TPTP Problem File: ITP195^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP195^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer Sturm_Tarski problem prob_450__5874512_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : Sturm_Tarski/prob_450__5874512_1 [Des21]
% Status : Theorem
% Rating : 0.00 v7.5.0
% Syntax : Number of formulae : 394 ( 114 unt; 54 typ; 0 def)
% Number of atoms : 1007 ( 247 equ; 0 cnn)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 3084 ( 121 ~; 28 |; 71 &;2354 @)
% ( 0 <=>; 510 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 7 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 112 ( 112 >; 0 *; 0 +; 0 <<)
% Number of symbols : 52 ( 51 usr; 2 con; 0-3 aty)
% Number of variables : 912 ( 46 ^; 778 !; 45 ?; 912 :)
% ( 43 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:27:21.925
%------------------------------------------------------------------------------
% Could-be-implicit typings (5)
thf(ty_t_Polynomial_Opoly,type,
poly: $tType > $tType ).
thf(ty_t_Real_Oreal,type,
real: $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
% Explicit typings (49)
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oidom,type,
idom:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Oring__char__0,type,
ring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__ring__1,type,
comm_ring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield__char__0,type,
field_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__0,type,
comm_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ocomm__semiring__1,type,
comm_semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__no__zero__divisors,type,
ring_n68954251visors:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors,type,
semiri1193490041visors:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__linorder,type,
condit1037483654norder:
!>[A: $tType] : $o ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Polynomial_Ois__zero,type,
is_zero:
!>[A: $tType] : ( ( poly @ A ) > $o ) ).
thf(sy_c_Polynomial_Oorder,type,
order2:
!>[A: $tType] : ( A > ( poly @ A ) > nat ) ).
thf(sy_c_Polynomial_Opderiv,type,
pderiv:
!>[A: $tType] : ( ( poly @ A ) > ( poly @ A ) ) ).
thf(sy_c_Polynomial_Opoly,type,
poly2:
!>[A: $tType] : ( ( poly @ A ) > A > A ) ).
thf(sy_c_Polynomial_Opoly_Ocoeff,type,
coeff:
!>[A: $tType] : ( ( poly @ A ) > nat > A ) ).
thf(sy_c_Polynomial_Opoly__cutoff,type,
poly_cutoff:
!>[A: $tType] : ( nat > ( poly @ A ) > ( poly @ A ) ) ).
thf(sy_c_Polynomial_Opoly__shift,type,
poly_shift:
!>[A: $tType] : ( nat > ( poly @ A ) > ( poly @ A ) ) ).
thf(sy_c_Polynomial_Oreflect__poly,type,
reflect_poly:
!>[A: $tType] : ( ( poly @ A ) > ( poly @ A ) ) ).
thf(sy_c_Polynomial_Orsquarefree,type,
rsquarefree:
!>[A: $tType] : ( ( poly @ A ) > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Sturm__Tarski__Mirabelle__osyjafhhev_Ocross,type,
sturm_424270202_cross: ( poly @ real ) > real > real > int ).
thf(sy_c_Sturm__Tarski__Mirabelle__osyjafhhev_Osign__r__pos,type,
sturm_1700286437_r_pos: ( poly @ real ) > real > $o ).
thf(sy_c_Sturm__Tarski__Mirabelle__osyjafhhev_Ovariation,type,
sturm_1771227917iation: real > real > int ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_p,type,
p: poly @ real ).
thf(sy_v_x,type,
x: real ).
% Relevant facts (252)
thf(fact_0_False,axiom,
( ( poly2 @ real @ p @ x )
!= ( zero_zero @ real ) ) ).
% False
thf(fact_1__092_060open_062sign__r__pos_Ap_Ax_A_092_060Longrightarrow_062_A0_A_060_Apoly_Ap_Ax_092_060close_062,axiom,
( ( sturm_1700286437_r_pos @ p @ x )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ p @ x ) ) ) ).
% \<open>sign_r_pos p x \<Longrightarrow> 0 < poly p x\<close>
thf(fact_2__092_060open_0620_A_060_Apoly_Ap_Ax_A_092_060Longrightarrow_062_Asign__r__pos_Ap_Ax_092_060close_062,axiom,
( ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ p @ x ) )
=> ( sturm_1700286437_r_pos @ p @ x ) ) ).
% \<open>0 < poly p x \<Longrightarrow> sign_r_pos p x\<close>
thf(fact_3_assms,axiom,
( p
!= ( zero_zero @ ( poly @ real ) ) ) ).
% assms
thf(fact_4_poly__0,axiom,
! [A: $tType] :
( ( comm_semiring_0 @ A )
=> ! [X: A] :
( ( poly2 @ A @ ( zero_zero @ ( poly @ A ) ) @ X )
= ( zero_zero @ A ) ) ) ).
% poly_0
thf(fact_5_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_6_poly__IVT__neg,axiom,
! [A2: real,B: real,P: poly @ real] :
( ( ord_less @ real @ A2 @ B )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ P @ A2 ) )
=> ( ( ord_less @ real @ ( poly2 @ real @ P @ B ) @ ( zero_zero @ real ) )
=> ? [X2: real] :
( ( ord_less @ real @ A2 @ X2 )
& ( ord_less @ real @ X2 @ B )
& ( ( poly2 @ real @ P @ X2 )
= ( zero_zero @ real ) ) ) ) ) ) ).
% poly_IVT_neg
thf(fact_7_poly__IVT__pos,axiom,
! [A2: real,B: real,P: poly @ real] :
( ( ord_less @ real @ A2 @ B )
=> ( ( ord_less @ real @ ( poly2 @ real @ P @ A2 ) @ ( zero_zero @ real ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ P @ B ) )
=> ? [X2: real] :
( ( ord_less @ real @ A2 @ X2 )
& ( ord_less @ real @ X2 @ B )
& ( ( poly2 @ real @ P @ X2 )
= ( zero_zero @ real ) ) ) ) ) ) ).
% poly_IVT_pos
thf(fact_8_poly__all__0__iff__0,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( comm_ring_1 @ A )
& ( ring_n68954251visors @ A ) )
=> ! [P: poly @ A] :
( ( ! [X3: A] :
( ( poly2 @ A @ P @ X3 )
= ( zero_zero @ A ) ) )
= ( P
= ( zero_zero @ ( poly @ A ) ) ) ) ) ).
% poly_all_0_iff_0
thf(fact_9_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_10_field__lbound__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D1: A,D2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D1 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ? [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
& ( ord_less @ A @ E @ D1 )
& ( ord_less @ A @ E @ D2 ) ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_11_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_12_not__less__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_13_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_14_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_15_pderiv__0,axiom,
! [A: $tType] :
( ( ( comm_semiring_1 @ A )
& ( semiri1193490041visors @ A ) )
=> ( ( pderiv @ A @ ( zero_zero @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% pderiv_0
thf(fact_16_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_17_poly__eq__poly__eq__iff,axiom,
! [A: $tType] :
( ( ( ring_char_0 @ A )
& ( comm_ring_1 @ A )
& ( ring_n68954251visors @ A ) )
=> ! [P: poly @ A,Q: poly @ A] :
( ( ( poly2 @ A @ P )
= ( poly2 @ A @ Q ) )
= ( P = Q ) ) ) ).
% poly_eq_poly_eq_iff
thf(fact_18_cross__0,axiom,
! [A2: real,B: real] :
( ( sturm_424270202_cross @ ( zero_zero @ ( poly @ real ) ) @ A2 @ B )
= ( zero_zero @ int ) ) ).
% cross_0
thf(fact_19_rsquarefree__roots,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ( ( rsquarefree @ A )
= ( ^ [P2: poly @ A] :
! [A3: A] :
~ ( ( ( poly2 @ A @ P2 @ A3 )
= ( zero_zero @ A ) )
& ( ( poly2 @ A @ ( pderiv @ A @ P2 ) @ A3 )
= ( zero_zero @ A ) ) ) ) ) ) ).
