TPTP Problem File: ITP001+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP001+2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Ebool_2ETRUTH.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Ebool_2ETRUTH.p [Gau19]
% : HL400001+2.p [TPAP]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.08 v7.5.0
% Syntax : Number of formulae : 14 ( 5 unt; 0 def)
% Number of atoms : 34 ( 7 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 20 ( 0 ~; 0 |; 0 &)
% ( 3 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001+2.ax').
%------------------------------------------------------------------------------
fof(mem_c_2Ebool_2ET,axiom,
mem(c_2Ebool_2ET,bool) ).
fof(ax_true_p,axiom,
p(c_2Ebool_2ET) ).
fof(mem_c_2Emin_2E_3D,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ) ).
fof(ax_eq_p,axiom,
! [A] :
( ne(A)
=> ! [X] :
( mem(X,A)
=> ! [Y] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> X = Y ) ) ) ) ).
fof(ax_thm_2Ebool_2ET__DEF,axiom,
( $true
<=> i(bool) = i(bool) ) ).
fof(conj_thm_2Ebool_2ETRUTH,conjecture,
$true ).
%------------------------------------------------------------------------------