set_option_trm2 @ ( some_trm @ X23 ) ) ) ).

% option.set_intros
thf(fact_268_option_Oset__cases,axiom,
    ! [E: variable,A: option_variable] :
      ( ( member_variable @ E @ ( set_option_variable2 @ A ) )
     => ( A
        = ( some_variable @ E ) ) ) ).

% option.set_cases
thf(fact_269_option_Oset__cases,axiom,
    ! [E: variable > real,A: option_variable_real] :
      ( ( member_variable_real @ E @ ( set_op697949218e_real @ A ) )
     => ( A
        = ( some_variable_real @ E ) ) ) ).

% option.set_cases
thf(fact_270_option_Oset__cases,axiom,
    ! [E: trm,A: option_trm] :
      ( ( member_trm @ E @ ( set_option_trm2 @ A ) )
     => ( A
        = ( some_trm @ E ) ) ) ).

% option.set_cases
thf(fact_271_ospec,axiom,
    ! [A2: option_trm,P: trm > $o,X: trm] :
      ( ! [X6: trm] :
          ( ( member_trm @ X6 @ ( set_option_trm2 @ A2 ) )
         => ( P @ X6 ) )
     => ( ( A2
          = ( some_trm @ X ) )
       => ( P @ X ) ) ) ).

% ospec
thf(fact_272_Vagree__union,axiom,
    ! [Nu: variable > real,Nu2: variable > real,V: set_variable,W: set_variable] :
      ( ( denotational_Vagree @ Nu @ Nu2 @ V )
     => ( ( denotational_Vagree @ Nu @ Nu2 @ W )
       => ( denotational_Vagree @ Nu @ Nu2 @ ( sup_sup_set_variable @ V @ W ) ) ) ) ).

% Vagree_union
thf(fact_273_Vagree__def,axiom,
    ( denotational_Vagree
    = ( ^ [Nu3: variable > real,Nu4: variable > real,V3: set_variable] :
        ! [I: variable] :
          ( ( member_variable @ I @ V3 )
         => ( ( Nu3 @ I )
            = ( Nu4 @ I ) ) ) ) ) ).

% Vagree_def
thf(fact_274_Vagree__sym,axiom,
    ( denotational_Vagree
    = ( ^ [Nu3: variable > real,Nu4: variable > real] : ( denotational_Vagree @ Nu4 @ Nu3 ) ) ) ).

% Vagree_sym
thf(fact_275_Vagree__refl,axiom,
    ! [Nu: variable > real,V: set_variable] : ( denotational_Vagree @ Nu @ Nu @ V ) ).

% Vagree_refl
thf(fact_276_Vagree__sym__rel,axiom,
    ! [Nu: variable > real,Nu2: variable > real,V: set_variable] :
      ( ( denotational_Vagree @ Nu @ Nu2 @ V )
     => ( denotational_Vagree @ Nu2 @ Nu @ V ) ) ).

% Vagree_sym_rel
thf(fact_277_Vagree__empty,axiom,
    ! [Nu: variable > real,Nu2: variable > real] : ( denotational_Vagree @ Nu @ Nu2 @ bot_bot_set_variable ) ).

% Vagree_empty
thf(fact_278_option_Osimps_I14_J,axiom,
    ( ( set_option_trm2 @ none_trm )
    = bot_bot_set_trm ) ).

% option.simps(14)
thf(fact_279_option_Osimps_I14_J,axiom,
    ( ( set_option_variable2 @ none_variable )
    = bot_bot_set_variable ) ).

% option.simps(14)
thf(fact_280_option_Osimps_I14_J,axiom,
    ( ( set_op697949218e_real @ none_variable_real )
    = bot_bo721182586e_real ) ).

% option.simps(14)
thf(fact_281_option_Oset__sel,axiom,
    ! [A: option_variable] :
      ( ( A != none_variable )
     => ( member_variable @ ( the_variable @ A ) @ ( set_option_variable2 @ A ) ) ) ).

