TPTP Problem File: ITP126^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP126^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer Monitor problem prob_770__6461298_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : Monitor/prob_770__6461298_1 [Des21]
% Status : Theorem
% Rating : 0.33 v8.2.0, 0.67 v8.1.0, 0.75 v7.5.0
% Syntax : Number of formulae : 384 ( 172 unt; 72 typ; 0 def)
% Number of atoms : 690 ( 339 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 2798 ( 95 ~; 13 |; 51 &;2384 @)
% ( 0 <=>; 255 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 6 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 121 ( 121 >; 0 *; 0 +; 0 <<)
% Number of symbols : 70 ( 67 usr; 7 con; 0-6 aty)
% Number of variables : 853 ( 29 ^; 732 !; 37 ?; 853 :)
% ( 55 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:18:34.250
%------------------------------------------------------------------------------
% Could-be-implicit typings (11)
thf(ty_t_Monitor__Mirabelle__pzlrlsievl_Omformula,type,
monito748960549ormula: $tType > $tType ).
thf(ty_t_Interval_O_092_060I_062,type,
i: $tType ).
thf(ty_t_Option_Ooption,type,
option: $tType > $tType ).
thf(ty_t_MFOTL_Oformula,type,
formula: $tType > $tType ).
thf(ty_t_MFOTL_Otrm,type,
trm: $tType > $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
thf(ty_tf_b,type,
b: $tType ).
thf(ty_tf_a,type,
a: $tType ).
% Explicit typings (61)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Omonoid__add,type,
monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Osemigroup__add,type,
semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__add,type,
comm_monoid_add:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oab__semigroup__add,type,
ab_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__semigroup__add,type,
cancel_semigroup_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1352612707id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Olinordered__ab__group__add,type,
linord219039673up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__comm__monoid__add,type,
ordere216010020id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add,type,
ordere779506340up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim1804426504_field:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__comm__monoid__add,type,
strict797366125id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__add__imp__le,type,
ordere236663937imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__cancel__ab__semigroup__add,type,
ordere223160158up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ostrict__ordered__ab__semigroup__add,type,
strict2144017051up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__semigroup__monoid__add__imp__le,type,
ordere516151231imp_le:
!>[A: $tType] : $o ).
thf(sy_cl_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,type,
semiri456707255roduct:
!>[A: $tType] : $o ).
thf(sy_c_BNF__Greatest__Fixpoint_Oshift,type,
bNF_Greatest_shift:
!>[A: $tType,B: $tType] : ( ( ( list @ A ) > B ) > A > ( list @ A ) > B ) ).
thf(sy_c_Groups_Oplus__class_Oplus,type,
plus_plus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_If,type,
if:
!>[A: $tType] : ( $o > A > A > A ) ).
thf(sy_c_List_Odrop,type,
drop:
!>[A: $tType] : ( nat > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Ofind,type,
find:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > ( option @ A ) ) ).
thf(sy_c_List_Ogen__length,type,
gen_length:
!>[A: $tType] : ( nat > ( list @ A ) > nat ) ).
thf(sy_c_List_Olist_OCons,type,
cons:
!>[A: $tType] : ( A > ( list @ A ) > ( list @ A ) ) ).
thf(sy_c_List_Olist__ex,type,
list_ex:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( ( list @ A ) > nat > A ) ).
thf(sy_c_MFOTL_Oformula_OEq,type,
c_MFOTL_Oformula_OEq:
!>[A: $tType] : ( ( trm @ A ) > ( trm @ A ) > ( formula @ A ) ) ).
thf(sy_c_MFOTL_Ofvi,type,
fvi:
!>[A: $tType] : ( nat > ( formula @ A ) > ( set @ nat ) ) ).
thf(sy_c_Monitor__Mirabelle__pzlrlsievl_Omformula_OMExists,type,
monito518325957Exists:
!>[A: $tType] : ( ( monito748960549ormula @ A ) > ( monito748960549ormula @ A ) ) ).
thf(sy_c_Monitor__Mirabelle__pzlrlsievl_Omformula_OMNext,type,
monito320348316_MNext:
!>[A: $tType] : ( i > ( monito748960549ormula @ A ) > $o > ( list @ nat ) > ( monito748960549ormula @ A ) ) ).
thf(sy_c_Monitor__Mirabelle__pzlrlsievl_Omformula_OMPrev,type,
monito1987675900_MPrev:
!>[A: $tType] : ( i > ( monito748960549ormula @ A ) > $o > ( list @ ( set @ ( list @ ( option @ A ) ) ) ) > ( list @ nat ) > ( monito748960549ormula @ A ) ) ).
thf(sy_c_Monitor__Mirabelle__pzlrlsievl_Omformula_Osize__mformula,type,
monito1197352414ormula:
!>[A: $tType] : ( ( A > nat ) > ( monito748960549ormula @ A ) > nat ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_Option_Ooption_ONone,type,
none:
!>[A: $tType] : ( option @ A ) ).
thf(sy_c_Option_Ooption_OSome,type,
some:
!>[A: $tType] : ( A > ( option @ A ) ) ).
thf(sy_c_Option_Ooption_Osize__option,type,
size_option:
!>[A: $tType] : ( ( A > nat ) > ( option @ A ) > nat ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v__092_060phi_062,type,
phi: formula @ a ).
thf(sy_v_b,type,
b2: nat ).
thf(sy_v_n,type,
n: nat ).
thf(sy_v_v,type,
v: list @ ( option @ b ) ).
thf(sy_v_x,type,
x: b ).
% Relevant facts (252)
thf(fact_0_nth__Cons__Suc,axiom,
! [A: $tType,X: A,Xs: list @ A,N: nat] :
( ( nth @ A @ ( cons @ A @ X @ Xs ) @ ( suc @ N ) )
= ( nth @ A @ Xs @ N ) ) ).
% nth_Cons_Suc
thf(fact_1_nth__Cons__0,axiom,
! [A: $tType,X: A,Xs: list @ A] :
( ( nth @ A @ ( cons @ A @ X @ Xs ) @ ( zero_zero @ nat ) )
= X ) ).
% nth_Cons_0
thf(fact_2_less__Suc0,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_Suc0
thf(fact_3_zero__less__Suc,axiom,
! [N: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_4_not__None__eq,axiom,
! [A: $tType,X: option @ A] :
( ( X
!= ( none @ A ) )
= ( ? [Y: A] :
( X
= ( some @ A @ Y ) ) ) ) ).
% not_None_eq
thf(fact_5_not__Some__eq,axiom,
! [A: $tType,X: option @ A] :
( ( ! [Y: A] :
( X
!= ( some @ A @ Y ) ) )
= ( X
= ( none @ A ) ) ) ).
% not_Some_eq
thf(fact_6_lessI,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_7_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_8_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_9_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_10_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_11_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_12_list_Oinject,axiom,
! [A: $tType,X21: A,X22: list @ A,Y21: A,Y22: list @ A] :
( ( ( cons @ A @ X21 @ X22 )
= ( cons @ A @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% list.inject
thf(fact_13_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_14_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_15_option_Oinject,axiom,
! [A: $tType,X2: A,Y2: A] :
( ( ( some @ A @ X2 )
= ( some @ A @ Y2 ) )
= ( X2 = Y2 ) ) ).
