TPTP Problem File: GRP757+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP757+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory
% Problem : A DTS loop of 16 elements
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to Geoff Sutcliffe
% Source : [Sta08]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v8.2.0, 0.67 v7.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 127 ( 123 unt; 0 def)
% Number of atoms : 150 ( 150 equ)
% Maximal formula atoms : 16 ( 1 avg)
% Number of connectives : 144 ( 121 ~; 17 |; 3 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 19 ( 19 usr; 18 con; 0-2 aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC : FOF_UNS_RFO_PEQ
% Comments : Reference to A. Drapal, T. Griggs, DTS loops, in progress.
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,A) = A ).
fof(f02,axiom,
! [B,A] : mult(A,mult(B,A)) = mult(mult(A,B),A) ).
fof(f03,axiom,
mult(op_a,op_b) != mult(op_b,op_a) ).
fof(f04,axiom,
! [X0,X1,X2] :
( mult(X0,X1) = mult(X0,X2)
=> X1 = X2 ) ).
fof(f05,axiom,
! [X3,X4,X5] :
( mult(X3,X4) = mult(X5,X4)
=> X3 = X5 ) ).
fof(f06,axiom,
! [X6,X7,X8] :
( mult(X6,X7) = X8
=> ( ( mult(X6,X8) = X7
& mult(X7,X8) = X6 )
| ( mult(X6,X8) = X7
& mult(X8,X7) = X6 )
| ( mult(X8,X6) = X7
& mult(X8,X7) = X6 ) ) ) ).
fof(a,axiom,
! [X] :
( X = c1
| X = c2
| X = c3
| X = c4
| X = c5
| X = c6
| X = c7
| X = c8
| X = c9
| X = c10
| X = c11
| X = c12
| X = c13
| X = c14
| X = c15
| X = c16 ) ).
fof(c1_not_c2,axiom,
c1 != c2 ).
fof(c1_not_c3,axiom,
c1 != c3 ).
fof(c1_not_c4,axiom,
c1 != c4 ).
fof(c1_not_c5,axiom,
c1 != c5 ).
fof(c1_not_c6,axiom,
c1 != c6 ).
fof(c1_not_c7,axiom,
c1 != c7 ).
fof(c1_not_c8,axiom,
c1 != c8 ).
fof(c1_not_c9,axiom,
c1 != c9 ).
fof(c1_not_c10,axiom,
c1 != c10 ).
fof(c1_not_c11,axiom,
c1 != c11 ).
fof(c1_not_c12,axiom,
c1 != c12 ).
fof(c1_not_c13,axiom,
c1 != c13 ).
fof(c1_not_c14,axiom,
c1 != c14 ).
fof(c1_not_c15,axiom,
c1 != c15 ).
fof(c1_not_c16,axiom,
c1 != c16 ).
fof(c2_not_c3,axiom,
c2 != c3 ).
fof(c2_not_c4,axiom,
c2 != c4 ).
fof(c2_not_c5,axiom,
c2 != c5 ).
fof(c2_not_c6,axiom,
c2 != c6 ).
fof(c2_not_c7,axiom,
c2 != c7 ).
fof(c2_not_c8,axiom,
c2 != c8 ).
fof(c2_not_c9,axiom,
c2 != c9 ).
fof(c2_not_c10,axiom,
c2 != c10 ).
fof(c2_not_c11,axiom,
c2 != c11 ).
fof(c2_not_c12,axiom,
c2 != c12 ).
fof(c2_not_c13,axiom,
c2 != c13 ).
fof(c2_not_c14,axiom,
c2 != c14 ).
fof(c2_not_c15,axiom,
c2 != c15 ).
fof(c2_not_c16,axiom,
c2 != c16 ).
fof(c3_not_c4,axiom,
c3 != c4 ).
fof(c3_not_c5,axiom,
c3 != c5 ).
fof(c3_not_c6,axiom,
c3 != c6 ).
fof(c3_not_c7,axiom,
c3 != c7 ).
fof(c3_not_c8,axiom,
c3 != c8 ).
fof(c3_not_c9,axiom,
c3 != c9 ).
fof(c3_not_c10,axiom,
c3 != c10 ).
fof(c3_not_c11,axiom,
c3 != c11 ).
fof(c3_not_c12,axiom,
c3 != c12 ).
fof(c3_not_c13,axiom,
c3 != c13 ).
fof(c3_not_c14,axiom,
c3 != c14 ).
fof(c3_not_c15,axiom,
c3 != c15 ).
fof(c3_not_c16,axiom,
c3 != c16 ).
fof(c4_not_c5,axiom,
c4 != c5 ).
fof(c4_not_c6,axiom,
c4 != c6 ).
fof(c4_not_c7,axiom,
c4 != c7 ).
fof(c4_not_c8,axiom,
c4 != c8 ).
