TPTP Problem File: GRP702+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP702+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In C-loops the nucleus is normal - a
% Version : Especial.
% English :
% Refs : [PV06] Phillips & Vojtechovsky (2006), C-loops: an Introducti
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : PV06 [PS08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.04 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v6.4.0, 0.07 v6.2.0, 0.00 v5.1.0, 0.14 v5.0.0, 0.25 v4.1.0, 0.27 v4.0.1, 0.40 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 16 ( 16 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 26 ( 26 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [C,B,A] : mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C) ).
fof(f08,axiom,
! [B,A] : mult(op_c,mult(A,B)) = mult(mult(op_c,A),B) ).
fof(f09,axiom,
! [B,A] : mult(A,mult(B,op_c)) = mult(mult(A,B),op_c) ).
fof(f10,axiom,
! [B,A] : mult(A,mult(op_c,B)) = mult(mult(A,op_c),B) ).
fof(f11,axiom,
! [A] : op_d = ld(A,mult(op_c,A)) ).
fof(f12,axiom,
! [B,A] : op_e = mult(mult(rd(op_c,mult(A,B)),B),A) ).
fof(f13,axiom,
! [B,A] : op_f = mult(A,mult(B,ld(mult(A,B),op_c))) ).
fof(goals,conjecture,
! [X0,X1] :
( mult(op_d,mult(X0,X1)) = mult(mult(op_d,X0),X1)
& mult(X0,mult(X1,op_d)) = mult(mult(X0,X1),op_d)
& mult(X0,mult(op_d,X1)) = mult(mult(X0,op_d),X1) ) ).
%------------------------------------------------------------------------------