TPTP Problem File: ITP061^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP061^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer FLPTheorem problem prob_979__3303242_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : FLPTheorem/prob_979__3303242_1 [Des21]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.00 v8.2.0, 0.33 v8.1.0, 0.25 v7.5.0
% Syntax : Number of formulae : 340 ( 93 unt; 54 typ; 0 def)
% Number of atoms : 826 ( 171 equ; 0 cnn)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 3221 ( 83 ~; 18 |; 42 &;2603 @)
% ( 0 <=>; 475 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 8 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 126 ( 126 >; 0 *; 0 +; 0 <<)
% Number of symbols : 50 ( 49 usr; 10 con; 0-7 aty)
% Number of variables : 880 ( 48 ^; 771 !; 23 ?; 880 :)
% ( 38 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:17:10.250
%------------------------------------------------------------------------------
% Could-be-implicit typings (9)
thf(ty_t_AsynchronousSystem_Oconfiguration_Oconfiguration__ext,type,
configuration_ext: $tType > $tType > $tType > $tType > $tType ).
thf(ty_t_AsynchronousSystem_Omessage,type,
message: $tType > $tType > $tType ).
thf(ty_t_Product__Type_Ounit,type,
product_unit: $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_tf_v,type,
v: $tType ).
thf(ty_tf_s,type,
s: $tType ).
thf(ty_tf_p,type,
p: $tType ).
% Explicit typings (45)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ominus,type,
minus:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel146912293up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_c_AsynchronousSystem_Oenabled,type,
enabled:
!>[P: $tType,V: $tType,S: $tType] : ( ( configuration_ext @ P @ V @ S @ product_unit ) > ( message @ P @ V ) > $o ) ).
thf(sy_c_AsynchronousSystem_OisReceiverOf,type,
isReceiverOf:
!>[P: $tType,V: $tType] : ( P > ( message @ P @ V ) > $o ) ).
thf(sy_c_Execution_Oexecution_OfirstOccurrence,type,
firstOccurrence:
!>[P: $tType,V: $tType,S: $tType] : ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( message @ P @ V ) > nat > $o ) ).
thf(sy_c_Execution_Oexecution_OminimalEnabled,type,
minimalEnabled:
!>[P: $tType,V: $tType,S: $tType] : ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( message @ P @ V ) > $o ) ).
thf(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_ListUtilities_OprefixList,type,
prefixList:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : ( list @ A ) ).
thf(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( ( list @ A ) > nat > A ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_OccM_H____,type,
occM: nat ).
thf(sy_v_OccM____,type,
occM2: nat ).
thf(sy_v_consumedMsg____,type,
consumedMsg: message @ p @ v ).
thf(sy_v_fe____,type,
fe: nat > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ).
thf(sy_v_firstOccSet____,type,
firstOccSet: nat > ( set @ ( message @ p @ v ) ) ).
thf(sy_v_ft____,type,
ft: nat > ( list @ ( message @ p @ v ) ) ).
thf(sy_v_index____,type,
index: nat ).
thf(sy_v_msg_H____,type,
msg: message @ p @ v ).
thf(sy_v_msg____,type,
msg2: message @ p @ v ).
thf(sy_v_msga____,type,
msga: message @ p @ v ).
thf(sy_v_n0____,type,
n0: nat ).
thf(sy_v_n____,type,
n: nat ).
thf(sy_v_p____,type,
p2: p ).
% Relevant facts (253)
thf(fact_0_AssumpOccMFirstOccurrence_I3_J,axiom,
ord_less @ nat @ occM2 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) ).
% AssumpOccMFirstOccurrence(3)
thf(fact_1__092_060open_062length_A_Ife_Aindex_J_A_N_A1_A_092_060le_062_AOccM_092_060close_062,axiom,
ord_less_eq @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ occM2 ).
% \<open>length (fe index) - 1 \<le> OccM\<close>
thf(fact_2_OccM_H_I3_J,axiom,
ord_less @ nat @ occM @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) ).
% OccM'(3)
thf(fact_3__092_060open_062length_A_Ife_Aindex_J_A_N_A1_A_092_060le_062_Alength_A_Ife_A_ISuc_Aindex_J_J_A_N_A1_092_060close_062,axiom,
ord_less_eq @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) @ ( one_one @ nat ) ) ).
% \<open>length (fe index) - 1 \<le> length (fe (Suc index)) - 1\<close>
thf(fact_4_NotEmpty_I2_J,axiom,
( ( fe @ index )
!= ( nil @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) ).
% NotEmpty(2)
thf(fact_5_minus__apply,axiom,
! [B: $tType,A: $tType] :
( ( minus @ B )
=> ( ( minus_minus @ ( A > B ) )
= ( ^ [A2: A > B,B2: A > B,X: A] : ( minus_minus @ B @ ( A2 @ X ) @ ( B2 @ X ) ) ) ) ) ).
% minus_apply
thf(fact_6_AssumptionFair_I2_J,axiom,
ord_less @ nat @ n0 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ n ) ) ).
% AssumptionFair(2)
thf(fact_7_one__natural_Orsp,axiom,
( ( one_one @ nat )
= ( one_one @ nat ) ) ).
% one_natural.rsp
thf(fact_8_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J ) @ K )
= ( minus_minus @ nat @ ( minus_minus @ nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_9_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs: list @ A] :
( ( size_size @ ( list @ A ) @ Xs )
= N ) ).
% Ex_list_of_length
thf(fact_10_neq__if__length__neq,axiom,
! [A: $tType,Xs2: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
!= ( size_size @ ( list @ A ) @ Ys ) )
=> ( Xs2 != Ys ) ) ).
% neq_if_length_neq
thf(fact_11_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X2: A,Y: A] :
( ( ( size_size @ A @ X2 )
!= ( size_size @ A @ Y ) )
=> ( X2 != Y ) ) ) ).
% size_neq_size_imp_neq
thf(fact_12_fun__diff__def,axiom,
! [B: $tType,A: $tType] :
( ( minus @ B )
=> ( ( minus_minus @ ( A > B ) )
= ( ^ [A2: A > B,B2: A > B,X: A] : ( minus_minus @ B @ ( A2 @ X ) @ ( B2 @ X ) ) ) ) ) ).
% fun_diff_def
thf(fact_13_diff__eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A3: A,B3: A,C: A,D: A] :
( ( ( minus_minus @ A @ A3 @ B3 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( A3 = B3 )
= ( C = D ) ) ) ) ).
% diff_eq_diff_eq
thf(fact_14_nat_Oinject,axiom,
! [X22: nat,Y2: nat] :
( ( ( suc @ X22 )
= ( suc @ Y2 ) )
= ( X22 = Y2 ) ) ).
