TPTP Problem File: GRP700-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP700-10 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Variety of power associative, WIP conjugacy closed loops - 2c
% Version : Especial.
% English :
% Refs : [Phi06] Phillips (2006), A Short Basis for the Variety of WIP
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.14 v8.2.0, 0.17 v8.1.0
% Syntax : Number of clauses : 9 ( 9 unt; 0 nHn; 1 RR)
% Number of literals : 9 ( 9 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP700+1.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
mult(mult(mult(A,B),A),mult(A,C)) = mult(A,mult(mult(mult(B,A),A),C)) ).
cnf(f08,axiom,
mult(mult(A,B),mult(B,mult(C,B))) = mult(mult(A,mult(B,mult(B,C))),B) ).
cnf(goal,negated_conjecture,
tuple(mult(X1,x0),mult(x0,X1)) != tuple(unit,unit) ).
%------------------------------------------------------------------------------