TPTP Problem File: HEN006-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN006-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Problem : X/Y <= Z => X/Z <= Y
% Version : [MOW76] axioms : Augmented.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.00 v6.0.0, 0.11 v5.5.0, 0.19 v5.4.0, 0.20 v5.3.0, 0.25 v5.2.0, 0.12 v5.1.0, 0.14 v5.0.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 14 ( 10 unt; 0 nHn; 7 RR)
% Number of literals : 20 ( 7 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 19 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Henkin model axioms for equality formulation
include('Axioms/HEN002-0.ax').
%--------------------------------------------------------------------------
cnf(everything_divide_id_is_zero,axiom,
divide(X,identity) = zero ).
cnf(zero_divide_anything_is_zero,axiom,
divide(zero,X) = zero ).
cnf(x_divide_x_is_zero,axiom,
divide(X,X) = zero ).
cnf(x_divide_zero_is_x,axiom,
divide(a,zero) = a ).
cnf(transitivity_of_less_equal,axiom,
( ~ less_equal(X,Y)
| ~ less_equal(Y,Z)
| less_equal(X,Z) ) ).
cnf(a_divide_b_LE_d,hypothesis,
less_equal(divide(a,b),d) ).
cnf(prove_a_divide_d_LE_b,negated_conjecture,
~ less_equal(divide(a,d),b) ).
%--------------------------------------------------------------------------