TPTP Problem File: ITP001_20.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP001_20 : TPTP v9.0.0. Released v8.2.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Ebool_2ETRUTH.p, bushy mode
% Version : ITP001_2 with the conjecture removed
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [TPTP]
% Names :
% : HL400001_2.p [TPAP]
% Status : Satisfiable
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 29 ( 6 unt; 15 typ; 0 def)
% Number of atoms : 54 ( 10 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 17 ( 0 ~; 0 |; 0 &)
% ( 3 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of FOOLs : 23 ( 23 fml; 0 var)
% Number of types : 4 ( 2 usr)
% Number of type conns : 13 ( 9 >; 4 *; 0 +; 0 <<)
% Number of predicates : 8 ( 6 usr; 2 prp; 0-2 aty)
% Number of functors : 11 ( 11 usr; 4 con; 0-2 aty)
% Number of variables : 23 ( 23 !; 0 ?; 23 :)
% SPC : TX0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001_2.ax').
%------------------------------------------------------------------------------
tff(stp_o,type,
tp__o: $tType ).
tff(stp_inj_o,type,
inj__o: tp__o > $i ).
tff(stp_surj_o,type,
surj__o: $i > tp__o ).
tff(stp_inj_surj_o,axiom,
! [X: tp__o] : ( surj__o(inj__o(X)) = X ) ).
tff(stp_inj_mem_o,axiom,
! [X: tp__o] : mem(inj__o(X),bool) ).
tff(stp_iso_mem_o,axiom,
! [X: $i] :
( mem(X,bool)
=> ( X = inj__o(surj__o(X)) ) ) ).
tff(tp_c_2Ebool_2ET,type,
c_2Ebool_2ET: $i ).
tff(mem_c_2Ebool_2ET,axiom,
mem(c_2Ebool_2ET,bool) ).
tff(stp_fo_c_2Ebool_2ET,type,
fo__c_2Ebool_2ET: tp__o ).
tff(stp_eq_fo_c_2Ebool_2ET,axiom,
inj__o(fo__c_2Ebool_2ET) = c_2Ebool_2ET ).
tff(ax_true_p,axiom,
p(c_2Ebool_2ET) ).
tff(tp_c_2Emin_2E_3D,type,
c_2Emin_2E_3D: del > $i ).
tff(mem_c_2Emin_2E_3D,axiom,
! [A_27a: del] : mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ).
tff(ax_eq_p,axiom,
! [A: del,X: $i] :
( mem(X,A)
=> ! [Y: $i] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> ( X = Y ) ) ) ) ).
tff(ax_thm_2Ebool_2ET__DEF,axiom,
( $true
<=> ( i(bool) = i(bool) ) ) ).
% tff(conj_thm_2Ebool_2ETRUTH,conjecture,
% $true ).
%------------------------------------------------------------------------------