TPTP Problem File: ITP105^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP105^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer ListSlice problem prob_61__5615344_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : ListSlice/prob_61__5615344_1 [Des21]
% Status : Theorem
% Rating : 0.00 v7.5.0
% Syntax : Number of formulae : 356 ( 115 unt; 52 typ; 0 def)
% Number of atoms : 866 ( 240 equ; 0 cnn)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 3266 ( 73 ~; 26 |; 47 &;2735 @)
% ( 0 <=>; 385 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Number of types : 5 ( 4 usr)
% Number of type conns : 76 ( 76 >; 0 *; 0 +; 0 <<)
% Number of symbols : 51 ( 48 usr; 3 con; 0-4 aty)
% Number of variables : 743 ( 25 ^; 647 !; 24 ?; 743 :)
% ( 47 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:15:15.739
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_t_Option_Ooption,type,
option: $tType > $tType ).
thf(ty_t_Real_Oreal,type,
real: $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
thf(ty_tf_a,type,
a: $tType ).
% Explicit typings (45)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Ofield,type,
field:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Odivision__ring,type,
division_ring:
!>[A: $tType] : $o ).
thf(sy_cl_Parity_Osemiring__bits,type,
semiring_bits:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemidom__divide,type,
semidom_divide:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
thf(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Osemiring__1__no__zero__divisors,type,
semiri134348788visors:
!>[A: $tType] : $o ).
thf(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim1804426504_field:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Divides_Ounique__euclidean__semiring__numeral,type,
unique1598680935umeral:
!>[A: $tType] : $o ).
thf(sy_cl_Euclidean__Division_Ounique__euclidean__semiring__with__nat,type,
euclid1852923125th_nat:
!>[A: $tType] : $o ).
thf(sy_c_Fields_Oinverse__class_Oinverse,type,
inverse_inverse:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_If,type,
if:
!>[A: $tType] : ( $o > A > A > A ) ).
thf(sy_c_ListSlice__Mirabelle__zurbwwxtke_Olist__slice,type,
listSl1903280966_slice:
!>[A: $tType] : ( ( list @ A ) > nat > ( list @ ( list @ A ) ) ) ).
thf(sy_c_ListSlice__Mirabelle__zurbwwxtke_Olist__slice__aux,type,
listSl1123830174ce_aux:
!>[A: $tType] : ( ( list @ A ) > nat > nat > ( list @ ( list @ A ) ) ) ).
thf(sy_c_List_Obind,type,
bind:
!>[A: $tType,B: $tType] : ( ( list @ A ) > ( A > ( list @ B ) ) > ( list @ B ) ) ).
thf(sy_c_List_Oconcat,type,
concat:
!>[A: $tType] : ( ( list @ ( list @ A ) ) > ( list @ A ) ) ).
thf(sy_c_List_Ocount__list,type,
count_list:
!>[A: $tType] : ( ( list @ A ) > A > nat ) ).
thf(sy_c_List_Ogen__length,type,
gen_length:
!>[A: $tType] : ( nat > ( list @ A ) > nat ) ).
thf(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : ( list @ A ) ).
thf(sy_c_List_Olist__ex1,type,
list_ex1:
!>[A: $tType] : ( ( A > $o ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Omap__filter,type,
map_filter:
!>[A: $tType,B: $tType] : ( ( A > ( option @ B ) ) > ( list @ A ) > ( list @ B ) ) ).
thf(sy_c_List_Omaps,type,
maps:
!>[A: $tType,B: $tType] : ( ( A > ( list @ B ) ) > ( list @ A ) > ( list @ B ) ) ).
thf(sy_c_List_Omember,type,
member:
!>[A: $tType] : ( ( list @ A ) > A > $o ) ).
thf(sy_c_List_Onull,type,
null:
!>[A: $tType] : ( ( list @ A ) > $o ) ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Power_Opower__class_Opower,type,
power_power:
!>[A: $tType] : ( A > nat > A ) ).
thf(sy_c_Rings_Odivide__class_Odivide,type,
divide_divide:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_member,type,
member2:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_k,type,
k: nat ).
% Relevant facts (253)
thf(fact_0_list__slice__0,axiom,
! [A: $tType,Xs: list @ A] :
( ( listSl1903280966_slice @ A @ Xs @ ( zero_zero @ nat ) )
= ( nil @ ( list @ A ) ) ) ).
% list_slice_0
thf(fact_1_concat_Osimps_I1_J,axiom,
! [A: $tType] :
( ( concat @ A @ ( nil @ ( list @ A ) ) )
= ( nil @ A ) ) ).
% concat.simps(1)
thf(fact_2_list__ex1__simps_I1_J,axiom,
! [A: $tType,P: A > $o] :
~ ( list_ex1 @ A @ P @ ( nil @ A ) ) ).
% list_ex1_simps(1)
thf(fact_3_list__slice__less,axiom,
! [A: $tType,Xs: list @ A,K: nat] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ K )
=> ( ( listSl1903280966_slice @ A @ Xs @ K )
= ( nil @ ( list @ A ) ) ) ) ).
% list_slice_less
thf(fact_4_bind__simps_I1_J,axiom,
! [B: $tType,A: $tType,F: B > ( list @ A )] :
( ( bind @ B @ A @ ( nil @ B ) @ F )
= ( nil @ A ) ) ).
% bind_simps(1)
thf(fact_5_member__rec_I2_J,axiom,
! [A: $tType,Y: A] :
~ ( member @ A @ ( nil @ A ) @ Y ) ).
% member_rec(2)
thf(fact_6_gen__length__code_I1_J,axiom,
! [A: $tType,N: nat] :
( ( gen_length @ A @ N @ ( nil @ A ) )
= N ) ).
% gen_length_code(1)
thf(fact_7_maps__simps_I2_J,axiom,
! [B: $tType,A: $tType,F: B > ( list @ A )] :
( ( maps @ B @ A @ F @ ( nil @ B ) )
= ( nil @ A ) ) ).
% maps_simps(2)
thf(fact_8_null__rec_I2_J,axiom,
! [B: $tType] : ( null @ B @ ( nil @ B ) ) ).
