TPTP Problem File: GRP641+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP641+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Group Theory
% Problem : On the Lattice of Subgroups of a Group T19
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Gan96] Ganczarski (1996), On the Lattice of Subgroups of a Gr
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t19_latsubgr [Urb08]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.31 v7.5.0, 0.34 v7.4.0, 0.20 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.25 v6.2.0, 0.32 v6.1.0, 0.40 v6.0.0, 0.30 v5.5.0, 0.41 v5.4.0, 0.46 v5.3.0, 0.56 v5.2.0, 0.35 v5.1.0, 0.38 v5.0.0, 0.46 v4.1.0, 0.48 v4.0.0, 0.50 v3.5.0, 0.47 v3.4.0
% Syntax : Number of formulae : 55 ( 19 unt; 0 def)
% Number of atoms : 162 ( 9 equ)
% Maximal formula atoms : 11 ( 2 avg)
% Number of connectives : 138 ( 31 ~; 1 |; 64 &)
% ( 3 <=>; 39 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 19 ( 17 usr; 1 prp; 0-3 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-2 aty)
% Number of variables : 91 ( 77 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t19_latsubgr,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( ( v1_group_1(B)
& m1_group_2(B,A) )
=> r2_hidden(k2_group_1(A),k1_funct_1(k1_latsubgr(A),B)) ) ) ).
fof(abstractness_v1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> ( v1_group_1(A)
=> A = g1_group_1(u1_struct_0(A),u1_group_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_partfun1(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B) ) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc5_funct_2,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc6_funct_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(d1_latsubgr,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k1_group_3(A),k1_zfmisc_1(u1_struct_0(A)))
& m2_relset_1(B,k1_group_3(A),k1_zfmisc_1(u1_struct_0(A))) )
=> ( B = k1_latsubgr(A)
<=> ! [C] :
( ( v1_group_1(C)
& m1_group_2(C,A) )
=> k1_funct_1(B,C) = u1_struct_0(C) ) ) ) ) ).
fof(dt_g1_group_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ( v1_group_1(g1_group_1(A,B))
& l1_group_1(g1_group_1(A,B)) ) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_group_3,axiom,
$true ).
fof(dt_k1_latsubgr,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ( v1_funct_1(k1_latsubgr(A))
& v1_funct_2(k1_latsubgr(A),k1_group_3(A),k1_zfmisc_1(u1_struct_0(A)))
& m2_relset_1(k1_latsubgr(A),k1_group_3(A),k1_zfmisc_1(u1_struct_0(A))) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_group_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_group_1(A) )
=> m1_subset_1(k2_group_1(A),u1_struct_0(A)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_l1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_group_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_group_2(B,A)
=> ( ~ v3_struct_0(B)
& v3_group_1(B)
& l1_group_1(B) ) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> ( v1_funct_1(u1_group_1(A))
& v1_funct_2(u1_group_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_group_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_group_1,axiom,
? [A] : l1_group_1(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_group_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& l1_group_1(A) )
=> ? [B] : m1_group_2(B,A) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_group_3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ~ v1_xboole_0(k1_group_3(A)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(free_g1_group_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ! [C,D] :
( g1_group_1(A,B) = g1_group_1(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,A,B) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t53_group_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_group_2(B,A)
=> k2_group_1(B) = k2_group_1(A) ) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------