TPTP Problem File: ITP133^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP133^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer Number_Partition problem prob_28__5323650_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : Number_Partition/prob_28__5323650_1 [Des21]
% Status : Theorem
% Rating : 0.33 v8.1.0, 0.75 v7.5.0
% Syntax : Number of formulae : 336 ( 83 unt; 48 typ; 0 def)
% Number of atoms : 938 ( 252 equ; 0 cnn)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 3288 ( 83 ~; 28 |; 59 &;2641 @)
% ( 0 <=>; 477 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 8 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 119 ( 119 >; 0 *; 0 +; 0 <<)
% Number of symbols : 48 ( 47 usr; 0 con; 1-4 aty)
% Number of variables : 955 ( 79 ^; 822 !; 9 ?; 955 :)
% ( 45 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:26:56.647
%------------------------------------------------------------------------------
% Could-be-implicit typings (2)
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
% Explicit typings (46)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Omult__zero,type,
mult_zero:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__0,type,
semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__mult,type,
monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__ring,type,
ordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Ozero__neq__one,type,
zero_neq_one:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__mult,type,
semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring,type,
linordered_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__add,type,
comm_monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring,type,
ordered_semiring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__mult,type,
comm_monoid_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__mult,type,
ab_semigroup_mult:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__semiring__0,type,
ordered_semiring_0:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oordered__comm__semiring,type,
ordere1490568538miring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__ring__strict,type,
linord581940658strict:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Oring__1__no__zero__divisors,type,
ring_11004092258visors:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__comm__monoid__add,type,
ordere216010020id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors,type,
semiri1193490041visors:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__no__zero__divisors__cancel,type,
semiri1923998003cancel:
!>[A: $tType] : $o ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Otimes__class_Otimes,type,
times_times:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum,type,
groups1340683514dd_sum:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( set @ B ) > A ) ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc,type,
neg_numeral_dbl_inc:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Number__Partition__Mirabelle__ihnzjotehb_Opartitions,type,
number2016821345itions: ( nat > nat ) > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Set__Interval_Oord__class_OatMost,type,
set_ord_atMost:
!>[A: $tType] : ( A > ( set @ A ) ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_p,type,
p: nat > nat ).
% Relevant facts (253)
thf(fact_0_mult__cancel__left1,axiom,
! [A: $tType] :
( ( ring_11004092258visors @ A )
=> ! [C: A,B2: A] :
( ( C
= ( times_times @ A @ C @ B2 ) )
= ( ( C
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left1
thf(fact_1_mult__cancel__left2,axiom,
! [A: $tType] :
( ( ring_11004092258visors @ A )
=> ! [C: A,A2: A] :
( ( ( times_times @ A @ C @ A2 )
= C )
= ( ( C
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_left2
thf(fact_2_mult__cancel__right1,axiom,
! [A: $tType] :
( ( ring_11004092258visors @ A )
=> ! [C: A,B2: A] :
( ( C
= ( times_times @ A @ B2 @ C ) )
= ( ( C
= ( zero_zero @ A ) )
| ( B2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right1
thf(fact_3_mult__cancel__right2,axiom,
! [A: $tType] :
( ( ring_11004092258visors @ A )
=> ! [A2: A,C: A] :
( ( ( times_times @ A @ A2 @ C )
= C )
= ( ( C
= ( zero_zero @ A ) )
| ( A2
= ( one_one @ A ) ) ) ) ) ).
% mult_cancel_right2
thf(fact_4_sum_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B] :
( ( groups1340683514dd_sum @ B @ A
@ ^ [Uu: B] : ( zero_zero @ A )
@ A3 )
= ( zero_zero @ A ) ) ) ).
% sum.neutral_const
thf(fact_5_partitionsE,axiom,
! [P: nat > nat,N: nat] :
( ( number2016821345itions @ P @ N )
=> ~ ( ! [I: nat] :
( ( ( P @ I )
!= ( zero_zero @ nat ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ I )
& ( ord_less_eq @ nat @ I @ N ) ) )
=> ( ( groups1340683514dd_sum @ nat @ nat
@ ^ [I2: nat] : ( times_times @ nat @ ( P @ I2 ) @ I2 )
@ ( set_ord_atMost @ nat @ N ) )
!= N ) ) ) ).
% partitionsE
thf(fact_6_partitionsI,axiom,
! [P: nat > nat,N: nat] :
( ! [I3: nat] :
( ( ( P @ I3 )
!= ( zero_zero @ nat ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ I3 )
& ( ord_less_eq @ nat @ I3 @ N ) ) )
=> ( ( ( groups1340683514dd_sum @ nat @ nat
@ ^ [I2: nat] : ( times_times @ nat @ ( P @ I2 ) @ I2 )
@ ( set_ord_atMost @ nat @ N ) )
= N )
=> ( number2016821345itions @ P @ N ) ) ) ).
% partitionsI
thf(fact_7_partitions__def,axiom,
( number2016821345itions
= ( ^ [P2: nat > nat,N2: nat] :
( ! [I2: nat] :
( ( ( P2 @ I2 )
!= ( zero_zero @ nat ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ I2 )
& ( ord_less_eq @ nat @ I2 @ N2 ) ) )
& ( ( groups1340683514dd_sum @ nat @ nat
@ ^ [I2: nat] : ( times_times @ nat @ ( P2 @ I2 ) @ I2 )
@ ( set_ord_atMost @ nat @ N2 ) )
= N2 ) ) ) ) ).
% partitions_def
thf(fact_8_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( one_one @ nat )
= ( times_times @ nat @ M @ N ) )
= ( ( M
= ( one_one @ nat ) )
& ( N
= ( one_one @ nat ) ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_9_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times @ nat @ M @ N )
= ( one_one @ nat ) )
= ( ( M
= ( one_one @ nat ) )
& ( N
= ( one_one @ nat ) ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_10_atMost__subset__iff,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ ( set @ A ) @ ( set_ord_atMost @ A @ X ) @ ( set_ord_atMost @ A @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ).
% atMost_subset_iff
thf(fact_11_atMost__iff,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [I4: A,K: A] :
( ( member @ A @ I4 @ ( set_ord_atMost @ A @ K ) )
= ( ord_less_eq @ A @ I4 @ K ) ) ) ).
% atMost_iff
thf(fact_12_atMost__eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ( set_ord_atMost @ A @ X )
= ( set_ord_atMost @ A @ Y ) )
= ( X = Y ) ) ) ).