% option.inject
thf(fact_16_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P: A > $o,A2: A] :
( ! [X3: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X3 ) )
=> ( P @ Y3 ) )
=> ( P @ X3 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_17_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P: A > $o,A2: A] :
( ! [X3: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X3 ) )
=> ( P @ Y3 ) )
=> ( P @ X3 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct
thf(fact_18_not__Cons__self2,axiom,
! [A: $tType,X: A,Xs: list @ A] :
( ( cons @ A @ X @ Xs )
!= Xs ) ).
% not_Cons_self2
thf(fact_19_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_20_Suc__inject,axiom,
! [X: nat,Y4: nat] :
( ( ( suc @ X )
= ( suc @ Y4 ) )
=> ( X = Y4 ) ) ).
% Suc_inject
thf(fact_21_infinite__descent__measure,axiom,
! [A: $tType,P: A > $o,V: A > nat,X: A] :
( ! [X3: A] :
( ~ ( P @ X3 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X3 ) )
& ~ ( P @ Y3 ) ) )
=> ( P @ X ) ) ).
% infinite_descent_measure
thf(fact_22_linorder__neqE__nat,axiom,
! [X: nat,Y4: nat] :
( ( X != Y4 )
=> ( ~ ( ord_less @ nat @ X @ Y4 )
=> ( ord_less @ nat @ Y4 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_23_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_24_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_25_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_26_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less @ nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_27_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_28_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_29_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_30_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X: A,Y4: A] :
( ( ( size_size @ A @ X )
!= ( size_size @ A @ Y4 ) )
=> ( X != Y4 ) ) ) ).
% size_neq_size_imp_neq
thf(fact_31_neq__if__length__neq,axiom,
! [A: $tType,Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
!= ( size_size @ ( list @ A ) @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_32_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ Xs2 )
= N ) ).
% Ex_list_of_length
thf(fact_33_not0__implies__Suc,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_34_old_Onat_Oinducts,axiom,
! [P: nat > $o,Nat: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [Nat3: nat] :
( ( P @ Nat3 )
=> ( P @ ( suc @ Nat3 ) ) )
=> ( P @ Nat ) ) ) ).
% old.nat.inducts
thf(fact_35_old_Onat_Oexhaust,axiom,
! [Y4: nat] :
( ( Y4
!= ( zero_zero @ nat ) )
=> ~ ! [Nat3: nat] :
( Y4
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_36_Zero__not__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_37_Zero__neq__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_38_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= ( zero_zero @ nat ) ) ).
% Suc_neq_Zero
thf(fact_39_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( zero_zero @ nat ) ) ) ) ).
% zero_induct
thf(fact_40_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X3: nat] : ( P @ X3 @ ( zero_zero @ nat ) )
=> ( ! [Y5: nat] : ( P @ ( zero_zero @ nat ) @ ( suc @ Y5 ) )
=> ( ! [X3: nat,Y5: nat] :
( ( P @ X3 @ Y5 )
=> ( P @ ( suc @ X3 ) @ ( suc @ Y5 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_41_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_42_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_43_Collect__mem__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( collect @ A
@ ^ [X4: A] : ( member @ A @ X4 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_44_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X3: A] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_45_ext,axiom,
! [B: $tType,A: $tType,F: A > B,G: A > B] :
( ! [X3: A] :
( ( F @ X3 )
= ( G @ X3 ) )
=> ( F = G ) ) ).
% ext
thf(fact_46_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat
!= ( zero_zero @ nat ) ) ) ).
% nat.discI
thf(fact_47_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( ( zero_zero @ nat )
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_48_old_Onat_Odistinct_I2_J,axiom,
! [Nat4: nat] :
( ( suc @ Nat4 )
!= ( zero_zero @ nat ) ) ).
% old.nat.distinct(2)
thf(fact_49_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( ( zero_zero @ nat )
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_50_infinite__descent0__measure,axiom,
! [A: $tType,V: A > nat,P: A > $o,X: A] :
( ! [X3: A] :
( ( ( V @ X3 )
= ( zero_zero @ nat ) )
=> ( P @ X3 ) )
=> ( ! [X3: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X3 ) )
=> ( ~ ( P @ X3 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V @ Y3 ) @ ( V @ X3 ) )
& ~ ( P @ Y3 ) ) ) )
=> ( P @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_51_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_52_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_53_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_54_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_55_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_56_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_57_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_58_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_59_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_60_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( ( ord_less @ nat @ J2 @ K2 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I2 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_61_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_62_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_63_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_64_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ N ) @ M )
= ( ? [M4: nat] :
( ( M
= ( suc @ M4 ) )
& ( ord_less @ nat @ N @ M4 ) ) ) ) ).
% Suc_less_eq2
thf(fact_65_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ N )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N )
=> ( P @ I3 ) ) ) ) ).
% All_less_Suc
thf(fact_66_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less @ nat @ M @ N ) )
= ( ord_less @ nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_67_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( ord_less @ nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_68_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ N )
| ? [I3: nat] :
( ( ord_less @ nat @ I3 @ N )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_69_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_70_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less @ nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_71_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less @ nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_72_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_73_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_74_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_75_length__induct,axiom,
! [A: $tType,P: ( list @ A ) > $o,Xs: list @ A] :
( ! [Xs2: list @ A] :
( ! [Ys2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys2 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_76_combine__options__cases,axiom,
! [A: $tType,B: $tType,X: option @ A,P: ( option @ A ) > ( option @ B ) > $o,Y4: option @ B] :
( ( ( X
= ( none @ A ) )
=> ( P @ X @ Y4 ) )
=> ( ( ( Y4
= ( none @ B ) )
=> ( P @ X @ Y4 ) )
=> ( ! [A4: A,B2: B] :
( ( X
= ( some @ A @ A4 ) )
=> ( ( Y4
= ( some @ B @ B2 ) )
=> ( P @ X @ Y4 ) ) )
=> ( P @ X @ Y4 ) ) ) ) ).
% combine_options_cases
thf(fact_77_split__option__all,axiom,
! [A: $tType] :
( ( ^ [P2: ( option @ A ) > $o] :
! [X5: option @ A] : ( P2 @ X5 ) )
= ( ^ [P3: ( option @ A ) > $o] :
( ( P3 @ ( none @ A ) )
& ! [X4: A] : ( P3 @ ( some @ A @ X4 ) ) ) ) ) ).
% split_option_all
thf(fact_78_split__option__ex,axiom,
! [A: $tType] :
( ( ^ [P2: ( option @ A ) > $o] :
? [X5: option @ A] : ( P2 @ X5 ) )
= ( ^ [P3: ( option @ A ) > $o] :
( ( P3 @ ( none @ A ) )
| ? [X4: A] : ( P3 @ ( some @ A @ X4 ) ) ) ) ) ).