% rsquarefree_roots
thf(fact_20_cross__no__root,axiom,
! [A2: real,B: real,P: poly @ real] :
( ( ord_less @ real @ A2 @ B )
=> ( ! [X2: real] :
( ( ( ord_less @ real @ A2 @ X2 )
& ( ord_less @ real @ X2 @ B ) )
=> ( ( poly2 @ real @ P @ X2 )
!= ( zero_zero @ real ) ) )
=> ( ( sturm_424270202_cross @ P @ A2 @ B )
= ( zero_zero @ int ) ) ) ) ).
% cross_no_root
thf(fact_21_is__zero__null,axiom,
! [A: $tType] :
( ( zero @ A )
=> ( ( is_zero @ A )
= ( ^ [P2: poly @ A] :
( P2
= ( zero_zero @ ( poly @ A ) ) ) ) ) ) ).
% is_zero_null
thf(fact_22_poly__cutoff__0,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [N: nat] :
( ( poly_cutoff @ A @ N @ ( zero_zero @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% poly_cutoff_0
thf(fact_23_reflect__poly__at__0__eq__0__iff,axiom,
! [A: $tType] :
( ( comm_semiring_0 @ A )
=> ! [P: poly @ A] :
( ( ( poly2 @ A @ ( reflect_poly @ A @ P ) @ ( zero_zero @ A ) )
= ( zero_zero @ A ) )
= ( P
= ( zero_zero @ ( poly @ A ) ) ) ) ) ).
% reflect_poly_at_0_eq_0_iff
thf(fact_24_next__non__root__interval,axiom,
! [P: poly @ real,Lb: real] :
( ( P
!= ( zero_zero @ ( poly @ real ) ) )
=> ~ ! [Ub: real] :
( ( ord_less @ real @ Lb @ Ub )
=> ~ ! [Z: real] :
( ( ( ord_less @ real @ Lb @ Z )
& ( ord_less_eq @ real @ Z @ Ub ) )
=> ( ( poly2 @ real @ P @ Z )
!= ( zero_zero @ real ) ) ) ) ) ).
% next_non_root_interval
thf(fact_25_last__non__root__interval,axiom,
! [P: poly @ real,Ub2: real] :
( ( P
!= ( zero_zero @ ( poly @ real ) ) )
=> ~ ! [Lb2: real] :
( ( ord_less @ real @ Lb2 @ Ub2 )
=> ~ ! [Z: real] :
( ( ( ord_less_eq @ real @ Lb2 @ Z )
& ( ord_less @ real @ Z @ Ub2 ) )
=> ( ( poly2 @ real @ P @ Z )
!= ( zero_zero @ real ) ) ) ) ) ).
% last_non_root_interval
thf(fact_26_poly__shift__0,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [N: nat] :
( ( poly_shift @ A @ N @ ( zero_zero @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% poly_shift_0
thf(fact_27_order__root,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [P: poly @ A,A2: A] :
( ( ( poly2 @ A @ P @ A2 )
= ( zero_zero @ A ) )
= ( ( P
= ( zero_zero @ ( poly @ A ) ) )
| ( ( order2 @ A @ A2 @ P )
!= ( zero_zero @ nat ) ) ) ) ) ).
% order_root
thf(fact_28_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_29_reflect__poly__0,axiom,
! [A: $tType] :
( ( zero @ A )
=> ( ( reflect_poly @ A @ ( zero_zero @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% reflect_poly_0
thf(fact_30_poly__shift__id,axiom,
! [A: $tType] :
( ( zero @ A )
=> ( ( poly_shift @ A @ ( zero_zero @ nat ) )
= ( ^ [X3: poly @ A] : X3 ) ) ) ).
% poly_shift_id
thf(fact_31_complete__real,axiom,
! [S: set @ real] :
( ? [X4: real] : ( member @ real @ X4 @ S )
=> ( ? [Z: real] :
! [X2: real] :
( ( member @ real @ X2 @ S )
=> ( ord_less_eq @ real @ X2 @ Z ) )
=> ? [Y: real] :
( ! [X4: real] :
( ( member @ real @ X4 @ S )
=> ( ord_less_eq @ real @ X4 @ Y ) )
& ! [Z: real] :
( ! [X2: real] :
( ( member @ real @ X2 @ S )
=> ( ord_less_eq @ real @ X2 @ Z ) )
=> ( ord_less_eq @ real @ Y @ Z ) ) ) ) ) ).
% complete_real
thf(fact_32_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_33_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_34_less__eq__real__def,axiom,
( ( ord_less_eq @ real )
= ( ^ [X3: real,Y2: real] :
( ( ord_less @ real @ X3 @ Y2 )
| ( X3 = Y2 ) ) ) ) ).
% less_eq_real_def
thf(fact_35_order__0I,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [P: poly @ A,A2: A] :
( ( ( poly2 @ A @ P @ A2 )
!= ( zero_zero @ A ) )
=> ( ( order2 @ A @ A2 @ P )
= ( zero_zero @ nat ) ) ) ) ).
% order_0I
thf(fact_36_not__eq__pos__or__neg__iff__1,axiom,
! [Lb: real,Ub2: real,P: poly @ real] :
( ( ! [Z2: real] :
( ( ( ord_less @ real @ Lb @ Z2 )
& ( ord_less_eq @ real @ Z2 @ Ub2 ) )
=> ( ( poly2 @ real @ P @ Z2 )
!= ( zero_zero @ real ) ) ) )
= ( ! [Z2: real] :
( ( ( ord_less @ real @ Lb @ Z2 )
& ( ord_less_eq @ real @ Z2 @ Ub2 ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ P @ Z2 ) ) )
| ! [Z2: real] :
( ( ( ord_less @ real @ Lb @ Z2 )
& ( ord_less_eq @ real @ Z2 @ Ub2 ) )
=> ( ord_less @ real @ ( poly2 @ real @ P @ Z2 ) @ ( zero_zero @ real ) ) ) ) ) ).
% not_eq_pos_or_neg_iff_1
thf(fact_37_not__eq__pos__or__neg__iff__2,axiom,
! [Lb: real,Ub2: real,P: poly @ real] :
( ( ! [Z2: real] :
( ( ( ord_less_eq @ real @ Lb @ Z2 )
& ( ord_less @ real @ Z2 @ Ub2 ) )
=> ( ( poly2 @ real @ P @ Z2 )
!= ( zero_zero @ real ) ) ) )
= ( ! [Z2: real] :
( ( ( ord_less_eq @ real @ Lb @ Z2 )
& ( ord_less @ real @ Z2 @ Ub2 ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ P @ Z2 ) ) )
| ! [Z2: real] :
( ( ( ord_less_eq @ real @ Lb @ Z2 )
& ( ord_less @ real @ Z2 @ Ub2 ) )
=> ( ord_less @ real @ ( poly2 @ real @ P @ Z2 ) @ ( zero_zero @ real ) ) ) ) ) ).
% not_eq_pos_or_neg_iff_2
thf(fact_38_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_39_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_40_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_41_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% order_refl
thf(fact_42_minf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ~ ( ord_less_eq @ A @ T @ X4 ) ) ) ).
% minf(8)
thf(fact_43_minf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( ord_less_eq @ A @ X4 @ T ) ) ) ).
% minf(6)
thf(fact_44_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P3: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P3 ) )
= ( P3 @ A2 ) ) ).
% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( collect @ A
@ ^ [X3: A] : ( member @ A @ X3 @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_46_Collect__cong,axiom,
! [A: $tType,P3: A > $o,Q2: A > $o] :
( ! [X2: A] :
( ( P3 @ X2 )
= ( Q2 @ X2 ) )
=> ( ( collect @ A @ P3 )
= ( collect @ A @ Q2 ) ) ) ).
% Collect_cong
thf(fact_47_ext,axiom,
! [B2: $tType,A: $tType,F: A > B2,G: A > B2] :
( ! [X2: A] :
( ( F @ X2 )
= ( G @ X2 ) )
=> ( F = G ) ) ).
