TPTP Problem File: ITP060^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP060^2 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer FLPTheorem problem prob_828__3301664_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : FLPTheorem/prob_828__3301664_1 [Des21]
% Status : Theorem
% Rating : 0.00 v7.5.0
% Syntax : Number of formulae : 314 ( 127 unt; 46 typ; 0 def)
% Number of atoms : 590 ( 205 equ; 0 cnn)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 3704 ( 83 ~; 11 |; 36 &;3267 @)
% ( 0 <=>; 307 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 7 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 180 ( 180 >; 0 *; 0 +; 0 <<)
% Number of symbols : 42 ( 41 usr; 7 con; 0-7 aty)
% Number of variables : 643 ( 17 ^; 560 !; 30 ?; 643 :)
% ( 36 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 16:16:57.179
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_t_AsynchronousSystem_Oconfiguration_Oconfiguration__ext,type,
configuration_ext: $tType > $tType > $tType > $tType > $tType ).
thf(ty_t_AsynchronousSystem_Omessage,type,
message: $tType > $tType > $tType ).
thf(ty_t_Product__Type_Ounit,type,
product_unit: $tType ).
thf(ty_t_List_Olist,type,
list: $tType > $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_tf_v,type,
v: $tType ).
thf(ty_tf_s,type,
s: $tType ).
thf(ty_tf_p,type,
p: $tType ).
% Explicit typings (38)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
thf(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocomm__monoid__diff,type,
comm_monoid_diff:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1352612707id_add:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel146912293up_add:
!>[A: $tType] : $o ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : $o ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : $o ).
thf(sy_c_AsynchronousSystem_Oenabled,type,
enabled:
!>[P: $tType,V: $tType,S: $tType] : ( ( configuration_ext @ P @ V @ S @ product_unit ) > ( message @ P @ V ) > $o ) ).
thf(sy_c_Execution_Oexecution_OfirstOccurrence,type,
firstOccurrence:
!>[P: $tType,V: $tType,S: $tType] : ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( message @ P @ V ) > nat > $o ) ).
thf(sy_c_FLPTheorem__Mirabelle__yavhmxymmt_OflpPseudoConsensus_OinfiniteExecutionCfg,type,
fLPThe137922386ionCfg:
!>[P: $tType,V: $tType,S: $tType] : ( ( configuration_ext @ P @ V @ S @ product_unit ) > ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( list @ ( message @ P @ V ) ) ) > nat > ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) ) ).
thf(sy_c_FLPTheorem__Mirabelle__yavhmxymmt_OflpPseudoConsensus_OinfiniteExecutionMsg,type,
fLPThe221390223ionMsg:
!>[P: $tType,V: $tType,S: $tType] : ( ( configuration_ext @ P @ V @ S @ product_unit ) > ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ P @ V @ S @ product_unit ) ) > ( list @ ( message @ P @ V ) ) > ( list @ ( message @ P @ V ) ) ) > nat > ( list @ ( message @ P @ V ) ) ) ).
thf(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_ListUtilities_OprefixList,type,
prefixList:
!>[A: $tType] : ( ( list @ A ) > ( list @ A ) > $o ) ).
thf(sy_c_List_Olast,type,
last:
!>[A: $tType] : ( ( list @ A ) > A ) ).
thf(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : ( list @ A ) ).
thf(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( ( list @ A ) > nat > A ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_v_fe____,type,
fe: nat > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ).
thf(sy_v_ft____,type,
ft: nat > ( list @ ( message @ p @ v ) ) ).
thf(sy_v_index____,type,
index: nat ).
thf(sy_v_msgInSet____,type,
msgInSet: message @ p @ v ).
thf(sy_v_msg____,type,
msg: message @ p @ v ).
thf(sy_v_n0____,type,
n0: nat ).
thf(sy_v_n1____,type,
n1: nat ).
thf(sy_v_nMsg____,type,
nMsg: nat ).
thf(sy_v_n____,type,
n: nat ).
% Relevant facts (251)
thf(fact_0_Occ3_H,axiom,
ord_less @ nat @ n1 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) ).
% Occ3'
thf(fact_1_SameCfgOnLow,axiom,
! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) )
=> ( ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ I )
= ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ I ) ) ) ).
% SameCfgOnLow
thf(fact_2__092_060open_062fe_Aindex_A_B_An1_A_061_Afe_A_ISuc_Aindex_J_A_B_An1_092_060close_062,axiom,
( ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ n1 )
= ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ n1 ) ) ).
% \<open>fe index ! n1 = fe (Suc index) ! n1\<close>
thf(fact_3__092_060open_062length_A_Ife_Aindex_J_A_N_A1_A_060_Alength_A_Ife_Aindex_J_092_060close_062,axiom,
ord_less @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) ).
% \<open>length (fe index) - 1 < length (fe index)\<close>
thf(fact_4_AssumptionSubset2_I3_J,axiom,
ord_less @ nat @ n1 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) ).
% AssumptionSubset2(3)
thf(fact_5_AssumpOcc6_H_I1_J,axiom,
ord_less @ nat @ ( zero_zero @ nat ) @ n1 ).
% AssumpOcc6'(1)
thf(fact_6_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( suc @ N ) @ ( one_one @ nat ) )
= N ) ).
% diff_Suc_1
thf(fact_7_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus @ nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_8_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_9_NotEmpty_I1_J,axiom,
( ( fe @ ( suc @ index ) )
!= ( nil @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) ).
% NotEmpty(1)
thf(fact_10_IPrefixListEx,axiom,
! [I: nat] : ( prefixList @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ I ) @ ( fe @ ( suc @ I ) ) ) ).
% IPrefixListEx
thf(fact_11_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus @ nat @ M @ ( suc @ N ) )
= ( minus_minus @ nat @ ( minus_minus @ nat @ M @ ( one_one @ nat ) ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_12_AssumpOcc6_H_I3_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ ( minus_minus @ nat @ n1 @ ( one_one @ nat ) ) ) @ msgInSet ).
% AssumpOcc6'(3)
thf(fact_13__092_060open_062length_A_Ife_Aindex_J_A_N_A1_A_092_060le_062_Alength_A_Ife_A_ISuc_Aindex_J_J_A_N_A1_092_060close_062,axiom,
ord_less_eq @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) @ ( one_one @ nat ) ) ).
% \<open>length (fe index) - 1 \<le> length (fe (Suc index)) - 1\<close>
thf(fact_14_NotEmpty_I2_J,axiom,
( ( fe @ index )
!= ( nil @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) ).
% NotEmpty(2)
thf(fact_15__092_060open_062n1_A_N_ASuc_A0_A_060_Alength_A_Ife_Aindex_J_A_N_ASuc_A0_092_060close_062,axiom,
ord_less @ nat @ ( minus_minus @ nat @ n1 @ ( suc @ ( zero_zero @ nat ) ) ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( suc @ ( zero_zero @ nat ) ) ) ).
