TPTP Problem File: HEN005-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HEN005-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Problem : The relation less_equal is transitive
% Version : [MOW76] axioms : Augmented.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names : H5 [MOW76]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.22 v5.5.0, 0.25 v5.4.0, 0.27 v5.3.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.00 v5.0.0, 0.14 v4.1.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.3.0, 0.17 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.40 v2.0.0
% Syntax : Number of clauses : 16 ( 10 unt; 0 nHn; 9 RR)
% Number of literals : 28 ( 2 equ; 13 neg)
% Maximal clause size : 6 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 29 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Henkin model axioms
include('Axioms/HEN001-0.ax').
%--------------------------------------------------------------------------
%----McCharen uses these earlier results too. I don't
cnf(everything_divide_identity_is_zero,axiom,
quotient(X,identity,zero) ).
cnf(zero_divide_anything_is_zero,axiom,
quotient(zero,X,zero) ).
cnf(x_divide_x_is_zero,axiom,
quotient(X,X,zero) ).
cnf(x_divde_zero_is_x,axiom,
quotient(X,zero,X) ).
cnf(xLEy,hypothesis,
less_equal(x,y) ).
cnf(yLEz,hypothesis,
less_equal(y,z) ).
cnf(prove_transitivity_of_less_equal,negated_conjecture,
~ less_equal(x,z) ).
%--------------------------------------------------------------------------