% null_rec(2)
thf(fact_9_eq__Nil__null,axiom,
! [A: $tType,Xs: list @ A] :
( ( Xs
= ( nil @ A ) )
= ( null @ A @ Xs ) ) ).
% eq_Nil_null
thf(fact_10_map__filter__simps_I2_J,axiom,
! [B: $tType,A: $tType,F: B > ( option @ A )] :
( ( map_filter @ B @ A @ F @ ( nil @ B ) )
= ( nil @ A ) ) ).
% map_filter_simps(2)
thf(fact_11_length__0__conv,axiom,
! [A: $tType,Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( zero_zero @ nat ) )
= ( Xs
= ( nil @ A ) ) ) ).
% length_0_conv
thf(fact_12_length__greater__0__conv,axiom,
! [A: $tType,Xs: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs ) )
= ( Xs
!= ( nil @ A ) ) ) ).
% length_greater_0_conv
thf(fact_13_list_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size(3)
thf(fact_14_length__code,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) )
= ( gen_length @ A @ ( zero_zero @ nat ) ) ) ).
% length_code
thf(fact_15_length__induct,axiom,
! [A: $tType,P: ( list @ A ) > $o,Xs: list @ A] :
( ! [Xs2: list @ A] :
( ! [Ys: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P @ Ys ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_16_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ Xs2 )
= N ) ).
% Ex_list_of_length
thf(fact_17_neq__if__length__neq,axiom,
! [A: $tType,Xs: list @ A,Ys2: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
!= ( size_size @ ( list @ A ) @ Ys2 ) )
=> ( Xs != Ys2 ) ) ).
% neq_if_length_neq
thf(fact_18_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_19_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_20_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_21_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_22_length__greater__imp__not__empty,axiom,
! [A: $tType,N: nat,Xs: list @ A] :
( ( ord_less @ nat @ N @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( Xs
!= ( nil @ A ) ) ) ).
% length_greater_imp_not_empty
thf(fact_23_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_24_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_25_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_26_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_27_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_28_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X: A] :
( ( ( zero_zero @ A )
= X )
= ( X
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_29_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y2: A] :
( ( ord_less @ B @ ( F @ Y2 ) @ ( F @ X2 ) )
=> ( P @ Y2 ) )
=> ( P @ X2 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct_rule
thf(fact_30_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P: A > $o,A2: A] :
( ! [X2: A] :
( ! [Y2: A] :
( ( ord_less @ B @ ( F @ Y2 ) @ ( F @ X2 ) )
=> ( P @ Y2 ) )
=> ( P @ X2 ) )
=> ( P @ A2 ) ) ) ).
% measure_induct
thf(fact_31_infinite__descent__measure,axiom,
! [A: $tType,P: A > $o,V: A > nat,X: A] :
( ! [X2: A] :
( ~ ( P @ X2 )
=> ? [Y2: A] :
( ( ord_less @ nat @ ( V @ Y2 ) @ ( V @ X2 ) )
& ~ ( P @ Y2 ) ) )
=> ( P @ X ) ) ).
% infinite_descent_measure
thf(fact_32_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less @ nat @ X @ Y )
=> ( ord_less @ nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_33_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_34_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_35_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_36_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less @ nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_37_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_38_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_39_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_40_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X: A,Y: A] :
( ( ( size_size @ A @ X )
!= ( size_size @ A @ Y ) )
=> ( X != Y ) ) ) ).
% size_neq_size_imp_neq
thf(fact_41_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_42_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( member2 @ A @ A2 @ ( collect @ A @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_43_Collect__mem__eq,axiom,
! [A: $tType,A3: set @ A] :
( ( collect @ A
@ ^ [X3: A] : ( member2 @ A @ X3 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_44_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X2: A] :
( ( P @ X2 )
= ( Q @ X2 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_45_ext,axiom,
! [B: $tType,A: $tType,F: A > B,G: A > B] :
( ! [X2: A] :
( ( F @ X2 )
= ( G @ X2 ) )
=> ( F = G ) ) ).
% ext
thf(fact_46_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_47_not__less__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_48_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_49_infinite__descent0__measure,axiom,
! [A: $tType,V: A > nat,P: A > $o,X: A] :
( ! [X2: A] :
( ( ( V @ X2 )
= ( zero_zero @ nat ) )
=> ( P @ X2 ) )
=> ( ! [X2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X2 ) )
=> ( ~ ( P @ X2 )
=> ? [Y2: A] :
( ( ord_less @ nat @ ( V @ Y2 ) @ ( V @ X2 ) )
& ~ ( P @ Y2 ) ) ) )
=> ( P @ X ) ) ) ).
% infinite_descent0_measure
thf(fact_50_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less @ nat @ A2 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_51_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less @ nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_52_gr__implies__gr0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr_implies_gr0
thf(fact_53_field__lbound__gt__zero,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [D1: A,D2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ D1 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ D2 )
=> ? [E: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ E )
& ( ord_less @ A @ E @ D1 )
& ( ord_less @ A @ E @ D2 ) ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_54_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_55_list__slice__aux_Osimps_I1_J,axiom,
! [A: $tType,Xs: list @ A,K: nat] :
( ( listSl1123830174ce_aux @ A @ Xs @ K @ ( zero_zero @ nat ) )
= ( nil @ ( list @ A ) ) ) ).
% list_slice_aux.simps(1)
thf(fact_56_of__nat__0__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% of_nat_0_less_iff
thf(fact_57_count__list_Osimps_I1_J,axiom,
! [A: $tType,Y: A] :
( ( count_list @ A @ ( nil @ A ) @ Y )
= ( zero_zero @ nat ) ) ).
% count_list.simps(1)
thf(fact_58_interval__induct__rule,axiom,
! [I: set @ nat,P: nat > $o,A2: nat] :
( ! [X2: nat] :
( ! [Y2: nat] :
( ( ( member2 @ nat @ X2 @ I )
& ( member2 @ nat @ Y2 @ I )
& ( ord_less @ nat @ Y2 @ X2 ) )
=> ( P @ Y2 ) )
=> ( P @ X2 ) )
=> ( P @ A2 ) ) ).