% \<open>n1 - Suc 0 < length (fe index) - Suc 0\<close>
thf(fact_16_infiniteExecutionCfg__infiniteExecutionMsg_Oinduct_I1_J,axiom,
! [P2: ( configuration_ext @ p @ v @ s @ product_unit ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ) ) > nat > $o,Q: ( configuration_ext @ p @ v @ s @ product_unit ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ) ) > nat > $o,A0: configuration_ext @ p @ v @ s @ product_unit,A1: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),A2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),A3: nat] :
( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) )] : ( P2 @ Cfg @ FStepCfg @ FStepMsg @ ( zero_zero @ nat ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N2: nat] :
( ( P2 @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( ( Q @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( P2 @ Cfg @ FStepCfg @ FStepMsg @ ( suc @ N2 ) ) ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) )] : ( Q @ Cfg @ FStepCfg @ FStepMsg @ ( zero_zero @ nat ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N2: nat] :
( ( P2 @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( ( Q @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( Q @ Cfg @ FStepCfg @ FStepMsg @ ( suc @ N2 ) ) ) )
=> ( P2 @ A0 @ A1 @ A2 @ A3 ) ) ) ) ) ).
% infiniteExecutionCfg_infiniteExecutionMsg.induct(1)
thf(fact_17_infiniteExecutionCfg__infiniteExecutionMsg_Oinduct_I2_J,axiom,
! [P2: ( configuration_ext @ p @ v @ s @ product_unit ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ) ) > nat > $o,Q: ( configuration_ext @ p @ v @ s @ product_unit ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) ) > ( ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ) ) > nat > $o,A4: configuration_ext @ p @ v @ s @ product_unit,A5: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),A6: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),A7: nat] :
( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) )] : ( P2 @ Cfg @ FStepCfg @ FStepMsg @ ( zero_zero @ nat ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N2: nat] :
( ( P2 @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( ( Q @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( P2 @ Cfg @ FStepCfg @ FStepMsg @ ( suc @ N2 ) ) ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) )] : ( Q @ Cfg @ FStepCfg @ FStepMsg @ ( zero_zero @ nat ) )
=> ( ! [Cfg: configuration_ext @ p @ v @ s @ product_unit,FStepCfg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N2: nat] :
( ( P2 @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( ( Q @ Cfg @ FStepCfg @ FStepMsg @ N2 )
=> ( Q @ Cfg @ FStepCfg @ FStepMsg @ ( suc @ N2 ) ) ) )
=> ( Q @ A4 @ A5 @ A6 @ A7 ) ) ) ) ) ).
% infiniteExecutionCfg_infiniteExecutionMsg.induct(2)
thf(fact_18_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_19_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_20_AssumptionSubset_I1_J,axiom,
ord_less_eq @ nat @ n1 @ nMsg ).
% AssumptionSubset(1)
thf(fact_21__092_060open_062fe_Aindex_A_092_060in_062_D_Alength_092_060close_062,axiom,
ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) ).
% \<open>fe index \<in># length\<close>
thf(fact_22_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_23_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_24_lessI,axiom,
! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_25_neq0__conv,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% neq0_conv
thf(fact_26_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_nat_zero_code
thf(fact_27_bot__nat__0_Onot__eq__extremum,axiom,
! [A8: nat] :
( ( A8
!= ( zero_zero @ nat ) )
= ( ord_less @ nat @ ( zero_zero @ nat ) @ A8 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_28_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq @ nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_29_le0,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% le0
thf(fact_30_bot__nat__0_Oextremum,axiom,
! [A8: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ A8 ) ).
% bot_nat_0.extremum
thf(fact_31_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ M )
= ( zero_zero @ nat ) ) ).
% diff_self_eq_0
thf(fact_32_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus @ nat @ ( zero_zero @ nat ) @ N )
= ( zero_zero @ nat ) ) ).
% diff_0_eq_0
thf(fact_33_diff__diff__cancel,axiom,
! [I2: nat,N: nat] :
( ( ord_less_eq @ nat @ I2 @ N )
=> ( ( minus_minus @ nat @ N @ ( minus_minus @ nat @ N @ I2 ) )
= I2 ) ) ).
% diff_diff_cancel
thf(fact_34_Occ4_H,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ n1 ) @ msgInSet ).
% Occ4'
thf(fact_35_AssumptionSubset2_I4_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ n1 ) @ msgInSet ).
% AssumptionSubset2(4)
thf(fact_36__092_060open_062enabled_A_Ife_Aindex_A_B_A_Ilength_A_Ife_Aindex_J_A_N_A1_J_J_AmsgInSet_092_060close_062,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) ) @ msgInSet ).
% \<open>enabled (fe index ! (length (fe index) - 1)) msgInSet\<close>
thf(fact_37_zero__less__Suc,axiom,
! [N: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_38_less__Suc0,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_Suc0
thf(fact_39_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) )
= ( ord_less @ nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_40_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_41_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) ) ) ).
% diff_is_0_eq'
thf(fact_42_less__one,axiom,
! [N: nat] :
( ( ord_less @ nat @ N @ ( one_one @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% less_one
thf(fact_43_Suc__pred,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( suc @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) )
= N ) ) ).
% Suc_pred
thf(fact_44_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( suc @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) )
= N ) ) ).
% Suc_diff_1
thf(fact_45_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).
% less_eq_nat.simps(1)
thf(fact_46_gr0I,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).
% gr0I
thf(fact_47_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_48_le__refl,axiom,
! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).
% le_refl
thf(fact_49_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
= ( N
= ( zero_zero @ nat ) ) ) ).
% not_gr0
thf(fact_50_le__trans,axiom,
! [I2: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I2 @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I2 @ K ) ) ) ).
% le_trans
thf(fact_51_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_52_not__less0,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% not_less0
thf(fact_53_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less_eq @ nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_54_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).
% less_zeroE
thf(fact_55_nat__less__le,axiom,
( ( ord_less @ nat )
= ( ^ [M2: nat,N3: nat] :
( ( ord_less_eq @ nat @ M2 @ N3 )
& ( M2 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_56_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less @ nat @ M @ N )
| ( ord_less @ nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_57_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_not_refl
thf(fact_58_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
| ( ord_less_eq @ nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_59_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_60_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less @ nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_61_measure__induct,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P2: A > $o,A8: A] :
( ! [X: A] :
( ! [Y: A] :
( ( ord_less @ B @ ( F @ Y ) @ ( F @ X ) )
=> ( P2 @ Y ) )
=> ( P2 @ X ) )
=> ( P2 @ A8 ) ) ) ).
% measure_induct
thf(fact_62_ex__least__nat__le,axiom,
! [P2: nat > $o,N: nat] :
( ( P2 @ N )
=> ( ~ ( P2 @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less_eq @ nat @ K2 @ N )
& ! [I: nat] :
( ( ord_less @ nat @ I @ K2 )
=> ~ ( P2 @ I ) )
& ( P2 @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_63_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( N
!= ( zero_zero @ nat ) ) ) ).
% gr_implies_not0
thf(fact_64_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_65_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less @ nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_66_nat__less__induct,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M3: nat] :
( ( ord_less @ nat @ M3 @ N2 )
=> ( P2 @ M3 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ N ) ) ).