% atMost_eq_iff
thf(fact_13_mult__cancel__right,axiom,
! [A: $tType] :
( ( semiri1923998003cancel @ A )
=> ! [A2: A,C: A,B2: A] :
( ( ( times_times @ A @ A2 @ C )
= ( times_times @ A @ B2 @ C ) )
= ( ( C
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_right
thf(fact_14_mult__cancel__left,axiom,
! [A: $tType] :
( ( semiri1923998003cancel @ A )
=> ! [C: A,A2: A,B2: A] :
( ( ( times_times @ A @ C @ A2 )
= ( times_times @ A @ C @ B2 ) )
= ( ( C
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_left
thf(fact_15_mult__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri1193490041visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% mult_eq_0_iff
thf(fact_16_mult__zero__right,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% mult_zero_right
thf(fact_17_mult__zero__left,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% mult_zero_left
thf(fact_18_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A2 ) ).
% bot_nat_0.extremum
thf(fact_19_le0,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% le0
thf(fact_20_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times @ nat @ M @ K )
= ( times_times @ nat @ N @ K ) )
= ( ( M = N )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel2
thf(fact_21_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N ) )
= ( ( M = N )
| ( K
= ( zero_zero @ nat ) ) ) ) ).
% mult_cancel1
thf(fact_22_mult__0__right,axiom,
! [M: nat] :
( ( times_times @ nat @ M @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% mult_0_right
thf(fact_23_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% mult_is_0
thf(fact_24_bounded__Max__nat,axiom,
! [P3: nat > $o,X: nat,M2: nat] :
( ( P3 @ X )
=> ( ! [X2: nat] :
( ( P3 @ X2 )
=> ( ord_less_eq @ nat @ X2 @ M2 ) )
=> ~ ! [M3: nat] :
( ( P3 @ M3 )
=> ~ ! [X3: nat] :
( ( P3 @ X3 )
=> ( ord_less_eq @ nat @ X3 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_25_Nat_Oex__has__greatest__nat,axiom,
! [P3: nat > $o,K: nat,B2: nat] :
( ( P3 @ K )
=> ( ! [Y2: nat] :
( ( P3 @ Y2 )
=> ( ord_less_eq @ nat @ Y2 @ B2 ) )
=> ? [X2: nat] :
( ( P3 @ X2 )
& ! [Y3: nat] :
( ( P3 @ Y3 )
=> ( ord_less_eq @ nat @ Y3 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_26_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_27_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_28_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_29_le__trans,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I4 @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I4 @ K ) ) ) ).
% le_trans
thf(fact_30_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_31_sum_Oreindex__bij__witness,axiom,
! [B: $tType,A: $tType,C2: $tType] :
( ( comm_monoid_add @ A )
=> ! [S: set @ B,I4: C2 > B,J: B > C2,T: set @ C2,H: C2 > A,G: B > A] :
( ! [A4: B] :
( ( member @ B @ A4 @ S )
=> ( ( I4 @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: B] :
( ( member @ B @ A4 @ S )
=> ( member @ C2 @ ( J @ A4 ) @ T ) )
=> ( ! [B3: C2] :
( ( member @ C2 @ B3 @ T )
=> ( ( J @ ( I4 @ B3 ) )
= B3 ) )
=> ( ! [B3: C2] :
( ( member @ C2 @ B3 @ T )
=> ( member @ B @ ( I4 @ B3 ) @ S ) )
=> ( ! [A4: B] :
( ( member @ B @ A4 @ S )
=> ( ( H @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1340683514dd_sum @ B @ A @ G @ S )
= ( groups1340683514dd_sum @ C2 @ A @ H @ T ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_32_sum_Oeq__general__inverses,axiom,
! [C2: $tType,A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: set @ B,K: B > C2,A3: set @ C2,H: C2 > B,Gamma: B > A,Phi: C2 > A] :
( ! [Y2: B] :
( ( member @ B @ Y2 @ B4 )
=> ( ( member @ C2 @ ( K @ Y2 ) @ A3 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X2: C2] :
( ( member @ C2 @ X2 @ A3 )
=> ( ( member @ B @ ( H @ X2 ) @ B4 )
& ( ( K @ ( H @ X2 ) )
= X2 )
& ( ( Gamma @ ( H @ X2 ) )
= ( Phi @ X2 ) ) ) )
=> ( ( groups1340683514dd_sum @ C2 @ A @ Phi @ A3 )
= ( groups1340683514dd_sum @ B @ A @ Gamma @ B4 ) ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_33_sum_Oeq__general,axiom,
! [C2: $tType,A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: set @ B,A3: set @ C2,H: C2 > B,Gamma: B > A,Phi: C2 > A] :
( ! [Y2: B] :
( ( member @ B @ Y2 @ B4 )
=> ? [X3: C2] :
( ( member @ C2 @ X3 @ A3 )
& ( ( H @ X3 )
= Y2 )
& ! [Ya: C2] :
( ( ( member @ C2 @ Ya @ A3 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X3 ) ) ) )
=> ( ! [X2: C2] :
( ( member @ C2 @ X2 @ A3 )
=> ( ( member @ B @ ( H @ X2 ) @ B4 )
& ( ( Gamma @ ( H @ X2 ) )
= ( Phi @ X2 ) ) ) )
=> ( ( groups1340683514dd_sum @ C2 @ A @ Phi @ A3 )
= ( groups1340683514dd_sum @ B @ A @ Gamma @ B4 ) ) ) ) ) ).
% sum.eq_general
thf(fact_34_sum_Ocong,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,B4: set @ B,G: B > A,H: B > A] :
( ( A3 = B4 )
=> ( ! [X2: B] :
( ( member @ B @ X2 @ B4 )
=> ( ( G @ X2 )
= ( H @ X2 ) ) )
=> ( ( groups1340683514dd_sum @ B @ A @ G @ A3 )
= ( groups1340683514dd_sum @ B @ A @ H @ B4 ) ) ) ) ) ).
% sum.cong
thf(fact_35_sum_Oswap,axiom,
! [A: $tType,B: $tType,C2: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > C2 > A,B4: set @ C2,A3: set @ B] :
( ( groups1340683514dd_sum @ B @ A
@ ^ [I2: B] : ( groups1340683514dd_sum @ C2 @ A @ ( G @ I2 ) @ B4 )
@ A3 )
= ( groups1340683514dd_sum @ C2 @ A
@ ^ [J2: C2] :
( groups1340683514dd_sum @ B @ A
@ ^ [I2: B] : ( G @ I2 @ J2 )
@ A3 )
@ B4 ) ) ) ).
% sum.swap
thf(fact_36_mult__right__cancel,axiom,
! [A: $tType] :
( ( semiri1923998003cancel @ A )
=> ! [C: A,A2: A,B2: A] :
( ( C
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ A2 @ C )
= ( times_times @ A @ B2 @ C ) )
= ( A2 = B2 ) ) ) ) ).
