TPTP Problem File: GRP742-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP742-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Proper power associative CC loop
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v8.1.0, 0.75 v7.4.0, 1.00 v7.3.0, 0.75 v7.1.0, 1.00 v4.0.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Size ?? (it's probably known, but I don't know the number)
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
cnf(c08,axiom,
mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
cnf(c09,axiom,
mult(A,rd(unit,A)) = unit ).
cnf(goals,negated_conjecture,
mult(mult(a,b),c) != mult(a,mult(b,c)) ).
%------------------------------------------------------------------------------