TPTP Problem File: ITP009^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP009^3 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 syntactic export of thm_2Equotient_2EFUN__REL__EQ__REL.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Equotient_2EFUN__REL__EQ__REL.p [Gau19]
% : HL404001^3.p [TPAP]
% Status : Theorem
% Rating : 0.33 v8.1.0, 0.25 v7.5.0
% Syntax : Number of formulae : 33 ( 9 unt; 16 typ; 0 def)
% Number of atoms : 41 ( 10 equ; 3 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 173 ( 3 ~; 1 |; 18 &; 119 @)
% ( 19 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 8 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 77 ( 77 >; 0 *; 0 +; 0 <<)
% Number of symbols : 17 ( 15 usr; 3 con; 0-8 aty)
% Number of variables : 73 ( 0 ^; 57 !; 1 ?; 73 :)
% ( 15 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: $tType > $tType > $tType ).
thf(c_2Ebool_2E_21,type,
c_2Ebool_2E_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Equotient_2E_2D_2D_3E,type,
c_2Equotient_2E_2D_2D_3E:
!>[A_27a: $tType,A_27b: $tType,A_27c: $tType,A_27d: $tType] : ( ( A_27a > A_27c ) > ( A_27b > A_27d ) > ( A_27c > A_27b ) > A_27a > A_27d ) ).
thf(c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $o > $o > $o ).
thf(c_2Emin_2E_3D,type,
c_2Emin_2E_3D:
!>[A_27a: $tType] : ( A_27a > A_27a > $o ) ).
thf(c_2Equotient_2E_3D_3D_3D_3E,type,
c_2Equotient_2E_3D_3D_3D_3E:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27a > $o ) > ( A_27b > A_27b > $o ) > ( A_27a > A_27b ) > ( A_27a > A_27b ) > $o ) ).
thf(c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $o > $o > $o ).
thf(c_2Ebool_2E_3F,type,
c_2Ebool_2E_3F:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2EF,type,
c_2Ebool_2EF: $o ).
thf(c_2Equotient_2EQUOTIENT,type,
c_2Equotient_2EQUOTIENT:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27a > $o ) > ( A_27a > A_27b ) > ( A_27b > A_27a ) > $o ) ).
thf(c_2Ebool_2ET,type,
c_2Ebool_2ET: $o ).
thf(c_2Ecombin_2EW,type,
c_2Ecombin_2EW:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27a > A_27b ) > A_27a > A_27b ) ).
thf(c_2Ebool_2E_5C_2F,type,
c_2Ebool_2E_5C_2F: $o > $o > $o ).
thf(c_2Equotient_2Erespects,type,
c_2Equotient_2Erespects:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27a > A_27b ) > A_27a > A_27b ) ).
thf(c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $o > $o ).
thf(logicdef_2E_2F_5C,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).
thf(logicdef_2E_5C_2F,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).
thf(logicdef_2E_7E,axiom,
! [V0: $o] :
( ( c_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).
thf(logicdef_2E_3D_3D_3E,axiom,
! [V0: $o,V1: $o] :
( ( c_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).
thf(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0: A_27a,V1: A_27a] :
( ( c_2Emin_2E_3D @ A_27a @ V0 @ V1 )
<=> ( V0 = V1 ) ) ).
thf(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_21 @ A_27a @ V0f )
<=> ! [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_3F @ A_27a @ V0f )
<=> ? [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(thm_2Ebool_2ETRUTH,axiom,
c_2Ebool_2ET ).
thf(thm_2Ebool_2EIMP__ANTISYM__AX,axiom,
! [V0t1: $o,V1t2: $o] :
( ( V0t1
=> V1t2 )
=> ( ( V1t2
=> V0t1 )
=> ( V0t1 = V1t2 ) ) ) ).
thf(thm_2Ebool_2EAND__CLAUSES,axiom,
! [V0t: $o] :
( ( ( c_2Ebool_2ET
& V0t )
<=> V0t )
& ( ( V0t
& c_2Ebool_2ET )
<=> V0t )
& ( ( c_2Ebool_2EF
& V0t )
<=> c_2Ebool_2EF )
& ( ( V0t
& c_2Ebool_2EF )
<=> c_2Ebool_2EF )
& ( ( V0t
& V0t )
<=> V0t ) ) ).
thf(thm_2Ebool_2EEQ__CLAUSES,axiom,
! [V0t: $o] :
( ( ( c_2Ebool_2ET = V0t )
<=> V0t )
& ( ( V0t = c_2Ebool_2ET )
<=> V0t )
& ( ( c_2Ebool_2EF = V0t )
<=> ( (~) @ V0t ) )
& ( ( V0t = c_2Ebool_2EF )
<=> ( (~) @ V0t ) ) ) ).