% option.set_sel
thf(fact_282_option_Oset__sel,axiom,
    ! [A: option_variable_real] :
      ( ( A != none_variable_real )
     => ( member_variable_real @ ( the_variable_real @ A ) @ ( set_op697949218e_real @ A ) ) ) ).

% option.set_sel
thf(fact_283_option_Oset__sel,axiom,
    ! [A: option_trm] :
      ( ( A != none_trm )
     => ( member_trm @ ( the_trm @ A ) @ ( set_option_trm2 @ A ) ) ) ).

% option.set_sel
thf(fact_284_solves__Vagree,axiom,
    ! [I2: denotational_interp,F: real > variable > real,X: char,Theta: trm,Zeta: real] :
      ( ( denota1778088425es_ODE @ I2 @ F @ X @ Theta )
     => ( denotational_Vagree @ ( F @ Zeta ) @ ( F @ zero_zero_real ) @ ( uminus1851247844riable @ ( insert_variable @ ( rVar @ X ) @ ( insert_variable @ ( dVar @ X ) @ bot_bot_set_variable ) ) ) ) ) ).

% solves_Vagree
thf(fact_285_Vagree__repv,axiom,
    ! [Omega: variable > real,X: variable,D: real] : ( denotational_Vagree @ Omega @ ( denotational_repv @ Omega @ X @ D ) @ ( uminus1851247844riable @ ( insert_variable @ X @ bot_bot_set_variable ) ) ) ).

% Vagree_repv
thf(fact_286_Timeso_Osimps_I3_J,axiom,
    ! [V4: trm] :
      ( ( uSubst918876924Timeso @ ( some_trm @ V4 ) @ none_trm )
      = none_trm ) ).

% Timeso.simps(3)
thf(fact_287_compl__eq__compl__iff,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( ( uminus1851247844riable @ X )
        = ( uminus1851247844riable @ Y ) )
      = ( X = Y ) ) ).

% compl_eq_compl_iff
thf(fact_288_compl__eq__compl__iff,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( ( uminus430703407e_real @ X )
        = ( uminus430703407e_real @ Y ) )
      = ( X = Y ) ) ).

% compl_eq_compl_iff
thf(fact_289_double__compl,axiom,
    ! [X: set_variable] :
      ( ( uminus1851247844riable @ ( uminus1851247844riable @ X ) )
      = X ) ).

% double_compl
thf(fact_290_double__compl,axiom,
    ! [X: set_variable_real] :
      ( ( uminus430703407e_real @ ( uminus430703407e_real @ X ) )
      = X ) ).

% double_compl
thf(fact_291_Compl__eq__Compl__iff,axiom,
    ! [A2: set_variable,B: set_variable] :
      ( ( ( uminus1851247844riable @ A2 )
        = ( uminus1851247844riable @ B ) )
      = ( A2 = B ) ) ).

% Compl_eq_Compl_iff
thf(fact_292_Compl__eq__Compl__iff,axiom,
    ! [A2: set_variable_real,B: set_variable_real] :
      ( ( ( uminus430703407e_real @ A2 )
        = ( uminus430703407e_real @ B ) )
      = ( A2 = B ) ) ).

% Compl_eq_Compl_iff
thf(fact_293_Compl__iff,axiom,
    ! [C2: variable,A2: set_variable] :
      ( ( member_variable @ C2 @ ( uminus1851247844riable @ A2 ) )
      = ( ~ ( member_variable @ C2 @ A2 ) ) ) ).

% Compl_iff
thf(fact_294_Compl__iff,axiom,
    ! [C2: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ C2 @ ( uminus430703407e_real @ A2 ) )
      = ( ~ ( member_variable_real @ C2 @ A2 ) ) ) ).