% nat.inject
thf(fact_15_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_16_NotEmpty_I1_J,axiom,
( ( fe @ ( suc @ index ) )
!= ( nil @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) ).
% NotEmpty(1)
thf(fact_17_lessI,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_18_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_19_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_20_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq @ nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_21_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_22_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus @ nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_23_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq @ nat @ I @ N )
=> ( ( minus_minus @ nat @ N @ ( minus_minus @ nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_24_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( suc @ N ) @ ( one_one @ nat ) )
= N ) ).
% diff_Suc_1
thf(fact_25_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_26_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% Suc_leD
thf(fact_27_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_28_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_29_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_30_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_31_Suc__le__D,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ M2 )
=> ? [M3: nat] :
( M2
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_32_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I @ K ) ) ) ).
% le_trans
thf(fact_33_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_34_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_35_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_36_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less @ nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_37_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_38_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq @ nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_39_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less @ nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_40_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_41_Suc__inject,axiom,
! [X2: nat,Y: nat] :
( ( ( suc @ X2 )
= ( suc @ Y ) )
=> ( X2 = Y ) ) ).
% Suc_inject
thf(fact_42_dec__induct,axiom,
! [I: nat,J: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( P2 @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) ) ) )
=> ( P2 @ J ) ) ) ) ).
% dec_induct
thf(fact_43_mem__Collect__eq,axiom,
! [A: $tType,A3: A,P2: A > $o] :
( ( member @ A @ A3 @ ( collect @ A @ P2 ) )
= ( P2 @ A3 ) ) ).
% mem_Collect_eq
thf(fact_44_Collect__mem__eq,axiom,
! [A: $tType,A4: set @ A] :
( ( collect @ A
@ ^ [X: A] : ( member @ A @ X @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_45_Collect__cong,axiom,
! [A: $tType,P2: A > $o,Q: A > $o] :
( ! [X3: A] :
( ( P2 @ X3 )
= ( Q @ X3 ) )
=> ( ( collect @ A @ P2 )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_46_ext,axiom,
! [B: $tType,A: $tType,F: A > B,G: A > B] :
( ! [X3: A] :
( ( F @ X3 )
= ( G @ X3 ) )
=> ( F = G ) ) ).
% ext
thf(fact_47_inc__induct,axiom,
! [I: nat,J: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( P2 @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P2 @ ( suc @ N2 ) )
=> ( P2 @ N2 ) ) ) )
=> ( P2 @ I ) ) ) ) ).
% inc_induct
thf(fact_48_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_49_Ex__less__Suc,axiom,
! [N: nat,P2: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less @ nat @ I2 @ ( suc @ N ) )
& ( P2 @ I2 ) ) )
= ( ( P2 @ N )
| ? [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
& ( P2 @ I2 ) ) ) ) ).
% Ex_less_Suc
thf(fact_50_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( ord_less @ nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_51_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_52_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M4: nat,N3: nat] :
( ( ord_less_eq @ nat @ M4 @ N3 )
& ( M4 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_53_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_54_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less @ nat @ M @ N ) )
= ( ord_less @ nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_55_All__less__Suc,axiom,
! [N: nat,P2: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( suc @ N ) )
=> ( P2 @ I2 ) ) )
= ( ( P2 @ N )
& ! [I2: nat] :
( ( ord_less @ nat @ I2 @ N )
=> ( P2 @ I2 ) ) ) ) ).
% All_less_Suc
thf(fact_56_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_57_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ N ) @ M )
= ( ? [M5: nat] :
( ( M
= ( suc @ M5 ) )
& ( ord_less @ nat @ N @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_58_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_59_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_60_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_61_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_62_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_63_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_64_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_65_less__eq__Suc__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat] : ( ord_less_eq @ nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_66_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_67_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less @ nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_68_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I @ J )
=> ( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_69_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P2: A > $o,A3: A] :
( ! [X3: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X3 ) )
=> ( P2 @ Y3 ) )
=> ( P2 @ X3 ) )
=> ( P2 @ A3 ) ) ) ).
% measure_induct
thf(fact_70_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq @ nat @ M @ N ) )
= ( ord_less_eq @ nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_71_full__nat__induct,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M6: nat] :
( ( ord_less_eq @ nat @ ( suc @ M6 ) @ N2 )
=> ( P2 @ M6 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ N ) ) ).
% full_nat_induct
thf(fact_72_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_73_less__Suc__induct,axiom,
! [I: nat,J: nat,P2: nat > nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I3: nat] : ( P2 @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K2: nat] :
( ( ord_less @ nat @ I3 @ J2 )
=> ( ( ord_less @ nat @ J2 @ K2 )
=> ( ( P2 @ I3 @ J2 )
=> ( ( P2 @ J2 @ K2 )
=> ( P2 @ I3 @ K2 ) ) ) ) )
=> ( P2 @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_74_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_75_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_76_nat__less__induct,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M6: nat] :
( ( ord_less @ nat @ M6 @ N2 )
=> ( P2 @ M6 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ N ) ) ).
% nat_less_induct
thf(fact_77_infinite__descent,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P2 @ N2 )
=> ? [M6: nat] :
( ( ord_less @ nat @ M6 @ N2 )
& ~ ( P2 @ M6 ) ) )
=> ( P2 @ N ) ) ).
% infinite_descent
thf(fact_78_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M4: nat,N3: nat] :
( ( ord_less @ nat @ M4 @ N3 )
| ( M4 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_79_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_80_linorder__neqE__nat,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less @ nat @ X2 @ Y )
=> ( ord_less @ nat @ Y @ X2 ) ) ) ).
% linorder_neqE_nat
thf(fact_81_strict__inc__induct,axiom,
! [I: nat,J: nat,P2: nat > $o] :
( ( ord_less @ nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P2 @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( P2 @ ( suc @ I3 ) )
=> ( P2 @ I3 ) ) )
=> ( P2 @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_82_Nat_Oex__has__greatest__nat,axiom,
! [P2: nat > $o,K: nat,B3: nat] :
( ( P2 @ K )
=> ( ! [Y4: nat] :
( ( P2 @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B3 ) )
=> ? [X3: nat] :
( ( P2 @ X3 )
& ! [Y3: nat] :
( ( P2 @ Y3 )
=> ( ord_less_eq @ nat @ Y3 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_83_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_84_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P2: A > $o,A3: A] :
( ! [X3: A] :
( ! [Y3: A] :
( ( ord_less @ B @ ( F @ Y3 ) @ ( F @ X3 ) )
=> ( P2 @ Y3 ) )
=> ( P2 @ X3 ) )
=> ( P2 @ A3 ) ) ) ).
