TPTP Problem File: GRP760+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP760+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory
% Problem : A group that must be infinite
% Version : Especial.
% English : A group containing an element of order 2 and having square roots
% must be infinite.
% Refs : [Sta08] Stanovsky (2008), Email to Geoff Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 5 ( 4 unt; 0 def)
% Number of atoms : 6 ( 6 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 2 ( 1 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 6 !; 1 ?)
% SPC : FOF_SAT_RFO_PEQ
% Comments : The only proof Stanovsky knows is using Lagrange's theorem.
% : Infinox solves this easily.
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,i(A)) = e ).
fof(f02,axiom,
! [A] : mult(A,e) = A ).
fof(f03,axiom,
! [B,A,C] : mult(A,mult(B,C)) = mult(mult(A,B),C) ).
fof(f04,axiom,
( mult(a,a) = e
& a != e ) ).
fof(f05,axiom,
! [A] :
? [B] : mult(B,B) = A ).
%------------------------------------------------------------------------------