% Compl_iff
thf(fact_295_ComplI,axiom,
    ! [C2: variable,A2: set_variable] :
      ( ~ ( member_variable @ C2 @ A2 )
     => ( member_variable @ C2 @ ( uminus1851247844riable @ A2 ) ) ) ).

% ComplI
thf(fact_296_ComplI,axiom,
    ! [C2: variable > real,A2: set_variable_real] :
      ( ~ ( member_variable_real @ C2 @ A2 )
     => ( member_variable_real @ C2 @ ( uminus430703407e_real @ A2 ) ) ) ).

% ComplI
thf(fact_297_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_298_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_299_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_300_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_301_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_302_Uvariation__Vagree,axiom,
    ! [Nu: variable > real,Nu2: variable > real,V: set_variable] :
      ( ( denota1419872369iation @ Nu @ Nu2 @ ( uminus1851247844riable @ V ) )
      = ( denotational_Vagree @ Nu @ Nu2 @ V ) ) ).

% Uvariation_Vagree
thf(fact_303_double__complement,axiom,
    ! [A2: set_variable] :
      ( ( uminus1851247844riable @ ( uminus1851247844riable @ A2 ) )
      = A2 ) ).

% double_complement
thf(fact_304_double__complement,axiom,
    ! [A2: set_variable_real] :
      ( ( uminus430703407e_real @ ( uminus430703407e_real @ A2 ) )
      = A2 ) ).

% double_complement
thf(fact_305_ComplD,axiom,
    ! [C2: variable,A2: set_variable] :
      ( ( member_variable @ C2 @ ( uminus1851247844riable @ A2 ) )
     => ~ ( member_variable @ C2 @ A2 ) ) ).

% ComplD
thf(fact_306_ComplD,axiom,
    ! [C2: variable > real,A2: set_variable_real] :
      ( ( member_variable_real @ C2 @ ( uminus430703407e_real @ A2 ) )
     => ~ ( member_variable_real @ C2 @ A2 ) ) ).

% ComplD
thf(fact_307_Timeso_Osimps_I2_J,axiom,
    ! [Eta: option_trm] :
      ( ( uSubst918876924Timeso @ none_trm @ Eta )
      = none_trm ) ).

% Timeso.simps(2)
thf(fact_308_Timeso__undef,axiom,
    ! [Theta: option_trm,Eta: option_trm] :
      ( ( ( uSubst918876924Timeso @ Theta @ Eta )
        = none_trm )
      = ( ( Theta = none_trm )
        | ( Eta = none_trm ) ) ) ).

% Timeso_undef
thf(fact_309_selectlike__equal__cocond__corule,axiom,
    ! [Nu: variable > real,V: set_variable,X7: set_variable_real,Y4: set_variable_real] :
      ( ! [Mu2: variable > real] :
          ( ( denota1419872369iation @ Mu2 @ Nu @ V )
         => ( ( member_variable_real @ Mu2 @ X7 )
            = ( member_variable_real @ Mu2 @ Y4 ) ) )
     => ( ( static_selectlike @ X7 @ Nu @ ( uminus1851247844riable @ V ) )
        = ( static_selectlike @ Y4 @ Nu @ ( uminus1851247844riable @ V ) ) ) ) ).

% selectlike_equal_cocond_corule
thf(fact_310_selectlike__equal__cocond__rule,axiom,
    ! [Nu: variable > real,V: set_variable,X7: set_variable_real,Y4: set_variable_real] :
      ( ! [Mu2: variable > real] :
          ( ( denota1419872369iation @ Mu2 @ Nu @ ( uminus1851247844riable @ V ) )
         => ( ( member_variable_real @ Mu2 @ X7 )
            = ( member_variable_real @ Mu2 @ Y4 ) ) )
     => ( ( static_selectlike @ X7 @ Nu @ V )
        = ( static_selectlike @ Y4 @ Nu @ V ) ) ) ).

