TPTP Problem File: ITP009_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP009_2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Equotient_2EFUN__REL__EQ__REL.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Equotient_2EFUN__REL__EQ__REL.p [Gau19]
% : HL404001_2.p [TPAP]
% Status : Theorem
% Rating : 0.80 v9.0.0, 0.78 v8.2.0, 0.90 v8.1.0, 0.91 v7.5.0
% Syntax : Number of formulae : 71 ( 23 unt; 29 typ; 0 def)
% Number of atoms : 319 ( 17 equ)
% Maximal formula atoms : 15 ( 4 avg)
% Number of connectives : 100 ( 4 ~; 0 |; 18 &)
% ( 23 <=>; 55 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of FOOLs : 181 ( 181 fml; 0 var)
% Number of types : 4 ( 2 usr)
% Number of type conns : 31 ( 18 >; 13 *; 0 +; 0 <<)
% Number of predicates : 8 ( 5 usr; 3 prp; 0-2 aty)
% Number of functors : 25 ( 25 usr; 9 con; 0-4 aty)
% Number of variables : 91 ( 91 !; 0 ?; 91 :)
% SPC : TF0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001_2.ax').
%------------------------------------------------------------------------------
tff(stp_o,type,
tp__o: $tType ).
tff(stp_inj_o,type,
inj__o: tp__o > $i ).
tff(stp_surj_o,type,
surj__o: $i > tp__o ).
tff(stp_inj_surj_o,axiom,
! [X: tp__o] : ( surj__o(inj__o(X)) = X ) ).
tff(stp_inj_mem_o,axiom,
! [X: tp__o] : mem(inj__o(X),bool) ).
tff(stp_iso_mem_o,axiom,
! [X: $i] :
( mem(X,bool)
=> ( X = inj__o(surj__o(X)) ) ) ).
tff(tp_c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $i ).
tff(mem_c_2Ebool_2E_7E,axiom,
mem(c_2Ebool_2E_7E,arr(bool,bool)) ).
tff(stp_fo_c_2Ebool_2E_7E,type,
fo__c_2Ebool_2E_7E: tp__o > tp__o ).
tff(stp_eq_fo_c_2Ebool_2E_7E,axiom,
! [X0: tp__o] : ( inj__o(fo__c_2Ebool_2E_7E(X0)) = ap(c_2Ebool_2E_7E,inj__o(X0)) ) ).
tff(ax_neg_p,axiom,
! [Q: $i] :
( mem(Q,bool)
=> ( p(ap(c_2Ebool_2E_7E,Q))
<=> ~ p(Q) ) ) ).
tff(tp_c_2Ebool_2EF,type,
c_2Ebool_2EF: $i ).
tff(mem_c_2Ebool_2EF,axiom,
mem(c_2Ebool_2EF,bool) ).
tff(stp_fo_c_2Ebool_2EF,type,
fo__c_2Ebool_2EF: tp__o ).
tff(stp_eq_fo_c_2Ebool_2EF,axiom,
inj__o(fo__c_2Ebool_2EF) = c_2Ebool_2EF ).
tff(ax_false_p,axiom,
~ p(c_2Ebool_2EF) ).
tff(tp_c_2Ebool_2ET,type,
c_2Ebool_2ET: $i ).
tff(mem_c_2Ebool_2ET,axiom,
mem(c_2Ebool_2ET,bool) ).
tff(stp_fo_c_2Ebool_2ET,type,
fo__c_2Ebool_2ET: tp__o ).
tff(stp_eq_fo_c_2Ebool_2ET,axiom,
inj__o(fo__c_2Ebool_2ET) = c_2Ebool_2ET ).
tff(ax_true_p,axiom,
p(c_2Ebool_2ET) ).
tff(tp_c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $i ).
tff(mem_c_2Ebool_2E_2F_5C,axiom,
mem(c_2Ebool_2E_2F_5C,arr(bool,arr(bool,bool))) ).
tff(stp_fo_c_2Ebool_2E_2F_5C,type,
fo__c_2Ebool_2E_2F_5C: ( tp__o * tp__o ) > tp__o ).
tff(stp_eq_fo_c_2Ebool_2E_2F_5C,axiom,
! [X0: tp__o,X1: tp__o] : ( inj__o(fo__c_2Ebool_2E_2F_5C(X0,X1)) = ap(ap(c_2Ebool_2E_2F_5C,inj__o(X0)),inj__o(X1)) ) ).
