TPTP Problem File: GRP780+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP780+1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Napoleon's quasigroups: Lamoen's theorem
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names : napoleon4 [Sta09]
% Status : Theorem
% Rating : 0.67 v9.0.0, 0.69 v8.2.0, 0.75 v8.1.0, 0.78 v7.5.0, 0.81 v7.4.0, 0.77 v7.3.0, 0.79 v7.1.0, 0.74 v7.0.0, 0.77 v6.4.0, 0.73 v6.3.0, 0.71 v6.2.0, 0.76 v6.1.0, 0.83 v5.5.0, 0.89 v5.4.0, 0.86 v5.3.0, 0.89 v5.2.0, 0.67 v4.1.0
% Syntax : Number of formulae : 13 ( 12 unt; 0 def)
% Number of atoms : 14 ( 9 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 13 ( 13 usr; 9 con; 0-3 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(sos01,axiom,
! [B,A] : difference(A,product(A,B)) = B ).
fof(sos02,axiom,
! [B,A] : product(A,difference(A,B)) = B ).
fof(sos03,axiom,
! [B,A] : quotient(product(A,B),B) = A ).
fof(sos04,axiom,
! [B,A] : product(quotient(A,B),B) = A ).
fof(sos05,axiom,
! [D,C,B,A] : product(product(A,B),product(C,D)) = product(product(A,C),product(B,D)) ).
fof(sos06,axiom,
! [A] : product(A,A) = A ).
%----Napoleon
fof(sos07,axiom,
! [B,A] : product(product(product(A,B),B),product(B,product(B,A))) = B ).
fof(sos08,axiom,
! [X0,X1,X2] :
( d(X0,X1,X2)
<=> product(X0,X1) = product(X1,X2) ) ).
fof(sos09,axiom,
! [C,B,A] : bigC(A,B,C) = product(product(A,B),product(C,A)) ).
fof(sos10,axiom,
d(a1,a2,a3) ).
fof(sos11,axiom,
d(b1,b2,b3) ).
fof(sos12,axiom,
d(c1,c2,c3) ).
fof(goals,conjecture,
d(bigC(a1,b3,c2),bigC(a2,b1,c3),bigC(a3,b2,c1)) ).
%------------------------------------------------------------------------------