% nat_less_induct
thf(fact_67_infinite__descent,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P2 @ N2 )
=> ? [M3: nat] :
( ( ord_less @ nat @ M3 @ N2 )
& ~ ( P2 @ M3 ) ) )
=> ( P2 @ N ) ) ).
% infinite_descent
thf(fact_68_le__eq__less__or__eq,axiom,
( ( ord_less_eq @ nat )
= ( ^ [M2: nat,N3: nat] :
( ( ord_less @ nat @ M2 @ N3 )
| ( M2 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_69_ex__least__nat__less,axiom,
! [P2: nat > $o,N: nat] :
( ( P2 @ N )
=> ( ~ ( P2 @ ( zero_zero @ nat ) )
=> ? [K2: nat] :
( ( ord_less @ nat @ K2 @ N )
& ! [I: nat] :
( ( ord_less_eq @ nat @ I @ K2 )
=> ~ ( P2 @ I ) )
& ( P2 @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_70_infinite__descent0,axiom,
! [P2: nat > $o,N: nat] :
( ( P2 @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ~ ( P2 @ N2 )
=> ? [M3: nat] :
( ( ord_less @ nat @ M3 @ N2 )
& ~ ( P2 @ M3 ) ) ) )
=> ( P2 @ N ) ) ) ).
% infinite_descent0
thf(fact_71_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less @ nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_72_linorder__neqE__nat,axiom,
! [X3: nat,Y3: nat] :
( ( X3 != Y3 )
=> ( ~ ( ord_less @ nat @ X3 @ Y3 )
=> ( ord_less @ nat @ Y3 @ X3 ) ) ) ).
% linorder_neqE_nat
thf(fact_73_Nat_Oex__has__greatest__nat,axiom,
! [P2: nat > $o,K: nat,B2: nat] :
( ( P2 @ K )
=> ( ! [Y4: nat] :
( ( P2 @ Y4 )
=> ( ord_less_eq @ nat @ Y4 @ B2 ) )
=> ? [X: nat] :
( ( P2 @ X )
& ! [Y: nat] :
( ( P2 @ Y )
=> ( ord_less_eq @ nat @ Y @ X ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_74_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( M != N )
=> ( ord_less @ nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_75_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( ( wellorder @ B )
=> ! [F: A > B,P2: A > $o,A8: A] :
( ! [X: A] :
( ! [Y: A] :
( ( ord_less @ B @ ( F @ Y ) @ ( F @ X ) )
=> ( P2 @ Y ) )
=> ( P2 @ X ) )
=> ( P2 @ A8 ) ) ) ).
% measure_induct_rule
thf(fact_76_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I2: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less @ nat @ I3 @ J2 )
=> ( ord_less @ nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq @ nat @ I2 @ J )
=> ( ord_less_eq @ nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_77_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( ( size @ A )
=> ! [X3: A,Y3: A] :
( ( ( size_size @ A @ X3 )
!= ( size_size @ A @ Y3 ) )
=> ( X3 != Y3 ) ) ) ).
% size_neq_size_imp_neq
thf(fact_78_infinite__descent__measure,axiom,
! [A: $tType,P2: A > $o,V2: A > nat,X3: A] :
( ! [X: A] :
( ~ ( P2 @ X )
=> ? [Y: A] :
( ( ord_less @ nat @ ( V2 @ Y ) @ ( V2 @ X ) )
& ~ ( P2 @ Y ) ) )
=> ( P2 @ X3 ) ) ).
% infinite_descent_measure
thf(fact_79_bot__nat__0_Oextremum__strict,axiom,
! [A8: nat] :
~ ( ord_less @ nat @ A8 @ ( zero_zero @ nat ) ) ).
% bot_nat_0.extremum_strict
thf(fact_80_bot__nat__0_Oextremum__unique,axiom,
! [A8: nat] :
( ( ord_less_eq @ nat @ A8 @ ( zero_zero @ nat ) )
= ( A8
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_unique
thf(fact_81_infinite__descent0__measure,axiom,
! [A: $tType,V2: A > nat,P2: A > $o,X3: A] :
( ! [X: A] :
( ( ( V2 @ X )
= ( zero_zero @ nat ) )
=> ( P2 @ X ) )
=> ( ! [X: A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V2 @ X ) )
=> ( ~ ( P2 @ X )
=> ? [Y: A] :
( ( ord_less @ nat @ ( V2 @ Y ) @ ( V2 @ X ) )
& ~ ( P2 @ Y ) ) ) )
=> ( P2 @ X3 ) ) ) ).
% infinite_descent0_measure
thf(fact_82_bot__nat__0_Oextremum__uniqueI,axiom,
! [A8: nat] :
( ( ord_less_eq @ nat @ A8 @ ( zero_zero @ nat ) )
=> ( A8
= ( zero_zero @ nat ) ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_83_lift__Suc__mono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F @ N ) @ ( F @ N4 ) ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_84_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq @ A @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq @ nat @ N @ N4 )
=> ( ord_less_eq @ A @ ( F @ N4 ) @ ( F @ N ) ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_85_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_86_less__eq__Suc__le,axiom,
( ( ord_less @ nat )
= ( ^ [N3: nat] : ( ord_less_eq @ nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_87_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ord_less_eq @ nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_88_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_89_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_90_inc__induct,axiom,
! [I2: nat,J: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ I2 @ J )
=> ( ( P2 @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I2 @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P2 @ ( suc @ N2 ) )
=> ( P2 @ N2 ) ) ) )
=> ( P2 @ I2 ) ) ) ) ).
% inc_induct
thf(fact_91_dec__induct,axiom,
! [I2: nat,J: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ I2 @ J )
=> ( ( P2 @ I2 )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ I2 @ N2 )
=> ( ( ord_less @ nat @ N2 @ J )
=> ( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) ) ) )
=> ( P2 @ J ) ) ) ) ).
% dec_induct
thf(fact_92_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
= ( ord_less @ nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_93_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_94_diff__less__mono,axiom,
! [A8: nat,B2: nat,C: nat] :
( ( ord_less @ nat @ A8 @ B2 )
=> ( ( ord_less_eq @ nat @ C @ A8 )
=> ( ord_less @ nat @ ( minus_minus @ nat @ A8 @ C ) @ ( minus_minus @ nat @ B2 @ C ) ) ) ) ).
% diff_less_mono
thf(fact_95_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less @ nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_96_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( M
= ( zero_zero @ nat ) )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less @ nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_97_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% gr0_implies_Suc
thf(fact_98_All__less__Suc2,axiom,
! [N: nat,P2: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( suc @ N ) )
=> ( P2 @ I4 ) ) )
= ( ( P2 @ ( zero_zero @ nat ) )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ N )
=> ( P2 @ ( suc @ I4 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_99_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
= ( ? [M2: nat] :
( N
= ( suc @ M2 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_100_Ex__less__Suc2,axiom,
! [N: nat,P2: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less @ nat @ I4 @ ( suc @ N ) )
& ( P2 @ I4 ) ) )
= ( ( P2 @ ( zero_zero @ nat ) )
| ? [I4: nat] :
( ( ord_less @ nat @ I4 @ N )
& ( P2 @ ( suc @ I4 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_101_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
=> ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_102_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ! [X: nat] : ( R @ X @ X )
=> ( ! [X: nat,Y4: nat,Z: nat] :
( ( R @ X @ Y4 )
=> ( ( R @ Y4 @ Z )
=> ( R @ X @ Z ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_103_nat__induct__at__least,axiom,
! [M: nat,N: nat,P2: nat > $o] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ( P2 @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq @ nat @ M @ N2 )
=> ( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) ) )
=> ( P2 @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_104_full__nat__induct,axiom,
! [P2: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M3: nat] :
( ( ord_less_eq @ nat @ ( suc @ M3 ) @ N2 )
=> ( P2 @ M3 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ N ) ) ).
