TPTP Problem File: GRP748-5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP748-5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Right alternative loop rings: a lemma
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : CGKxx_4alt4 [Sta08]
% Status : Unsatisfiable
% Rating : 0.53 v9.0.0, 0.47 v8.2.0, 0.44 v8.1.0, 0.53 v7.3.0, 0.46 v7.2.0, 0.42 v7.1.0, 0.36 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.40 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.70 v5.2.0, 0.50 v5.1.0, 0.56 v5.0.0, 0.60 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0
% Syntax : Number of clauses : 12 ( 11 unt; 1 nHn; 1 RR)
% Number of literals : 13 ( 13 equ; 1 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 19 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
mult(mult(mult(A,B),C),B) = mult(A,mult(mult(B,C),B)) ).
cnf(f08,axiom,
mult(mult(A,B),i(B)) = A ).
cnf(f09,axiom,
mult(A,i(A)) = unit ).
cnf(f10,axiom,
mult(i(A),A) = unit ).
cnf(f11,axiom,
( mult(A,B) = mult(B,A)
| mult(i(A),mult(A,B)) = B ) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),mult(c,a)) != mult(a,mult(mult(b,c),a)) ).
%------------------------------------------------------------------------------