% split_option_ex
thf(fact_79_option_Oinducts,axiom,
! [A: $tType,P: ( option @ A ) > $o,Option: option @ A] :
( ( P @ ( none @ A ) )
=> ( ! [X3: A] : ( P @ ( some @ A @ X3 ) )
=> ( P @ Option ) ) ) ).
% option.inducts
thf(fact_80_option_Oexhaust,axiom,
! [A: $tType,Y4: option @ A] :
( ( Y4
!= ( none @ A ) )
=> ~ ! [X23: A] :
( Y4
!= ( some @ A @ X23 ) ) ) ).
% option.exhaust
thf(fact_81_option_OdiscI,axiom,
! [A: $tType,Option: option @ A,X2: A] :
( ( Option
= ( some @ A @ X2 ) )
=> ( Option
!= ( none @ A ) ) ) ).
% option.discI
thf(fact_82_option_Odistinct_I1_J,axiom,
! [A: $tType,X2: A] :
( ( none @ A )
!= ( some @ A @ X2 ) ) ).
% option.distinct(1)
thf(fact_83_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ A @ ( F @ N ) @ ( F @ M ) )
= ( ord_less @ nat @ N @ M ) ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_84_lift__Suc__mono__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ nat @ N @ N3 )
=> ( ord_less @ A @ ( F @ N ) @ ( F @ N3 ) ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_85_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( M
= ( zero_zero @ nat ) )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less @ nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_86_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_87_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ ( zero_zero @ nat ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ N )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_88_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
= ( ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_89_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ ( zero_zero @ nat ) )
| ? [I3: nat] :
( ( ord_less @ nat @ I3 @ N )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_90_length__Suc__conv,axiom,
! [A: $tType,Xs: list @ A,N: nat] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( suc @ N ) )
= ( ? [Y: A,Ys3: list @ A] :
( ( Xs
= ( cons @ A @ Y @ Ys3 ) )
& ( ( size_size @ ( list @ A ) @ Ys3 )
= N ) ) ) ) ).
% length_Suc_conv
thf(fact_91_Suc__length__conv,axiom,
! [A: $tType,N: nat,Xs: list @ A] :
( ( ( suc @ N )
= ( size_size @ ( list @ A ) @ Xs ) )
= ( ? [Y: A,Ys3: list @ A] :
( ( Xs
= ( cons @ A @ Y @ Ys3 ) )
& ( ( size_size @ ( list @ A ) @ Ys3 )
= N ) ) ) ) ).
% Suc_length_conv
thf(fact_92_list__eq__iff__nth__eq,axiom,
! [A: $tType] :
( ( ^ [Y6: list @ A,Z: list @ A] : ( Y6 = Z ) )
= ( ^ [Xs3: list @ A,Ys3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ A ) @ Ys3 ) )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs3 ) )
=> ( ( nth @ A @ Xs3 @ I3 )
= ( nth @ A @ Ys3 @ I3 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_93_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P: nat > A > $o] :
( ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ? [X5: A] : ( P @ I3 @ X5 ) ) )
= ( ? [Xs3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= K )
& ! [I3: nat] :
( ( ord_less @ nat @ I3 @ K )
=> ( P @ I3 @ ( nth @ A @ Xs3 @ I3 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_94_nth__equalityI,axiom,
! [A: $tType,Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( nth @ A @ Xs @ I2 )
= ( nth @ A @ Ys @ I2 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_95_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_96_fvi__Suc__bound,axiom,
! [A: $tType,B3: nat,Phi: formula @ A,N: nat] :
( ! [X3: nat] :
( ( member @ nat @ X3 @ ( fvi @ A @ ( suc @ B3 ) @ Phi ) )
=> ( ord_less @ nat @ X3 @ N ) )
=> ! [X6: nat] :
( ( member @ nat @ X6 @ ( fvi @ A @ B3 @ Phi ) )
=> ( ord_less @ nat @ X6 @ ( suc @ N ) ) ) ) ).
% fvi_Suc_bound
thf(fact_97_length__Cons,axiom,
! [A: $tType,X: A,Xs: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X @ Xs ) )
= ( suc @ ( size_size @ ( list @ A ) @ Xs ) ) ) ).
% length_Cons
thf(fact_98_option_Osize__gen_I1_J,axiom,
! [A: $tType,X: A > nat] :
( ( size_option @ A @ X @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size_gen(1)
thf(fact_99_fvi__Suc,axiom,
! [A: $tType,X: nat,B3: nat,Phi: formula @ A] :
( ( member @ nat @ X @ ( fvi @ A @ ( suc @ B3 ) @ Phi ) )
= ( member @ nat @ ( suc @ X ) @ ( fvi @ A @ B3 @ Phi ) ) ) ).
% fvi_Suc
thf(fact_100_option_Osize_I4_J,axiom,
! [A: $tType,X2: A] :
( ( size_size @ ( option @ A ) @ ( some @ A @ X2 ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(4)
thf(fact_101_option_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( option @ A ) @ ( none @ A ) )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% option.size(3)
thf(fact_102_find__Some__iff,axiom,
! [A: $tType,P: A > $o,Xs: list @ A,X: A] :
( ( ( find @ A @ P @ Xs )
= ( some @ A @ X ) )
= ( ? [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
& ( P @ ( nth @ A @ Xs @ I3 ) )
& ( X
= ( nth @ A @ Xs @ I3 ) )
& ! [J3: nat] :
( ( ord_less @ nat @ J3 @ I3 )
=> ~ ( P @ ( nth @ A @ Xs @ J3 ) ) ) ) ) ) ).
% find_Some_iff
thf(fact_103_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ ( zero_zero @ nat ) )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_104_dependent__nat__choice,axiom,
! [A: $tType,P: nat > A > $o,Q: nat > A > A > $o] :
( ? [X_1: A] : ( P @ ( zero_zero @ nat ) @ X_1 )
=> ( ! [X3: A,N2: nat] :
( ( P @ N2 @ X3 )
=> ? [Y3: A] :
( ( P @ ( suc @ N2 ) @ Y3 )
& ( Q @ N2 @ X3 @ Y3 ) ) )
=> ? [F2: nat > A] :
! [N4: nat] :
( ( P @ N4 @ ( F2 @ N4 ) )
& ( Q @ N4 @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) ) ) ) ) ).
% dependent_nat_choice
thf(fact_105_formula_Osize__neq,axiom,
! [A: $tType,X: formula @ A] :
( ( size_size @ ( formula @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% formula.size_neq
thf(fact_106_trm_Osize__neq,axiom,
! [A: $tType,X: trm @ A] :
( ( size_size @ ( trm @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% trm.size_neq
thf(fact_107_mformula_Osize__neq,axiom,
! [A: $tType,X: monito748960549ormula @ A] :
( ( size_size @ ( monito748960549ormula @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% mformula.size_neq
thf(fact_108_option_Osize__neq,axiom,
! [A: $tType,X: option @ A] :
( ( size_size @ ( option @ A ) @ X )
!= ( zero_zero @ nat ) ) ).
% option.size_neq
thf(fact_109_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_110_find_Osimps_I2_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs: list @ A] :
( ( ( P @ X )
=> ( ( find @ A @ P @ ( cons @ A @ X @ Xs ) )
= ( some @ A @ X ) ) )
& ( ~ ( P @ X )
=> ( ( find @ A @ P @ ( cons @ A @ X @ Xs ) )
= ( find @ A @ P @ Xs ) ) ) ) ).
