TPTP Problem File: GRP703-12.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP703-12 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : In C-loops the nucleus is normal - b
% Version : Especial.
% English :
% Refs : [PV06] Phillips & Vojtechovsky (2006), C-loops: an Introducti
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.08 v8.1.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 1 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 7 con; 0-2 aty)
% Number of variables : 24 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP703+2.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C) ).
cnf(f08,axiom,
mult(op_c,mult(A,B)) = mult(mult(op_c,A),B) ).
cnf(f09,axiom,
mult(A,mult(B,op_c)) = mult(mult(A,B),op_c) ).
cnf(f10,axiom,
mult(A,mult(op_c,B)) = mult(mult(A,op_c),B) ).
cnf(f11,axiom,
op_d = ld(A,mult(op_c,A)) ).
cnf(f12,axiom,
op_e = mult(mult(rd(op_c,mult(A,B)),B),A) ).
cnf(f13,axiom,
op_f = mult(A,mult(B,ld(mult(A,B),op_c))) ).
cnf(goal,negated_conjecture,
mult(x2,mult(op_e,x3)) != mult(mult(x2,op_e),x3) ).
%------------------------------------------------------------------------------