% interval_induct_rule
thf(fact_59_interval__induct,axiom,
! [I: set @ nat,P: nat > $o,A2: nat] :
( ! [X2: nat] :
( ! [Y2: nat] :
( ( ( member2 @ nat @ X2 @ I )
& ( member2 @ nat @ Y2 @ I )
& ( ord_less @ nat @ Y2 @ X2 ) )
=> ( P @ Y2 ) )
=> ( P @ X2 ) )
=> ( P @ A2 ) ) ).
% interval_induct
thf(fact_60_zero__natural_Orsp,axiom,
( ( zero_zero @ nat )
= ( zero_zero @ nat ) ) ).
% zero_natural.rsp
thf(fact_61_of__nat__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( semiring_1_of_nat @ A @ N ) )
= ( M = N ) ) ) ).
% of_nat_eq_iff
thf(fact_62_of__nat__0,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ( ( semiring_1_of_nat @ A @ ( zero_zero @ nat ) )
= ( zero_zero @ A ) ) ) ).
% of_nat_0
thf(fact_63_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [N: nat] :
( ( ( zero_zero @ A )
= ( semiring_1_of_nat @ A @ N ) )
= ( ( zero_zero @ nat )
= N ) ) ) ).
% of_nat_0_eq_iff
thf(fact_64_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [M: nat] :
( ( ( semiring_1_of_nat @ A @ M )
= ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_eq_0_iff
thf(fact_65_of__nat__less__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_iff
thf(fact_66_list__slice__aux__length,axiom,
! [A: $tType,Xs: list @ A,K: nat,N: nat] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( listSl1123830174ce_aux @ A @ Xs @ K @ N ) )
= N ) ).
% list_slice_aux_length
thf(fact_67_of__nat__less__0__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat] :
~ ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) ) ) ).
% of_nat_less_0_iff
thf(fact_68_less__imp__of__nat__less,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% less_imp_of_nat_less
thf(fact_69_of__nat__less__imp__less,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% of_nat_less_imp_less
thf(fact_70_Collect__minI,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [K: A,I: set @ A,P: A > $o] :
( ( member2 @ A @ K @ I )
=> ( ( P @ K )
=> ? [X2: A] :
( ( member2 @ A @ X2 @ I )
& ( P @ X2 )
& ! [Xa: A] :
( ( member2 @ A @ Xa @ I )
=> ( ( ord_less @ A @ Xa @ X2 )
=> ~ ( P @ Xa ) ) ) ) ) ) ) ).
% Collect_minI
thf(fact_71_Collect__minI__ex,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [I: set @ A,P: A > $o] :
( ? [X4: A] :
( ( member2 @ A @ X4 @ I )
& ( P @ X4 ) )
=> ? [X2: A] :
( ( member2 @ A @ X2 @ I )
& ( P @ X2 )
& ! [Xa: A] :
( ( member2 @ A @ Xa @ I )
=> ( ( ord_less @ A @ Xa @ X2 )
=> ~ ( P @ Xa ) ) ) ) ) ) ).
% Collect_minI_ex
thf(fact_72_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( K
= ( semiring_1_of_nat @ int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_73_pos__int__cases,axiom,
! [K: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiring_1_of_nat @ int @ N2 ) )
=> ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 ) ) ) ).
% pos_int_cases
thf(fact_74_reals__Archimedean2,axiom,
! [A: $tType] :
( ( archim1804426504_field @ A )
=> ! [X: A] :
? [N2: nat] : ( ord_less @ A @ X @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% reals_Archimedean2
thf(fact_75_list__slice__def,axiom,
! [A: $tType] :
( ( listSl1903280966_slice @ A )
= ( ^ [Xs3: list @ A,K2: nat] : ( listSl1123830174ce_aux @ A @ Xs3 @ K2 @ ( divide_divide @ nat @ ( size_size @ ( list @ A ) @ Xs3 ) @ K2 ) ) ) ) ).
% list_slice_def
thf(fact_76_of__nat__zero__less__power__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ X ) @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N
= ( zero_zero @ nat ) ) ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_77_of__nat__le__0__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( zero_zero @ A ) )
= ( M
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_le_0_iff
thf(fact_78_ex__inverse__of__nat__less,axiom,
! [A: $tType] :
( ( archim1804426504_field @ A )
=> ! [X: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ? [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
& ( ord_less @ A @ ( inverse_inverse @ A @ ( semiring_1_of_nat @ A @ N2 ) ) @ X ) ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_79_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A2 ) ).
% bot_nat_0.extremum
thf(fact_80_le0,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% le0
thf(fact_81_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_82_of__nat__le__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [M: nat,N: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ).
% of_nat_le_iff
thf(fact_83_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( power_power @ nat @ X @ N ) )
= ( ( ord_less @ nat @ ( zero_zero @ nat ) @ X )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% nat_zero_less_power_iff
thf(fact_84_of__nat__power,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( power_power @ nat @ M @ N ) )
= ( power_power @ A @ ( semiring_1_of_nat @ A @ M ) @ N ) ) ) ).
% of_nat_power
thf(fact_85_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W )
= ( semiring_1_of_nat @ A @ X ) )
= ( ( power_power @ nat @ B2 @ W )
= X ) ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_86_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( semiring_char_0 @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ( semiring_1_of_nat @ A @ X )
= ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( X
= ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_87_of__nat__le__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ord_less_eq @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less_eq @ nat @ ( power_power @ nat @ B2 @ W ) @ X ) ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_88_of__nat__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( ord_less_eq @ nat @ X @ ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_89_power__eq__0__iff,axiom,
! [A: $tType] :
( ( semiri134348788visors @ A )
=> ! [A2: A,N: nat] :
( ( ( power_power @ A @ A2 @ N )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ) ).
