TPTP Problem File: GRP739-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP739-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Proper commutative A-loop of odd order.
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Size 15
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,unit) = A ).
cnf(c02,axiom,
mult(unit,A) = A ).
cnf(c03,axiom,
mult(A,ld(A,B)) = B ).
cnf(c04,axiom,
ld(A,mult(A,B)) = B ).
cnf(c05,axiom,
ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
cnf(c06,axiom,
ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
cnf(c07,axiom,
mult(s(A),s(A)) = A ).
cnf(c08,axiom,
s(mult(A,A)) = A ).
cnf(c09,axiom,
mult(A,B) = mult(B,A) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),c) != mult(a,mult(b,c)) ).
%------------------------------------------------------------------------------