% find.simps(2)
thf(fact_111_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_112_not__less__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_113_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_114_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_115_BNF__Greatest__Fixpoint_Oshift__def,axiom,
! [B: $tType,A: $tType] :
( ( bNF_Greatest_shift @ A @ B )
= ( ^ [Lab: ( list @ A ) > B,K3: A,Kl: list @ A] : ( Lab @ ( cons @ A @ K3 @ Kl ) ) ) ) ).
% BNF_Greatest_Fixpoint.shift_def
thf(fact_116_list__decode_Ocases,axiom,
! [X: nat] :
( ( X
!= ( zero_zero @ nat ) )
=> ~ ! [N2: nat] :
( X
!= ( suc @ N2 ) ) ) ).
% list_decode.cases
thf(fact_117_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_118_field__lbound__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D1: A,D2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D1 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ? [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
& ( ord_less @ A @ E @ D1 )
& ( ord_less @ A @ E @ D2 ) ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_119_length__code,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) )
= ( gen_length @ A @ ( zero_zero @ nat ) ) ) ).
% length_code
thf(fact_120_gen__length__code_I2_J,axiom,
! [B: $tType,N: nat,X: B,Xs: list @ B] :
( ( gen_length @ B @ N @ ( cons @ B @ X @ Xs ) )
= ( gen_length @ B @ ( suc @ N ) @ Xs ) ) ).
% gen_length_code(2)
thf(fact_121_option_Osize__gen_I2_J,axiom,
! [A: $tType,X: A > nat,X2: A] :
( ( size_option @ A @ X @ ( some @ A @ X2 ) )
= ( plus_plus @ nat @ ( X @ X2 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% option.size_gen(2)
thf(fact_122_Cons__nth__drop__Suc,axiom,
! [A: $tType,I: nat,Xs: list @ A] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( cons @ A @ ( nth @ A @ Xs @ I ) @ ( drop @ A @ ( suc @ I ) @ Xs ) )
= ( drop @ A @ I @ Xs ) ) ) ).
% Cons_nth_drop_Suc
thf(fact_123_list__ex__length,axiom,
! [A: $tType] :
( ( list_ex @ A )
= ( ^ [P3: A > $o,Xs3: list @ A] :
? [N5: nat] :
( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ A ) @ Xs3 ) )
& ( P3 @ ( nth @ A @ Xs3 @ N5 ) ) ) ) ) ).
% list_ex_length
thf(fact_124_of__nat__0__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% of_nat_0_less_iff
thf(fact_125_add__left__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ( plus_plus @ A @ A2 @ B3 )
= ( plus_plus @ A @ A2 @ C ) )
= ( B3 = C ) ) ) ).
% add_left_cancel
thf(fact_126_add__right__cancel,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B3: A,A2: A,C: A] :
( ( ( plus_plus @ A @ B3 @ A2 )
= ( plus_plus @ A @ C @ A2 ) )
= ( B3 = C ) ) ) ).
% add_right_cancel
thf(fact_127_of__nat__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( semiring_1_of_nat @ A @ N ) )
= ( M = N ) ) ) ).
% of_nat_eq_iff
thf(fact_128_zero__eq__add__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X: A,Y4: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ X @ Y4 ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y4
= ( zero_zero @ A ) ) ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_129_add__eq__0__iff__both__eq__0,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X: A,Y4: A] :
( ( ( plus_plus @ A @ X @ Y4 )
= ( zero_zero @ A ) )
= ( ( X
= ( zero_zero @ A ) )
& ( Y4
= ( zero_zero @ A ) ) ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_130_add__cancel__right__right,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A2: A,B3: A] :
( ( A2
= ( plus_plus @ A @ A2 @ B3 ) )
= ( B3
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_right
thf(fact_131_add__cancel__right__left,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A2: A,B3: A] :
( ( A2
= ( plus_plus @ A @ B3 @ A2 ) )
= ( B3
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_right_left
thf(fact_132_add__cancel__left__right,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A2: A,B3: A] :
( ( ( plus_plus @ A @ A2 @ B3 )
= A2 )
= ( B3
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_right
thf(fact_133_add__cancel__left__left,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [B3: A,A2: A] :
( ( ( plus_plus @ A @ B3 @ A2 )
= A2 )
= ( B3
= ( zero_zero @ A ) ) ) ) ).
% add_cancel_left_left
thf(fact_134_double__zero__sym,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A )
=> ! [A2: A] :
( ( ( zero_zero @ A )
= ( plus_plus @ A @ A2 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_zero_sym
thf(fact_135_double__zero,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A )
=> ! [A2: A] :
( ( ( plus_plus @ A @ A2 @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% double_zero
thf(fact_136_add_Oright__neutral,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.right_neutral
thf(fact_137_add_Oleft__neutral,axiom,
! [A: $tType] :
( ( monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add.left_neutral
thf(fact_138_add__less__cancel__right,axiom,
! [A: $tType] :
( ( ordere236663937imp_le @ A )
=> ! [A2: A,C: A,B3: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B3 @ C ) )
= ( ord_less @ A @ A2 @ B3 ) ) ) ).
% add_less_cancel_right
thf(fact_139_add__less__cancel__left,axiom,
! [A: $tType] :
( ( ordere236663937imp_le @ A )
=> ! [C: A,A2: A,B3: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B3 ) )
= ( ord_less @ A @ A2 @ B3 ) ) ) ).
% add_less_cancel_left
thf(fact_140_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( zero_zero @ nat ) ) ) ) ).
% add_is_0
thf(fact_141_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% Nat.add_0_right
thf(fact_142_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_143_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_144_drop0,axiom,
! [A: $tType] :
( ( drop @ A @ ( zero_zero @ nat ) )
= ( ^ [X4: list @ A] : X4 ) ) ).
% drop0
thf(fact_145_drop__drop,axiom,
! [A: $tType,N: nat,M: nat,Xs: list @ A] :
( ( drop @ A @ N @ ( drop @ A @ M @ Xs ) )
= ( drop @ A @ ( plus_plus @ nat @ N @ M ) @ Xs ) ) ).
% drop_drop
thf(fact_146_list__ex__simps_I1_J,axiom,
! [A: $tType,P: A > $o,X: A,Xs: list @ A] :
( ( list_ex @ A @ P @ ( cons @ A @ X @ Xs ) )
= ( ( P @ X )
| ( list_ex @ A @ P @ Xs ) ) ) ).
% list_ex_simps(1)
thf(fact_147_add__less__same__cancel1,axiom,
! [A: $tType] :
( ( ordere516151231imp_le @ A )
=> ! [B3: A,A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ B3 @ A2 ) @ B3 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel1
thf(fact_148_add__less__same__cancel2,axiom,
! [A: $tType] :
( ( ordere516151231imp_le @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ B3 ) @ B3 )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% add_less_same_cancel2
thf(fact_149_less__add__same__cancel1,axiom,
! [A: $tType] :
( ( ordere516151231imp_le @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ B3 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B3 ) ) ) ).
