TPTP Problem File: ITP019^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP019^3 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 syntactic export of thm_2Ecomplex_2ECOMPLEX__INV__NZ.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Ecomplex_2ECOMPLEX__INV__NZ.p [Gau19]
% : HL409001^3.p [TPAP]
% Status : Theorem
% Rating : 0.33 v8.1.0, 0.25 v7.5.0
% Syntax : Number of formulae : 29 ( 6 unt; 17 typ; 0 def)
% Number of atoms : 24 ( 5 equ; 4 cnn)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 67 ( 4 ~; 1 |; 5 &; 36 @)
% ( 14 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 21 ( 21 >; 0 *; 0 +; 0 <<)
% Number of symbols : 16 ( 14 usr; 4 con; 0-3 aty)
% Number of variables : 25 ( 0 ^; 21 !; 1 ?; 25 :)
% ( 3 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: $tType > $tType > $tType ).
thf(tyop_2Enum_2Enum,type,
tyop_2Enum_2Enum: $tType ).
thf(tyop_2Epair_2Eprod,type,
tyop_2Epair_2Eprod: $tType > $tType > $tType ).
thf(tyop_2Erealax_2Ereal,type,
tyop_2Erealax_2Ereal: $tType ).
thf(c_2Ebool_2E_21,type,
c_2Ebool_2E_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $o > $o > $o ).
thf(c_2Enum_2E0,type,
c_2Enum_2E0: tyop_2Enum_2Enum ).
thf(c_2Emin_2E_3D,type,
c_2Emin_2E_3D:
!>[A_27a: $tType] : ( A_27a > A_27a > $o ) ).
thf(c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $o > $o > $o ).
thf(c_2Ebool_2E_3F,type,
c_2Ebool_2E_3F:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2EF,type,
c_2Ebool_2EF: $o ).
thf(c_2Ebool_2ET,type,
c_2Ebool_2ET: $o ).
thf(c_2Ebool_2E_5C_2F,type,
c_2Ebool_2E_5C_2F: $o > $o > $o ).
thf(c_2Ecomplex_2Ecomplex__inv,type,
c_2Ecomplex_2Ecomplex__inv: ( tyop_2Epair_2Eprod @ tyop_2Erealax_2Ereal @ tyop_2Erealax_2Ereal ) > ( tyop_2Epair_2Eprod @ tyop_2Erealax_2Ereal @ tyop_2Erealax_2Ereal ) ).
thf(c_2Ecomplex_2Ecomplex__of__num,type,
c_2Ecomplex_2Ecomplex__of__num: tyop_2Enum_2Enum > ( tyop_2Epair_2Eprod @ tyop_2Erealax_2Ereal @ tyop_2Erealax_2Ereal ) ).
thf(c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $o > $o ).
thf(logicdef_2E_2F_5C,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).
thf(logicdef_2E_5C_2F,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).
thf(logicdef_2E_7E,axiom,
! [V0: $o] :
( ( c_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).
thf(logicdef_2E_3D_3D_3E,axiom,
! [V0: $o,V1: $o] :
( ( c_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).
thf(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0: A_27a,V1: A_27a] :
( ( c_2Emin_2E_3D @ A_27a @ V0 @ V1 )
<=> ( V0 = V1 ) ) ).
thf(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_21 @ A_27a @ V0f )
<=> ! [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_3F @ A_27a @ V0f )
<=> ? [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(thm_2Ebool_2ETRUTH,axiom,
c_2Ebool_2ET ).
thf(thm_2Ebool_2EFORALL__SIMP,axiom,
! [A_27a: $tType,V0t: $o] :
( ! [V1x: A_27a] : V0t
<=> V0t ) ).
thf(thm_2Ebool_2EIMP__CLAUSES,axiom,
! [V0t: $o] :
( ( ( c_2Ebool_2ET
=> V0t )
<=> V0t )
& ( ( V0t
=> c_2Ebool_2ET )
<=> c_2Ebool_2ET )
& ( ( c_2Ebool_2EF
=> V0t )
<=> c_2Ebool_2ET )
& ( ( V0t
=> V0t )
<=> c_2Ebool_2ET )
& ( ( V0t
=> c_2Ebool_2EF )
<=> ( (~) @ V0t ) ) ) ).
thf(thm_2Ecomplex_2ECOMPLEX__INV__EQ__0,axiom,
! [V0z: tyop_2Epair_2Eprod @ tyop_2Erealax_2Ereal @ tyop_2Erealax_2Ereal] :
( ( ( c_2Ecomplex_2Ecomplex__inv @ V0z )
= ( c_2Ecomplex_2Ecomplex__of__num @ c_2Enum_2E0 ) )
<=> ( V0z
= ( c_2Ecomplex_2Ecomplex__of__num @ c_2Enum_2E0 ) ) ) ).
thf(thm_2Ecomplex_2ECOMPLEX__INV__NZ,conjecture,
! [V0z: tyop_2Epair_2Eprod @ tyop_2Erealax_2Ereal @ tyop_2Erealax_2Ereal] :
( ( (~)
@ ( V0z
= ( c_2Ecomplex_2Ecomplex__of__num @ c_2Enum_2E0 ) ) )
=> ( (~)
@ ( ( c_2Ecomplex_2Ecomplex__inv @ V0z )
= ( c_2Ecomplex_2Ecomplex__of__num @ c_2Enum_2E0 ) ) ) ) ).
%------------------------------------------------------------------------------