TPTP Problem File: GRP773-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP773-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Buchsteiner loop problem
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% : [CDK10] Csoergoe et al. (2010), Buchsteiner Loops
% Source : [Sta09]
% Names : buchsteiner [Sta09]
% Status : Satisfiable
% Rating : 1.00 v4.1.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : The smallest model has size 64.
%------------------------------------------------------------------------------
% Buchsteiner loop with exp Q/N(Q)!=2
% size 64
cnf(sos01,axiom,
mult(A,ld(A,B)) = B ).
cnf(sos02,axiom,
ld(A,mult(A,B)) = B ).
cnf(sos03,axiom,
mult(rd(A,B),B) = A ).
cnf(sos04,axiom,
rd(mult(A,B),B) = A ).
cnf(sos05,axiom,
mult(A,unit) = A ).
cnf(sos06,axiom,
mult(unit,A) = A ).
cnf(sos07,axiom,
ld(A,mult(mult(A,B),C)) = rd(mult(B,mult(C,A)),A) ).
cnf(sos08,negated_conjecture,
mult(mult(mult(a,a),b),c) != mult(mult(a,a),mult(b,c)) ).
%------------------------------------------------------------------------------