% full_nat_induct
thf(fact_105_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq @ nat @ M @ N ) )
= ( ord_less_eq @ nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_106_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_107_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq @ nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_108_Suc__le__D,axiom,
! [N: nat,M5: nat] :
( ( ord_less_eq @ nat @ ( suc @ N ) @ M5 )
=> ? [M4: nat] :
( M5
= ( suc @ M4 ) ) ) ).
% Suc_le_D
thf(fact_109_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_110_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq @ nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_111_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
=> ( ord_less_eq @ nat @ M @ N ) ) ).
% Suc_leD
thf(fact_112_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_113_le__diff__iff_H,axiom,
! [A8: nat,C: nat,B2: nat] :
( ( ord_less_eq @ nat @ A8 @ C )
=> ( ( ord_less_eq @ nat @ B2 @ C )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ C @ A8 ) @ ( minus_minus @ nat @ C @ B2 ) )
= ( ord_less_eq @ nat @ B2 @ A8 ) ) ) ) ).
% le_diff_iff'
thf(fact_114_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_115_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ L ) @ ( minus_minus @ nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_116_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( minus_minus @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_117_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
= ( ord_less_eq @ nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_118_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq @ nat @ K @ M )
=> ( ( ord_less_eq @ nat @ K @ N )
=> ( ( ( minus_minus @ nat @ M @ K )
= ( minus_minus @ nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_119_not0__implies__Suc,axiom,
! [N: nat] :
( ( N
!= ( zero_zero @ nat ) )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% not0_implies_Suc
thf(fact_120_old_Onat_Oinducts,axiom,
! [P2: nat > $o,Nat: nat] :
( ( P2 @ ( zero_zero @ nat ) )
=> ( ! [Nat3: nat] :
( ( P2 @ Nat3 )
=> ( P2 @ ( suc @ Nat3 ) ) )
=> ( P2 @ Nat ) ) ) ).
% old.nat.inducts
thf(fact_121_old_Onat_Oexhaust,axiom,
! [Y3: nat] :
( ( Y3
!= ( zero_zero @ nat ) )
=> ~ ! [Nat3: nat] :
( Y3
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_122_Zero__not__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_123_Zero__neq__Suc,axiom,
! [M: nat] :
( ( zero_zero @ nat )
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_124_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= ( zero_zero @ nat ) ) ).
% Suc_neq_Zero
thf(fact_125_zero__induct,axiom,
! [P2: nat > $o,K: nat] :
( ( P2 @ K )
=> ( ! [N2: nat] :
( ( P2 @ ( suc @ N2 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ ( zero_zero @ nat ) ) ) ) ).
% zero_induct
thf(fact_126_diff__induct,axiom,
! [P2: nat > nat > $o,M: nat,N: nat] :
( ! [X: nat] : ( P2 @ X @ ( zero_zero @ nat ) )
=> ( ! [Y4: nat] : ( P2 @ ( zero_zero @ nat ) @ ( suc @ Y4 ) )
=> ( ! [X: nat,Y4: nat] :
( ( P2 @ X @ Y4 )
=> ( P2 @ ( suc @ X ) @ ( suc @ Y4 ) ) )
=> ( P2 @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_127_nat__induct,axiom,
! [P2: nat > $o,N: nat] :
( ( P2 @ ( zero_zero @ nat ) )
=> ( ! [N2: nat] :
( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) )
=> ( P2 @ N ) ) ) ).
% nat_induct
thf(fact_128_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat
!= ( zero_zero @ nat ) ) ) ).
% nat.discI
thf(fact_129_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( ( zero_zero @ nat )
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_130_old_Onat_Odistinct_I2_J,axiom,
! [Nat4: nat] :
( ( suc @ Nat4 )
!= ( zero_zero @ nat ) ) ).
% old.nat.distinct(2)
thf(fact_131_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( ( zero_zero @ nat )
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_132_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus @ nat @ M @ ( zero_zero @ nat ) )
= M ) ).
% minus_nat.diff_0
thf(fact_133_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus @ nat @ M @ N )
= ( zero_zero @ nat ) )
=> ( ( ( minus_minus @ nat @ N @ M )
= ( zero_zero @ nat ) )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_134_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ A @ ( F @ N ) @ ( F @ M ) )
= ( ord_less @ nat @ N @ M ) ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_135_lift__Suc__mono__less,axiom,
! [A: $tType] :
( ( order @ A )
=> ! [F: nat > A,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less @ A @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less @ nat @ N @ N4 )
=> ( ord_less @ A @ ( F @ N ) @ ( F @ N4 ) ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_136_diff__Suc__less,axiom,
! [N: nat,I2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ord_less @ nat @ ( minus_minus @ nat @ N @ ( suc @ I2 ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_137_nat__induct__non__zero,axiom,
! [N: nat,P2: nat > $o] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( P2 @ ( one_one @ nat ) )
=> ( ! [N2: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N2 )
=> ( ( P2 @ N2 )
=> ( P2 @ ( suc @ N2 ) ) ) )
=> ( P2 @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_138_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq @ nat @ N @ M )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus @ nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_139_One__nat__def,axiom,
( ( one_one @ nat )
= ( suc @ ( zero_zero @ nat ) ) ) ).
% One_nat_def
thf(fact_140_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_141_strict__inc__induct,axiom,
! [I2: nat,J: nat,P2: nat > $o] :
( ( ord_less @ nat @ I2 @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P2 @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ J )
=> ( ( P2 @ ( suc @ I3 ) )
=> ( P2 @ I3 ) ) )
=> ( P2 @ I2 ) ) ) ) ).
% strict_inc_induct
thf(fact_142_less__Suc__induct,axiom,
! [I2: nat,J: nat,P2: nat > nat > $o] :
( ( ord_less @ nat @ I2 @ J )
=> ( ! [I3: nat] : ( P2 @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K2: nat] :
( ( ord_less @ nat @ I3 @ J2 )
=> ( ( ord_less @ nat @ J2 @ K2 )
=> ( ( P2 @ I3 @ J2 )
=> ( ( P2 @ J2 @ K2 )
=> ( P2 @ I3 @ K2 ) ) ) ) )
=> ( P2 @ I2 @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_143_less__trans__Suc,axiom,
! [I2: nat,J: nat,K: nat] :
( ( ord_less @ nat @ I2 @ J )
=> ( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( suc @ I2 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_144_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_145_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less @ nat @ N @ M )
=> ( ( ord_less @ nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_146_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( suc @ N ) @ M )
= ( ? [M6: nat] :
( ( M
= ( suc @ M6 ) )
& ( ord_less @ nat @ N @ M6 ) ) ) ) ).