% measure_induct_rule
thf(fact_85_nat__induct__at__least,axiom,
! [M: nat,N: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( P2 @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) ) )
=> ( P2 @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_86_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_87_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less @ nat @ I3 @ J2 )
=> ( ord_less @ nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_88_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ! [X3: nat] : ( R @ X3 @ X3 )
=> ( ! [X3: nat,Y4: nat,Z: nat] :
( ( R @ X3 @ Y4 )
=> ( ( R @ Y4 @ Z )
=> ( R @ X3 @ Z ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_89_infinite__descent__measure,axiom,
! [A: $tType,P2: A > $o,V2: A > nat,X2: A] :
( ! [X3: A] :
( ~ ( P2 @ X3 )
=> ? [Y3: A] :
( ( ord_less @ nat @ ( V2 @ Y3 ) @ ( V2 @ X3 ) )
& ~ ( P2 @ Y3 ) ) )
=> ( P2 @ X2 ) ) ).
% infinite_descent_measure
thf(fact_90_lift__Suc__mono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F @ N ) @ ( F @ N4 ) ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_91_lift__Suc__mono__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ nat @ N @ N4 )
=> ( ord_less @ A @ ( F @ N ) @ ( F @ N4 ) ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_92_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F @ N4 ) @ ( F @ N ) ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_93_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ A @ ( F @ N ) @ ( F @ M ) )
= ( ord_less @ nat @ N @ M ) ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_94_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_95_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( ( suc @ ( minus_minus @ nat @ M @ ( suc @ N ) ) )
= ( minus_minus @ nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_96_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_97_zero__induct__lemma,axiom,
! [P2: nat > $o,K: nat,I: nat] :
( ( P2 @ K )
=> ( ! [N2: nat] :
( ( P2 @ ( suc @ N2 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ ( minus_minus @ nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_98_diff__less__mono,axiom,
! [A3: nat,B3: nat,C: nat] :
( ( ord_less @ nat @ A3 @ B3 )
=> ( ( ord_less_eq @ nat @ C @ A3 )
=> ( ord_less @ nat @ ( minus_minus @ nat @ A3 @ C ) @ ( minus_minus @ nat @ B3 @ C ) ) ) ) ).
% diff_less_mono
thf(fact_99_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less @ nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_100_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_101_diff__strict__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ord_less @ A @ ( minus_minus @ A @ A3 @ C ) @ ( minus_minus @ A @ B3 @ C ) ) ) ) ).
% diff_strict_right_mono
thf(fact_102_diff__strict__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ( ord_less @ A @ ( minus_minus @ A @ C @ A3 ) @ ( minus_minus @ A @ C @ B3 ) ) ) ) ).
% diff_strict_left_mono
thf(fact_103_diff__eq__diff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,C: A,D: A] :
( ( ( minus_minus @ A @ A3 @ B3 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( ord_less @ A @ A3 @ B3 )
= ( ord_less @ A @ C @ D ) ) ) ) ).
% diff_eq_diff_less
thf(fact_104_diff__strict__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,D: A,C: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ord_less @ A @ D @ C )
=> ( ord_less @ A @ ( minus_minus @ A @ A3 @ C ) @ ( minus_minus @ A @ B3 @ D ) ) ) ) ) ).
% diff_strict_mono
thf(fact_105_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,C: A,D: A] :
( ( ( minus_minus @ A @ A3 @ B3 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
= ( ord_less_eq @ A @ C @ D ) ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_106_diff__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A3 @ C ) @ ( minus_minus @ A @ B3 @ C ) ) ) ) ).
% diff_right_mono
thf(fact_107_diff__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ C @ A3 ) @ ( minus_minus @ A @ C @ B3 ) ) ) ) ).
% diff_left_mono
thf(fact_108_diff__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A3: A,B3: A,D: A,C: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ D @ C )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A3 @ C ) @ ( minus_minus @ A @ B3 @ D ) ) ) ) ) ).
% diff_mono
thf(fact_109_length__induct,axiom,
! [A: $tType,P2: ( list @ A ) > $o,Xs2: list @ A] :
( ! [Xs: list @ A] :
( ! [Ys2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys2 ) @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( P2 @ Ys2 ) )
=> ( P2 @ Xs ) )
=> ( P2 @ Xs2 ) ) ).
% length_induct
thf(fact_110_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( minus_minus @ nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_111_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ord_less @ nat @ M @ L )
=> ( ord_less @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_112_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_113_le__diff__iff_H,axiom,
! [A3: nat,C: nat,B3: nat] :
( ( ord_less_eq @ nat @ A3 @ C )
=> ( ( ord_less_eq @ nat @ B3 @ C )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ C @ A3 ) @ ( minus_minus @ nat @ C @ B3 ) )
= ( ord_less_eq @ nat @ B3 @ A3 ) ) ) ) ).
% le_diff_iff'
thf(fact_114_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_115_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ L ) @ ( minus_minus @ nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_116_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( minus_minus @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_117_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_118_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ( minus_minus @ nat @ M @ K )
= ( minus_minus @ nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_119_one__reorient,axiom,
! [A: $tType] :
( ( one @ A )
=> ! [X2: A] :
( ( ( one_one @ A )
= X2 )
= ( X2
= ( one_one @ A ) ) ) ) ).
% one_reorient
thf(fact_120_diff__right__commute,axiom,
! [A: $tType] :
( ( cancel146912293up_add @ A )
=> ! [A3: A,C: A,B3: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A3 @ C ) @ B3 )
= ( minus_minus @ A @ ( minus_minus @ A @ A3 @ B3 ) @ C ) ) ) ).
% diff_right_commute
thf(fact_121_Subset,axiom,
! [MsgInSet: message @ p @ v] :
( ( member @ ( message @ p @ v ) @ MsgInSet @ ( firstOccSet @ ( suc @ index ) ) )
=> ( member @ ( message @ p @ v ) @ MsgInSet @ ( firstOccSet @ index ) ) ) ).
% Subset
thf(fact_122_SameCfgOnLow,axiom,
! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) )
=> ( ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ I4 )
= ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ I4 ) ) ) ).
% SameCfgOnLow
thf(fact_123__092_060open_062_092_060not_062_AOccM_A_060_Alength_A_Ift_Aindex_J_092_060close_062,axiom,
~ ( ord_less @ nat @ occM2 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) ) ).
% \<open>\<not> OccM < length (ft index)\<close>
thf(fact_124_IPrefixListEx,axiom,
! [I4: nat] : ( prefixList @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ I4 ) @ ( fe @ ( suc @ I4 ) ) ) ).
% IPrefixListEx
thf(fact_125_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A] : ( ord_less_eq @ A @ X2 @ X2 ) ) ).