% mult_right_cancel
thf(fact_37_mult__left__cancel,axiom,
! [A: $tType] :
( ( semiri1923998003cancel @ A )
=> ! [C: A,A2: A,B2: A] :
( ( C
!= ( zero_zero @ A ) )
=> ( ( ( times_times @ A @ C @ A2 )
= ( times_times @ A @ C @ B2 ) )
= ( A2 = B2 ) ) ) ) ).
% mult_left_cancel
thf(fact_38_no__zero__divisors,axiom,
! [A: $tType] :
( ( semiri1193490041visors @ A )
=> ! [A2: A,B2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) ) ) ) ) ).
% no_zero_divisors
thf(fact_39_divisors__zero,axiom,
! [A: $tType] :
( ( semiri1193490041visors @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
=> ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divisors_zero
thf(fact_40_mult__not__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ! [A2: A,B2: A] :
( ( ( times_times @ A @ A2 @ B2 )
!= ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
& ( B2
!= ( zero_zero @ A ) ) ) ) ) ).
% mult_not_zero
thf(fact_41_zero__neq__one,axiom,
! [A: $tType] :
( ( zero_neq_one @ A )
=> ( ( zero_zero @ A )
!= ( one_one @ A ) ) ) ).
% zero_neq_one
thf(fact_42_sum_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [G: B > A,A3: set @ B] :
( ( ( groups1340683514dd_sum @ B @ A @ G @ A3 )
!= ( zero_zero @ A ) )
=> ~ ! [A4: B] :
( ( member @ B @ A4 @ A3 )
=> ( ( G @ A4 )
= ( zero_zero @ A ) ) ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_43_sum_Oneutral,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: set @ B,G: B > A] :
( ! [X2: B] :
( ( member @ B @ X2 @ A3 )
=> ( ( G @ X2 )
= ( zero_zero @ A ) ) )
=> ( ( groups1340683514dd_sum @ B @ A @ G @ A3 )
= ( zero_zero @ A ) ) ) ) ).
% sum.neutral
thf(fact_44_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P3: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P3 ) )
= ( P3 @ A2 ) ) ).
% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( collect @ A
@ ^ [X4: A] : ( member @ A @ X4 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_46_Collect__cong,axiom,
! [A: $tType,P3: A > $o,Q: A > $o] :
( ! [X2: A] :
( ( P3 @ X2 )
= ( Q @ X2 ) )
=> ( ( collect @ A @ P3 )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_47_ext,axiom,
! [B: $tType,A: $tType,F: A > B,G: A > B] :
( ! [X2: A] :
( ( F @ X2 )
= ( G @ X2 ) )
=> ( F = G ) ) ).
% ext
thf(fact_48_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_49_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_50_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_51_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% less_eq_nat.simps(1)
thf(fact_52_mult__0,axiom,
! [N: nat] :
( ( times_times @ nat @ ( zero_zero @ nat ) @ N )
= ( zero_zero @ nat ) ) ).
% mult_0
thf(fact_53_mult__le__mono2,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I4 @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ K @ I4 ) @ ( times_times @ nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_54_mult__le__mono1,axiom,
! [I4: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I4 @ J )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I4 @ K ) @ ( times_times @ nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_55_mult__le__mono,axiom,
! [I4: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq @ nat @ I4 @ J )
=> ( ( ord_less_eq @ nat @ K @ L )
=> ( ord_less_eq @ nat @ ( times_times @ nat @ I4 @ K ) @ ( times_times @ nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_56_le__square,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ M ) ) ).
% le_square
thf(fact_57_le__cube,axiom,
! [M: nat] : ( ord_less_eq @ nat @ M @ ( times_times @ nat @ M @ ( times_times @ nat @ M @ M ) ) ) ).
% le_cube
thf(fact_58_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times @ nat @ N @ ( one_one @ nat ) )
= N ) ).
% nat_mult_1_right
thf(fact_59_nat__mult__1,axiom,
! [N: nat] :
( ( times_times @ nat @ ( one_one @ nat ) @ N )
= N ) ).
% nat_mult_1
thf(fact_60_lambda__zero,axiom,
! [A: $tType] :
( ( mult_zero @ A )
=> ( ( ^ [H2: A] : ( zero_zero @ A ) )
= ( times_times @ A @ ( zero_zero @ A ) ) ) ) ).
% lambda_zero
thf(fact_61_lambda__one,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ( ( ^ [X4: A] : X4 )
= ( times_times @ A @ ( one_one @ A ) ) ) ) ).
% lambda_one
thf(fact_62_sum__mono,axiom,
! [A: $tType,B: $tType] :
( ( ordere216010020id_add @ A )
=> ! [K2: set @ B,F: B > A,G: B > A] :
( ! [I3: B] :
( ( member @ B @ I3 @ K2 )
=> ( ord_less_eq @ A @ ( F @ I3 ) @ ( G @ I3 ) ) )
=> ( ord_less_eq @ A @ ( groups1340683514dd_sum @ B @ A @ F @ K2 ) @ ( groups1340683514dd_sum @ B @ A @ G @ K2 ) ) ) ) ).
% sum_mono
thf(fact_63_sum__distrib__right,axiom,
! [A: $tType,B: $tType] :
( ( semiring_0 @ A )
=> ! [F: B > A,A3: set @ B,R: A] :
( ( times_times @ A @ ( groups1340683514dd_sum @ B @ A @ F @ A3 ) @ R )
= ( groups1340683514dd_sum @ B @ A
@ ^ [N2: B] : ( times_times @ A @ ( F @ N2 ) @ R )
@ A3 ) ) ) ).
% sum_distrib_right
thf(fact_64_sum__distrib__left,axiom,
! [A: $tType,B: $tType] :
( ( semiring_0 @ A )
=> ! [R: A,F: B > A,A3: set @ B] :
( ( times_times @ A @ R @ ( groups1340683514dd_sum @ B @ A @ F @ A3 ) )
= ( groups1340683514dd_sum @ B @ A
@ ^ [N2: B] : ( times_times @ A @ R @ ( F @ N2 ) )
@ A3 ) ) ) ).
% sum_distrib_left
thf(fact_65_sum__product,axiom,
! [B: $tType,C2: $tType,A: $tType] :
( ( semiring_0 @ B )
=> ! [F: A > B,A3: set @ A,G: C2 > B,B4: set @ C2] :
( ( times_times @ B @ ( groups1340683514dd_sum @ A @ B @ F @ A3 ) @ ( groups1340683514dd_sum @ C2 @ B @ G @ B4 ) )
= ( groups1340683514dd_sum @ A @ B
@ ^ [I2: A] :
( groups1340683514dd_sum @ C2 @ B
@ ^ [J2: C2] : ( times_times @ B @ ( F @ I2 ) @ ( G @ J2 ) )
@ B4 )
@ A3 ) ) ) ).