% Suc_less_eq2
thf(fact_147_All__less__Suc,axiom,
! [N: nat,P2: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( suc @ N ) )
=> ( P2 @ I4 ) ) )
= ( ( P2 @ N )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ N )
=> ( P2 @ I4 ) ) ) ) ).
% All_less_Suc
thf(fact_148_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less @ nat @ M @ N ) )
= ( ord_less @ nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_149_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
= ( ( ord_less @ nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_150_Ex__less__Suc,axiom,
! [N: nat,P2: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less @ nat @ I4 @ ( suc @ N ) )
& ( P2 @ I4 ) ) )
= ( ( P2 @ N )
| ? [I4: nat] :
( ( ord_less @ nat @ I4 @ N )
& ( P2 @ I4 ) ) ) ) ).
% Ex_less_Suc
thf(fact_151_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_152_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less @ nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_153_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less @ nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_154_Suc__lessE,axiom,
! [I2: nat,K: nat] :
( ( ord_less @ nat @ ( suc @ I2 ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_155_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less @ nat @ ( suc @ M ) @ N )
=> ( ord_less @ nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_156_Nat_OlessE,axiom,
! [I2: nat,K: nat] :
( ( ord_less @ nat @ I2 @ K )
=> ( ( K
!= ( suc @ I2 ) )
=> ~ ! [J2: nat] :
( ( ord_less @ nat @ I2 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_157_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less @ nat @ J @ K )
=> ( ord_less @ nat @ ( minus_minus @ nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_158_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less @ nat @ M @ N )
=> ( ( ord_less @ nat @ M @ L )
=> ( ord_less @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_159_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( ( minus_minus @ nat @ ( suc @ M ) @ N )
= ( minus_minus @ nat @ M @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_160_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
=> ( N
= ( suc @ ( minus_minus @ nat @ N @ ( one_one @ nat ) ) ) ) ) ).
% Suc_pred'
thf(fact_161_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_162_Suc__inject,axiom,
! [X3: nat,Y3: nat] :
( ( ( suc @ X3 )
= ( suc @ Y3 ) )
=> ( X3 = Y3 ) ) ).
% Suc_inject
thf(fact_163_diff__commute,axiom,
! [I2: nat,J: nat,K: nat] :
( ( minus_minus @ nat @ ( minus_minus @ nat @ I2 @ J ) @ K )
= ( minus_minus @ nat @ ( minus_minus @ nat @ I2 @ K ) @ J ) ) ).
% diff_commute
thf(fact_164_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_165_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less @ nat @ N @ M )
=> ( ( suc @ ( minus_minus @ nat @ M @ ( suc @ N ) ) )
= ( minus_minus @ nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_166_zero__induct__lemma,axiom,
! [P2: nat > $o,K: nat,I2: nat] :
( ( P2 @ K )
=> ( ! [N2: nat] :
( ( P2 @ ( suc @ N2 ) )
=> ( P2 @ N2 ) )
=> ( P2 @ ( minus_minus @ nat @ K @ I2 ) ) ) ) ).
% zero_induct_lemma
thf(fact_167_AssumptionSubset3_I3_J,axiom,
ord_less @ nat @ nMsg @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) ).
% AssumptionSubset3(3)
thf(fact_168_length__greater__0__conv,axiom,
! [A: $tType,Xs: list @ A] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( size_size @ ( list @ A ) @ Xs ) )
= ( Xs
!= ( nil @ A ) ) ) ).
% length_greater_0_conv
thf(fact_169_length__0__conv,axiom,
! [A: $tType,Xs: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( zero_zero @ nat ) )
= ( Xs
= ( nil @ A ) ) ) ).
% length_0_conv
thf(fact_170_diff__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(9)
thf(fact_171_diff__gt__0__iff__gt,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A8 @ B2 ) )
= ( ord_less @ A @ B2 @ A8 ) ) ) ).
% diff_gt_0_iff_gt
thf(fact_172_diff__ge__0__iff__ge,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A8 @ B2 ) )
= ( ord_less_eq @ A @ B2 @ A8 ) ) ) ).
% diff_ge_0_iff_ge
thf(fact_173_EnabledIntermediate,axiom,
! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) )
=> ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( one_one @ nat ) ) @ I )
=> ( enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ I ) @ msg ) ) ) ).
% EnabledIntermediate
thf(fact_174__092_060open_062enabled_A_Ife_A_ISuc_Aindex_J_A_B_A_Ilength_A_Ife_A_ISuc_Aindex_J_J_A_N_A1_J_J_Amsg_092_060close_062,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ ( suc @ index ) ) ) @ ( one_one @ nat ) ) ) @ msg ).
% \<open>enabled (fe (Suc index) ! (length (fe (Suc index)) - 1)) msg\<close>
thf(fact_175_LastOfIndex,axiom,
( ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ ( minus_minus @ nat @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ index ) ) @ ( suc @ ( zero_zero @ nat ) ) ) )
= ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) ) ) ).
% LastOfIndex
thf(fact_176_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A8: A] :
( ( minus_minus @ A @ A8 @ A8 )
= ( zero_zero @ A ) ) ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_177_AssumptionFirstOccSetDecrOrConsumed_I1_J,axiom,
enabled @ p @ v @ s @ ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) ) @ msg ).
% AssumptionFirstOccSetDecrOrConsumed(1)
thf(fact_178_Occ2_H,axiom,
enabled @ p @ v @ s @ ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) ) @ msgInSet ).
% Occ2'
thf(fact_179_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_180_not__gr__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% not_gr_zero
thf(fact_181_diff__self,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A8: A] :
( ( minus_minus @ A @ A8 @ A8 )
= ( zero_zero @ A ) ) ) ).
% diff_self
thf(fact_182_diff__0__right,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A8: A] :
( ( minus_minus @ A @ A8 @ ( zero_zero @ A ) )
= A8 ) ) ).
% diff_0_right
thf(fact_183_zero__diff,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A )
=> ! [A8: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A8 )
= ( zero_zero @ A ) ) ) ).
% zero_diff
thf(fact_184_diff__zero,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A )
=> ! [A8: A] :
( ( minus_minus @ A @ A8 @ ( zero_zero @ A ) )
= A8 ) ) ).
% diff_zero
thf(fact_185_EnabledInSuc,axiom,
enabled @ p @ v @ s @ ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) ) @ msg ).
% EnabledInSuc
thf(fact_186_AssumptionSubset2_I2_J,axiom,
enabled @ p @ v @ s @ ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) ) @ msgInSet ).
% AssumptionSubset2(2)
thf(fact_187_AssumptionSubset3_I4_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ nMsg ) @ msg ).
% AssumptionSubset3(4)
thf(fact_188_AssumptionCase1ImplThesis_H,axiom,
enabled @ p @ v @ s @ ( last @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ n ) ) @ msg ).