% order_refl
thf(fact_126_nat__descend__induct,axiom,
! [N: nat,P2: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less @ nat @ N @ K2 )
=> ( P2 @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N )
=> ( ! [I4: nat] :
( ( ord_less @ nat @ K2 @ I4 )
=> ( P2 @ I4 ) )
=> ( P2 @ K2 ) ) )
=> ( P2 @ M ) ) ) ).
% nat_descend_induct
thf(fact_127_Lattices__Big_Oex__has__greatest__nat,axiom,
! [A: $tType,P2: A > $o,K: A,F: A > nat,B3: nat] :
( ( P2 @ K )
=> ( ! [Y4: A] :
( ( P2 @ Y4 )
=> ( ord_less @ nat @ ( F @ Y4 ) @ B3 ) )
=> ? [X3: A] :
( ( P2 @ X3 )
& ! [Y3: A] :
( ( P2 @ Y3 )
=> ( ord_less_eq @ nat @ ( F @ Y3 ) @ ( F @ X3 ) ) ) ) ) ) ).
% Lattices_Big.ex_has_greatest_nat
thf(fact_128_KeepProperty,axiom,
! [Low: nat,P2: nat > $o,Q: nat > $o] :
( ! [I3: nat] :
( ( ord_less_eq @ nat @ Low @ I3 )
=> ( ( P2 @ I3 )
=> ( ( P2 @ ( suc @ I3 ) )
& ( Q @ I3 ) ) ) )
=> ( ( P2 @ Low )
=> ! [I4: nat] :
( ( ord_less_eq @ nat @ Low @ I4 )
=> ( Q @ I4 ) ) ) ) ).
% KeepProperty
thf(fact_129_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(4)
thf(fact_130_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_131_LengthStep,axiom,
ord_less @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) ).
% LengthStep
thf(fact_132_ConsumedMsg_I1_J,axiom,
minimalEnabled @ p @ v @ s @ ( fe @ index ) @ ( ft @ index ) @ consumedMsg ).
% ConsumedMsg(1)
thf(fact_133_PrefixListTransitive,axiom,
! [A: $tType,L1: list @ A,L2: list @ A,L3: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ( ( prefixList @ A @ L2 @ L3 )
=> ( prefixList @ A @ L1 @ L3 ) ) ) ).
% PrefixListTransitive
thf(fact_134_PrefixSameOnLow,axiom,
! [A: $tType,L1: list @ A,L2: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ! [Index: nat] :
( ( ord_less @ nat @ Index @ ( size_size @ ( list @ A ) @ L1 ) )
=> ( ( nth @ A @ L1 @ Index )
= ( nth @ A @ L2 @ Index ) ) ) ) ).
% PrefixSameOnLow
thf(fact_135_PrefixListMonotonicity,axiom,
! [A: $tType,L1: list @ A,L2: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ L1 ) @ ( size_size @ ( list @ A ) @ L2 ) ) ) ).
% PrefixListMonotonicity
thf(fact_136_nth__equalityI,axiom,
! [A: $tType,Xs2: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs2 )
= ( size_size @ ( list @ A ) @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( ( nth @ A @ Xs2 @ I3 )
= ( nth @ A @ Ys @ I3 ) ) )
=> ( Xs2 = Ys ) ) ) ).
% nth_equalityI
thf(fact_137_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P2: nat > A > $o] :
( ( ! [I2: nat] :
( ( ord_less @ nat @ I2 @ K )
=> ? [X4: A] : ( P2 @ I2 @ X4 ) ) )
= ( ? [Xs3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= K )
& ! [I2: nat] :
( ( ord_less @ nat @ I2 @ K )
=> ( P2 @ I2 @ ( nth @ A @ Xs3 @ I2 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_138_list__eq__iff__nth__eq,axiom,
! [A: $tType] :
( ( ^ [Y5: list @ A,Z2: list @ A] : ( Y5 = Z2 ) )
= ( ^ [Xs3: list @ A,Ys3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ A ) @ Ys3 ) )
& ! [I2: nat] :
( ( ord_less @ nat @ I2 @ ( size_size @ ( list @ A ) @ Xs3 ) )
=> ( ( nth @ A @ Xs3 @ I2 )
= ( nth @ A @ Ys3 @ I2 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_139_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
=> ( A3 = B3 ) ) ) ) ).
% dual_order.antisym
thf(fact_140_dual__order_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z2: A] : ( Y5 = Z2 ) )
= ( ^ [A5: A,B4: A] :
( ( ord_less_eq @ A @ B4 @ A5 )
& ( ord_less_eq @ A @ A5 @ B4 ) ) ) ) ) ).
% dual_order.eq_iff
thf(fact_141_dual__order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ C @ B3 )
=> ( ord_less_eq @ A @ C @ A3 ) ) ) ) ).
% dual_order.trans
thf(fact_142_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P2: A > A > $o,A3: A,B3: A] :
( ! [A6: A,B5: A] :
( ( ord_less_eq @ A @ A6 @ B5 )
=> ( P2 @ A6 @ B5 ) )
=> ( ! [A6: A,B5: A] :
( ( P2 @ B5 @ A6 )
=> ( P2 @ A6 @ B5 ) )
=> ( P2 @ A3 @ B3 ) ) ) ) ).
% linorder_wlog
thf(fact_143_dual__order_Orefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A] : ( ord_less_eq @ A @ A3 @ A3 ) ) ).
% dual_order.refl
thf(fact_144_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z3 )
=> ( ord_less_eq @ A @ X2 @ Z3 ) ) ) ) ).
% order_trans
thf(fact_145_order__class_Oorder_Oantisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ B3 @ A3 )
=> ( A3 = B3 ) ) ) ) ).
% order_class.order.antisym
thf(fact_146_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( B3 = C )
=> ( ord_less_eq @ A @ A3 @ C ) ) ) ) ).
% ord_le_eq_trans
thf(fact_147_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A3: A,B3: A,C: A] :
( ( A3 = B3 )
=> ( ( ord_less_eq @ A @ B3 @ C )
=> ( ord_less_eq @ A @ A3 @ C ) ) ) ) ).
% ord_eq_le_trans
thf(fact_148_order__class_Oorder_Oeq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z2: A] : ( Y5 = Z2 ) )
= ( ^ [A5: A,B4: A] :
( ( ord_less_eq @ A @ A5 @ B4 )
& ( ord_less_eq @ A @ B4 @ A5 ) ) ) ) ) ).
% order_class.order.eq_iff
thf(fact_149_antisym__conv,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X2: A] :
( ( ord_less_eq @ A @ Y @ X2 )
=> ( ( ord_less_eq @ A @ X2 @ Y )
= ( X2 = Y ) ) ) ) ).
