TPTP Problem File: ITP011^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP011^7 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 syntactic export of thm_2Equotient__option_2EOPTION__REL__def.p, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Equotient__option_2EOPTION__REL__def.p [Gau20]
% : HL405001^7.p [TPAP]
% Status : Theorem
% Rating : 1.00 v7.5.0
% Syntax : Number of formulae : 10014 (2388 unt;3368 typ; 0 def)
% Number of atoms : 27839 (9259 equ; 973 cnn)
% Maximal formula atoms : 912 ( 4 avg)
% Number of connectives : 177677 ( 973 ~; 550 |;6571 &;162068 @)
% (3551 <=>;3964 =>; 0 <=; 0 <~>)
% Maximal formula depth : 364 ( 8 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 18990 (18990 >; 0 *; 0 +; 0 <<)
% Number of symbols : 981 ( 979 usr; 8 con; 0-10 aty)
% Number of variables : 44351 (2724 ^;25897 !;12910 ?;44351 :)
% (2820 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP002^7.ax').
include('Axioms/ITP001/ITP003^7.ax').
include('Axioms/ITP001/ITP004^7.ax').
include('Axioms/ITP001/ITP005^7.ax').
include('Axioms/ITP001/ITP006^7.ax').
include('Axioms/ITP001/ITP007^7.ax').
include('Axioms/ITP001/ITP008^7.ax').
include('Axioms/ITP001/ITP009^7.ax').
include('Axioms/ITP001/ITP010^7.ax').
include('Axioms/ITP001/ITP011^7.ax').
include('Axioms/ITP001/ITP012^7.ax').
include('Axioms/ITP001/ITP013^7.ax').
include('Axioms/ITP001/ITP014^7.ax').
include('Axioms/ITP001/ITP015^7.ax').
include('Axioms/ITP001/ITP016^7.ax').
include('Axioms/ITP001/ITP017^7.ax').
include('Axioms/ITP001/ITP018^7.ax').
include('Axioms/ITP001/ITP019^7.ax').
include('Axioms/ITP001/ITP020^7.ax').
include('Axioms/ITP001/ITP021^7.ax').
include('Axioms/ITP001/ITP022^7.ax').
include('Axioms/ITP001/ITP023^7.ax').
include('Axioms/ITP001/ITP024^7.ax').
include('Axioms/ITP001/ITP025^7.ax').
include('Axioms/ITP001/ITP026^7.ax').
include('Axioms/ITP001/ITP027^7.ax').
include('Axioms/ITP001/ITP028^7.ax').
include('Axioms/ITP001/ITP029^7.ax').
include('Axioms/ITP001/ITP030^7.ax').
include('Axioms/ITP001/ITP031^7.ax').
include('Axioms/ITP001/ITP032^7.ax').
include('Axioms/ITP001/ITP033^7.ax').
include('Axioms/ITP001/ITP034^7.ax').
include('Axioms/ITP001/ITP035^7.ax').
include('Axioms/ITP001/ITP036^7.ax').
include('Axioms/ITP001/ITP037^7.ax').
include('Axioms/ITP001/ITP038^7.ax').
include('Axioms/ITP001/ITP039^7.ax').
include('Axioms/ITP001/ITP040^7.ax').
include('Axioms/ITP001/ITP041^7.ax').
include('Axioms/ITP001/ITP042^7.ax').
include('Axioms/ITP001/ITP043^7.ax').
include('Axioms/ITP001/ITP044^7.ax').
include('Axioms/ITP001/ITP045^7.ax').
include('Axioms/ITP001/ITP046^7.ax').
include('Axioms/ITP001/ITP047^7.ax').
include('Axioms/ITP001/ITP048^7.ax').
include('Axioms/ITP001/ITP049^7.ax').
include('Axioms/ITP001/ITP050^7.ax').
include('Axioms/ITP001/ITP051^7.ax').
include('Axioms/ITP001/ITP052^7.ax').
include('Axioms/ITP001/ITP053^7.ax').
include('Axioms/ITP001/ITP054^7.ax').
include('Axioms/ITP001/ITP055^7.ax').
include('Axioms/ITP001/ITP056^7.ax').
include('Axioms/ITP001/ITP057^7.ax').
include('Axioms/ITP001/ITP058^7.ax').
include('Axioms/ITP001/ITP059^7.ax').
include('Axioms/ITP001/ITP060^7.ax').
include('Axioms/ITP001/ITP061^7.ax').
include('Axioms/ITP001/ITP062^7.ax').
include('Axioms/ITP001/ITP063^7.ax').
include('Axioms/ITP001/ITP064^7.ax').
include('Axioms/ITP001/ITP065^7.ax').
include('Axioms/ITP001/ITP066^7.ax').
include('Axioms/ITP001/ITP067^7.ax').
include('Axioms/ITP001/ITP068^7.ax').
include('Axioms/ITP001/ITP069^7.ax').
include('Axioms/ITP001/ITP070^7.ax').
