TPTP Problem File: HEN006-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN006-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Problem : X/Y <= Z => X/Z <= Y
% Version : [MOW76] (equality) axioms : Reduced & Augmented > Complete.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : hp6.ver3.in [ANL]
% Status : Unsatisfiable
% Rating : 0.13 v9.0.0, 0.07 v8.2.0, 0.06 v8.1.0, 0.05 v7.5.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.09 v7.0.0, 0.00 v6.4.0, 0.07 v6.3.0, 0.10 v6.2.0, 0.30 v6.1.0, 0.18 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.11 v5.3.0, 0.30 v5.2.0, 0.12 v5.1.0, 0.11 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.00 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 8 ( 7 unt; 0 nHn; 3 RR)
% Number of literals : 10 ( 10 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 10 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : less_equal replaced by divides.
%--------------------------------------------------------------------------
%----Include Henkin model axioms, for the equality formulation with
%----less_equals removed.
include('Axioms/HEN003-0.ax').
%--------------------------------------------------------------------------
cnf(x_divide_zero_is_x,axiom,
divide(X,zero) = X ).
cnf(a_divide_b_divide_d_is_zero,hypothesis,
divide(divide(a,b),d) = zero ).
cnf(prove_property_of_divide1,negated_conjecture,
divide(divide(a,d),b) != zero ).
%--------------------------------------------------------------------------