% antisym_conv
thf(fact_150_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ( ord_less_eq @ A @ X2 @ Y )
=> ~ ( ord_less_eq @ A @ Y @ Z3 ) )
=> ( ( ( ord_less_eq @ A @ Y @ X2 )
=> ~ ( ord_less_eq @ A @ X2 @ Z3 ) )
=> ( ( ( ord_less_eq @ A @ X2 @ Z3 )
=> ~ ( ord_less_eq @ A @ Z3 @ Y ) )
=> ( ( ( ord_less_eq @ A @ Z3 @ Y )
=> ~ ( ord_less_eq @ A @ Y @ X2 ) )
=> ( ( ( ord_less_eq @ A @ Y @ Z3 )
=> ~ ( ord_less_eq @ A @ Z3 @ X2 ) )
=> ~ ( ( ord_less_eq @ A @ Z3 @ X2 )
=> ~ ( ord_less_eq @ A @ X2 @ Y ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_151_order_Otrans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ B3 @ C )
=> ( ord_less_eq @ A @ A3 @ C ) ) ) ) ).
% order.trans
thf(fact_152_le__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ~ ( ord_less_eq @ A @ X2 @ Y )
=> ( ord_less_eq @ A @ Y @ X2 ) ) ) ).
% le_cases
thf(fact_153_eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A] :
( ( X2 = Y )
=> ( ord_less_eq @ A @ X2 @ Y ) ) ) ).
% eq_refl
thf(fact_154_linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
| ( ord_less_eq @ A @ Y @ X2 ) ) ) ).
% linear
thf(fact_155_antisym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ( ord_less_eq @ A @ Y @ X2 )
=> ( X2 = Y ) ) ) ) ).
% antisym
thf(fact_156_eq__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ^ [Y5: A,Z2: A] : ( Y5 = Z2 ) )
= ( ^ [X: A,Y6: A] :
( ( ord_less_eq @ A @ X @ Y6 )
& ( ord_less_eq @ A @ Y6 @ X ) ) ) ) ) ).
% eq_iff
thf(fact_157_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A3: A,B3: A,F: A > B,C: B] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ( F @ B3 )
= C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ B @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq @ B @ ( F @ A3 ) @ C ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_158_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( A3
= ( F @ B3 ) )
=> ( ( ord_less_eq @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less_eq @ B @ X3 @ Y4 )
=> ( ord_less_eq @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_159_order__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A3: A,B3: A,F: A > C2,C: C2] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ C2 @ ( F @ B3 ) @ C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ C2 @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq @ C2 @ ( F @ A3 ) @ C ) ) ) ) ) ).
% order_subst2
thf(fact_160_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( ord_less_eq @ A @ A3 @ ( F @ B3 ) )
=> ( ( ord_less_eq @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less_eq @ B @ X3 @ Y4 )
=> ( ord_less_eq @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% order_subst1
thf(fact_161_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( ord_less_eq @ ( A > B ) )
= ( ^ [F2: A > B,G2: A > B] :
! [X: A] : ( ord_less_eq @ B @ ( F2 @ X ) @ ( G2 @ X ) ) ) ) ) ).
% le_fun_def
thf(fact_162_le__funI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B] :
( ! [X3: A] : ( ord_less_eq @ B @ ( F @ X3 ) @ ( G @ X3 ) )
=> ( ord_less_eq @ ( A > B ) @ F @ G ) ) ) ).
% le_funI
thf(fact_163_le__funE,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B,X2: A] :
( ( ord_less_eq @ ( A > B ) @ F @ G )
=> ( ord_less_eq @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ).
% le_funE
thf(fact_164_le__funD,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ! [F: A > B,G: A > B,X2: A] :
( ( ord_less_eq @ ( A > B ) @ F @ G )
=> ( ord_less_eq @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ).
% le_funD
thf(fact_165_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ( A3 != B3 ) ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_166_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( A3 != B3 ) ) ) ).
% order.strict_implies_not_eq
thf(fact_167_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ~ ( ord_less @ A @ X2 @ Y ) )
= ( ( ord_less @ A @ Y @ X2 )
| ( X2 = Y ) ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_168_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ( ( ord_less @ A @ C @ B3 )
=> ( ord_less @ A @ C @ A3 ) ) ) ) ).
% dual_order.strict_trans
thf(fact_169_linorder__less__wlog,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [P2: A > A > $o,A3: A,B3: A] :
( ! [A6: A,B5: A] :
( ( ord_less @ A @ A6 @ B5 )
=> ( P2 @ A6 @ B5 ) )
=> ( ! [A6: A] : ( P2 @ A6 @ A6 )
=> ( ! [A6: A,B5: A] :
( ( P2 @ B5 @ A6 )
=> ( P2 @ A6 @ B5 ) )
=> ( P2 @ A3 @ B3 ) ) ) ) ) ).
% linorder_less_wlog
thf(fact_170_exists__least__iff,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ( ( ^ [P3: A > $o] :
? [X4: A] : ( P3 @ X4 ) )
= ( ^ [P4: A > $o] :
? [N3: A] :
( ( P4 @ N3 )
& ! [M4: A] :
( ( ord_less @ A @ M4 @ N3 )
=> ~ ( P4 @ M4 ) ) ) ) ) ) ).
% exists_least_iff
thf(fact_171_less__imp__not__less,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ~ ( ord_less @ A @ Y @ X2 ) ) ) ).
% less_imp_not_less
thf(fact_172_order_Ostrict__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ord_less @ A @ B3 @ C )
=> ( ord_less @ A @ A3 @ C ) ) ) ) ).
% order.strict_trans
thf(fact_173_dual__order_Oirrefl,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A] :
~ ( ord_less @ A @ A3 @ A3 ) ) ).
% dual_order.irrefl
thf(fact_174_linorder__cases,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ~ ( ord_less @ A @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less @ A @ Y @ X2 ) ) ) ) ).
% linorder_cases
thf(fact_175_less__imp__triv,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A,P2: $o] :
( ( ord_less @ A @ X2 @ Y )
=> ( ( ord_less @ A @ Y @ X2 )
=> P2 ) ) ) ).
% less_imp_triv
thf(fact_176_less__imp__not__eq2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( Y != X2 ) ) ) ).
% less_imp_not_eq2
thf(fact_177_antisym__conv3,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X2: A] :
( ~ ( ord_less @ A @ Y @ X2 )
=> ( ( ~ ( ord_less @ A @ X2 @ Y ) )
= ( X2 = Y ) ) ) ) ).
% antisym_conv3
thf(fact_178_less__induct,axiom,
! [A: $tType] :
( ( wellorder @ A )
=> ! [P2: A > $o,A3: A] :
( ! [X3: A] :
( ! [Y3: A] :
( ( ord_less @ A @ Y3 @ X3 )
=> ( P2 @ Y3 ) )
=> ( P2 @ X3 ) )
=> ( P2 @ A3 ) ) ) ).