% selectlike_equal_cocond_rule
thf(fact_311_selectlike__equal__cocond,axiom,
    ! [X7: set_variable_real,Nu: variable > real,V: set_variable,Y4: set_variable_real] :
      ( ( ( static_selectlike @ X7 @ Nu @ ( uminus1851247844riable @ V ) )
        = ( static_selectlike @ Y4 @ Nu @ ( uminus1851247844riable @ V ) ) )
      = ( ! [Mu3: variable > real] :
            ( ( denota1419872369iation @ Mu3 @ Nu @ V )
           => ( ( member_variable_real @ Mu3 @ X7 )
              = ( member_variable_real @ Mu3 @ Y4 ) ) ) ) ) ).

% selectlike_equal_cocond
thf(fact_312_selectlike__equal__cond,axiom,
    ! [X7: set_variable_real,Nu: variable > real,V: set_variable,Y4: set_variable_real] :
      ( ( ( static_selectlike @ X7 @ Nu @ V )
        = ( static_selectlike @ Y4 @ Nu @ V ) )
      = ( ! [Mu3: variable > real] :
            ( ( denota1419872369iation @ Mu3 @ Nu @ ( uminus1851247844riable @ V ) )
           => ( ( member_variable_real @ Mu3 @ X7 )
              = ( member_variable_real @ Mu3 @ Y4 ) ) ) ) ) ).

% selectlike_equal_cond
thf(fact_313_stateinterpol__insert,axiom,
    ! [V4: variable > real,W2: variable > real,S: set_variable,Z: variable] : ( denotational_Vagree @ ( stateinterpol @ V4 @ W2 @ S ) @ ( stateinterpol @ V4 @ W2 @ ( insert_variable @ Z @ S ) ) @ ( uminus1851247844riable @ ( insert_variable @ Z @ bot_bot_set_variable ) ) ) ).

% stateinterpol_insert
thf(fact_314_Timeso_Oelims,axiom,
    ! [X: option_trm,Xa: option_trm,Y: option_trm] :
      ( ( ( uSubst918876924Timeso @ X @ Xa )
        = Y )
     => ( ! [Theta2: trm] :
            ( ( X
              = ( some_trm @ Theta2 ) )
           => ! [Eta2: trm] :
                ( ( Xa
                  = ( some_trm @ Eta2 ) )
               => ( Y
                 != ( some_trm @ ( times @ Theta2 @ Eta2 ) ) ) ) )
       => ( ( ( X = none_trm )
           => ( Y != none_trm ) )
         => ~ ( ? [V2: trm] :
                  ( X
                  = ( some_trm @ V2 ) )
             => ( ( Xa = none_trm )
               => ( Y != none_trm ) ) ) ) ) ) ).

% Timeso.elims
thf(fact_315_trm_Oinject_I6_J,axiom,
    ! [X61: trm,X62: trm,Y61: trm,Y62: trm] :
      ( ( ( times @ X61 @ X62 )
        = ( times @ Y61 @ Y62 ) )
      = ( ( X61 = Y61 )
        & ( X62 = Y62 ) ) ) ).

% trm.inject(6)
thf(fact_316_stateinterpol__left,axiom,
    ! [X: variable,S: set_variable,Nu: variable > real,Omega: variable > real] :
      ( ( member_variable @ X @ S )
     => ( ( stateinterpol @ Nu @ Omega @ S @ X )
        = ( Nu @ X ) ) ) ).

% stateinterpol_left
thf(fact_317_stateinterpol__right,axiom,
    ! [X: variable,S: set_variable,Nu: variable > real,Omega: variable > real] :
      ( ~ ( member_variable @ X @ S )
     => ( ( stateinterpol @ Nu @ Omega @ S @ X )
        = ( Omega @ X ) ) ) ).

