TPTP Problem File: GRP761+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP761+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory
% Problem : Non-discrete partially ordered group
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to Geoff Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 8 ( 4 unt; 0 def)
% Number of atoms : 15 ( 5 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 10 ( 3 ~; 0 |; 4 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 15 ( 15 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,i(A)) = e ).
fof(f02,axiom,
! [A] : mult(A,e) = A ).
fof(f03,axiom,
! [A,B,C] : mult(A,mult(B,C)) = mult(mult(A,B),C) ).
fof(f04,axiom,
! [A] : o(A,A) ).
fof(f05,axiom,
! [A,B] :
( ( A != B
& o(A,B) )
=> ~ o(B,A) ) ).
fof(f06,axiom,
! [A,B,C] :
( ( o(A,B)
& o(B,C) )
=> o(A,C) ) ).
fof(f07,axiom,
! [A,B,C,D] :
( ( o(A,B)
& o(C,D) )
=> o(mult(A,C),mult(B,D)) ) ).
fof(f08,axiom,
( a != e
& o(e,a) ) ).
%------------------------------------------------------------------------------