% less_induct
thf(fact_179_less__not__sym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ~ ( ord_less @ A @ Y @ X2 ) ) ) ).
% less_not_sym
thf(fact_180_less__imp__not__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( X2 != Y ) ) ) ).
% less_imp_not_eq
thf(fact_181_dual__order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ~ ( ord_less @ A @ A3 @ B3 ) ) ) ).
% dual_order.asym
thf(fact_182_ord__less__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( B3 = C )
=> ( ord_less @ A @ A3 @ C ) ) ) ) ).
% ord_less_eq_trans
thf(fact_183_ord__eq__less__trans,axiom,
! [A: $tType] :
( ( ord @ A )
=> ! [A3: A,B3: A,C: A] :
( ( A3 = B3 )
=> ( ( ord_less @ A @ B3 @ C )
=> ( ord_less @ A @ A3 @ C ) ) ) ) ).
% ord_eq_less_trans
thf(fact_184_less__irrefl,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A] :
~ ( ord_less @ A @ X2 @ X2 ) ) ).
% less_irrefl
thf(fact_185_less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
| ( X2 = Y )
| ( ord_less @ A @ Y @ X2 ) ) ) ).
% less_linear
thf(fact_186_less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ( ord_less @ A @ Y @ Z3 )
=> ( ord_less @ A @ X2 @ Z3 ) ) ) ) ).
% less_trans
thf(fact_187_less__asym_H,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [A3: A,B3: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ~ ( ord_less @ A @ B3 @ A3 ) ) ) ).
% less_asym'
thf(fact_188_less__asym,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ~ ( ord_less @ A @ Y @ X2 ) ) ) ).
% less_asym
thf(fact_189_less__imp__neq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( X2 != Y ) ) ) ).
% less_imp_neq
thf(fact_190_dense,axiom,
! [A: $tType] :
( ( dense_order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ? [Z: A] :
( ( ord_less @ A @ X2 @ Z )
& ( ord_less @ A @ Z @ Y ) ) ) ) ).
% dense
thf(fact_191_order_Oasym,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ~ ( ord_less @ A @ B3 @ A3 ) ) ) ).
% order.asym
thf(fact_192_neq__iff,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( X2 != Y )
= ( ( ord_less @ A @ X2 @ Y )
| ( ord_less @ A @ Y @ X2 ) ) ) ) ).
% neq_iff
thf(fact_193_neqE,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( X2 != Y )
=> ( ~ ( ord_less @ A @ X2 @ Y )
=> ( ord_less @ A @ Y @ X2 ) ) ) ) ).
% neqE
thf(fact_194_gt__ex,axiom,
! [A: $tType] :
( ( no_top @ A )
=> ! [X2: A] :
? [X_1: A] : ( ord_less @ A @ X2 @ X_1 ) ) ).
% gt_ex
thf(fact_195_lt__ex,axiom,
! [A: $tType] :
( ( no_bot @ A )
=> ! [X2: A] :
? [Y4: A] : ( ord_less @ A @ Y4 @ X2 ) ) ).
% lt_ex
thf(fact_196_order__less__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A3: A,B3: A,F: A > C2,C: C2] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ord_less @ C2 @ ( F @ B3 ) @ C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less @ A @ X3 @ Y4 )
=> ( ord_less @ C2 @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ C2 @ ( F @ A3 ) @ C ) ) ) ) ) ).
% order_less_subst2
thf(fact_197_order__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( ord_less @ A @ A3 @ ( F @ B3 ) )
=> ( ( ord_less @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less @ B @ X3 @ Y4 )
=> ( ord_less @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% order_less_subst1
thf(fact_198_ord__less__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A3: A,B3: A,F: A > B,C: B] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ( F @ B3 )
= C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less @ A @ X3 @ Y4 )
=> ( ord_less @ B @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ B @ ( F @ A3 ) @ C ) ) ) ) ) ).
% ord_less_eq_subst
thf(fact_199_ord__eq__less__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B )
& ( ord @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( A3
= ( F @ B3 ) )
=> ( ( ord_less @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less @ B @ X3 @ Y4 )
=> ( ord_less @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_200_ex__has__least__nat,axiom,
! [A: $tType,P2: A > $o,K: A,M: A > nat] :
( ( P2 @ K )
=> ? [X3: A] :
( ( P2 @ X3 )
& ! [Y3: A] :
( ( P2 @ Y3 )
=> ( ord_less_eq @ nat @ ( M @ X3 ) @ ( M @ Y3 ) ) ) ) ) ).
% ex_has_least_nat
thf(fact_201_MinPredicate,axiom,
! [P2: nat > $o] :
( ? [X_12: nat] : ( P2 @ X_12 )
=> ? [N0: nat] :
( ( P2 @ N0 )
& ! [N5: nat] :
( ( P2 @ N5 )
=> ( ord_less_eq @ nat @ N0 @ N5 ) ) ) ) ).
% MinPredicate
thf(fact_202_order_Onot__eq__order__implies__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( A3 != B3 )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ord_less @ A @ A3 @ B3 ) ) ) ) ).
% order.not_eq_order_implies_strict
thf(fact_203_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ( ord_less_eq @ A @ B3 @ A3 ) ) ) ).
% dual_order.strict_implies_order
thf(fact_204_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [B4: A,A5: A] :
( ( ord_less_eq @ A @ B4 @ A5 )
& ( A5 != B4 ) ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_205_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [B4: A,A5: A] :
( ( ord_less @ A @ B4 @ A5 )
| ( A5 = B4 ) ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_206_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ord_less_eq @ A @ A3 @ B3 ) ) ) ).
% order.strict_implies_order
thf(fact_207_dense__le__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ! [W: A] :
( ( ord_less @ A @ X2 @ W )
=> ( ( ord_less @ A @ W @ Y )
=> ( ord_less_eq @ A @ W @ Z3 ) ) )
=> ( ord_less_eq @ A @ Y @ Z3 ) ) ) ) ).
% dense_le_bounded
thf(fact_208_dense__ge__bounded,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z3: A,X2: A,Y: A] :
( ( ord_less @ A @ Z3 @ X2 )
=> ( ! [W: A] :
( ( ord_less @ A @ Z3 @ W )
=> ( ( ord_less @ A @ W @ X2 )
=> ( ord_less_eq @ A @ Y @ W ) ) )
=> ( ord_less_eq @ A @ Y @ Z3 ) ) ) ) ).
% dense_ge_bounded
thf(fact_209_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ C @ B3 )
=> ( ord_less @ A @ C @ A3 ) ) ) ) ).
% dual_order.strict_trans2
thf(fact_210_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [B3: A,A3: A,C: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less @ A @ C @ B3 )
=> ( ord_less @ A @ C @ A3 ) ) ) ) ).