% stateinterpol_right
thf(fact_318_selectlike__co__selectlike,axiom,
    ! [X7: set_variable_real,Nu: variable > real,V: set_variable] :
      ( ( static_selectlike @ ( uminus430703407e_real @ ( static_selectlike @ X7 @ Nu @ V ) ) @ Nu @ V )
      = ( static_selectlike @ ( uminus430703407e_real @ X7 ) @ Nu @ V ) ) ).

% selectlike_co_selectlike
thf(fact_319_stateinterpol__empty,axiom,
    ! [Nu: variable > real,Omega: variable > real] :
      ( ( stateinterpol @ Nu @ Omega @ bot_bot_set_variable )
      = Omega ) ).

% stateinterpol_empty
thf(fact_320_Vagree__stateinterpol,axiom,
    ! [Nu: variable > real,Omega: variable > real,S: set_variable] : ( denotational_Vagree @ ( stateinterpol @ Nu @ Omega @ S ) @ Nu @ S ) ).

% Vagree_stateinterpol
thf(fact_321_stateinterpol__def,axiom,
    ( stateinterpol
    = ( ^ [Nu3: variable > real,Omega2: variable > real,S2: set_variable,X2: variable] : ( if_real @ ( member_variable @ X2 @ S2 ) @ ( Nu3 @ X2 ) @ ( Omega2 @ X2 ) ) ) ) ).

% stateinterpol_def
thf(fact_322_usubstappt__times__conv,axiom,
    ! [Sigma: produc1418842292n_game,U: set_variable,Theta: trm,Eta: trm] :
      ( ( ( uSubst516392818stappt @ Sigma @ U @ ( times @ Theta @ Eta ) )
       != none_trm )
     => ( ( ( uSubst516392818stappt @ Sigma @ U @ Theta )
         != none_trm )
        & ( ( uSubst516392818stappt @ Sigma @ U @ Eta )
         != none_trm ) ) ) ).

% usubstappt_times_conv
thf(fact_323_usubstappt_Osimps_I6_J,axiom,
    ! [Sigma: produc1418842292n_game,U: set_variable,Theta: trm,Eta: trm] :
      ( ( uSubst516392818stappt @ Sigma @ U @ ( times @ Theta @ Eta ) )
      = ( uSubst918876924Timeso @ ( uSubst516392818stappt @ Sigma @ U @ Theta ) @ ( uSubst516392818stappt @ Sigma @ U @ Eta ) ) ) ).

% usubstappt.simps(6)
thf(fact_324_Timeso_Osimps_I1_J,axiom,
    ! [Theta: trm,Eta: trm] :
      ( ( uSubst918876924Timeso @ ( some_trm @ Theta ) @ ( some_trm @ Eta ) )
      = ( some_trm @ ( times @ Theta @ Eta ) ) ) ).

% Timeso.simps(1)
thf(fact_325_stateinterpol__diff,axiom,
    ! [Nu: variable > real,Omega: variable > real] :
      ( ( stateinterpol @ Nu @ Omega @ ( statediff @ Nu @ Omega ) )
      = Nu ) ).

% stateinterpol_diff
thf(fact_326_stateinterpol__FVT,axiom,
    ! [Z: variable,T3: trm,I2: denotational_interp,Omega: variable > real,Omega3: variable > real,S: set_variable] :
      ( ~ ( member_variable @ Z @ ( static_FVT @ T3 ) )
     => ( ( denota1863255036rm_sem @ I2 @ T3 @ ( stateinterpol @ Omega @ Omega3 @ S ) )
        = ( denota1863255036rm_sem @ I2 @ T3 @ ( stateinterpol @ Omega @ Omega3 @ ( insert_variable @ Z @ S ) ) ) ) ) ).

% stateinterpol_FVT
thf(fact_327_nostatediff,axiom,
    ! [X: variable,Nu: variable > real,Omega: variable > real] :
      ( ~ ( member_variable @ X @ ( statediff @ Nu @ Omega ) )
     => ( ( Nu @ X )
        = ( Omega @ X ) ) ) ).