% less_add_same_cancel1
thf(fact_150_less__add__same__cancel2,axiom,
! [A: $tType] :
( ( ordere516151231imp_le @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ A2 @ ( plus_plus @ A @ B3 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ B3 ) ) ) ).
% less_add_same_cancel2
thf(fact_151_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_152_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_153_of__nat__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_0
thf(fact_154_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( zero_zero @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( ( zero_zero @ nat )
= N ) ) ) ).
% of_nat_0_eq_iff
thf(fact_155_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_eq_0_iff
thf(fact_156_of__nat__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_iff
thf(fact_157_of__nat__add,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( plus_plus @ nat @ M @ N ) )
= ( plus_plus @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% of_nat_add
thf(fact_158_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ M @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
| ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% add_gr_0
thf(fact_159_drop__Suc__Cons,axiom,
! [A: $tType,N: nat,X: A,Xs: list @ A] :
( ( drop @ A @ ( suc @ N ) @ ( cons @ A @ X @ Xs ) )
= ( drop @ A @ N @ Xs ) ) ).
% drop_Suc_Cons
thf(fact_160_is__num__normalize_I1_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ! [A2: A,B3: A,C: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B3 ) @ C )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B3 @ C ) ) ) ) ).
% is_num_normalize(1)
thf(fact_161_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less @ nat @ K @ L )
=> ( ( ( plus_plus @ nat @ M @ L )
= ( plus_plus @ nat @ K @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_162_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ I @ ( plus_plus @ nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_163_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ I @ ( plus_plus @ nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_164_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_165_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_166_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_167_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ K @ L )
=> ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_168_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ K )
=> ( ord_less @ nat @ I @ K ) ) ).
% add_lessD1
thf(fact_169_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_170_nat__arith_Osuc1,axiom,
! [A3: nat,K: nat,A2: nat] :
( ( A3
= ( plus_plus @ nat @ K @ A2 ) )
=> ( ( suc @ A3 )
= ( plus_plus @ nat @ K @ ( suc @ A2 ) ) ) ) ).
% nat_arith.suc1
thf(fact_171_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus @ nat @ ( suc @ M ) @ N )
= ( plus_plus @ nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_172_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= M )
=> ( N
= ( zero_zero @ nat ) ) ) ).
% add_eq_self_zero
thf(fact_173_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus @ nat @ ( zero_zero @ nat ) @ N )
= N ) ).
% plus_nat.add_0
thf(fact_174_drop__0,axiom,
! [A: $tType,Xs: list @ A] :
( ( drop @ A @ ( zero_zero @ nat ) @ Xs )
= Xs ) ).
% drop_0
thf(fact_175_add__less__imp__less__right,axiom,
! [A: $tType] :
( ( ordere236663937imp_le @ A )
=> ! [A2: A,C: A,B3: A] :
( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B3 @ C ) )
=> ( ord_less @ A @ A2 @ B3 ) ) ) ).
% add_less_imp_less_right
thf(fact_176_add__less__imp__less__left,axiom,
! [A: $tType] :
( ( ordere236663937imp_le @ A )
=> ! [C: A,A2: A,B3: A] :
( ( ord_less @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B3 ) )
=> ( ord_less @ A @ A2 @ B3 ) ) ) ).
% add_less_imp_less_left
thf(fact_177_add__strict__right__mono,axiom,
! [A: $tType] :
( ( ordere223160158up_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ord_less @ A @ A2 @ B3 )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B3 @ C ) ) ) ) ).
% add_strict_right_mono
thf(fact_178_add__strict__left__mono,axiom,
! [A: $tType] :
( ( ordere223160158up_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ord_less @ A @ A2 @ B3 )
=> ( ord_less @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B3 ) ) ) ) ).
% add_strict_left_mono
thf(fact_179_add__strict__mono,axiom,
! [A: $tType] :
( ( strict2144017051up_add @ A )
=> ! [A2: A,B3: A,C: A,D: A] :
( ( ord_less @ A @ A2 @ B3 )
=> ( ( ord_less @ A @ C @ D )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B3 @ D ) ) ) ) ) ).
% add_strict_mono
thf(fact_180_add__mono__thms__linordered__field_I1_J,axiom,
! [A: $tType] :
( ( ordere223160158up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I @ J )
& ( K = L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_181_add__mono__thms__linordered__field_I2_J,axiom,
! [A: $tType] :
( ( ordere223160158up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_182_add__mono__thms__linordered__field_I5_J,axiom,
! [A: $tType] :
( ( ordere223160158up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( ord_less @ A @ I @ J )
& ( ord_less @ A @ K @ L ) )
=> ( ord_less @ A @ ( plus_plus @ A @ I @ K ) @ ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_183_add_Ogroup__left__neutral,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% add.group_left_neutral
thf(fact_184_add_Ocomm__neutral,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% add.comm_neutral
thf(fact_185_comm__monoid__add__class_Oadd__0,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
= A2 ) ) ).
% comm_monoid_add_class.add_0
thf(fact_186_reals__Archimedean2,axiom,
! [A: $tType] :
( ( archim1804426504_field @ A )
=> ! [X: A] :
? [N2: nat] : ( ord_less @ A @ X @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% reals_Archimedean2
thf(fact_187_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B3 ) @ C )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B3 @ C ) ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_188_add__mono__thms__linordered__semiring_I4_J,axiom,
! [A: $tType] :
( ( ordere779506340up_add @ A )
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus @ A @ I @ K )
= ( plus_plus @ A @ J @ L ) ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_189_group__cancel_Oadd1,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [A3: A,K: A,A2: A,B3: A] :
( ( A3
= ( plus_plus @ A @ K @ A2 ) )
=> ( ( plus_plus @ A @ A3 @ B3 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B3 ) ) ) ) ) ).
% group_cancel.add1
thf(fact_190_group__cancel_Oadd2,axiom,
! [A: $tType] :
( ( comm_monoid_add @ A )
=> ! [B4: A,K: A,B3: A,A2: A] :
( ( B4
= ( plus_plus @ A @ K @ B3 ) )
=> ( ( plus_plus @ A @ A2 @ B4 )
= ( plus_plus @ A @ K @ ( plus_plus @ A @ A2 @ B3 ) ) ) ) ) ).
% group_cancel.add2
thf(fact_191_add_Oassoc,axiom,
! [A: $tType] :
( ( semigroup_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( plus_plus @ A @ ( plus_plus @ A @ A2 @ B3 ) @ C )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B3 @ C ) ) ) ) ).
% add.assoc
thf(fact_192_add_Oleft__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ( plus_plus @ A @ A2 @ B3 )
= ( plus_plus @ A @ A2 @ C ) )
= ( B3 = C ) ) ) ).
% add.left_cancel
thf(fact_193_add_Oright__cancel,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [B3: A,A2: A,C: A] :
( ( ( plus_plus @ A @ B3 @ A2 )
= ( plus_plus @ A @ C @ A2 ) )
= ( B3 = C ) ) ) ).