% sum_product
thf(fact_66_atMost__def,axiom,
! [A: $tType] :
( ( ord @ A )
=> ( ( set_ord_atMost @ A )
= ( ^ [U: A] :
( collect @ A
@ ^ [X4: A] : ( ord_less_eq @ A @ X4 @ U ) ) ) ) ) ).
% atMost_def
thf(fact_67_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: $tType] :
( ( ordere1490568538miring @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( times_times @ A @ C @ A2 ) @ ( times_times @ A @ C @ B2 ) ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_68_zero__le__mult__iff,axiom,
! [A: $tType] :
( ( linord581940658strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_mult_iff
thf(fact_69_mult__nonneg__nonpos2,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ B2 @ A2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_70_mult__nonpos__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonpos_nonneg
thf(fact_71_mult__nonneg__nonpos,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ) ).
% mult_nonneg_nonpos
thf(fact_72_mult__nonneg__nonneg,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_73_split__mult__neg__le,axiom,
! [A: $tType] :
( ( ordered_semiring_0 @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) ) ) ) ).
% split_mult_neg_le
thf(fact_74_mult__le__0__iff,axiom,
! [A: $tType] :
( ( linord581940658strict @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% mult_le_0_iff
thf(fact_75_mult__right__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C ) @ ( times_times @ A @ B2 @ C ) ) ) ) ) ).
% mult_right_mono
thf(fact_76_mult__right__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C ) @ ( times_times @ A @ B2 @ C ) ) ) ) ) ).
% mult_right_mono_neg
thf(fact_77_mult__left__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( times_times @ A @ C @ A2 ) @ ( times_times @ A @ C @ B2 ) ) ) ) ) ).
% mult_left_mono
thf(fact_78_mult__nonpos__nonpos,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_79_mult__left__mono__neg,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ C @ A2 ) @ ( times_times @ A @ C @ B2 ) ) ) ) ) ).
% mult_left_mono_neg
thf(fact_80_split__mult__pos__le,axiom,
! [A: $tType] :
( ( ordered_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ B2 ) ) ) ) ).
% split_mult_pos_le
thf(fact_81_zero__le__square,axiom,
! [A: $tType] :
( ( linordered_ring @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( times_times @ A @ A2 @ A2 ) ) ) ).
% zero_le_square
thf(fact_82_mult__mono_H,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C: A,D: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C @ D )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C ) @ ( times_times @ A @ B2 @ D ) ) ) ) ) ) ) ).
% mult_mono'
thf(fact_83_mult__mono,axiom,
! [A: $tType] :
( ( ordered_semiring @ A )
=> ! [A2: A,B2: A,C: A,D: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C @ D )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C ) @ ( times_times @ A @ B2 @ D ) ) ) ) ) ) ) ).
% mult_mono
thf(fact_84_not__one__le__zero,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_le_zero
thf(fact_85_zero__le__one,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_le_one
thf(fact_86_sum__nonpos,axiom,
! [B: $tType,A: $tType] :
( ( ordere216010020id_add @ A )
=> ! [A3: set @ B,F: B > A] :
( ! [X2: B] :
( ( member @ B @ X2 @ A3 )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( zero_zero @ A ) ) )
=> ( ord_less_eq @ A @ ( groups1340683514dd_sum @ B @ A @ F @ A3 ) @ ( zero_zero @ A ) ) ) ) ).
% sum_nonpos
thf(fact_87_sum__nonneg,axiom,
! [A: $tType,B: $tType] :
( ( ordere216010020id_add @ A )
=> ! [A3: set @ B,F: B > A] :
( ! [X2: B] :
( ( member @ B @ X2 @ A3 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( F @ X2 ) ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( groups1340683514dd_sum @ B @ A @ F @ A3 ) ) ) ) ).
% sum_nonneg
thf(fact_88_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times @ nat @ M @ N ) )
=> ( ( N
= ( one_one @ nat ) )
| ( M
= ( zero_zero @ nat ) ) ) ) ).
% mult_eq_self_implies_10
thf(fact_89_mult__left__le,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [C: A,A2: A] :
( ( ord_less_eq @ A @ C @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ C ) @ A2 ) ) ) ) ).
% mult_left_le
thf(fact_90_mult__le__one,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( one_one @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ A2 @ B2 ) @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_one
thf(fact_91_mult__right__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ X @ Y ) @ X ) ) ) ) ) ).
% mult_right_le_one_le
thf(fact_92_mult__left__le__one__le,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ Y @ ( one_one @ A ) )
=> ( ord_less_eq @ A @ ( times_times @ A @ Y @ X ) @ X ) ) ) ) ) ).
% mult_left_le_one_le
thf(fact_93_mult_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.right_neutral
thf(fact_94_mult_Oleft__neutral,axiom,
! [A: $tType] :
( ( monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% mult.left_neutral
thf(fact_95_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_96_subsetI,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ! [X2: A] :
( ( member @ A @ X2 @ A3 )
=> ( member @ A @ X2 @ B4 ) )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B4 ) ) ).
% subsetI
thf(fact_97_subset__antisym,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ A3 )
=> ( A3 = B4 ) ) ) ).
% subset_antisym
thf(fact_98_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% order_refl
thf(fact_99_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times @ nat @ K @ M )
= ( times_times @ nat @ K @ N ) )
= ( ( K
= ( zero_zero @ nat ) )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_100_mult_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ A2 @ ( one_one @ A ) )
= A2 ) ) ).
% mult.comm_neutral
thf(fact_101_comm__monoid__mult__class_Omult__1,axiom,
! [A: $tType] :
( ( comm_monoid_mult @ A )
=> ! [A2: A] :
( ( times_times @ A @ ( one_one @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_mult_class.mult_1
thf(fact_102_le__funD,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F @ G )
=> ( ord_less_eq @ B @ ( F @ X ) @ ( G @ X ) ) ) ) ).
% le_funD
thf(fact_103_le__funE,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F @ G )
=> ( ord_less_eq @ B @ ( F @ X ) @ ( G @ X ) ) ) ) ).
% le_funE
thf(fact_104_le__funI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B] :
( ! [X2: A] : ( ord_less_eq @ B @ ( F @ X2 ) @ ( G @ X2 ) )
=> ( ord_less_eq @ ( A > B ) @ F @ G ) ) ) ).
% le_funI
thf(fact_105_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( ord_less_eq @ ( A > B ) )
= ( ^ [F2: A > B,G2: A > B] :
! [X4: A] : ( ord_less_eq @ B @ ( F2 @ X4 ) @ ( G2 @ X4 ) ) ) ) ) ).