% power_eq_0_iff
thf(fact_90_of__nat__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [X: nat,B2: nat,W: nat] :
( ( ord_less @ A @ ( semiring_1_of_nat @ A @ X ) @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) )
= ( ord_less @ nat @ X @ ( power_power @ nat @ B2 @ W ) ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_91_of__nat__less__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [B2: nat,W: nat,X: nat] :
( ( ord_less @ A @ ( power_power @ A @ ( semiring_1_of_nat @ A @ B2 ) @ W ) @ ( semiring_1_of_nat @ A @ X ) )
= ( ord_less @ nat @ ( power_power @ nat @ B2 @ W ) @ X ) ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_92_power__mono__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ) ) ) ).
% power_mono_iff
thf(fact_93_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_94_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ? [N2: nat] :
( K
= ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_95_zero__integer_Orsp,axiom,
( ( zero_zero @ int )
= ( zero_zero @ int ) ) ).
% zero_integer.rsp
thf(fact_96_of__nat__mono,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [I2: nat,J: nat] :
( ( ord_less_eq @ nat @ I2 @ J )
=> ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ I2 ) @ ( semiring_1_of_nat @ A @ J ) ) ) ) ).
% of_nat_mono
thf(fact_97_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ M ) @ ( semiring_1_of_nat @ int @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% zle_int
thf(fact_98_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiring_1_of_nat @ int @ M )
= ( semiring_1_of_nat @ int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_99_real__arch__simple,axiom,
! [A: $tType] :
( ( archim1804426504_field @ A )
=> ! [X: A] :
? [N2: nat] : ( ord_less_eq @ A @ X @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% real_arch_simple
thf(fact_100_power__less__imp__less__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ord_less @ A @ A2 @ B2 ) ) ) ) ).
% power_less_imp_less_base
thf(fact_101_power__inverse,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,N: nat] :
( ( power_power @ A @ ( inverse_inverse @ A @ A2 ) @ N )
= ( inverse_inverse @ A @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% power_inverse
thf(fact_102_power__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( power_power @ A @ ( divide_divide @ A @ A2 @ B2 ) @ N )
= ( divide_divide @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ).
% power_divide
thf(fact_103_power__not__zero,axiom,
! [A: $tType] :
( ( semiri134348788visors @ A )
=> ! [A2: A,N: nat] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( power_power @ A @ A2 @ N )
!= ( zero_zero @ A ) ) ) ) ).
% power_not_zero
thf(fact_104_zero__le__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% zero_le_power
thf(fact_105_power__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ).
% power_mono
thf(fact_106_less__eq__int__code_I1_J,axiom,
ord_less_eq @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ).
% less_eq_int_code(1)
thf(fact_107_less__int__code_I1_J,axiom,
~ ( ord_less @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ) ).
% less_int_code(1)
thf(fact_108_power__eq__imp__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat,B2: A] :
( ( ( power_power @ A @ A2 @ N )
= ( power_power @ A @ B2 @ N ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_109_power__eq__iff__eq__base,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [N: nat,A2: A,B2: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ( power_power @ A @ A2 @ N )
= ( power_power @ A @ B2 @ N ) )
= ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_110_real__arch__inverse,axiom,
! [E2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
= ( ? [N3: nat] :
( ( N3
!= ( zero_zero @ nat ) )
& ( ord_less @ real @ ( zero_zero @ real ) @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) )
& ( ord_less @ real @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N3 ) ) @ E2 ) ) ) ) ).
% real_arch_inverse
thf(fact_111_forall__pos__mono,axiom,
! [P: real > $o,E2: real] :
( ! [D: real,E: real] :
( ( ord_less @ real @ D @ E )
=> ( ( P @ D )
=> ( P @ E ) ) )
=> ( ! [N2: nat] :
( ( N2
!= ( zero_zero @ nat ) )
=> ( P @ ( inverse_inverse @ real @ ( semiring_1_of_nat @ real @ N2 ) ) ) )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono
thf(fact_112_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_113_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_114_ge__less__neq__conv,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,N3: A] :
! [X3: A] :
( ( ord_less @ A @ X3 @ A4 )
=> ( N3 != X3 ) ) ) ) ) ).
% ge_less_neq_conv
thf(fact_115_less__ge__neq__conv,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [N3: A,A4: A] :
! [X3: A] :
( ( ord_less_eq @ A @ A4 @ X3 )
=> ( N3 != X3 ) ) ) ) ) ).
% less_ge_neq_conv
thf(fact_116_greater__le__neq__conv,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less @ A )
= ( ^ [A4: A,N3: A] :
! [X3: A] :
( ( ord_less_eq @ A @ X3 @ A4 )
=> ( N3 != X3 ) ) ) ) ) ).
% greater_le_neq_conv
thf(fact_117_le__greater__neq__conv,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [N3: A,A4: A] :
! [X3: A] :
( ( ord_less @ A @ A4 @ X3 )
=> ( N3 != X3 ) ) ) ) ) ).
% le_greater_neq_conv
thf(fact_118_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
=> ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_119_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq @ nat @ A2 @ ( zero_zero @ nat ) )
= ( A2
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_120_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_121_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% less_eq_nat.simps(1)
thf(fact_122_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I2: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less @ nat @ I3 @ J2 )
=> ( ord_less @ nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq @ nat @ I2 @ J )
=> ( ord_less_eq @ nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_123_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_124_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_125_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M3: nat,N3: nat] :
( ( ord_less @ nat @ M3 @ N3 )
| ( M3 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_126_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_127_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_eq @ nat @ M3 @ N3 )
& ( M3 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_128_zero__less__power,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,N: nat] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( power_power @ A @ A2 @ N ) ) ) ) ).
% zero_less_power
thf(fact_129_nat__power__less__imp__less,axiom,
! [I2: nat,M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ I2 )
=> ( ( ord_less @ nat @ ( power_power @ nat @ I2 @ M ) @ ( power_power @ nat @ I2 @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_130_power__strict__mono,axiom,
! [A: $tType] :
( ( linordered_semidom @ A )
=> ! [A2: A,B2: A,N: nat] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ A @ ( power_power @ A @ A2 @ N ) @ ( power_power @ A @ B2 @ N ) ) ) ) ) ) ).