tff(ax_and_p,axiom,
! [Q: $i] :
( mem(Q,bool)
=> ! [R: $i] :
( mem(R,bool)
=> ( p(ap(ap(c_2Ebool_2E_2F_5C,Q),R))
<=> ( p(Q)
& p(R) ) ) ) ) ).
tff(tp_c_2Equotient_2E_2D_2D_3E,type,
c_2Equotient_2E_2D_2D_3E: ( del * del * del * del ) > $i ).
tff(mem_c_2Equotient_2E_2D_2D_3E,axiom,
! [A_27a: del,A_27b: del,A_27c: del,A_27d: del] : mem(c_2Equotient_2E_2D_2D_3E(A_27a,A_27b,A_27c,A_27d),arr(arr(A_27a,A_27c),arr(arr(A_27b,A_27d),arr(arr(A_27c,A_27b),arr(A_27a,A_27d))))) ).
tff(tp_c_2Equotient_2E_3D_3D_3D_3E,type,
c_2Equotient_2E_3D_3D_3D_3E: ( del * del ) > $i ).
tff(mem_c_2Equotient_2E_3D_3D_3D_3E,axiom,
! [A_27a: del,A_27b: del] : mem(c_2Equotient_2E_3D_3D_3D_3E(A_27a,A_27b),arr(arr(A_27a,arr(A_27a,bool)),arr(arr(A_27b,arr(A_27b,bool)),arr(arr(A_27a,A_27b),arr(arr(A_27a,A_27b),bool))))) ).
tff(tp_c_2Equotient_2EQUOTIENT,type,
c_2Equotient_2EQUOTIENT: ( del * del ) > $i ).
tff(mem_c_2Equotient_2EQUOTIENT,axiom,
! [A_27a: del,A_27b: del] : mem(c_2Equotient_2EQUOTIENT(A_27a,A_27b),arr(arr(A_27a,arr(A_27a,bool)),arr(arr(A_27a,A_27b),arr(arr(A_27b,A_27a),bool)))) ).
tff(tp_c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $i ).
tff(mem_c_2Emin_2E_3D_3D_3E,axiom,
mem(c_2Emin_2E_3D_3D_3E,arr(bool,arr(bool,bool))) ).
tff(stp_fo_c_2Emin_2E_3D_3D_3E,type,
fo__c_2Emin_2E_3D_3D_3E: ( tp__o * tp__o ) > tp__o ).
tff(stp_eq_fo_c_2Emin_2E_3D_3D_3E,axiom,
! [X0: tp__o,X1: tp__o] : ( inj__o(fo__c_2Emin_2E_3D_3D_3E(X0,X1)) = ap(ap(c_2Emin_2E_3D_3D_3E,inj__o(X0)),inj__o(X1)) ) ).
tff(ax_imp_p,axiom,
! [Q: $i] :
( mem(Q,bool)
=> ! [R: $i] :
( mem(R,bool)
=> ( p(ap(ap(c_2Emin_2E_3D_3D_3E,Q),R))
<=> ( p(Q)
=> p(R) ) ) ) ) ).
tff(tp_c_2Ebool_2E_21,type,
c_2Ebool_2E_21: del > $i ).
tff(mem_c_2Ebool_2E_21,axiom,
! [A_27a: del] : mem(c_2Ebool_2E_21(A_27a),arr(arr(A_27a,bool),bool)) ).
tff(ax_all_p,axiom,
! [A: del,Q: $i] :
( mem(Q,arr(A,bool))
=> ( p(ap(c_2Ebool_2E_21(A),Q))
<=> ! [X: $i] :
( mem(X,A)
=> p(ap(Q,X)) ) ) ) ).
tff(tp_c_2Ecombin_2EW,type,
c_2Ecombin_2EW: ( del * del ) > $i ).
tff(mem_c_2Ecombin_2EW,axiom,
! [A_27a: del,A_27b: del] : mem(c_2Ecombin_2EW(A_27a,A_27b),arr(arr(A_27a,arr(A_27a,A_27b)),arr(A_27a,A_27b))) ).