% AssumptionCase1ImplThesis'
thf(fact_189_zero__reorient,axiom,
! [A: $tType] :
( ( zero @ A )
=> ! [X3: A] :
( ( ( zero_zero @ A )
= X3 )
= ( X3
= ( zero_zero @ A ) ) ) ) ).
% zero_reorient
thf(fact_190_one__reorient,axiom,
! [A: $tType] :
( ( one @ A )
=> ! [X3: A] :
( ( ( one_one @ A )
= X3 )
= ( X3
= ( one_one @ A ) ) ) ) ).
% one_reorient
thf(fact_191_diff__eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ! [A8: A,B2: A,C: A,D: A] :
( ( ( minus_minus @ A @ A8 @ B2 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( A8 = B2 )
= ( C = D ) ) ) ) ).
% diff_eq_diff_eq
thf(fact_192_diff__right__commute,axiom,
! [A: $tType] :
( ( cancel146912293up_add @ A )
=> ! [A8: A,C: A,B2: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A8 @ C ) @ B2 )
= ( minus_minus @ A @ ( minus_minus @ A @ A8 @ B2 ) @ C ) ) ) ).
% diff_right_commute
thf(fact_193_neq__if__length__neq,axiom,
! [A: $tType,Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
!= ( size_size @ ( list @ A ) @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_194_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs2: list @ A] :
( ( size_size @ ( list @ A ) @ Xs2 )
= N ) ).
% Ex_list_of_length
thf(fact_195_last__conv__nth,axiom,
! [A: $tType,Xs: list @ A] :
( ( Xs
!= ( nil @ A ) )
=> ( ( last @ A @ Xs )
= ( nth @ A @ Xs @ ( minus_minus @ nat @ ( size_size @ ( list @ A ) @ Xs ) @ ( one_one @ nat ) ) ) ) ) ).
% last_conv_nth
thf(fact_196_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [X3: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X3 ) ) ).
% zero_le
thf(fact_197_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_198_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( ord_less @ A @ ( zero_zero @ A ) @ N )
= ( N
!= ( zero_zero @ A ) ) ) ) ).
% zero_less_iff_neq_zero
thf(fact_199_gr__implies__not__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [M: A,N: A] :
( ( ord_less @ A @ M @ N )
=> ( N
!= ( zero_zero @ A ) ) ) ) ).
% gr_implies_not_zero
thf(fact_200_not__less__zero,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
~ ( ord_less @ A @ N @ ( zero_zero @ A ) ) ) ).
% not_less_zero
thf(fact_201_gr__zeroI,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A )
=> ! [N: A] :
( ( N
!= ( zero_zero @ A ) )
=> ( ord_less @ A @ ( zero_zero @ A ) @ N ) ) ) ).
% gr_zeroI
thf(fact_202_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% less_numeral_extra(3)
thf(fact_203_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_204_diff__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,D: A,C: A] :
( ( ord_less_eq @ A @ A8 @ B2 )
=> ( ( ord_less_eq @ A @ D @ C )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A8 @ C ) @ ( minus_minus @ A @ B2 @ D ) ) ) ) ) ).
% diff_mono
thf(fact_205_diff__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A8: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A8 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ C @ A8 ) @ ( minus_minus @ A @ C @ B2 ) ) ) ) ).
% diff_left_mono
thf(fact_206_diff__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A8 @ B2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A8 @ C ) @ ( minus_minus @ A @ B2 @ C ) ) ) ) ).
% diff_right_mono
thf(fact_207_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,C: A,D: A] :
( ( ( minus_minus @ A @ A8 @ B2 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( ord_less_eq @ A @ A8 @ B2 )
= ( ord_less_eq @ A @ C @ D ) ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_208_eq__iff__diff__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A )
=> ( ( ^ [Y5: A,Z2: A] : ( Y5 = Z2 ) )
= ( ^ [A9: A,B3: A] :
( ( minus_minus @ A @ A9 @ B3 )
= ( zero_zero @ A ) ) ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_209_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ~ ( ord_less @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(4)
thf(fact_210_diff__strict__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,D: A,C: A] :
( ( ord_less @ A @ A8 @ B2 )
=> ( ( ord_less @ A @ D @ C )
=> ( ord_less @ A @ ( minus_minus @ A @ A8 @ C ) @ ( minus_minus @ A @ B2 @ D ) ) ) ) ) ).
% diff_strict_mono
thf(fact_211_diff__eq__diff__less,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,C: A,D: A] :
( ( ( minus_minus @ A @ A8 @ B2 )
= ( minus_minus @ A @ C @ D ) )
=> ( ( ord_less @ A @ A8 @ B2 )
= ( ord_less @ A @ C @ D ) ) ) ) ).
% diff_eq_diff_less
thf(fact_212_diff__strict__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [B2: A,A8: A,C: A] :
( ( ord_less @ A @ B2 @ A8 )
=> ( ord_less @ A @ ( minus_minus @ A @ C @ A8 ) @ ( minus_minus @ A @ C @ B2 ) ) ) ) ).
% diff_strict_left_mono
thf(fact_213_diff__strict__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ! [A8: A,B2: A,C: A] :
( ( ord_less @ A @ A8 @ B2 )
=> ( ord_less @ A @ ( minus_minus @ A @ A8 @ C ) @ ( minus_minus @ A @ B2 @ C ) ) ) ) ).
% diff_strict_right_mono
thf(fact_214_length__induct,axiom,
! [A: $tType,P2: ( list @ A ) > $o,Xs: list @ A] :
( ! [Xs2: list @ A] :
( ! [Ys2: list @ A] :
( ( ord_less @ nat @ ( size_size @ ( list @ A ) @ Ys2 ) @ ( size_size @ ( list @ A ) @ Xs2 ) )
=> ( P2 @ Ys2 ) )
=> ( P2 @ Xs2 ) )
=> ( P2 @ Xs ) ) ).
% length_induct
thf(fact_215_le__iff__diff__le__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less_eq @ A )
= ( ^ [A9: A,B3: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ A9 @ B3 ) @ ( zero_zero @ A ) ) ) ) ) ).
% le_iff_diff_le_0
thf(fact_216_less__numeral__extra_I1_J,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A )
=> ( ord_less @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% less_numeral_extra(1)
thf(fact_217_less__iff__diff__less__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A )
=> ( ( ord_less @ A )
= ( ^ [A9: A,B3: A] : ( ord_less @ A @ ( minus_minus @ A @ A9 @ B3 ) @ ( zero_zero @ A ) ) ) ) ) ).
% less_iff_diff_less_0
thf(fact_218_list_Osize_I3_J,axiom,
! [A: $tType] :
( ( size_size @ ( list @ A ) @ ( nil @ A ) )
= ( zero_zero @ nat ) ) ).