% add.right_cancel
thf(fact_194_add_Ocommute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ( ( plus_plus @ A )
= ( ^ [A5: A,B5: A] : ( plus_plus @ A @ B5 @ A5 ) ) ) ) ).
% add.commute
thf(fact_195_add_Oleft__commute,axiom,
! [A: $tType] :
( ( ab_semigroup_add @ A )
=> ! [B3: A,A2: A,C: A] :
( ( plus_plus @ A @ B3 @ ( plus_plus @ A @ A2 @ C ) )
= ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B3 @ C ) ) ) ) ).
% add.left_commute
thf(fact_196_add__left__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ( plus_plus @ A @ A2 @ B3 )
= ( plus_plus @ A @ A2 @ C ) )
=> ( B3 = C ) ) ) ).
% add_left_imp_eq
thf(fact_197_add__right__imp__eq,axiom,
! [A: $tType] :
( ( cancel_semigroup_add @ A )
=> ! [B3: A,A2: A,C: A] :
( ( ( plus_plus @ A @ B3 @ A2 )
= ( plus_plus @ A @ C @ A2 ) )
=> ( B3 = C ) ) ) ).
% add_right_imp_eq
thf(fact_198_of__nat__less__0__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat] :
~ ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) ) ) ).
% of_nat_less_0_iff
thf(fact_199_of__nat__neq__0,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( semiring_1_of_nat @ A @ ( suc @ N ) )
!= ( zero_zero @ A ) ) ) ).
% of_nat_neq_0
thf(fact_200_less__imp__of__nat__less,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% less_imp_of_nat_less
thf(fact_201_of__nat__less__imp__less,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_imp_less
thf(fact_202_add__neg__neg,axiom,
! [A: $tType] :
( ( ordere216010020id_add @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B3 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( plus_plus @ A @ A2 @ B3 ) @ ( zero_zero @ A ) ) ) ) ) ).
% add_neg_neg
thf(fact_203_add__pos__pos,axiom,
! [A: $tType] :
( ( ordere216010020id_add @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B3 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ B3 ) ) ) ) ) ).
% add_pos_pos
thf(fact_204_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [A2: A,B3: A] :
( ( ord_less @ A @ A2 @ B3 )
=> ~ ! [C2: A] :
( ( B3
= ( plus_plus @ A @ A2 @ C2 ) )
=> ( C2
= ( zero_zero @ A ) ) ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_205_pos__add__strict,axiom,
! [A: $tType] :
( ( strict797366125id_add @ A )
=> ! [A2: A,B3: A,C: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ B3 @ C )
=> ( ord_less @ A @ B3 @ ( plus_plus @ A @ A2 @ C ) ) ) ) ) ).
% pos_add_strict
thf(fact_206_nth__via__drop,axiom,
! [A: $tType,N: nat,Xs: list @ A,Y4: A,Ys: list @ A] :
( ( ( drop @ A @ N @ Xs )
= ( cons @ A @ Y4 @ Ys ) )
=> ( ( nth @ A @ Xs @ N )
= Y4 ) ) ).
% nth_via_drop
thf(fact_207_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus @ nat @ M @ N )
= ( suc @ ( zero_zero @ nat ) ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% add_is_1
thf(fact_208_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ ( zero_zero @ nat ) )
= ( plus_plus @ nat @ M @ N ) )
= ( ( ( M
= ( suc @ ( zero_zero @ nat ) ) )
& ( N
= ( zero_zero @ nat ) ) )
| ( ( M
= ( zero_zero @ nat ) )
& ( N
= ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).
% one_is_add
thf(fact_209_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less @ nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ K2 )
& ( ( plus_plus @ nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_210_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ~ ! [Q2: nat] :
( N
!= ( suc @ ( plus_plus @ nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_211_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_212_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_213_less__iff__Suc__add,axiom,
( ( ord_less @ nat )
= ( ^ [M5: nat,N5: nat] :
? [K3: nat] :
( N5
= ( suc @ ( plus_plus @ nat @ M5 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_214_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus @ nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_215_gen__length__def,axiom,
! [A: $tType] :
( ( gen_length @ A )
= ( ^ [N5: nat,Xs3: list @ A] : ( plus_plus @ nat @ N5 @ ( size_size @ ( list @ A ) @ Xs3 ) ) ) ) ).
% gen_length_def
thf(fact_216_list_Osize_I4_J,axiom,
! [A: $tType,X21: A,X22: list @ A] :
( ( size_size @ ( list @ A ) @ ( cons @ A @ X21 @ X22 ) )
= ( plus_plus @ nat @ ( size_size @ ( list @ A ) @ X22 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% list.size(4)
thf(fact_217_add__less__zeroD,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y4: A] :
( ( ord_less @ A @ ( plus_plus @ A @ X @ Y4 ) @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ X @ ( zero_zero @ A ) )
| ( ord_less @ A @ Y4 @ ( zero_zero @ A ) ) ) ) ) ).
% add_less_zeroD
thf(fact_218_Euclid__induct,axiom,
! [P: nat > nat > $o,A2: nat,B3: nat] :
( ! [A4: nat,B2: nat] :
( ( P @ A4 @ B2 )
= ( P @ B2 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ ( zero_zero @ nat ) )
=> ( ! [A4: nat,B2: nat] :
( ( P @ A4 @ B2 )
=> ( P @ A4 @ ( plus_plus @ nat @ A4 @ B2 ) ) )
=> ( P @ A2 @ B3 ) ) ) ) ).
% Euclid_induct
thf(fact_219_pos__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% pos_int_cases
thf(fact_220_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( K
= ( semiring_1_of_nat @ int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_221_zadd__int__left,axiom,
! [M: nat,N: nat,Z2: int] :
( ( plus_plus @ int @ ( semiring_1_of_nat @ int @ M ) @ ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ Z2 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ M @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_222_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ int @ M )
= ( semiring_1_of_nat @ int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_223_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus @ int @ ( zero_zero @ int ) @ L )
= L ) ).
% plus_int_code(2)
thf(fact_224_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus @ int @ K @ ( zero_zero @ int ) )
= K ) ).
% plus_int_code(1)
thf(fact_225_zless__iff__Suc__zadd,axiom,
( ( ord_less @ int )
= ( ^ [W: int,Z3: int] :
? [N5: nat] :
( Z3
= ( plus_plus @ int @ W @ ( semiring_1_of_nat @ int @ ( suc @ N5 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_226_less__int__code_I1_J,axiom,
~ ( ord_less @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ) ).
% less_int_code(1)
thf(fact_227_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y4: A] :
( ( X != Y4 )
=> ( ~ ( ord_less @ A @ X @ Y4 )
=> ( ord_less @ A @ Y4 @ X ) ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_228_nat__int__comparison_I2_J,axiom,
( ( ord_less @ nat )
= ( ^ [A5: nat,B5: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A5 ) @ ( semiring_1_of_nat @ int @ B5 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_229_int__ops_I1_J,axiom,
( ( semiring_1_of_nat @ int @ ( zero_zero @ nat ) )
= ( zero_zero @ int ) ) ).
