TPTP Problem File: GRP749-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP749-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Simplifying a basis for trimedial quasigroups: part 1
% Version : Especial.
% English :
% Refs : [KP02] Kinyon & Phillips (2002), A Note on Trimedial Quasigro
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KP02_1 [Sta08]
% Status : Unsatisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of clauses : 7 ( 7 unt; 0 nHn; 1 RR)
% Number of literals : 7 ( 7 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(mult(A,mult(A,A)),mult(B,C)) = mult(mult(A,B),mult(mult(A,A),C)) ).
cnf(f06,axiom,
mult(mult(A,A),mult(B,C)) = mult(mult(A,B),mult(A,C)) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),mult(c,c)) != mult(mult(a,c),mult(b,c)) ).
%------------------------------------------------------------------------------