% power_strict_mono
thf(fact_131_zero__power,axiom,
! [A: $tType] :
( ( semiring_1 @ A )
=> ! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( power_power @ A @ ( zero_zero @ A ) @ N )
= ( zero_zero @ A ) ) ) ) ).
% zero_power
thf(fact_132_of__nat__0__le__iff,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ! [N: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N ) ) ) ).
% of_nat_0_le_iff
thf(fact_133_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ ( zero_zero @ nat ) )
=> ? [K3: nat] :
( ( ord_less_eq @ nat @ K3 @ N )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_134_count__le__length,axiom,
! [A: $tType,Xs: list @ A,X: A] : ( ord_less_eq @ nat @ ( count_list @ A @ Xs @ X ) @ ( size_size @ ( list @ A ) @ Xs ) ) ).
% count_le_length
thf(fact_135_list__slice__length,axiom,
! [A: $tType,Xs: list @ A,K: nat] :
( ( size_size @ ( list @ ( list @ A ) ) @ ( listSl1903280966_slice @ A @ Xs @ K ) )
= ( divide_divide @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ K ) ) ).
% list_slice_length
thf(fact_136_inverse__le__iff__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le
thf(fact_137_inverse__le__iff__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_138_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( divide_divide @ nat @ M @ N )
= ( zero_zero @ nat ) ) ) ).
% div_less
thf(fact_139_inverse__positive__iff__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_positive_iff_positive
thf(fact_140_inverse__negative__iff__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_negative_iff_negative
thf(fact_141_inverse__less__iff__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_142_inverse__eq__iff__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
= ( A2 = B2 ) ) ) ).
% inverse_eq_iff_eq
thf(fact_143_inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ).
% inverse_inverse_eq
thf(fact_144_division__ring__divide__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% division_ring_divide_zero
thf(fact_145_divide__cancel__right,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,C: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ C )
= ( divide_divide @ A @ B2 @ C ) )
= ( ( C
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_right
thf(fact_146_divide__cancel__left,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [C: A,A2: A,B2: A] :
( ( ( divide_divide @ A @ C @ A2 )
= ( divide_divide @ A @ C @ B2 ) )
= ( ( C
= ( zero_zero @ A ) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_left
thf(fact_147_divide__eq__0__iff,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) )
= ( ( A2
= ( zero_zero @ A ) )
| ( B2
= ( zero_zero @ A ) ) ) ) ) ).
% divide_eq_0_iff
thf(fact_148_inverse__nonzero__iff__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
= ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_149_inverse__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% inverse_zero
thf(fact_150_inverse__divide,axiom,
! [A: $tType] :
( ( field @ A )
=> ! [A2: A,B2: A] :
( ( inverse_inverse @ A @ ( divide_divide @ A @ A2 @ B2 ) )
= ( divide_divide @ A @ B2 @ A2 ) ) ) ).
% inverse_divide
thf(fact_151_inverse__nonnegative__iff__nonnegative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_152_inverse__nonpositive__iff__nonpositive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_153_inverse__less__iff__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
= ( ord_less @ A @ B2 @ A2 ) ) ) ) ) ).
% inverse_less_iff_less
thf(fact_154_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ K @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ L @ K )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_neg_neg_trivial
thf(fact_155_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ K @ L )
=> ( ( divide_divide @ int @ K @ L )
= ( zero_zero @ int ) ) ) ) ).
% div_pos_pos_trivial
thf(fact_156_less__eq__real__def,axiom,
( ( ord_less_eq @ real )
= ( ^ [X3: real,Y3: real] :
( ( ord_less @ real @ X3 @ Y3 )
| ( X3 = Y3 ) ) ) ) ).
% less_eq_real_def
thf(fact_157_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_158_le__trans,axiom,
! [I2: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I2 @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I2 @ K ) ) ) ).
% le_trans
thf(fact_159_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_160_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_161_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_162_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ? [X2: nat] :
( ( P @ X2 )
& ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq @ nat @ Y2 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_163_real__of__nat__div4,axiom,
! [N: nat,X: nat] : ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ ( divide_divide @ nat @ N @ X ) ) @ ( divide_divide @ real @ ( semiring_1_of_nat @ real @ N ) @ ( semiring_1_of_nat @ real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_164_linordered__field__no__lb,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X4: A] :
? [Y4: A] : ( ord_less @ A @ Y4 @ X4 ) ) ).
% linordered_field_no_lb
thf(fact_165_linordered__field__no__ub,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X4: A] :
? [X_1: A] : ( ord_less @ A @ X4 @ X_1 ) ) ).
% linordered_field_no_ub
thf(fact_166_inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( A2 = B2 ) ) ) ).
% inverse_eq_imp_eq
thf(fact_167_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ K ) @ ( divide_divide @ nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_168_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( divide_divide @ nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_169_nonzero__imp__inverse__nonzero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ A2 )
!= ( zero_zero @ A ) ) ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_170_nonzero__inverse__inverse__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( A2
!= ( zero_zero @ A ) )
=> ( ( inverse_inverse @ A @ ( inverse_inverse @ A @ A2 ) )
= A2 ) ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_171_nonzero__inverse__eq__imp__eq,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A,B2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( inverse_inverse @ A @ B2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ( B2
!= ( zero_zero @ A ) )
=> ( A2 = B2 ) ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_172_inverse__zero__imp__zero,axiom,
! [A: $tType] :
( ( division_ring @ A )
=> ! [A2: A] :
( ( ( inverse_inverse @ A @ A2 )
= ( zero_zero @ A ) )
=> ( A2
= ( zero_zero @ A ) ) ) ) ).
% inverse_zero_imp_zero
thf(fact_173_field__class_Ofield__inverse__zero,axiom,
! [A: $tType] :
( ( field @ A )
=> ( ( inverse_inverse @ A @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% field_class.field_inverse_zero
thf(fact_174_divide__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_le_0_iff
thf(fact_175_divide__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C ) @ ( divide_divide @ A @ B2 @ C ) ) ) ) ) ).