tff(tp_c_2Equotient_2Erespects,type,
c_2Equotient_2Erespects: ( del * del ) > $i ).
tff(mem_c_2Equotient_2Erespects,axiom,
! [A_27a: del,A_27b: del] : mem(c_2Equotient_2Erespects(A_27a,A_27b),arr(arr(A_27a,arr(A_27a,A_27b)),arr(A_27a,A_27b))) ).
tff(tp_c_2Emin_2E_3D,type,
c_2Emin_2E_3D: del > $i ).
tff(mem_c_2Emin_2E_3D,axiom,
! [A_27a: del] : mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ).
tff(ax_eq_p,axiom,
! [A: del,X: $i] :
( mem(X,A)
=> ! [Y: $i] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> ( X = Y ) ) ) ) ).
tff(conj_thm_2Ebool_2ETRUTH,axiom,
$true ).
tff(conj_thm_2Ebool_2EIMP__ANTISYM__AX,axiom,
! [V0t1: tp__o,V1t2: tp__o] :
( ( p(inj__o(V0t1))
=> p(inj__o(V1t2)) )
=> ( ( p(inj__o(V1t2))
=> p(inj__o(V0t1)) )
=> ( p(inj__o(V0t1))
<=> p(inj__o(V1t2)) ) ) ) ).
tff(conj_thm_2Ebool_2EAND__CLAUSES,axiom,
! [V0t: tp__o] :
( ( ( $true
& p(inj__o(V0t)) )
<=> p(inj__o(V0t)) )
& ( ( p(inj__o(V0t))
& $true )
<=> p(inj__o(V0t)) )
& ( ( $false
& p(inj__o(V0t)) )
<=> $false )
& ( ( p(inj__o(V0t))
& $false )
<=> $false )
& ( ( p(inj__o(V0t))
& p(inj__o(V0t)) )
<=> p(inj__o(V0t)) ) ) ).
tff(conj_thm_2Ebool_2EEQ__CLAUSES,axiom,
! [V0t: tp__o] :
( ( ( $true
<=> p(inj__o(V0t)) )
<=> p(inj__o(V0t)) )
& ( ( p(inj__o(V0t))
<=> $true )
<=> p(inj__o(V0t)) )
& ( ( $false
<=> p(inj__o(V0t)) )
<=> ~ p(inj__o(V0t)) )
& ( ( p(inj__o(V0t))
<=> $false )
<=> ~ p(inj__o(V0t)) ) ) ).
tff(conj_thm_2Ebool_2EAND__IMP__INTRO,axiom,
! [V0t1: tp__o,V1t2: tp__o,V2t3: tp__o] :
( ( p(inj__o(V0t1))
=> ( p(inj__o(V1t2))
=> p(inj__o(V2t3)) ) )
<=> ( ( p(inj__o(V0t1))
& p(inj__o(V1t2)) )
=> p(inj__o(V2t3)) ) ) ).
tff(conj_thm_2Ecombin_2EW__THM,axiom,
! [A_27a: del,A_27b: del,V0f: $i] :
( mem(V0f,arr(A_27a,arr(A_27a,A_27b)))
=> ! [V1x: $i] :
( mem(V1x,A_27a)
=> ( ap(ap(c_2Ecombin_2EW(A_27a,A_27b),V0f),V1x) = ap(ap(V0f,V1x),V1x) ) ) ) ).
tff(conj_thm_2Equotient_2EQUOTIENT__REL,axiom,
! [A_27a: del,A_27b: del,V0R: $i] :
( mem(V0R,arr(A_27a,arr(A_27a,bool)))
=> ! [V1abs: $i] :
( mem(V1abs,arr(A_27a,A_27b))
=> ! [V2rep: $i] :
( mem(V2rep,arr(A_27b,A_27a))
=> ( p(ap(ap(ap(c_2Equotient_2EQUOTIENT(A_27a,A_27b),V0R),V1abs),V2rep))
=> ! [V3r: $i] :
( mem(V3r,A_27a)
=> ! [V4s: $i] :
( mem(V4s,A_27a)
=> ( p(ap(ap(V0R,V3r),V4s))
<=> ( p(ap(ap(V0R,V3r),V3r))
& p(ap(ap(V0R,V4s),V4s))
& ( ap(V1abs,V3r) = ap(V1abs,V4s) ) ) ) ) ) ) ) ) ) ).