% ext
thf(fact_48_pinf_I8_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( ord_less_eq @ A @ T @ X4 ) ) ) ).
% pinf(8)
thf(fact_49_pinf_I6_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ~ ( ord_less_eq @ A @ X4 @ T ) ) ) ).
% pinf(6)
thf(fact_50_verit__comp__simplify1_I3_J,axiom,
! [B2: $tType] :
( ( linorder @ B2 )
=> ! [B3: B2,A5: B2] :
( ( ~ ( ord_less_eq @ B2 @ B3 @ A5 ) )
= ( ord_less @ B2 @ A5 @ B3 ) ) ) ).
% verit_comp_simplify1(3)
thf(fact_51_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A2 ) ).
% bot_nat_0.extremum
thf(fact_52_le0,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% le0
thf(fact_53_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_54_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_55_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M2: nat,N2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_56_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_57_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_58_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( ord_less @ nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_59_infinite__descent__measure,axiom,
! [A: $tType,P3: A > $o,V: A > nat,X: A] :
( ! [X2: A] :
( ~ ( P3 @ X2 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X2 ) )
& ~ ( P3 @ Y3 ) ) )
=> ( P3 @ X ) ) ).
% infinite_descent_measure
thf(fact_60_linorder__neqE__nat,axiom,
! [X: nat,Y4: nat] :
( ( X != Y4 )
=> ( ~ ( ord_less @ nat @ X @ Y4 )
=> ( ord_less @ nat @ Y4 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_61_infinite__descent,axiom,
! [P3: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P3 @ N3 )
=> ? [M3: nat] :
( ( ord_less @ nat @ M3 @ N3 )
& ~ ( P3 @ M3 ) ) )
=> ( P3 @ N ) ) ).
% infinite_descent
thf(fact_62_nat__less__induct,axiom,
! [P3: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M3: nat] :
( ( ord_less @ nat @ M3 @ N3 )
=> ( P3 @ M3 ) )
=> ( P3 @ N3 ) )
=> ( P3 @ N ) ) ).
% nat_less_induct
thf(fact_63_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_64_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less @ nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_65_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_66_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_67_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_68_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_69_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_70_ex__least__nat__le,axiom,
! [P3: nat > $o,N: nat] :
( ( P3 @ N )
=> ( ~ ( P3 @ ( zero_zero @ nat ) )
=> ? [K: nat] :
( ( ord_less_eq @ nat @ K @ N )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ~ ( P3 @ I3 ) )
& ( P3 @ K ) ) ) ) ).
% ex_least_nat_le
thf(fact_71_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_72_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% less_eq_nat.simps(1)
thf(fact_73_conj__le__cong,axiom,
! [X: int,X5: int,P3: $o,P4: $o] :
( ( X = X5 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X5 )
=> ( P3 = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
& P3 )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X5 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_74_imp__le__cong,axiom,
! [X: int,X5: int,P3: $o,P4: $o] :
( ( X = X5 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X5 )
=> ( P3 = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> P3 )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X5 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_75_le__funD,axiom,
! [B2: $tType,A: $tType] :
( ( ord @ B2 )
=> ! [F: A > B2,G: A > B2,X: A] :
( ( ord_less_eq @ ( A > B2 ) @ F @ G )
=> ( ord_less_eq @ B2 @ ( F @ X ) @ ( G @ X ) ) ) ) ).
% le_funD
thf(fact_76_le__funE,axiom,
! [B2: $tType,A: $tType] :
( ( ord @ B2 )
=> ! [F: A > B2,G: A > B2,X: A] :
( ( ord_less_eq @ ( A > B2 ) @ F @ G )
=> ( ord_less_eq @ B2 @ ( F @ X ) @ ( G @ X ) ) ) ) ).
% le_funE
thf(fact_77_le__funI,axiom,
! [B2: $tType,A: $tType] :
( ( ord @ B2 )
=> ! [F: A > B2,G: A > B2] :
( ! [X2: A] : ( ord_less_eq @ B2 @ ( F @ X2 ) @ ( G @ X2 ) )
=> ( ord_less_eq @ ( A > B2 ) @ F @ G ) ) ) ).
% le_funI
thf(fact_78_le__fun__def,axiom,
! [B2: $tType,A: $tType] :
( ( ord @ B2 )
=> ( ( ord_less_eq @ ( A > B2 ) )
= ( ^ [F2: A > B2,G2: A > B2] :
! [X3: A] : ( ord_less_eq @ B2 @ ( F2 @ X3 ) @ ( G2 @ X3 ) ) ) ) ) ).
% le_fun_def
thf(fact_79_order__subst1,axiom,
! [A: $tType,B2: $tType] :
( ( ( order @ B2 )
& ( order @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( ord_less_eq @ A @ A2 @ ( F @ B ) )
=> ( ( ord_less_eq @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less_eq @ B2 @ X2 @ Y )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_subst1
thf(fact_80_order__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B: A,F: A > C2,C: C2] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ord_less_eq @ C2 @ ( F @ B ) @ C )
=> ( ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ord_less_eq @ C2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_subst2
thf(fact_81_verit__la__disequality,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B: A] :
( ( A2 = B )
| ~ ( ord_less_eq @ A @ A2 @ B )
| ~ ( ord_less_eq @ A @ B @ A2 ) ) ) ).
% verit_la_disequality
thf(fact_82_ord__eq__le__subst,axiom,
! [A: $tType,B2: $tType] :
( ( ( ord @ B2 )
& ( ord @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( A2
= ( F @ B ) )
=> ( ( ord_less_eq @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less_eq @ B2 @ X2 @ Y )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_83_ord__le__eq__subst,axiom,
! [A: $tType,B2: $tType] :
( ( ( ord @ B2 )
& ( ord @ A ) )
=> ! [A2: A,B: A,F: A > B2,C: B2] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ord_less_eq @ B2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq @ B2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_84_eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z4: A] : ( Y5 = Z4 ) )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ).
% eq_iff
thf(fact_85_antisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less_eq @ A @ X @ Y4 )
=> ( ( ord_less_eq @ A @ Y4 @ X )
=> ( X = Y4 ) ) ) ) ).
% antisym
thf(fact_86_linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less_eq @ A @ X @ Y4 )
| ( ord_less_eq @ A @ Y4 @ X ) ) ) ).
% linear
thf(fact_87_eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A] :
( ( X = Y4 )
=> ( ord_less_eq @ A @ X @ Y4 ) ) ) ).
% eq_refl
thf(fact_88_le__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ~ ( ord_less_eq @ A @ X @ Y4 )
=> ( ord_less_eq @ A @ Y4 @ X ) ) ) ).
% le_cases
thf(fact_89_order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ord_less_eq @ A @ B @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% order.trans
thf(fact_90_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ( ord_less_eq @ A @ X @ Y4 )
=> ~ ( ord_less_eq @ A @ Y4 @ Z5 ) )
=> ( ( ( ord_less_eq @ A @ Y4 @ X )
=> ~ ( ord_less_eq @ A @ X @ Z5 ) )
=> ( ( ( ord_less_eq @ A @ X @ Z5 )
=> ~ ( ord_less_eq @ A @ Z5 @ Y4 ) )
=> ( ( ( ord_less_eq @ A @ Z5 @ Y4 )
=> ~ ( ord_less_eq @ A @ Y4 @ X ) )
=> ( ( ( ord_less_eq @ A @ Y4 @ Z5 )
=> ~ ( ord_less_eq @ A @ Z5 @ X ) )
=> ~ ( ( ord_less_eq @ A @ Z5 @ X )
=> ~ ( ord_less_eq @ A @ X @ Y4 ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_91_antisym__conv,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y4: A,X: A] :
( ( ord_less_eq @ A @ Y4 @ X )
=> ( ( ord_less_eq @ A @ X @ Y4 )
= ( X = Y4 ) ) ) ) ).