% le_fun_def
thf(fact_106_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F: B > A,B2: B,C: B] :
( ( ord_less_eq @ A @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C )
=> ( ! [X2: B,Y2: B] :
( ( ord_less_eq @ B @ X2 @ Y2 )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_subst1
thf(fact_107_order__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B2: A,F: A > C2,C: C2] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ C2 @ ( F @ B2 ) @ C )
=> ( ! [X2: A,Y2: A] :
( ( ord_less_eq @ A @ X2 @ Y2 )
=> ( ord_less_eq @ C2 @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_subst2
thf(fact_108_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,F: B > A,B2: B,C: B] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C )
=> ( ! [X2: B,Y2: B] :
( ( ord_less_eq @ B @ X2 @ Y2 )
=> ( ord_less_eq @ A @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_109_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,B2: A,F: A > B,C: B] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: A,Y2: A] :
( ( ord_less_eq @ A @ X2 @ Y2 )
=> ( ord_less_eq @ B @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq @ B @ ( F @ A2 ) @ C ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_110_eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y4: A,Z: A] : ( Y4 = Z ) )
= ( ^ [X4: A,Y5: A] :
( ( ord_less_eq @ A @ X4 @ Y5 )
& ( ord_less_eq @ A @ Y5 @ X4 ) ) ) ) ) ).
% eq_iff
thf(fact_111_antisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( X = Y ) ) ) ) ).
% antisym
thf(fact_112_linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linear
thf(fact_113_eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( X = Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% eq_refl
thf(fact_114_le__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% le_cases
thf(fact_115_order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% order.trans
thf(fact_116_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ~ ( ord_less_eq @ A @ Y @ Z2 ) )
=> ( ( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less_eq @ A @ X @ Z2 ) )
=> ( ( ( ord_less_eq @ A @ X @ Z2 )
=> ~ ( ord_less_eq @ A @ Z2 @ Y ) )
=> ( ( ( ord_less_eq @ A @ Z2 @ Y )
=> ~ ( ord_less_eq @ A @ Y @ X ) )
=> ( ( ( ord_less_eq @ A @ Y @ Z2 )
=> ~ ( ord_less_eq @ A @ Z2 @ X ) )
=> ~ ( ( ord_less_eq @ A @ Z2 @ X )
=> ~ ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_117_antisym__conv,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% antisym_conv
thf(fact_118_order__class_Oorder_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y4: A,Z: A] : ( Y4 = Z ) )
= ( ^ [A5: A,B5: A] :
( ( ord_less_eq @ A @ A5 @ B5 )
& ( ord_less_eq @ A @ B5 @ A5 ) ) ) ) ) ).
% order_class.order.eq_iff
thf(fact_119_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C: A] :
( ( A2 = B2 )
=> ( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_eq_le_trans
thf(fact_120_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_le_eq_trans
thf(fact_121_order__class_Oorder_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ) ).
% order_class.order.antisym
thf(fact_122_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z2 )
=> ( ord_less_eq @ A @ X @ Z2 ) ) ) ) ).
% order_trans
thf(fact_123_dual__order_Orefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% dual_order.refl
thf(fact_124_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > A > $o,A2: A,B2: A] :
( ! [A4: A,B3: A] :
( ( ord_less_eq @ A @ A4 @ B3 )
=> ( P3 @ A4 @ B3 ) )
=> ( ! [A4: A,B3: A] :
( ( P3 @ B3 @ A4 )
=> ( P3 @ A4 @ B3 ) )
=> ( P3 @ A2 @ B2 ) ) ) ) ).
% linorder_wlog
thf(fact_125_dual__order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C @ B2 )
=> ( ord_less_eq @ A @ C @ A2 ) ) ) ) ).
% dual_order.trans
thf(fact_126_dual__order_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y4: A,Z: A] : ( Y4 = Z ) )
= ( ^ [A5: A,B5: A] :
( ( ord_less_eq @ A @ B5 @ A5 )
& ( ord_less_eq @ A @ A5 @ B5 ) ) ) ) ) ).
% dual_order.eq_iff
thf(fact_127_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ) ).
% dual_order.antisym
thf(fact_128_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_129_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [A2: A,B2: A,C: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C ) ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_130_mult_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_mult @ A )
=> ! [A2: A,B2: A,C: A] :
( ( times_times @ A @ ( times_times @ A @ A2 @ B2 ) @ C )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C ) ) ) ) ).
% mult.assoc
thf(fact_131_mult_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ( ( times_times @ A )
= ( ^ [A5: A,B5: A] : ( times_times @ A @ B5 @ A5 ) ) ) ) ).
% mult.commute
thf(fact_132_mult_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_mult @ A )
=> ! [B2: A,A2: A,C: A] :
( ( times_times @ A @ B2 @ ( times_times @ A @ A2 @ C ) )
= ( times_times @ A @ A2 @ ( times_times @ A @ B2 @ C ) ) ) ) ).
% mult.left_commute
thf(fact_133_one__reorient,axiom,
! [A: $tType] :
( ( one @ A )
=> ! [X: A] :
( ( ( one_one @ A )
= X )
= ( X
= ( one_one @ A ) ) ) ) ).
% one_reorient
thf(fact_134_Collect__mono__iff,axiom,
! [A: $tType,P3: A > $o,Q: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P3 ) @ ( collect @ A @ Q ) )
= ( ! [X4: A] :
( ( P3 @ X4 )
=> ( Q @ X4 ) ) ) ) ).
% Collect_mono_iff
thf(fact_135_set__eq__subset,axiom,
! [A: $tType] :
( ( ^ [Y4: set @ A,Z: set @ A] : ( Y4 = Z ) )
= ( ^ [A6: set @ A,B6: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A6 @ B6 )
& ( ord_less_eq @ ( set @ A ) @ B6 @ A6 ) ) ) ) ).
% set_eq_subset
thf(fact_136_subset__trans,axiom,
! [A: $tType,A3: set @ A,B4: set @ A,C3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ C3 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ C3 ) ) ) ).
% subset_trans
thf(fact_137_Collect__mono,axiom,
! [A: $tType,P3: A > $o,Q: A > $o] :
( ! [X2: A] :
( ( P3 @ X2 )
=> ( Q @ X2 ) )
=> ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P3 ) @ ( collect @ A @ Q ) ) ) ).
% Collect_mono
thf(fact_138_subset__refl,axiom,
! [A: $tType,A3: set @ A] : ( ord_less_eq @ ( set @ A ) @ A3 @ A3 ) ).
% subset_refl
thf(fact_139_subset__iff,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
! [T2: A] :
( ( member @ A @ T2 @ A6 )
=> ( member @ A @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_140_equalityD2,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( A3 = B4 )
=> ( ord_less_eq @ ( set @ A ) @ B4 @ A3 ) ) ).
