TPTP Problem File: ITP005+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP005+2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Eset__relation_2Erel__to__reln__inv.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Eset__relation_2Erel__to__reln__inv.p [Gau19]
% : HL402001+2.p [TPAP]
% Status : Theorem
% Rating : 1.00 v7.5.0
% Syntax : Number of formulae : 49 ( 10 unt; 0 def)
% Number of atoms : 188 ( 24 equ)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 143 ( 4 ~; 0 |; 10 &)
% ( 24 <=>; 105 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 6 ( 3 usr; 2 prp; 0-2 aty)
% Number of functors : 25 ( 25 usr; 7 con; 0-3 aty)
% Number of variables : 108 ( 105 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001+2.ax').
%------------------------------------------------------------------------------
fof(mem_c_2Emin_2E_3D_3D_3E,axiom,
mem(c_2Emin_2E_3D_3D_3E,arr(bool,arr(bool,bool))) ).
fof(ax_imp_p,axiom,
! [Q] :
( mem(Q,bool)
=> ! [R] :
( mem(R,bool)
=> ( p(ap(ap(c_2Emin_2E_3D_3D_3E,Q),R))
<=> ( p(Q)
=> p(R) ) ) ) ) ).
fof(mem_c_2Ebool_2E_7E,axiom,
mem(c_2Ebool_2E_7E,arr(bool,bool)) ).
fof(ax_neg_p,axiom,
! [Q] :
( mem(Q,bool)
=> ( p(ap(c_2Ebool_2E_7E,Q))
<=> ~ p(Q) ) ) ).
fof(mem_c_2Ebool_2EF,axiom,
mem(c_2Ebool_2EF,bool) ).
fof(ax_false_p,axiom,
~ p(c_2Ebool_2EF) ).
fof(mem_c_2Ebool_2E_2F_5C,axiom,
mem(c_2Ebool_2E_2F_5C,arr(bool,arr(bool,bool))) ).
fof(ax_and_p,axiom,
! [Q] :
( mem(Q,bool)
=> ! [R] :
( mem(R,bool)
=> ( p(ap(ap(c_2Ebool_2E_2F_5C,Q),R))
<=> ( p(Q)
& p(R) ) ) ) ) ).
fof(ne_ty_2Epair_2Eprod,axiom,
! [A0] :
( ne(A0)
=> ! [A1] :
( ne(A1)
=> ne(ty_2Epair_2Eprod(A0,A1)) ) ) ).
fof(mem_c_2Epair_2ESND,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Epair_2ESND(A_27a,A_27b),arr(ty_2Epair_2Eprod(A_27a,A_27b),A_27b)) ) ) ).
fof(mem_c_2Epair_2EFST,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Epair_2EFST(A_27a,A_27b),arr(ty_2Epair_2Eprod(A_27a,A_27b),A_27a)) ) ) ).
fof(mem_c_2Ebool_2ET,axiom,
mem(c_2Ebool_2ET,bool) ).
fof(ax_true_p,axiom,
p(c_2Ebool_2ET) ).
fof(mem_c_2Ebool_2E_3F,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2E_3F(A_27a),arr(arr(A_27a,bool),bool)) ) ).
fof(ax_ex_p,axiom,
! [A] :
( ne(A)
=> ! [Q] :
( mem(Q,arr(A,bool))
=> ( p(ap(c_2Ebool_2E_3F(A),Q))
<=> ? [X] :
( mem(X,A)
& p(ap(Q,X)) ) ) ) ) ).
fof(mem_c_2Ebool_2EIN,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2EIN(A_27a),arr(A_27a,arr(arr(A_27a,bool),bool))) ) ).
fof(mem_c_2Eset__relation_2Ereln__to__rel,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Eset__relation_2Ereln__to__rel(A_27a,A_27b),arr(arr(ty_2Epair_2Eprod(A_27a,A_27b),bool),arr(A_27a,arr(A_27b,bool)))) ) ) ).
fof(mem_c_2Epair_2E_2C,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Epair_2E_2C(A_27a,A_27b),arr(A_27a,arr(A_27b,ty_2Epair_2Eprod(A_27a,A_27b)))) ) ) ).