% nostatediff
thf(fact_328_coincidence__term,axiom,
    ! [Omega: variable > real,Omega3: variable > real,Theta: trm,I2: denotational_interp] :
      ( ( denotational_Vagree @ Omega @ Omega3 @ ( static_FVT @ Theta ) )
     => ( ( denota1863255036rm_sem @ I2 @ Theta @ Omega )
        = ( denota1863255036rm_sem @ I2 @ Theta @ Omega3 ) ) ) ).

% coincidence_term
thf(fact_329_coincidence__term__cor,axiom,
    ! [Omega: variable > real,Omega3: variable > real,U: set_variable,Theta: trm,I2: denotational_interp] :
      ( ( denota1419872369iation @ Omega @ Omega3 @ U )
     => ( ( ( inf_inf_set_variable @ ( static_FVT @ Theta ) @ U )
          = bot_bot_set_variable )
       => ( ( denota1863255036rm_sem @ I2 @ Theta @ Omega )
          = ( denota1863255036rm_sem @ I2 @ Theta @ Omega3 ) ) ) ) ).

% coincidence_term_cor
thf(fact_330_Vagree__statediff,axiom,
    ! [Omega: variable > real,Omega3: variable > real,S: set_variable] :
      ( ( denotational_Vagree @ Omega @ Omega3 @ S )
     => ( ord_le282106107riable @ ( statediff @ Omega @ Omega3 ) @ ( uminus1851247844riable @ S ) ) ) ).

% Vagree_statediff
thf(fact_331_order__refl,axiom,
    ! [X: set_variable] : ( ord_le282106107riable @ X @ X ) ).

% order_refl
thf(fact_332_subsetI,axiom,
    ! [A2: set_variable_real,B: set_variable_real] :
      ( ! [X6: variable > real] :
          ( ( member_variable_real @ X6 @ A2 )
         => ( member_variable_real @ X6 @ B ) )
     => ( ord_le1113654598e_real @ A2 @ B ) ) ).

% subsetI
thf(fact_333_subsetI,axiom,
    ! [A2: set_variable,B: set_variable] :
      ( ! [X6: variable] :
          ( ( member_variable @ X6 @ A2 )
         => ( member_variable @ X6 @ B ) )
     => ( ord_le282106107riable @ A2 @ B ) ) ).

% subsetI
thf(fact_334_subset__antisym,axiom,
    ! [A2: set_variable,B: set_variable] :
      ( ( ord_le282106107riable @ A2 @ B )
     => ( ( ord_le282106107riable @ B @ A2 )
       => ( A2 = B ) ) ) ).

% subset_antisym
thf(fact_335_inf_Oidem,axiom,
    ! [A: set_variable] :
      ( ( inf_inf_set_variable @ A @ A )
      = A ) ).

% inf.idem
thf(fact_336_inf__idem,axiom,
    ! [X: set_variable] :
      ( ( inf_inf_set_variable @ X @ X )
      = X ) ).

% inf_idem
thf(fact_337_inf_Oleft__idem,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( inf_inf_set_variable @ A @ ( inf_inf_set_variable @ A @ B2 ) )
      = ( inf_inf_set_variable @ A @ B2 ) ) ).

% inf.left_idem
thf(fact_338_inf__left__idem,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( inf_inf_set_variable @ X @ ( inf_inf_set_variable @ X @ Y ) )
      = ( inf_inf_set_variable @ X @ Y ) ) ).

% inf_left_idem
thf(fact_339_inf_Oright__idem,axiom,
    ! [A: set_variable,B2: set_variable] :
      ( ( inf_inf_set_variable @ ( inf_inf_set_variable @ A @ B2 ) @ B2 )
      = ( inf_inf_set_variable @ A @ B2 ) ) ).

% inf.right_idem
thf(fact_340_inf__right__idem,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( inf_inf_set_variable @ ( inf_inf_set_variable @ X @ Y ) @ Y )
      = ( inf_inf_set_variable @ X @ Y ) ) ).

