TPTP Problem File: ITP011_5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP011_5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Equotient__option_2EOPTION__REL__def.p, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Equotient__option_2EOPTION__REL__def.p [Gau20]
% : HL405001_5.p [TPAP]
% Status : Theorem
% Rating : 0.90 v9.0.0, 0.89 v8.2.0, 1.00 v7.5.0
% Syntax : Number of formulae : 12991 (2077 unt;3333 typ; 0 def)
% Number of atoms : 186373 (11109 equ)
% Maximal formula atoms : 5763 ( 14 avg)
% Number of connectives : 46445 ( 916 ~; 485 |;19437 &)
% (3768 <=>;21839 =>; 0 <=; 0 <~>)
% Maximal formula depth : 361 ( 7 avg)
% Maximal term depth : 35 ( 2 avg)
% Number of FOOLs : 131186 (131186 fml; 0 var)
% Number of types : 38 ( 36 usr)
% Number of type conns : 7246 (2967 >;4279 *; 0 +; 0 <<)
% Number of predicates : 14 ( 11 usr; 3 prp; 0-2 aty)
% Number of functors : 3295 (3295 usr; 330 con; 0-11 aty)
% Number of variables : 48045 (35167 !;12878 ?;48045 :)
% SPC : TF0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001_2.ax').
include('Axioms/ITP001/ITP002_5.ax').
include('Axioms/ITP001/ITP003_5.ax').
include('Axioms/ITP001/ITP004_5.ax').
include('Axioms/ITP001/ITP007_5.ax').
include('Axioms/ITP001/ITP006_5.ax').
include('Axioms/ITP001/ITP005_5.ax').
include('Axioms/ITP001/ITP008_5.ax').
include('Axioms/ITP001/ITP009_5.ax').
include('Axioms/ITP001/ITP010_5.ax').
include('Axioms/ITP001/ITP012_5.ax').
include('Axioms/ITP001/ITP011_5.ax').
include('Axioms/ITP001/ITP013_5.ax').
include('Axioms/ITP001/ITP014_5.ax').
include('Axioms/ITP001/ITP015_5.ax').
include('Axioms/ITP001/ITP017_5.ax').
include('Axioms/ITP001/ITP016_5.ax').
include('Axioms/ITP001/ITP019_5.ax').
include('Axioms/ITP001/ITP018_5.ax').
include('Axioms/ITP001/ITP021_5.ax').
include('Axioms/ITP001/ITP022_5.ax').
include('Axioms/ITP001/ITP020_5.ax').
include('Axioms/ITP001/ITP024_5.ax').
include('Axioms/ITP001/ITP023_5.ax').
include('Axioms/ITP001/ITP025_5.ax').
include('Axioms/ITP001/ITP026_5.ax').
include('Axioms/ITP001/ITP027_5.ax').
include('Axioms/ITP001/ITP028_5.ax').
include('Axioms/ITP001/ITP031_5.ax').
include('Axioms/ITP001/ITP029_5.ax').
include('Axioms/ITP001/ITP033_5.ax').
include('Axioms/ITP001/ITP030_5.ax').
include('Axioms/ITP001/ITP032_5.ax').
include('Axioms/ITP001/ITP038_5.ax').
include('Axioms/ITP001/ITP035_5.ax').
include('Axioms/ITP001/ITP034_5.ax').
include('Axioms/ITP001/ITP036_5.ax').
include('Axioms/ITP001/ITP037_5.ax').
include('Axioms/ITP001/ITP039_5.ax').
include('Axioms/ITP001/ITP041_5.ax').
include('Axioms/ITP001/ITP042_5.ax').
include('Axioms/ITP001/ITP040_5.ax').
include('Axioms/ITP001/ITP044_5.ax').
include('Axioms/ITP001/ITP051_5.ax').
include('Axioms/ITP001/ITP045_5.ax').
include('Axioms/ITP001/ITP056_5.ax').
include('Axioms/ITP001/ITP046_5.ax').
include('Axioms/ITP001/ITP043_5.ax').
include('Axioms/ITP001/ITP052_5.ax').
include('Axioms/ITP001/ITP057_5.ax').
include('Axioms/ITP001/ITP048_5.ax').
include('Axioms/ITP001/ITP047_5.ax').
include('Axioms/ITP001/ITP055_5.ax').
include('Axioms/ITP001/ITP053_5.ax').
include('Axioms/ITP001/ITP054_5.ax').
include('Axioms/ITP001/ITP058_5.ax').
include('Axioms/ITP001/ITP049_5.ax').
include('Axioms/ITP001/ITP050_5.ax').
include('Axioms/ITP001/ITP061_5.ax').
include('Axioms/ITP001/ITP069_5.ax').
include('Axioms/ITP001/ITP062_5.ax').
include('Axioms/ITP001/ITP068_5.ax').
include('Axioms/ITP001/ITP078_5.ax').
include('Axioms/ITP001/ITP064_5.ax').
include('Axioms/ITP001/ITP060_5.ax').
include('Axioms/ITP001/ITP067_5.ax').
include('Axioms/ITP001/ITP075_5.ax').
include('Axioms/ITP001/ITP074_5.ax').
include('Axioms/ITP001/ITP063_5.ax').
include('Axioms/ITP001/ITP059_5.ax').
include('Axioms/ITP001/ITP065_5.ax').
include('Axioms/ITP001/ITP076_5.ax').
include('Axioms/ITP001/ITP066_5.ax').
include('Axioms/ITP001/ITP077_5.ax').
include('Axioms/ITP001/ITP070_5.ax').
%------------------------------------------------------------------------------
tff(conj_thm_2Equotient__option_2EOPTION__MAP__I,axiom,
! [A_27a: del] : ( ap(c_2Eoption_2EOPTION__MAP(A_27a,A_27a),c_2Ecombin_2EI(A_27a)) = c_2Ecombin_2EI(ty_2Eoption_2Eoption(A_27a)) ) ).
tff(conj_thm_2Equotient__option_2EOPTION__REL__def,conjecture,
! [A_27a: del,V0R: $i] :
( mem(V0R,arr(A_27a,arr(A_27a,bool)))
=> ! [V1x: $i] :
( mem(V1x,A_27a)
=> ! [V2y: $i] :
( mem(V2y,A_27a)
=> ( ( p(ap(ap(ap(c_2Eoption_2EOPTREL(A_27a,A_27a),V0R),c_2Eoption_2ENONE(A_27a)),c_2Eoption_2ENONE(A_27a)))
<=> $true )
& ( p(ap(ap(ap(c_2Eoption_2EOPTREL(A_27a,A_27a),V0R),ap(c_2Eoption_2ESOME(A_27a),V1x)),c_2Eoption_2ENONE(A_27a)))
<=> $false )
& ( p(ap(ap(ap(c_2Eoption_2EOPTREL(A_27a,A_27a),V0R),c_2Eoption_2ENONE(A_27a)),ap(c_2Eoption_2ESOME(A_27a),V2y)))
<=> $false )
& ( p(ap(ap(ap(c_2Eoption_2EOPTREL(A_27a,A_27a),V0R),ap(c_2Eoption_2ESOME(A_27a),V1x)),ap(c_2Eoption_2ESOME(A_27a),V2y)))
<=> p(ap(ap(V0R,V1x),V2y)) ) ) ) ) ) ).
%------------------------------------------------------------------------------