TPTP Problem File: HEN011-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN011-4 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Henkin Models
% Problem : This operation is commutative
% Version : [MOW76] axioms : Augmented.
% English : Define & on the set of Z', where Z' = identity/Z,
% by X' & Y' = X'/(identity/Y'). The operation is commutative.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : hp11.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.00 v6.0.0, 0.33 v5.5.0, 0.38 v5.4.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.33 v4.0.1, 0.17 v3.7.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.29 v3.2.0, 0.14 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.4.0, 0.17 v2.3.0, 0.00 v2.2.1, 0.50 v2.2.0, 0.33 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 18 ( 11 unt; 0 nHn; 7 RR)
% Number of literals : 27 ( 10 equ; 10 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 30 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
% Bugfixes : v1.2.1 - Clauses identity_divide_a, identity_divide_b,
% identity_divide_c, identity_divide_d, and prove_commutativity,
% removed.
%--------------------------------------------------------------------------
%----Include Henkin model axioms for equality formulation
include('Axioms/HEN002-0.ax').
%--------------------------------------------------------------------------
cnf(everything_divide_id_is_zero,axiom,
divide(X,identity) = zero ).
cnf(zero_divide_anything_is_zero,axiom,
divide(zero,X) = zero ).
cnf(x_divide_x_is_zero,axiom,
divide(X,X) = zero ).
cnf(x_divide_zero_is_x,axiom,
divide(a,zero) = a ).
cnf(transitivity_of_less_equal,axiom,
( ~ less_equal(X,Y)
| ~ less_equal(Y,Z)
| less_equal(X,Z) ) ).
cnf(property_of_divide1,axiom,
( ~ less_equal(divide(X,Y),Z)
| less_equal(divide(X,Z),Y) ) ).
cnf(property_of_divide2,axiom,
( ~ less_equal(X,Y)
| less_equal(divide(Z,Y),divide(Z,X)) ) ).
cnf(property_of_divide3,axiom,
( ~ less_equal(X,Y)
| less_equal(divide(X,Z),divide(Y,Z)) ) ).
cnf(one_inversion_equals_three,axiom,
divide(identity,divide(identity,divide(identity,X))) = divide(identity,X) ).
cnf(property_of_inversion,axiom,
divide(divide(identity,X),divide(identity,divide(identity,X))) = divide(identity,X) ).
cnf(prove_this,negated_conjecture,
divide(divide(identity,a),divide(identity,divide(identity,b))) != divide(divide(identity,b),divide(identity,divide(identity,a))) ).
%----This is an alternate way of writing the theorem
%input_clause(identity_divide_a,negated_conjecture,
% [++equal(divide(identity,a),c)]).
%
%input_clause(identity_divide_b,negated_conjecture,
% [++equal(divide(identity,b),d)]).
%
%input_clause(identity_divide_c,negated_conjecture,
% [++equal(divide(identity,c),e)]).
%
%input_clause(identity_divide_d,negated_conjecture,
% [++equal(divide(identity,d),g)]).
%
%input_clause(prove_commutativity,negated_conjecture,
% [--equal(divide(c,g),divide(d,e))]).
%--------------------------------------------------------------------------