% int_ops(1)
thf(fact_230_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(1)
thf(fact_231_nat__int__comparison_I1_J,axiom,
( ( ^ [Y6: nat,Z: nat] : ( Y6 = Z ) )
= ( ^ [A5: nat,B5: nat] :
( ( semiring_1_of_nat @ int @ A5 )
= ( semiring_1_of_nat @ int @ B5 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_232_int__if,axiom,
! [P: $o,A2: nat,B3: nat] :
( ( P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B3 ) )
= ( semiring_1_of_nat @ int @ A2 ) ) )
& ( ~ P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B3 ) )
= ( semiring_1_of_nat @ int @ B3 ) ) ) ) ).
% int_if
thf(fact_233_verit__sum__simplify,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A2: A] :
( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
= A2 ) ) ).
% verit_sum_simplify
thf(fact_234_int__ops_I5_J,axiom,
! [A2: nat,B3: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ A2 @ B3 ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B3 ) ) ) ).
% int_ops(5)
thf(fact_235_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiring_1_of_nat @ int @ ( plus_plus @ nat @ N @ M ) )
= ( plus_plus @ int @ ( semiring_1_of_nat @ int @ N ) @ ( semiring_1_of_nat @ int @ M ) ) ) ).
% int_plus
thf(fact_236_triangle__Suc,axiom,
! [N: nat] :
( ( nat_triangle @ ( suc @ N ) )
= ( plus_plus @ nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).
% triangle_Suc
thf(fact_237_add__0__iff,axiom,
! [A: $tType] :
( ( semiri456707255roduct @ A )
=> ! [B3: A,A2: A] :
( ( B3
= ( plus_plus @ A @ B3 @ A2 ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% add_0_iff
thf(fact_238_triangle__0,axiom,
( ( nat_triangle @ ( zero_zero @ nat ) )
= ( zero_zero @ nat ) ) ).
% triangle_0
thf(fact_239_mformula_Osize_I15_J,axiom,
! [A: $tType,X61: i,X62: monito748960549ormula @ A,X63: $o,X64: list @ ( set @ ( list @ ( option @ A ) ) ),X65: list @ nat] :
( ( size_size @ ( monito748960549ormula @ A ) @ ( monito1987675900_MPrev @ A @ X61 @ X62 @ X63 @ X64 @ X65 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_size @ ( list @ ( set @ ( list @ ( option @ A ) ) ) ) @ X64 ) @ ( size_size @ ( monito748960549ormula @ A ) @ X62 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% mformula.size(15)
thf(fact_240_mformula_Osize_I16_J,axiom,
! [A: $tType,X71: i,X72: monito748960549ormula @ A,X73: $o,X74: list @ nat] :
( ( size_size @ ( monito748960549ormula @ A ) @ ( monito320348316_MNext @ A @ X71 @ X72 @ X73 @ X74 ) )
= ( plus_plus @ nat @ ( size_size @ ( monito748960549ormula @ A ) @ X72 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% mformula.size(16)
thf(fact_241_mformula_Oinject_I6_J,axiom,
! [A: $tType,X61: i,X62: monito748960549ormula @ A,X63: $o,X64: list @ ( set @ ( list @ ( option @ A ) ) ),X65: list @ nat,Y61: i,Y62: monito748960549ormula @ A,Y63: $o,Y64: list @ ( set @ ( list @ ( option @ A ) ) ),Y65: list @ nat] :
( ( ( monito1987675900_MPrev @ A @ X61 @ X62 @ X63 @ X64 @ X65 )
= ( monito1987675900_MPrev @ A @ Y61 @ Y62 @ Y63 @ Y64 @ Y65 ) )
= ( ( X61 = Y61 )
& ( X62 = Y62 )
& ( X63 = Y63 )
& ( X64 = Y64 )
& ( X65 = Y65 ) ) ) ).
% mformula.inject(6)
thf(fact_242_mformula_Oinject_I7_J,axiom,
! [A: $tType,X71: i,X72: monito748960549ormula @ A,X73: $o,X74: list @ nat,Y71: i,Y72: monito748960549ormula @ A,Y73: $o,Y74: list @ nat] :
( ( ( monito320348316_MNext @ A @ X71 @ X72 @ X73 @ X74 )
= ( monito320348316_MNext @ A @ Y71 @ Y72 @ Y73 @ Y74 ) )
= ( ( X71 = Y71 )
& ( X72 = Y72 )
& ( X73 = Y73 )
& ( X74 = Y74 ) ) ) ).
% mformula.inject(7)
thf(fact_243_mformula_Odistinct_I61_J,axiom,
! [A: $tType,X61: i,X62: monito748960549ormula @ A,X63: $o,X64: list @ ( set @ ( list @ ( option @ A ) ) ),X65: list @ nat,X71: i,X72: monito748960549ormula @ A,X73: $o,X74: list @ nat] :
( ( monito1987675900_MPrev @ A @ X61 @ X62 @ X63 @ X64 @ X65 )
!= ( monito320348316_MNext @ A @ X71 @ X72 @ X73 @ X74 ) ) ).
% mformula.distinct(61)
thf(fact_244_mformula_Osize__gen_I7_J,axiom,
! [A: $tType,X: A > nat,X71: i,X72: monito748960549ormula @ A,X73: $o,X74: list @ nat] :
( ( monito1197352414ormula @ A @ X @ ( monito320348316_MNext @ A @ X71 @ X72 @ X73 @ X74 ) )
= ( plus_plus @ nat @ ( monito1197352414ormula @ A @ X @ X72 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% mformula.size_gen(7)
thf(fact_245_mformula_Osize_I14_J,axiom,
! [A: $tType,X52: monito748960549ormula @ A] :
( ( size_size @ ( monito748960549ormula @ A ) @ ( monito518325957Exists @ A @ X52 ) )
= ( plus_plus @ nat @ ( size_size @ ( monito748960549ormula @ A ) @ X52 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% mformula.size(14)
thf(fact_246_mformula_Oinject_I5_J,axiom,
! [A: $tType,X52: monito748960549ormula @ A,Y52: monito748960549ormula @ A] :
( ( ( monito518325957Exists @ A @ X52 )
= ( monito518325957Exists @ A @ Y52 ) )
= ( X52 = Y52 ) ) ).
% mformula.inject(5)
thf(fact_247_mformula_Odistinct_I53_J,axiom,
! [A: $tType,X52: monito748960549ormula @ A,X61: i,X62: monito748960549ormula @ A,X63: $o,X64: list @ ( set @ ( list @ ( option @ A ) ) ),X65: list @ nat] :
( ( monito518325957Exists @ A @ X52 )
!= ( monito1987675900_MPrev @ A @ X61 @ X62 @ X63 @ X64 @ X65 ) ) ).
% mformula.distinct(53)
thf(fact_248_mformula_Odistinct_I55_J,axiom,
! [A: $tType,X52: monito748960549ormula @ A,X71: i,X72: monito748960549ormula @ A,X73: $o,X74: list @ nat] :
( ( monito518325957Exists @ A @ X52 )
!= ( monito320348316_MNext @ A @ X71 @ X72 @ X73 @ X74 ) ) ).