% antisym_conv
thf(fact_92_order__class_Oorder_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z4: A] : ( Y5 = Z4 ) )
= ( ^ [A3: A,B4: A] :
( ( ord_less_eq @ A @ A3 @ B4 )
& ( ord_less_eq @ A @ B4 @ A3 ) ) ) ) ) ).
% order_class.order.eq_iff
thf(fact_93_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B: A,C: A] :
( ( A2 = B )
=> ( ( ord_less_eq @ A @ B @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_eq_le_trans
thf(fact_94_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( B = C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_le_eq_trans
thf(fact_95_order__class_Oorder_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ord_less_eq @ A @ B @ A2 )
=> ( A2 = B ) ) ) ) ).
% order_class.order.antisym
thf(fact_96_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ord_less_eq @ A @ X @ Y4 )
=> ( ( ord_less_eq @ A @ Y4 @ Z5 )
=> ( ord_less_eq @ A @ X @ Z5 ) ) ) ) ).
% order_trans
thf(fact_97_dual__order_Orefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% dual_order.refl
thf(fact_98_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > A > $o,A2: A,B: A] :
( ! [A6: A,B5: A] :
( ( ord_less_eq @ A @ A6 @ B5 )
=> ( P3 @ A6 @ B5 ) )
=> ( ! [A6: A,B5: A] :
( ( P3 @ B5 @ A6 )
=> ( P3 @ A6 @ B5 ) )
=> ( P3 @ A2 @ B ) ) ) ) ).
% linorder_wlog
thf(fact_99_dual__order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B @ A2 )
=> ( ( ord_less_eq @ A @ C @ B )
=> ( ord_less_eq @ A @ C @ A2 ) ) ) ) ).
% dual_order.trans
thf(fact_100_dual__order_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z4: A] : ( Y5 = Z4 ) )
= ( ^ [A3: A,B4: A] :
( ( ord_less_eq @ A @ B4 @ A3 )
& ( ord_less_eq @ A @ A3 @ B4 ) ) ) ) ) ).
% dual_order.eq_iff
thf(fact_101_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A] :
( ( ord_less_eq @ A @ B @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ B )
=> ( A2 = B ) ) ) ) ).
% dual_order.antisym
thf(fact_102_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A] :
( ( ord_less @ A @ B @ A2 )
=> ( A2 != B ) ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_103_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( ord_less @ A @ A2 @ B )
=> ( A2 != B ) ) ) ).
% order.strict_implies_not_eq
thf(fact_104_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ~ ( ord_less @ A @ X @ Y4 ) )
= ( ( ord_less @ A @ Y4 @ X )
| ( X = Y4 ) ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_105_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A,C: A] :
( ( ord_less @ A @ B @ A2 )
=> ( ( ord_less @ A @ C @ B )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans
thf(fact_106_linorder__less__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > A > $o,A2: A,B: A] :
( ! [A6: A,B5: A] :
( ( ord_less @ A @ A6 @ B5 )
=> ( P3 @ A6 @ B5 ) )
=> ( ! [A6: A] : ( P3 @ A6 @ A6 )
=> ( ! [A6: A,B5: A] :
( ( P3 @ B5 @ A6 )
=> ( P3 @ A6 @ B5 ) )
=> ( P3 @ A2 @ B ) ) ) ) ) ).
% linorder_less_wlog
thf(fact_107_exists__least__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( ( ^ [P5: A > $o] :
? [X6: A] : ( P5 @ X6 ) )
= ( ^ [P6: A > $o] :
? [N2: A] :
( ( P6 @ N2 )
& ! [M2: A] :
( ( ord_less @ A @ M2 @ N2 )
=> ~ ( P6 @ M2 ) ) ) ) ) ) ).
% exists_least_iff
thf(fact_108_less__imp__not__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ~ ( ord_less @ A @ Y4 @ X ) ) ) ).
% less_imp_not_less
thf(fact_109_order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less @ A @ A2 @ B )
=> ( ( ord_less @ A @ B @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans
thf(fact_110_dual__order_Oirrefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% dual_order.irrefl
thf(fact_111_linorder__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ~ ( ord_less @ A @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less @ A @ Y4 @ X ) ) ) ) ).
% linorder_cases
thf(fact_112_less__imp__triv,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A,P3: $o] :
( ( ord_less @ A @ X @ Y4 )
=> ( ( ord_less @ A @ Y4 @ X )
=> P3 ) ) ) ).
% less_imp_triv
thf(fact_113_less__imp__not__eq2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( Y4 != X ) ) ) ).
% less_imp_not_eq2
thf(fact_114_antisym__conv3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y4: A,X: A] :
( ~ ( ord_less @ A @ Y4 @ X )
=> ( ( ~ ( ord_less @ A @ X @ Y4 ) )
= ( X = Y4 ) ) ) ) ).
% antisym_conv3
thf(fact_115_less__induct,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ A @ Y3 @ X2 )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% less_induct
thf(fact_116_less__not__sym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ~ ( ord_less @ A @ Y4 @ X ) ) ) ).
% less_not_sym
thf(fact_117_less__imp__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( X != Y4 ) ) ) ).
% less_imp_not_eq
thf(fact_118_dual__order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A] :
( ( ord_less @ A @ B @ A2 )
=> ~ ( ord_less @ A @ A2 @ B ) ) ) ).
% dual_order.asym
thf(fact_119_ord__less__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less @ A @ A2 @ B )
=> ( ( B = C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% ord_less_eq_trans
thf(fact_120_ord__eq__less__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B: A,C: A] :
( ( A2 = B )
=> ( ( ord_less @ A @ B @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% ord_eq_less_trans
thf(fact_121_less__irrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] :
~ ( ord_less @ A @ X @ X ) ) ).
% less_irrefl
thf(fact_122_less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
| ( X = Y4 )
| ( ord_less @ A @ Y4 @ X ) ) ) ).
% less_linear
thf(fact_123_less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( ( ord_less @ A @ Y4 @ Z5 )
=> ( ord_less @ A @ X @ Z5 ) ) ) ) ).
% less_trans
thf(fact_124_less__asym_H,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B: A] :
( ( ord_less @ A @ A2 @ B )
=> ~ ( ord_less @ A @ B @ A2 ) ) ) ).
% less_asym'
thf(fact_125_less__asym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ~ ( ord_less @ A @ Y4 @ X ) ) ) ).
% less_asym
thf(fact_126_less__imp__neq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( X != Y4 ) ) ) ).
% less_imp_neq
thf(fact_127_dense,axiom,
! [A: $tType] :
( ( dense_order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ? [Z3: A] :
( ( ord_less @ A @ X @ Z3 )
& ( ord_less @ A @ Z3 @ Y4 ) ) ) ) ).
% dense
thf(fact_128_order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( ord_less @ A @ A2 @ B )
=> ~ ( ord_less @ A @ B @ A2 ) ) ) ).
% order.asym
thf(fact_129_neq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( X != Y4 )
= ( ( ord_less @ A @ X @ Y4 )
| ( ord_less @ A @ Y4 @ X ) ) ) ) ).
% neq_iff
thf(fact_130_neqE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( X != Y4 )
=> ( ~ ( ord_less @ A @ X @ Y4 )
=> ( ord_less @ A @ Y4 @ X ) ) ) ) ).
% neqE
thf(fact_131_gt__ex,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
? [X_1: A] : ( ord_less @ A @ X @ X_1 ) ) ).
% gt_ex
thf(fact_132_lt__ex,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
? [Y: A] : ( ord_less @ A @ Y @ X ) ) ).
