TPTP Problem File: HEN005-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN005-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Problem : The relation less_equal is transitive
% Version : [MOW76] (equality) axioms : Reduced & Augmented > Complete.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : hp5.ver3.in [ANL]
% Status : Unsatisfiable
% Rating : 0.13 v9.0.0, 0.07 v8.2.0, 0.06 v8.1.0, 0.05 v7.5.0, 0.06 v7.4.0, 0.00 v6.3.0, 0.10 v6.2.0, 0.30 v6.1.0, 0.18 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.11 v5.3.0, 0.20 v5.2.0, 0.12 v5.1.0, 0.11 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.00 v2.0.0
% Syntax : Number of clauses : 8 ( 7 unt; 0 nHn; 4 RR)
% Number of literals : 10 ( 10 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 9 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Henkin model axioms, for the equality formulation with
%----less_equals removed.
include('Axioms/HEN003-0.ax').
%--------------------------------------------------------------------------
cnf(a_divide_b_is_zero,hypothesis,
divide(a,b) = zero ).
cnf(b_divide_c_is_zero,hypothesis,
divide(b,c) = zero ).
cnf(prove_transitivity_of_divide_to_zero,negated_conjecture,
divide(a,c) != zero ).
%--------------------------------------------------------------------------