% list.size(3)
thf(fact_219_nth__equalityI,axiom,
! [A: $tType,Xs: list @ A,Ys: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs )
= ( size_size @ ( list @ A ) @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less @ nat @ I3 @ ( size_size @ ( list @ A ) @ Xs ) )
=> ( ( nth @ A @ Xs @ I3 )
= ( nth @ A @ Ys @ I3 ) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
thf(fact_220_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P2: nat > A > $o] :
( ( ! [I4: nat] :
( ( ord_less @ nat @ I4 @ K )
=> ? [X4: A] : ( P2 @ I4 @ X4 ) ) )
= ( ? [Xs3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= K )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ K )
=> ( P2 @ I4 @ ( nth @ A @ Xs3 @ I4 ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_221_list__eq__iff__nth__eq,axiom,
! [A: $tType] :
( ( ^ [Y5: list @ A,Z2: list @ A] : ( Y5 = Z2 ) )
= ( ^ [Xs3: list @ A,Ys3: list @ A] :
( ( ( size_size @ ( list @ A ) @ Xs3 )
= ( size_size @ ( list @ A ) @ Ys3 ) )
& ! [I4: nat] :
( ( ord_less @ nat @ I4 @ ( size_size @ ( list @ A ) @ Xs3 ) )
=> ( ( nth @ A @ Xs3 @ I4 )
= ( nth @ A @ Ys3 @ I4 ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_222_PrefixSameOnLow,axiom,
! [A: $tType,L1: list @ A,L2: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ! [Index: nat] :
( ( ord_less @ nat @ Index @ ( size_size @ ( list @ A ) @ L1 ) )
=> ( ( nth @ A @ L1 @ Index )
= ( nth @ A @ L2 @ Index ) ) ) ) ).
% PrefixSameOnLow
thf(fact_223_infiniteExecutionMsg_Osimps_I1_J,axiom,
! [Cfg2: configuration_ext @ p @ v @ s @ product_unit,FStepCfg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) )] :
( ( fLPThe221390223ionMsg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ ( zero_zero @ nat ) )
= ( nil @ ( message @ p @ v ) ) ) ).
% infiniteExecutionMsg.simps(1)
thf(fact_224_AssumptionFair_I3_J,axiom,
enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ n ) @ n0 ) @ msg ).
% AssumptionFair(3)
thf(fact_225_AssumptionFair_I2_J,axiom,
ord_less @ nat @ n0 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ n ) ) ).
% AssumptionFair(2)
thf(fact_226_MinPredicate,axiom,
! [P2: nat > $o] :
( ? [X_1: nat] : ( P2 @ X_1 )
=> ? [N0: nat] :
( ( P2 @ N0 )
& ! [N5: nat] :
( ( P2 @ N5 )
=> ( ord_less_eq @ nat @ N0 @ N5 ) ) ) ) ).
% MinPredicate
thf(fact_227_PrefixListTransitive,axiom,
! [A: $tType,L1: list @ A,L2: list @ A,L3: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ( ( prefixList @ A @ L2 @ L3 )
=> ( prefixList @ A @ L1 @ L3 ) ) ) ).
% PrefixListTransitive
thf(fact_228_KeepProperty,axiom,
! [Low: nat,P2: nat > $o,Q: nat > $o] :
( ! [I3: nat] :
( ( ord_less_eq @ nat @ Low @ I3 )
=> ( ( P2 @ I3 )
=> ( ( P2 @ ( suc @ I3 ) )
& ( Q @ I3 ) ) ) )
=> ( ( P2 @ Low )
=> ! [I: nat] :
( ( ord_less_eq @ nat @ Low @ I )
=> ( Q @ I ) ) ) ) ).
% KeepProperty
thf(fact_229_NatPredicateTippingPoint,axiom,
! [N22: nat,Pr: nat > $o] :
( ( ord_less @ nat @ ( zero_zero @ nat ) @ N22 )
=> ( ( Pr @ ( zero_zero @ nat ) )
=> ( ~ ( Pr @ N22 )
=> ? [N2: nat] :
( ( ord_less @ nat @ N2 @ N22 )
& ( Pr @ N2 )
& ~ ( Pr @ ( suc @ N2 ) ) ) ) ) ) ).
% NatPredicateTippingPoint
thf(fact_230_MinPredicate2,axiom,
! [P2: nat > $o] :
( ? [X_1: nat] : ( P2 @ X_1 )
=> ? [N0: nat] :
( ( P2 @ N0 )
& ( ( N0
= ( zero_zero @ nat ) )
| ~ ( P2 @ ( minus_minus @ nat @ N0 @ ( one_one @ nat ) ) ) ) ) ) ).
% MinPredicate2
thf(fact_231_PrefixListMonotonicity,axiom,
! [A: $tType,L1: list @ A,L2: list @ A] :
( ( prefixList @ A @ L1 @ L2 )
=> ( ord_less @ nat @ ( size_size @ ( list @ A ) @ L1 ) @ ( size_size @ ( list @ A ) @ L2 ) ) ) ).
% PrefixListMonotonicity
thf(fact_232_infiniteExecutionMsg_Oelims,axiom,
! [X3: configuration_ext @ p @ v @ s @ product_unit,Xa: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),Xb: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),Xc: nat,Y3: list @ ( message @ p @ v )] :
( ( ( fLPThe221390223ionMsg @ p @ v @ s @ X3 @ Xa @ Xb @ Xc )
= Y3 )
=> ( ( ( Xc
= ( zero_zero @ nat ) )
=> ( Y3
!= ( nil @ ( message @ p @ v ) ) ) )
=> ~ ! [N2: nat] :
( ( Xc
= ( suc @ N2 ) )
=> ( Y3
!= ( Xb @ ( fLPThe137922386ionCfg @ p @ v @ s @ X3 @ Xa @ Xb @ N2 ) @ ( fLPThe221390223ionMsg @ p @ v @ s @ X3 @ Xa @ Xb @ N2 ) ) ) ) ) ) ).
% infiniteExecutionMsg.elims
thf(fact_233_infiniteExecutionCfg_Osimps_I2_J,axiom,
! [Cfg2: configuration_ext @ p @ v @ s @ product_unit,FStepCfg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N: nat] :
( ( fLPThe137922386ionCfg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ ( suc @ N ) )
= ( FStepCfg2 @ ( fLPThe137922386ionCfg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ N ) @ ( fLPThe221390223ionMsg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ N ) ) ) ).
% infiniteExecutionCfg.simps(2)
thf(fact_234_infiniteExecutionMsg_Osimps_I2_J,axiom,
! [Cfg2: configuration_ext @ p @ v @ s @ product_unit,FStepCfg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ),FStepMsg2: ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) > ( list @ ( message @ p @ v ) ) > ( list @ ( message @ p @ v ) ),N: nat] :
( ( fLPThe221390223ionMsg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ ( suc @ N ) )
= ( FStepMsg2 @ ( fLPThe137922386ionCfg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ N ) @ ( fLPThe221390223ionMsg @ p @ v @ s @ Cfg2 @ FStepCfg2 @ FStepMsg2 @ N ) ) ) ).
% infiniteExecutionMsg.simps(2)
thf(fact_235_AssumpOcc6_H_I2_J,axiom,
( msgInSet
!= ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ ( minus_minus @ nat @ n1 @ ( one_one @ nat ) ) ) ) ).