% lt_ex
thf(fact_133_order__less__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B: A,F: A > C2,C: C2] :
( ( ord_less @ A @ A2 @ B )
=> ( ( ord_less @ C2 @ ( F @ B ) @ C )
=> ( ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ord_less @ C2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_less_subst2
thf(fact_134_order__less__subst1,axiom,
! [A: $tType,B2: $tType] :
( ( ( order @ B2 )
& ( order @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( ord_less @ A @ A2 @ ( F @ B ) )
=> ( ( ord_less @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less @ B2 @ X2 @ Y )
=> ( ord_less @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_less_subst1
thf(fact_135_ord__less__eq__subst,axiom,
! [A: $tType,B2: $tType] :
( ( ( ord @ B2 )
& ( ord @ A ) )
=> ! [A2: A,B: A,F: A > B2,C: B2] :
( ( ord_less @ A @ A2 @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ord_less @ B2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ B2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% ord_less_eq_subst
thf(fact_136_ord__eq__less__subst,axiom,
! [A: $tType,B2: $tType] :
( ( ( ord @ B2 )
& ( ord @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( A2
= ( F @ B ) )
=> ( ( ord_less @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less @ B2 @ X2 @ Y )
=> ( ord_less @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_137_measure__induct__rule,axiom,
! [B2: $tType,A: $tType] :
( ( wellorder @ B2 )
=> ! [F: A > B2,P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ B2 @ ( F @ Y3 ) @ ( F @ X2 ) )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_138_measure__induct,axiom,
! [B2: $tType,A: $tType] :
( ( wellorder @ B2 )
=> ! [F: A > B2,P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ B2 @ ( F @ Y3 ) @ ( F @ X2 ) )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% measure_induct
thf(fact_139_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(1)
thf(fact_140_pinf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > $o,P4: A > $o,Q2: A > $o,Q3: A > $o] :
( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( P3 @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( Q2 @ X2 )
= ( Q3 @ X2 ) ) )
=> ? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( ( ( P3 @ X4 )
& ( Q2 @ X4 ) )
= ( ( P4 @ X4 )
& ( Q3 @ X4 ) ) ) ) ) ) ) ).
% pinf(1)
thf(fact_141_pinf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > $o,P4: A > $o,Q2: A > $o,Q3: A > $o] :
( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( P3 @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ Z @ X2 )
=> ( ( Q2 @ X2 )
= ( Q3 @ X2 ) ) )
=> ? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( ( ( P3 @ X4 )
| ( Q2 @ X4 ) )
= ( ( P4 @ X4 )
| ( Q3 @ X4 ) ) ) ) ) ) ) ).
% pinf(2)
thf(fact_142_pinf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( X4 != T ) ) ) ).
% pinf(3)
thf(fact_143_pinf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( X4 != T ) ) ) ).
% pinf(4)
thf(fact_144_pinf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ~ ( ord_less @ A @ X4 @ T ) ) ) ).
% pinf(5)
thf(fact_145_pinf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ Z3 @ X4 )
=> ( ord_less @ A @ T @ X4 ) ) ) ).
% pinf(7)
thf(fact_146_pinf_I11_J,axiom,
! [C2: $tType,D: $tType] :
( ( ord @ C2 )
=> ! [F3: D] :
? [Z3: C2] :
! [X4: C2] :
( ( ord_less @ C2 @ Z3 @ X4 )
=> ( F3 = F3 ) ) ) ).
% pinf(11)
thf(fact_147_minf_I1_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > $o,P4: A > $o,Q2: A > $o,Q3: A > $o] :
( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( P3 @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( Q2 @ X2 )
= ( Q3 @ X2 ) ) )
=> ? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( ( ( P3 @ X4 )
& ( Q2 @ X4 ) )
= ( ( P4 @ X4 )
& ( Q3 @ X4 ) ) ) ) ) ) ) ).
% minf(1)
thf(fact_148_minf_I2_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > $o,P4: A > $o,Q2: A > $o,Q3: A > $o] :
( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( P3 @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z: A] :
! [X2: A] :
( ( ord_less @ A @ X2 @ Z )
=> ( ( Q2 @ X2 )
= ( Q3 @ X2 ) ) )
=> ? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( ( ( P3 @ X4 )
| ( Q2 @ X4 ) )
= ( ( P4 @ X4 )
| ( Q3 @ X4 ) ) ) ) ) ) ) ).
% minf(2)
thf(fact_149_minf_I3_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( X4 != T ) ) ) ).
% minf(3)
thf(fact_150_minf_I4_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( X4 != T ) ) ) ).
% minf(4)
thf(fact_151_minf_I5_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ( ord_less @ A @ X4 @ T ) ) ) ).
% minf(5)
thf(fact_152_minf_I7_J,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [T: A] :
? [Z3: A] :
! [X4: A] :
( ( ord_less @ A @ X4 @ Z3 )
=> ~ ( ord_less @ A @ T @ X4 ) ) ) ).
% minf(7)
thf(fact_153_minf_I11_J,axiom,
! [C2: $tType,D: $tType] :
( ( ord @ C2 )
=> ! [F3: D] :
? [Z3: C2] :
! [X4: C2] :
( ( ord_less @ C2 @ X4 @ Z3 )
=> ( F3 = F3 ) ) ) ).
% minf(11)
thf(fact_154_infinite__descent0__measure,axiom,
! [A: $tType,V: A > nat,P3: A > $o,X: A] :
( ! [X2: A] :
( ( ( V @ X2 )
= ( zero_zero @ nat ) )
=> ( P3 @ X2 ) )
=> ( ! [X2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X2 ) )
=> ( ~ ( P3 @ X2 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X2 ) )
& ~ ( P3 @ Y3 ) ) ) )
=> ( P3 @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_155_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_156_infinite__descent0,axiom,
! [P3: nat > $o,N: nat] :
( ( P3 @ ( zero_zero @ nat ) )
=> ( ! [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
=> ( ~ ( P3 @ N3 )
=> ? [M3: nat] :
( ( ord_less @ nat @ M3 @ N3 )
& ~ ( P3 @ M3 ) ) ) )
=> ( P3 @ N ) ) ) ).
% infinite_descent0
thf(fact_157_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_158_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_159_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_160_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_161_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_162_order_Onot__eq__order__implies__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( A2 != B )
=> ( ( ord_less_eq @ A @ A2 @ B )
=> ( ord_less @ A @ A2 @ B ) ) ) ) ).
% order.not_eq_order_implies_strict
thf(fact_163_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A] :
( ( ord_less @ A @ B @ A2 )
=> ( ord_less_eq @ A @ B @ A2 ) ) ) ).
% dual_order.strict_implies_order
thf(fact_164_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A3: A] :
( ( ord_less_eq @ A @ B4 @ A3 )
& ( A3 != B4 ) ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_165_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B4: A,A3: A] :
( ( ord_less @ A @ B4 @ A3 )
| ( A3 = B4 ) ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_166_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( ord_less @ A @ A2 @ B )
=> ( ord_less_eq @ A @ A2 @ B ) ) ) ).
% order.strict_implies_order
thf(fact_167_dense__le__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( ! [W: A] :
( ( ord_less @ A @ X @ W )
=> ( ( ord_less @ A @ W @ Y4 )
=> ( ord_less_eq @ A @ W @ Z5 ) ) )
=> ( ord_less_eq @ A @ Y4 @ Z5 ) ) ) ) ).
% dense_le_bounded
thf(fact_168_dense__ge__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z5: A,X: A,Y4: A] :
( ( ord_less @ A @ Z5 @ X )
=> ( ! [W: A] :
( ( ord_less @ A @ Z5 @ W )
=> ( ( ord_less @ A @ W @ X )
=> ( ord_less_eq @ A @ Y4 @ W ) ) )
=> ( ord_less_eq @ A @ Y4 @ Z5 ) ) ) ) ).
% dense_ge_bounded
thf(fact_169_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A,C: A] :
( ( ord_less @ A @ B @ A2 )
=> ( ( ord_less_eq @ A @ C @ B )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans2
thf(fact_170_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B @ A2 )
=> ( ( ord_less @ A @ C @ B )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans1
thf(fact_171_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [A3: A,B4: A] :
( ( ord_less_eq @ A @ A3 @ B4 )
& ( A3 != B4 ) ) ) ) ) ).