fof(mem_c_2Epair_2EUNCURRY,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [A_27c] :
( ne(A_27c)
=> mem(c_2Epair_2EUNCURRY(A_27a,A_27b,A_27c),arr(arr(A_27a,arr(A_27b,A_27c)),arr(ty_2Epair_2Eprod(A_27a,A_27b),A_27c))) ) ) ) ).
fof(mem_c_2Epred__set_2EGSPEC,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Epred__set_2EGSPEC(A_27a,A_27b),arr(arr(A_27b,ty_2Epair_2Eprod(A_27a,bool)),arr(A_27a,bool))) ) ) ).
fof(mem_c_2Eset__relation_2Erel__to__reln,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2Eset__relation_2Erel__to__reln(A_27a,A_27b),arr(arr(A_27a,arr(A_27b,bool)),arr(ty_2Epair_2Eprod(A_27a,A_27b),bool))) ) ) ).
fof(mem_c_2Emin_2E_3D,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ) ).
fof(ax_eq_p,axiom,
! [A] :
( ne(A)
=> ! [X] :
( mem(X,A)
=> ! [Y] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> X = Y ) ) ) ) ).
fof(mem_c_2Ebool_2E_21,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2E_21(A_27a),arr(arr(A_27a,bool),bool)) ) ).
fof(ax_all_p,axiom,
! [A] :
( ne(A)
=> ! [Q] :
( mem(Q,arr(A,bool))
=> ( p(ap(c_2Ebool_2E_21(A),Q))
<=> ! [X] :
( mem(X,A)
=> p(ap(Q,X)) ) ) ) ) ).
fof(conj_thm_2Ebool_2ETRUTH,axiom,
$true ).
fof(conj_thm_2Ebool_2EIMP__ANTISYM__AX,axiom,
! [V0t1] :
( mem(V0t1,bool)
=> ! [V1t2] :
( mem(V1t2,bool)
=> ( ( p(V0t1)
=> p(V1t2) )
=> ( ( p(V1t2)
=> p(V0t1) )
=> ( p(V0t1)
<=> p(V1t2) ) ) ) ) ) ).
fof(conj_thm_2Ebool_2EFORALL__SIMP,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0t] :
( mem(V0t,bool)
=> ( ! [V1x] :
( mem(V1x,A_27a)
=> p(V0t) )
<=> p(V0t) ) ) ) ).
fof(conj_thm_2Ebool_2EREFL__CLAUSE,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0x] :
( mem(V0x,A_27a)
=> ( V0x = V0x
<=> $true ) ) ) ).
fof(conj_thm_2Ebool_2EEQ__SYM__EQ,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0x] :
( mem(V0x,A_27a)
=> ! [V1y] :
( mem(V1y,A_27a)
=> ( V0x = V1y
<=> V1y = V0x ) ) ) ) ).
fof(conj_thm_2Ebool_2EFUN__EQ__THM,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0f] :
( mem(V0f,arr(A_27a,A_27b))
=> ! [V1g] :
( mem(V1g,arr(A_27a,A_27b))
=> ( V0f = V1g
<=> ! [V2x] :
( mem(V2x,A_27a)
=> ap(V0f,V2x) = ap(V1g,V2x) ) ) ) ) ) ) ).
fof(conj_thm_2Ebool_2EEQ__CLAUSES,axiom,
! [V0t] :
( mem(V0t,bool)
=> ( ( ( $true
<=> p(V0t) )
<=> p(V0t) )
& ( ( p(V0t)
<=> $true )
<=> p(V0t) )
& ( ( $false
<=> p(V0t) )
<=> ~ p(V0t) )
& ( ( p(V0t)
<=> $false )
<=> ~ p(V0t) ) ) ) ).
fof(conj_thm_2Ebool_2EUNWIND__THM2,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0P] :
( mem(V0P,arr(A_27a,bool))
=> ! [V1a] :
( mem(V1a,A_27a)
=> ( ? [V2x] :
( mem(V2x,A_27a)
& V2x = V1a
& p(ap(V0P,V2x)) )
<=> p(ap(V0P,V1a)) ) ) ) ) ).