% dual_order.strict_trans1
thf(fact_211_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [A5: A,B4: A] :
( ( ord_less_eq @ A @ A5 @ B4 )
& ( A5 != B4 ) ) ) ) ) ).
% order.strict_iff_order
thf(fact_212_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A5: A,B4: A] :
( ( ord_less @ A @ A5 @ B4 )
| ( A5 = B4 ) ) ) ) ) ).
% order.order_iff_strict
thf(fact_213_order_Ostrict__trans2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ B3 @ C )
=> ( ord_less @ A @ A3 @ C ) ) ) ) ).
% order.strict_trans2
thf(fact_214_order_Ostrict__trans1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A,C: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less @ A @ B3 @ C )
=> ( ord_less @ A @ A3 @ C ) ) ) ) ).
% order.strict_trans1
thf(fact_215_not__le__imp__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [Y: A,X2: A] :
( ~ ( ord_less_eq @ A @ Y @ X2 )
=> ( ord_less @ A @ X2 @ Y ) ) ) ).
% not_le_imp_less
thf(fact_216_less__le__not__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ( ( ord_less @ A )
= ( ^ [X: A,Y6: A] :
( ( ord_less_eq @ A @ X @ Y6 )
& ~ ( ord_less_eq @ A @ Y6 @ X ) ) ) ) ) ).
% less_le_not_le
thf(fact_217_le__imp__less__or__eq,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ( ord_less @ A @ X2 @ Y )
| ( X2 = Y ) ) ) ) ).
% le_imp_less_or_eq
thf(fact_218_le__less__linear,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
| ( ord_less @ A @ Y @ X2 ) ) ) ).
% le_less_linear
thf(fact_219_dense__le,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Y: A,Z3: A] :
( ! [X3: A] :
( ( ord_less @ A @ X3 @ Y )
=> ( ord_less_eq @ A @ X3 @ Z3 ) )
=> ( ord_less_eq @ A @ Y @ Z3 ) ) ) ).
% dense_le
thf(fact_220_dense__ge,axiom,
! [A: $tType] :
( ( dense_linorder @ A )
=> ! [Z3: A,Y: A] :
( ! [X3: A] :
( ( ord_less @ A @ Z3 @ X3 )
=> ( ord_less_eq @ A @ Y @ X3 ) )
=> ( ord_less_eq @ A @ Y @ Z3 ) ) ) ).
% dense_ge
thf(fact_221_less__le__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z3 )
=> ( ord_less @ A @ X2 @ Z3 ) ) ) ) ).
% less_le_trans
thf(fact_222_le__less__trans,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A,Z3: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ( ord_less @ A @ Y @ Z3 )
=> ( ord_less @ A @ X2 @ Z3 ) ) ) ) ).
% le_less_trans
thf(fact_223_less__imp__le,axiom,
! [A: $tType] :
( ( preorder @ A )
=> ! [X2: A,Y: A] :
( ( ord_less @ A @ X2 @ Y )
=> ( ord_less_eq @ A @ X2 @ Y ) ) ) ).
% less_imp_le
thf(fact_224_antisym__conv2,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ( ord_less_eq @ A @ X2 @ Y )
=> ( ( ~ ( ord_less @ A @ X2 @ Y ) )
= ( X2 = Y ) ) ) ) ).
% antisym_conv2
thf(fact_225_antisym__conv1,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [X2: A,Y: A] :
( ~ ( ord_less @ A @ X2 @ Y )
=> ( ( ord_less_eq @ A @ X2 @ Y )
= ( X2 = Y ) ) ) ) ).
% antisym_conv1
thf(fact_226_le__neq__trans,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( A3 != B3 )
=> ( ord_less @ A @ A3 @ B3 ) ) ) ) ).
% le_neq_trans
thf(fact_227_not__less,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ~ ( ord_less @ A @ X2 @ Y ) )
= ( ord_less_eq @ A @ Y @ X2 ) ) ) ).
% not_less
thf(fact_228_not__le,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ( ~ ( ord_less_eq @ A @ X2 @ Y ) )
= ( ord_less @ A @ Y @ X2 ) ) ) ).
% not_le
thf(fact_229_order__less__le__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A3: A,B3: A,F: A > C2,C: C2] :
( ( ord_less @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ C2 @ ( F @ B3 ) @ C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less @ A @ X3 @ Y4 )
=> ( ord_less @ C2 @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ C2 @ ( F @ A3 ) @ C ) ) ) ) ) ).
% order_less_le_subst2
thf(fact_230_order__less__le__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( ord_less @ A @ A3 @ ( F @ B3 ) )
=> ( ( ord_less_eq @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less_eq @ B @ X3 @ Y4 )
=> ( ord_less_eq @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_231_order__le__less__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 )
& ( order @ A ) )
=> ! [A3: A,B3: A,F: A > C2,C: C2] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less @ C2 @ ( F @ B3 ) @ C )
=> ( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ C2 @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ C2 @ ( F @ A3 ) @ C ) ) ) ) ) ).
% order_le_less_subst2
thf(fact_232_order__le__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B )
& ( order @ A ) )
=> ! [A3: A,F: B > A,B3: B,C: B] :
( ( ord_less_eq @ A @ A3 @ ( F @ B3 ) )
=> ( ( ord_less @ B @ B3 @ C )
=> ( ! [X3: B,Y4: B] :
( ( ord_less @ B @ X3 @ Y4 )
=> ( ord_less @ A @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less @ A @ A3 @ ( F @ C ) ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_233_less__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less @ A )
= ( ^ [X: A,Y6: A] :
( ( ord_less_eq @ A @ X @ Y6 )
& ( X != Y6 ) ) ) ) ) ).
% less_le
thf(fact_234_le__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [X: A,Y6: A] :
( ( ord_less @ A @ X @ Y6 )
| ( X = Y6 ) ) ) ) ) ).
% le_less
thf(fact_235_leI,axiom,
! [A: $tType] :
( ( linorder @ A )
=> ! [X2: A,Y: A] :
( ~ ( ord_less @ A @ X2 @ Y )
=> ( ord_less_eq @ A @ Y @ X2 ) ) ) ).
% leI
thf(fact_236_leD,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [Y: A,X2: A] :
( ( ord_less_eq @ A @ Y @ X2 )
=> ~ ( ord_less @ A @ X2 @ Y ) ) ) ).
% leD
thf(fact_237_AssumpMinImplAllBigger,axiom,
minimalEnabled @ p @ v @ s @ ( fe @ index ) @ ( ft @ index ) @ msg ).
% AssumpMinImplAllBigger
thf(fact_238__092_060open_062execution_OfirstOccurrence_A_Ife_Aindex_J_A_Ift_Aindex_J_Amsg_AOccM_092_060close_062,axiom,
firstOccurrence @ p @ v @ s @ ( fe @ index ) @ ( ft @ index ) @ msga @ occM2 ).