% order.strict_iff_order
thf(fact_172_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A3: A,B4: A] :
( ( ord_less @ A @ A3 @ B4 )
| ( A3 = B4 ) ) ) ) ) ).
% order.order_iff_strict
thf(fact_173_order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less @ A @ A2 @ B )
=> ( ( ord_less_eq @ A @ B @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans2
thf(fact_174_order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ord_less @ A @ B @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans1
thf(fact_175_not__le__imp__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y4: A,X: A] :
( ~ ( ord_less_eq @ A @ Y4 @ X )
=> ( ord_less @ A @ X @ Y4 ) ) ) ).
% not_le_imp_less
thf(fact_176_less__le__not__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ~ ( ord_less_eq @ A @ Y2 @ X3 ) ) ) ) ) ).
% less_le_not_le
thf(fact_177_le__imp__less__or__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less_eq @ A @ X @ Y4 )
=> ( ( ord_less @ A @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_imp_less_or_eq
thf(fact_178_le__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less_eq @ A @ X @ Y4 )
| ( ord_less @ A @ Y4 @ X ) ) ) ).
% le_less_linear
thf(fact_179_dense__le,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Y4: A,Z5: A] :
( ! [X2: A] :
( ( ord_less @ A @ X2 @ Y4 )
=> ( ord_less_eq @ A @ X2 @ Z5 ) )
=> ( ord_less_eq @ A @ Y4 @ Z5 ) ) ) ).
% dense_le
thf(fact_180_dense__ge,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z5: A,Y4: A] :
( ! [X2: A] :
( ( ord_less @ A @ Z5 @ X2 )
=> ( ord_less_eq @ A @ Y4 @ X2 ) )
=> ( ord_less_eq @ A @ Y4 @ Z5 ) ) ) ).
% dense_ge
thf(fact_181_less__le__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( ( ord_less_eq @ A @ Y4 @ Z5 )
=> ( ord_less @ A @ X @ Z5 ) ) ) ) ).
% less_le_trans
thf(fact_182_le__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A,Z5: A] :
( ( ord_less_eq @ A @ X @ Y4 )
=> ( ( ord_less @ A @ Y4 @ Z5 )
=> ( ord_less @ A @ X @ Z5 ) ) ) ) ).
% le_less_trans
thf(fact_183_less__imp__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ X @ Y4 )
=> ( ord_less_eq @ A @ X @ Y4 ) ) ) ).
% less_imp_le
thf(fact_184_antisym__conv2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ( ord_less_eq @ A @ X @ Y4 )
=> ( ( ~ ( ord_less @ A @ X @ Y4 ) )
= ( X = Y4 ) ) ) ) ).
% antisym_conv2
thf(fact_185_antisym__conv1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y4: A] :
( ~ ( ord_less @ A @ X @ Y4 )
=> ( ( ord_less_eq @ A @ X @ Y4 )
= ( X = Y4 ) ) ) ) ).
% antisym_conv1
thf(fact_186_le__neq__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B: A] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( A2 != B )
=> ( ord_less @ A @ A2 @ B ) ) ) ) ).
% le_neq_trans
thf(fact_187_not__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ~ ( ord_less @ A @ X @ Y4 ) )
= ( ord_less_eq @ A @ Y4 @ X ) ) ) ).
% not_less
thf(fact_188_not__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ( ~ ( ord_less_eq @ A @ X @ Y4 ) )
= ( ord_less @ A @ Y4 @ X ) ) ) ).
% not_le
thf(fact_189_order__less__le__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B: A,F: A > C2,C: C2] :
( ( ord_less @ A @ A2 @ B )
=> ( ( ord_less_eq @ C2 @ ( F @ B ) @ C )
=> ( ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ord_less @ C2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_less_le_subst2
thf(fact_190_order__less__le__subst1,axiom,
! [A: $tType,B2: $tType] :
( ( ( order @ B2 )
& ( order @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( ord_less @ A @ A2 @ ( F @ B ) )
=> ( ( ord_less_eq @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less_eq @ B2 @ X2 @ Y )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_191_order__le__less__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B: A,F: A > C2,C: C2] :
( ( ord_less_eq @ A @ A2 @ B )
=> ( ( ord_less @ C2 @ ( F @ B ) @ C )
=> ( ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ord_less_eq @ C2 @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_le_less_subst2
thf(fact_192_order__le__less__subst1,axiom,
! [A: $tType,B2: $tType] :
( ( ( order @ B2 )
& ( order @ A ) )
=> ! [A2: A,F: B2 > A,B: B2,C: B2] :
( ( ord_less_eq @ A @ A2 @ ( F @ B ) )
=> ( ( ord_less @ B2 @ B @ C )
=> ( ! [X2: B2,Y: B2] :
( ( ord_less @ B2 @ X2 @ Y )
=> ( ord_less @ A @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_193_less__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less_eq @ A @ X3 @ Y2 )
& ( X3 != Y2 ) ) ) ) ) ).
% less_le
thf(fact_194_le__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X3: A,Y2: A] :
( ( ord_less @ A @ X3 @ Y2 )
| ( X3 = Y2 ) ) ) ) ) ).
% le_less
thf(fact_195_leI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y4: A] :
( ~ ( ord_less @ A @ X @ Y4 )
=> ( ord_less_eq @ A @ Y4 @ X ) ) ) ).
% leI
thf(fact_196_leD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y4: A,X: A] :
( ( ord_less_eq @ A @ Y4 @ X )
=> ~ ( ord_less @ A @ X @ Y4 ) ) ) ).
% leD
thf(fact_197_complete__interval,axiom,
! [A: $tType] :
( ( condit1037483654norder @ A )
=> ! [A2: A,B: A,P3: A > $o] :
( ( ord_less @ A @ A2 @ B )
=> ( ( P3 @ A2 )
=> ( ~ ( P3 @ B )
=> ? [C3: A] :
( ( ord_less_eq @ A @ A2 @ C3 )
& ( ord_less_eq @ A @ C3 @ B )
& ! [X4: A] :
( ( ( ord_less_eq @ A @ A2 @ X4 )
& ( ord_less @ A @ X4 @ C3 ) )
=> ( P3 @ X4 ) )
& ! [D3: A] :
( ! [X2: A] :
( ( ( ord_less_eq @ A @ A2 @ X2 )
& ( ord_less @ A @ X2 @ D3 ) )
=> ( P3 @ X2 ) )
=> ( ord_less_eq @ A @ D3 @ C3 ) ) ) ) ) ) ) ).
% complete_interval
thf(fact_198_rsquarefree__def,axiom,
! [A: $tType] :
( ( idom @ A )
=> ( ( rsquarefree @ A )
= ( ^ [P2: poly @ A] :
( ( P2
!= ( zero_zero @ ( poly @ A ) ) )
& ! [A3: A] :
( ( ( order2 @ A @ A3 @ P2 )
= ( zero_zero @ nat ) )
| ( ( order2 @ A @ A3 @ P2 )
= ( one_one @ nat ) ) ) ) ) ) ) ).
% rsquarefree_def
thf(fact_199_poly__cutoff__1,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [N: nat] :
( ( ( N
= ( zero_zero @ nat ) )
=> ( ( poly_cutoff @ A @ N @ ( one_one @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) )
& ( ( N
!= ( zero_zero @ nat ) )
=> ( ( poly_cutoff @ A @ N @ ( one_one @ ( poly @ A ) ) )
= ( one_one @ ( poly @ A ) ) ) ) ) ) ).
% poly_cutoff_1
thf(fact_200_coeff__0__reflect__poly__0__iff,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [P: poly @ A] :
( ( ( coeff @ A @ ( reflect_poly @ A @ P ) @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) )
= ( P
= ( zero_zero @ ( poly @ A ) ) ) ) ) ).
