TPTP Problem File: HEN011-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN011-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Problem : This operation is commutative
% Version : [MOW76] axioms.
% English : Define & on the set of Z', where Z' = identity/Z,
% by X' & Y' = X'/(identity/Y'). The operation is commutative.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.23 v9.0.0, 0.25 v8.1.0, 0.11 v7.5.0, 0.20 v7.4.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.29 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.33 v5.5.0, 0.69 v5.4.0, 0.67 v5.3.0, 0.75 v5.2.0, 0.38 v5.1.0, 0.29 v4.1.0, 0.22 v4.0.1, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.3.0, 0.14 v3.2.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.43 v2.5.0, 0.20 v2.4.0, 0.33 v2.3.0, 0.17 v2.2.1, 0.67 v2.2.0, 0.71 v2.1.0, 0.80 v2.0.0
% Syntax : Number of clauses : 16 ( 10 unt; 0 nHn; 13 RR)
% Number of literals : 28 ( 3 equ; 13 neg)
% Maximal clause size : 6 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 11 ( 11 usr; 10 con; 0-2 aty)
% Number of variables : 25 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Henkin model axioms
include('Axioms/HEN001-0.ax').
%--------------------------------------------------------------------------
cnf(identity_divide_a,hypothesis,
quotient(identity,a,idQa) ).
cnf(identity_divide_b,hypothesis,
quotient(identity,b,idQb) ).
cnf(identity_divide_idQb,hypothesis,
quotient(identity,idQb,idQ_idQb) ).
cnf(idQa_divide_idQ_idQb,hypothesis,
quotient(idQa,idQ_idQb,idQa_Q__idQ_idQb) ).
cnf(identity_divide_idQa,hypothesis,
quotient(identity,idQa,idQ_idQa) ).
cnf(idQb_divide_idQ_idQa,hypothesis,
quotient(idQb,idQ_idQa,idQb_Q__idQ_idQa) ).
cnf(prove_idQa_Q__idQ_idQb_equals_idQb_Q__idQ_idQa,negated_conjecture,
idQa_Q__idQ_idQb != idQb_Q__idQ_idQa ).
%--------------------------------------------------------------------------