TPTP Problem File: HEN010-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN010-5 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Henkin Models
% Problem : Define X' as identity/X. Then X' = X'/(identity/X')
% Version : [MOW76] (equality) axioms : Reduced & Augmented > Complete.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : hp10.ver3.in [ANL]
% Status : Unsatisfiable
% Rating : 0.13 v9.0.0, 0.07 v8.2.0, 0.06 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v6.4.0, 0.07 v6.3.0, 0.10 v6.2.0, 0.30 v6.1.0, 0.18 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.11 v5.3.0, 0.30 v5.2.0, 0.12 v5.1.0, 0.11 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.00 v3.3.0, 0.11 v3.2.0, 0.00 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 9 ( 5 unt; 0 nHn; 4 RR)
% Number of literals : 15 ( 15 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 18 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : less_equal replaced by divides
% Bugfixes : v1.2.1 - Clauses identity_divide_a_is_b,
% identity_divide_b_is_c, b_divide_c_is_d, and
% prove_inversion_property, removed.
%--------------------------------------------------------------------------
%----Include Henkin model axioms, for the equality formulation with
%----less_equals removed.
include('Axioms/HEN003-0.ax').
%--------------------------------------------------------------------------
cnf(transitivity_of_divide_to_zero,axiom,
( divide(X,Y) != zero
| divide(Y,Z) != zero
| divide(X,Z) = zero ) ).
cnf(property_of_divide1,axiom,
( divide(divide(X,Y),Z) != zero
| divide(divide(X,Z),Y) = zero ) ).
cnf(property_of_divide3,axiom,
( divide(X,Y) != zero
| divide(divide(X,Z),divide(Y,Z)) = zero ) ).
cnf(prove_this,negated_conjecture,
divide(identity,a) != divide(divide(identity,a),divide(identity,divide(identity,a))) ).
%----This is an alternate way of writing the theorem
%input_clause(identity_divide_a_is_b,hypothesis,
% [++equal(divide(identity,a),b)]).
%
%input_clause(identity_divide_b_is_c,hypothesis,
% [++equal(divide(identity,b),c)]).
%
%input_clause(b_divide_c_is_d,hypothesis,
% [++equal(divide(b,c),d)]).
%
%input_clause(prove_inversion_property,negated_conjecture,
% [--equal(d,b)]).
%--------------------------------------------------------------------------