% equalityD2
thf(fact_141_equalityD1,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( A3 = B4 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B4 ) ) ).
% equalityD1
thf(fact_142_subset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
! [X4: A] :
( ( member @ A @ X4 @ A6 )
=> ( member @ A @ X4 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_143_equalityE,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( A3 = B4 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ~ ( ord_less_eq @ ( set @ A ) @ B4 @ A3 ) ) ) ).
% equalityE
thf(fact_144_subsetD,axiom,
! [A: $tType,A3: set @ A,B4: set @ A,C: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( member @ A @ C @ A3 )
=> ( member @ A @ C @ B4 ) ) ) ).
% subsetD
thf(fact_145_in__mono,axiom,
! [A: $tType,A3: set @ A,B4: set @ A,X: A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( member @ A @ X @ A3 )
=> ( member @ A @ X @ B4 ) ) ) ).
% in_mono
thf(fact_146_less__eq__set__def,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
( ord_less_eq @ ( A > $o )
@ ^ [X4: A] : ( member @ A @ X4 @ A6 )
@ ^ [X4: A] : ( member @ A @ X4 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_147_Collect__subset,axiom,
! [A: $tType,A3: set @ A,P3: A > $o] :
( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ A3 )
& ( P3 @ X4 ) ) )
@ A3 ) ).
% Collect_subset
thf(fact_148_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_149_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_150_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_151_subset__Collect__iff,axiom,
! [A: $tType,B4: set @ A,A3: set @ A,P3: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ A3 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ A3 )
& ( P3 @ X4 ) ) ) )
= ( ! [X4: A] :
( ( member @ A @ X4 @ B4 )
=> ( P3 @ X4 ) ) ) ) ) ).
% subset_Collect_iff
thf(fact_152_subset__CollectI,axiom,
! [A: $tType,B4: set @ A,A3: set @ A,Q: A > $o,P3: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ B4 @ A3 )
=> ( ! [X2: A] :
( ( member @ A @ X2 @ B4 )
=> ( ( Q @ X2 )
=> ( P3 @ X2 ) ) )
=> ( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ B4 )
& ( Q @ X4 ) ) )
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ A3 )
& ( P3 @ X4 ) ) ) ) ) ) ).
% subset_CollectI
thf(fact_153_Collect__restrict,axiom,
! [A: $tType,X5: set @ A,P3: A > $o] :
( ord_less_eq @ ( set @ A )
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ X5 )
& ( P3 @ X4 ) ) )
@ X5 ) ).
% Collect_restrict
thf(fact_154_predicate1I,axiom,
! [A: $tType,P3: A > $o,Q: A > $o] :
( ! [X2: A] :
( ( P3 @ X2 )
=> ( Q @ X2 ) )
=> ( ord_less_eq @ ( A > $o ) @ P3 @ Q ) ) ).
% predicate1I
thf(fact_155_predicate1D,axiom,
! [A: $tType,P3: A > $o,Q: A > $o,X: A] :
( ( ord_less_eq @ ( A > $o ) @ P3 @ Q )
=> ( ( P3 @ X )
=> ( Q @ X ) ) ) ).
% predicate1D
thf(fact_156_rev__predicate1D,axiom,
! [A: $tType,P3: A > $o,X: A,Q: A > $o] :
( ( P3 @ X )
=> ( ( ord_less_eq @ ( A > $o ) @ P3 @ Q )
=> ( Q @ X ) ) ) ).
% rev_predicate1D
thf(fact_157_prop__restrict,axiom,
! [A: $tType,X: A,Z3: set @ A,X5: set @ A,P3: A > $o] :
( ( member @ A @ X @ Z3 )
=> ( ( ord_less_eq @ ( set @ A ) @ Z3
@ ( collect @ A
@ ^ [X4: A] :
( ( member @ A @ X4 @ X5 )
& ( P3 @ X4 ) ) ) )
=> ( P3 @ X ) ) ) ).
% prop_restrict
thf(fact_158_pred__subset__eq,axiom,
! [A: $tType,R2: set @ A,S: set @ A] :
( ( ord_less_eq @ ( A > $o )
@ ^ [X4: A] : ( member @ A @ X4 @ R2 )
@ ^ [X4: A] : ( member @ A @ X4 @ S ) )
= ( ord_less_eq @ ( set @ A ) @ R2 @ S ) ) ).
% pred_subset_eq
thf(fact_159_dbl__inc__simps_I2_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( neg_numeral_dbl_inc @ A @ ( zero_zero @ A ) )
= ( one_one @ A ) ) ) ).
% dbl_inc_simps(2)
thf(fact_160_conj__subset__def,axiom,
! [A: $tType,A3: set @ A,P3: A > $o,Q: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ A3
@ ( collect @ A
@ ^ [X4: A] :
( ( P3 @ X4 )
& ( Q @ X4 ) ) ) )
= ( ( ord_less_eq @ ( set @ A ) @ A3 @ ( collect @ A @ P3 ) )
& ( ord_less_eq @ ( set @ A ) @ A3 @ ( collect @ A @ Q ) ) ) ) ).
% conj_subset_def
thf(fact_161_fun__cong__unused__0,axiom,
! [A: $tType,B: $tType,C2: $tType] :
( ( zero @ B )
=> ! [F: ( A > B ) > C2,G: C2] :
( ( F
= ( ^ [X4: A > B] : G ) )
=> ( ( F
@ ^ [X4: A] : ( zero_zero @ B ) )
= G ) ) ) ).
% fun_cong_unused_0
thf(fact_162_mult__le__cancel__left1,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C: A,B2: A] :
( ( ord_less_eq @ A @ C @ ( times_times @ A @ C @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ B2 ) )
& ( ( ord_less @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ ( one_one @ A ) ) ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_163_mult__le__cancel__left2,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [C: A,A2: A] :
( ( ord_less_eq @ A @ ( times_times @ A @ C @ A2 ) @ C )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ A2 @ ( one_one @ A ) ) )
& ( ( ord_less @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ A2 ) ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_164_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_165_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_166_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_167_psubsetI,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( A3 != B4 )
=> ( ord_less @ ( set @ A ) @ A3 @ B4 ) ) ) ).
% psubsetI
thf(fact_168_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_169_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( times_times @ nat @ M @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_170_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_171_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
& ( ord_less @ nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_172_less__one,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( one_one @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_one
thf(fact_173_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ M @ K ) @ ( times_times @ nat @ N @ K ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_174_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( times_times @ nat @ K @ M ) @ ( times_times @ nat @ K @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K )
=> ( ord_less_eq @ nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_175_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( A2 != B2 ) ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_176_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( A2 != B2 ) ) ) ).