fof(c4_not_c9,axiom,
c4 != c9 ).
fof(c4_not_c10,axiom,
c4 != c10 ).
fof(c4_not_c11,axiom,
c4 != c11 ).
fof(c4_not_c12,axiom,
c4 != c12 ).
fof(c4_not_c13,axiom,
c4 != c13 ).
fof(c4_not_c14,axiom,
c4 != c14 ).
fof(c4_not_c15,axiom,
c4 != c15 ).
fof(c4_not_c16,axiom,
c4 != c16 ).
fof(c5_not_c6,axiom,
c5 != c6 ).
fof(c5_not_c7,axiom,
c5 != c7 ).
fof(c5_not_c8,axiom,
c5 != c8 ).
fof(c5_not_c9,axiom,
c5 != c9 ).
fof(c5_not_c10,axiom,
c5 != c10 ).
fof(c5_not_c11,axiom,
c5 != c11 ).
fof(c5_not_c12,axiom,
c5 != c12 ).
fof(c5_not_c13,axiom,
c5 != c13 ).
fof(c5_not_c14,axiom,
c5 != c14 ).
fof(c5_not_c15,axiom,
c5 != c15 ).
fof(c5_not_c16,axiom,
c5 != c16 ).
fof(c6_not_c7,axiom,
c6 != c7 ).
fof(c6_not_c8,axiom,
c6 != c8 ).
fof(c6_not_c9,axiom,
c6 != c9 ).
fof(c6_not_c10,axiom,
c6 != c10 ).
fof(c6_not_c11,axiom,
c6 != c11 ).
fof(c6_not_c12,axiom,
c6 != c12 ).
fof(c6_not_c13,axiom,
c6 != c13 ).
fof(c6_not_c14,axiom,
c6 != c14 ).
fof(c6_not_c15,axiom,
c6 != c15 ).
fof(c6_not_c16,axiom,
c6 != c16 ).
fof(c7_not_c8,axiom,
c7 != c8 ).
fof(c7_not_c9,axiom,
c7 != c9 ).
fof(c7_not_c10,axiom,
c7 != c10 ).
fof(c7_not_c11,axiom,
c7 != c11 ).
fof(c7_not_c12,axiom,
c7 != c12 ).
fof(c7_not_c13,axiom,
c7 != c13 ).
fof(c7_not_c14,axiom,
c7 != c14 ).
fof(c7_not_c15,axiom,
c7 != c15 ).
fof(c7_not_c16,axiom,
c7 != c16 ).
fof(c8_not_c9,axiom,
c8 != c9 ).
fof(c8_not_c10,axiom,
c8 != c10 ).
fof(c8_not_c11,axiom,
c8 != c11 ).
fof(c8_not_c12,axiom,
c8 != c12 ).
fof(c8_not_c13,axiom,
c8 != c13 ).
fof(c8_not_c14,axiom,
c8 != c14 ).
fof(c8_not_c15,axiom,
c8 != c15 ).
fof(c8_not_c16,axiom,
c8 != c16 ).
fof(c9_not_c10,axiom,
c9 != c10 ).
fof(c9_not_c11,axiom,
c9 != c11 ).
fof(c9_not_c12,axiom,
c9 != c12 ).
fof(c9_not_c13,axiom,
c9 != c13 ).
fof(c9_not_c14,axiom,
c9 != c14 ).
fof(c9_not_c15,axiom,
c9 != c15 ).
fof(c9_not_c16,axiom,
c9 != c16 ).
fof(c10_not_c11,axiom,
c10 != c11 ).
fof(c10_not_c12,axiom,
c10 != c12 ).
fof(c10_not_c13,axiom,
c10 != c13 ).
fof(c10_not_c14,axiom,
c10 != c14 ).
fof(c10_not_c15,axiom,
c10 != c15 ).
fof(c10_not_c16,axiom,
c10 != c16 ).
fof(c11_not_c12,axiom,
c11 != c12 ).
fof(c11_not_c13,axiom,
c11 != c13 ).
fof(c11_not_c14,axiom,
c11 != c14 ).
fof(c11_not_c15,axiom,
c11 != c15 ).
fof(c11_not_c16,axiom,
c11 != c16 ).
fof(c12_not_c13,axiom,
c12 != c13 ).
fof(c12_not_c14,axiom,
c12 != c14 ).
fof(c12_not_c15,axiom,
c12 != c15 ).
fof(c12_not_c16,axiom,
c12 != c16 ).
fof(c13_not_c14,axiom,
c13 != c14 ).
fof(c13_not_c15,axiom,
c13 != c15 ).
fof(c13_not_c16,axiom,
c13 != c16 ).
fof(c14_not_c15,axiom,
c14 != c15 ).
fof(c14_not_c16,axiom,
c14 != c16 ).
fof(c15_not_c16,axiom,
c15 != c16 ).
%------------------------------------------------------------------------------