% coeff_0_reflect_poly_0_iff
thf(fact_201_of__nat__0__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% of_nat_0_less_iff
thf(fact_202_order__pderiv,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [P: poly @ A,A2: A] :
( ( ( pderiv @ A @ P )
!= ( zero_zero @ ( poly @ A ) ) )
=> ( ( ( order2 @ A @ A2 @ P )
!= ( zero_zero @ nat ) )
=> ( ( order2 @ A @ A2 @ P )
= ( suc @ ( order2 @ A @ A2 @ ( pderiv @ A @ P ) ) ) ) ) ) ) ).
% order_pderiv
thf(fact_203_order__pderiv2,axiom,
! [A: $tType] :
( ( field_char_0 @ A )
=> ! [P: poly @ A,A2: A,N: nat] :
( ( ( pderiv @ A @ P )
!= ( zero_zero @ ( poly @ A ) ) )
=> ( ( ( order2 @ A @ A2 @ P )
!= ( zero_zero @ nat ) )
=> ( ( ( order2 @ A @ A2 @ ( pderiv @ A @ P ) )
= N )
= ( ( order2 @ A @ A2 @ P )
= ( suc @ N ) ) ) ) ) ) ).
% order_pderiv2
thf(fact_204_cross__def,axiom,
( sturm_424270202_cross
= ( ^ [P2: poly @ real,A3: real,B4: real] : ( sturm_1771227917iation @ ( poly2 @ real @ P2 @ A3 ) @ ( poly2 @ real @ P2 @ B4 ) ) ) ) ).
% cross_def
thf(fact_205_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_206_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_207_of__nat__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( semiring_1_of_nat @ A @ N ) )
= ( M = N ) ) ) ).
% of_nat_eq_iff
thf(fact_208_lessI,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_209_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_210_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_211_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq @ nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_212_pderiv__of__nat,axiom,
! [A: $tType] :
( ( ( comm_semiring_1 @ A )
& ( semiri1193490041visors @ A ) )
=> ! [N: nat] :
( ( pderiv @ A @ ( semiring_1_of_nat @ ( poly @ A ) @ N ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% pderiv_of_nat
thf(fact_213_reflect__poly__1,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ( ( reflect_poly @ A @ ( one_one @ ( poly @ A ) ) )
= ( one_one @ ( poly @ A ) ) ) ) ).
% reflect_poly_1
thf(fact_214_of__nat__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_0
thf(fact_215_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( zero_zero @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( ( zero_zero @ nat )
= N ) ) ) ).
% of_nat_0_eq_iff
thf(fact_216_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_eq_0_iff
thf(fact_217_of__nat__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_iff
thf(fact_218_of__nat__le__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% of_nat_le_iff
thf(fact_219_less__Suc0,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_Suc0
thf(fact_220_zero__less__Suc,axiom,
! [N: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_221_of__nat__1,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( one_one @ nat ) )
= ( one_one @ A ) ) ) ).
% of_nat_1
thf(fact_222_of__nat__1__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( one_one @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( N
= ( one_one @ nat ) ) ) ) ).
% of_nat_1_eq_iff
thf(fact_223_of__nat__eq__1__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( semiring_1_of_nat @ A @ N )
= ( one_one @ A ) )
= ( N
= ( one_one @ nat ) ) ) ) ).
% of_nat_eq_1_iff
thf(fact_224_less__one,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( one_one @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_one
thf(fact_225_coeff__0,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [N: nat] :
( ( coeff @ A @ ( zero_zero @ ( poly @ A ) ) @ N )
= ( zero_zero @ A ) ) ) ).
% coeff_0
thf(fact_226_poly__1,axiom,
! [A: $tType] :
( ( comm_semiring_1 @ A )
=> ! [X: A] :
( ( poly2 @ A @ ( one_one @ ( poly @ A ) ) @ X )
= ( one_one @ A ) ) ) ).
% poly_1
thf(fact_227_variation__0_I2_J,axiom,
! [X: real] :
( ( sturm_1771227917iation @ X @ ( zero_zero @ real ) )
= ( zero_zero @ int ) ) ).
% variation_0(2)
thf(fact_228_variation__0_I1_J,axiom,
! [Y4: real] :
( ( sturm_1771227917iation @ ( zero_zero @ real ) @ Y4 )
= ( zero_zero @ int ) ) ).
% variation_0(1)
thf(fact_229_pderiv__1,axiom,
! [A: $tType] :
( ( ( comm_semiring_1 @ A )
& ( semiri1193490041visors @ A ) )
=> ( ( pderiv @ A @ ( one_one @ ( poly @ A ) ) )
= ( zero_zero @ ( poly @ A ) ) ) ) ).
% pderiv_1
thf(fact_230_order__1__eq__0,axiom,
! [A: $tType] :
( ( idom @ A )
=> ! [X: A] :
( ( order2 @ A @ X @ ( one_one @ ( poly @ A ) ) )
= ( zero_zero @ nat ) ) ) ).
% order_1_eq_0
thf(fact_231_of__nat__le__0__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_le_0_iff
thf(fact_232_reflect__poly__reflect__poly,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [P: poly @ A] :
( ( ( coeff @ A @ P @ ( zero_zero @ nat ) )
!= ( zero_zero @ A ) )
=> ( ( reflect_poly @ A @ ( reflect_poly @ A @ P ) )
= P ) ) ) ).
% reflect_poly_reflect_poly
thf(fact_233_One__nat__def,axiom,
( ( one_one @ nat )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% One_nat_def
thf(fact_234_less__fun__def,axiom,
! [B2: $tType,A: $tType] :
( ( ord @ B2 )
=> ( ( ord_less @ ( A > B2 ) )
= ( ^ [F2: A > B2,G2: A > B2] :
( ( ord_less_eq @ ( A > B2 ) @ F2 @ G2 )
& ~ ( ord_less_eq @ ( A > B2 ) @ G2 @ F2 ) ) ) ) ) ).
% less_fun_def
thf(fact_235_of__nat__neq__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ N ) )
!= ( zero_zero @ A ) ) ) ).
% of_nat_neq_0
thf(fact_236_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ! [X2: nat] : ( R @ X2 @ X2 )
=> ( ! [X2: nat,Y: nat,Z3: nat] :
( ( R @ X2 @ Y )
=> ( ( R @ Y @ Z3 )
=> ( R @ X2 @ Z3 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_237_nat__induct__at__least,axiom,
! [M: nat,N: nat,P3: nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( P3 @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq @ nat @ M @ N3 )
=> ( ( P3 @ N3 )
=> ( P3 @ ( suc @ N3 ) ) ) )
=> ( P3 @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_238_Nat_Oex__has__greatest__nat,axiom,
! [P3: nat > $o,K2: nat,B: nat] :
( ( P3 @ K2 )
=> ( ! [Y: nat] :
( ( P3 @ Y )
=> ( ord_less_eq @ nat @ Y @ B ) )
=> ? [X2: nat] :
( ( P3 @ X2 )
& ! [Y3: nat] :
( ( P3 @ Y3 )
=> ( ord_less_eq @ nat @ Y3 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_239_verit__la__generic,axiom,
! [A2: int,X: int] :
( ( ord_less_eq @ int @ A2 @ X )
| ( A2 = X )
| ( ord_less_eq @ int @ X @ A2 ) ) ).
% verit_la_generic
thf(fact_240_full__nat__induct,axiom,
! [P3: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M3: nat] :
( ( ord_less_eq @ nat @ ( suc @ M3 ) @ N3 )
=> ( P3 @ M3 ) )
=> ( P3 @ N3 ) )
=> ( P3 @ N ) ) ).
% full_nat_induct
thf(fact_241_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq @ nat @ M @ N ) )
= ( ord_less_eq @ nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_242_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_243_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_244_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_245_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq @ nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_246_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_247_le__trans,axiom,
! [I: nat,J: nat,K2: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ J @ K2 )
=> ( ord_less_eq @ nat @ I @ K2 ) ) ) ).
% le_trans
thf(fact_248_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ M4 )
=> ? [M5: nat] :
( M4
= ( suc @ M5 ) ) ) ).
