TPTP Problem File: GRP674+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP674+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Extra loop commutation property 3
% Version : Especial.
% English : In an extra loop, z commutes with [x;y; t] if and only if t
% commutes with [x;y; z] if and only if [x;y; z][x;y; t] =
% [x;y; zt].
% Refs : [KK04] Kinyon & Kunen (2004), The Structure of Extra Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KK04 [PS08]
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 10 ( 9 unt; 0 def)
% Number of atoms : 11 ( 11 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-3 aty)
% Number of variables : 16 ( 16 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [C,B,A] : mult(A,mult(B,mult(C,A))) = mult(mult(mult(A,B),C),A) ).
fof(f08,axiom,
! [C,B,A] : asoc(A,B,C) = ld(mult(A,mult(B,C)),mult(mult(A,B),C)) ).
fof(f09,axiom,
mult(asoc(op_x,op_y,op_z),asoc(op_x,op_y,op_t)) = asoc(op_x,op_y,mult(op_z,op_t)) ).
fof(goals,conjecture,
( mult(op_t,asoc(op_x,op_y,op_z)) = mult(asoc(op_x,op_y,op_z),op_t)
& mult(op_z,asoc(op_x,op_y,op_t)) = mult(asoc(op_x,op_y,op_t),op_z) ) ).
%------------------------------------------------------------------------------