TPTP Problem File: GRP673-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP673-10 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Extra loop commutation property 2
% Version : Especial.
% English : In an extra loop, z commutes with [x;y; t] if and only if t
% commutes with [x;y; z] if and only if [x;y; z][x;y; t] = [x;y; zt].
% Refs : [KK04] Kinyon & Kunen (2004), The Structure of Extra Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v8.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-3 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP673+1.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
mult(A,mult(B,mult(C,A))) = mult(mult(mult(A,B),C),A) ).
cnf(f08,axiom,
asoc(A,B,C) = ld(mult(A,mult(B,C)),mult(mult(A,B),C)) ).
cnf(f09,axiom,
mult(op_t,asoc(op_x,op_y,op_z)) = mult(asoc(op_x,op_y,op_z),op_t) ).
cnf(goal,negated_conjecture,
mult(op_z,asoc(op_x,op_y,op_t)) != mult(asoc(op_x,op_y,op_t),op_z) ).
%------------------------------------------------------------------------------