TPTP Problem File: GRP665+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP665+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Conjugacy closed implies commutant in the nucleus
% Version : Especial.
% English :
% Refs : [Kun00] Kunen (2000), The Structure of Conjugacy Closed Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : Kun00 [PS08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.10 v7.4.0, 0.12 v7.3.0, 0.15 v7.2.0, 0.17 v7.1.0, 0.18 v7.0.0, 0.13 v6.4.0, 0.14 v6.2.0, 0.18 v6.1.0, 0.17 v6.0.0, 0.25 v5.5.0, 0.38 v5.4.0, 0.22 v5.3.0, 0.17 v5.2.0, 0.14 v5.1.0, 0.29 v5.0.0, 0.38 v4.1.0, 0.27 v4.0.1, 0.60 v4.0.0
% Syntax : Number of formulae : 10 ( 9 unt; 0 def)
% Number of atoms : 12 ( 12 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 19 ( 19 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [C,B,A] : mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
fof(f08,axiom,
! [C,B,A] : mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
fof(f09,axiom,
! [A] : mult(op_c,A) = mult(A,op_c) ).
fof(goals,conjecture,
! [X0,X1] :
( mult(op_c,mult(X0,X1)) = mult(mult(op_c,X0),X1)
& mult(mult(X0,op_c),X1) = mult(X0,mult(op_c,X1))
& mult(mult(X0,X1),op_c) = mult(X0,mult(X1,op_c)) ) ).
%------------------------------------------------------------------------------