TPTP Problem File: GRP716-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP716-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Strongly right alternative rings 2a
% Version : Especial.
% English : If a has a 2-sided inverse, then R(a^-1) = R(a)^-1 and
% L(a)^-1 = R(a)L(a^-1)R(a^-1).
% Refs : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KKPxx [PS08]
% Status : Unsatisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 3 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
plus(plus(A,B),C) = plus(A,plus(B,C)) ).
cnf(c02,axiom,
plus(A,B) = plus(B,A) ).
cnf(c03,axiom,
plus(A,op_0) = A ).
cnf(c04,axiom,
plus(A,minus(A)) = op_0 ).
cnf(c05,axiom,
mult(A,plus(B,C)) = plus(mult(A,B),mult(A,C)) ).
cnf(c06,axiom,
mult(mult(mult(A,B),C),B) = mult(A,mult(mult(B,C),B)) ).
cnf(c07,axiom,
mult(A,mult(B,B)) = mult(mult(A,B),B) ).
cnf(c08,axiom,
mult(A,unit) = A ).
cnf(c09,axiom,
mult(unit,A) = A ).
cnf(c10,axiom,
mult(op_a,op_b) = unit ).
cnf(c11,axiom,
mult(op_b,op_a) = unit ).
cnf(goals,negated_conjecture,
mult(op_a,mult(mult(op_b,mult(a,op_b)),op_a)) != a ).
%------------------------------------------------------------------------------