TPTP Problem File: GRP781-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP781-1 : TPTP v9.0.0. Released v5.4.0.
% Domain : Group Theory
% Problem : Distributivity of commutator in cancellative semigroups
% Version : Especial
% English :
% Refs : [PMV05] Padmanabhan et al. (2005), Levi's Commutator Theorems
% : [Sta11] Stanovsky (2011), Email to Geoff Sutcliffe
% Source : [Sta11]
% Names : grp1 [Sta11]
% Status : Unsatisfiable
% Rating : 0.67 v8.2.0, 0.69 v8.1.0, 0.74 v7.5.0, 0.71 v7.3.0, 0.69 v7.2.0, 0.67 v7.1.0, 0.55 v7.0.0, 0.54 v6.4.0, 0.64 v6.3.0, 0.60 v6.1.0, 0.64 v6.0.0, 0.57 v5.5.0, 0.62 v5.4.0
% Syntax : Number of clauses : 6 ( 4 unt; 0 nHn; 3 RR)
% Number of literals : 8 ( 8 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
cnf(associativity,axiom,
m(X,m(Y,Z)) = m(m(X,Y),Z) ).
cnf(cancellation,axiom,
( m(X,Z) != m(Y,Z)
| X = Y ) ).
cnf(cancellation_001,axiom,
( m(Z,X) != m(Z,Y)
| X = Y ) ).
cnf(commutator,axiom,
m(Y,m(X,c(X,Y))) = m(X,Y) ).
cnf(assumption,axiom,
m(X,m(Y,m(Z,m(Y,X)))) = m(Y,m(X,m(Z,m(X,Y)))) ).
cnf(distributivity,negated_conjecture,
c(m(x,y),z) != m(c(x,z),c(y,z)) ).
%------------------------------------------------------------------------------