TPTP Problem File: GRP759+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP759+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory
% Problem : A 4-element non-abelian group
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to Geoff Sutcliffe
% Source : [Sta08]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.33 v6.1.0, 0.67 v6.0.0, 0.33 v5.5.0, 0.00 v5.2.0, 0.33 v5.0.0, 0.67 v4.1.0, 0.50 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 11 ( 10 unt; 0 def)
% Number of atoms : 14 ( 14 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 10 ( 7 ~; 3 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 7 con; 0-2 aty)
% Number of variables : 6 ( 6 !; 0 ?)
% SPC : FOF_UNS_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,i(A)) = e ).
fof(f02,axiom,
! [A] : mult(A,e) = A ).
fof(f03,axiom,
! [B,A,C] : mult(A,mult(B,C)) = mult(mult(A,B),C) ).
fof(f04,axiom,
mult(op_a,op_b) != mult(op_b,op_a) ).
fof(a,axiom,
! [X] :
( X = c1
| X = c2
| X = c3
| X = c4 ) ).
fof(c1_not_c2,axiom,
c1 != c2 ).
fof(c1_not_c3,axiom,
c1 != c3 ).
fof(c1_not_c4,axiom,
c1 != c4 ).
fof(c2_not_c3,axiom,
c2 != c3 ).
fof(c2_not_c4,axiom,
c2 != c4 ).
fof(c3_not_c4,axiom,
c3 != c4 ).
%------------------------------------------------------------------------------