TPTP Problem File: GRP401-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP401-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory (Cancellative Semigroups)
% Problem : Prove distributivity implies nilpotent in cancellative semigroup
% Version : [EF+02] axioms.
% English : Assume a cancellative semigroup admits a commutator operation.
% Then the following three properties are equivalent:
% (1) commutator is associative;
% (2) commutator distributes over product;
% (3) the semigroup is nilpotent of class 2.
% This is a generalization of the corresponding theorem for group
% theory. The problem here is to prove (1) implies (2).
% Refs : [Kur56] Kurosh (1956), The Theory of Groups
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : cs-comm-dn [EF+02]
% Status : Unsatisfiable
% Rating : 0.47 v9.0.0, 0.40 v8.2.0, 0.44 v8.1.0, 0.53 v7.5.0, 0.47 v7.4.0, 0.59 v7.3.0, 0.54 v7.2.0, 0.50 v7.1.0, 0.45 v7.0.0, 0.46 v6.4.0, 0.57 v6.3.0, 0.50 v6.2.0, 0.60 v6.1.0, 0.64 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.70 v5.2.0, 0.50 v5.1.0, 0.56 v5.0.0, 0.60 v4.1.0, 0.44 v4.0.1, 0.50 v4.0.0, 0.43 v3.7.0, 0.29 v3.4.0, 0.17 v3.3.0, 0.33 v3.1.0, 0.20 v2.7.0, 0.50 v2.6.0, 0.40 v2.5.0
% Syntax : Number of clauses : 6 ( 4 unt; 0 nHn; 3 RR)
% Number of literals : 8 ( 8 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Cancellative semigroups axioms
include('Axioms/GRP008-0.ax').
include('Axioms/GRP008-1.ax').
%--------------------------------------------------------------------------
%----CS admits commutator
cnf(commutator,axiom,
multiply(A,B) = multiply(B,multiply(A,commutator(A,B))) ).
%----Commutator distributes over product
cnf(commutator_distributes_over_product,axiom,
commutator(multiply(A,B),C) = multiply(commutator(A,C),commutator(B,C)) ).
%----Denial: nilpotent class 2
cnf(prove_nilpotency,negated_conjecture,
multiply(commutator(a,b),c) != multiply(c,commutator(a,b)) ).
%--------------------------------------------------------------------------