% order.strict_implies_not_eq
thf(fact_177_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ~ ( ord_less @ A @ X @ Y ) )
= ( ( ord_less @ A @ Y @ X )
| ( X = Y ) ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_178_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C @ B2 )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans
thf(fact_179_linorder__less__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P3: A > A > $o,A2: A,B2: A] :
( ! [A4: A,B3: A] :
( ( ord_less @ A @ A4 @ B3 )
=> ( P3 @ A4 @ B3 ) )
=> ( ! [A4: A] : ( P3 @ A4 @ A4 )
=> ( ! [A4: A,B3: A] :
( ( P3 @ B3 @ A4 )
=> ( P3 @ A4 @ B3 ) )
=> ( P3 @ A2 @ B2 ) ) ) ) ) ).
% linorder_less_wlog
thf(fact_180_exists__least__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( ( ^ [P4: A > $o] :
? [X6: A] : ( P4 @ X6 ) )
= ( ^ [P5: A > $o] :
? [N2: A] :
( ( P5 @ N2 )
& ! [M4: A] :
( ( ord_less @ A @ M4 @ N2 )
=> ~ ( P5 @ M4 ) ) ) ) ) ) ).
% exists_least_iff
thf(fact_181_less__imp__not__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% less_imp_not_less
thf(fact_182_order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans
thf(fact_183_dual__order_Oirrefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% dual_order.irrefl
thf(fact_184_linorder__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ~ ( ord_less @ A @ X @ Y )
=> ( ( X != Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_cases
thf(fact_185_less__imp__triv,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,P3: $o] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ X )
=> P3 ) ) ) ).
% less_imp_triv
thf(fact_186_less__imp__not__eq2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( Y != X ) ) ) ).
% less_imp_not_eq2
thf(fact_187_antisym__conv3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X: A] :
( ~ ( ord_less @ A @ Y @ X )
=> ( ( ~ ( ord_less @ A @ X @ Y ) )
= ( X = Y ) ) ) ) ).
% antisym_conv3
thf(fact_188_less__induct,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ A @ Y3 @ X2 )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% less_induct
thf(fact_189_less__not__sym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% less_not_sym
thf(fact_190_less__imp__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% less_imp_not_eq
thf(fact_191_dual__order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ~ ( ord_less @ A @ A2 @ B2 ) ) ) ).
% dual_order.asym
thf(fact_192_ord__less__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% ord_less_eq_trans
thf(fact_193_ord__eq__less__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A2: A,B2: A,C: A] :
( ( A2 = B2 )
=> ( ( ord_less @ A @ B2 @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% ord_eq_less_trans
thf(fact_194_less__irrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A] :
~ ( ord_less @ A @ X @ X ) ) ).
% less_irrefl
thf(fact_195_less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
| ( X = Y )
| ( ord_less @ A @ Y @ X ) ) ) ).
% less_linear
thf(fact_196_less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ Y @ Z2 )
=> ( ord_less @ A @ X @ Z2 ) ) ) ) ).
% less_trans
thf(fact_197_less__asym_H,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% less_asym'
thf(fact_198_less__asym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ~ ( ord_less @ A @ Y @ X ) ) ) ).
% less_asym
thf(fact_199_less__imp__neq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ( X != Y ) ) ) ).
% less_imp_neq
thf(fact_200_dense,axiom,
! [A: $tType] :
( ( dense_order @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ Y )
=> ? [Z4: A] :
( ( ord_less @ A @ X @ Z4 )
& ( ord_less @ A @ Z4 @ Y ) ) ) ) ).
% dense
thf(fact_201_order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ~ ( ord_less @ A @ B2 @ A2 ) ) ) ).
% order.asym
thf(fact_202_neq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
= ( ( ord_less @ A @ X @ Y )
| ( ord_less @ A @ Y @ X ) ) ) ) ).
% neq_iff
thf(fact_203_neqE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% neqE
thf(fact_204_gt__ex,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X: A] :
? [X_1: A] : ( ord_less @ A @ X @ X_1 ) ) ).
% gt_ex
thf(fact_205_lt__ex,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X: A] :
? [Y2: A] : ( ord_less @ A @ Y2 @ X ) ) ).
% lt_ex
thf(fact_206_order__less__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A2: A,B2: A,F: A > C2,C: C2] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ C2 @ ( F @ B2 ) @ C )
=> ( ! [X2: A,Y2: A] :
( ( ord_less @ A @ X2 @ Y2 )
=> ( ord_less @ C2 @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less @ C2 @ ( F @ A2 ) @ C ) ) ) ) ) ).
% order_less_subst2
thf(fact_207_order__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A2: A,F: B > A,B2: B,C: B] :
( ( ord_less @ A @ A2 @ ( F @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C )
=> ( ! [X2: B,Y2: B] :
( ( ord_less @ B @ X2 @ Y2 )
=> ( ord_less @ A @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% order_less_subst1
thf(fact_208_ord__less__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,B2: A,F: A > B,C: B] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: A,Y2: A] :
( ( ord_less @ A @ X2 @ Y2 )
=> ( ord_less @ B @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less @ B @ ( F @ A2 ) @ C ) ) ) ) ) ).
% ord_less_eq_subst
thf(fact_209_ord__eq__less__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A2: A,F: B > A,B2: B,C: B] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less @ B @ B2 @ C )
=> ( ! [X2: B,Y2: B] :
( ( ord_less @ B @ X2 @ Y2 )
=> ( ord_less @ A @ ( F @ X2 ) @ ( F @ Y2 ) ) )
=> ( ord_less @ A @ A2 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_210_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_211_not__less__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_212_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_213_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_214_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_215_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X2 ) )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_216_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P3: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X2 ) )
=> ( P3 @ Y3 ) )
=> ( P3 @ X2 ) )
=> ( P3 @ A2 ) ) ) ).
% measure_induct
thf(fact_217_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M4: nat,N2: nat] :
( ( ord_less_eq @ nat @ M4 @ N2 )
& ( M4 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_218_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_219_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M4: nat,N2: nat] :
( ( ord_less @ nat @ M4 @ N2 )
| ( M4 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_220_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_221_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_222_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I4: nat,J: nat] :
( ! [I3: nat,J3: nat] :
( ( ord_less @ nat @ I3 @ J3 )
=> ( ord_less @ nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq @ nat @ I4 @ J )
=> ( ord_less_eq @ nat @ ( F @ I4 ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_223_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_224_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_225_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_226_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_227_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_228_infinite__descent0,axiom,
! [P3: nat > $o,N: nat] :
( ( P3 @ ( zero_zero @ nat ) )
=> ( ! [N3: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
=> ( ~ ( P3 @ N3 )
=> ? [M5: nat] :
( ( ord_less @ nat @ M5 @ N3 )
& ~ ( P3 @ M5 ) ) ) )
=> ( P3 @ N ) ) ) ).