%------------------------------------------------------------------------------
thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: $tType > $tType > $tType ).
thf(tyop_2Eoption_2Eoption,type,
tyop_2Eoption_2Eoption: $tType > $tType ).
thf(c_2Ebool_2E_21,type,
c_2Ebool_2E_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $o > $o > $o ).
thf(c_2Emin_2E_3D,type,
c_2Emin_2E_3D:
!>[A_27a: $tType] : ( A_27a > A_27a > $o ) ).
thf(c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $o > $o > $o ).
thf(c_2Ebool_2E_3F,type,
c_2Ebool_2E_3F:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2EF,type,
c_2Ebool_2EF: $o ).
thf(c_2Ecombin_2EI,type,
c_2Ecombin_2EI:
!>[A_27a: $tType] : ( A_27a > A_27a ) ).
thf(c_2Eoption_2ENONE,type,
c_2Eoption_2ENONE:
!>[A_27a: $tType] : ( tyop_2Eoption_2Eoption @ A_27a ) ).
thf(c_2Eoption_2EOPTION__MAP,type,
c_2Eoption_2EOPTION__MAP:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27b ) > ( tyop_2Eoption_2Eoption @ A_27a ) > ( tyop_2Eoption_2Eoption @ A_27b ) ) ).
thf(c_2Eoption_2EOPTREL,type,
c_2Eoption_2EOPTREL:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27b > $o ) > ( tyop_2Eoption_2Eoption @ A_27a ) > ( tyop_2Eoption_2Eoption @ A_27b ) > $o ) ).
thf(c_2Eoption_2ESOME,type,
c_2Eoption_2ESOME:
!>[A_27a: $tType] : ( A_27a > ( tyop_2Eoption_2Eoption @ A_27a ) ) ).
thf(c_2Ebool_2ET,type,
c_2Ebool_2ET: $o ).
thf(c_2Ebool_2E_5C_2F,type,
c_2Ebool_2E_5C_2F: $o > $o > $o ).
thf(c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $o > $o ).
thf(logicdef_2E_2F_5C,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).
thf(logicdef_2E_5C_2F,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).
thf(logicdef_2E_7E,axiom,
! [V0: $o] :
( ( c_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).
thf(logicdef_2E_3D_3D_3E,axiom,
! [V0: $o,V1: $o] :
( ( c_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).
thf(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0: A_27a,V1: A_27a] :
( ( c_2Emin_2E_3D @ A_27a @ V0 @ V1 )
<=> ( V0 = V1 ) ) ).
thf(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_21 @ A_27a @ V0f )
<=> ! [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_3F @ A_27a @ V0f )
<=> ? [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(thm_2Equotient__option_2EOPTION__MAP__I,axiom,
! [A_27a: $tType] :
( ( c_2Eoption_2EOPTION__MAP @ A_27a @ A_27a @ ( c_2Ecombin_2EI @ A_27a ) )
= ( c_2Ecombin_2EI @ ( tyop_2Eoption_2Eoption @ A_27a ) ) ) ).
thf(thm_2Equotient__option_2EOPTION__REL__def,conjecture,
! [A_27a: $tType,V0y: A_27a,V1x: A_27a,V2R: A_27a > A_27a > $o] :
( ( ( c_2Eoption_2EOPTREL @ A_27a @ A_27a @ V2R @ ( c_2Eoption_2ENONE @ A_27a ) @ ( c_2Eoption_2ENONE @ A_27a ) )
= c_2Ebool_2ET )
& ( ( c_2Eoption_2EOPTREL @ A_27a @ A_27a @ V2R @ ( c_2Eoption_2ESOME @ A_27a @ V1x ) @ ( c_2Eoption_2ENONE @ A_27a ) )
= c_2Ebool_2EF )
& ( ( c_2Eoption_2EOPTREL @ A_27a @ A_27a @ V2R @ ( c_2Eoption_2ENONE @ A_27a ) @ ( c_2Eoption_2ESOME @ A_27a @ V0y ) )
= c_2Ebool_2EF )
& ( ( c_2Eoption_2EOPTREL @ A_27a @ A_27a @ V2R @ ( c_2Eoption_2ESOME @ A_27a @ V1x ) @ ( c_2Eoption_2ESOME @ A_27a @ V0y ) )
= ( V2R @ V1x @ V0y ) ) ) ).
%------------------------------------------------------------------------------