% \<open>execution.firstOccurrence (fe index) (ft index) msg OccM\<close>
thf(fact_239_SameMsgOnLow,axiom,
! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ I4 )
= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ I4 ) ) ) ).
% SameMsgOnLow
thf(fact_240_OccM_H_I5_J,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ occM @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( msg
!= ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ N5 ) ) ) ) ).
% OccM'(5)
thf(fact_241_IPrefixList,axiom,
! [I4: nat] : ( prefixList @ ( message @ p @ v ) @ ( ft @ I4 ) @ ( ft @ ( suc @ I4 ) ) ) ).
% IPrefixList
thf(fact_242_OccM_H_I1_J,axiom,
? [P5: p] : ( isReceiverOf @ p @ v @ P5 @ msg ) ).
% OccM'(1)
thf(fact_243_FirstOccMsg_H,axiom,
firstOccurrence @ p @ v @ s @ ( fe @ index ) @ ( ft @ index ) @ msg @ occM ).
% FirstOccMsg'
thf(fact_244_AssumpOccMFirstOccurrence_I5_J,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ occM2 @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( msga
!= ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ N5 ) ) ) ) ).
% AssumpOccMFirstOccurrence(5)
thf(fact_245_OccM_H_I4_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ occM ) @ msg ).
% OccM'(4)
thf(fact_246_AssumptionFairContr,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ n @ N5 )
=> ! [N02: nat] :
( ( ord_less @ nat @ N02 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ N5 ) ) )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ n ) ) @ N02 )
=> ( msg2
!= ( nth @ ( message @ p @ v ) @ ( ft @ N5 ) @ N02 ) ) ) ) ) ).
% AssumptionFairContr
thf(fact_247_less__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B )
=> ( ( ord_less @ ( A > B ) )
= ( ^ [F2: A > B,G2: A > B] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G2 )
& ~ ( ord_less_eq @ ( A > B ) @ G2 @ F2 ) ) ) ) ) ).
% less_fun_def
thf(fact_248_MessageStaysOrConsumed,axiom,
! [N1: nat,N22: nat,N: nat,Msg: message @ p @ v] :
( ( ( ord_less_eq @ nat @ N1 @ N22 )
& ( ord_less @ nat @ N22 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ N ) ) )
& ( enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ N ) @ N1 ) @ Msg ) )
=> ( ( enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ N ) @ N22 ) @ Msg )
| ? [N03: nat] :
( ( ord_less_eq @ nat @ N1 @ N03 )
& ( ord_less @ nat @ N03 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ N ) ) )
& ( ( nth @ ( message @ p @ v ) @ ( ft @ N ) @ N03 )
= Msg ) ) ) ) ).
% MessageStaysOrConsumed
thf(fact_249__092_060open_062_092_060not_062_A_I_092_060exists_062i_060length_A_Ife_A_ISuc_Aindex_J_J_A_N_A1_O_Alength_A_Ife_Aindex_J_A_N_A1_A_092_060le_062_Ai_A_092_060and_062_Amsg_____A_061_Aft_A_ISuc_Aindex_J_A_B_Ai_J_092_060close_062,axiom,
~ ? [I4: nat] :
( ( ord_less @ nat @ I4 @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) @ ( one_one @ nat ) ) )
& ( ord_less_eq @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ I4 )
& ( msg2
= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ I4 ) ) ) ).
% \<open>\<not> (\<exists>i<length (fe (Suc index)) - 1. length (fe index) - 1 \<le> i \<and> msg__ = ft (Suc index) ! i)\<close>
thf(fact_250_AssumptionFair_I4_J,axiom,
isReceiverOf @ p @ v @ p2 @ msg2 ).
% AssumptionFair(4)
thf(fact_251_AssumpOccMFirstOccurrence_I1_J,axiom,
? [P5: p] : ( isReceiverOf @ p @ v @ P5 @ msga ) ).
% AssumpOccMFirstOccurrence(1)
thf(fact_252_AssumptionFair_I3_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ n ) @ n0 ) @ msg2 ).
% AssumptionFair(3)
% Type constructors (32)
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A7: $tType,A8: $tType] :
( ( preorder @ A8 )
=> ( preorder @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A7: $tType,A8: $tType] :
( ( order @ A8 )
=> ( order @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A7: $tType,A8: $tType] :
( ( ord @ A8 )
=> ( ord @ ( A7 > A8 ) ) ) ).
thf(tcon_fun___Groups_Ominus,axiom,
! [A7: $tType,A8: $tType] :
( ( minus @ A8 )
=> ( minus @ ( A7 > A8 ) ) ) ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add,axiom,
cancel146912293up_add @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Opreorder_1,axiom,
preorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Olinorder,axiom,
linorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Ono__top,axiom,
no_top @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_2,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Orderings_Oord_3,axiom,
ord @ nat ).
thf(tcon_Nat_Onat___Groups_Ominus_4,axiom,
minus @ nat ).
thf(tcon_Nat_Onat___Groups_Oone,axiom,
one @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_Set_Oset___Orderings_Opreorder_5,axiom,
! [A7: $tType] : ( preorder @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_6,axiom,
! [A7: $tType] : ( order @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_7,axiom,
! [A7: $tType] : ( ord @ ( set @ A7 ) ) ).
thf(tcon_Set_Oset___Groups_Ominus_8,axiom,
! [A7: $tType] : ( minus @ ( set @ A7 ) ) ).
thf(tcon_HOL_Obool___Orderings_Opreorder_9,axiom,
preorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Olinorder_10,axiom,
linorder @ $o ).
thf(tcon_HOL_Obool___Orderings_Oorder_11,axiom,
order @ $o ).
thf(tcon_HOL_Obool___Orderings_Oord_12,axiom,
ord @ $o ).
thf(tcon_HOL_Obool___Groups_Ominus_13,axiom,
minus @ $o ).
thf(tcon_List_Olist___Nat_Osize_14,axiom,
! [A7: $tType] : ( size @ ( list @ A7 ) ) ).
thf(tcon_Product__Type_Ounit___Orderings_Owellorder_15,axiom,
wellorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Opreorder_16,axiom,
preorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Olinorder_17,axiom,
linorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oorder_18,axiom,
order @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oord_19,axiom,
ord @ product_unit ).
thf(tcon_Product__Type_Ounit___Groups_Ominus_20,axiom,
minus @ product_unit ).
thf(tcon_AsynchronousSystem_Omessage___Nat_Osize_21,axiom,
! [A7: $tType,A8: $tType] : ( size @ ( message @ A7 @ A8 ) ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( occM2
= ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) ) ).
%------------------------------------------------------------------------------