TPTP Problem File: GRP755-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP755-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In char>2, right alternative loop rings are left alternative
% Version : Especial.
% English :
% Refs : [Kun98] Kunen (1998), Alternative Loop Rings
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : Kun98_1 [Sta08]
% Status : Unsatisfiable
% Rating : 0.33 v9.0.0, 0.20 v8.2.0, 0.25 v8.1.0, 0.21 v7.5.0, 0.24 v7.3.0, 0.15 v7.2.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.15 v6.4.0, 0.29 v6.3.0, 0.20 v6.2.0, 0.40 v6.1.0, 0.36 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.33 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.33 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.38 v4.0.0
% Syntax : Number of clauses : 10 ( 8 unt; 2 nHn; 1 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
( mult(A,mult(B,C)) = mult(mult(A,B),C)
| mult(A,mult(B,C)) = mult(mult(A,C),B) ) ).
cnf(f08,axiom,
( mult(A,mult(B,C)) = mult(mult(A,B),C)
| mult(A,mult(C,B)) = mult(mult(A,B),C) ) ).
cnf(f09,axiom,
i(A) = ld(A,unit) ).
cnf(goals,negated_conjecture,
i(mult(a,b)) != mult(i(b),i(a)) ).
%------------------------------------------------------------------------------