% Suc_le_D
thf(fact_249_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_250_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_251_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
% Type constructors (87)
thf(tcon_Polynomial_Opoly___Rings_Olinordered__idom,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( linordered_idom @ ( poly @ A7 ) ) ) ).
thf(tcon_Real_Oreal___Rings_Olinordered__idom_1,axiom,
linordered_idom @ real ).
thf(tcon_Int_Oint___Rings_Olinordered__idom_2,axiom,
linordered_idom @ int ).
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A7: $tType,A8: $tType] :
( ( preorder @ A8 )
=> ( preorder @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A7: $tType,A8: $tType] :
( ( order @ A8 )
=> ( order @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A7: $tType,A8: $tType] :
( ( ord @ A8 )
=> ( ord @ ( A7 > A8 ) ) ) ).
thf(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__linorder,axiom,
condit1037483654norder @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors,axiom,
semiri1193490041visors @ int ).
thf(tcon_Int_Oint___Rings_Oring__no__zero__divisors,axiom,
ring_n68954251visors @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__1,axiom,
comm_semiring_1 @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__semiring__0,axiom,
comm_semiring_0 @ int ).
thf(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0 @ int ).
thf(tcon_Int_Oint___Orderings_Opreorder_3,axiom,
preorder @ int ).
thf(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder @ int ).
thf(tcon_Int_Oint___Rings_Ocomm__ring__1,axiom,
comm_ring_1 @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1 @ int ).
thf(tcon_Int_Oint___Orderings_Ono__top,axiom,
no_top @ int ).
thf(tcon_Int_Oint___Orderings_Ono__bot,axiom,
no_bot @ int ).
thf(tcon_Int_Oint___Orderings_Oorder_4,axiom,
order @ int ).
thf(tcon_Int_Oint___Nat_Oring__char__0,axiom,
ring_char_0 @ int ).
thf(tcon_Int_Oint___Orderings_Oord_5,axiom,
ord @ int ).
thf(tcon_Int_Oint___Groups_Ozero,axiom,
zero @ int ).
thf(tcon_Int_Oint___Rings_Oidom,axiom,
idom @ int ).
thf(tcon_Int_Oint___Groups_Oone,axiom,
one @ int ).
thf(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_6,axiom,
condit1037483654norder @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_7,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors_8,axiom,
semiri1193490041visors @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__1_9,axiom,
comm_semiring_1 @ nat ).
thf(tcon_Nat_Onat___Rings_Ocomm__semiring__0_10,axiom,
comm_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Nat_Osemiring__char__0_11,axiom,
semiring_char_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Opreorder_12,axiom,
preorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder_13,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1_14,axiom,
semiring_1 @ nat ).
thf(tcon_Nat_Onat___Orderings_Ono__top_15,axiom,
no_top @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_16,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Orderings_Oord_17,axiom,
ord @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero_18,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Groups_Oone_19,axiom,
one @ nat ).
thf(tcon_Set_Oset___Orderings_Opreorder_20,axiom,
! [A7: $tType] : ( preorder @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_21,axiom,
! [A7: $tType] : ( order @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_22,axiom,
! [A7: $tType] : ( ord @ ( set @ A7 ) ) ).
thf(tcon_HOL_Obool___Orderings_Opreorder_23,axiom,
preorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Olinorder_24,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_25,axiom,
order @ $o ).
thf(tcon_HOL_Obool___Orderings_Oord_26,axiom,
ord @ $o ).
thf(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_27,axiom,
condit1037483654norder @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__nonzero__semiring_28,axiom,
linord1659791738miring @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors_29,axiom,
semiri1193490041visors @ real ).
thf(tcon_Real_Oreal___Rings_Oring__no__zero__divisors_30,axiom,
ring_n68954251visors @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__linorder,axiom,
dense_linorder @ real ).
thf(tcon_Real_Oreal___Fields_Olinordered__field,axiom,
linordered_field @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__1_31,axiom,
comm_semiring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__semiring__0_32,axiom,
comm_semiring_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Odense__order,axiom,
dense_order @ real ).
thf(tcon_Real_Oreal___Nat_Osemiring__char__0_33,axiom,
semiring_char_0 @ real ).
thf(tcon_Real_Oreal___Fields_Ofield__char__0,axiom,
field_char_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Opreorder_34,axiom,
preorder @ real ).
thf(tcon_Real_Oreal___Orderings_Olinorder_35,axiom,
linorder @ real ).
thf(tcon_Real_Oreal___Rings_Ocomm__ring__1_36,axiom,
comm_ring_1 @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1_37,axiom,
semiring_1 @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__top_38,axiom,
no_top @ real ).
thf(tcon_Real_Oreal___Orderings_Ono__bot_39,axiom,
no_bot @ real ).
thf(tcon_Real_Oreal___Orderings_Oorder_40,axiom,
order @ real ).
thf(tcon_Real_Oreal___Nat_Oring__char__0_41,axiom,
ring_char_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Oord_42,axiom,
ord @ real ).
thf(tcon_Real_Oreal___Groups_Ozero_43,axiom,
zero @ real ).
thf(tcon_Real_Oreal___Rings_Oidom_44,axiom,
idom @ real ).
thf(tcon_Real_Oreal___Groups_Oone_45,axiom,
one @ real ).
thf(tcon_Polynomial_Opoly___Rings_Olinordered__nonzero__semiring_46,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( linord1659791738miring @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Osemiring__no__zero__divisors_47,axiom,
! [A7: $tType] :
( ( ( comm_semiring_0 @ A7 )
& ( semiri1193490041visors @ A7 ) )
=> ( semiri1193490041visors @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Oring__no__zero__divisors_48,axiom,
! [A7: $tType] :
( ( idom @ A7 )
=> ( ring_n68954251visors @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Ocomm__semiring__1_49,axiom,
! [A7: $tType] :
( ( comm_semiring_1 @ A7 )
=> ( comm_semiring_1 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Ocomm__semiring__0_50,axiom,
! [A7: $tType] :
( ( comm_semiring_0 @ A7 )
=> ( comm_semiring_0 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Nat_Osemiring__char__0_51,axiom,
! [A7: $tType] :
( ( ( ring_char_0 @ A7 )
& ( comm_ring_1 @ A7 ) )
=> ( semiring_char_0 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Orderings_Opreorder_52,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( preorder @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Orderings_Olinorder_53,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( linorder @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Ocomm__ring__1_54,axiom,
! [A7: $tType] :
( ( comm_ring_1 @ A7 )
=> ( comm_ring_1 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Osemiring__1_55,axiom,
! [A7: $tType] :
( ( comm_semiring_1 @ A7 )
=> ( semiring_1 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Orderings_Oorder_56,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( order @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Nat_Oring__char__0_57,axiom,
! [A7: $tType] :
( ( ( ring_char_0 @ A7 )
& ( comm_ring_1 @ A7 ) )
=> ( ring_char_0 @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Orderings_Oord_58,axiom,
! [A7: $tType] :
( ( linordered_idom @ A7 )
=> ( ord @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Groups_Ozero_59,axiom,
! [A7: $tType] :
( ( zero @ A7 )
=> ( zero @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Rings_Oidom_60,axiom,
! [A7: $tType] :
( ( idom @ A7 )
=> ( idom @ ( poly @ A7 ) ) ) ).
thf(tcon_Polynomial_Opoly___Groups_Oone_61,axiom,
! [A7: $tType] :
( ( comm_semiring_1 @ A7 )
=> ( one @ ( poly @ A7 ) ) ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( sturm_1700286437_r_pos @ p @ x )
!= ( ~ ( ( ( ( poly2 @ real @ p @ x )
= ( zero_zero @ real ) )
=> ( sturm_1700286437_r_pos @ ( pderiv @ real @ p ) @ x ) )
& ( ( ( poly2 @ real @ p @ x )
!= ( zero_zero @ real ) )
=> ( ord_less @ real @ ( zero_zero @ real ) @ ( poly2 @ real @ p @ x ) ) ) ) ) ) ).
%------------------------------------------------------------------------------