% divide_right_mono
thf(fact_176_zero__le__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less_eq @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less_eq @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_le_divide_iff
thf(fact_177_divide__nonneg__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_178_divide__nonneg__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_nonpos
thf(fact_179_divide__nonpos__nonneg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_nonneg
thf(fact_180_divide__nonpos__nonpos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less_eq @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_181_divide__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ B2 @ C ) @ ( divide_divide @ A @ A2 @ C ) ) ) ) ) ).
% divide_right_mono_neg
thf(fact_182_divide__neg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_neg_neg
thf(fact_183_divide__neg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_neg_pos
thf(fact_184_divide__pos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_pos_neg
thf(fact_185_divide__pos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_pos_pos
thf(fact_186_divide__less__0__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ B2 ) @ ( zero_zero @ A ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) ) ) ) ) ).
% divide_less_0_iff
thf(fact_187_divide__less__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C: A,B2: A] :
( ( ord_less @ A @ ( divide_divide @ A @ A2 @ C ) @ ( divide_divide @ A @ B2 @ C ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) )
& ( C
!= ( zero_zero @ A ) ) ) ) ) ).
% divide_less_cancel
thf(fact_188_zero__less__divide__iff,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
& ( ord_less @ A @ ( zero_zero @ A ) @ B2 ) )
| ( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
& ( ord_less @ A @ B2 @ ( zero_zero @ A ) ) ) ) ) ) ).
% zero_less_divide_iff
thf(fact_189_divide__strict__right__mono,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C ) @ ( divide_divide @ A @ B2 @ C ) ) ) ) ) ).
% divide_strict_right_mono
thf(fact_190_divide__strict__right__mono__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less @ A @ B2 @ A2 )
=> ( ( ord_less @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( divide_divide @ A @ A2 @ C ) @ ( divide_divide @ A @ B2 @ C ) ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_191_inverse__less__imp__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less
thf(fact_192_less__imp__inverse__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less
thf(fact_193_inverse__less__imp__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ B2 @ A2 ) ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_194_less__imp__inverse__less__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_195_inverse__negative__imp__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ) ).
% inverse_negative_imp_negative
thf(fact_196_inverse__positive__imp__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) )
=> ( ( A2
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ) ).
% inverse_positive_imp_positive
thf(fact_197_negative__imp__inverse__negative,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ A2 @ ( zero_zero @ A ) )
=> ( ord_less @ A @ ( inverse_inverse @ A @ A2 ) @ ( zero_zero @ A ) ) ) ) ).
% negative_imp_inverse_negative
thf(fact_198_positive__imp__inverse__positive,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ).
% positive_imp_inverse_positive
thf(fact_199_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ( ord_less @ nat @ M @ N )
| ( N
= ( zero_zero @ nat ) ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_200_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( divide_divide @ nat @ M @ N ) )
= ( ( ord_less_eq @ nat @ N @ M )
& ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_201_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( divide_divide @ nat @ K @ N ) @ ( divide_divide @ nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_202_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [A: $tType] :
( ( euclid1852923125th_nat @ A )
=> ! [M: nat,N: nat] :
( ( semiring_1_of_nat @ A @ ( divide_divide @ nat @ M @ N ) )
= ( divide_divide @ A @ ( semiring_1_of_nat @ A @ M ) @ ( semiring_1_of_nat @ A @ N ) ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_203_divide__nonpos__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonpos_pos
thf(fact_204_divide__nonpos__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ ( zero_zero @ A ) )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonpos_neg
thf(fact_205_divide__nonneg__pos,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ Y )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ X @ Y ) ) ) ) ) ).
% divide_nonneg_pos
thf(fact_206_divide__nonneg__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ Y @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Y ) @ ( zero_zero @ A ) ) ) ) ) ).
% divide_nonneg_neg
thf(fact_207_divide__le__cancel,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,C: A,B2: A] :
( ( ord_less_eq @ A @ ( divide_divide @ A @ A2 @ C ) @ ( divide_divide @ A @ B2 @ C ) )
= ( ( ( ord_less @ A @ ( zero_zero @ A ) @ C )
=> ( ord_less_eq @ A @ A2 @ B2 ) )
& ( ( ord_less @ A @ C @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ) ).
% divide_le_cancel
thf(fact_208_frac__less2,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W: A,Z: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less @ A @ W @ Z )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_less2
thf(fact_209_frac__less,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [X: A,Y: A,W: A,Z: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ X )
=> ( ( ord_less @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less_eq @ A @ W @ Z )
=> ( ord_less @ A @ ( divide_divide @ A @ X @ Z ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_less
thf(fact_210_frac__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [Y: A,X: A,W: A,Z: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ Y )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ W )
=> ( ( ord_less_eq @ A @ W @ Z )
=> ( ord_less_eq @ A @ ( divide_divide @ A @ X @ Z ) @ ( divide_divide @ A @ Y @ W ) ) ) ) ) ) ) ).
% frac_le
thf(fact_211_le__imp__inverse__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_212_inverse__le__imp__le__neg,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ B2 @ ( zero_zero @ A ) )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_213_le__imp__inverse__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ ( inverse_inverse @ A @ B2 ) @ ( inverse_inverse @ A @ A2 ) ) ) ) ) ).
% le_imp_inverse_le
thf(fact_214_inverse__le__imp__le,axiom,
! [A: $tType] :
( ( linordered_field @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( inverse_inverse @ A @ A2 ) @ ( inverse_inverse @ A @ B2 ) )
=> ( ( ord_less @ A @ ( zero_zero @ A ) @ A2 )
=> ( ord_less_eq @ A @ B2 @ A2 ) ) ) ) ).
% inverse_le_imp_le
thf(fact_215_bits__div__by__0,axiom,
! [A: $tType] :
( ( semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% bits_div_by_0
thf(fact_216_bits__div__0,axiom,
! [A: $tType] :
( ( semiring_bits @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% bits_div_0
thf(fact_217_div__by__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ A2 @ ( zero_zero @ A ) )
= ( zero_zero @ A ) ) ) ).
% div_by_0
thf(fact_218_div__0,axiom,
! [A: $tType] :
( ( semidom_divide @ A )
=> ! [A2: A] :
( ( divide_divide @ A @ ( zero_zero @ A ) @ A2 )
= ( zero_zero @ A ) ) ) ).