% infinite_descent0
thf(fact_229_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_230_infinite__descent0__measure,axiom,
! [A: $tType,V: A > nat,P3: A > $o,X: A] :
( ! [X2: A] :
( ( ( V @ X2 )
= ( zero_zero @ nat ) )
=> ( P3 @ X2 ) )
=> ( ! [X2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X2 ) )
=> ( ~ ( P3 @ X2 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X2 ) )
& ~ ( P3 @ Y3 ) ) ) )
=> ( P3 @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_231_psubsetE,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B4 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ord_less_eq @ ( set @ A ) @ B4 @ A3 ) ) ) ).
% psubsetE
thf(fact_232_psubset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A6 @ B6 )
& ( A6 != B6 ) ) ) ) ).
% psubset_eq
thf(fact_233_psubset__imp__subset,axiom,
! [A: $tType,A3: set @ A,B4: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B4 )
=> ( ord_less_eq @ ( set @ A ) @ A3 @ B4 ) ) ).
% psubset_imp_subset
thf(fact_234_psubset__subset__trans,axiom,
! [A: $tType,A3: set @ A,B4: set @ A,C3: set @ A] :
( ( ord_less @ ( set @ A ) @ A3 @ B4 )
=> ( ( ord_less_eq @ ( set @ A ) @ B4 @ C3 )
=> ( ord_less @ ( set @ A ) @ A3 @ C3 ) ) ) ).
% psubset_subset_trans
thf(fact_235_subset__not__subset__eq,axiom,
! [A: $tType] :
( ( ord_less @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A6 @ B6 )
& ~ ( ord_less_eq @ ( set @ A ) @ B6 @ A6 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_236_subset__psubset__trans,axiom,
! [A: $tType,A3: set @ A,B4: set @ A,C3: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A3 @ B4 )
=> ( ( ord_less @ ( set @ A ) @ B4 @ C3 )
=> ( ord_less @ ( set @ A ) @ A3 @ C3 ) ) ) ).
% subset_psubset_trans
thf(fact_237_subset__iff__psubset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A6: set @ A,B6: set @ A] :
( ( ord_less @ ( set @ A ) @ A6 @ B6 )
| ( A6 = B6 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_238_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(4)
thf(fact_239_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_240_order_Onot__eq__order__implies__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( A2 != B2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% order.not_eq_order_implies_strict
thf(fact_241_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% dual_order.strict_implies_order
thf(fact_242_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [B5: A,A5: A] :
( ( ord_less_eq @ A @ B5 @ A5 )
& ( A5 != B5 ) ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_243_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B5: A,A5: A] :
( ( ord_less @ A @ B5 @ A5 )
| ( A5 = B5 ) ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_244_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% order.strict_implies_order
thf(fact_245_dense__le__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [X: A,Y: A,Z2: A] :
( ( ord_less @ A @ X @ Y )
=> ( ! [W: A] :
( ( ord_less @ A @ X @ W )
=> ( ( ord_less @ A @ W @ Y )
=> ( ord_less_eq @ A @ W @ Z2 ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_le_bounded
thf(fact_246_dense__ge__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z2: A,X: A,Y: A] :
( ( ord_less @ A @ Z2 @ X )
=> ( ! [W: A] :
( ( ord_less @ A @ Z2 @ W )
=> ( ( ord_less @ A @ W @ X )
=> ( ord_less_eq @ A @ Y @ W ) ) )
=> ( ord_less_eq @ A @ Y @ Z2 ) ) ) ) ).
% dense_ge_bounded
thf(fact_247_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C @ B2 )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans2
thf(fact_248_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C @ B2 )
=> ( ord_less @ A @ C @ A2 ) ) ) ) ).
% dual_order.strict_trans1
thf(fact_249_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [A5: A,B5: A] :
( ( ord_less_eq @ A @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ) ).
% order.strict_iff_order
thf(fact_250_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A5: A,B5: A] :
( ( ord_less @ A @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ) ).
% order.order_iff_strict
thf(fact_251_order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans2
thf(fact_252_order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ C )
=> ( ord_less @ A @ A2 @ C ) ) ) ) ).
% order.strict_trans1
% Type constructors (34)
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A7: $tType,A8: $tType] :
( ( preorder @ A8 )
=> ( preorder @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A7: $tType,A8: $tType] :
( ( order @ A8 )
=> ( order @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A7: $tType,A8: $tType] :
( ( ord @ A8 )
=> ( ord @ ( A7 > A8 ) ) ) ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors__cancel,axiom,
semiri1923998003cancel @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors,axiom,
semiri1193490041visors @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__comm__monoid__add,axiom,
ordere216010020id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__comm__semiring,axiom,
ordere1490568538miring @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring__0,axiom,
ordered_semiring_0 @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__mult,axiom,
ab_semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__mult,axiom,
comm_monoid_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Oordered__semiring,axiom,
ordered_semiring @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__add,axiom,
comm_monoid_add @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__mult,axiom,
semigroup_mult @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Rings_Ozero__neq__one,axiom,
zero_neq_one @ nat ).
thf(tcon_Nat_Onat___Orderings_Opreorder_1,axiom,
preorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__mult,axiom,
monoid_mult @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__0,axiom,
semiring_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Ono__top,axiom,
no_top @ nat ).
thf(tcon_Nat_Onat___Rings_Omult__zero,axiom,
mult_zero @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_2,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Orderings_Oord_3,axiom,
ord @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Groups_Oone,axiom,
one @ nat ).
thf(tcon_Set_Oset___Orderings_Opreorder_4,axiom,
! [A7: $tType] : ( preorder @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_5,axiom,
! [A7: $tType] : ( order @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_6,axiom,
! [A7: $tType] : ( ord @ ( set @ A7 ) ) ).
thf(tcon_HOL_Obool___Orderings_Opreorder_7,axiom,
preorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Olinorder_8,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_9,axiom,
order @ $o ).
thf(tcon_HOL_Obool___Orderings_Oord_10,axiom,
ord @ $o ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( ! [I2: nat] :
( ( ( p @ I2 )
!= ( zero_zero @ nat ) )
=> ( ( ord_less_eq @ nat @ ( one_one @ nat ) @ I2 )
& ( ord_less_eq @ nat @ I2 @ ( zero_zero @ nat ) ) ) )
& ( ( groups1340683514dd_sum @ nat @ nat
@ ^ [I2: nat] : ( times_times @ nat @ ( p @ I2 ) @ I2 )
@ ( set_ord_atMost @ nat @ ( zero_zero @ nat ) ) )
= ( zero_zero @ nat ) ) )
= ( p
= ( ^ [I2: nat] : ( zero_zero @ nat ) ) ) ) ).
%------------------------------------------------------------------------------