TPTP Problem File: GRP617-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP617-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Group Theory
% Problem : PQEx lemma
% Version : Especial.
% English : Proves commutativity of mutliplication across two trivially
% intersecting subgroups.
% Refs : [Dvo02] Dvorsky (2002), Email to G. Sutcliffe
% Source : [Dvo02]
% Names :
% Status : Unsatisfiable
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.33 v8.1.0, 0.22 v7.5.0, 0.20 v7.4.0, 0.33 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.29 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.40 v6.0.0, 0.44 v5.5.0, 0.75 v5.4.0, 0.67 v5.3.0, 0.75 v5.2.0, 0.62 v5.1.0, 0.57 v5.0.0, 0.43 v4.1.0, 0.22 v4.0.1, 0.17 v3.5.0, 0.00 v3.3.0, 0.29 v3.2.0, 0.14 v3.1.0
% Syntax : Number of clauses : 18 ( 8 unt; 0 nHn; 11 RR)
% Number of literals : 38 ( 3 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 35 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%------------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%------------------------------------------------------------------------------
%----Axioms for 2 subgroups
cnf(closure_of_inverse1,axiom,
( ~ subgroup1_member(X)
| subgroup1_member(inverse(X)) ) ).
cnf(closure_of_product1,axiom,
( ~ subgroup1_member(A)
| ~ subgroup1_member(B)
| ~ product(A,B,C)
| subgroup1_member(C) ) ).
cnf(closure_of_inverse2,axiom,
( ~ subgroup2_member(X)
| subgroup2_member(inverse(X)) ) ).
cnf(closure_of_product2,axiom,
( ~ subgroup2_member(A)
| ~ subgroup2_member(B)
| ~ product(A,B,C)
| subgroup2_member(C) ) ).
%----Assumption of normality and trivial intersection
cnf(normality1,hypothesis,
( ~ subgroup1_member(X)
| subgroup1_member(multiply(A,multiply(X,inverse(A)))) ) ).
cnf(normality2,hypothesis,
( ~ subgroup2_member(X)
| subgroup2_member(multiply(A,multiply(X,inverse(A)))) ) ).
cnf(trivial_intersection,hypothesis,
( ~ subgroup1_member(X)
| ~ subgroup2_member(X)
| X = identity ) ).
%-----Prove that U * V == V * U
cnf(v_in_G1,hypothesis,
subgroup1_member(v) ).
cnf(u_in_G2,hypothesis,
subgroup2_member(u) ).
cnf(prove_vu_equals_uv,negated_conjecture,
multiply(v,u) != multiply(u,v) ).
%------------------------------------------------------------------------------