% div_0
thf(fact_219_complete__real,axiom,
! [S2: set @ real] :
( ? [X4: real] : ( member2 @ real @ X4 @ S2 )
=> ( ? [Z2: real] :
! [X2: real] :
( ( member2 @ real @ X2 @ S2 )
=> ( ord_less_eq @ real @ X2 @ Z2 ) )
=> ? [Y4: real] :
( ! [X4: real] :
( ( member2 @ real @ X4 @ S2 )
=> ( ord_less_eq @ real @ X4 @ Y4 ) )
& ! [Z2: real] :
( ! [X2: real] :
( ( member2 @ real @ X2 @ S2 )
=> ( ord_less_eq @ real @ X2 @ Z2 ) )
=> ( ord_less_eq @ real @ Y4 @ Z2 ) ) ) ) ) ).
% complete_real
thf(fact_220_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( ( linordered_idom @ A )
=> ! [X: A,Y: A] :
( ( X != Y )
=> ( ~ ( ord_less @ A @ X @ Y )
=> ( ord_less @ A @ Y @ X ) ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_221_nonneg1__imp__zdiv__pos__iff,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ( ord_less_eq @ int @ B2 @ A2 )
& ( ord_less @ int @ ( zero_zero @ int ) @ B2 ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_222_pos__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_223_div__neg__pos__less0,axiom,
! [A2: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_neg_pos_less0
thf(fact_224_neg__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ ( zero_zero @ int ) @ A2 ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_225_pos__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ( ord_less @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) )
= ( ord_less @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_226_zdiv__int,axiom,
! [A2: nat,B2: nat] :
( ( semiring_1_of_nat @ int @ ( divide_divide @ nat @ A2 @ B2 ) )
= ( divide_divide @ int @ ( semiring_1_of_nat @ int @ A2 ) @ ( semiring_1_of_nat @ int @ B2 ) ) ) ).
% zdiv_int
thf(fact_227_div__positive,axiom,
! [A: $tType] :
( ( unique1598680935umeral @ A )
=> ! [B2: A,A2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( divide_divide @ A @ A2 @ B2 ) ) ) ) ) ).
% div_positive
thf(fact_228_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: $tType] :
( ( unique1598680935umeral @ A )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 )
=> ( ( ord_less @ A @ A2 @ B2 )
=> ( ( divide_divide @ A @ A2 @ B2 )
= ( zero_zero @ A ) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_229_zdiv__mono1,axiom,
! [A2: int,A5: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A5 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A5 @ B2 ) ) ) ) ).
% zdiv_mono1
thf(fact_230_zdiv__mono2,axiom,
! [A2: int,B3: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B3 )
=> ( ( ord_less_eq @ int @ B3 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( divide_divide @ int @ A2 @ B3 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_231_zdiv__eq__0__iff,axiom,
! [I2: int,K: int] :
( ( ( divide_divide @ int @ I2 @ K )
= ( zero_zero @ int ) )
= ( ( K
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ I2 )
& ( ord_less @ int @ I2 @ K ) )
| ( ( ord_less_eq @ int @ I2 @ ( zero_zero @ int ) )
& ( ord_less @ int @ K @ I2 ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_232_zdiv__mono1__neg,axiom,
! [A2: int,A5: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ A5 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A5 @ B2 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_233_zdiv__mono2__neg,axiom,
! [A2: int,B3: int,B2: int] :
( ( ord_less @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B3 )
=> ( ( ord_less_eq @ int @ B3 @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B3 ) @ ( divide_divide @ int @ A2 @ B2 ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_234_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) )
= ( ( K
= ( zero_zero @ int ) )
| ( L
= ( zero_zero @ int ) )
| ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ L ) )
| ( ( ord_less @ int @ K @ ( zero_zero @ int ) )
& ( ord_less @ int @ L @ ( zero_zero @ int ) ) ) ) ) ).
% div_int_pos_iff
thf(fact_235_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq @ int @ L @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ L )
=> ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_236_div__nonneg__neg__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ A2 )
=> ( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonneg_neg_le0
thf(fact_237_div__nonpos__pos__le0,axiom,
! [A2: int,B2: int] :
( ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ B2 )
=> ( ord_less_eq @ int @ ( divide_divide @ int @ A2 @ B2 ) @ ( zero_zero @ int ) ) ) ) ).
% div_nonpos_pos_le0
thf(fact_238_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I2: int] :
( ( ord_less @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ I2 @ K ) )
= ( ord_less_eq @ int @ K @ I2 ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_239_neg__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( ( ord_less @ int @ B2 @ ( zero_zero @ int ) )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( divide_divide @ int @ A2 @ B2 ) )
= ( ord_less_eq @ int @ A2 @ ( zero_zero @ int ) ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_240_realpow__pos__nth__unique,axiom,
! [N: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [X2: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ X2 )
& ( ( power_power @ real @ X2 @ N )
= A2 )
& ! [Y2: real] :
( ( ( ord_less @ real @ ( zero_zero @ real ) @ Y2 )
& ( ( power_power @ real @ Y2 @ N )
= A2 ) )
=> ( Y2 = X2 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_241_realpow__pos__nth,axiom,
! [N: nat,A2: real] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ real @ ( zero_zero @ real ) @ A2 )
=> ? [R: real] :
( ( ord_less @ real @ ( zero_zero @ real ) @ R )
& ( ( power_power @ real @ R @ N )
= A2 ) ) ) ) ).
% realpow_pos_nth
thf(fact_242_nat__int__comparison_I3_J,axiom,
( ( ord_less_eq @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_243_nat__int__comparison_I2_J,axiom,
( ( ord_less @ nat )
= ( ^ [A4: nat,B4: nat] : ( ord_less @ int @ ( semiring_1_of_nat @ int @ A4 ) @ ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_244_verit__la__disequality,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
| ~ ( ord_less_eq @ A @ A2 @ B2 )
| ~ ( ord_less_eq @ A @ B2 @ A2 ) ) ) ).
