TPTP Problem File: GRP722-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP722-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In commutative A-loops square-subloop operation is commutative
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : JKVxx_3 [Sta08]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v4.1.0, 0.50 v4.0.1, 1.00 v4.0.0
% Syntax : Number of clauses : 9 ( 9 unt; 0 nHn; 1 RR)
% Number of literals : 9 ( 9 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,unit) = A ).
cnf(c02,axiom,
mult(unit,A) = A ).
cnf(c03,axiom,
mult(A,ld(A,B)) = B ).
cnf(c04,axiom,
ld(A,mult(A,B)) = B ).
cnf(c05,axiom,
mult(A,B) = mult(B,A) ).
cnf(c06,axiom,
ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
cnf(c07,axiom,
ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
cnf(c08,axiom,
mult(mult(A,A),mult(B,B)) = mult(f(A,B),f(A,B)) ).
cnf(goals,negated_conjecture,
f(a,b) != f(b,a) ).
%------------------------------------------------------------------------------