% mformula.distinct(55)
thf(fact_249_mformula_Osize__gen_I5_J,axiom,
! [A: $tType,X: A > nat,X52: monito748960549ormula @ A] :
( ( monito1197352414ormula @ A @ X @ ( monito518325957Exists @ A @ X52 ) )
= ( plus_plus @ nat @ ( monito1197352414ormula @ A @ X @ X52 ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% mformula.size_gen(5)
thf(fact_250_formula_Osize_I11_J,axiom,
! [A: $tType,X21: trm @ A,X22: trm @ A] :
( ( size_size @ ( formula @ A ) @ ( c_MFOTL_Oformula_OEq @ A @ X21 @ X22 ) )
= ( plus_plus @ nat @ ( plus_plus @ nat @ ( size_size @ ( trm @ A ) @ X21 ) @ ( size_size @ ( trm @ A ) @ X22 ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).
% formula.size(11)
thf(fact_251_nth__drop,axiom,
! [A: $tType,N: nat,Xs: list @ A,I: nat] :
( ( ord_less_eq @ nat @ N @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( nth @ A @ ( drop @ A @ N @ Xs ) @ I )
= ( nth @ A @ Xs @ ( plus_plus @ nat @ N @ I ) ) ) ) ).
% nth_drop
% Type constructors (54)
thf(tcon_fun___Orderings_Oorder,axiom,
! [A6: $tType,A7: $tType] :
( ( order @ A7 )
=> ( order @ ( A6 > A7 ) ) ) ).
thf(tcon_Int_Oint___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
semiri456707255roduct @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__monoid__add__imp__le,axiom,
ordere516151231imp_le @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__ab__semigroup__add,axiom,
strict2144017051up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__cancel__ab__semigroup__add,axiom,
ordere223160158up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add__imp__le,axiom,
ordere236663937imp_le @ int ).
thf(tcon_Int_Oint___Groups_Ostrict__ordered__comm__monoid__add,axiom,
strict797366125id_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ int ).
thf(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add,axiom,
ordere779506340up_add @ int ).
thf(tcon_Int_Oint___Groups_Oordered__comm__monoid__add,axiom,
ordere216010020id_add @ int ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord219039673up_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__comm__monoid__add,axiom,
cancel1352612707id_add @ int ).
thf(tcon_Int_Oint___Groups_Ocancel__semigroup__add,axiom,
cancel_semigroup_add @ int ).
thf(tcon_Int_Oint___Groups_Oab__semigroup__add,axiom,
ab_semigroup_add @ int ).
thf(tcon_Int_Oint___Groups_Ocomm__monoid__add,axiom,
comm_monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom @ int ).
thf(tcon_Int_Oint___Groups_Osemigroup__add,axiom,
semigroup_add @ int ).
thf(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0 @ int ).
thf(tcon_Int_Oint___Groups_Omonoid__add,axiom,
monoid_add @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1 @ int ).
thf(tcon_Int_Oint___Groups_Ogroup__add,axiom,
group_add @ int ).
thf(tcon_Int_Oint___Orderings_Oorder_1,axiom,
order @ int ).
thf(tcon_Int_Oint___Num_Oneg__numeral,axiom,
neg_numeral @ int ).
thf(tcon_Int_Oint___Groups_Ozero,axiom,
zero @ int ).
thf(tcon_Nat_Onat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_2,axiom,
semiri456707255roduct @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_3,axiom,
ordere516151231imp_le @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__ab__semigroup__add_4,axiom,
strict2144017051up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__cancel__ab__semigroup__add_5,axiom,
ordere223160158up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add__imp__le_6,axiom,
ordere236663937imp_le @ nat ).
thf(tcon_Nat_Onat___Groups_Ostrict__ordered__comm__monoid__add_7,axiom,
strict797366125id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_8,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add_9,axiom,
ordere779506340up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oordered__comm__monoid__add_10,axiom,
ordere216010020id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add_11,axiom,
cancel1352612707id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__semigroup__add_12,axiom,
cancel_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Groups_Oab__semigroup__add_13,axiom,
ab_semigroup_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__add_14,axiom,
comm_monoid_add @ nat ).
thf(tcon_Nat_Onat___Groups_Osemigroup__add_15,axiom,
semigroup_add @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Nat_Osemiring__char__0_16,axiom,
semiring_char_0 @ nat ).
thf(tcon_Nat_Onat___Groups_Omonoid__add_17,axiom,
monoid_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1_18,axiom,
semiring_1 @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_19,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero_20,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_Set_Oset___Orderings_Oorder_21,axiom,
! [A6: $tType] : ( order @ ( set @ A6 ) ) ).
thf(tcon_HOL_Obool___Orderings_Oorder_22,axiom,
order @ $o ).
thf(tcon_List_Olist___Nat_Osize_23,axiom,
! [A6: $tType] : ( size @ ( list @ A6 ) ) ).
thf(tcon_MFOTL_Otrm___Nat_Osize_24,axiom,
! [A6: $tType] : ( size @ ( trm @ A6 ) ) ).
thf(tcon_Interval_O_092_060I_062___Orderings_Oorder_25,axiom,
order @ i ).
thf(tcon_MFOTL_Oformula___Nat_Osize_26,axiom,
! [A6: $tType] : ( size @ ( formula @ A6 ) ) ).
thf(tcon_Option_Ooption___Nat_Osize_27,axiom,
! [A6: $tType] : ( size @ ( option @ A6 ) ) ).
thf(tcon_Monitor__Mirabelle__pzlrlsievl_Omformula___Nat_Osize_28,axiom,
! [A6: $tType] : ( size @ ( monito748960549ormula @ A6 ) ) ).
% Helper facts (3)
thf(help_If_3_1_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_T,axiom,
! [A: $tType,X: A,Y4: A] :
( ( if @ A @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_T,axiom,
! [A: $tType,X: A,Y4: A] :
( ( if @ A @ $true @ X @ Y4 )
= X ) ).
% Conjectures (3)
thf(conj_0,hypothesis,
member @ nat @ ( zero_zero @ nat ) @ ( fvi @ a @ b2 @ phi ) ).
thf(conj_1,hypothesis,
( ( ( size_size @ ( list @ ( option @ b ) ) @ v )
= n )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ n )
=> ( ( ( nth @ ( option @ b ) @ v @ I4 )
= ( none @ b ) )
= ( ~ ( member @ nat @ I4 @ ( fvi @ a @ ( suc @ b2 ) @ phi ) ) ) ) ) ) ).
thf(conj_2,conjecture,
( ( ( size_size @ ( list @ ( option @ b ) ) @ ( cons @ ( option @ b ) @ ( some @ b @ x ) @ v ) )
= ( suc @ n ) )
& ! [I2: nat] :
( ~ ( ord_less @ nat @ I2 @ ( suc @ n ) )
| ( ( ( nth @ ( option @ b ) @ ( cons @ ( option @ b ) @ ( some @ b @ x ) @ v ) @ I2 )
= ( none @ b ) )
= ( ~ ( member @ nat @ I2 @ ( fvi @ a @ b2 @ phi ) ) ) ) ) ) ).
%------------------------------------------------------------------------------