% verit_la_disequality
thf(fact_245_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A2: A] :
~ ( ord_less @ A @ A2 @ A2 ) ) ).
% verit_comp_simplify1(1)
thf(fact_246_verit__la__generic,axiom,
! [A2: int,X: int] :
( ( ord_less_eq @ int @ A2 @ X )
| ( A2 = X )
| ( ord_less_eq @ int @ X @ A2 ) ) ).
% verit_la_generic
thf(fact_247_int__if,axiom,
! [P: $o,A2: nat,B2: nat] :
( ( P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ A2 ) ) )
& ( ~ P
=> ( ( semiring_1_of_nat @ int @ ( if @ nat @ P @ A2 @ B2 ) )
= ( semiring_1_of_nat @ int @ B2 ) ) ) ) ).
% int_if
thf(fact_248_nat__int__comparison_I1_J,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A4: nat,B4: nat] :
( ( semiring_1_of_nat @ int @ A4 )
= ( semiring_1_of_nat @ int @ B4 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_249_verit__comp__simplify1_I3_J,axiom,
! [B: $tType] :
( ( linorder @ B )
=> ! [B3: B,A5: B] :
( ( ~ ( ord_less_eq @ B @ B3 @ A5 ) )
= ( ord_less @ B @ A5 @ B3 ) ) ) ).
% verit_comp_simplify1(3)
thf(fact_250_int__ops_I1_J,axiom,
( ( semiring_1_of_nat @ int @ ( zero_zero @ nat ) )
= ( zero_zero @ int ) ) ).
% int_ops(1)
thf(fact_251_div__gr__imp__gr__divisor,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less @ nat @ X @ ( divide_divide @ nat @ N @ M ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% div_gr_imp_gr_divisor
thf(fact_252_div__eq__0__conv,axiom,
! [N: nat,M: nat] :
( ( ( divide_divide @ nat @ N @ M )
= ( zero_zero @ nat ) )
= ( ( M
= ( zero_zero @ nat ) )
| ( ord_less @ nat @ N @ M ) ) ) ).
% div_eq_0_conv
% Type constructors (47)
thf(tcon_fun___Orderings_Oorder,axiom,
! [A6: $tType,A7: $tType] :
( ( order @ A7 )
=> ( order @ ( A6 > A7 ) ) ) ).
thf(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring__with__nat,axiom,
euclid1852923125th_nat @ int ).
thf(tcon_Int_Oint___Divides_Ounique__euclidean__semiring__numeral,axiom,
unique1598680935umeral @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1__no__zero__divisors,axiom,
semiri134348788visors @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__semidom,axiom,
linordered_semidom @ int ).
thf(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom @ int ).
thf(tcon_Int_Oint___Rings_Osemidom__divide,axiom,
semidom_divide @ int ).
thf(tcon_Int_Oint___Parity_Osemiring__bits,axiom,
semiring_bits @ int ).
thf(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0 @ int ).
thf(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder @ int ).
thf(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1 @ int ).
thf(tcon_Int_Oint___Orderings_Oorder_1,axiom,
order @ int ).
thf(tcon_Int_Oint___Groups_Ozero,axiom,
zero @ int ).
thf(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring__with__nat_2,axiom,
euclid1852923125th_nat @ nat ).
thf(tcon_Nat_Onat___Divides_Ounique__euclidean__semiring__numeral_3,axiom,
unique1598680935umeral @ nat ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1__no__zero__divisors_4,axiom,
semiri134348788visors @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_5,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__semidom_6,axiom,
linordered_semidom @ nat ).
thf(tcon_Nat_Onat___Rings_Osemidom__divide_7,axiom,
semidom_divide @ nat ).
thf(tcon_Nat_Onat___Parity_Osemiring__bits_8,axiom,
semiring_bits @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Nat_Osemiring__char__0_9,axiom,
semiring_char_0 @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder_10,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Rings_Osemiring__1_11,axiom,
semiring_1 @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_12,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero_13,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_Set_Oset___Orderings_Oorder_14,axiom,
! [A6: $tType] : ( order @ ( set @ A6 ) ) ).
thf(tcon_HOL_Obool___Orderings_Olinorder_15,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_16,axiom,
order @ $o ).
thf(tcon_List_Olist___Nat_Osize_17,axiom,
! [A6: $tType] : ( size @ ( list @ A6 ) ) ).
thf(tcon_Real_Oreal___Archimedean__Field_Oarchimedean__field,axiom,
archim1804426504_field @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1__no__zero__divisors_18,axiom,
semiri134348788visors @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__nonzero__semiring_19,axiom,
linord1659791738miring @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__semidom_20,axiom,
linordered_semidom @ real ).
thf(tcon_Real_Oreal___Fields_Olinordered__field,axiom,
linordered_field @ real ).
thf(tcon_Real_Oreal___Rings_Olinordered__idom_21,axiom,
linordered_idom @ real ).
thf(tcon_Real_Oreal___Rings_Osemidom__divide_22,axiom,
semidom_divide @ real ).
thf(tcon_Real_Oreal___Fields_Odivision__ring,axiom,
division_ring @ real ).
thf(tcon_Real_Oreal___Nat_Osemiring__char__0_23,axiom,
semiring_char_0 @ real ).
thf(tcon_Real_Oreal___Orderings_Olinorder_24,axiom,
linorder @ real ).
thf(tcon_Real_Oreal___Rings_Osemiring__1_25,axiom,
semiring_1 @ real ).
thf(tcon_Real_Oreal___Orderings_Oorder_26,axiom,
order @ real ).
thf(tcon_Real_Oreal___Fields_Ofield,axiom,
field @ real ).
thf(tcon_Real_Oreal___Groups_Ozero_27,axiom,
zero @ real ).
% Helper facts (3)
thf(help_If_3_1_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_T,axiom,
! [A: $tType,X: A,Y: A] :
( ( if @ A @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( listSl1903280966_slice @ a @ ( nil @ a ) @ k )
= ( nil @ ( list @ a ) ) ) ).
%------------------------------------------------------------------------------