tff(conj_thm_2Equotient_2EFUN__QUOTIENT,axiom,
! [A_27a: del,A_27b: del,A_27c: del,A_27d: del,V0R1: $i] :
( mem(V0R1,arr(A_27a,arr(A_27a,bool)))
=> ! [V1abs1: $i] :
( mem(V1abs1,arr(A_27a,A_27c))
=> ! [V2rep1: $i] :
( mem(V2rep1,arr(A_27c,A_27a))
=> ( p(ap(ap(ap(c_2Equotient_2EQUOTIENT(A_27a,A_27c),V0R1),V1abs1),V2rep1))
=> ! [V3R2: $i] :
( mem(V3R2,arr(A_27b,arr(A_27b,bool)))
=> ! [V4abs2: $i] :
( mem(V4abs2,arr(A_27b,A_27d))
=> ! [V5rep2: $i] :
( mem(V5rep2,arr(A_27d,A_27b))
=> ( p(ap(ap(ap(c_2Equotient_2EQUOTIENT(A_27b,A_27d),V3R2),V4abs2),V5rep2))
=> p(ap(ap(ap(c_2Equotient_2EQUOTIENT(arr(A_27a,A_27b),arr(A_27c,A_27d)),ap(ap(c_2Equotient_2E_3D_3D_3D_3E(A_27a,A_27b),V0R1),V3R2)),ap(ap(c_2Equotient_2E_2D_2D_3E(A_27c,A_27b,A_27a,A_27d),V2rep1),V4abs2)),ap(ap(c_2Equotient_2E_2D_2D_3E(A_27a,A_27d,A_27c,A_27b),V1abs1),V5rep2))) ) ) ) ) ) ) ) ) ).
tff(ax_thm_2Equotient_2Erespects__def,axiom,
! [A_27a: del,A_27b: del] : ( c_2Equotient_2Erespects(A_27a,A_27b) = c_2Ecombin_2EW(A_27a,A_27b) ) ).
tff(conj_thm_2Equotient_2EFUN__REL__EQ__REL,conjecture,
! [A_27a: del,A_27b: del,A_27c: del,A_27d: del,V0R1: $i] :
( mem(V0R1,arr(A_27a,arr(A_27a,bool)))
=> ! [V1abs1: $i] :
( mem(V1abs1,arr(A_27a,A_27c))
=> ! [V2rep1: $i] :
( mem(V2rep1,arr(A_27c,A_27a))
=> ( p(ap(ap(ap(c_2Equotient_2EQUOTIENT(A_27a,A_27c),V0R1),V1abs1),V2rep1))
=> ! [V3R2: $i] :
( mem(V3R2,arr(A_27b,arr(A_27b,bool)))
=> ! [V4abs2: $i] :
( mem(V4abs2,arr(A_27b,A_27d))
=> ! [V5rep2: $i] :
( mem(V5rep2,arr(A_27d,A_27b))
=> ( p(ap(ap(ap(c_2Equotient_2EQUOTIENT(A_27b,A_27d),V3R2),V4abs2),V5rep2))
=> ! [V6f: $i] :
( mem(V6f,arr(A_27a,A_27b))
=> ! [V7g: $i] :
( mem(V7g,arr(A_27a,A_27b))
=> ( p(ap(ap(ap(ap(c_2Equotient_2E_3D_3D_3D_3E(A_27a,A_27b),V0R1),V3R2),V6f),V7g))
<=> ( p(ap(ap(c_2Equotient_2Erespects(arr(A_27a,A_27b),bool),ap(ap(c_2Equotient_2E_3D_3D_3D_3E(A_27a,A_27b),V0R1),V3R2)),V6f))
& p(ap(ap(c_2Equotient_2Erespects(arr(A_27a,A_27b),bool),ap(ap(c_2Equotient_2E_3D_3D_3D_3E(A_27a,A_27b),V0R1),V3R2)),V7g))
& ( ap(ap(ap(c_2Equotient_2E_2D_2D_3E(A_27c,A_27b,A_27a,A_27d),V2rep1),V4abs2),V6f) = ap(ap(ap(c_2Equotient_2E_2D_2D_3E(A_27c,A_27b,A_27a,A_27d),V2rep1),V4abs2),V7g) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------