% inf_right_idem
thf(fact_341_IntI,axiom,
    ! [C2: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( member_variable_real @ C2 @ A2 )
     => ( ( member_variable_real @ C2 @ B )
       => ( member_variable_real @ C2 @ ( inf_in1556002680e_real @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_342_IntI,axiom,
    ! [C2: variable,A2: set_variable,B: set_variable] :
      ( ( member_variable @ C2 @ A2 )
     => ( ( member_variable @ C2 @ B )
       => ( member_variable @ C2 @ ( inf_inf_set_variable @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_343_Int__iff,axiom,
    ! [C2: variable > real,A2: set_variable_real,B: set_variable_real] :
      ( ( member_variable_real @ C2 @ ( inf_in1556002680e_real @ A2 @ B ) )
      = ( ( member_variable_real @ C2 @ A2 )
        & ( member_variable_real @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_344_Int__iff,axiom,
    ! [C2: variable,A2: set_variable,B: set_variable] :
      ( ( member_variable @ C2 @ ( inf_inf_set_variable @ A2 @ B ) )
      = ( ( member_variable @ C2 @ A2 )
        & ( member_variable @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_345_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_346_compl__le__compl__iff,axiom,
    ! [X: set_variable_real,Y: set_variable_real] :
      ( ( ord_le1113654598e_real @ ( uminus430703407e_real @ X ) @ ( uminus430703407e_real @ Y ) )
      = ( ord_le1113654598e_real @ Y @ X ) ) ).

% compl_le_compl_iff
thf(fact_347_compl__le__compl__iff,axiom,
    ! [X: set_variable,Y: set_variable] :
      ( ( ord_le282106107riable @ ( uminus1851247844riable @ X ) @ ( uminus1851247844riable @ Y ) )
      = ( ord_le282106107riable @ Y @ X ) ) ).

% compl_le_compl_iff
thf(fact_348_le__inf__iff,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( ord_le282106107riable @ X @ ( inf_inf_set_variable @ Y @ Z ) )
      = ( ( ord_le282106107riable @ X @ Y )
        & ( ord_le282106107riable @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_349_inf_Obounded__iff,axiom,
    ! [A: set_variable,B2: set_variable,C2: set_variable] :
      ( ( ord_le282106107riable @ A @ ( inf_inf_set_variable @ B2 @ C2 ) )
      = ( ( ord_le282106107riable @ A @ B2 )
        & ( ord_le282106107riable @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_350_le__sup__iff,axiom,
    ! [X: set_variable_real,Y: set_variable_real,Z: set_variable_real] :
      ( ( ord_le1113654598e_real @ ( sup_su1685293586e_real @ X @ Y ) @ Z )
      = ( ( ord_le1113654598e_real @ X @ Z )
        & ( ord_le1113654598e_real @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_351_le__sup__iff,axiom,
    ! [X: set_variable,Y: set_variable,Z: set_variable] :
      ( ( ord_le282106107riable @ ( sup_sup_set_variable @ X @ Y ) @ Z )
      = ( ( ord_le282106107riable @ X @ Z )
        & ( ord_le282106107riable @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_352_sup_Obounded__iff,axiom,
    ! [B2: set_variable,C2: set_variable,A: set_variable] :
      ( ( ord_le282106107riable @ ( sup_sup_set_variable @ B2 @ C2 ) @ A )
      = ( ( ord_le282106107riable @ B2 @ A )
        & ( ord_le282106107riable @ C2 @ A ) ) ) ).

% sup.bounded_iff

% Helper facts (3)
thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    denota1419872369iation @ ( f @ zero_zero_real ) @ omega @ ( sup_sup_set_variable @ ( insert_variable @ ( rVar @ x ) @ ( insert_variable @ ( dVar @ x ) @ bot_bot_set_variable ) ) @ u ) ).

%------------------------------------------------------------------------------