thf(thm_2Ebool_2EAND__IMP__INTRO,axiom,
! [V0t1: $o,V1t2: $o,V2t3: $o] :
( ( V0t1
=> ( V1t2
=> V2t3 ) )
<=> ( ( V0t1
& V1t2 )
=> V2t3 ) ) ).
thf(thm_2Ecombin_2EW__THM,axiom,
! [A_27a: $tType,A_27b: $tType,V0f: A_27a > A_27a > A_27b,V1x: A_27a] :
( ( c_2Ecombin_2EW @ A_27a @ A_27b @ V0f @ V1x )
= ( V0f @ V1x @ V1x ) ) ).
thf(thm_2Equotient_2EQUOTIENT__REL,axiom,
! [A_27a: $tType,A_27b: $tType,V0R: A_27a > A_27a > $o,V1abs: A_27a > A_27b,V2rep: A_27b > A_27a] :
( ( c_2Equotient_2EQUOTIENT @ A_27a @ A_27b @ V0R @ V1abs @ V2rep )
=> ! [V3r: A_27a,V4s: A_27a] :
( ( V0R @ V3r @ V4s )
<=> ( ( V0R @ V3r @ V3r )
& ( V0R @ V4s @ V4s )
& ( ( V1abs @ V3r )
= ( V1abs @ V4s ) ) ) ) ) ).
thf(thm_2Equotient_2EFUN__QUOTIENT,axiom,
! [A_27a: $tType,A_27b: $tType,A_27c: $tType,A_27d: $tType,V0R1: A_27a > A_27a > $o,V1abs1: A_27a > A_27c,V2rep1: A_27c > A_27a] :
( ( c_2Equotient_2EQUOTIENT @ A_27a @ A_27c @ V0R1 @ V1abs1 @ V2rep1 )
=> ! [V3R2: A_27b > A_27b > $o,V4abs2: A_27b > A_27d,V5rep2: A_27d > A_27b] :
( ( c_2Equotient_2EQUOTIENT @ A_27b @ A_27d @ V3R2 @ V4abs2 @ V5rep2 )
=> ( c_2Equotient_2EQUOTIENT @ ( A_27a > A_27b ) @ ( A_27c > A_27d ) @ ( c_2Equotient_2E_3D_3D_3D_3E @ A_27a @ A_27b @ V0R1 @ V3R2 ) @ ( c_2Equotient_2E_2D_2D_3E @ A_27c @ A_27b @ A_27a @ A_27d @ V2rep1 @ V4abs2 ) @ ( c_2Equotient_2E_2D_2D_3E @ A_27a @ A_27d @ A_27c @ A_27b @ V1abs1 @ V5rep2 ) ) ) ) ).
thf(thm_2Equotient_2Erespects__def,axiom,
! [A_27a: $tType,A_27b: $tType] :
( ( c_2Equotient_2Erespects @ A_27a @ A_27b )
= ( c_2Ecombin_2EW @ A_27a @ A_27b ) ) ).
thf(thm_2Equotient_2EFUN__REL__EQ__REL,conjecture,
! [A_27a: $tType,A_27b: $tType,A_27c: $tType,A_27d: $tType,V0R1: A_27a > A_27a > $o,V1abs1: A_27a > A_27c,V2rep1: A_27c > A_27a] :
( ( c_2Equotient_2EQUOTIENT @ A_27a @ A_27c @ V0R1 @ V1abs1 @ V2rep1 )
=> ! [V3R2: A_27b > A_27b > $o,V4abs2: A_27b > A_27d,V5rep2: A_27d > A_27b] :
( ( c_2Equotient_2EQUOTIENT @ A_27b @ A_27d @ V3R2 @ V4abs2 @ V5rep2 )
=> ! [V6f: A_27a > A_27b,V7g: A_27a > A_27b] :
( ( c_2Equotient_2E_3D_3D_3D_3E @ A_27a @ A_27b @ V0R1 @ V3R2 @ V6f @ V7g )
<=> ( ( c_2Equotient_2Erespects @ ( A_27a > A_27b ) @ $o @ ( c_2Equotient_2E_3D_3D_3D_3E @ A_27a @ A_27b @ V0R1 @ V3R2 ) @ V6f )
& ( c_2Equotient_2Erespects @ ( A_27a > A_27b ) @ $o @ ( c_2Equotient_2E_3D_3D_3D_3E @ A_27a @ A_27b @ V0R1 @ V3R2 ) @ V7g )
& ( ( c_2Equotient_2E_2D_2D_3E @ A_27c @ A_27b @ A_27a @ A_27d @ V2rep1 @ V4abs2 @ V6f )
= ( c_2Equotient_2E_2D_2D_3E @ A_27c @ A_27b @ A_27a @ A_27d @ V2rep1 @ V4abs2 @ V7g ) ) ) ) ) ) ).
%------------------------------------------------------------------------------