TPTP Problem File: GRP712-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP712-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In Buchsteiner loops fourth powers are nuclear - a
% Version : Especial.
% English :
% Refs : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : CDKxx [PS08]
% Status : Unsatisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
ld(A,mult(mult(A,B),C)) = rd(mult(B,mult(C,A)),A) ).
cnf(goals,negated_conjecture,
mult(mult(a,mult(a,mult(a,a))),mult(b,c)) != mult(mult(mult(a,mult(a,mult(a,a))),b),c) ).
%------------------------------------------------------------------------------