% AssumpOcc6'(2)
thf(fact_236_AssumptionFairContr,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ n @ N5 )
=> ! [N02: nat] :
( ( ord_less @ nat @ N02 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ N5 ) ) )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ n ) ) @ N02 )
=> ( msg
!= ( nth @ ( message @ p @ v ) @ ( ft @ N5 ) @ N02 ) ) ) ) ) ).
% AssumptionFairContr
thf(fact_237_IPrefixList,axiom,
! [I: nat] : ( prefixList @ ( message @ p @ v ) @ ( ft @ I ) @ ( ft @ ( suc @ I ) ) ) ).
% IPrefixList
thf(fact_238_ShorterTrace,axiom,
ord_less @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) ).
% ShorterTrace
thf(fact_239_SameMsgOnLow,axiom,
! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ I )
= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ I ) ) ) ).
% SameMsgOnLow
thf(fact_240_SmallIndexTrace_H,axiom,
ord_less @ nat @ ( minus_minus @ nat @ n1 @ ( one_one @ nat ) ) @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) ).
% SmallIndexTrace'
thf(fact_241_NotConsumedIntermediate,axiom,
! [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) )
=> ( ( ord_less_eq @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) @ I )
=> ( ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ I )
!= msg ) ) ) ).
% NotConsumedIntermediate
thf(fact_242__092_060open_062_092_060not_062_A_I_092_060exists_062i_060length_A_Ift_A_ISuc_Aindex_J_J_O_Alength_A_Ift_Aindex_J_A_092_060le_062_Ai_A_092_060and_062_Amsg_A_061_Aft_A_ISuc_Aindex_J_A_B_Ai_J_092_060close_062,axiom,
~ ? [I: nat] :
( ( ord_less @ nat @ I @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) )
& ( ord_less_eq @ nat @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) @ I )
& ( msg
= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ I ) ) ) ).
% \<open>\<not> (\<exists>i<length (ft (Suc index)). length (ft index) \<le> i \<and> msg = ft (Suc index) ! i)\<close>
thf(fact_243_OccSameMsg_H,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ n1 @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ N5 )
= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ N5 ) ) ) ) ).
% OccSameMsg'
thf(fact_244_AssumptionSubset_I2_J,axiom,
firstOccurrence @ p @ v @ s @ ( fe @ ( suc @ index ) ) @ ( ft @ ( suc @ index ) ) @ msgInSet @ n1 ).
% AssumptionSubset(2)
thf(fact_245_MessageStaysOrConsumed,axiom,
! [N1: nat,N22: nat,N: nat,Msg: message @ p @ v] :
( ( ( ord_less_eq @ nat @ N1 @ N22 )
& ( ord_less @ nat @ N22 @ ( size_size @ ( list @ ( configuration_ext @ p @ v @ s @ product_unit ) ) @ ( fe @ N ) ) )
& ( enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ N ) @ N1 ) @ Msg ) )
=> ( ( enabled @ p @ v @ s @ ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ N ) @ N22 ) @ Msg )
| ? [N03: nat] :
( ( ord_less_eq @ nat @ N1 @ N03 )
& ( ord_less @ nat @ N03 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ N ) ) )
& ( ( nth @ ( message @ p @ v ) @ ( ft @ N ) @ N03 )
= Msg ) ) ) ) ).
% MessageStaysOrConsumed
thf(fact_246_AssumptionSubset_I3_J,axiom,
firstOccurrence @ p @ v @ s @ ( fe @ ( suc @ index ) ) @ ( ft @ ( suc @ index ) ) @ msg @ nMsg ).
% AssumptionSubset(3)
thf(fact_247_Occ5_H,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ n1 @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ index ) ) )
=> ( msgInSet
!= ( nth @ ( message @ p @ v ) @ ( ft @ index ) @ N5 ) ) ) ) ).
% Occ5'
thf(fact_248_Case2ImplThesis,axiom,
( ? [N02: nat] :
( ( ord_less_eq @ nat @ n0 @ N02 )
& ( ord_less @ nat @ N02 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ n ) ) )
& ( ( nth @ ( message @ p @ v ) @ ( ft @ n ) @ N02 )
= msg ) )
=> ? [N6: nat] :
( ( ord_less_eq @ nat @ n @ N6 )
& ? [N03: nat] :
( ( ord_less_eq @ nat @ n0 @ N03 )
& ( ord_less @ nat @ N03 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ N6 ) ) )
& ( msg
= ( nth @ ( message @ p @ v ) @ ( ft @ N6 ) @ N03 ) ) ) ) ) ).
% Case2ImplThesis
thf(fact_249_AssumptionSubset2_I5_J,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ n1 @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) )
=> ( msgInSet
!= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ N5 ) ) ) ) ).
% AssumptionSubset2(5)
thf(fact_250_AssumptionSubset3_I5_J,axiom,
! [N5: nat] :
( ( ord_less_eq @ nat @ nMsg @ N5 )
=> ( ( ord_less @ nat @ N5 @ ( size_size @ ( list @ ( message @ p @ v ) ) @ ( ft @ ( suc @ index ) ) ) )
=> ( msg
!= ( nth @ ( message @ p @ v ) @ ( ft @ ( suc @ index ) ) @ N5 ) ) ) ) ).
% AssumptionSubset3(5)
% Type constructors (16)
thf(tcon_fun___Orderings_Oorder,axiom,
! [A10: $tType,A11: $tType] :
( ( order @ A11 )
=> ( order @ ( A10 > A11 ) ) ) ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat ).
thf(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring,axiom,
linord1659791738miring @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add,axiom,
cancel146912293up_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add,axiom,
cancel1352612707id_add @ nat ).
thf(tcon_Nat_Onat___Groups_Ocomm__monoid__diff,axiom,
comm_monoid_diff @ nat ).
thf(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder @ nat ).
thf(tcon_Nat_Onat___Orderings_Oorder_1,axiom,
order @ nat ).
thf(tcon_Nat_Onat___Groups_Ozero,axiom,
zero @ nat ).
thf(tcon_Nat_Onat___Groups_Oone,axiom,
one @ nat ).
thf(tcon_Nat_Onat___Nat_Osize,axiom,
size @ nat ).
thf(tcon_HOL_Obool___Orderings_Oorder_2,axiom,
order @ $o ).
thf(tcon_List_Olist___Nat_Osize_3,axiom,
! [A10: $tType] : ( size @ ( list @ A10 ) ) ).
thf(tcon_Product__Type_Ounit___Orderings_Owellorder_4,axiom,
wellorder @ product_unit ).
thf(tcon_Product__Type_Ounit___Orderings_Oorder_5,axiom,
order @ product_unit ).
thf(tcon_AsynchronousSystem_Omessage___Nat_Osize_6,axiom,
! [A10: $tType,A11: $tType] : ( size @ ( message @ A10 @ A11 ) ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ ( suc @ index ) ) @ ( minus_minus @ nat @ n1 @ ( one_one @ nat ) ) )
= ( nth @ ( configuration_ext @ p @ v @ s @ product_unit ) @ ( fe @ index ) @ ( minus_minus @ nat @ n1 @ ( one_one @ nat ) ) ) ) ).
%------------------------------------------------------------------------------