fof(conj_thm_2Epair_2EPAIR__EQ,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0x] :
( mem(V0x,A_27a)
=> ! [V1y] :
( mem(V1y,A_27b)
=> ! [V2a] :
( mem(V2a,A_27a)
=> ! [V3b] :
( mem(V3b,A_27b)
=> ( ap(ap(c_2Epair_2E_2C(A_27a,A_27b),V0x),V1y) = ap(ap(c_2Epair_2E_2C(A_27a,A_27b),V2a),V3b)
<=> ( V0x = V2a
& V1y = V3b ) ) ) ) ) ) ) ) ).
fof(conj_thm_2Epair_2ECLOSED__PAIR__EQ,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0x] :
( mem(V0x,A_27a)
=> ! [V1y] :
( mem(V1y,A_27b)
=> ! [V2a] :
( mem(V2a,A_27a)
=> ! [V3b] :
( mem(V3b,A_27b)
=> ( ap(ap(c_2Epair_2E_2C(A_27a,A_27b),V0x),V1y) = ap(ap(c_2Epair_2E_2C(A_27a,A_27b),V2a),V3b)
<=> ( V0x = V2a
& V1y = V3b ) ) ) ) ) ) ) ) ).
fof(ax_thm_2Epair_2EPAIR,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0x] :
( mem(V0x,ty_2Epair_2Eprod(A_27a,A_27b))
=> ap(ap(c_2Epair_2E_2C(A_27a,A_27b),ap(c_2Epair_2EFST(A_27a,A_27b),V0x)),ap(c_2Epair_2ESND(A_27a,A_27b),V0x)) = V0x ) ) ) ).
fof(conj_thm_2Epair_2EUNCURRY__DEF,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [A_27c] :
( ne(A_27c)
=> ! [V0f] :
( mem(V0f,arr(A_27a,arr(A_27b,A_27c)))
=> ! [V1x] :
( mem(V1x,A_27a)
=> ! [V2y] :
( mem(V2y,A_27b)
=> ap(ap(c_2Epair_2EUNCURRY(A_27a,A_27b,A_27c),V0f),ap(ap(c_2Epair_2E_2C(A_27a,A_27b),V1x),V2y)) = ap(ap(V0f,V1x),V2y) ) ) ) ) ) ) ).
fof(ax_thm_2Epred__set_2EGSPECIFICATION,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0f] :
( mem(V0f,arr(A_27b,ty_2Epair_2Eprod(A_27a,bool)))
=> ! [V1v] :
( mem(V1v,A_27a)
=> ( p(ap(ap(c_2Ebool_2EIN(A_27a),V1v),ap(c_2Epred__set_2EGSPEC(A_27a,A_27b),V0f)))
<=> ? [V2x] :
( mem(V2x,A_27b)
& ap(ap(c_2Epair_2E_2C(A_27a,bool),V1v),c_2Ebool_2ET) = ap(V0f,V2x) ) ) ) ) ) ) ).
fof(ax_thm_2Eset__relation_2Ereln__to__rel__def,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0r] :
( mem(V0r,arr(ty_2Epair_2Eprod(A_27a,A_27b),bool))
=> ap(c_2Eset__relation_2Ereln__to__rel(A_27a,A_27b),V0r) = f344(A_27b,A_27a,V0r) ) ) ) ).
fof(ax_thm_2Eset__relation_2Erel__to__reln__def,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0R] :
( mem(V0R,arr(A_27a,arr(A_27b,bool)))
=> ap(c_2Eset__relation_2Erel__to__reln(A_27a,A_27b),V0R) = ap(c_2Epred__set_2EGSPEC(ty_2Epair_2Eprod(A_27a,A_27b),ty_2Epair_2Eprod(A_27a,A_27b)),ap(c_2Epair_2EUNCURRY(A_27a,A_27b,ty_2Epair_2Eprod(ty_2Epair_2Eprod(A_27a,A_27b),bool)),f346(A_27b,A_27a,V0R))) ) ) ) ).
fof(conj_thm_2Eset__relation_2Erel__to__reln__inv,conjecture,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0R] :
( mem(V0R,arr(A_27a,arr(A_27b,bool)))
=> ap(c_2Eset__relation_2Ereln__to__rel(A_27a,A_27b),ap(c_2Eset__relation_2Erel__to__reln(A_27a,A_27b),V0R)) = V0R ) ) ) ).
%------------------------------------------------------------------------------